WorldWideScience

Sample records for kantowski-sachs dust universe

  1. The choice of time in quantum cosmology: two different approaches to Kantowski-Sachs quantum universe

    CERN Document Server

    Alvarenga, F G; Freitas, R C; Gonçalves, S V B

    2015-01-01

    In this paper we study the quantum Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by the Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The Kantowski-Sachs model is also presented with the introduction of so-called geometric time. Finally, the agreement between the results is analyzed and the possibility of equivalence between the two approaches is discussed.

  2. Kantowski-Sachs Universes sourced by a Skyrme fluid

    CERN Document Server

    Parisi, Luca; Vilasi, Gaetano

    2014-01-01

    The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is considered in the framework of General Relativity. Assuming a constant radial profile function for the hedgehog ansatz, the Skyrme contribution to Einstein equations is shown to be equivalent to an anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are discussed.

  3. Kantowski-Sachs Universe in the Varying Speed of Light Theory

    CERN Document Server

    Khadekar, G S; Ray, Saibal

    2016-01-01

    In this work we consider the Kantowski-Sachs (KS) universe in the framework of varying speed of light theory. We present the general solutions of the gravitational field equations with variable speed of light $c(t)$, gravitational coupling parameter $G(t)$ and the decaying vacuum energy $\\Lambda(t)$ for the KS model. In the limiting case for the equation of state (EOS) parameter $\\gamma=2$ (stiff fluid with $p=\\rho c^2$) and $\\gamma =1$ (dust with $p=0$), exact solutions of the field equations are obtained. The numerical solutions are also presented for both the cases. Moreover, it is shown that in the limiting case of large time, the mean anisotropy parameter tends to zero for $\\gamma=2$ and $\\gamma=1$. Thus the time variation of the fundamental constants provides an effective mechanism for the isotropization of the KS universe.

  4. Kantowski-Sachs Universe Models in $f(T)$ Theory of Gravity

    CERN Document Server

    Amir, M Jamil

    2015-01-01

    The $f(T)$ theory is recently proposed to explain the present cosmic accelerating expansion of the universe. $f(T)$ theory is an extension of Teleparallel theory of gravity, where $T$ is the torsion scalar. This paper contains the construction of $f(T)$ models within the Kantowski-Sachs universe. For this purpose, we use conservation equation and equation of state parameter, which represents the different phases of the universe. We discuss possible cases for the matter dominated era, radiation dominated era, present dark energy phase and their combinations. Particularly, a constant solution has been obtained which may correspond to the cosmological constant. Further, we consider two well known $f(T)$ models and derive the equation of state parameter and discuss the cosmic acceleration. Also, the Hubble parameter and average scale factor have been evaluated.

  5. (Non) singular Kantowski-Sachs Universe from quantum spherically reduced matter

    CERN Document Server

    Nojiri, S; Odintsov, S D; Osetrin, K E

    1999-01-01

    Using s-wave and large $N$ approximation the one-loop effective action for 2d dilaton coupled scalars and spinors which are obtained by spherical reduction of 4d minimal matter is found. Quantum effective equations for reduced Einstein gravity are written. Their analytical solutions corresponding to 4d Kantowski-Sachs (KS) Universe are presented. For quantum-corrected Einstein gravity we get non-singular KS cosmology which represents 1) quantum-corrected KS cosmology which existed on classical level or 2)purely quantum solution which had no classical limit. The analogy with Nariai BH is briefly mentioned. For purely induced gravity (no Einstein term) we found general analytical solution but all KS cosmologies under discussion are singular. The corresponding equations of motion are reformulated as classical mechanics problem of motion of unit mass particle in some potential $V$.

  6. No bounce behaviour in Kantowski-Sachs Cosmologies

    CERN Document Server

    Solomons, D M; Ellis, G; Solomons, Deon; Dunsby, Peter; Ellis, George

    2001-01-01

    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the {\\it reality condition} $\\dot{\\phi}^2\\geq 0$.

  7. Perturbations of Kantowski-Sachs models

    CERN Document Server

    Bradley, Michael; Keresztes, Zoltán; Gergely, László Á; Dunsby, Peter K S

    2013-01-01

    Perturbations of Kantowski-Sachs models with a positive cosmological constant are considered in a harmonic decomposition, in the framework of gauge invariant 1+3 and 1+1+2 covariant splits of spacetime. Scalar, vector and tensor modes are allowed, however they remain vorticity-free and of perfect fluid type. The dynamics is encompassed in six evolution equations for six harmonic coefficients.

  8. Bounce behaviour in Kantowski-Sachs and Bianchi cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Solomons, Deon [Cape Peninsula University of Technology, Cape Town (South Africa); Dunsby, Peter K S [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Ellis, George F R [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2006-12-07

    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the reality condition {phi}-dot{sup 2} {>=}0. This also holds true for other isotropic spatially homogeneous Bianchi models, with the exception of closed Friedmann-Robertson-Walker and Bianchi IX models; bounce behaviour violates the weak energy condition {rho} {>=} 0 and {rho} + p {>=} 0. We turn to the Randall-Sundrum type braneworld scenario for a possible resolution of this problem.

  9. Exact solution of the Einstein-Skyrme model in a Kantowski-Sachs spacetime

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2017-04-01

    We consider a Skyrme fluid with a constant radial profile in locally rotational Kantowski-Sachs spacetime. The Skyrme fluid is an anisotropic fluid with zero heat flux and with an equation of state parameter wS that |ws | ≤ 1/3. From the Einstein field equations we define the Wheeler-DeWitt equation. For the last equation we perform a Lie symmetry classification and we determine the invariant solutions for the wavefunction of the model. Moreover from the Lie symmetries of the Wheeler-DeWitt equation we construct Noetherian conservation laws for the field equations which we use in order to write the solution in closed form. We show that all of the cosmological parameters are expressed in terms of the scale factor of the two dimensional sphere of the Kantowski-Sachs spacetime. Finally from the application of Noether's theorem for the Wheeler-DeWitt equation we derive conservation laws for the wavefunction of the universe.

  10. Bianchi type-I, type-III and Kantowski-Sachs solutions in f( T) gravity

    Science.gov (United States)

    Rodrigues, M. E.; Kpadonou, A. V.; Rahaman, F.; Oliveira, P. J.; Houndjo, M. J. S.

    2015-06-01

    In the context of modified tele-parallel theory of gravity, we undertake cosmological anisotropic models and search for their solutions. Within a suitable choice of non-diagonal tetrads, the decoupled equations of motion are obtained for Bianchi-I, Bianchi-III and Kantowski-Sachs models, from which we obtain the correspondent solutions. By the way, energy density and pressures are also obtained, showing, as an important result, that our universe may live a quintessence like universe even while anisotropic models are considered.

  11. Perturbations of Kantowski-Sachs models with a cosmological constant

    CERN Document Server

    Keresztes, Zoltán; Bradley, Michael; Dunsby, Peter K S; Gergely, László Á

    2013-01-01

    We investigate perturbations of Kantowski-Sachs models with a positive cosmological constant, using the gauge invariant 1+3 and 1+1+2 covariant splits of spacetime together with a harmonic decomposition. The perturbations are assumed to be vorticity-free and of perfect fluid type, but otherwise include general scalar, vector and tensor modes. In this case the set of equations can be reduced to six evolution equations for six harmonic coefficients.

  12. Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski-Sachs spacetime

    Science.gov (United States)

    Saini, Sahil; Singh, Parampreet

    2016-12-01

    Resolution of singularities in the Kantowski-Sachs model due to non-perturbative quantum gravity effects is investigated. Using the effective spacetime description for the improved dynamics version of loop quantum Kantowski-Sachs spacetimes, we show that even though expansion and shear scalars are universally bounded, there can exist events where curvature invariants can diverge. However, such events can occur only for very exotic equations of state when pressure or derivatives of energy density with respect to triads become infinite at a finite energy density. In all other cases curvature invariants are proved to remain finite for any evolution in finite proper time. We find the novel result that all strong singularities are resolved for arbitrary matter. Weak singularities pertaining to above potential curvature divergence events can exist. The effective spacetime is found to be geodesically complete for particle and null geodesics in finite time evolution. Our results add to a growing evidence for generic resolution of strong singularities using effective dynamics in loop quantum cosmology by generalizing earlier results on isotropic and Bianchi-I spacetimes.

  13. Unitary evolution for a quantum Kantowski-Sachs cosmology

    CERN Document Server

    Pal, Sridip

    2015-01-01

    It is shown that like Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows a unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of the anisotropy. Non-unitarity, if there is any, cannot escape notice in this as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave-packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving time independent probability density. For $\\alpha\

  14. Kantowski-Sachs cosmological solutions in the generalized teleparallel gravity via Noether symmetry

    Science.gov (United States)

    Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.

    2016-04-01

    We study the f(T) theory as an extension of teleparallel gravity and consider the Noether symmetry of Kantowski-Sachs (KS) anisotropic model for this theory. We specify the explicit teleparallel form of f(T) and find the corresponding exact cosmological solutions under the assumption that the Lagrangian admits the Noether symmetry. It is found that the universe experiences a power law expansion for the scale factors in the context of f(T) theory. By deriving equation of state (EOS) parameter, we show that the universe passes through the phantom and ΛCDM theoretical scenarios. In this way, we estimate a lower limit age for the universe in excellent agreement with the value reported from recent observations. When KS model reduces to the flat Friedmann-Robertson-Walker (FRW) metric, our results are properly transformed into the corresponding values.

  15. Non-Canonical Phase-Space Noncommutativity and the Kantowski-Sachs singularity for Black Holes

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2010-01-01

    We consider a cosmological model based upon a non-canonical noncommutative extension of the Heisenberg-Weyl algebra to address the thermodynamical stability and the singularity problem of both the Schwarzschild and the Kantowski-Sachs black holes. The interior of the black hole is modelled by a noncommutative extension of the Wheeler-DeWitt equation. We compute the temperature and entropy of a Kantowski-Sachs black hole and compare our results with the Hawking values. Again, the noncommutativity in the momenta sector allows us to have a minimum in the potential, which is relevant in order to apply the Feynman-Hibbs procedure. For Kantowski-Sachs black holes, the same model is shown to generate a non-unitary dynamics, predicting vanishing total probability in the neighborhood of the singularity. This result effectively regularizes the Kantowski-Sachs singularity and generalizes a similar result, previously obtained for the case of Schwarzschild black hole.

  16. Kantowski-Sachs Einstein-aether perfect fluid models

    CERN Document Server

    Latta, Joey

    2016-01-01

    We investigate Kantowski-Sachs models in Einstein-aether theory with a perfect fluid source using dynamical system tools. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A. A. Coley, G. Leon, P. Sandin and J. Latta, JCAP {\\bf 12}, 010 (2015) are then re-obtained as particular cases. Additionally, we select other values for non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. Particularly, we find solutions with infinite shearing, zero curvature, and infinity matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. From the cosmological point of view, the more interesting fixed points are those representing accelerated solutions. However, the accelerated solutions do not isotropize, and th...

  17. Kantowski-Sachs Einstein-æther perfect fluid models

    Science.gov (United States)

    Latta, Joey; Leon, Genly; Paliathanasis, Andronikos

    2016-11-01

    We investigate Kantowski-Sachs models in Einstein-æ ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A.A. Coley, G. Leon, P. Sandin and J. Latta (JCAP 12 (2015) 010), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.

  18. Qualitative analysis of Kantowski-Sachs metric in a generic class of f(R) models

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Roque, Armando A., E-mail: genly.leon@ucv.cl, E-mail: arestrada@ucf.edu.cu [Grupo de Estudios Avanzados, Universidad de Cienfuegos, Carretera a Rodas, Cuatro Caminos, s/n. Cienfuegos (Cuba)

    2014-05-01

    In this paper we investigate, from the dynamical systems perspective, the evolution of a Kantowski-Sachs metric in a generic class of f(R) models. We present conditions (i.e., differentiability conditions, existence of minima, monotony intervals, etc.) for a free input function related to the f(R), that guarantee the asymptotic stability of well-motivated physical solutions, specially, self-accelerated solutions, allowing to describe both inflationary- and late-time acceleration stages of the cosmic evolution. We discuss which f(R) theories allows for a cosmic evolution with an acceptable matter era, in correspondence to the modern cosmological paradigm. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or phantom solutions. Additionally, we find that a cosmological bounce and turnaround are realized in a part of the parameter-space as a consequence of the metric choice.

  19. Qualitative analysis of Kantowski-Sachs metric in a generic class of $f(R)$ models

    CERN Document Server

    Leon, Genly

    2013-01-01

    In this paper we investigate, from the dynamical systems perspective, the evolution of a Kantowski-Sachs metric in a generic class of $f(R)$ models. We present conditions (i. e., differentiability conditions, existence of minima, monotony intervals, etc.) for a free input function related to the $f(R)$, that guarantee the asymptotic stability of well-motivated physical solutions, specially, self-accelerated solutions, allowing to describe both inflationary- and late-time acceleration stages of the cosmic evolution. We discuss which $f(R)$ theories allows for a cosmic evolution with an acceptable matter era, in correspondence to the modern cosmological paradigm. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or phantom solutions. Additionally, we find that a cosmological bounce and turnaround are realized in a part of the parameter-space as a consequence of the metric choice...

  20. Noncanonical phase-space noncommutativity and the Kantowski-Sachs singularity for black holes

    Science.gov (United States)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2011-07-01

    We consider a cosmological model based upon a noncanonical noncommutative extension of the Heisenberg-Weyl algebra to address the thermodynamical stability and the singularity problem of black holes whose interior are described by the Kantowski-Sachs metric and modeled by a noncommutative extension of the Wheeler-DeWitt equation. We compute the temperature and entropy of these black holes and compare the results with the Hawking values. We observe that it is actually the noncommutativity in the momentum sector that allows for the existence of a minimum in the potential, which is the key to apply the Feynman-Hibbs procedure. It is shown that this noncommutative model generates a nonunitary dynamics that predicts a vanishing probability in the neighborhood of the singularity. This result effectively regularizes the Kantowski-Sachs singularity and generalizes a similar result, previously obtained for the case of Schwarzschild black holes.

  1. A note on proper affine symmetry in Kantowski-Sachs and Bianchi type III space-times

    CERN Document Server

    Shabbir, Ghulam

    2016-01-01

    We investigate proper affine symmetry for the Kantowski-Sachs and Bianchi type III space-times by using holonomy and decomposability, the rank of the 6X6 Riemann matrix and direct integration techniques. It is shown that the very special classes of the above space-times admit proper affine vector fields.

  2. A note on classification of proper homothetic vector fields in Kantowski-Sachs and Bianchi type III Lorentzian manifolds

    CERN Document Server

    Shabbir, Ghulam

    2011-01-01

    A complete study of Kantowski-Sachs and Bianchi type III space-times according to their proper homothetic vector fields is given by using direct integration technique. Using the above mentioned technique we have shown that very special classes of the above space-times admit proper homothetic vector fields. The dimension of homothetic vector fields is five.

  3. Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior

    Science.gov (United States)

    Djordjevic, Goran S.; Nesic, Ljubisa; Radovancevic, Darko

    2016-08-01

    In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum, homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model is presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model is written, and then an adelic wave function is constructed. Finally, thermodynamics of the model is studied by using the Feynman-Hibbs procedure.

  4. Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior

    CERN Document Server

    Djordjevic, Goran S; Radovancevic, Darko

    2015-01-01

    In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model will be presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model, will be written, and then an adelic wave function will be constructed. Finally, thermodynamics of the model will be studied by using the Feynman-Hibbs procedure.

  5. New exact solutions of Bianchi I, Bianchi III and Kantowski-Sachs spacetimes in scalar-coupled gravity theories via Noether gauge symmetries

    CERN Document Server

    Camci, U; Oz, I Basaran

    2016-01-01

    The Noether symmetry approach is useful tool to restrict the arbitrariness in a gravity theory when the equations of motion are underdetermined due to the high number of functions to be determined in the ansatz. We consider two scalar-coupled theories of gravity, one motivated by induced gravity, the other more standard; in Bianchi I, Bianchi III and Kantowski-Sachs cosmological models. For these models, we present a full set of Noether gauge symmetries, which are more general than those obtained by the strict Noether symmetry approach in our recent work. Some exact solutions are derived using the first integrals corresponding to the obtained Noether gauge symmetries.

  6. Geometric properties of the Kantowski-Sachs and Bianchi-type Killing algebra in relation to a Klein-Gordon equation

    Science.gov (United States)

    Jamal, Sameerah; Shabbir, Ghulam

    2017-02-01

    We study the geometric properties of generators for the Klein-Gordon equation in Kantowski-Sachs and certain Bianchi-type spaces. Several versions of the Klein-Gordon equation are derived from its dependence on a potential function. The criteria for different versions of the (1+3) Klein-Gordon equation originates from analyzing three sources, viz. through generators that are identically the Killing algebra, or with the Killing vector fields that are recast into linear combinations and thirdly, real sub-algebras within the conformal algebra. In turn, these equations admit a catalogue of infinitesimal symmetries that are equivalent to the corresponding Killing vector fields in Kantowski-Sachs, Bianchi type III, IX, VIII, VI0 and VII0 space-times, with the exception of a linear vector W=upartialu in every case. The sheer number of results are displayed in appropriate tables. Subsequently, in application, we derive some Noetherian conservation laws and identify some exact solutions by quadratures.

  7. Anisotropic higher derivative gravity and inflationary universe

    CERN Document Server

    Kao, W F

    2006-01-01

    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.

  8. Dust in the Universe

    Science.gov (United States)

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  9. The closed-universe recollapse conjecture

    Science.gov (United States)

    Barrow, John D.; Galloway, Gregory J.; Tipler, Frank J.

    1986-12-01

    It is widely believed that all expanding S3 closed universes that satisfy the standard energy conditions recollapse to a second singularity. The authors show that this is false even for Friedmann universes: they construct an ever-expanding S3 Friedmann universe in which the matter tensor satisfies the strong, weak and dominant energy conditions and the generic condition. The authors prove a general recollapse theorem for Friedmann universes: if the positive pressure criterion, dominant energy condition and matter regularity condition hold, then an S3 Friedmann universe must recollapse. The authors show that all known vacuum solutions with Cauchy surface topology S3 or S2×S1 recollapse, and they conjecture that this is a property of all vacuum solutions of Einstein's equations with such Cauchy surfaces. The authors consider a number of Kantowski-Sachs and Bianchi IX universes with various matter tensors, and formulate a new recollapse conjecture for matter-filled universes.

  10. Global amount of dust in the universe

    CERN Document Server

    Fukugita, Masataka

    2011-01-01

    It is pointed out that the total amount of dust in the Universe that is produced in stellar evolution in the entire cosmic time is consistent with the observed amount, if we add to the dust amount inferred for galactic discs the amount recently uncovered in galactic haloes and the surrounding of galaxies in reddening of the quasar light passing through the vicinity of galaxies. The inventory concerning the dust closes. This implies that dust produced from stars should survive effectively for the cosmic time, and that a substantial amount of dust is produced in the burning phase of evolved stars of intermedaite mass.

  11. The Origin of Dust in the Early Universe

    Science.gov (United States)

    Dwek, Eli

    2011-01-01

    In this talk I will describe the origin of dust in the early universe. I will be presenting observations of the spectral energy distribution of the galaxy J1148+5251, and present estimates of the dust mass in this high redshift (z=6.4) object. I will then discuss the origin of this dust, and the role of SN and AGB stars as dust sources, and the effect of SNRs on the destruction of dust in the interstellar medium of this galaxy.

  12. Genesis and evolution of dust in the early Universe

    Science.gov (United States)

    Gall, Christa

    2010-10-01

    The most fascinating aspect of studying dust is the fact that small dust particles of a few micrometer which we cannot see with our naked eyes are a fundamentally important component in a Universe whose dimension we hardly can imagine. Dust grains impact the evolution of the Universe in many ways. For example they are known as the main formation site of molecular hydrogen which acts as important coolant by the formation of stars similar to our Sun. Dust is essential for the formation of planets and plays an important role in the end stages of life of most stars. Large amounts of dust have been discovered in quasars (QSOs) at high redshift where the epoch of cosmic evolution was ! 1 Gyr, but the origin and evolution of these remains elusive. Supernovae (SNe) and asymptotic giant branch (AGB) stars have been contemplated as prime dust sources due to their potential ability of generating sufficiently high amounts of dust. Though AGB stars are in fact known as the main dust source in the present Universe, their partially (too) long lifetimes questions their significance as dust contributers in the early Universe. SNe are sufficiently short-lived, but there exists a discrepancy between observationally and theoretically ascertained dust yields. The principal aim of this thesis is to elucidate the astrophysical conditions required for generating these large amounts of dust in massive starburst galaxies and QSOs at high redshift. We first intend to identify the mass ranges of the most efficient dust producing stars at high redshift. We ascertain the dust production efficiency of stars in the mass range 3-40 M⊙ using observed and theoretical dust yields of AGB stars and SNe. Based on these efficiencies we determine the total dust productivity for different stellar sources and investigate its dependency on the initial mass function (IMF). It is found that the dust production efficiency generally decreases with increasing progenitor mass. The total dust production strongly

  13. Universal instability of dust ion-sound waves and dust-acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V.N. [General Physics Institute, Russian Academy of Science Moscow, Moscow (Russian Federation); Watanabe, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2002-01-01

    It is shown that the dust ion-sound waves (DISW) and the dust-acoustic waves (DAW) are universally unstable for wave numbers less than some critical wave number. The basic dusty plasma state is assumed to be quasi-neutral with balance of the plasma particle absorption on the dust particles and the ionization with the rate proportional to the electron density. An analytical expression for the critical wave numbers, for the frequencies and for the growth rates of DISW and DAW are found using the hydrodynamic description of dusty plasma components with self-consistent treatment of the dust charge variations and by taking into account the change of the ion and electron distributions in the dust charging process. Most of the previous treatment do not take into account the latter process and do not treat the basic state self-consistently. The critical lengths corresponding to these critical wave numbers can be easily achieved in the existing experiments. It is shown that at the wave numbers larger than the critical ones DISW and DAW have a large damping which was not treated previously and which can be also measured. The instabilities found in the present work on their non linear stage can lead to formation of different types of dust self-organized structures. (author)

  14. Dynamical fluid-type Universe scenario with dust and radiation

    CERN Document Server

    Mihu, Denisa-Andreea

    2016-01-01

    Within the context of a cosmic space whose energy source is modeled with a perfect fluid, a uniform model of Universe based on a standard FRW cosmology containing decoupled mixed matter sources namely stiff matter and cosmic dust together with a positive cosmological constant, has been studied. Within the scenario of a $k=0-$ spatially-flat geometry, we analysed the geometrodynamics of the theoretical cosmology. For the model with an added cosmological constant, the main scope was to point out the effects of it on the universe' dynamics. In this last case, the thermodynamics of the model was also considered together with the relation between the cosmological energy density and fluid pressure in terms of the inverse function of the equation of state.

  15. Molecular hydrogen formation on dust grains in the high-redshift universe

    NARCIS (Netherlands)

    Cazaux, S; Spaans, M

    2004-01-01

    We study the formation of molecular hydrogen on dust grain surfaces and apply our results to the high-redshift universe. We find that a range of physical parameters-in particular dust temperature and gas temperature, but not so much dust surface composition-influences the formation rate of H-2. The

  16. Molecular hydrogen formation on dust grains in the high-redshift universe

    NARCIS (Netherlands)

    Cazaux, S; Spaans, M

    2004-01-01

    We study the formation of molecular hydrogen on dust grain surfaces and apply our results to the high-redshift universe. We find that a range of physical parameters-in particular dust temperature and gas temperature, but not so much dust surface composition-influences the formation rate of H-2. The

  17. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content

    Science.gov (United States)

    Dwek, Eli; Cherchneff, Isabelle

    2010-01-01

    Two distinct scenarios for the origin of the approximately 4 x 10(exp 8) Solar Mass of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae, could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass AGB stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios. ^N;"(,, show that the AGB scenario is sensitive to the details of the galaxy's star formation history (SFH), which must consist of an early intense starburst followed by a period of low stellar activity. The presence or absence of massive amounts of dust in high-redshift galaxies can therefore be used to infer their SFH. However, a problem with the AGB scenario is that it produces a stellar mass that is significantly larger than the inferred dynamical mass of J1148+5251, an yet unresolved discrepancy. If this problem persists, then additional sites for the growth or formation of dust, such as molecular clouds or dense clouds around active galactic nuclei, must be considered.

  18. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  19. The Origin and Evolution of Interstellar Dust in the Local and High-redshift Universe

    Science.gov (United States)

    Dwek, Eliahu

    2012-01-01

    In this talk I will begin by reviewing our current state of knowledge regarding the origin and evolution of dust in the local solar neighborhood. using chemical evolution models, I will discuss their many different input parameters and their uncertainties. An important consequence of these models is the delayed injection of dust from AGB stars, compared to supernova-condensed dust, into the interstellar medium. I will show that these stellar evolutionary effects on dust composition are manifested in the infrared spectra of local galaxies. The delayed production of dust in AGB stars has also important consequences for the origin of the large amount of dust detected in high-redshift galaxies, when the universe was less that approx. 1 Gyr old. Supernovae may have been the only viable dust sources in those galaxies. Recent observations of sN1987a show a significant mass of dust in the ejecta of this SN. Is that production rate high enough to account for the observed dust mass in these galaxies? If not, what are the alternative viable sources of dust, and how do they depend on the nature of the galaxy (starburst or AGN) and its star formation history .

  20. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe

    Science.gov (United States)

    Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.

    2017-04-01

    The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (venergy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.

  1. DustPedia - A Definitive Study of Cosmic Dust in the Local Universe

    CERN Document Server

    Davies, J I; Bianchi, S; Jones, A; Madden, S; Xilouris, M; Bocchio, M; Casasola, V; Cassara, L; Clark, C; De Looze, I; Evans, R; Fritz, J; Galametz, M; Galliano, F; Lianou, S; Mosenkov, A V; Smith, M; Verstocken, S; Viaene, S; Vika, M; Wagle, G; Ysard, N

    2016-01-01

    The European Space Agency has invested heavily in two cornerstones missions; Herschel and Planck. The legacy data from these missions provides us with an unprecedented opportunity to study cosmic dust in galaxies so that we can answer fundamental questions about, for example: the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far infrared background. In this paper we describe the DustPedia project, which is enabling us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, temperature), to its origins (evolved stars, super novae, growth in the ISM) and the processes that destroy it (high energy collisions and shock heated gas). To carry out this research we will combine the Herschel/Planck data with that from other sources of data, providing observations at numerous wav...

  2. Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae

    CERN Document Server

    Nozawa, T; Umeda, H; Maeda, K; Nomoto, K; Nozawa, Takaya; Kozasa, Takashi; Umeda, Hideyuki; Maeda, Keiichi; Nomoto, Ken'ichi

    2003-01-01

    We investigate the formation of dust grains in the ejecta of population III supernovae including pair--instability supernovae, applying a theory of non-- steady state nucleation and grain growth. In the calculations, the time evolution of gas temperature in theejecta, which strongly affects the number density and size of newly formed grains, is calculated by solving the radiative transfer equation taking account of the energy deposition of radio active elements. Two extreme cases are considered for the mixing of elements in the ejecta; unmixed and uniformly mixed cases within the He--core. The results of calculations are summarized as the followings; in the unmixed ejecta, a variety of grain species condense, reflecting the difference of the elemental composition at the formation site in the ejecta, otherwise only oxide grains condense in the uniformly mixed ejecta. The average size of newly formed grains spans the range of three orders of magnitude, depending on the grain species and the formation condition,...

  3. Dust-Obscured Galaxies in the Local Universe

    CERN Document Server

    Hwang, Ho Seong

    2013-01-01

    We use Wide-field Infrared Survey Explorer (WISE), AKARI, and Galaxy Evolution Explorer (GALEX) data to select local analogs of high-redshift (z~2) dust obscured galaxies (DOGs). We identify 47 local DOGs with S_{12\\mu m}/S_{0.22 \\mu m}>892 and S_{12\\mu m}>20 mJy at 0.05

  4. Herschel-ATLAS: The Surprising Diversity of Dust-Selected Galaxies in the Local Submillimetre Universe

    CERN Document Server

    Clark, Christopher J R; Gomez, Haley L; Maddox, Steven; De Vis, Pieter; Smith, Matthew W L; Eales, Steven A; Baes, Maarten; Bendo, George J; Bourne, Nathan; Driver, Simon P; Dye, Simon; Furlanetto, Christina; Ivison, Rob J; Schofield, Simon P; Robotham, Aaron S G; Rowlands, Kate; Vlahakis, Catherine; van der Werf, Paul; Wright, Angus; de Zotti, Gianfranco

    2015-01-01

    We present the properties of the first 250um blind sample of nearby galaxies (15 < D < 46 Mpc), from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Herschel's sensitivity allows us to probe the faint end of the dust luminosity function for the first time, spanning a range of stellar mass (7.4 < log$_{10}$ M$_{\\star}$ < 11.3 M$_{\\odot}$), star formation activity (-11.8 < log$_{10}$ SSFR < -8.9 yr$^{-1}$), and gas fraction (3-96 per cent). Our representative sample of the local dusty Universe reveals great diversity, with 0.6 < FUV-Ks < 7.0 and representation across the Hubble Sequence. The median cold dust temperature is 14.6 K, colder than that in the HRS (18.5 K) and Planck ERCSC (17.7 K). The mean dust-to-stellar mass ratio (Md/M$_{\\star}$) in our sample is higher than in these surveys by a factor of 3.7 and 1.8 respectively. Counter-intuitively, we find that the more dust rich a galaxy (defined by Md/M$_{\\star}$), the lower its UV attenuation. Dust selection also ...

  5. GRB afterglows: Dust extinction properties from the low to high redshift universe

    Science.gov (United States)

    Zafar, Tayyaba

    2016-11-01

    Long-duration Gamma-ray bursts (GRBs) are excellent probes to study dust extinction due to their occurrence in star-forming regions and having simple synchrotron emission spectra. Inclusion of spectroscopic data to the GRB X-ray to the infrared spectral energy distribution (SED) could better define the continuum and confirm extinction feature. A preliminary SED analysis of GRB afterglows targeted with the VLT/X-Shooter spectrograph finds that all the 60% of extinguished bursts fit-well with featureless extinction curves. The longer wavelength coverage from ultraviolet to the near-infrared of X-Shooter helps to derive individual extinction curves and determine the total-to-selective extinction, RV precisely, suggesting extinction curves steeper (with a mean of RV = 2.66 ± 0.10) than the Small Magellanic Cloud. Moreover, addition of more data to the study of dust-to-metals ratios in GRB afterglows, quasar absorbers, and multiply lensed galaxies still shows the dust-to-metals ratios close to the Galactic value (with a mean value of log - 21.2cm-2mag-1), hinting short time delay between metals and dust formation. Such studies demonstrate the strength of using GRB afterglows to study dust origin and its properties the from low to high redshift Universe.

  6. Noncommutative Quantum Cosmology

    CERN Document Server

    García-Compéan, H; Ramírez, C

    2001-01-01

    We propose a model for noncommutative quantum cosmology by means of a deformation of minisuperspace. For the Kantowski-Sachs metric we are able to find the exact solution to the deformed Wheeler-DeWitt equation. We construct wave packets and show that noncommutativity could remarkably modify the quantum behavior of the universe. We discuss the relation with space-time noncommutativity and exhibit a program to search for the influence of noncommutativity at early times in the universe.

  7. Connecting the Different Signatures of Interstellar Dust at Low Redshift: A Benchmark for Comparison to the Distant Universe

    Science.gov (United States)

    Kulkarni, Varsha

    use Spitzer IRS spectra to measure the 9.7 and 18 micron silicate absorption features. (2) We will analyze HST/IUE UV spectra to measure the 2175 A carbonaceous dust features along the same sightlines that have the silicate measurements. (3) We will use the available Spitzer, Herschel, HST, and SDSS images of the background AGN to derive extinction curves of dust in the foreground galaxies. (4) We will examine the Keck Observatory Archive (KOA) HIRES/ESI and VLT UVES/X-SHOOTER spectra of the background AGN to measure gas-phase absorption lines in the foreground galaxies. Combining these with HST spectra, we will determine the gas-phase element depletions. (5) We will search Spitzer and Herschel spectra for longer wavelength crystalline silicate resonance absorption features. (6) By analyzing and combining these archival data, we will measure the carbon:silicate dust ratios, extinction curves and element depletions, and constrain grain structural properties in these nearby galaxies. (7) We will combine the dust properties thus obtained at z < 0.1 with those at higher redshifts from our recent studies, to constrain dust evolution models developed by Co-I Dr. Dwek. The proposed work will provide the first study of correlations between different dust absorption properties in the nearby Universe, and a direct probe of dust evolution when compared with measurements for the distant Universe. Our work is directly related to the Cosmic Origins Program outlined in the 2014 NASA Science Plan, since understanding dust evolution is fundamental to understanding galaxy evolution, and planet formation. This work will use data from several NASA-supported missions to establish a local benchmark for understanding dust evolution, and is thus especially relevant for distant galaxy studies with the JWST. Our work will also provide NASA-related outreach and graduate/undergraduate student research opportunities at the University of South Carolina and Georgia Southern University.

  8. Unitary evolution of the quantum universe with a Brown-Kuchar dust

    CERN Document Server

    Maeda, Hideki

    2015-01-01

    We study the time evolution of a wave function for the Friedmann-Lemaitre-Robertson-Walker universe governed by the Wheeler-DeWitt equation in both analytic and numerical methods. We consider a Brown-Kuchar dust as a matter field in order to introduce a "clock" in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. It is shown that the expectation value of the spatial volume of the universe obeys the classical time evolution in the late time.

  9. The University of Michigan Dioxin Exposure Study: estimating residential soil and house dust exposures to young children.

    Science.gov (United States)

    Paustenbach, Dennis J; Kerger, Brent D

    2013-04-01

    The University of Michigan Dioxin Exposure Study provides extensive data on elevated residential soil and house dust concentrations of polychlorinated dioxins and dibenzofurans (PCDD/Fs) and adult body burdens among residents near a chemical manufacturing plant in Midland, Michigan. Recent reports found no significant contribution of residential soil/dust concentrations to serum lipid PCDD/Fs in adults. Although child body burdens were not studied by the University of Michigan, internal dose modeling that incorporates recent findings on demonstrated shorter elimination half life of PCDD/Fs in children (1-2 year half life in children vs. ~7 years in older adults) can be applied to assess this important issue. The model examines children (ages 0-7 years) with background dietary intake and exposure to residential soils at selected concentrations (10, 100 and 1000 pg/g 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalents, TEQ) using the congener patterns observed in Midland. Model predictions assuming 50th percentile TEQ uptake from soil/dust-related dermal and ingestion exposures indicate no measurable changes in serum lipid TEQ concentrations up to 1000 pg/g in soil/dust. Assuming 95th percentile uptake, the model shows no measurable serum lipid TEQ change up to 100 pg/g in soil/dust, but serum lipid TEQ levels rose ~2 pg/g at 1000 pg/g in soil/dust. Since the vast majority of soil/dust data were below 100 pg/g, Michigan children exposed to such soil/dust TEQ concentrations are not reasonably expected to exhibit measurable changes in serum lipid TEQ concentrations when compared to typical background dietary exposures. With adequate data, this approach can be applied to evaluate child dose and risk for other persistent chemicals.

  10. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe.

    Science.gov (United States)

    Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M

    2016-06-01

    Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.

  11. Quantum cosmology on (k = -1)-Friedmann-Robertson-Walker Universe evolving from stiff matter era to the dust dominated one

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2017-01-01

    This work is devoted to the spatially open Friedmann-Robertson-Walker (FRW) Universe evolving from the stiff matter era to the dust dominated one. Within the quantum analysis based on the Wheeler-DeWitt equation, we derive the wave function of the (k = -1)-FRW Universe with combined matter sources. On the classical level, one has to deal with the Friedmann equation which leads on a dependence of the scale function on time generally expressed from functional relations involving elliptic integrals.

  12. Migration of Molecules and Dust in the Universe. Limitations of Panspermia

    Science.gov (United States)

    Bochkarev, N. G.

    2014-10-01

    Types of astronomical objects that may contain molecules are listed. Possible forms of migration of molecules are briefly described. Also described are: properties of interstellar molecular clouds, structure of interstellar dust grains, observational manifestations of polycyclic aromatic hydrocarbons and fullerenes, evolution of cosmic dust grains, the dust component of interstellar wind, possible mechanisms of migration of molecules and dust on scale from planetary systems to galaxies, Hoyle and Wickramasinghe hypothesis about the biological nature of some dust grains and the limitations of the area of possible panspermia

  13. Gone with the heat: A fundamental constraint on the imaging of dust and molecular gas in the early Universe

    CERN Document Server

    Zhang, Zhi-Yu; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M

    2016-01-01

    Images of dust continuum and CO line emission are powerful tools for deducing structural characteristics of galaxies, such as disk sizes, H$_2$ gas velocity fields and enclosed H$_2$ and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H$_2$ gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H$_2$ gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to mm/submm wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nev...

  14. Molecular gas, stars, and dust in sub-L* star-forming galaxies at z~2: evidence for universal star formation and nonuniversal dust-to-gas ratio

    Science.gov (United States)

    Dessauges-Zavadsky, Miroslava; Schaerer, Daniel; Combes, Francoise; Egami, Eiichi; Swinbank, A. Mark; Richard, Johan; Sklias, Panos; Rawle, Tim D.

    2015-08-01

    Only recently have CO measurements become possible in main sequence star-forming galaxies (SFGs) at z=1-3, but are still biased toward high star formation rates (SFR) and stellar masses (Ms), because of instrumental sensitivity limitations. It is essential to extend these studies toward the more numerous and typical SFGs, characterized by IR luminosities LIRstar, and dust properties in 8 such sub-L*, lensed SFGs at z=1.5-3.6, achieved thanks to the gravitational lensing and IRAM/PdBI, Herschel, Spitzer, and HST multi-wavelength data. Combined with our compilation of CO-detected galaxies from the literature, we revisit and propose new correlations between IR and CO luminosities, molecular gas, stellar and dust masses, specific SFR, molecular gas depletion timescales (tdepl), molecular gas fractions (fgas), dust-to-gas ratios, and redshift. These correlations betray the interplay between gas, dust, and star formation in galaxies.All the LIR, L'CO(1-0) data are best-fitted with a single relation, which spans 5 orders of magnitude in LIR, covers redshifts from z=0 to z=5.3, and samples spirals, main sequence SFGs, and starbursts. This favors a universal star formation. We find an increase of tdepl with Ms, as now revealed by low-Ms SFGs at z>1 and also observed at z=0, which contrasts with the acknowledged constant tdepl and refutes the linearity of the Kennicutt-Schmidt relation between molecular gas and SFR at galactic scales. A steady increase of fgas with redshift is predicted and is observed from z~0 to z~1.5, but is followed by a mild increase toward higher redshifts, which we further confirm with our highest redshift CO measurement in an L* galaxy at z=3.6. We provide the first fgas measure in z>1 SFGs at the low-Ms end 109.4dust-to-gas ratio among high-redshift SFGs, high-redshift SMGs, local spirals, and local ULIRGs

  15. How micron-sized dust particles determine the chemistry of our Universe

    NARCIS (Netherlands)

    Dulieu, Francois; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stephanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H-2) to the most complex (amino-acids) mol

  16. How micron-sized dust particles determine the chemistry of our Universe

    NARCIS (Netherlands)

    Dulieu, Francois; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stephanie

    2013-01-01

    In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H-2) to the most complex (amino-acids)

  17. Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    Science.gov (United States)

    Salmon, Brett; Papovich, Casey; Long, James; Willner, S. P.; Finkelstein, Steven L.; Ferguson, Henry C.; Dickinson, Mark; Duncan, Kenneth; Faber, S. M.; Hathi, Nimish; Koekemoer, Anton; Kurczynski, Peter; Newman, Jeffery; Pacifici, Camilla; Pérez-González, Pablo G.; Pforr, Janine

    2016-08-01

    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the form of the dust-attenuation law in the distant universe. Here, we model the spectral energy distributions of galaxies at z ˜ 1.5-3 from CANDELS with rest-frame UV to near-IR imaging under different assumptions about the dust law, and compare the amount of inferred attenuated light with the observed infrared (IR) luminosities. Some individual galaxies show strong Bayesian evidence in preference of one dust law over another, and this preference agrees with their observed location on the plane of infrared excess (IRX, {L}{TIR}/{L}{UV}) and UV slope (β). We generalize the shape of the dust law with an empirical model, {A}λ ,δ =E{(B-V){k}λ (λ /{λ }V)}δ where k λ is the dust law of Calzetti et al., and show that there exists a correlation between the color excess E(B-V) and tilt δ with δ =(0.62+/- 0.05){log}(E(B-V))+(0.26+/- 0.02). Galaxies with high color excess have a shallower, starburst-like law, and those with low color excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample show no correlation between the shape of the dust law and stellar mass, star formation rate, or β. The change in the dust law with color excess is consistent with a model where attenuation is caused by scattering, a mixed star-dust geometry, and/or trends with stellar population age, metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows potential to constrain the dust law at even higher redshifts (z\\gt 3).

  18. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    CERN Document Server

    Matsuki, Yasuhiro; Nakagawa, Takao; Takita, Satoshi

    2016-01-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ~ 0, using the AKARI Far-Infrared Surveyor (FIS) all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 A) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific SFR (SSFR_SDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 micron) and WIDE-L (140 micron) bands, and then compute IR-based SFR (SFR_IR) from L_IR. We find a mild decrease of IR- based SSFR (SSFR_IR) amongst SF galaxies with increasing local density (~0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (T_dust) using th...

  19. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    Science.gov (United States)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  20. Singularity-free Bianchi spaces with nonlinear electrodynamics

    CERN Document Server

    García-Salcedo, R; Garcia-Salcedo, Ricardo; Breton, Nora

    2004-01-01

    In this paper we present the analysis to determine the existence of singularities in spatially homogeneous anisotropic universes filled with nonlinear electromagnetic radiation. These spaces are conformal to Bianchi spaces admitting a three parameter group of motions G$_3$. We study analytical extensions as well as geodesic completeness. It is shown that with nonlinear electromagnetic field some of the Bianchi spaces are geodesically complete, like G$_3$II and G$_3$VIII; however Bianchi G$_3$IX presents the phenomenon of geodesics that are imprisoned. In contrast, diagonal Bianchi spaces like G$_3$I, G$_3$III and Kantowski-Sachs have a finite time existence ending in a scalar polynomial curvature singularity.

  1. Dust formation and mass loss around intermediate-mass AGB stars with initial metallicity Zini ≤ 10-4 in the early Universe - I. Effect of surface opacity on stellar evolution and the dust-driven wind

    Science.gov (United States)

    Tashibu, Shohei; Yasuda, Yuki; Kozasa, Takashi

    2017-04-01

    Dust formation and the resulting mass loss around asymptotic giant branch (AGB) stars with initial metallicity in the range 0 ≤ Zini ≤ 10-4 and initial mass 2 ≤ Mini/M⊙ ≤ 5 are explored by hydrodynamical calculations of the dust-driven wind (DDW) along the AGB evolutionary tracks. We employ the MESA code to simulate the evolution of stars, assuming an empirical mass-loss rate in the post-main-sequence phase and considering three types of low-temperature opacity (scaled-solar, CO-enhanced and CNO-enhanced opacity) to elucidate the effect on stellar evolution and the DDW. We find that the treatment of low-temperature opacity strongly affects dust formation and the resulting DDW; in the carbon-rich AGB phase, the maximum dot{M} of Mini ≥ 3 M⊙ stars with the CO-enhanced opacity is at least one order of magnitude smaller than that with the CNO-enhanced opacity. A wide range of stellar parameters being covered, the necessary condition for driving efficient DDW with dot{M} ≥ 10^{-6} M⊙ yr-1 is expressed as effective temperature Teff ≲ 3850 K and log (δCL/κRM) ≳ 10.43log Teff - 32.33, with the carbon excess δC defined as εC - εO, the Rosseland mean opacity κR in units of cm2 g-1 in the surface layer and the stellar mass (luminosity) M(L) in solar units. The fitting formulae derived for gas and dust mass-loss rates in terms of input stellar parameters could be useful for investigating the dust yield from AGB stars in the early Universe being consistent with stellar evolution calculations.

  2. Ice Formation via Deposition Mode Nucleation Onto Dust Particulates: The University of Toronto Continuous Flow Diffusion Chamber

    Science.gov (United States)

    Kanji, Z. A.; Abbatt, J. P.; Cotton, R.; Demott, P.; Jones, H.; Möhler, O.; Stetzer, O.

    2008-12-01

    Laboratory studies are described whereby the heterogeneous ice nucleating ability of various dust samples were studied, for particles suspended in a newly built thermal gradient continuous flow diffusion chamber (TG-CFDC). Ice formation is observed using an optical particle counter (OPC) and the relative humidity (RH) and temperature conditions of the flow system are validated by observing homogenous freezing of H2SO4 aerosols. At the Fourth International Ice Nucleation Workshop (ICIS 07) in Karslruhe, Germany this system was used to investigate ice nucleation primarily in the vapor deposition mode, for Arizona Test Dust (ATD), Israeli Desert Dust (ID), Canary Island Dust (CID), Saharan Dust (SD), Graphite Spark Soot, Snomax® (dead bacteria) and live bacteria. The aerosol size was in the submicron range with an approximate cut off of 700 nm and a mode of 350 nm. Temperatures for nucleation were varied from 265 - 230 K. The dust aerosols were generally found to be more efficient than soot. At warmer temperatures (263 K) the bacteria were found to be active in the deposition mode which was not the case for dusts. Among the various dust types at 248 K, the CID was more efficient than ATD at nucleating ice when efficiency is based on lowest onset RH conditions for ice formation in our chamber. We also present preliminary results for the effect of total surface area versus size of aerosols on ice nucleation using ATD as a surrogate for naturally occurring mineral dust.

  3. Evolution of shifted cosmological parameter and shifted dust matter in a two-phase tachyonic field universe

    CERN Document Server

    Verma, Murli Manohar

    2012-01-01

    We propose a model of the evolution of the tachyonic scalar field over two phases in the universe. The field components do not interact in phase I, while in the subsequent phase II, they change flavours due to relative suppression of the radiation contribution. In phase II, we allow them to interact mutually with time-independent perturbation in their equations of state, as Shifted Cosmological Parameter (SCP) and Shifted Dust Matter (SDM). We determine the solutions of their scaling with the cosmic redshift in both phases. We further suggest the normalized Hubble function diagnostic, which, together with the low- and high-redshift $H(z)$ data and the concordance values of the present density parameters from the CMBR, BAO statistics etc., constrains the strength of interaction, by imposing the viable conditions to break degeneracy in 3-parameter $(\\gamma, \\varepsilon, \\dot{\\phi}^2)$ space. The range of redshifts $(z=0.1$ to $z=1.75)$ is chosen to highlight the role of interaction during structure formation, a...

  4. Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift

    CERN Document Server

    Salmon, Brett; Long, James; Willner, S P; Finkelstein, Steven; Ferguson, Henry C; Dickinson, Mark; Duncan, Kenneth; Faber, S M; Hathi, Nimish; Koekemoer, Anton; Kurczynski, Peter; Newman, Jeffery; Pacifici, Camilla; Perez-Gonzalez, Pablo G; Pforr, Janine

    2015-01-01

    Dust attenuation affects nearly all observational aspects of galaxy evolution, yet very little is known about the functional form of the dust-attenuation law in the distant Universe. In this work, we fit to the spectral energy distributions (SEDs) of galaxies under different assumptions about the wavelength-dependent dust-attenuation curve, and compare the inferred attenuation with the observed infrared (IR) luminosities. This is applied to a sample of IR-luminous galaxies at z~1.5-3 where the multi-wavelength CANDELS photometry cover rest-frame ultraviolet (UV, down to Lyman-alpha) to near-IR (NIR) wavelengths, with supporting 24 micron imaging from Spitzer. We fit the UV-to-NIR galaxy SEDs with multiple dust laws, and use Bayes factors to select galaxies with strong preference between laws. Importantly, we find that for individual galaxies with strong Bayes-factor evidence, their observed location on the plane of the infrared excess (IRX, LIR/LUV) and UV slope (beta) agrees with the predicted value for the ...

  5. Full dynamical analysis of anisotropic scalar-field cosmology with arbitrary potentials

    CERN Document Server

    Fadragas, Carlos R; Saridakis, Emmanuel N

    2013-01-01

    We perform a detailed dynamical analysis of anisotropic scalar-field cosmologies, and in particular of the most significant Kantowski-Sachs, Bianchi I and Bianchi III cases. We follow the new and powerful method of $f$-devisers, which allows us to perform the whole analysis for arbitrary potentials. Thus, one can just substitute the specific potential form in the final results and obtain the corresponding behavior, without the need of new calculations. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or stiff-dark energy solutions. Additionally, in the case of Kantowski-Sachs geometry we find that a cosmological bounce and turnaround are realized in a part of the parameter-space. Finally, applying the general results to the well-studied exponential and power-law potentials, we find that some of the general stable solutions disappear. This feature may be an indication that suc...

  6. Modelling galaxy spectra in presence of interstellar dust-III. From nearby galaxies to the distant Universe

    CERN Document Server

    Cassarà, Letizia P; Chiosi, Cesare

    2014-01-01

    Improving upon the standard evolutionary population synthesis (EPS) technique, we present spectrophotometric models of galaxies whose morphology goes from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). These models enclose three main physical components: the diffuse ISM composed by gas and dust, the complexes of molecular clouds (MCs) where active star formation occurs and the stars of any age and chemical composition. These models are based on robust evolutionary chemical models that provide the total amount of gas and stars present at any age and that are adjusted in order to match the gross properties of galaxies of different morphological type. We have employed the results for the properties of the ISM presented in Piovan, Tantalo & Chiosi (2006a) and the single stellar populations calculated by Cassar\\`a et al. (2013) to derive the spectral energy distributions (SEDs) of galaxies going from pure bulge to discs passing through a number of co...

  7. Spherically symmetric Einstein-aether perfect fluid models

    CERN Document Server

    Coley, Alan A; Sandin, Patrik; Latta, Joey

    2015-01-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in ($\\beta-$) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs model...

  8. Dust during the Reionization

    CERN Document Server

    Elfgren, E; Elfgren, Erik

    2003-01-01

    The possibility that population III stars have reionized the Universe at redshifts greater than 6 has recently gained momentum with WMAP polarization results. Here we analyse the role of early dust produced by these stars and ejected into the intergalactic medium. We show that this dust, heated by the radiation from the same population III stars, produces a submillimetre excess. The electromagnetic spectrum of this excess is compatible with the FIRAS (Far Infrared Absolute Spectrophotometer) cosmic far infrared background. This spectrum, a Doppler spectrum times the $\

  9. Cylindrically symmetric dust spacetime

    CERN Document Server

    Senovilla, J M M; Senovilla, Jose M. M.; Vera, Raul

    2000-01-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has new surprising features. The universe is ``closed'' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is ``enclosed'' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable agai...

  10. Cylindrically symmetric dust spacetime

    Science.gov (United States)

    Senovilla, José M. M.

    2000-07-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.

  11. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  12. Dynamics of anisotropic f(R) cosmology

    CERN Document Server

    Leon, Genly

    2010-01-01

    We construct general anisotropic cosmological scenarios governed by an f(R) gravitational sector. Focusing then on Kantowski-Sachs geometries in the case of $R^n$-gravity we perform a detailed phase-space analysis. We find that at late times the universe can result to a state of accelerating expansion, and additionally, for a particular n-range (2universe. Finally, we can also obtain the realization of the cosmological bounce and turnaround, as well as of cyclic cosmology. These features indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors comparing to the simple isotropic scenarios.

  13. Optimizing Saharan dust CALIPSO retrievals

    Directory of Open Access Journals (Sweden)

    V. Amiridis

    2013-06-01

    Full Text Available We demonstrate improvements in CALIPSO dust extinction retrievals over North Africa and Europe when corrections are applied regarding the Saharan dust lidar ratio assumption, the separation of dust portion in detected dust mixtures, and the averaging scheme introduced in the Level 3 CALIPSO product. First, a universal, spatially constant lidar ratio of 58 sr instead of 40 sr is applied to individual Level 2 dust-related backscatter products. The resulting aerosol optical depths show an improvement compared with synchronous and co-located AERONET measurements. An absolute bias of the order of −0.03 has been found, improving on the statistically significant biases of the order of −0.10 reported in the literature for the original CALIPSO product. When compared with the MODIS co-located AOD product, the CALIPSO negative bias is even less for the lidar ratio of 58 sr. After introducing the new lidar ratio for the domain studied, we examine potential improvements to the climatological CALIPSO Level 3 extinction product: (1 by introducing a new methodology for the calculation of pure dust extinction from dust mixtures and (2 by applying an averaging scheme that includes zero extinction values for the non-dust aerosol types detected. The scheme is applied at a horizontal spatial resolution of 1° × 1° for ease of comparison with the instantaneous and co-located dust extinction profiles simulated by the BSC-DREAM8b dust model. Comparisons show that the extinction profiles retrieved with the proposed methodology reproduce the well-known model biases per sub-region examined. The very good agreement of the proposed CALIPSO extinction product with respect to AERONET, MODIS and the BSC-DREAM8b dust model, makes this dataset an ideal candidate for the provision of an accurate and robust multi-year dust climatology over North Africa and Europe.

  14. Noncommutative quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Institute Superior Teico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2009-06-01

    We present a phase-space noncommutative extension of Quantum Cosmology in the context of a Kantowski-Sachs (KS) minisuperspace model. We obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten map. The resulting WDW equation explicitly depends on the phase-space noncommutative parameters, theta and eta. Numerical solutions of the noncommutative WDW equation are found and, interestingly, also bounds on the values of the nonommutative parameters. Moreover, we conclude that the noncommutativity in the momenta sector lead to a damped wave function implying that this type of noncommutativity can be relevant for a selection of possible initial states for the universe.

  15. Noncommutative Quantum Mechanics and Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno

    2009-01-01

    We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.

  16. Phase-Space Noncommutative Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2007-01-01

    We present a noncommutative extension of Quantum Cosmology and study the Kantowski-Sachs (KS) cosmological model requiring that the two scale factors of the KS metric, the coordinates of the system, and their conjugate canonical momenta do not commute. Through the ADM formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system. The Seiberg-Witten map is used to transform the noncommutative equation into a commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative parameters, $\\theta$ and $\\eta$. Numerical solutions are found both for the classical and the quantum formulations of the system. These solutions are used to characterize the dynamics and the state of the universe. From the classical solutions we obtain the behavior of quantities such as the volume expansion, the shear and the characteristic volume. However the analysis of these quantities does not lead to any restriction on the value of the noncommutative parameters, $\\theta$ and $\\...

  17. Dust Acoustic Wave Excitation in a Plasma with Warm Dust

    Science.gov (United States)

    Rosenberg, M.; Thomas, E., Jr.; Marcus, L.; Fisher, R.; Williams, J. D.; Merlino, R. L.

    2008-11-01

    Measurements of the dust acoustic wave dispersion relation in dusty plasmas formed in glow discharges at the University of Iowa [1] and Auburn University [2] have shown the importance of finite dust temperature effects. The effect of dust grains with large thermal speeds was taken into account using kinetic theory of the ion-dust streaming instability [3]. The results of analytic and numerical calculations of the dispersion relation based on the kinetic theory will be presented and compared with the experimental results. [1] E. Thomas, Jr., R. Fisher, and R. L. Merlino, Phys. Plasmas 14, 123701 (2007). [2] J. D. Williams, E. Thomas Jr., and L. Marcus, Phys. Plasmas 15, 043704 (2008). [3] M. Rosenberg, E. Thomas Jr., and R. L. Merlino, Phys. Plasmas 15, 073701 (2008).

  18. Dust Devil Days

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 6 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. Dust devils, small cyclonic wind storms, are common in the American Southwest and on Mars. As the dust devil moves across the surface it picks up the loose dust, leaving behind a dark track to mark its passage. These dust devil tracks are in the Argyre Basin. Image information: VIS instrument. Latitude -46.6, Longitude 317.5 East (42.5 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the

  19. Flying Through Dust From Asteroids

    Science.gov (United States)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  20. Dust Mite Allergy

    Science.gov (United States)

    Dust mite allergy Overview By Mayo Clinic Staff Dust mite allergy is an allergic reaction to tiny bugs that commonly live in house dust. Signs of dust mite allergy include those common to hay fever, such as ...

  1. Southern Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 9 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. In our final dust devil image we are again looking at the southern hemisphere of Mars. These tracks occur mainly on the northeast side of the topographic ridges. Of course, there are many exceptions, which makes understanding the dynamics that initiate the actual dust devil cyclone difficult. Image information: VIS instrument. Latitude -47.6, Longitude 317.3 East (42.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed

  2. Plentiful Dust Devils

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 8 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. These dust devil tracks occur on the northern plains of Mars. The majority of the surface seen in the image has been affected by the passage of dust devils. Image information: VIS instrument. Latitude -54.6, Longitude 79.3 East (280.7 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are

  3. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  4. Formation and dissociation of dust molecules in dusty plasma

    Science.gov (United States)

    Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng

    2016-09-01

    Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.

  5. Clouds and Dust Storms

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote

  6. Identification of similarity of skeletal structures in the range 10-5 cm - 1023 cm and the probable role of skeletal assemblies of carbon nanotube-like dust in the large-scale structure of the Universe

    Science.gov (United States)

    Kukushkin, A. B.; Rantsev-Kartinov, V. A.

    The role of the dust in astrophysics is analyzed from viewpoint of the hypothesis [1] (and respective proof-of-concept studies [2]) for the self-assembling of a fractal dust in laboratory electric discharges. The presence of skeletal structures of the same distinctive topology (namely, tubules and cartwheels, and their simple combinations) in the range 10-5cm - 1023cm, and a trend toward self-similarity (i.e. assembling of bigger structures from similar smaller ones), are found [3]. These evidences come from the electron micrography of dust deposits in tokamak (10-6cm - 10-3cm) [4], the images of plasma taken in laboratory electric discharges -- tokamaks, Z-pinches, plasma focus and vacuum spark (10-2cm - 10 cm) [2], hail particles (1cm - 10cm), the images of tornado (103cm - 105cm) and of a wide class of objects in space (1011cm - 1023 cm), including the solar coronal mass ejection, supernova remnants, and some galaxies [3]. The similarity of, and a trend toward self-similarity in, these skeletal structures (especially, cartwheels as the structures of essentially non-hydrodynamic nature) suggest all them to possess, similarly to skeletons in the particles of dust and hail, a fractal condensed matter of particular topology of the fractal. Specifically, this matter may be assembled from nanotubular blocks in a way similar to that in the skeletons found [4] in the submicron dust particles. An analysis of the redshift surveys of galaxies and quasars suggests the possibility to draw the above similarity up to 1026cm. This hints at the presence of a baryonic cold dark skeleton (BCDS) of the Universe [5]. The hypothesis of BCDS is shown to have no conflict with major cosmological facts (Hubble expansion and cosmic microwave background's isotropy). REFERENCES: [1] Fusion Energy 1998 (IAEA, Vienna, 1999), Vol. 3, p. 1131. [2] Advances in Plasma Phys. Research, Vol. 2 (Ed. F. Gerard, Nova Science Publishers, New York, 2002), pp. 1-22. [3] Phys. Lett. A 306, 175 (2002). [4

  7. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  8. Dust Measurements in Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  9. Inhaled dust and disease

    Energy Technology Data Exchange (ETDEWEB)

    Holt, P.F.

    1987-01-01

    This book discusses the following: the respiratory system; respirable dust; the fate of inhaled dust; translocation and some general effects of inhaled dust; silicosis; experimental research on silica-related disease; natural fibrous silicates; asbestos dust levels and dust sources; asbestos-related diseases - asbestosis, lung cancer, mesothelioma and other diseases, cancers at sites other than lung and pleura; experimental research relating to asbestos-related diseases; asbestos hazard - mineral types and hazardous occupations, neighbourhood and domestic hazard; silicates other than asbestos-man-made mineral fibres, mineral silicates and cement; metals; coal mine dust, industrial carbon and arsenic; natural and synthetic organic substances; dusts that provoke allergic alveolitis; tobacco smoke.

  10. THE EVOLUTION OF DUST IN THE MAGELLANIC CLOUDS

    Science.gov (United States)

    Dwek, Eli; Temim, T.; Meixner, M.; Boyer, M. L.; Tchernyshyov, K.; Gall, C.

    2014-01-01

    The Magellanic Clouds offer a unique astrophysical laboratory for studying the evolution of interstellar dust. They are the closest to the Milky Way with well determined distance, and they have been extensively studies at many different wavelength with sufficient spatial resolution to construct a detailed picture of the evolution of the dust in the diverse stellar and interstellar environments of these two galaxies. Using chemical evolution models for the dust I will present the formation rates of the dust in AGB stars and supernovae, and compare them to observations. The dust formation rates will then be compared to their observed rates of destruction by supernova remnants (see Temim, this meeting). The comparison will provide important information on the origin of dust in the Magellanic Clouds. Understanding the different stellar sources of dust and the processes leading to their destruction are essential for understanding the origin of dust in the Milky Way, in local galaxies, and the early universe as well.

  11. Universe

    CERN Document Server

    2011-01-01

    Updated for 2011, the Universe, is one book in the Britannica Illustrated Science Library Series that covers today's most popular science topics, from digital TV to microchips to touchscreens and beyond. Perennial subjects in earth science, life science, and physical science are all explored in detail. Amazing graphics-more than 1,000 per title-combined with concise summaries help students understand complex subjects. Correlated to the science curriculum in grades 5-9, each title also contains a glossary with full definitions for vocabulary.

  12. Universe

    CERN Document Server

    2009-01-01

    The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  13. Physics of interstellar dust

    CERN Document Server

    Krugel, Endrik

    2002-01-01

    The dielectric permeability; How to evaluate grain cross sections; Very small and very big particles; Case studies of Mie calculus; Particle statistics; The radiative transition probability; Structure and composition of dust; Dust radiation; Dust and its environment; Polarization; Grain alignment; PAHs and spectral features of dust; Radiative transport; Diffuse matter in the Milky Way; Stars and their formation; Emission from young stars. Appendices Mathematical formulae; List of symbols.

  14. Dust-off

    OpenAIRE

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  15. Dust-off

    OpenAIRE

    Maycroft, Neil; Cheang, Shu Lea

    2015-01-01

    The fan of a motherboard switches on and off intermittently. It blows household dust, removed from the inside of a computer carcass, into the air. The dust then settles onto the motherboard, to be blown off again. This continual movement of dust is contained in the piece. However, it should remind us that the ceaseless creation and motion of unconfined dust accompanies all stages of the e-waste journey.

  16. Old supernova dust factory revealed at the Galactic center

    CERN Document Server

    Lau, Ryan M; Morris, Mark R; Li, Zhiyuan; Adams, Joseph D

    2015-01-01

    Dust formation in supernova ejecta is currently the leading candidate to explain the large quantities of dust observed in the distant, early Universe. However, it is unclear whether the ejecta-formed dust can survive the hot interior of the supernova remnant (SNR). We present infrared observations of ~0.02 $M_\\odot$ of warm (~100 K) dust seen near the center of the ~10,000 yr-old Sgr A East SNR at the Galactic center. Our findings signify the detection of dust within an older SNR that is expanding into a relatively dense surrounding medium ($n_e$ ~ 100 $\\mathrm{cm}^{-3}$) and has survived the passage of the reverse shock. The results suggest that supernovae may indeed be the dominant dust production mechanism in the dense environment of early Universe galaxies.

  17. Extinction and dust properties in a clumpy medium

    OpenAIRE

    Scicluna, P.; Siebenmorgen, R.

    2015-01-01

    (abridged) The dust content of the universe is primarily explored via its interaction with stellar photons, producing interstellar extinction. However, owing to the physical extension of the observing beam, observations may detect scattered photons, resulting in a change in the observed (or effective) extinction, depending on the spatial distribution of the dust and the resolution of the instrument. We investigate the influence of clumpy dust distributions on effective extinction toward embed...

  18. Can Dust Segregation Mimic a Cosmological Constant?

    CERN Document Server

    Simonsen, J T; Simonsen, Jakob T.; Hannestad, Steen

    1999-01-01

    Recent measurements of type Ia supernovae indicate that distant supernovae are substantially fainter than expected from the standard flat cold dark matter model. One possible explanation is that the energy density in our universe is in fact dominated by a cosmological constant. Another possible solution is that there are large amounts of grey dust in the intergalactic medium. Dust grains can be grey either because they are non-spherical or very large. We have numerically investigated whether grey dust can be emitted from high redshift galaxies without also emitting standard, reddening dust, which would have been visible in the spectra of high redshift objects. Our finding is that grain velocities are almost independent of ellipticity so that if greyness are due to the grains being elongated, it will not be possible to separate grey dust from ordinary dust. We also find that velocities are fairly independent of grain size, but we cannot rule out possible sputtering of small grains, so that large, grey dust gra...

  19. Toxicity of lunar dust

    CERN Document Server

    Linnarsson, Dag; Fubini, Bice; Gerde, Per; Karlsson, Lars L; Loftus, David J; Prisk, G Kim; Staufer, Urs; Tranfield, Erin M; van Westrenen, Wim

    2012-01-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust...

  20. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  1. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  2. The dust mass in Cassiopeia A

    Science.gov (United States)

    De Looze, Ilse; Barlow, Mike; Marcowith, Alexandre; Tatischef, Vincent

    2016-06-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1 Msun) and potentially responsible for most of the dust production in the early Universe. Observational evidence for this dust production efficiency has remained limited. Herschel observations from 70-500 microns of the 335-year old Cassiopeia A have indicated the presence of ˜0.1 Msun of cool (T˜35 K) dust interior to the reverse shock (Barlow et al. 2010), while Dunne et al. (2009) have claimed a detection of ˜1 Msun of cold (˜20 K) dust, based on SCUBA 850-micron polarimetric data. At sub-millimeter wavelengths, the supernova dust emission is heavily contaminated by interstellar dust emission and by the synchrotron radiation from the SNR. We present the first spatially resolved analysis of the infrared and submillimeter emission of Cas, A at better than 1 parsec resolution, based on our Herschel PACS and SPIRE 70-500um images. We used our PACS IFU and SPIRE FTS spectra to remove the contaminating emission from bright lines (e.g. [OIII]88, [CII]158). We updated the spectral index of the synchrotron emission based on recent Planck data, and extrapolated this synchrotron spectrum from a 3.7 mm VLA image to infrared/submillimeter wavelengths. We modeled the interstellar dust emission using a Galactic dust emission template from Jones et al. (2013), while the ISM dust mass is scaled to reproduce the continuum emission in the SPIRE FTS spectra at wavelengths > 650 micron (after subtraction of synchrotron emission). The UV radiation field that illuminates the ISM dust was constrained through PDR modelling of the [CI] 1-0, 2-1 and CO 4-3 lines observed in the SPIRE FTS spectra, and was found to range between 0.3 G0 and 1.0 G0 in units of the Draine IS radiation field. Within the uncertainties of the radiation field that illuminates the ISM material and the observational errors, we detect a dust mass of up to 0.8 Msun in Cas, A, with an average temperature of 30 K

  3. Operational Dust Prediction

    Science.gov (United States)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  4. Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, J.F.; Ebadian, M.A.; Williams, P.T.; Dua, S.K.

    1998-10-20

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure properly and, at the same time, minimize the amount of dust generated from a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology given site-specific conditions. Thus, the purpose of this research, which was carried out at the Hemispheric Center for Environmental Technology (HCET) at Florida International University, was to conduct an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study targeted the problem of dust suppression during the demolition of nuclear facilities. The resulting data were employed to assist in the development of mathematical correlations that can be applied to predict dust generation during structural demolition.

  5. Stone dusting process advance

    Energy Technology Data Exchange (ETDEWEB)

    Matt Ryan; David Humphreys [Mining Attachments (Qld.) Pty Ltd. (Australia)

    2009-01-15

    The coal mining industry has, for many years, used dry stone dust or calcium carbonate (CaCO{sub 3}) in the prevention of the propagation of coal dust explosions throughout their underground mines in Australia. In the last decade wet stone dusting has been introduced. This is where stone dust and water are mixed together to form a paste like slurry. This mixture is pumped and sprayed on to the underground roadway surfaces. This method solved the contamination of the intake airways but brought with it a new problem known as 'caking'. Caking is the hardened layer that is formed as the stone dust slurry dries. It was proven that this hardened layer compromises the dispersal characteristics of the stone dust and therefore its ability to suppress a coal dust explosion. This project set out to prove a specially formulated, non toxic slurry additive and process that could overcome the caking effect. The slurry additive process combines dry stone dust with water to form a slurry. The slurry is then treated with the additive and compressed air to create a highly vesicular foam like stone dusted surface. The initial testing on a range of additives and the effectiveness in minimising the caking effect of wet dusting were performed at Applied Chemical's research laboratory in Melbourne, Victoria and independently tested at the SGS laboratory in Paget, Queensland. The results from these tests provided the platform to conduct full scale spraying trials at the Queensland Mines Rescue Station and Caledon Coal's Cook Colliery, Blackwater. The project moved into the final stage of completion with the collection of data. The intent was to compare the slurry additive process to dry stone dusting in full-scale methane explosions at the CSIR Kloppersbos explosion facility in Kloppersbos, South Africa.

  6. Discovery of a Perseus-like cloud in the early Universe. H I-to-H2 transition, carbon monoxide and small dust grains at zabs≈ 2.53 towards the quasar J0000+0048

    Science.gov (United States)

    Noterdaeme, P.; Krogager, J.-K.; Balashev, S.; Ge, J.; Gupta, N.; Krühler, T.; Ledoux, C.; Murphy, M. T.; Pâris, I.; Petitjean, P.; Rahmani, H.; Srianand, R.; Ubachs, W.

    2017-01-01

    We present the discovery of a molecular cloud at zabs ≈ 2.5255 along the line of sight to the quasar SDSS J 000015.17+004833.3. We use a high-resolution spectrum obtained with the Ultraviolet and Visual Echelle Spectrograph together with a deep multi-wavelength medium-resolution spectrum obtained with X-shooter (both on the Very Large Telescope) to perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-α system (DLA) with log N(H i) (cm-2) = 20.8 ± 0.1. The DLA has super-solar metallicity (Z 2.5 Z⊙, albeit to within a factor of two to three) with a depletion pattern typical of cold gas and an overall molecular fraction f = 2N(H2)/(2N(H2) + N(H i)) 50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b 0.7km s-1), cold component in which carbon monoxide molecules are also found, with log N(CO)≈ 15. With the help of the spectral synthesis code Cloudy, we study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the H i-to-H2 transition in a 4-5 pc-size cloud with volumic density nH 80 cm-3 and temperature of only 50 K. Our model suggests that the presence of small dust grains (down to about 0.001 μm) and high cosmic ray ionisation rate (ζH a few times 10-15 s-1) are needed to explain the observed atomic and molecular abundances. The presence of small grains is also in agreement with the observed steep extinction curve that also features a 2175 Å bump. Interestingly, the chemical and physical properties of this cloud are very similar to what is seen in diffuse molecular regions of the nearby Perseus complex, despite the former being observed when the Universe was only 2.5 Gyr old. The high excitation temperature of CO

  7. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  8. Dust escape from Io

    Science.gov (United States)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  9. Galactic dust properties

    Science.gov (United States)

    Paradis, D.

    2011-12-01

    Recent studies have shown evidence for variations in the dust emissivity law with temperature and wavelength. A recent dust emission model, called TLS model (for two-level systems), based on the description of the disordered internal structure of the amorphous dust grains has been developped to interpret observations in the far-infrared/submillimeter (FIR/submm) domain. A recent work focusing on the comparison between data of the diffuse interstellar medium seen by FIRAS-WMAP, as well as Archeops compact sources, with the TLS model allowed us to constrain the model parameters characterizing the general Galactic dust properties. Using the newly available Herschel/Hi-GAL data of the inner Galactic plane, we report a 500 μm emissivity excess in the peripheral parts of the Galactic plane, that can reach up to 20% of the emissivity. Results of the TLS modeling indicate significant changes in the dust properties from the central to peripheral parts of the Galactic plane.

  10. Dust Storm Moving Near Phoenix Lander

    Science.gov (United States)

    2008-01-01

    This series of images show the movement of several dust storms near NASA's Phoenix Mars Lander. These images were taken by the lander's Surface Stereo Imager (SSI) on the 137th Martian day, or sol, of the mission (Oct. 13, 2008). These images were taken about 50 seconds apart, showing the formation and movement of dust storms for nearly an hour. Phoenix scientists are still figuring out the exact distances these dust storms occurred from the lander, but they estimate them to be about 1 to 2 kilometers (.6 or 1.2 miles) away. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    Science.gov (United States)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    is associated with the unidentified cold dust component. Its mass could be anywhere between 0.1 and 1 solar M, and is primarily limited by the mass of refractory elements in the ejecta. Given the large uncertainty in the dust mass, the question of whether supernovae can produce enough dust to account for ISM dust masses in the local and high-z universe remains largely unresolved.

  12. 'Nuisance Dust' - a Case for Recalibration?

    Science.gov (United States)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over

  13. Mechanisms of metal dusting corrosion

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo

    In this thesis the early stages of metal dusting corrosion is addressed; the development of carbon expanded austenite, C, and the decomposition hereof into carbides. Later stages of metal dusting corrosion are explored by a systematic study of stainless steel foils exposed to metal dusting...... influence of oxygen and carbon on the metal dusting corrosion is explored. The results indicate that exposure to metal dusting conditions have a detrimental effect on the resistance against oxidation and, conversely, that exposure to oxidation has a detrimental effect on the resistance towards metal dusting....... Consequently, a combination of carburizing and oxidizing conditions has a strong mutual catalyzing effect on the metal dusting corrosion....

  14. Composite circumstellar dust grains

    Science.gov (United States)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  15. Composite Circumstellar Dust Grains

    CERN Document Server

    Gupta, Ranjan; Dutta, Rajeshwari

    2016-01-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5--25$\\rm \\mu m$. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18$\\rm \\mu m$. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-Type \\& AGB stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes; shape; composition and dust temperature.

  16. Nano Dust Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new highly sensitive instrument to confirm the existence of the so-called nano-dust particles, characterize their impact parameters, and...

  17. Dust Versus Cosmic Acceleration

    CERN Document Server

    Aguirre, A N

    1999-01-01

    Two groups have recently discovered a statistically significant deviation in the fluxes of high-redshift type Ia supernovae from the predictions of a Friedmann model with zero cosmological constant. This letter argues that bright, dusty, starburst galaxies would preferentially eject a dust component with a shallower opacity curve (hence less reddening) and a higher opacity/mass than the observed galactic dust which is left behind. Such dust could cause the falloff in flux at high-z without violating constraints on reddening or metallicity. The specific model presented is of needle-like dust, which is expected from the theory of crystal growth and has been detected in samples of interstellar dust. Carbon needles with conservative properties can supply the necessary opacity, and would very likely be ejected from galaxies as required. The model is not subject to the arguments given in the literature against grey dust, but may be constrained by future data from supernova searches done at higher redshift, in clust...

  18. Equations and simulations for multiphase compressible gas-dust flows

    Science.gov (United States)

    Oran, Elaine; Houim, Ryan

    2014-11-01

    Dust-gas multiphase flows are important in physical scenarios such as dust explosions in coal mines, asteroid impact disturbing lunar regolith, and soft aircraft landings dispersing desert or beach sand. In these cases, the gas flow regime can range from highly subsonic and nearly incompressible to supersonic and shock-laden flow, the grain packing can range from fully packed to completely dispersed, and both the gas and the dust can range from chemically inert to highly exothermic. To cover the necessary parameter range in a single model, we solve coupled sets of Navier-Stokes equations describing the background gas and the dust. As an example, a reactive-dust explosion that results in a type of shock-flame complex is described and discussed. Sponsored by the University of Maryland through Minta Martin Endowment Funds in the Department of Aerospace Engineering, and through the Glenn L. Martin Institute Chaired Professorship at the A. James Clark School of Engineering.

  19. Newton to Einstein — dust to dust

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas, E-mail: michael.kopp@physik.lmu.de, E-mail: cora.uhlemann@physik.lmu.de, E-mail: thomas.haugg@physik.lmu.de [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilian University Munich, Theresienstr. 37, Munich, 80333 (Germany)

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  20. Dust obscuration by an evolving galaxy population

    Science.gov (United States)

    Najita, Joan; Silk, Joseph; Wachter, Kenneth W.

    1990-01-01

    The effect of an evolving luminosity function (LF) on the ability of foreground galaxies to obscure background sources is discussed, using the Press-Schechter/CDM standard evolving LF model. Galaxies are modeled as simplified versions of local spirals and Poisson statistics are used to estimate the fraction of sky covered by intervening dusty galaxies and the mean optical depths due to these galaxies. The results are compared to those obtained in the case of nonevolving luminosity function in a low-density universe. It is found that evolution of the galaxy LF does not allow the quasar dust obscuration hypothesis to be sustained for dust disks with plausible sizes. Even in a low-density universe, where evolution at z = less than 10 is unimportant, large disk radii are needed to achieve the desired obscuring effect. The mean fraction of sky covered is presented as a function of the redshift z along with adequate diagram illustrations.

  1. Oblique dust density waves

    Science.gov (United States)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  2. Planar dust-acoustic waves in electron-positron-ion-dust plasmas with dust size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Yan; Zhang, Kai-Biao [Sichuan University of Science and Engineering, Zigong (China)

    2014-06-15

    Nonlinear dust-acoustic solitary waves which are described with a Kortweg-de vries (KdV) equation by using the reductive perturbation method, are investigated in a planar unmagnetized dusty plasma consisting of electrons, positrons, ions and negatively-charged dust particles of different sizes and masses. The effects of the power-law distribution of dust and other plasma parameters on the dust-acoustic solitary waves are studied. Numerical results show that the dust size distribution has a significant influence on the propagation properties of dust-acoustic solitons. The amplitudes of solitary waves in the case of a power-law distribution is observed to be smaller, but the soliton velocity and width are observed to be larger, than those of mono-sized dust grains with an average dust size. Our results indicate that only compressed solitary waves exist in dusty plasma with different dust species. The relevance of the present investigation to interstellar clouds is discussed.

  3. Dust exposure in Finnish foundries.

    Science.gov (United States)

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  4. Analytical Study of Nonlinear Dust Acoustic Waves in Two-Dimensional Dust Plasma with Dust Charge Variation

    Institute of Scientific and Technical Information of China (English)

    LIN Chang; ZHANG Xiu-Lian

    2005-01-01

    The nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation is analytically investigated by using the formally variable separation approach. New analytical solutions for the governing equation of this system have been obtained for dust acoustic waves in a dust plasma for the first time. We derive exact analytical expressions for the general case of the nonlinear dust acoustic waves in two-dimensional dust plasma with dust charge variation.

  5. Dust Devil Tracks

    Science.gov (United States)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  6. Electrostatic Characterization of Lunar Dust

    Science.gov (United States)

    2008-01-01

    To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.

  7. Dust That's Worth Keeping

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-25

    Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA

  8. Identification of the exploatation dust in road dust

    Directory of Open Access Journals (Sweden)

    B. Gajdzik

    2012-01-01

    Full Text Available The aim of this publication is to determine models of explore dust from vehicle brake systems and the presentationof measurement results of the exploitation dust, which is separate from road dust. The following methods and measuring devices were used: T-01M device, screen analysis, analysis of chemical composition with the use of a scanning microscope with Energy Dispersive x-ray Spectroscopy (EDS analyser. The measurements for identifying this type of dust were conducted on marked sections of roads: motorway, city road and mountain road. The explored dust was distinguished in the following car systems: brakes, clutch plates, tyres and catalytic converters.

  9. Left in the Dust

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    NASA's Stardust spacecraft ended its seven-year voyage January 15 after a safe landing on earth, bringing back a capsule of comet particles and samples of interstellar dust that exceeded the loftiest of expectations of mission scientists. The ensuing studies of the cosmic treasure are expected to shed light on the origins of the solar system and earth itself.

  10. Dust devil dynamics

    Science.gov (United States)

    Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V.

    2016-06-01

    A self-consistent hydrodynamic model for the solar heating-driven onset of a dust devil vortex is derived and analyzed. The toroidal flows and vertical velocity fields are driven by an instability that arises from the inversion of the mass density stratification produced by solar heating of the sandy surface soil. The nonlinear dynamics in the primary temperature gradient-driven vertical airflows drives a secondary toroidal vortex flow through a parametric interaction in the nonlinear structures. While an external tangential shear flow may initiate energy transfer to the toroidal vortex flow, the nonlinear interactions dominate the transfer of vertical-radial flows into a fast toroidal flow. This secondary flow has a vertical vorticity, while the primary thermal gradient-driven flow produces the toroidal vorticity. Simulations for the complex nonlinear structure are carried out with the passive convection of sand as test particles. Triboelectric charging modeling of the dust is used to estimate the charging of the sand particles. Parameters for a Dust Devil laboratory experiment are proposed considering various working gases and dust particle parameters. The nonlinear dynamics of the toroidal flow driven by the temperature gradient is of generic interest for both neutral gases and plasmas.

  11. Universe opacity and EBL

    CERN Document Server

    Vavrycuk, Vaclav

    2016-01-01

    The observed extragalactic background light (EBL) is affected by light attenuation due to absorption of light by galactic and intergalactic dust in the Universe. Even galactic opacity of 10-20 percent and minute universe intergalactic opacity of $0.01\\,\\mathrm{mag}\\,h\\,\\mathrm{Gpc}^{-1}$ at the local Universe have a significant impact on the EBL because obscuration of galaxies and density of intergalactic dust increase with redshift as $\\left(1+z\\right)^3$. Consequently, intergalactic opacity increases and the Universe becomes considerably opaque at $z > 3$. Adopting realistic values for galactic and intergalactic opacity, the estimates of the EBL for the expanding dusty universe are close to observations. The luminosity density evolution fits well measurements. The model reproduces a steep increase of the luminosity density at $z3.5$.

  12. Quantum cosmology in Ho\\v{r}ava-Lifshitz gravity

    CERN Document Server

    Obregón, O

    2013-01-01

    Quantum cosmology is studied within the framework of the minimal quantum gravity theory proposed by Ho\\v{r}ava. For this purpose we choose the Kantowski-Sachs (KS) model and construct the corresponding Wheeler-DeWitt equation. We study the solution to this equation in the ultraviolet limit for different values of the running parameter {\\lambda} of the theory. It is observed that the wave packet for this Universe changes completely compared with the one observed in the infrared (general relativity) regime. We also look at the classical solutions by means of a WKB semiclassical approximation. It is observed that if {\\lambda} takes its relativistic value {\\lambda} = 1 a generalized KS metric is obtained which differs from the usual KS solution in general relativity by an additional term arising from the higher-order curvature terms in the action and which dominates the behavior of the solution for very small values of the time parameter. We discuss the physical properties of this solution by comparing it with th...

  13. Composition of abraded dust from asphalt pavement produced using ferrochromium smelter slag (OKTO-aggregate)

    OpenAIRE

    Makowska, Michalina; Leveinen, Jussi; Pellinen, Terhi; Marjamaa, Riikka

    2015-01-01

    This report describes an investigation that took place at Aalto University commissioned by the Finnish Transport Agency about asphalt dust containing OKTO-aggregate. In the fall of 2013, Finnish newspaper headlines began to raise the issue of the occurrence of damaged timing belts in the Oulu region. It seemed to only concern certain models and was found in the form of a dust. The press reasoned that this "mysterious" dust must have originated from the aggregates abraded from the local Oulu r...

  14. Reuyl Crater Dust Avalanches

    Science.gov (United States)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  15. A curiosity about the dust matter in the cosmological context

    CERN Document Server

    Ghalee, Amir

    2013-01-01

    We propose a model for the dust matter in the cosmological context. The model contains a scalar field with a kinetic term non-minimally coupled to gravity. By investigating the background and perturbative equations, it is demonstrated that the scalar field has the same dynamics as the dust matter. We have also considered the cosmological constant in the model. It turns out that the model has not exotic behaviour. Thus, a universe including the scalar field and the cosmological constant, evolves just as the our universe. Moreover, we have added the quadratic term in the action. It is shown that the quadratic term can be ruled out by its consequences.

  16. African Dust Concentrations in the Caribbean Island of Puerto Rico

    Science.gov (United States)

    Mayol-Bracero, O. L.; Morales-Garcia, F.; Santos-Figueroa, G.; Custals, L.; Izaguirre, M.; Prospero, J. M.; McDowell, W. H.

    2015-12-01

    African dust carried to the Tropical Atlantic and Caribbean was measured during the summer months of 2015. Atmospheric particles during dust events were collected at Cape San Juan, Puerto Rico on stacked-filter units and a high-volume sampler for the fine and coarse fractions and on a low-pressure impactor for size-resolved characterization. The filter ash gravimetric method was used to determine bulk dust mass concentrations for the first time in Puerto Rico. The method was validated analyzing same filter portions at CIAM/ACAR University of Puerto Rico and at RSMAS/MAC University of Miami. Filter's extracts were analyzed for ionic species measured by ion chromatography. The water-soluble organic carbon (WSOC) was determined with a total organic carbon (TOC) analyzer. Mineral dust concentrations in Puerto Rico were compared to those reported at Miami during summer periods. Comparison between dust concentration and regional PM10 data and results on size-resolved dust concentration will also be presented.

  17. Dust processing in elliptical galaxies

    CERN Document Server

    Hirashita, Hiroyuki; Villaume, Alexa; Srinivasan, Sundar

    2015-01-01

    We reconsider the origin and processing of dust in elliptical galaxies. We theoretically formulate the evolution of grain size distribution, taking into account dust supply from asymptotic giant branch (AGB) stars and dust destruction by sputtering in the hot interstellar medium (ISM), whose temperature evolution is treated by including two cooling paths: gas emission and dust emission (i.e. gas cooling and dust cooling). With our new full treatment of grain size distribution, we confirm that dust destruction by sputtering is too efficient to explain the observed dust abundance even if AGB stars continue to supply dust grains, and that, except for the case where the initial dust-to-gas ratio in the hot gas is as high as $\\sim 0.01$, dust cooling is negligible compared with gas cooling. However, we show that, contrary to previous expectations, cooling does not help to protect the dust; rather, the sputtering efficiency is raised by the gas compression as a result of cooling. We additionally consider grain grow...

  18. A dynamical system approach to inhomogeneous dust solutions

    CERN Document Server

    Sussman, Roberto A

    2007-01-01

    We examine numerically and qualitatively the Lema\\^\\i tre--Tolman--Bondi (LTB) inhomogeneous dust solutions as a 3--dimensional dynamical system characterized by six critical points. One of the coordinates of the phase space is an average density parameter, $$, which behaves as the ordinary $\\Omega$ in Friedman-Lema\\^\\i tre--Robertson--Walker (FLRW) dust spacetimes. The other two coordinates, a shear parameter and a density contrast function, convey the effects of inhomogeneity. As long as shell crossing singularities are absent, this phase space is bounded or it can be trivially compactified. This space contains several invariant subspaces which define relevant particular cases, such as: ``parabolic'' evolution, FLRW dust and the Schwarzschild--Kruskal vacuum limit. We examine in detail the phase space evolution of several dust configurations: a low density void formation scenario, high density re--collapsing universes with open, closed and wormhole topologies, a structure formation scenario with a black hol...

  19. Extinction and dust properties in a clumpy medium

    CERN Document Server

    Scicluna, P

    2015-01-01

    (abridged) The dust content of the universe is primarily explored via its interaction with stellar photons, producing interstellar extinction. However, owing to the physical extension of the observing beam, observations may detect scattered photons, resulting in a change in the observed (or effective) extinction, depending on the spatial distribution of the dust and the resolution of the instrument. We investigate the influence of clumpy dust distributions on effective extinction toward embedded sources and those in the diffuse ISM. We use Monte Carlo radiative transfer to examine effective extinction for various geometries. By varying the number, optical depth and volume-filling factor of clumps in models of spherical shells and the diffuse ISM, we explore the evolution of extinction. Depending on the number of scattering events in the beam, the extinction curve steepens in homogeneous media and flattens in clumpy media. As a result, clumpy dust distributions can to reproduce extinction curves with arbitrary...

  20. Distribution of dust during two dust storms in Iceland

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  1. Martian Dust Collected by Phoenix's Arm

    Science.gov (United States)

    2008-01-01

    This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing. Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world. The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  2. Dance into the fire: dust survival inside supernova remnants

    Science.gov (United States)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-06-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will

  3. A BIOPHYSIOCHEMICAL ANALYSIS OF SETTLED LIVESTOCK AND POULTRY HOUSING DUSTS

    Directory of Open Access Journals (Sweden)

    Carresse Gerald

    2014-01-01

    Full Text Available The levels and composition of agricultural dusts are influenced by animal species, production strategy, housing type and ventilation efficiency. Agricultural dust within animal houses is complex and consists of feed particles, microbes and their products, dander, fecal matter, gases, metals and other organic and inorganic components. Livestock and poultry production facilities may be categorized as confinement, semi-confinement or pasture-based. Characterization of animal husbandry building dust will provide insight into understanding exposures experienced by animals, workers and farm visitors. The goal was to characterize biophysiochemical features of livestock dusts from swine, small ruminant, equine, poultry and cattle husbandry units. Settled dust samples were collected from livestock and poultry housing units at the University Farm and other livestock farms across the state. Morphological features were determined by electron microscopy and gravimetry. Biochemical evaluation consisted of pH determination and trace metal detection via mass spectrometry. Biological assessment centered on bacterial characterization via selective media, DNA analysis and endotoxin quantitation. Morphological analyses revealed higher levels of respirable and thoracic particles in poultry, swine, small ruminant and equine units compared to the dairy unit (p<0.01. Dusts were slightly acidic with the exception of the NCAT small ruminant unit (p<0.05. Dust endotoxin levels were consistent and bacterial species detected include Listeria and Escherichia coli. These findings suggest animal husbandry buildings harbor higher levels of smaller respirable and thoracic dust particles compared to inhalable particles. This information may be helpful in understanding dust exposures experienced by animals, farmers and agricultural workers.

  4. [House dust mite allergy].

    Science.gov (United States)

    Carrard, A; Pichler, C

    2012-04-01

    House dust mites can be found all over the world where human beings live independent from the climate. Proteins from the gastrointestinal tract- almost all known as enzymes - are the allergens which induce chronic allergic diseases. The inhalation of small amounts of allergens on a regular base all night leads to a slow beginning of the disease with chronically stuffed nose and an exercise induced asthma which later on persists. House dust mites grow well in a humid climate - this can be in well isolated dwellings or in the tropical climate - and nourish from human skin dander. Scales are found in mattresses, upholstered furniture and carpets. The clinical picture with slowly aggravating complaints leads quite often to a delayed diagnosis, which is accidently done on the occasion of a wider spectrum of allergy skin testing. The beginning of a medical therapy with topical steroids as nasal spray or inhalation leads to a fast relief of the complaints. Although discussed in extensive controversies in the literature - at least in Switzerland with the cold winter and dry climate - the recommendation of house dust mite avoidance measures is given to patients with good clinical results. The frequent ventilation of the dwelling with cold air in winter time cause a lower indoor humidity. Covering encasings on mattresses, pillow, and duvets reduces the possibility of chronic contact with mite allergens as well as the weekly changing the bed linen. Another option of therapy is the specific immunotherapy with extracts of house dust mites showing good results in children and adults. Using recombinant allergens will show a better quality in diagnostic as well as in therapeutic specific immunotherapy.

  5. A coal dust burner

    Energy Technology Data Exchange (ETDEWEB)

    Vakhrshev, B.M.; Khasnullin, I.G.; Krauze, Ye.G.; Ushakov, Yu.A.; Zinovyev, V.G.

    1982-01-01

    The burner for combustion of coal dust fuel, primarily, in rotating furnaces, contains coaxially disposed pipes, a branch pipe for feeding in the air mixture and a rotating mechanism. The first two pipes are switched in to an air source. The third pipe on the input end has an oblique section and the pipe may be rotated around an axis by a mechanism. The first pipe has ports and it may be moved in an axial direction. By installing the third pipe in the first and second positions, it is possible to direct the dust coming from the branch pipe along the central (the larger part of the dust) or the central pipe, respectively, which makes it possible to regulate the configuration of the torch and its temperature. Hot air is sucked from the furnace through the ports in the perforated first pipe to the mouth of the burner, which makes it possible to intensify combustion. By moving the fifitpipe to the right it is possible to overlap the ports with the projections and to rule out suction of the air. The possibility of regulating combustion in wide ranges makes it possible to reduce the expenditure of fuel by 2 to 3 percent.

  6. Dust, Climate, and Human Health

    Science.gov (United States)

    Maynard, N. G.

    2003-12-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health

  7. The rarity of dust in metal-poor galaxies.

    Science.gov (United States)

    Fisher, David B; Bolatto, Alberto D; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2014-01-09

    Galaxies observed at redshift z > 6, when the Universe was less than a billion years old, thus far very rarely show evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is around one per cent. A prototypical example is the galaxy Himiko (z = 6.6), which--a mere 840 million years after the Big Bang--is forming stars at a rate of 30-100 solar masses per year, yielding a mass assembly time of about 150 × 10(6) years. Himiko is thought to have a low fraction (2-3 per cent of the Sun's) of elements heavier than helium (low metallicity), and although its gas mass cannot yet be determined its dust-to-stellar mass ratio is constrained to be less than 0.05 per cent. The local dwarf galaxy I Zwicky 18, which has a metallicity about 4 per cent that of the Sun's and is forming stars less rapidly (assembly time about 1.6 × 10(9) years) than Himiko but still vigorously for its mass, is also very dust deficient and is perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18, from which we determine its dust mass to be 450-1,800 solar masses, yielding a dust-to-stellar mass ratio of about 10(-6) to 10(-5) and a dust-to-gas mass ratio of 3.2-13 × 10(-6). If I Zw 18 is a reasonable analogue of Himiko, then Himiko's dust mass must be around 50,000 solar masses, a factor of 100 below the current upper limit. These numbers are quite uncertain, but if most high-z galaxies are more like Himiko than like the very-high-dust-mass galaxy SDSS J114816.64 + 525150.3 at z ≈ 6, which hosts a quasar, then our prospects for detecting the gas and dust inside such galaxies are much poorer than hitherto anticipated.

  8. Connecting The Interstellar Gas And Dust Properties Of Distant Galaxies

    Science.gov (United States)

    Kulkarni, Varsha

    spectra with laboratory amorphous and crystalline silicate profiles to help constrain the grain composition, size, shape, and crystallinity. We will also search for longer wavelength crystalline silicate resonance features for some QASs using Spitzer IRS and/or Herschel PACS spectra. (4) We will construct SEDs for the background quasars with Spitzer and/or Herschel IR spectra or photometry, and HST/SDSS optical/UV spectra covering the 2175 Angstrom bump. Using these data, we will estimate individual extinction curves for the QASs, and compare these with extinction curves in the Milky Way and Magellanic Clouds. (5) For the QASs for which the archival data cover both the 9.7 or 18 micron silicate features and the 2175 Angstrom bump, we will search for trends between silicate and carbonaceous dust abundances. (6) Combining the above studies, we will investigate correlations between absorption redshift, gas metallicity, velocity spread, metal depletions, silicate dust abundance and crystallinity, carbonaceous dust abundance, extinction curve shape, and star formation rate. Comparing these correlations with predictions of chemical evolution models, we will gain invaluable insights into the star formation history and evolution of metals and dust. Scientific Impact: The proposed multi-wavelength data analysis project brings together the synergies of gas absorption spectroscopy and dust chemistry for distant galaxies traced by QASs, and has implications for key ingredients of galaxy evolution such as gas flows and dust formation mechanisms. Our team combines expertise in the analysis of gas and dust properties of QASs, galaxy structural morphology, and astrophysics of dust. Our project, which includes research student training at Univ. of South Carolina and outreach, supports NASA Strategic Plan Goals 2.4 and 6, to "discover how the universe works, explore how it began, and evolved", and to "share NASA with the public, educators and students".

  9. Probing Interstellar Silicate Dust in Quasar Absorption Systems at z<1.4

    Science.gov (United States)

    Aller, Monique C.; Kulkarni, V. P.; York, D. G.; Vladilo, G.; Welty, D. E.; Som, D.

    2013-01-01

    Interstellar dust plays a significant role in the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of interstellar material. While interstellar dust has been studied extensively in local galaxies, much less is known about the properties of dust grains in distant galaxies. One technique to study extragalactic interstellar dust is to look for absorption features produced by the dust in the spectra of background luminous objects, such as quasars. We will present results from an ongoing study of the interstellar silicate dust in several quasar absorption systems using infrared absorption spectra obtained with the Spitzer Space Telescope, and complementary ground-based data on associated gas-phase metal absorption lines. Based on the shape of the 10 micron silicate absorption feature, we find suggestions that the interstellar silicate dust grains in the distant universe may be significantly more crystalline in structure than those in our own Galaxy. If confirmed, this may have implications for both dust and galaxy evolution, and for assumptions about the similarity of dust properties at all epochs. Support for this work is provided by NASA through an award issued by JPL/Caltech. Additional support comes from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  10. Measurement of Fugitive Dust Emissions and Visible Emissions.

    Science.gov (United States)

    McKee, Herbert C.

    The method of measuring fugitive dust emission utilized by the Texas Air Control Board is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The measuring procedure, precautions, expected results, and legal acceptance of the method are…

  11. Dust production 0.7-1.5 billion years after the Big Bang

    CERN Document Server

    Michałowski, Michał J

    2015-01-01

    Cosmic dust is an important component of the Universe, and its origin, especially at high redshifts, is still unknown. I present a simple but powerful method of assessing whether dust observed in a given galaxy could in principle have been formed by asymptotic giant branch (AGB) stars or supernovae (SNe). Using this method I show that for most of the galaxies with detected dust emission between z=4 and z=7.5 (1.5-0.7 billion years after the Big Bang) AGB stars are not numerous and efficient enough to be responsible for the measured dust masses. Supernovae could account for most of the dust, but only if all of them had efficiencies close to the maximal theoretically allowed value. This suggests that a different mechanism is responsible for dust production at high redshifts, and the most likely possibility is the grain growth in the interstellar medium.

  12. Dust Scattering in Miras R Car and RR Sco resolved by optical interferometric polarimetry

    CERN Document Server

    Ireland, M J; Davis, J; Tango, W

    2005-01-01

    We present optical interferometric polarimetry measurements of the Mira-like variables R Car and RR Sco, using the Sydney University Stellar Interferometer. By making visibility measurements in two perpendicular polarisations, the relatively low-surface brightness light scattered by atmospheric dust could be spatially separated from the bright Mira photospheric flux. This is the first reported successful use of long-baseline optical interferometric polarimetry. Observations were able to place constraints on the distribution of circumstellar material in R Car and RR Sco. The inner radius of dust formation for both stars was found to be less than 3 stellar radii: much closer than the expected innermost stable location for commonly-assumed astrophysical ``dirty silicate'' dust in these systems (silicate dust with a significant iron content). A model with the dust distributed over a shell which is geometrically thin compared to the stellar radius was preferred over an outflow. We propose dust components whose che...

  13. A supernova origin for dust in a high-redshift quasar.

    Science.gov (United States)

    Maiolino, R; Schneider, R; Oliva, E; Bianchi, S; Ferrara, A; Mannucci, F; Pedani, M; Sogorb, M Roca

    2004-09-30

    Interstellar dust plays a crucial role in the evolution of the Universe by assisting the formation of molecules, by triggering the formation of the first low-mass stars, and by absorbing stellar ultraviolet-optical light and subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass stars. This picture has, however, recently been brought into question by the discovery of large masses of dust in the host galaxies of quasars at redshift z > 6, when the age of the Universe was less than 1 Gyr. Theoretical studies, corroborated by observations of nearby supernova remnants, have suggested that supernovae provide a fast and efficient dust formation environment in the early Universe. Here we report infrared observations of a quasar at redshift 6.2, which are used to obtain directly its dust extinction curve. We then show that such a curve is in excellent agreement with supernova dust models. This result demonstrates a supernova origin for dust in this high-redshift quasar, from which we infer that most of the dust at high redshifts probably has the same origin.

  14. The dust content of QSO hosts at high redshift

    CERN Document Server

    Calura, F; Vignali, C; Pozzi, F; Pipino, A; Matteucci, F

    2013-01-01

    Infrared observations of high-z quasar (QSO) hosts indicate the presence of large masses of dust in the early universe. When combined with other observables, such as neutral gas masses and star formation rates, the dust content of z~6 QSO hosts may help constraining their star formation history. We have collected a database of 58 sources from the literature discovered by various surveys and observed in the FIR. We have interpreted the available data by means of chemical evolution models for forming proto-spheroids, investigating the role of the major parameters regulating star formation and dust production. For a few systems, given the derived small dynamical masses, the observed dust content can be explained only assuming a top-heavy initial mass function, an enhanced star formation efficiency and an increased rate of dust accretion. However, the possibility that, for some systems, the dynamical mass has been underestimated cannot be excluded. If this were the case, the dust mass can be accounted for by stan...

  15. Dust evolution processes constrained by extinction curves in nearby galaxies

    CERN Document Server

    Hou, Kuan-Chou; Michałowski, Michał J

    2016-01-01

    Extinction curves, especially those in the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Small Magellanic Cloud (SMC), have provided us with a clue to the dust properties in the nearby Universe. We examine whether or not these extinction curves can be explained by well known dust evolution processes. We treat the dust production in stellar ejecta, destruction in supernova shocks, dust growth by accretion and coagulation, and dust disruption by shattering. To make a survey of the large parameter space possible, we simplify the treatment of the grain size distribution evolution by adopting the `two-size approximation', in which we divide the grain population into small ($\\lesssim 0.03~\\mu$m) and large ($\\gtrsim 0.03~\\mu$m) grains. It is confirmed that the MW extinction curve can be reproduced in reasonable ranges for the time-scale of the above processes with a silicate-graphite mixture. This indicates that the MW extinction curve is a natural consequence of the dust evolution through the above proc...

  16. On the (in)variance of the dust-to-metals ratio in galaxies

    CERN Document Server

    Mattsson, Lars; Andersen, Anja C; Zafar, Tayyaba

    2014-01-01

    Recent works have demonstrated a surprisingly small variation of the dust-to-metals ratio in different environments and a correlation between dust extinction and the density of stars. Naively, one would interpret these findings as strong evidence of cosmic dust being produced mainly by stars. But other observational evidence suggest there is a significant variation of the dust-to-metals ratio with metallicity. As we demonstrate in this paper, a simple star-dust scenario is problematic also in the sense that it requires that destruction of dust in the interstellar medium (e.g., due to passage of supernova shocks) must be highly inefficient. We suggest a model where stellar dust production is indeed efficient, but where interstellar dust growth is equally important and acts as a replenishment mechanism which can counteract the effects of dust destruction. This model appears to resolve the seemingly contradictive observations, given that the ratio of the effective (stellar) dust and metal yields is not universal...

  17. Dust Destruction by the Reverse Shock in the Cassiopeia A Supernova Remnant

    CERN Document Server

    Micelotta, Elisabetta R; Slavin, Jonathan D

    2016-01-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing one solar mass of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our aim is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. We use analytical models for the evolution of a supernova blast wave and of the reverse shock, with special application to the clumpy ejecta of the remnant of Cassiopeia A. We assume that the dust resides in cool oxygen-rich clumps that are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma, and that the dust consists of silic...

  18. Dust coagulation in ISM

    Science.gov (United States)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  19. Gravimetric dust sampling for control purposes and occupational dust sampling.

    CSIR Research Space (South Africa)

    Unsted, AD

    1997-02-01

    Full Text Available Prior to the introduction of gravimetric dust sampling, konimeters had been used for dust sampling, which was largely for control purposes. Whether or not absolute results were achievable was not an issue since relative results were used to evaluate...

  20. and Models: A Self-Similar Approach

    Directory of Open Access Journals (Sweden)

    José Antonio Belinchón

    2013-01-01

    equations (FEs admit self-similar solutions. The methods employed allow us to obtain general results that are valid not only for the FRW metric, but also for all the Bianchi types as well as for the Kantowski-Sachs model (under the self-similarity hypothesis and the power-law hypothesis for the scale factors.

  1. [Biological effect of wood dust].

    Science.gov (United States)

    Maciejewska, A; Wojtczak, J; Bielichowska-Cybula, G; Domańska, A; Dutkiewicz, J; Mołocznik, A

    1993-01-01

    The biological effect of exposure to wood dust depends on its composition and the content of microorganisms which are an inherent element of the dust. The irritant and allergic effects of wood dust have been recognised for a long time. The allergic effect is caused by the wood dust of subtropical trees, e.g. western red cedar (Thuja plicata), redwood (Sequoia sempervirens), obeche (Triplochiton scleroxylon), cocabolla (Dalbergia retusa) and others. Trees growing in the European climate such as: larch (Larix), walnut (Juglans regia), oak (Quercus), beech (Fagus), pine (Pinus) cause a little less pronounced allergic effect. Occupational exposure to irritative or allergic wood dust may lead to bronchial asthma, rhinitis, alveolitis allergica, DDTS (Organic dust toxic syndrome), bronchitis, allergic dermatitis, conjunctivitis. An increased risk of adenocarcinoma of the sinonasal cavity is an important and serious problem associated with occupational exposure to wood dust. Adenocarcinoma constitutes about half of the total number of cancers induced by wood dust. An increased incidence of the squamous cell cancers can also be observed. The highest risk of cancer applies to workers of the furniture industry, particularly those dealing with machine wood processing, cabinet making and carpentry. The cancer of the upper respiratory tract develops after exposure to many kinds of wood dust. However, the wood dust of oak and beech seems to be most carcinogenic. It is assumed that exposure to wood dust can cause an increased incidence of other cancers, especially lung cancer and Hodgkin's disease. The adverse effects of microorganisms, mainly mould fungi and their metabolic products are manifested by alveolitis allergica and ODTS. These microorganisms can induce aspergillomycosis, bronchial asthma, rhinitis and allergic dermatitis.

  2. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    Science.gov (United States)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008. Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104. Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those. The image has been enhanced to make the dust devil easier to see. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Of data and dust

    CERN Multimedia

    Stephanie Hills

    2016-01-01

    The traditional image of an archive is one of dusty old boxes, books and papers. When your archive is digital, dust spells disaster. An innovative environmental sensor designed and built by a CERN IT specialist has become an essential element in the Laboratory’s data-preservation strategy.   The novel air particle monitoring sensor designed by CERN's Julien Leduc. CERN’s archive holds more than 130 petabytes of data from past and present high-energy physics experiments. Some of it is 40 years old, most of it needs to be kept forever, and all of it is held on tape cartridges (over 20,000 of them). The cartridges are held inside tape libraries with robotic arms that load them into tape drives where they can be read and written. Tape cartridges have many advantages over other data storage media, notably cost and long-term reliability, but topping the list of drawbacks is their vulnerability to contamination from airborne dust particles; a tiny piece of g...

  4. Charged Dust Aggregate Interactions

    Science.gov (United States)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  5. Mining dust filter. Bergbaustaubfilter

    Energy Technology Data Exchange (ETDEWEB)

    Igelbuescher, H.; Hoelter, H.

    1988-12-28

    A dust filter for application underground, whose casing is designed as a transportable unit combinable with further casings and fitted with removable filter pockets. These filter pockets have a frame which seals towards the casing and with the lattices on which the filter cloth is stretched and with spacers holding the said lattices at a distance. Each casing as such has inspection ports that are operationable optionally on either side, and clean and crude gas channels on its upper side. The ends of these channels have coupleable head pieces, so that connection is made easy when casings are arranged in a line. Each crude gas channel is connected to the inside of the casing by means of perforations in the floor of said channel, whereas the clean gas channel, for its part, is in connection with the inside of the casing by means of a channel on the head side of the casing. It is thus possible to create a dust filter having practically any desired output by arranging individual modules in line, in which connection each individual module is reliably transportable on the facilities available below ground, as pre-fabricated above ground. Stable support of the sides of the filter cloths is ensured by the lattice that consists of reciprocally cranked longitudinal and transverse wires. 10 figs.

  6. Sulfur in Cometary Dust

    Science.gov (United States)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  7. Erosion of dust aggregates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2013-01-01

    Aims: The aim of this work is to gain a deeper insight into how much different aggregate types are affected by erosion. Especially, it is important to study the influence of the velocity of the impacting projectiles. We also want to provide models for dust growth in protoplanetary disks with simple recipes to account for erosion effects. Methods: To study the erosion of dust aggregates we employed a molecular dynamics approach that features a detailed micro-physical model of the interaction of spherical grains. For the first time, the model has been extended by introducing a new visco-elastic damping force which requires a proper calibration. Afterwards, different sample generation methods were used to cover a wide range of aggregate types. Results: The visco-elastic damping force introduced in this work turns out to be crucial to reproduce results obtained from laboratory experiments. After proper calibration, we find that erosion occurs for impact velocities of 5 m/s and above. Though fractal aggregates as ...

  8. Optical to extreme ultraviolet reddening curves for normal AGN dust and for dust associated with high-velocity outflows

    Science.gov (United States)

    Singh, Japneet; Gaskell, Martin; Gill, Jake

    2017-01-01

    We use mid-IR (WIRE), optical (SDSS), and ultraviolet (GALEX) photometry of over 80,000 AGNs to derive mean attenuation curves from the optical to the rest frame extreme ultraviolet (EUV) for (i) “normal” AGN dust dominating the optical reddening of AGNs and (ii) “BAL dust” - the dust causing the additional extinction in AGNs observed to have broad absorption lines (BALs). Our method confirms that the attenuation curve of “normal” AGN dust is flat in the ultraviolet, as found by Gaskell et al. (2004). In striking contrast to this, the attenuation curve for BAL dust is well fit by a steeply-rising, SMC-like curve. We confirm the shape of the theoretical Weingartner & Draine (2001) SMC curve out to 700 Angstroms but the drop in attenuation to still shorter wavelengths (400 Angstroms) seems to be less than predicted. We find identical attenuation curves for high-ionization and low-ionization BALQSOs. We suggest that attenuation curves appearing to be steeper than the SMC are due to differences in underlying spectra and partial covering by BAL dust. This work was This work was performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz performed under the auspices of the Science Internship Program (SIP) of the University of California at Santa Cruz.

  9. Andromeda's dust

    Energy Technology Data Exchange (ETDEWEB)

    Draine, B. T.; Aniano, G. [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States); Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Braun, Robert [CSIRO—Astronomy and Space Science, P.O. Box 76, Epping, NWS 1710 (Australia); Leroy, Adam, E-mail: draine@astro.princeton.edu, E-mail: ganiano@ias.u-psud.fr [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  10. Dust and the Sick Building Syndrome

    DEFF Research Database (Denmark)

    Gyntelberg, Finn; Suadicani, Poul; Wohlfahrt Nielsen, Jan

    1994-01-01

    Farmakologi, bacteria, dust, histamine, disease, gram-negative, indoor climate, sick building syndrome......Farmakologi, bacteria, dust, histamine, disease, gram-negative, indoor climate, sick building syndrome...

  11. PERSPECTIVE: Dust, fertilization and sources

    Science.gov (United States)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  12. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  13. Dust-acoustic waves and stability in the permeating dust plasma: II. Power-law distributions

    CERN Document Server

    Gong, Jingyu; Du, Jiulin

    2012-01-01

    The dust-acoustic waves and their stability driven by a flowing dust plasma when it cross through a static (target) dust plasma (the so-called permeating dust plasma) are investigated when the components of the dust plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dust plasma velocity on the dust-acoustic waves in this dust plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dust plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dust plasma velocity has a significant effect on the dust-acoustic waves in the permeating dust plasma with the power-law q-distribution.

  14. Dust Temperature Distribution in the Diffuse Interstellar Medium: Modeling the CMB Dust Foreground to Sub-Percent Accuracy

    Science.gov (United States)

    Kogut, Alan

    Measurements of the linear polarization of the cosmic microwave background (CMB) provide a critical test of the inflationary paradigm. Gravity waves excited during an inflationary epoch in the early universe interact with the CMB to impart a characteristic signal in linear polarization. The distinctive spatial pattern and frequency dependence of the inflationary signal provide a unique signature to characterize physics at energies approaching Grand Unification, a trillion times beyond the energies accessible to particle accelerators. At millimeter wavelengths where the CMB is brightest, the dominant foreground is thermal emission from interstellar dust. As highlighted by the recent BICEP2 and Planck results, dust emission is brighter than the anticipated inflationary signal even in the cleanest regions of the sky, and is 1-2 orders of magnitude brighter over most of the sky. Robust detection and characterization of the primordial signal requires subtracting the dust foreground to sub-percent accuracy. Despite the importance of dust to CMB measurements, far-IR dust emission is poorly constrained. Popular phenomenological models treat the dust as a superposition of components at one or two temperatures although the actual temperature distribution must be more complex. Disturbingly, use of these models can bias the inflationary CMB results at levels large compared to planned sensitivities, despite fitting the combined sky emission to sub-percent precision. Foreground models must be accurate as well as precise. We propose to use archival data at millimeter through far-IR wavelengths to improve models of far-IR dust emission, explicitly deriving the temperature distribution within the diffuse dust cirrus to separate temperature effects from intrinsic emission effects (spectral index). The proposed analysis is tightly focused and likely to succeed. Simple toy models demonstrate that far-IR data such as FIRAS can distinguish the temperature distribution within the diffuse

  15. E ring dust sources: Implications from Cassini's dust measurements

    Science.gov (United States)

    Spahn, Frank; Albers, Nicole; Hörning, Marcel; Kempf, Sascha; Krivov, Alexander V.; Makuch, Martin; Schmidt, Jürgen; Seiß, Martin; Miodrag Sremčević

    2006-08-01

    The Enceladus flybys of the Cassini spacecraft are changing our understanding of the origin and sustainment of Saturn's E ring. Surprisingly, beyond the widely accepted dust production caused by micrometeoroid impacts onto the atmosphereless satellites (the impactor-ejecta process), geophysical activities have been detected at the south pole of Enceladus, providing an additional, efficient dust source. The dust detector data obtained during the flyby E11 are used to identify the amount of dust produced in the impactor-ejecta process and to improve related modeling [Spahn, F., Schmidt, J., Albers, N., Hörning, M., Makuch, M., Seiß, M., Kempf, S., Srama, R., Dikarev, V.V., Helfert, S., Moragas-Klostermeyer, G., Krivov, A.V., Sremčević, M., Tuzzolino, A., Economou, T., Grün, E., 2006. Cassini dust measurements at Enceladus: implications for Saturn's E ring. Science, in press]. With this, we estimate the impact-generated dust contributions of the other E ring satellites and find significant differences in the dust ejection efficiency by two projectile families - the E ring particles (ERPs) and the interplanetary dust particles (IDPs). Together with the Enceladus south-pole source, the ERP impacts play a crucial role in the inner region, whereas the IDP impacts dominate the particle production in the outer E ring, possibly accounting for its large radial extent. Our results can be verified in future Cassini flybys of the E ring satellites. In this way poorly known parameters of the dust particle production in hypervelocity impacts can be constrained by comparison of the data and theory.

  16. Human universe

    CERN Document Server

    Cox, Brian

    2014-01-01

    Human life is a staggeringly strange thing. On the surface of a ball of rock falling around a nuclear fireball in the blackness of a vacuum the laws of nature conspired to create a naked ape that can look up at the stars and wonder where it came from. What is a human being? Objectively, nothing of consequence. Particles of dust in an infinite arena, present for an instant in eternity. Clumps of atoms in a universe with more galaxies than people. And yet a human being is necessary for the question itself to exist, and the presence of a question in the universe - any question - is the most wonderful thing. Questions require minds, and minds bring meaning. What is meaning? I don't know, except that the universe and every pointless speck inside it means something to me. I am astonished by the existence of a single atom, and find my civilisation to be an outrageous imprint on reality. I don't understand it. Nobody does, but it makes me smile. This book asks questions about our origins, our destiny, and our place i...

  17. Discovery of a Perseus-like cloud in the early Universe: HI-to-H2 transition, carbon monoxide and small dust grains at zabs=2.53 towards the quasar J0000+0048

    CERN Document Server

    Noterdaeme, P; Balashev, S; Ge, J; Gupta, N; Krühler, T; Ledoux, C; Murphy, M T; Pâris, I; Petitjean, P; Rahmani, H; Srianand, R; Ubachs, W

    2016-01-01

    We present the discovery of a molecular cloud at zabs=2.5255 along the line of sight to the quasar J0000+0048. We perform a detailed analysis of the absorption lines from ionic, neutral atomic and molecular species in different excitation levels, as well as the broad-band dust extinction. We find that the absorber classifies as a Damped Lyman-alpha system (DLA) with logN(HI)(cm^-2)=20.8+/-0.1. The DLA has super-Solar metallicity with a depletion pattern typical of cold gas and an overall molecular fraction ~50%. This is the highest f-value observed to date in a high-z intervening system. Most of the molecular hydrogen arises from a clearly identified narrow (b~0.7 km/s), cold component in which CO molecules are also found, with logN(CO)~15. We study the chemical and physical conditions in the cold gas. We find that the line of sight probes the gas deep after the HI-to-H2 transition in a ~4-5 pc-size cloud with volumic density nH~80 cm^-3 and temperature of only 50 K. Our model suggests that the presence of sm...

  18. Stranger that fiction parallel universes beguile science

    CERN Document Server

    2007-01-01

    Is the universe -- correction: 'our' universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  19. Stranger that fiction parallel universes beguile science

    CERN Multimedia

    2007-01-01

    Is the universe -- correction: 'our' universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  20. Stranger than fiction: parallel universes beguile science

    CERN Multimedia

    Hautefeuille, Annie

    2007-01-01

    Is the universe-correction: 'our' universe-no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians and cosmologists too.

  1. Impact of galactic and intergalactic dust on the stellar EBL

    Science.gov (United States)

    Vavryčuk, V.

    2016-06-01

    Current theories assume that the low intensity of the stellar extragalactic background light (stellar EBL) is caused by finite age of the Universe because the finite-age factor limits the number of photons that have been pumped into the space by galaxies and thus the sky is dark in the night. We oppose this opinion and show that two main factors are responsible for the extremely low intensity of the observed stellar EBL. The first factor is a low mean surface brightness of galaxies, which causes a low luminosity density in the local Universe. The second factor is light extinction due to absorption by galactic and intergalactic dust. Dust produces a partial opacity of galaxies and of the Universe. The galactic opacity reduces the intensity of light from more distant background galaxies obscured by foreground galaxies. The inclination-averaged values of the effective extinction AV for light passing through a galaxy is about 0.2 mag. This causes that distant background galaxies become apparently faint and do not contribute to the EBL significantly. In addition, light of distant galaxies is dimmed due to absorption by intergalactic dust. Even a minute intergalactic opacity of 1 × 10^{-2} mag per Gpc is high enough to produce significant effects on the EBL. As a consequence, the EBL is comparable with or lower than the mean surface brightness of galaxies. Comparing both extinction effects, the impact of the intergalactic opacity on the EBL is more significant than the obscuration of distant galaxies by partially opaque foreground galaxies by factor of 10 or more. The absorbed starlight heats up the galactic and intergalactic dust and is further re-radiated at IR, FIR and micro-wave spectrum. Assuming static infinite universe with no galactic or intergalactic dust, the stellar EBL should be as high as the surface brightness of stars. However, if dust is considered, the predicted stellar EBL is about 290 nW m^{-2} sr^{-1}, which is only 5 times higher than the observed

  2. Dust ablation in Pluto's atmosphere

    Science.gov (United States)

    Horanyi, Mihaly; Poppe, Andrew; Sternovsky, Zoltan

    2016-04-01

    Based on measurements by dust detectors onboard the Pioneer 10/11 and New Horizons spacecraft the total production rate of dust particles born in the Edgeworth Kuiper Belt (EKB) has been be estimated to be on the order of 5 ṡ 103 kg/s in the approximate size range of 1 - 10 μm. Dust particles are produced by collisions between EKB objects and their bombardment by both interplanetary and interstellar dust particles. Dust particles of EKB origin, in general, migrate towards the Sun due to Poynting-Robertson drag but their distributions are further sculpted by mean-motion resonances as they first approach the orbit of Neptune and later the other planets, as well as mutual collisions. Subsequently, Jupiter will eject the vast majority of them before they reach the inner solar system. The expected mass influx into Pluto atmosphere is on the order of 200 kg/day, and the arrival speed of the incoming particles is on the order of 3 - 4 km/s. We have followed the ablation history as function of speed and size of dust particles in Pluto's atmosphere, and found that volatile rich particles can fully sublimate due to drag heating and deposit their mass in narrow layers. This deposition might promote the formation of the haze layers observed by the New Horizons spacecraft. This talk will explore the constraints on the composition of the dust particles by comparing the altitude of the deposition layers to the observed haze layers.

  3. Lunar Dust Mitigation Technology Development

    Science.gov (United States)

    Hyatt, Mark J.; Deluane, Paul B.

    2008-01-01

    NASA s plans for implementing the Vision for Space Exploration include returning to the moon as a stepping stone for further exploration of Mars, and beyond. Dust on the lunar surface has a ubiquitous presence which must be explicitly addressed during upcoming human lunar exploration missions. While the operational challenges attributable to dust during the Apollo missions did not prove critical, the comparatively long duration of impending missions presents a different challenge. Near term plans to revisit the moon places a primary emphasis on characterization and mitigation of lunar dust. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems. This paper presents the current perspective and implementation of dust knowledge management and integration, and mitigation technology development activities within NASA s Exploration Technology Development Program. This work is presented within the context of the Constellation Program s Integrated Lunar Dust Management Strategy. The Lunar Dust Mitigation Technology Development project has been implemented within the ETDP. Project scope and plans will be presented, along with a a perspective on lessons learned from Apollo and forensics engineering studies of Apollo hardware. This paper further outlines the scientific basis for lunar dust behavior, it s characteristics and potential effects, and surveys several potential strategies for its control and mitigation both for lunar surface operations and within the working volumes of a lunar outpost.

  4. Interstellar Silicate Dust Grain Properties in Distant Galaxies Probed by Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2015-01-01

    Dust grains are a fundamental component of the interstellar medium, and significantly impact many of the physical processes driving galaxy evolution, including star formation, and the heating, cooling and ionization of interstellar material. Using the absorption features produced by dust in the spectra of luminous background quasars, it is possible to study the properties of extragalactic interstellar dust grains. We will present results from an ongoing program utilizing existing Spitzer Space Telescope infrared quasar spectra to probe silicate dust grain properties in z<1.4 quasar absorption systems. In combination with complementary ground-based data on associated gas-phase metal absorption lines, we explore connections between the interstellar dust and gas in the quasar absorption systems. Our project yields clear detections of the 10 micron silicate dust absorption feature in the studied systems, as well as detections of the 18 micron silicate dust absorption feature in sources with adequate spectral coverage. Based on measured variations in the breath, peak wavelength, and substructure of the 10 micron absorption features, there appear to be differences in the silicate dust grain properties from system-to-system. We also show indications of trends between the gas-phase metal properties, such as metallicity and gas velocity spread, with the silicate dust grain absorption properties. Support for this work is provided by NASA through an award issued by JPL/Caltech and through NASA grant NNX14AG74G, and from National Science Foundation grants AST-0908890 and AST-1108830 to the University of South Carolina.

  5. Dust Storms: Why Are Dust Storms a Concern?

    Science.gov (United States)

    ... Radon Solvents Styrene Sulfur Dioxide Toluene Uranium Volatile Organic Compounds (VOCs) For Educators Introduction Tox Town-Based Curriculum Units / Science Club Careers in Environmental Health, Chemistry, and Toxicology More Resources Dust Storms en español ...

  6. A parallel direct numerical simulation of dust particles in a turbulent flow

    Science.gov (United States)

    Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.

    2012-04-01

    Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.

  7. Dust evolution processes in normal galaxies at z > 6 detected by ALMA

    Science.gov (United States)

    Wang, Wei-Chen; Hirashita, Hiroyuki; Hou, Kuan-Chou

    2017-03-01

    Recent Atacama Large Millimetre/submillimetre Array (ALMA) observations of high-redshift normal galaxies have been providing a great opportunity to clarify the general origin of dust in the Universe, not biased to very bright special objects even at z > 6. To clarify what constraint we can get for the dust enrichment in normal galaxies detected by ALMA, we use a theoretical model that includes major processes driving dust evolution in a galaxy; that is, dust condensation in stellar ejecta, dust growth by the accretion of gas-phase metals and supernova destruction. Using the dust emission fluxes detected in two normal galaxies at z > 6 by ALMA as a constraint, we can get the range of the time-scales (or efficiencies) of the above mentioned processes. We find that if we assume extremely high-condensation efficiency in stellar ejecta (fin ≳ 0.5), rapid dust enrichment by stellar sources in the early phase may be enough to explain the observed ALMA flux, unless dust destruction by supernovae in those galaxies is stronger than that in nearby galaxies. If we assume a condensation efficiency expected from theoretical calculations (fin ≲ 0.1), strong dust growth (even stronger than assumed for nearby galaxies if they are metal-poor galaxies) is required. These results indicate that the normal galaxies detected by ALMA at z > 6 are biased to objects (i) with high dust condensation efficiency in stellar ejecta, (ii) with strong dust growth in very dense molecular clouds or (iii) with efficient dust growth because of fast metal enrichment up to solar metallicity. A measurement of metallicity is crucial to distinguish among these possibilities.

  8. The interstellar medium in Andromeda's dwarf spheroidal galaxies - I. Content and origin of the interstellar dust

    Science.gov (United States)

    De Looze, Ilse; Baes, Maarten; Bendo, George J.; Fritz, Jacopo; Boquien, Médéric; Cormier, Diane; Gentile, Gianfranco; Kennicutt, Robert C.; Madden, Suzanne C.; Smith, Matthew W. L.; Young, Lisa

    2016-07-01

    Dwarf spheroidal galaxies are among the most numerous galaxy population in the Universe, but their main formation and evolution channels are still not well understood. The three dwarf spheroidal satellites (NGC 147, NGC 185, and NGC 205) of the Andromeda galaxy are characterized by very different interstellar medium properties, which might suggest them being at different galaxy evolutionary stages. While the dust content of NGC 205 has been studied in detail in an earlier work, we present new Herschel dust continuum observations of NGC 147 and NGC 185. The non-detection of NGC 147 in Herschel SPIRE maps puts a strong constraint on its dust mass (≤128^{+124}_{-68} M⊙). For NGC 185, we derive a total dust mass Md = 5.1±1.0 × 103 M⊙, which is a factor of ˜2-3 higher than that derived from ISO and Spitzer observations and confirms the need for longer wavelength observations to trace more massive cold dust reservoirs. We, furthermore, estimate the dust production by asymptotic giant branch (AGB) stars and supernovae (SNe). For NGC 147, the upper limit on the dust mass is consistent with expectations of the material injected by the evolved stellar population. In NGC 185 and NGC 205, the observed dust content is one order of magnitude higher compared to the estimated dust production by AGBs and SNe. Efficient grain growth, and potentially longer dust survival times (3-6 Gyr) are required to account for their current dust content. Our study confirms the importance of grain growth in the gas phase to account for the current dust reservoir in galaxies.

  9. [Causation, prevention and treatment of dust explosion].

    Science.gov (United States)

    Dong, Maolong; Jia, Wenbin; Wang, Hongtao; Han, Fei; Li, Xiao-Qiang; Hu, Dahai

    2014-10-01

    With the development of industrial technology, dust explosion accidents have increased, causing serious losses of people's lives and property. With the development of economy, we should lay further emphasis on causation, prevention, and treatment of dust explosion. This article summarizes the background, mechanism, prevention, and treatment of dust explosion, which may provide some professional knowledge and reference for the treatment of dust explosion.

  10. A numerical study on dust devils with implications to global dust budget estimates

    Science.gov (United States)

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  11. Cassiopeia A: dust factory revealed via submillimetre polarimetry

    CERN Document Server

    Dunne, L; Ivison, R J; Rudnick, L; DeLaney, T A; Matthews, B C; Gomez, H L; Eales, S A

    2008-01-01

    If Type-II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1 M_sun) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type-II supernovae. In this paper we present new data which show that the submm emission from Cas A is polarised at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarised submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarisation in this way and so we attribute the excess polarised submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. The inferred dust polarisation fraction is unpreceden...

  12. Dust in High Redshift Gamma Ray Burst Host Galaxies

    Science.gov (United States)

    Liang, Shunlin; Li, A.

    2009-12-01

    The discovery of high-redshift GRBs opens a new window into the nature of dust in the early universe. We explore the dust properties of the host galaxies of a large sample (32 objects) of long-GRBs at 2.0≤ z ≤ 6.7, with a mean redshift of z=3.34 (corresponding to a look-back time of 1.94 Gyr), by fitting their optical-near-IR afterglow spectra. The average dust extinction in the visual band is AV=0.3. The EB-V/NHI and AV/NHI ratios decrease linearly with the dust-to-gas ratio, suggesting that the dust properties remain unchanged at the epoch of 2.0≤ z ≤ 6.7. The inferred extinction curves are closely reproduced in terms of a mixture of amorphous silicate and graphite. The quanities of amorphous silicate and graphite (relative to H) both appear to decrease with, while their cut-off grain sizes show no significant evolution in the interval 2.0≤ z ≤ 6.7.

  13. Loess and Eolian Dust Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past environment derived from Loess and Eolian dust (silt-sized material deposited on the Earth surface by the surface winds. Parameter keywords describe...

  14. Surface System Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will perform a detailed examination of dust mitigation and tolerance strategies for connections and mechanisms to be employed on the lunar...

  15. Dust Evolution in Protoplanetary Disks

    CERN Document Server

    Testi, Leonardo; Ricci, Luca; Andrews, Sean; Blum, Juergen; Carpenter, John; Dominik, Carsten; Isella, Andrea; Natta, Antonella; Williams, Jonathan; Wilner, David

    2014-01-01

    (abridged) In the core accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow from the submicron sizes typical of interstellar dust to micron size particles in the dense regions of molecular clouds and cores, the growth from micron size particles to pebbles and kilometre size bodies must occur in protoplanetary disks. This step in the formation of planetary systems is the last stage of solids evolution that can be observed directly in young extrasolar systems. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational...

  16. Wormhole shadows in rotating dust

    Science.gov (United States)

    Ohgami, Takayuki; Sakai, Nobuyuki

    2016-09-01

    As an extension of our previous work, which investigated the shadows of the Ellis wormhole surrounded by nonrotating dust, in this paper we study wormhole shadows in a rotating dust flow. First, we derive steady-state solutions of slowly rotating dust surrounding the wormhole by solving relativistic Euler equations. Solving null geodesic equations and radiation transfer equations, we investigate the images of the wormhole surrounded by dust for the above steady-state solutions. Because the Ellis wormhole spacetime possesses unstable circular orbits of photons, a bright ring appears in the image, just as in Schwarzschild spacetime. The bright ring looks distorted due to rotation. Aside from the bright ring, there appear weakly luminous complex patterns by the emission from the other side of the throat. These structure could be detected by high-resolution very-long-baseline-interferometry observations in the near future.

  17. Automated Classification of Stratospheric Dust

    Science.gov (United States)

    Bell, S. W.; Lasue, J.; Stepinski, T.

    2010-03-01

    We have applied data mining techniques to the JSC Cosmic Dust Catalog Volume 16 cluster particles. We have demonstrated a technique capable of reproducing the separation between cosmic and contaminant particles.

  18. Dust Evolution in Protoplanetary Disks

    Science.gov (United States)

    Testi, L.; Birnstiel, T.; Ricci, L.; Andrews, S.; Blum, J.; Carpenter, J.; Dominik, C.; Isella, A.; Natta, A.; Williams, J. P.; Wilner, D. J.

    In the core-accretion scenario for the formation of planetary rocky cores, the first step toward planet formation is the growth of dust grains into larger and larger aggregates and eventually planetesimals. Although dust grains are thought to grow up to micrometer-sized particles in the dense regions of molecular clouds, the growth to pebbles and kilometer-sized bodies must occur at the high densities within protoplanetary disks. This critical step is the last stage of solids evolution that can be observed directly in extrasolar systems before the appearance of large planetary-sized bodies. In this chapter we review the constraints on the physics of grain-grain collisions as they have emerged from laboratory experiments and numerical computations. We then review the current theoretical understanding of the global processes governing the evolution of solids in protoplanetary disks, including dust settling, growth, and radial transport. The predicted observational signatures of these processes are summarized. We briefly discuss grain growth in molecular cloud cores and in collapsing envelopes of protostars, as these likely provide the initial conditions for the dust in protoplanetary disks. We then review the observational constraints on grain growth in disks from millimeter surveys, as well as the very recent evidence for radial variations of the dust properties in disks. We also include a brief discussion on the small end of the grain size distribution and dust settling as derived from optical, near-, and mid-infrared observations. Results are discussed in the context of global dust-evolution models; in particular, we focus on the emerging evidence for a very efficient early growth of grains and the radial distribution of maximum grain sizes as the result of growth barriers. We also highlight the limits of the current models of dust evolution in disks, including the need to slow the radial drift of grains to overcome the migration/fragmentation barrier.

  19. Dust vortex flows in plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.K

    2002-12-30

    Coherent nonlinear structures in the form of dust vortex flows have been observed in unmagnetized laboratory dusty plasmas. Our objective here is show that the dynamics of such dust vortices is governed by a modified Navier-Stokes equation (MNSE) and that the stationary solutions of the MNSE can be represented as monopolar as well as a row of identical Stuart and a row of counter-rotating vortices.

  20. Dust in the Interplanetary Medium

    CERN Document Server

    Mann, Ingrid; Meyer-Vernet, Nicole; Zaslavsky, Arnaud; Lamy, Herve

    2010-01-01

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nano dust particles of sizes 1 - 10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nano dust are detected near 1AU with the plasma wave instrument onboard the STEREO spacecraft. Though such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  1. Uranium mill ore dust characterization

    Energy Technology Data Exchange (ETDEWEB)

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  2. The Cosmic DUNE dust astronomy mission

    Science.gov (United States)

    Grun, E.; Srama, R.; Cosmic Dune Team

    A dust astronomy mission aims at the simultaneous measurement of the origin and the chemical composition of individual dust grains in space. Interstellar dust traversing the solar system constitutes the galactic solid phase of matter from which stars and planetary systems form. Interplanetary dust, from comets and asteroids, represents remnant material from bodies at different stages of early solar system evolution. Thus, studies of interstellar and interplanetary dust with Cosmic DUNE (Cosmic Dust Near Earth) will provide a comparison between the composition of the interstellar medium and primitive planetary objects. Cosmic DUNE will prepare the way for effective collection in near-Earth space of interstellar and interplanetary dust for subsequent return to Earth and analysis in laboratories. Cosmic DUNE establishes the next logical step beyond NASA's Stardust mission, with four major advancements in cosmic dust research: (1) Analysis of the elemental and isotopic composition of individual cosmic dust grains, (2) determination of the size distribution of interstellar dust, (3) characterization of the interstellar dust flow through the planetary system, and (4) analysis of interplanetary dust of cometary and asteroidal origin. This mission goal will be reached with novel dust instrumentation. A dust telescope trajectory sensor has been developed which is capable of obtaining precision trajectories of sub-micron sized particles in space. A new high mass resolution dust analyzer of 0.1m2 impact area can cope with the low fluxes expected in interplanetary space. Cosmic DUNE will be proposed to ESA in response to its upcoming call for mission ideas.

  3. Dust layer profiling using an aerosol dropsonde

    Science.gov (United States)

    Ulanowski, Zbigniew; Kaye, Paul Henry; Hirst, Edwin; Wieser, Andreas; Stanley, Warren

    2015-04-01

    Routine meteorological data is obtained in the atmosphere using disposable radiosondes, giving temperature, pressure, humidity and wind speed. Additional measurements are obtained from dropsondes, released from research aircraft. However, a crucial property not yet measured is the size and concentration of atmospheric particulates, including dust. Instead, indirect measurements are employed, relying on remote sensing, to meet the demands from areas such as climate research, air quality monitoring, civil emergencies etc. In addition, research aircraft can be used in situ, but airborne measurements are expensive, and aircraft use is restricted to near-horizontal profiling, which can be a limitation, as phenomena such as long-range transport depend on the vertical distribution of aerosol. The Centre for Atmospheric and Instrumentation Research at University of Hertfordshire develops light-scattering instruments for the characterization of aerosols and cloud particles. Recently a range of low-cost, miniature particle counters has been created, intended for use with systems such as disposable balloon-borne radiosondes, dropsondes, or in dense ground-based sensor networks. Versions for different particle size ranges exist. They have been used for vertical profiling of aerosols such as mineral dust or volcanic ash. A disadvantage of optical particle counters that sample through a narrow inlet is that they can become blocked, which can happen in cloud, for example. Hence, a different counter version has been developed, which can have open-path geometry, as the sensing zone is defined optically rather than being delimited by the flow system. This counter has been used for ground based air-quality monitoring around Heathrow airport. The counter has also been adapted for use with radiosondes or dropsondes. The dropsonde version has been successfully tested by launching it from research aircraft together with the so-called KITsonde, developed at the Karlsruhe Institute of

  4. Estimation of high altitude Martian dust parameters

    Science.gov (United States)

    Pabari, Jayesh; Bhalodi, Pinali

    2016-07-01

    Dust devils are known to occur near the Martian surface mostly during the mid of Southern hemisphere summer and they play vital role in deciding background dust opacity in the atmosphere. The second source of high altitude Martian dust could be due to the secondary ejecta caused by impacts on Martian Moons, Phobos and Deimos. Also, the surfaces of the Moons are charged positively due to ultraviolet rays from the Sun and negatively due to space plasma currents. Such surface charging may cause fine grains to be levitated, which can easily escape the Moons. It is expected that the escaping dust form dust rings within the orbits of the Moons and therefore also around the Mars. One more possible source of high altitude Martian dust is interplanetary in nature. Due to continuous supply of the dust from various sources and also due to a kind of feedback mechanism existing between the ring or tori and the sources, the dust rings or tori can sustain over a period of time. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, it is mystery how dust has reached to such high altitudes. Estimation of dust parameters before-hand is necessary to design an instrument for the detection of high altitude Martian dust from a future orbiter. In this work, we have studied the dust supply rate responsible primarily for the formation of dust ring or tori, the life time of dust particles around the Mars, the dust number density as well as the effect of solar radiation pressure and Martian oblateness on dust dynamics. The results presented in this paper may be useful to space scientists for understanding the scenario and designing an orbiter based instrument to measure the dust surrounding the Mars for solving the mystery. The further work is underway.

  5. Circumplanetary dust dynamics : application to Martian dust tori and Enceladus dust plumes

    OpenAIRE

    Makuch, Martin

    2007-01-01

    Our Solar system contains a large amount of dust, containing valuable information about our close cosmic environment. If created in a planet's system, the particles stay predominantly in its vicinity and can form extended dust envelopes, tori or rings around them. A fascinating example of these complexes are Saturnian rings containing a wide range of particles sizes from house-size objects in the main rings up to micron-sized grains constituting the E ring. Other example are ring systems in g...

  6. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  7. Is acetylene essential for carbon dust formation?

    CERN Document Server

    Dhanoa, Harpreet

    2013-01-01

    We have carried out an investigation of the chemical evolution of gas in different carbon-rich circumstellar environments. Previous studies have tended to invoke terrestrial flame chemistries, based on acetylene (C2H2) combustion to model the formation of carbon dust, via Polycyclic Aromatic Hydrocarbons (PAHs). In this work we pay careful attention to the accurate calculation of the molecular photoreaction rate coefficients to ascertain whether there is a universal formation mechanism for carbon dust in strongly irradiated astrophysical environments. A large number of possible chemical channels may exist for the formation of PAHs, so we have concentrated on the viability of the formation of the smallest building block species, C2H2, in a variety of carbon-rich stellar outflows. C2H2 is very sensitive to dissociation by UV radiation. This sensitivity is tested, using models of the time-dependent chemistry. We find that C2H2 formation is sensitive to some of the physical parameters and that in some known sourc...

  8. Elemental tracers for Chinese source dust

    Institute of Scientific and Technical Information of China (English)

    张小曳; 张光宇; 朱光华; 张德二; 安芷生; 陈拓; 黄湘萍

    1996-01-01

    The mass-particle size distributions of 10 dust-carrying elements in aerosol particles were determined tor 12 sites in desert regions of northern China. The desert dust is proved to he of origin of eolian loess deposited on the Loess Plateau. Their transport to the loess was mainly attributable to the non-dust storm processes under the interglacial climate condition. The impact ot" dust storm on the accumulation of the loess increased in the glacial stage. On the basis of the signatures of 4 dust elements (Al. Fe, Mg and Sc). Chinese dust is believed to have 3 major desert sources (northwestern deserts, northern high dust deserts and northern low dust deserts). With a chemical element balance model, an elemental tracer system is established to proportion the export of China-source dust.

  9. Particle Lifting Processes in Dust Devils

    Science.gov (United States)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-10-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  10. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    Science.gov (United States)

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2016-08-24

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.Journal of Exposure Science

  11. Constraint on dust evolution processes in normal galaxies at $z>6$ detected by ALMA

    CERN Document Server

    Wang, W -C; Hou, K -C

    2016-01-01

    Recent ALMA observations of high-redshift normal galaxies have been providing a great opportunity to clarify the general origin of dust in the Universe, not biased to very bright special objects even at $z>6$. To clarify what constraint we can get for the dust enrichment in normal galaxies detected by ALMA, we use a theoretical model that includes major processes driving dust evolution in a galaxy; that is, dust condensation in stellar ejecta, dust growth by the accretion of gas-phase metals, and supernova destruction. Using the dust emission fluxes detected in two normal galaxies at $z>6$ by ALMA as a constraint, we can get the range of the time-scales (or efficiencies) of the above mentioned processes. We find that if we assume extremely high condensation efficiency in stellar ejecta ($f_{\\mathrm{in}} \\ga 0.5$), rapid dust enrichment by stellar sources in the early phase may be enough to explain the observed ALMA flux, unless dust destruction by supernovae in those galaxies is stronger than that in nearby g...

  12. Properties of Newly Formed Dust Grains in The Luminous Type IIn Supernova 2010jl

    CERN Document Server

    Maeda, K; Sahu, D K; Minowa, Y; Motohara, K; Ueno, I; Folatelli, G; Pyo, T -S; Kitagawa, Y; Kawabata, K S; Anupama, G C; Kozasa, T; Moriya, T J; Yamanaka, M; Nomoto, K; Bersten, M; Quimby, R; Iye, M

    2013-01-01

    Supernovae (SNe) have been proposed to be the main production sites of dust grains in the Universe. Our knowledge on their importance to dust production is, however, limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova (SN IIn) 2010jl around one and half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ~1,350 - 1,450K at this epoch. The mass of the dust grains is derived to be ~(7.5 - 8.5) x 10^{-4} Msun. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate on the typical size of the newly formed dust grains...

  13. Quantification of Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals

    CSIR Research Space (South Africa)

    Phillips, H

    2003-08-01

    Full Text Available Advisory Committee Project Summary Project Title: Inherent Respirable Dust Generation Potential (IRDGP) of South African Coals-SIM020604 Author(s): H.R.Phillips and B. K. Belle Agency: University of Witwatersrand Report Date: July2003... Related Projects: Health 607, Sim 02-06-03 Category: Occupational Health Applied Research Occupational Hygiene Summary Project SIM020604 was formulated to determine the Inherent Respirable Dust Generation Potential (IRDGP) of various South...

  14. The global atmospheric loading of dust aerosols

    Science.gov (United States)

    Kok, J. F.; Ridley, D. A.; Haustein, K.; Miller, R. L.; Zhao, C.

    2015-12-01

    Mineral dust is one of the most ubiquitous aerosols in the atmosphere, with important effects on human health and the climate system. But despite its importance, the global atmospheric loading of dust has remained uncertain, with model results spanning about a factor of five. Here we constrain the particle size-resolved atmospheric dust loading and global emission rate, using a novel theoretical framework that uses experimental constraints on the optical properties and size distribution of dust to eliminate climate model errors due to assumed dust properties. We find that most climate models underestimate the global atmospheric loading and emission rate of dust aerosols.

  15. Dust characterization in FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    De Angeli, M., E-mail: deangeli@ifp.cnr.it [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Maddaluno, G. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Laguardia, L. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Ripamonti, D. [Istituto per l’Energetica e le Interfasi – Consiglio Nazionale delle Ricerche, Milan (Italy); Perelli Cippo, E. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy); Apicella, M.L. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Conti, C. [Istituto per la Conservazione e la Valorizzazione dei Beni Culturali – CNR, Milan (Italy); Giacomi, G. [ENEA Unità Tecnica Fusione, C.R. ENEA Frascati, CP65, 00044 Frascati (Italy); Grosso, G. [Istituto di Fisica del Plasma – Consiglio Nazionale delle Ricerche, Milan (Italy)

    2015-08-15

    Dust present in the vessel of FTU has been collected and analysed. Being FTU a device with full metal plasma facing components for the whole life and equipped with a liquid lithium limiter (LLL) make FTU of special interest from a point of view of dust studies. Analyses were conducted by standard dust analysis methods and by dedicated analysis, as X-rays and neutron diffraction, to investigate the presence of lithium compounds due the presence of the LLL in FTU. Dust collected near the LLL presents a different elemental composition, namely Li compounds, compared to the dust collected in the rest of the vessel; in particular LiO{sub 2}, LiOH, and Li{sub 2}CO{sub 3}. On the basis of these results, the formation of Li{sub 2}CO{sub 3} is proposed via a two steps process. Results of fuel retention measured by thermal desorption spectroscopy (TDS) method show that fuel retention should not be an issue for FTU.

  16. Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China.

    Science.gov (United States)

    Zhao, Jinping; Peng, Ping'an; Song, Jianzhong; Ma, Shexia; Sheng, Guoying; Fu, Jiamo

    2010-09-01

    Guangzhou is the central city in the Pearl River Delta (PRD), China, and is one of the most polluted cities in the world. To characterize the ambient falling dust pollution, two typical sampling sites: urban (Wushan) and suburban (University Town) areas in Guangzhou city were chosen for falling dust collection over 1 year at time intervals of 1 or 2 months. The flux of dry deposition was calculated. In addition, mineral composition and morphology of atmospheric falling dust were studied by X-ray diffraction, scanning electron microscopy, and microscopic observation. The results revealed that the dust flux in Guangzhou city was 3.34-3.78 g/(m(2) month) during the study period. The main minerals in the dust were quartz, illite, calcite, kaolinite, gypsum, plagioclase, dolomite, and amorphous matter. The morphological types included grained and flaky individual minerals, chain-like aggregates, spherical flying beads, and irregular aggregates, with the chain-like and spherical aggregates indicators of industrial ash. The major dusts were derived from industrial and construction activities. The gypsum present in the dust collected in winter season was not only derived from cement dust but may also have originated from the reaction of calcic material with sulfuric acids resulting from photooxidation of SO(x) and NO(x), which confirmed serious air pollution due to SO(x) and NO(x) in Guangzhou. The abatement of fossil fuel combustion emissions and construction dust will have a significant beneficial effect on dust reduction.

  17. Universe opacity and EBL

    Science.gov (United States)

    Vavryčuk, Václav

    2017-02-01

    The observed extragalactic background light (EBL) is affected by light attenuation due to absorption of light by galactic and intergalactic dust in the Universe. Even galactic opacity of 10-20 per cent and minute universe intergalactic opacity of 0.01 mag h Gpc-1 at the local Universe have a significant impact on the EBL because obscuration of galaxies and density of intergalactic dust increase with redshift as (1 + z)3. Consequently, intergalactic opacity increases and the Universe becomes considerably opaque at z > 3. Adopting realistic values for galactic and intergalactic opacity, the estimates of the EBL for the expanding dusty universe are close to observations. The luminosity density evolution fits well measurements. The model reproduces a steep increase of the luminosity density at z EBL ranges from 100 to 200 nW m-2 sr-1 and is within the limits of 40 and 200 nW m-2 sr-1 of current EBL observations. The model predicts 98 per cent of the EBL coming from radiation of galaxies at z 3.5.

  18. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  19. Glass Frit Clumping And Dusting

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  20. Planetary Magnetosphere Probed by Charged Dust Particles

    Science.gov (United States)

    Sternovsky, Z.; Horanyi, M.; Gruen, E.; Srama, R.; Auer, S.; Kempf, S.; Krueger, H.

    2010-12-01

    In-situ and remote sensing observations combined with theoretical and numerical modeling greatly advanced our understanding planetary magnetospheres. Dust is an integral component of the Saturnian and Jovian magnetospheres where it can act as a source/sink of plasma particles (dust particles are an effective source for plasma species like O2, OH, etc. through sputtering of ice particles, for example); its distribution is shaped by electrodynamic forces coupled radiation pressure, plasma, and neutral drag, for example. The complex interaction can lead to unusual dust dynamics, including the transport, capture, and ejection of dust grains. The study of the temporal and spatial evolution of fine dust within or outside the magnetosphere thus provides a unique way to combine data from a large number of observations: plasma, plasma wave, dust, and magnetic field measurements. The dust detectors on board the Galileo and Cassini spacecrafts lead to major discoveries, including the jovian dust stream originating from Io or the in-situ sampling and analysis of the plumes of Enceladus. Recent advancement in dust detector technology enables accurate measurement of the dust trajectory and elemental composition that can greatly enhance the understanding of dust magnetorspheric interaction and indentify the source of the dust with high precision. The capabilities of a modern dust detector thus can provide support for the upcoming Europa Jupiter System Mission.

  1. Coal dust: the real cost

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S. [Independent Editorial and Technical Services, Oxford (United Kingdom)

    1998-04-01

    A recent British court case awarded retired coal miners compensation for asthma, chronic bronchitis and emphysema. Although the sums involved were small, large numbers of retired coal miners are likely to be eligible for such awards, as British safety in mines was not substantially worse than most other producers at the time, and was better than many. In some parts of the world safety standards are still poor. Dust suppression should be used on coal cutting machines, and dust controlled in transit. This may prove less expensive than it initially appears since the coal dust can be used instead of lost. This particularly important for transport in open trucks. Employers must also ensure that the safety equipment supplied is both comfortable and used. 3 refs., 5 photos.

  2. Dust remobilization in fusion plasmas

    CERN Document Server

    Tolias, P; De Angeli, M; De Temmerman, G; Ripamonti, D; Riva, G; Bykov, I; Shalpegin, A; Vignitchouk, L; Brochard, F; Bystrov, K; Bardin, S; Litnovsky, A

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic remobilization conditions - detachment, sliding, rolling - are formulated. A novel experimental technique is proposed, based on controlled adhesion of dust grains on tungsten samples combined with detailed mapping of the dust deposition profile prior and post plasma exposure. Proof-of-principle experiments in the TEXTOR tokamak and the EXTRAP-T2R reversed-field pinch are presented. The versatile environment of the linear device Pilot-PSI allowed for experiments with different magnetic field topologies and varying plasma conditions that were complemented with camera observations.

  3. Polarized Emission from Interstellar Dust

    CERN Document Server

    Vaillancourt, J E

    2006-01-01

    Observations of far-infrared (FIR) and submillimeter (SMM) polarized emission are used to study magnetic fields and dust grains in dense regions of the interstellar medium (ISM). These observations place constraints on models of molecular clouds, star-formation, grain alignment mechanisms, and grain size, shape, and composition. The FIR/SMM polarization is strongly dependent on wavelength. We have attributed this wavelength dependence to sampling different grain populations at different temperatures. To date, most observations of polarized emission have been in the densest regions of the ISM. Extending these observations to regions of the diffuse ISM, and to microwave frequencies, will provide additional tests of grain and alignment models. An understanding of polarized microwave emission from dust is key to an accurate measurement of the polarization of the cosmic microwave background. The microwave polarization spectrum will put limits on the contributions to polarized emission from spinning dust and vibrat...

  4. Microwave Emission from Aligned Dust

    CERN Document Server

    Lazarian, A

    2003-01-01

    Polarized microwave emission from dust is an important foreground that may contaminate polarized CMB studies unless carefully accounted for. We discuss potential difficulties associated with this foreground, namely, the existence of different grain populations with very different emission/polarization properties and variations of the polarization yield with grain temperature. In particular, we discuss observational evidence in favor of rotational emission from tiny PAH particles with dipole moments, i.e. ``spinning dust'', and also consider magneto-dipole emission from strongly magnetized grains. We argue that in terms of polarization, the magneto-dipole emission may dominate even if its contribution to total emissivity is subdominant. Addressing polarized emission at frequencies larger than approsimately 100 GHz, we discuss the complications arising from the existence of dust components with different temperatures and possibly different alignment properties.

  5. Whirling-type dust catcher

    Energy Technology Data Exchange (ETDEWEB)

    Rachev, V.G.; Butylkin, Yu.P.; Denisov, V.I.; Ermin, Yu.S.

    1980-10-07

    A whirling-type dust catcher is proposed, containing a cylindrical body mounted in its upper part, a diaphragm, a tangential nozzle (venturi) for delivery of the secondary gas, located in the lower part of the bunker body and an axial pipe with a vortex generator for introduction of the gas to be cleaned and a coaxial pipe connecting the bunker with the evacuation zone of the vortex generator. For increasing the degree of dust collection by elimination of gas fedthrough from the bunker into the axial zone of the dust catcher, it is equipped with an additional vortex generator set up in the outlet of the coaxial pipe, which is made in the shape of an inverse cone.

  6. Dust around Type Ia supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  7. [Effect of lunar dust on humans: -lunar dust: regolith-].

    Science.gov (United States)

    Morimoto, Yasuo; Miki, Takeo; Higashi, Toshiaki; Horie, Seichi; Tanaka, Kazunari; Mukai, Chiaki

    2010-09-01

    We reviewed the effect of lunar dust (regolith) on humans by the combination of the hazard/exposure of regolith and microgravity of the moon. With regard to the physicochemical properties of lunar dust, the hazard-related factors are its components, fibrous materials and nanoparticles. Animal exposure studies have been performed using a simulant of lunar dust, and it was speculated that the harmful effects of the simulant lies between those of crystalline silica and titanium dioxide. Fibrous materials may not have a low solubility judging from their components. The nanoparticles in lunar dust may have harmful potentials from the view of the components. As for exposure to regolith, there is a possibility that particles larger than ones in earth (1 gravity) are respirable. In microgravity, 1) the deposition of particles of less than 1 µm in diameter in the human lung did not decrease, 2) the functions of macrophages including phagocytosis were suppressed, 3) pulmonary inflammation was changed. These data on hazard/exposure and microgravity suggest that fine and ultrafine particles in regolith may have potential hazards and risks for humans.

  8. Durable Dust Repellent Coating for Metals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Durable Dust Repellent Coating (DDRC) consists of nano-phase silica, titania, or other oxide coatings to repel dust in a vacuum environment over a wide range of...

  9. Dust transport into Martian polar latitudes

    Science.gov (United States)

    Murphy, J. R.; Pollack, J. B.

    1992-01-01

    The presence of suspended dust in the Martian atmosphere, and its return to the planet's surface, is implicated in the formation of the polar layered terrain and the dichotomy in perennial CO2 polar cap retention in the two hemispheres. A three dimensional model was used to study Martian global dust storms. The model accounts for the interactive feedbacks between the atmospheric thermal and dynamical states and an evolving radiatively active suspended dust load. Results from dust storm experiments, as well as from simulations in which there is interest in identifying the conditions under which surface dust lifting occurs at various locations and times, indicate that dust transport due to atmospheric eddy motions is likely to be important in the arrival of suspended dust at polar latitudes. The layered terrain in both polar regions of Mars is interpreted as the reality of cyclical episodes of volatile (CO2, H2O) and dust deposition.

  10. Dust Mitigation for the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The lunar surface is to a large extent covered with a dust layer several meters thick. Known as lunar regolith, it poses a hazard in the form of dust clouds being...

  11. Efficient radiative transfer in dust grain mixtures

    CERN Document Server

    Wolf, S

    2003-01-01

    The influence of a dust grain mixture consisting of spherical dust grains with different radii and/or chemical composition on the resulting temperature structure and spectral energy distribution of a circumstellar shell is investigated. The comparison with the results based on an approximation of dust grain parameters representing the mean optical properties of the corresponding dust grain mixture reveal that (1) the temperature dispersion of a real dust grain mixture decreases substantially with increasing optical depth, converging towards the temperature distribution resulting from the approximation of mean dust grain parameters, and (2) the resulting spectral energy distributions do not differ by more than 10% if >= 2^5 grain sizes are considered which justifies the mean parameter approximation and the many results obtained under its assumption so far. Nevertheless, the dust grain temperature dispersion at the inner boundary of a dust shell may amount to >>100K and has therefore to be considered in the cor...

  12. Probing Supernova Ejecta Dust with Stellar Lightbulbs: MID-IR Imaging of G54.1+0.3

    Science.gov (United States)

    Borkowski, Kazimierz

    2015-10-01

    Stellar explosions govern the interstellar dust lifecycle. In the early Universe, supernovae (SN) injected the first heavy elements into the interstellar medium (ISM). A significant fraction of ejecta was dust, but most of it might have been destroyed in supernova remnant's (SNR) reverse shocks. Our current understanding of both formation of dust in SNe and destruction of dust in shock waves is poor. We propose to observe young SNR G54.1+0.3 with the SOFIA telescope in order to advance our knowledge of dust formation in SNe. Progenitor of SN that produced G54.1+0.3 exploded in a stellar cluster containing a number of hot O and B stars. These stars heat ejecta dust to high temperatures, providing us with a unique opportunity to study its properties prior to arrival of a reverse shock and to shed light on formation of dust in SNe. Ejecta dust heated by the stellar ultraviolet radiation in the vicinity of hot stars emits most efficiently in the infrared spectral window accessible only to SOFIA. The proposed observations will provide spectral and spatial information crucial for understanding of ejecta dust properties such as its temperature, composition, and spatial distribution. We propose to do multi-band imaging observations with FORCAST in four filters to learn about spectral and spatial distribution of ejecta dust in the vicinity of hot stars. The high spatial resolution of SOFIA is crucial to our investigation, and only SOFIA can observe this dust at wavelengths where it emits radiation most efficiently. High-spatial resolution FORCAST images obtained in this investigation will be interpreted in the framework of radiatively-heated ejecta dust. When combined with Spitzer IRAC and MIPS images, and Herschel PACS images, we expect a dramatic advance in understanding of properties of ejecta dust that has not yet been processed by SNR shocks.

  13. 75 FR 64411 - Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors

    Science.gov (United States)

    2010-10-19

    ... the CMDPSU or CPDM and the sampled work shift is less than 8 hours, the value of t used for... Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors; Proposed Rule #0;#0;Federal Register... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors AGENCY: Mine Safety and...

  14. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  15. History and Applications of Dust Devil Studies

    Science.gov (United States)

    Lorenz, Ralph D.; Balme, Matthew R.; Gu, Zhaolin; Kahanpää, Henrik; Klose, Martina; Kurgansky, Michael V.; Patel, Manish R.; Reiss, Dennis; Rossi, Angelo Pio; Spiga, Aymeric; Takemi, Tetsuya; Wei, Wei

    2016-11-01

    Studies of dust devils, and their impact on society, are reviewed. Dust devils have been noted since antiquity, and have been documented in many countries, as well as on the planet Mars. As time-variable vortex entities, they have become a cultural motif. Three major stimuli of dust devil research are identified, nuclear testing, terrestrial climate studies, and perhaps most significantly, Mars research. Dust devils present an occasional safety hazard to light structures and have caused several deaths.

  16. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  17. Effects of dust absorption on spectroscopic studies of turbulence

    Science.gov (United States)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2017-09-01

    We study the effect of dust absorption on the recovery velocity and density spectra as well as on the anisotropies of magnetohydrodynamic turbulence using the velocity channel analysis (VCA), velocity coordinate spectrum (VCS) and velocity centroids. The dust limits volume up to an optical depth of unity. We show that in the case of the emissivity proportional to the density of emitters, the effects of random density get suppressed for strong dust absorption intensity variations arise from the velocity fluctuations only. However, for the emissivity proportional to squared density, both density and velocity fluctuations affect the observed intensities. We predict a new asymptotic regime for the spectrum of fluctuations for large scales exceeding the physical depths to unit optical depth. The spectrum gets shallower by unity in this regime. In addition, the dust absorption removes the degeneracy resulted in the universal K-3 spectrum of intensity fluctuations of self-absorbing medium reported by Lazarian & Pogosyan. We show that the predicted result is consistent with the available H ii region emission data. We find that for sub-Alfvénic and trans-Alfvénic turbulence one can get the information about both the magnetic field direction and the fundamental Alfvén, fast and slow modes that constitute MHD turbulence.

  18. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis

    Science.gov (United States)

    De Looze, I.; Barlow, M. J.; Swinyard, B. M.; Rho, J.; Gomez, H. L.; Matsuura, M.; Wesson, R.

    2017-03-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1.0 M⊙), potentially accounting for most of the dust production in the early Universe. Observational evidence for this dust production efficiency is however currently limited to only a few CCSN remnants (e.g. SN 1987A, Crab nebula). In this paper, we revisit the dust mass produced in Cassiopeia A (Cas A), a ∼330-yr old O-rich Galactic supernova remnant (SNR) embedded in a dense interstellar foreground and background. We present the first spatially resolved analysis of Cas A based on Spitzer and Herschel infrared and submillimetre data at a common resolution of ∼0.6 arcmin for this 5 arcmin diameter remnant following a careful removal of contaminating line emission and synchrotron radiation. We fit the dust continuum from 17 to 500 μm with a four-component interstellar medium and supernova (SN) dust model. We find a concentration of cold dust in the unshocked ejecta of Cas A and derive a mass of 0.3-0.5 M⊙ of silicate grains freshly produced in the SNR, with a lower limit of ≥0.1-0.2 M⊙. For a mixture of 50 per cent of silicate-type grains and 50 per cent of carbonaceous grains, we derive a total SN dust mass between 0.4 and 0.6 M⊙. These dust mass estimates are higher than from most previous studies of Cas A and support the scenario of SN-dominated dust production at high redshifts. We furthermore derive an interstellar extinction map for the field around Cas A which towards Cas A gives average values of AV = 6-8 mag, up to a maximum of AV = 15 mag.

  19. PROPERTIES OF NEWLY FORMED DUST GRAINS IN THE LUMINOUS TYPE IIn SUPERNOVA 2010jl

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, K.; Nozawa, T.; Folatelli, G.; Moriya, T. J.; Nomoto, K.; Bersten, M.; Quimby, R. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Sahu, D. K.; Anupama, G. C. [Indian Institute of Astrophysics, Koramangala, Bangalore 560 034 (India); Minowa, Y.; Pyo, T.-S. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Motohara, K.; Kitagawa, Y. [Institute of Astronomy, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ueno, I.; Kawabata, K. S.; Yamanaka, M. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kozasa, T. [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Iye, M., E-mail: keiichi.maeda@ipmu.jp [National Astronomical Observatory, Mitaka, Tokyo (Japan)

    2013-10-10

    Supernovae (SNe) have been proposed to be the main production sites of dust grains in the universe. However, our knowledge of their importance to dust production is limited by observationally poor constraints on the nature and amount of dust particles produced by individual SNe. In this paper, we present a spectrum covering optical through near-Infrared (NIR) light of the luminous Type IIn supernova 2010jl around one and a half years after the explosion. This unique data set reveals multiple signatures of newly formed dust particles. The NIR portion of the spectrum provides a rare example where thermal emission from newly formed hot dust grains is clearly detected. We determine the main population of the dust species to be carbon grains at a temperature of ∼1350-1450 K at this epoch. The mass of the dust grains is derived to be ∼(7.5-8.5) × 10{sup –4} M{sub ☉}. Hydrogen emission lines show wavelength-dependent absorption, which provides a good estimate of the typical size of the newly formed dust grains (∼< 0.1 μm, and most likely ∼< 0.01 μm). We believe the dust grains were formed in a dense cooling shell as a result of a strong SN-circumstellar media (CSM) interaction. The dust grains occupy ∼10% of the emitting volume, suggesting an inhomogeneous, clumpy structure. The average CSM density must be ∼> 3 × 10{sup 7} cm{sup –3}, corresponding to a mass loss rate of ∼> 0.02 M{sub ☉} yr{sup –1} (for a mass loss wind velocity of ∼100 km s{sup –1}). This strongly supports a scenario in which SN 2010jl and probably other luminous SNe IIn are powered by strong interactions within very dense CSM, perhaps created by Luminous-Blue-Variable-like eruptions within the last century before the explosion.

  20. Organophosphorus flame retardants and phthalate esters in indoor dust from different microenvironments: Bioaccessibility and risk assessment.

    Science.gov (United States)

    He, Ruiwen; Li, Yunzi; Xiang, Ping; Li, Chao; Zhou, Chunyang; Zhang, Shujun; Cui, Xinyi; Ma, Lena Q

    2016-05-01

    Incidental ingestion of indoor dust is an important pathway for human exposure to organophosphorus flame retardants (OPFRs) and phthalate esters (PAEs). However, little is known about their bioaccessibility in indoor dust. In this study, indoor dust samples were collected from houses, offices, public microenvironments (PMEs), and university dorms, and physiologically based extraction test (PBET) was used to measure the bioaccessibility of OPFRs and PAEs in these dust samples. Total concentrations of OPFRs in dust samples ranged from 0.01 to 63.2 μg g(-1), with significantly lower concentrations in dorm dust (median = 0.30 μg g(-1)) than those in houses (3.12), offices (5.94), and PMEs (11.6). Total PAEs ranged from 5.49 to 2161 μg g(-1) with significantly lower concentrations in dorm dust (379 μg g(-1)) than those in the other three types of dust (767, 515, and 731 μg g(-1)). When subject to PBET, the bioaccessibility of OPFRs ranged from 8.18% (triphenyl phosphate) to 54.5% (Tris(2-chloroisopropyl) phosphate) for OPFRs, and from 1.21% (di-2-ethylhexyl phthalate, DEHP) to 81.1% (dimethyl phthalate) for PAEs. Estimated exposure doses for adults and infants to OPFRs via dust ingestion were much lower than the reference doses (RfD), but intake dose of DEHP for infants was higher than the RfD of 20 μg kg(-1) d(-1). However, the DEHP intake dose did not exceed the RfD after incorporating bioaccessibility into risk assessment. Our data indicated the importance of considering contaminant bioaccessibility during risk assessment of indoor dust.

  1. Linear and nonlinear excitations in complex plasmas with nonadiabatic dust charge fluctuation and dust size distribution

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Ping; Xue Ju-Kui; Li Yan-Long

    2011-01-01

    Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles.A linear dispersion relation and a Korteweg-de VriesBurgers equation governing the dust acoustic shock waves are obtained.The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically.The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.

  2. Origin of Harmattan dust settled in Northern Ghana – Long transported or local dust?

    DEFF Research Database (Denmark)

    Lyngsie, Gry; Awadzi, Theodore W; Breuning-Madsen, Henrik

    2011-01-01

    compositions of the bulk dust samples. Traces of minerals in the clay fraction of the Harmattan period dust may have their origin in the Bodélé Depression or other saline environments. The Harmattan dust deposited in Ghana shows only little resemblance to dust from the Chad basin and with Harmattan dust...... deposited in Niger. This study therefore suggests that the dust deposited during the Harmattan period in northern Ghana is not under significant influence of sediments from the Bodélé Depression. Similarity in the mineral and elemental composition of the dust from both the Harmattan and Monsoon periods...

  3. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the particles

  4. House dust extracts contain potent immunological adjuvants

    NARCIS (Netherlands)

    Beukelman, C.J.; Dijk, H. van; Aerts, P.C.; Rademaker, P.M.; Berrens, L.; Willers, J.M.N.

    1987-01-01

    A crude aqueous extract of house dust and two house dust subfractions were tested for adjuvant activity in a sensitivity assay performed in mice. Evidence is presented that house dust contains at least two potent immunological adjuvants. One of these, present in both subfractions, was probably endot

  5. Molecules and dust in Cassiopeia A

    DEFF Research Database (Denmark)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate fur...

  6. Modeling of dust deposition in central Asia

    Science.gov (United States)

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  7. Dust tori in radio galaxies

    NARCIS (Netherlands)

    van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.

    2010-01-01

    Aims: We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods: Using VISIR on the VLT, we acquired sub-arcsecond (~0.40 arcsec) resolution N-band images, at a wavelength of 11.85 μm, of the nuclei of a sample of 27 radio gala

  8. House Dust Mite Respiratory Allergy

    DEFF Research Database (Denmark)

    Calderón, Moisés A; Kleine-Tebbe, Jörg; Linneberg, Allan

    2015-01-01

    Although house dust mite (HDM) allergy is a major cause of respiratory allergic disease, specific diagnosis and effective treatment both present unresolved challenges. Guidelines for the treatment of allergic rhinitis and asthma are well supported in the literature, but specific evidence on the e...

  9. Dust in the interplanetary medium

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Ingrid; Lamy, Herve [Belgian Institute for Space Aeronomy, Brussels (Belgium); Czechowski, Andrzej [Space Research Center, Polish Academy of Sciences, Warsaw (Poland); Meyer-Vernet, Nicole; Zaslavsky, Arnaud, E-mail: ingrid.mann@aeronomie.b [LESIA, Observatoire de Paris, Meudon (France)

    2010-12-15

    The mass density of dust particles that form from asteroids and comets in the interplanetary medium of the solar system is, near 1 AU, comparable to the mass density of the solar wind. It is mainly contained in particles of micrometer size and larger. Dust and larger objects are destroyed by collisions and sublimation and hence feed heavy ions into the solar wind and the solar corona. Small dust particles are present in large number and as a result of their large charge to mass ratio deflected by electromagnetic forces in the solar wind. For nanodust particles of sizes {approx_equal}1-10 nm, recent calculations show trapping near the Sun and outside from about 0.15 AU ejection with velocities close to solar wind velocity. The fluxes of ejected nanodust are detected near 1 AU with the plasma wave instrument onboard the STEREO spacecraft. Although such electric signals have been observed during dust impacts before, the interpretation depends on several different parameters and data analysis is still in progress.

  10. Linear Alkylbenzenesulfonates in indoor Floor Dust

    DEFF Research Database (Denmark)

    Wolkoff, Peder; Madsen, Jørgen Øgaard

    1999-01-01

    The amount of Linear Alkylbenzenesulfonates (LAS) in the particle fraction of floor dust sampled from 7 selected public buildings varied between 34 and 1500 microgram per gram dust, while the contents of the fibre fractions generally were higher with up to 3500 microgram LAS/g dust. The use...... of a cleaning agent with LAS resulted in an increase of the amount of LAS in the floor dust after floor wash relative to just before floor wash. However, the most important source of LAS in the indoor floor dust appears to be residues of detergent in clothing. Thus, a newly washed shirt contained 2960 microgram...

  11. Modeling Thermal Dust Emission and Implications

    Science.gov (United States)

    Liang, Zhuohan

    2014-01-01

    An accurate model of thermal dust emission at the far-infrared and millimeter wavelengths is important for studying the cosmic microwave background anisotropies and for understanding the cycling of matter and energy between stars and the interstellar medium. I will present results of fitting all-sky one-component dust models with fixed or variable emissivity spectral index to the 210-channel dust spectra from the COBE-FIRAS, the 100 - 240 μm maps from the COBE-DIRBE, and the 94 GHz dust map from the WMAP. I will also discuss the implications of the analysis on understanding astrophysical processes and the physical properties of dust grains.

  12. Reducing Coal Dust With Water Jets

    Science.gov (United States)

    Gangal, M. D.; Lewis, E. V.

    1985-01-01

    Jets also cool and clean cutting equipment. Modular pick-and-bucket miner suffers from disadvantage: Creates large quantities of potentially explosive coal dust. Dust clogs drive chain and other parts and must be removed by hand. Picks and bucket lips become overheated by friction and be resharpened or replaced frequently. Addition of oscillating and rotating water jets to pick-and-bucket machine keeps down dust, cools cutting edges, and flushes machine. Rotating jets wash dust away from drive chain. Oscillating jets cool cutting surfaces. Both types of jet wet airborne coal dust; it precipitates.

  13. Numerical Prediction of Dust. Chapter 10

    Science.gov (United States)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; Jones, L; Lu, S.; Menut, L.; Mulcahy, J.; Nickovic, S.; Morcrette, J.-J.; Perez, C.; Reid, J. S.; Sekiyama, T. T.; Tanaka, T.; Terradellas, E.; Westphal, D. L.; Zhang, X.-Y.; Zhou, C.-H.

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  14. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Science.gov (United States)

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable microorganisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable microorganisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  15. INVESTIGATION OF SAHARAN DUST TRANSPORT ON THE BASIS OF AEROLOGICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    R. TÓTH

    2016-03-01

    Full Text Available The Sahara Desert is the largest dust source on Earth. Its dust is frequently emitted into the Mediterranean atmosphere and transported by the winds sometimes as far north as Central Europe. The accumulated particles contribute to soil forming processes, while the atmospheric mineral dust has an impact on the radiation budget, cloud forming processes, the pH of precipitation and biogeochemical cycles of marine ecosystems. The PM (particulate matter in ambient air does not contain only primary particles but secondary particles formed in the atmosphere from precursor gases as well. Especially these latter ones have significant negative impacts to human health. There are in average four-five Saharan dust episodes annually in Hungary, sometimes in form of colour precipitation (brown rainfall, red snow. There are several possibilities for providing evidence for the Saharan origin of the dust observed in our country: back-trajectories using NOAA HYSPLIT model, TOMS satellite maps of NASA, maps of aerosol index of Ozone Monitoring Instrument, observations of spectral aerosol optical depth of Aerosol Robotic Network, satellite maps of EUMETSAT, elemental analysis of dust samples. In this study we try to reveal the suitability of the upper-air wind fields in detection of Saharan dust episodes in Central Europe. We deployed the global upper-air data base of the last 41 years that is available by courtesy of College of Engineering and Applied Sciences at University of Wyoming. We apply this method also for tracking air pollution of vegetation fires.

  16. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  17. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis

    CERN Document Server

    De Looze, I; Swinyard, B M; Rho, J; Gomez, H L; Matsuura, M; Wesson, R

    2016-01-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1.0 Msun), potentially accounting for most of the dust production in the early Universe. Observational evidence for this dust production efficiency is however currently limited to only a few CCSN remnants (e.g., SN1987A, Crab Nebula). In this paper, we revisit the dust mass produced in Cassiopeia A (Cas A), a ~330-year old O-rich Galactic supernova remnant (SNR) embedded in a dense interstellar foreground and background. We present the first spatially resolved analysis of Cas A based on Spitzer and Herschel infrared and submillimetre data at a common resolution of ~0.6 arcmin for this 5 arcmin diameter remnant following a careful removal of contaminating line emission and synchrotron radiation. We fit the dust continuum from 17 to 500 micron with a four-component interstellar medium (ISM) and supernova (SN) dust model. We find a concentration of cold dust in the unshocked ejecta of Cas A and derive a mass of ...

  18. No evidence for dust extinction in GRB 050904 at z ~ 6.3

    CERN Document Server

    Zafar, Tayyaba; Malesani, Daniele; Vreeswijk, Paul M; Fynbo, Johan P U; Hjorth, Jens; Levan, Andrew J; Michałowski, Michał J

    2010-01-01

    Context: GRB afterglows are excellent probes of gas and dust in star-forming galaxies at all epochs. It has been posited that dust in the early Universe must be different from dust at lower z. To date two reports directly support this contention, one of which is based on the spectral shape of GRB 050904 at z = 6.295. Aims: We reinvestigate the afterglow to understand dust at high z. We address the claimed evidence for unusual (SN-origin) dust in its host galaxy by simultaneously examining the X-ray and optical/NIR spectrophotometric data. Methods: We derive the intrinsic SED of the afterglow at 0.47, 1.25 and 3.4 days, by re-reducing the Swift X-ray data, the 1.25 days FORS2 z-Gunn photometric data, the spectroscopic and z'-band photometric data at ~3 days from the Subaru telescope, as well as the critical UKIRT Z-band photometry at 0.47 days, upon which the claim of dust detection largely relies. Results: We find no evidence of dust extinction in the SED. We compute flux densities at lambda_rest = 1250 AA di...

  19. The interplay between chemistry and nucleation in the formation of carbonaceous dust in supernova ejecta

    CERN Document Server

    Lazzati, Davide

    2015-01-01

    Core-collapse supernovae are considered to be important contributors to the primitive dust enrichment of the interstellar medium in the high-redshift universe. Theoretical models of dust formation in stellar explosions have so far provided controversial results and a generally poor fit to the observations of dust formation in local supernovae. We present a new methodology for the calculation of carbonaceous dust formation in young supernova remnants. Our new technique uses both the nucleation theory and a chemical reaction network to allow us to compute the dust growth beyond the molecular level as well as to consider chemical erosion of the forming grains. We find that carbonaceous dust forms efficiently in the core of the ejecta, but takes several years to condensate, longer than previously estimated. It forms unevenly and remains concentrated in the inner part of the remnant. These results support the role of core-collapse supernovae as dust factories and provide new insight on the observations of SN 1987A...

  20. Formation and Evolution of the Dust in Galaxies. III. The Disk of the Milky Way

    CERN Document Server

    Piovan, L; Merlin, E; Grassi, T; Tantalo, R; Buonomo, U; Cassarà, L P

    2011-01-01

    Models of chemical evolution of galaxies including the dust are nowadays required to decipher the high-z universe. In a series of three papers we have tackled the problem and set a modern chemical evolution model. In the first paper (Piovan et al., 2011a) we revised the condensation coefficients for the elements that typically are present in the dust. In the second paper (Piovan et al., 2011b) we have implemented the dust into the Padova chemical model and tested it against the observational data for the Solar Neighbourhood. In this paper we extend it to the whole Disk of the Milky Way (MW). The Disk is used as a laboratory to analyze the spatial and temporal behaviour of (i) several dust grain families with the aid of which we can describe the ISM, (ii) the abundances in the gas, dust, and total ISM of the elements present in the dust and (iii) the depletion of the same elements. The temporal evolution of the dust and gas across the Disk is calculated under the effect of radial flows and a central Bar. The g...

  1. Star formation at high redshift and the importance of dust obscuration

    DEFF Research Database (Denmark)

    Michalowski, Michal

    One of the aspects of the understanding of the Universe evolution is its star formation history. In order to gain a complete picture of the Universe evolution it is important to know when the stars we see today were formed. One of the method to study this problem is to use far-infrared and radio...... emission of galaxies. In this way it is possible to investigate the sites of star formation that are totally obscured by dust and therefore invisible at the optical wavelengths. It is because the energy absorbed by dust in the optical is re-emitted in the infrared, whereas radio emission is unaffected...

  2. Cascading dust inflation in Born-Infeld gravity

    CERN Document Server

    Jimenez, Jose Beltran; Olmo, Gonzalo J; Ringeval, Christophe

    2015-01-01

    In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating dust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefully exits when the GR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the Born-Infeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does n...

  3. Dust May Be More Rare Than Expected in Metal Poor Galaxies

    CERN Document Server

    Fisher, David B; Herrera-Camus, Rodrigo; Draine, Bruce T; Donaldson, Jessica; Walter, Fabian; Sandstrom, Karin M; Leroy, Adam K; Cannon, John; Gordon, Karl

    2013-01-01

    'Normal' galaxies observed at z>6, when the Universe was <1 billion years old, thus far show no evidence of the cold dust that accompanies star formation in the local Universe, where the dust-to-gas mass ratio is 1%. A prototypical example is 'Himiko' (z=6.6), which a mere 840 Myr after the Big Bang is forming stars at a rate of 30-100 Msun/yr, yielding a mass assembly time M^{star}/SFR 150x10^6 yr. Himiko is estimated to have a low fraction (2-3% of the Solar value) of elements heavier than helium (metallicity), and although its gas mass cannot be asserted at this time its dust-to-stellar mass ratio is constrained to be <0.05%. The local galaxy I Zw 18, with a metallicity 4% solar and forming stars less rapidly than Himiko but still vigorously for its mass (M^{star}/SFR 1.6x10^9 yr), is also very dust deficient and perhaps one of the best analogues of primitive galaxies accessible to detailed study. Here we report observations of dust emission from I Zw 18 from which we determine its dust mass to be 45...

  4. Airborne Dust in Space Vehicles and Habitats

    Science.gov (United States)

    James, John

    2006-01-01

    Airborne dust, suspended inside a space vehicle or in future celestial habitats, can present a serious threat to crew health if it is not controlled. During the Apollo missions to the moon, lunar dust brought inside the capsule caused eye irritation and breathing difficulty to the crew when they launched from the moon and re-acquired "microgravity." During Shuttle flights reactive and toxic dusts such as lithium hydroxide have created a risk to crew health, and fine particles from combustion events can be especially worrisome. Under nominal spaceflight conditions, airborne dusts and particles tend to be larger than on earth because of the absence of gravity settling. Aboard the ISS, dusts are effectively managed by HEPA filters, although floating dust in newly-arrived modules can be a nuisance. Future missions to the moon and to Mars will present additional challenges because of the possibility that external dust will enter the breathing atmosphere of the habitat and reach the crew's respiratory system. Testing with simulated lunar and Martian dust has shown that these materials are toxic when placed into the lungs of test animals. Defining and evaluating the physical and chemical properties of Martian dusts through robotic missions will challenge our ability to prepare better dust simulants and to determine the risk to crew health from exposure to such dusts.

  5. Ice nucleation properties of agricultural soil dusts

    Science.gov (United States)

    Steinke, Isabelle; Funk, Roger; Busse, Jacqueline; Iturri, Antonela; Kirchen, Silke; Leue, Martin; Möhler, Ottmar; Schwartz, Thomas; Sierau, Berko; Toprak, Emre; Ulrich, Andreas; Hoose, Corinna; Leisner, Thomas

    2015-04-01

    Soil dust particles emitted from agricultural areas contain large amounts of organic material such as fungi, bacteria and plant debris. Being carrier for potentially highly ice-active biological particles, agricultural soil dusts are candidates for being very ice-active as well. In this work, we present ice nucleation experiments conducted in the AIDA cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. Results are presented for the immersion freezing and the deposition nucleation mode: all soil dusts show higher ice nucleation efficiencies than desert dusts, especially at temperatures above 254 K. For one soil dust sample, the effect of heat treatments was investigated. Heat treatments did not affect the ice nucleation efficiency which presumably excludes primary biological particles as the only source of the increased ice nucleation efficiency. Therefore, organo-mineral complexes or organic compounds may contribute substantially to the high ice nucleation activity of agricultural soil dusts.

  6. Dust Measurements in the Outer Solar System

    CERN Document Server

    Grün, E; Landgraf, M; Grün, Eberhard; Krüger, Harald; Landgraf, Markus

    1999-01-01

    Dust measurements in the outer solar system are reviewed. Only the plasma wave instrument on board Voyagers 1 and 2 recorded impacts in the Edgeworth-Kuiper belt (EKB). Pioneers 10 and 11 measured a constant dust flux of 10-micron-sized particles out to 20 AU. Dust detectors on board Ulysses and Galileo uniquely identified micron-sized interstellar grains passing through the planetary system. Impacts of interstellar dust grains onto big EKB objects generate at least about a ton per second of micron-sized secondaries that are dispersed by Poynting-Robertson effect and Lorentz force. We conclude that impacts of interstellar particles are also responsible for the loss of dust grains at the inner edge of the EKB. While new dust measurements in the EKB are in an early planning stage, several missions (Cassini and STARDUST) are en route to analyze interstellar dust in much more detail.

  7. A lunar dust simulant: CLDS-i

    Science.gov (United States)

    Tang, Hong; Li, Xiongyao; Zhang, Sensen; Wang, Shijie; Liu, Jianzhong; Li, Shijie; Li, Yang; Wu, Yanxue

    2017-02-01

    Lunar dust can make serious damage to the spacecrafts, space suits, and health of astronauts, which is one of the most important problems faced in lunar exploration. In the case of rare lunar dust sample, CLDS-i with high similarity to the real lunar dust is an important objective for studying dust protection and dust toxicity. The CLDS-i developed by the Institute of Geochemistry Chinese Academy Sciences contains ∼75 vol% glass and a little nanophase metal iron (np-Fe0), and with a median particle size about 500 nm. The CLDS-i particles also have complicated shape and sharp edges. These properties are similar to those of lunar dust, and make the CLDS-i can be applied to many fields such as the scientific researches, the treatment technology and toxicological study of lunar dust.

  8. A Wealth of Dust Grains in Quasar Winds

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from. The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above. The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer. Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  9. Spinning Dust Emission: Effects of irregular grain shape, transient heating and comparison with WMAP results

    CERN Document Server

    Hoang, Thiem; Draine, B T

    2011-01-01

    Planck is expected to answer crucial questions on the early Universe, but it also provides further understanding on anomalous microwave emission. Electric dipole emission from spinning dust grains continues to be the favored interpretation of anomalous microwave emission. In this paper, we present a method to calculate the rotational emission from small grains of irregular shape with moments of inertia $I_{1}\\ge I_{2}\\ge I_{3}$. We show that a torque-free rotating irregular grain with a given angular momentum radiates at multiple frequency modes. The resulting spinning dust spectrum has peak frequency and emissivity increasing with the degree of grain shape irregularity, which is defined by $I_{1}:I_{2}:I_{3}$. We discuss how the orientation of dipole moment $\\bmu$ in body coordinates affects the spinning dust spectrum for different regimes of internal thermal fluctuations. We show that the spinning dust emissivity for the case of strong thermal fluctuations is less sensitive to the orientation of $\\bmu$ than...

  10. Regional characteristics of dust events in China

    Institute of Scientific and Technical Information of China (English)

    WANGShigong; WANGJinyan; ZHOUZijiang; SHANGKezheng; YANGDebao; ZHAO

    2003-01-01

    The regional characteristics of dust events in China has been mainly studied by using the data of dust storm,wind-blown sand and floating dust from 338 observation stations through China from 1954 to 2000.The results of this study are as follows:(1)In China,there are two high frequent areas of dust events,one is located in the area of Minfeng and Hotan in the South xinjiang Basin,the other is situated in the area of Minqin and Jilantai in the Hexi Region.Furthermore,the spatial distributions of the various types of dust events are different.The dust storms mainly occur in the arid and semiarid areas covering the deserts and the areas undergoing desertification in northern China.Wind-blown sand and floating-dust not only occur in the areas where dust storms occur,but also extend to the neighboring areas.The range of wind-blown sand extends northeastward and southeastward,but floating-dust mainly extends southeastward to the low-latitude region such as the East China Plain and the area of the middloe and lower reaches of the Yangtze River.Compared with wind-blown sand,the floating-dust seldom occurs in the high latitude areas such as North xinjiang and Northeast China.(2)The affected areas of dust storms can be divided into seven sub-regions,that is,North Xinjiang Region,South Xinjiang Region,Hexi Region,Qaidam Basin Region,Hetao Region.Northeastem China Region and Qinghai-Xizang (Tibet) Region.The area of the most frequent occurrence of dust storms and floating-dust is in South Xinjiang Region,and of wind-blown sang in the Hexi Region.In general,the frequency of dust events in all the seven regions shows a decreasing thendency from 1954 to 2000,but there are certain differences between various dust events in different regions.The maximum interannual change and ariance of dust events during this time happened in South Xinjiang Region and Hexi Region.The udst events generally occur most frequently in April in most parts of China.The spring occurred days of dust events

  11. Dust Absorption and the Cosmic UV Flux Density

    CERN Document Server

    Massarotti, M; Buzzoni, A

    2001-01-01

    We study the evolution of the galaxy UV luminosity density as a function of redshift in the Hubble Deep Field North (HDF-N). We estimate the amount of energy absorbed by dust and hidden from optical observations by analyzing the HDF-N photometric data with the spectral energy distribution fitting method. According to our results, at redshifts 1 < z < 4.5, the global energy observed in the UV rest-frame at lambda=1500 A corresponds to only 7-11% of the stellar energy output, the rest of it being absorbed by dust and re-emitted in the far-IR. Our estimates of the comoving star formation rate density in the universe from the extinction-corrected UV emission are consistent with the recent results obtained with Submillimeter Common-User Bolometer Array (SCUBA) at faint sub-millimeter flux levels.

  12. Experimental evidence of water formation on interstellar dust grains

    CERN Document Server

    Dulieu, F; Fillion, J-H; Matar, E; Momeni, A; Pirronello, V; Lemaire, J L

    2009-01-01

    The synthesis of water is one necessary step in the origin and development of life. It is believed that pristine water is formed and grows on the surface of icy dust grains in dark interstellar clouds. Until now, there has been no experimental evidence whether this scenario is feasible or not. We present here the first experimental evidence of water synthesis under interstellar conditions. After D and O deposition on a water ice substrate (HO) held at 10 K, we observe production of HDO and DO. The water substrate itself has an active role in water formation, which appears to be more complicated than previously thought. Amorphous water ice layers are the matrices where complex organic prebiotic species may be synthesized. This experiment opens up the field of a little explored complex chemistry that could occur on interstellar dust grains, believed to be the site of key processes leading to the molecular diversity and complexity observed in our universe.

  13. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  14. Smaller desert dust cooling effect estimated from analysis of dust size and abundance

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-03-01

    Desert dust aerosols affect Earth's global energy balance through direct interactions with radiation, and through indirect interactions with clouds and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, or what the effects of potential future changes in dust loading will be. Here we present an analysis of the size and abundance of dust aerosols to constrain the direct radiative effect of dust. Using observational data on dust abundance, in situ measurements of dust optical properties and size distribution, and climate and atmospheric chemical transport model simulations of dust lifetime, we find that the dust found in the atmosphere is substantially coarser than represented in current global climate models. As coarse dust warms the climate, the global dust direct radiative effect is likely to be less cooling than the ~-0.4 W m-2 estimated by models in a current global aerosol model ensemble. Instead, we constrain the dust direct radiative effect to a range between -0.48 and +0.20 W m-2, which includes the possibility that dust causes a net warming of the planet.

  15. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.

    Science.gov (United States)

    Myers, Timothy J

    2008-11-15

    Metal powders or dusts can represent significant dust explosion hazards in industry, due to their relatively low ignition energy and high explosivity. The hazard is well known in industries that produce or use aluminum powders, but is sometimes not recognized by facilities that produce aluminum dust as a byproduct of bulk aluminum processing. As demonstrated by the 2003 dust explosion at aluminum wheel manufacturer Hayes Lemmerz, facilities that process bulk metals are at risk due to dust generated during machining and finishing operations [U.S. Chemical Safety and Hazard Investigation Board, Investigation Report, Aluminum Dust Explosion Hayes Lemmerz International, Inc., Huntington, Indiana, Report No. 2004-01-I-IN, September 2005]. Previous studies have shown that aluminum dust explosions are more difficult to suppress with flame retardants or inerting agents than dust explosions fueled by other materials such as coal [A.G. Dastidar, P.R. Amyotte, J. Going, K. Chatrathi, Flammability limits of dust-minimum inerting concentrations, Proc. Saf. Progr., 18-1 (1999) 56-63]. In this paper, an inerting method is discussed to reduce the dust explosion hazard of residue created in an aluminum buffing operation as the residue is generated. This technique reduces the dust explosion hazard throughout the buffing process and within the dust collector systems making the process inherently safer. Dust explosion testing results are presented for process dusts produced during trials with varying amounts of flame retardant additives.

  16. Saharan Dust Particle Size And Concentration Distribution In Central Ghana

    Science.gov (United States)

    Sunnu, A. K.

    2010-12-01

    A.K. Sunnu*, G. M. Afeti* and F. Resch+ *Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology (KNUST) Kumasi, Ghana. E-mail: albertsunnu@yahoo.com +Laboratoire Lepi, ISITV-Université du Sud Toulon-Var, 83162 La Valette cedex, France E-mail: resch@univ-tln.fr Keywords: Atmospheric aerosol; Saharan dust; Particle size distributions; Particle concentrations. Abstract The Saharan dust that is transported and deposited over many countries in the West African atmospheric environment (5°N), every year, during the months of November to March, known locally as the Harmattan season, have been studied over a 13-year period, between 1996 and 2009, using a location at Kumasi in central Ghana (6° 40'N, 1° 34'W) as the reference geographical point. The suspended Saharan dust particles were sampled by an optical particle counter, and the particle size distributions and concentrations were analysed. The counter gives the total dust loads as number of particles per unit volume of air. The optical particle counter used did not discriminate the smoke fractions (due to spontaneous bush fires during the dry season) from the Saharan dust. Within the particle size range measured (0.5 μm-25 μm.), the average inter-annual mean particle diameter, number and mass concentrations during the northern winter months of January and February were determined. The average daily number concentrations ranged from 15 particles/cm3 to 63 particles/cm3 with an average of 31 particles/cm3. The average daily mass concentrations ranged from 122 μg/m3 to 1344 μg/m3 with an average of 532 μg/m3. The measured particle concentrations outside the winter period were consistently less than 10 cm-3. The overall dust mean particle diameter, analyzed from the peak representative Harmattan periods over the 13-year period, ranged from 0.89 μm to 2.43 μm with an average of 1.5 μm ± 0.5. The particle size distributions exhibited the typical distribution pattern for

  17. Surface Measurements of dust/local aerosol properties over Northern China during 2008 China-US joined dust field campaign

    Science.gov (United States)

    Wang, X.; Huang, J.

    2009-12-01

    The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.

  18. Dust Attenuation in UV-selected Starbursts at High Redshift and Their Local Counterparts: Implications for the Cosmic Star Formation Rate Density

    Science.gov (United States)

    Overzier, Roderik A.; Heckman, Timothy M.; Wang, Jing; Armus, Lee; Buat, Veronique; Howell, Justin; Meurer, Gerhardt; Seibert, Mark; Siana, Brian; Basu-Zych, Antara; Charlot, Stéphane; Gonçalves, Thiago S.; Martin, D. Christopher; Neill, James D.; Rich, R. Michael; Salim, Samir; Schiminovich, David

    2011-01-01

    We present a new analysis of the dust obscuration in starburst galaxies at low and high redshifts. This study is motivated by our unique sample of the most extreme UV-selected starburst galaxies in the nearby universe (z extinction is used to estimate the integrated, dust-corrected SFR density at z ~= 2-6.

  19. Dunes and Dust Devil Tracks

    Science.gov (United States)

    2004-01-01

    22 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of dark sand dunes that formed in winds blowing from east (right) to west (left), along with smaller, lighter-toned ripples and many dark dust devil tracks. The dust devil tracks indicate movement from a variety of directions, while the dunes only indicate winds from the east. In the lower left quarter of the image, dune sand has flowed around a layered rock obstacle. This scene is located near 19.9oN, 280.5oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the lower left.

  20. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    Science.gov (United States)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  1. Recombinant house dust mite allergens

    OpenAIRE

    2013-01-01

    House dust mites (HDM) are a globally important source of allergen responsible for the sensitization of more than 50% of allergic patients. Specific immunotherapy with HDM extracts is effective but allergen extracts cannot be fully standardized and severe side-effects can occur during the protracted course of treatment. The introduction of molecular biological techniques into allergy research allowed the indentification of more than 20 groups of HDM allergens. Recombinant HDM allergens can be...

  2. Parallel universes may be more than sci-fi daydreams

    CERN Multimedia

    2007-01-01

    Is the universe -- correction: "our" universe -- no more than a speck of cosmic dust amid an infinite number of parallel worlds? A staple of mind-bending science fiction, the possibility of multiple universes has long intrigued hard-nosed physicists, mathematicians, cosmologists, and other scientists.

  3. Dust amorphization in protoplanetary disks

    CERN Document Server

    Glauser, Adrian M; Watson, Dan M; Henning, Thomas; Schegerer, Alexander A; Wolf, Sebastian; Audard, Marc; Baldovin-Saavedra, Carla

    2009-01-01

    High-energy irradiation of the circumstellar material might impact the structure and the composition of a protoplanetary disk and hence the process of planet formation. In this paper, we present a study on the possible influence of the stellar irradiation, indicated by X-ray emission, on the crystalline structure of the circumstellar dust. The dust crystallinity is measured for 42 class II T Tauri stars in the Taurus star-forming region using a decomposition fit of the 10 micron silicate feature, measured with the Spitzer IRS instrument. Since the sample includes objects with disks of various evolutionary stages, we further confine the target selection, using the age of the objects as a selection parameter. We correlate the X-ray luminosity and the X-ray hardness of the central object with the crystalline mass fraction of the circumstellar dust and find a significant anti-correlation for 20 objects within an age range of approx. 1 to 4.5 Myr. We postulate that X-rays represent the stellar activity and consequ...

  4. The Dust & Gas Properties of M83

    CERN Document Server

    Foyle, K; Mentuch, E; Bendo, G; Dariush, A; Parkin, T; Pohlen, M; Sauvage, M; Smith, M W L; Roussel, H; Baes, M; Boquien, M; Boselli, A; Clements, D L; Cooray, A; Davies, J I; Eales, S A; Madden, S; Page, M J; Spinoglio,

    2012-01-01

    We examine the dust and gas properties of the nearby, barred galaxy M83, which is part of the Very Nearby Galaxy Survey. Using images from the PACS and SPIRE instruments of Herschel, we examine the dust temperature and dust mass surface density distribution. We find that the nuclear, bar and spiral arm regions exhibit higher dust temperatures and masses compared to interarm regions. However, the distribution of dust temperature and mass are not spatially coincident. Assuming a trailing spiral structure, the dust temperature peaks in the spiral arms lie ahead of the dust surface density peaks. The dust mass surface density correlates well with the distribution of molecular gas as traced by CO (J=3-2) images (JCMT) and the star formation rate as traced by H?2 with a correction for obscured star formation using 24 micron emission. Using HI images from THINGS to trace the atomic gas component, we make total gas mass surface density maps and calculate the gas-to-dust ratio. We find a mean gas-to-dust ratio of 84 \\...

  5. GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G

    Science.gov (United States)

    Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.

    2014-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project

  6. House dust mites, our intimate associates.

    Science.gov (United States)

    Nadchatram, M

    2005-06-01

    House dust mites have lived in human contact from time immemorial. Human dander or dead skin constitutes the major organic component of the house dust ecosystem. Because the mites feed on dander, dust mites and human association will continue to co-exist as part of our environment. Efficient house-keeping practice is the best form of control to reduce infestation. However, special precautions are important when individuals are susceptible or sensitive to dust mites. House dust mites are responsible for causing asthma, rhinitis and contact dermatitis. The respiratory allergies are caused by the inhalation of dead or live mites, their faecal matter or other byproducts. Immune factors are of paramount importance in the development of dust related or mite induced respiratory diseases. House dust mites were found in some 1,000 samples of dust taken from approximately 330 dwellings in Peninsular Malaysia and Singapore. Mattresses, carpets, corners of a bedroom, and floor beneath the bed are favourable dust mite habitats. The incriminating species based on studies here and elsewhere, as well as many other species of dust mites of unknown etiological importance are widely distributed in Malaysian homes. Density of dust mites in Malaysia and Singapore is greater than in temperate countries. Prevention and control measures with reference to subjects sensitive to dust mite allergies, including chemical control described in studies conducted in Europe and America are discussed. However, a cost free and most practical way to remove mites, their faecal matter and other products is to resort to sunning the bedding and carpets to kill the living mites, and then beaten and brushed to remove the dust and other components.

  7. Photoelectric Charging of Dust in Space

    Science.gov (United States)

    Sickafoose, A. A.; Robertson, S.; Colwell, J. E.; Horanyi, M.

    1999-09-01

    Illumination of surfaces in space by solar ultraviolet light produces photoelectrons which form a plasma sheath near the surface. Dust particles on the surface can acquire a charge and be transported horizontally and vertically by electric fields within the sheath. On the moon, suspended dust grains have been observed on multiple occasions, and there is evidence for horizontal lunar dust transport. Photoelectron production and dust particle charging are also expected to be significant near the surface of Mars. Understanding the photoelectric charging properties of dust can help explain the observed dynamics of lunar dust and help predict the behavior of dust on surfaces of planetary satellites, asteroids, planetary ring particles, and planetesimals. In addition, any human or spacecraft activity on planetary bodies is affected by dust dynamics near the surface. We have examined the photoelectric charging of dust dropped through UV illumination and dust dropped past a UV illuminated surface having a photoelectron sheath. Experiments are performed in vacuum with illumination from a 1 kW Hg-Xe arc lamp. The lamp produces a spectrum down to ~ 200 nm ( ~ 6.2 eV), and the photoemitter is a 12 cm diameter zirconium plate. Dust dropped through UV illumination loses electrons due to photoemission, while dust dropped past an illuminated surface gains electrons from the photoelectron sheath. Initial results are consistent with expected charge calculated from the work function of the materials, the energy of incoming photons, and the capacitance of the grains. Photoelectric charging experiments have been done for several different kinds of dust 90-106 mu m in diameter. We will present the results of these experiments and compare the charging properties of zinc, copper, graphite, Martian regolith simulant (JSC Mars-1), lunar regolith simulant (JSC-1), and lunar soil from an Apollo 17 sample. This research is supported by NASA.

  8. Metal Dusting-Mechanisms and Preventions

    Institute of Scientific and Technical Information of China (English)

    J.Q.ZHANG; D.J.YOUNG

    2009-01-01

    Metal dusting attacks iron, low and high alloy steels and nickel-or cobalt-base alloys by disintegrating bulk metals and alloys into metal particles in a coke deposit. It occurs in strongly carburising gas atmospheres (carbon activity aC>1) at elevated temperatures (400℃~1000℃). This phenomenon has been studied for decades, but the detailed mechanism is still not well understood. Current methods of protection against metal dusting are either directed to the process conditions-temperature and gas composition-or to the development of a dense adherent oxide layer on the surface of the alloy by selective oxidation. However, metal dusting still occurs by carbon dissolving in the base metal via defects in the oxide scale. The research work at UNSW is aimed at determining the detailed mechanism of metal dusting of both ferritic and austenitic alloys, in particular the microprocesses of graphite deposition, nanoparticle formation and underlying metal destruction. This work was carried out using surface observation, cross-section analysis by focused ion beam and electron microscopic examination of coke deposits at different stages of the reaction. It was found that surface orientation affected carbon deposition and metal dusting at the initial stage of the reaction. Metal dusting occurred only when graphite grew into the metal interior where the volume expansion is responsible for metal disintegration and dusting. It was also found that the metal dusting process could be significantly changed by alterations in alloy chemistry. Germanium was found to affect the iron dusting process by destabilising FeC but increasing the rate of carbon deposition and dusting, which questions the role of cementite in ferritic alloy dusting. Whilst adding copper to iron did not change the carburisation kinetics, cementite formation and coke morphology, copper alloying reduced nickel and nickel-base alloy dusting rates significantly. Application of these fundamental results to the dusting

  9. Aerosol optical absorption by dust and black carbon in Taklimakan Desert, during no-dust and dust-storm conditions

    Institute of Scientific and Technical Information of China (English)

    Hui Lu; Wenshou Wei; Mingzhe Liu; Weidong Gao; Xi Han

    2012-01-01

    Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol.The linear statistical regression analysis approach introduced by Fialho et al.(2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients,and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006.Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December,2006.The absorption exponent of BC absorption coefficient α is estimated as (-0.95 ±0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient β during the 6 dust storm periods (strong dust storm) is (-2.55 ± 0.009).Decoupling analysis of the measured light absorption coefficients demonstrates that,on average,the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm,floating dust,blowing dust),the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hinterland of desert in spring,dust aerosol is also the major contributor to the total aerosol light absorption,more than that of black carbon aerosol.

  10. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  11. Do other components of bedding dust affect sensitisation to house dust mites?

    Science.gov (United States)

    Smith, Claire; Stanley, Thorsten; Crane, Julian; Siebers, Robert

    2011-01-01

    Bedding dust is a mixture of many components, of which the house dust mite (HDM) allergen, Der p 1, is the most allergenic. There has been little work to investigate the effect of other bedding dust components on HDM sensitisation. The objective of the study was to determine the effect of endotoxin in bedding dust on the allergic response in HDM-sensitised individuals. Twenty-nine house dust mite-sensitised adults were skin prick and allergen patch tested against a sterile solution of their own bedding dust and against a solution containing the same concentration of Der p 1 as the bedding solution for comparison. There was no significant difference in wheal size between the diluted house dust mite solution and the bedding dust in spite of their high levels of endotoxin. Symptomatic subjects had larger, but not statistically significant, responses to commercial house dust mite solution than asymptomatic subjects. Allergen patch test responses were negative in 22/29 of subjects using either bedding dust solutions or comparable diluted house dust mite solutions. An individual's own bedding dust does not appear to contain factors that enhance skin prick test or atopy patch test responses to house dust mites.

  12. House dust in seven Danish offices

    Science.gov (United States)

    Mølhave, L.; Schneider, T.; Kjærgaard, S. K.; Larsen, L.; Norn, S.; Jørgensen, O.

    Floor dust from Danish offices was collected and analyzed. The dust was to be used in an exposure experiment. The dust was analyzed to show the composition of the dust which can be a source of airborne dust indoors. About 11 kg of dust from vacuum cleaner bags from seven Danish office buildings with about 1047 occupants (12 751 m 2) was processed according to a standardized procedure yielding 5.5 kg of processed bulk dust. The bulk dust contained 130.000-160.000 CFU g -1 microorganisms and 71.000-90.000 CFU g -1 microfungi. The content of culturable microfungi was 65-123 CFU 30 g -1 dust. The content of endotoxins ranged from 5.06-7.24 EU g -1 (1.45 ng g -1 to 1.01 ng g -1). Allergens (ng g -1) were from 147-159 (Mite), 395-746 (dog) and 103-330 (cat). The macro molecular organic compounds (the MOD-content) varied from 7.8-9.8 mg g -1. The threshold of release of histamine from basophil leukocytes provoked by the bulk dust was between 0.3 and 1.0 mg ml -1. The water content was 2% (WGT) and the organic fraction 33%. 6.5-5.9% (dry) was water soluble. The fiber content was less than 0.2-1.5% (WGT) and the desorbable VOCs was 176-319 μg g -1. Most of the VOC were aldehydes. However, softeners for plastic (DBP and DEHP) were present. The chemical composition includes human and animal skin fragments, paper fibers, glass wool, wood and textilefibers and inorganic and metal particles. The sizes ranged from 0.001-1 mm and the average specific density was 1.0 g m -3. The bulk dust was resuspended and injected into an exposure chamber. The airborne dust was sampled and analyzed to illustrate the exposures that can result from sedimented dirt and dust. The airborne dust resulting from the bulk dust reached concentrations ranging from 0.26-0.75 mg m -3 in average contained 300-170 CFU m -3. The organic fraction was from 55-70% and the water content about 2.5% (WGT). The content of the dust was compared to the similar results reported in the literature and its toxic potency is

  13. Lunar Dust and Dusty Plasma Physics

    Science.gov (United States)

    Wilson, Thomas L.

    2009-01-01

    In the plasma and radiation environment of space, small dust grains from the Moon s surface can become charged. This has the consequence that their motion is determined by electromagnetic as well as gravitational forces. The result is a plasma-like condition known as "dusty plasmas" with the consequence that lunar dust can migrate and be transported by magnetic, electric, and gravitational fields into places where heavier, neutral debris cannot. Dust on the Moon can exhibit unusual behavior, being accelerated into orbit by electrostatic surface potentials as blow-off dust, or being swept away by moving magnetic fields like the solar wind as pick-up dust. Hence, lunar dust must necessarily be treated as a dusty plasma subject to the physics of magnetohydrodynamics (MHD). A review of this subject has been given before [1], but a synopsis will be presented here to make it more readily available for lunar scientists.

  14. Dust observations at orbital altitudes surrounding Mars.

    Science.gov (United States)

    Andersson, L; Weber, T D; Malaspina, D; Crary, F; Ergun, R E; Delory, G T; Fowler, C M; Morooka, M W; McEnulty, T; Eriksson, A I; Andrews, D J; Horanyi, M; Collette, A; Yelle, R; Jakosky, B M

    2015-11-01

    Dust is common close to the martian surface, but no known process can lift appreciable concentrations of particles to altitudes above ~150 kilometers. We present observations of dust at altitudes ranging from 150 to above 1000 kilometers by the Langmuir Probe and Wave instrument on the Mars Atmosphere and Volatile Evolution spacecraft. Based on its distribution, we interpret this dust to be interplanetary in origin. A comparison with laboratory measurements indicates that the dust grain size ranges from 1 to 12 micrometers, assuming a typical grain velocity of ~18 kilometers per second. These direct observations of dust entering the martian atmosphere improve our understanding of the sources, sinks, and transport of interplanetary dust throughout the inner solar system and the associated impacts on Mars's atmosphere.

  15. Astrophysics of Dust in Cold Clouds

    CERN Document Server

    Draine, B T

    2003-01-01

    Nine lectures reviewing the astrophysics of dust in interstellar clouds. Topics include: (1) Summary of observational evidence concerning interstellar dust: broadband extinction, scattering of starlight, polarization of starlight, spectroscopy of dust, IR and FIR emission, and depletions of grain-forming elements. (2) Optics of interstellar dust grains: dielectric functions of nonconducting and conducting materials, calculational techniques, formulae valid in the Rayleigh limit, Kramers-Kronig relations, microwave emission mechanisms, and X-ray scattering. (3) IR and FIR emission: heating of interstellar dust, including single-photon heating, and resulting IR emission spectrum. (4) Charging of dust grains: collisional charging, photoelectric emission, and resulting charge distribution functions. (5) Dynamics: gas drag, Lorentz force, forces due to anisotropic radiation, and resulting drift velocities. (6) Rotational dynamics: brownian rotation, suprathermal rotation, and effects of starlight torques. (7) Alig...

  16. Simulation of dust statistical characteristics in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R.D.; Pigarov, A.Yu.; Krasheninnikov, S.I.; Rosenberg, M.; Mendis, D.A. [University of California, San Diego, La Jolla, California, 92093 (United States)

    2008-03-15

    In this work we analyze the size (radius) distribution function of dust particles in tokamak plasmas during a steady state discharge. A relation between the radius distribution function of dust in the plasma and the radius distribution of dust injected from tokamak walls is obtained using a Green's function formalism. Numerical simulations of the dust radius distribution function in a tokamak plasma with the Dust Transport (DUSTT) code are used to obtain the analytical form of the Green's function semi-empirically. It is demonstrated that the Green's function obtained can be used to predict qualitatively the dust size distributions in the tokamak plasmas. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. CRADE OF SAND AND DUST STORM WEATHER

    Institute of Scientific and Technical Information of China (English)

    Niu Ruoyun; Tian Cuiying; Bi Baogui; Yang Keming; Wang Youheng; Tuo Ya; Ding Haifang; Zhang Tairen

    2011-01-01

    Background Sand and dust storm,as one of the main disastrous weathers that affect northern China,not only affect the people health and normal life,but cause the short-term climatic changes due to the direct and indirect radiation of the earth-atmosphere system through the dust floating in the sky.The sand end dust weather and its potential harm on the national economy,ecological environment,social activities and other aspects have aroused worldwide concern.

  18. Physical properties of suspended dust in Iceland

    Science.gov (United States)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Skrabalova, Lenka; Sigurdardottir, Gudmunda; Branis, Martin; Hladil, Jindrich; Chadimova, Leona; Skala, Roman; Navratil, Tomas; Menar, Sibylle von Lowis of; Thorsteinsson, Throstur

    2014-05-01

    Atmospheric Dust Measurements (ADMI 2013) of one of the most active dust sources in Iceland (Mælifellsandur) were conducted during season with high precipitation on August 8th-18th, 2013. We measured mass concentrations (PM2.5 and PM10), particle size distributions in size range 0.3-10μm and number concentrations during rather small dust event. Dust samples of the event were analyzed (morpho-textural observations, optical and scanning-electron microscopy). Two TSI 8520 DustTrak Aerosol Monitors (light-scattering laser photometers that measure aerosol mass concentrations in range 0.001 to 100 mg/m3) and one TSI Optical Particle Sizer (OPS) 3330 (optical scattering from single particle up to 16 different channels - 0.3 to 10 μm - measuring particle size distribution) were used. We measured a dust event which occurred during wet and low wind/windless conditions as result of surface heating in August 2013. Maximum particle number concentration (PM~0.3-10 µm) reached 149954 particles cm-3 min-1 while mass concentration (PM1.5-5 µm in diameter. Close-to-ultrafine particle size distributions showed a significant increase in number with the severity of the dust event. Number concentrations were well correlated with mass concentrations. The mineralogy and geochemical compositions showed that glaciogenic dust contains sharp-tipped shards with bubbles and 80 % of the particulate matter is volcanic glass rich in heavy metals. Wet dust particles were mobilized within < 4 hours. Here we introduced a comprehensive study on physical properties of the Icelandic dust aerosol and the first scientific study of particle size distributions in an Icelandic dust event including findings on initiation of dust suspension.

  19. Cascading dust inflation in Born-Infeld gravity

    Science.gov (United States)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Ringeval, Christophe

    2015-11-01

    In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating dust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefully exits when the GR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the Born-Infeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bounce thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary kind, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.

  20. Impact of galactic and intergalactic dust on the stellar EBL

    CERN Document Server

    Vavrycuk, Vaclav

    2016-01-01

    Current theories assume that the low intensity of the stellar extragalactic background light (stellar EBL) is caused primarily by finite age of the Universe because the finite age limits the number of photons pumped into the space by galaxies and thus the sky is dark in the night. We oppose this opinion and show that two main factors are responsible for the extremely low intensity of the observed stellar EBL: (1) a low mean surface brightness of galaxies, which causes a low luminosity density in the local Universe, and (2) light extinction due to absorption by galactic and intergalactic dust. Dust produces a partial opacity of galaxies and of the Universe. The galactic opacity reduces the intensity of light from more distant background galaxies obscured by foreground galaxies. The effective extinction AV for light passing through a galaxy is 0.2 mag. This causes that distant background galaxies do not contribute to the EBL significantly. In addition, light of distant galaxies is dimmed due to absorption by in...

  1. Propagation of dust-acoustic waves in weakly ionized plasmas with dust-charge fluctuation

    Indian Academy of Sciences (India)

    K K Mondal

    2004-11-01

    For an unmagnetized partially ionized dusty plasma containing electrons, singly charged positive ions, micron-sized massive negatively charged dust grains and a fraction of neutral atoms, dispersion relations for both the dust-ion-acoustic and the dust-acoustic waves have been derived, incorporating dust charge fluctuation. The dispersion relations, under various conditions, have been exhaustively analysed. The explicit expressions for the growth rates have also been derived.

  2. Halo dust detection around NGC 891

    CERN Document Server

    Bocchio, M; Hunt, L K; Schneider, R

    2015-01-01

    Observations of edge-on galaxies allow us to investigate the vertical extent and properties of dust, gas and stellar distributions. NGC 891 has been studied for decades and represents one of the best studied cases of an edge-on galaxy. We use deep PACS data together with IRAC, MIPS and SPIRE data to study the vertical extent of dust emission around NGC 891. We also test the presence of a more extended, thick dust component. By performing a convolution of an intrinsic vertical profile emission with each instrument PSF and comparing it with observations we derived the scaleheight of a thin and thick dust disc component. For all wavelengths considered the emission is best fit with the sum of a thin and a thick dust component. The scaleheight of both dust components shows a gradient passing from 70 $\\mu$m to 250 $\\mu$m. This could be due to a drop in dust heating (and thus dust temperature) with the distance from the plane, or to a sizable contribution ($\\sim 15 - 80%$) of an unresolved thin disc of hotter dust t...

  3. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, Marco; Marassi, Stefania; Schneider, Raffaella; Bianchi, Simone; Limongi, Marco; Chieffi, A.

    2016-06-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8% of the observed mass will survive, leading to a SN dust production rate of (3.9± 3.7)×10^(-4) MM_{⊙})/yr in the Milky Way. This value is one order of magnitude larger than the dust production rate by AGB stars but insufficient to counterbalance the dust destruction by SNe, therefore requiring dust accretion in the gas phase.

  4. Modern dust aerosol availability in northwestern China.

    Science.gov (United States)

    Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng

    2017-08-18

    The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

  5. Dust Devils and Convective Vortices on Mars

    Science.gov (United States)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2017-03-01

    Dust devils are low pressure convective vortices able to lift dust from the surface of a planet. They are a common feature on Mars and they can also be found on desertic locations on Earth. On Mars they are considered an important part of the atmospheric dust cycle. Dust in Mars is an essential ingredient of the atmosphere where it affects the radiative balance of the planet. Here we review observations of these dusty vortices from orbit, from in situ measurements on the surface of Mars and some of the models developed to simulate them.

  6. Spatially-resolved dust properties of the GRB 980425 host galaxy

    DEFF Research Database (Denmark)

    Michałowski, Michał J.; Hunt, L. K.; Palazzi, E.

    2014-01-01

    ), located 800 pc away from the GRB position. The host is characterised by low dust content and high fraction of UV-visible star-formation, similar to other dwarf galaxies. Such galaxies are abundant in the local universe, so it is not surprising to find a GRB in one of them, assuming the correspondence...

  7. Fitting the full SED of galaxies to put constraints on dust attenuation and star formation determinations

    Science.gov (United States)

    Buat, Veronique; Giovannoli, Elodie; Boquien, Mederic; Heinis, Sébastien

    2012-08-01

    The combination of far-IR and UV-optical rest-frame data has proved to be very efficient to extract physical parameters from the SEDs of galaxies. Using Herschel and ancillary data from the Herschel Reference Survey and GOODS-Herschel Key Projects, we show how dust attenuation properties can be estimated inside local galaxies as well as in the distant Universe.

  8. Effect of nonthermal ion distribution and dust temperature on nonlinear dust-acoustic solitary waves

    Indian Academy of Sciences (India)

    K Annou; R Annou

    2012-01-01

    Dust-acoustic solitary waves in unmagnetized dusty plasma whose constituents are inertial charged dust grains, Boltzmannian electrons and nonthermal ions have been investigated by taking into account finite dust temperature. The pseudopotential has been used to study solitary solution. The existence of solitary waves having negative potential is reported.

  9. THE MAIN CULPRIT IN ALLERGIC RHINITIS - HOUSE DUST OR HOUSE DUST MITE

    Directory of Open Access Journals (Sweden)

    Abhey

    2015-10-01

    Full Text Available Allergic rhinitis especially perennial type makes life miserable for the patient. House dust mite is one of the major players causing it. This study is to compare the allergen i n city of house dust mite versus house dust and evaluate any cross - allergenicity between them. STUDY DESIGN: Prospective study in a tertiary referral hospital. MATERIALS & METHODS: Forty patients of allergic rhinitis and well matched controls were subjected to intradermal skin tests to house dust and house dust mite allergen. The skin tests were graded as per standard norms and the responses matched after correlating with different parameters. Statistical analysis was done and the results evaluated. RESULTS: House dust mite was the main allergen, as compared to house dust, responsible for causing allergic rhinitis. The allergen reactivity potential of house dust mite was significantly more as compared to house dust. And, as such there was no statistically significant cross - allergenicity between the two groups. CONCLUSION: House dust mite rather than house dust is the main culprit in causing allergic rhinitis. Hence, precautionary and preventive measures to control the exposure to house dust mite can be undertaken

  10. Technical Note: High-resolution mineralogical database of dust-productive soils for atmospheric dust modeling

    Directory of Open Access Journals (Sweden)

    S. Nickovic

    2012-01-01

    Full Text Available Dust storms and associated mineral aerosol transport are driven primarily by meso- and synoptic-scale atmospheric processes. It is therefore essential that the dust aerosol process and background atmospheric conditions that drive dust emissions and atmospheric transport are represented with sufficiently well-resolved spatial and temporal features. The effects of airborne dust interactions with the environment determine the mineral composition of dust particles. The fractions of various minerals in aerosol are determined by the mineral composition of arid soils; therefore, a high-resolution specification of the mineral and physical properties of dust sources is needed.

    Several current dust atmospheric models simulate and predict the evolution of dust concentrations; however, in most cases, these models do not consider the fractions of minerals in the dust. The accumulated knowledge about the impacts of the mineral composition in dust on weather and climate processes emphasizes the importance of including minerals in modeling systems. Accordingly, in this study, we developed a global dataset consisting of the mineral composition of the current potentially dust-producing soils. In our study, we (a mapped mineral data to a high-resolution 30 s grid, (b included several mineral-carrying soil types in dust-productive regions that were not considered in previous studies, and (c included phosphorus.

  11. Pathologies of van Stockum dust/Tipler's time machine

    Science.gov (United States)

    Lindsay, David S.

    2016-09-01

    We study the internal solution, and external vacuum solution for radial cutoff, of "van Stockum dust", an infinitely long rotating pressureless dust column; its density increases with radius. This interesting but poorly explored spacetime turns out to have a number of exotic properties, especially in the external vacuum region. These solutions have been known for decades, but it seems that they have never been investigated in detail. In this paper we analyze them and describe their peculiar properties. There are three regimes of radial cutoff that are of interest: (1) If the dust column is thick enough that closed timelike loops (CTLs or "time machines") exist inside the column, then the radius of the entire "universe" is finite, and in fact does not extend much beyond the edge of the matter, even though the metric's radial parameter is unbounded. This interesting finite proper radius seems to have been missed by earlier investigators. Other exotic properties of the external vacuum in this regime: CTLs exist in cylindrical shells, alternating with shells having no circular CTLs; there are infinitely many such shells, getting closer and closer together as one gets farther from the rotation axis. Also, a separate set of infinitely many cylindrical shells exists, having what might be termed "extreme frame-dragging", within which motion is possible only in one direction; they alternate with "normal" shells allowing motion in either direction. Gravitational attraction and tides increase with distance from the matter column, and diverge at the "edge of the universe". In addition, though the radius of the universe is finite, its circumference is infinite; and its boundary is a circle, not a cylinder (the z-axis has shrunk to nothing at the edge). (2) For smaller radial cutoff, but still large enough to produce CTLs, the radius of the universe is infinite; but there are still infinitely many cylindrical shells of CTLs alternating with non-CTL shells. However, the innermost

  12. DUST-TO-GAS RATIO IN THE EXTREMELY METAL-POOR GALAXY I Zw 18

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Camus, Rodrigo; Fisher, David B.; Bolatto, Alberto D. [Department of Astronomy and Laboratory of Millimeter Astronomy, University of Maryland, College Park, MD 20742 (United States); Leroy, Adam K. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States); Walter, Fabian [Max-Planck-Institut fuer Astronomie, Konigstuehl 17, D-69117 Heidelberg (Germany); Gordon, Karl D.; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Donaldson, Jessica; Melendez, Marcio [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States)

    2012-06-20

    The blue compact dwarf galaxy I Zw 18 is one of the most metal-poor systems known in the local universe (12+log(O/H) = 7.17). In this work we study I Zw 18 using data from Spitzer, Herschel Space Telescope, and IRAM Plateau de Bure Interferometer. Our data set includes the most sensitive maps of I Zw 18, to date, in both the far-infrared and the CO J = 1 {yields} 0 transition. We use dust emission models to derive a dust mass upper limit of only M{sub dust} {<=} 1.1 Multiplication-Sign 10{sup 4} M{sub Sun} (3{sigma} limit). This upper limit is driven by the non-detection at 160 {mu}m, and it is a factor of 4-10 times smaller than previous estimates (depending on the model used). We also estimate an upper limit to the total dust-to-gas mass ratio of M{sub Dust}/M{sub gas} {<=} 5.0 Multiplication-Sign 10{sup -5}. If a linear correlation between the dust-to-gas mass ratio and metallicity (measured as O/H) were to hold, we would expect a ratio of 3.9 Multiplication-Sign 10{sup -4}. We also show that the infrared spectral energy distribution is similar to that of starbursting systems.

  13. Dust-to-Gas Ratio in the Extremely Metal Poor Galaxy I ZW 18

    CERN Document Server

    Herrera-Camus, Rodrigo; Bolatto, Alberto D; Leroy, Adam K; Walter, Fabian; Gordon, Karl D; Roman-Duval, Julia; Donaldson, Jessica; Meléndez, Marcio; Cannon, John M

    2012-01-01

    The blue compact dwarf galaxy I Zw 18 is one of the most metal poor systems known in the local Universe (12 + log(O/H) $=$ 7.17). In this work we study I Zw 18 using data from {\\it Spitzer}, {\\it Herschel Space Telescope} and IRAM Plateau de Bure Interferometer. Our data set includes the most sensitive maps of I Zw 18, to date, in both, the far infrared and the CO $J=1\\rightarrow0$ transition. We use dust emission models to derive a dust mass upper limit of only M$_{dust}\\leq1.1\\times10^4$ M$_{\\odot}$ ($3\\sigma$ limit). This upper limit is driven by the non-detection at 160 $\\mu$m, and it is a factor of 4-10 times smaller than previous estimates (depending upon the model used). We also estimate an upper limit to the total dust-to-gas mass ratio of M$_{Dust}$/M$_{gas}\\leq5.0\\times10^{-5}$. If a linear correlation between the dust-to-gas mass ratio and metallicity (measure as O/H) were to hold, we would expect a ratio of 3.9$\\times10^{-4}$. We also show that the infrared SED is similar to that of starbursting s...

  14. Cosmological Constant or Intergalactic Dust? Constraints from the Cosmic Far Infrared Background

    CERN Document Server

    Aguirre, A N; Aguirre, Anthony; Haiman, Zoltan

    1999-01-01

    Recent observations of Type Ia SNe at redshifts 0 ~ 0.1 micron dust grains with a mass density of Omega_dust ~ (few) * 10^{-5} in the intergalactic (IG) medium. The same dust that dims the SNe absorbs the cosmic UV/optical background radiation around ~ 1 micron, and re-emits it at far infrared (FIR) wavelengths. Here we compare the FIR emission from IG dust with observations of the cosmic microwave (CMB) and cosmic far infrared backgrounds (FIRB) by the DIRBE/FIRAS instruments. We find that the emission would not lead to measurable distortion to the CMB, but would represent a substantial fraction (> 50 %) of the measured value of the FIRB in the 300-1000 micron range. This contribution would be consistent with the present unresolved fraction of the observed FIRB in an open universe. However, we find that IG dust probably could not reconcile the standard Omega=1 CDM model with the SN observations, even if the necessary quantity of dust existed. Future observations able to resolve the FIRB to a flux limit of ~ ...

  15. ALMA observations of cool dust in a low-metallicity starburst, SBS0335-052

    CERN Document Server

    Hunt, L K; Casasola, V; Garcia-Burillo, S; Combes, F; Nikutta, R; Caselli, P; Henkel, C; Maiolino, R; Menten, K M; Sauvage, M; Weiss, A

    2013-01-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 0 Band 7 observations of an extremely metal-poor dwarf starburst galaxy in the Local Universe, SBS0335-052 (12+log(O/H)~7.2). With these observations, dust is detected at 870micron (ALMA Band 7), but 87% of the flux in this band is due to free-free emission from the starburst. We have compiled a spectral energy distribution (SED) of SBS0335-052 that spans almost 6 orders of magnitude in wavelength and fit it with a spherical dust shell heated by a single-age stellar population; the best-fit model gives a dust mass of (3.8+/-0.6)x10^4 Msun. We have also constructed a SED including Herschel archival data for IZw18, another low-metallicity dwarf starburst (12+log(O/H)=7.17), and fit it with a similar model to obtain a dust mass of (3.4+/-1.0)x10^2 Msun. Compared with their atomic gas mass, the dust mass of SBS0335-052 far exceeds the prediction of a linear trend of dust-to-gas mass ratio with metallicity, while IZw18 falls far below. We use gas...

  16. Formation and Evolution of the Dust in Galaxies. II. The Solar Neighbourhood

    CERN Document Server

    Piovan, L; Merlin, E; Grassi, T; Tantalo, R; Buonomo, U; Cassarà, L P

    2011-01-01

    Over the past decade a new generation of chemical models have included the dust in the treatment of the ISM. This major accomplishment has been spurred by the growing amounts of data on the highly obscured high-z Universe and the intriguing local properties of the Solar Neighbourhood (SoNE). We present here a new model able to simulate the formation and evolution of dust in the ISM. The model follows the evolution of 16 elemental species, with particular attention to those that are simultaneously present in form of gas and dust, e.g. C, N, O, Mg, Si, S, Ca and Fe. In this study we focus on the SoNe and the MW Disk as a whole which are considered as laboratories to test the physical ingredients governing the dust evolution. Infall of primordial gas, birth and death of stars, radial flows of matter between contiguous shells, presence of a central bar, star-dust emission by SNae and AGB stars, dust destruction and accretion are taken into account. The model reproduces the local depletion of the elements in the g...

  17. Exacerbation of daily cough and allergic symptoms in adult patients with chronic cough by Asian dust: A hospital-based study in Kanazawa

    Science.gov (United States)

    Higashi, Tomomi; Kambayashi, Yasuhiro; Ohkura, Noriyuki; Fujimura, Masaki; Nakanishi, Sayaka; Yoshizaki, Tomokazu; Saijoh, Kiyofumi; Hayakawa, Kazuichi; Kobayashi, Fumihisa; Michigami, Yoshimasa; Hitomi, Yoshiaki; Nakamura, Hiroyuki

    2014-11-01

    The health effects associated with Asian dust have attracted attention due to the rapid increase in the number of Asian dust events in East Asia in recent years. The aim of this study was to investigate the associations between Asian dust and daily cough, as well as allergic symptoms, in adult patients who suffer from chronic cough. We enrolled 86 adult patients from Kanazawa University Hospital, Japan, who were diagnosed with asthma, cough variant asthma, atopic cough or a combination of these conditions. From January to June 2011, subjects recorded their symptoms in a diary every day. Asian dust and non-Asian dust periods were defined according to the dust extinction coefficient, measured using the light detection and ranging (LIDAR). The daily levels of total suspended particulates, polycyclic aromatic hydrocarbons (PAHs) and coexisting factors related to allergies, such as the Japanese cedar pollen count, were measured. McNemar's test showed that there were significantly more cough-positive patients during Asian dust periods than during the non-Asian dust period (p = 0.022). In addition, during Asian dust periods when the daily levels of Japanese cedar pollen, Japanese cypress pollen and PAHs were elevated, there were significantly more patients who experienced itchy eyes than during the non-Asian dust period (p cough and allergic symptoms in adult patients with chronic cough.

  18. Carbon petrology in cometary dust

    Science.gov (United States)

    Rietmeijer, Frans J. M.

    1992-01-01

    Chondritic porous (CP) interplanetary dust particles (IDP's) are collected in the Earth's stratosphere. There exists an extensive database on major and minor element chemistry, stable isotopes, noble gas abundances and mineralogy of many CP IDP's, as well as infrared and Raman spectroscopic properties. For details on the mineralogy, chemistry and physical properties of IDP's, I refer to the reviews by Mackinnon and Rietmeijer (1987), Bradley et al. (1988) and Sandford (1987). Texture, mineralogy (Mackinnon and Rietmeijer, 1987) and chemistry (Schramm et al., 1989; Flynn and Sutton, 1991) support the notion that CP IDP's are a unique group of ultrafine-grained extraterrestiral materials that are distinct from any known meteorite class. Their fluffy, or porous, morphology suggests that CP IDP's probably endured minimal alteration by protoplanetary processes since their formation. It is generally accepted that CP IDP's are solid debris from short-period comets. The evidence is mostly circumstantial but this notion gained significant support based on the comet Halley dust data (Brownlee, 1990). In this paper, I will accept that CP IDP's are indeed cometary dust. The C/Si ratio in CP IDP's is 3.3 times higher than in CI carbonaceous chondrites (Schramm et al. 1989). The intraparticle carbon distribution is heteorogeneous (Rietmeijer and McKay, 1986). Carbon occurs both in oxidized and reduced forms. Analytical electron microscope (AEM) and Raman spectroscopic analyses have shown the presence of several carbon forms in CP IDP's but the data are scattered in the literature. Carbons in cometary CP IDP's are among the most pristine Solar System carbons available for laboratory study. Similar to a recently developed petrological model for the diversity of layer silicates in CP IDP's (Zolensky, 1991) that is useful to constrain in situ aqueous alteration in comets (Rietmeijer and Mackinnon, 1987a), I here present the first effort to develop a petrological concept of carbons

  19. Supernova olivine from cometary dust

    Science.gov (United States)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (olivine (forsterite 83) grains olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  20. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at 90 km altitude and settle to the Earths surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earths surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend 104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.

  1. Desert dust hazards: A global review

    Science.gov (United States)

    Middleton, N. J.

    2017-02-01

    Dust storms originate in many of the world's drylands and frequently present hazards to human society, both within the drylands themselves but also outside drylands due to long-range transport of aeolian sediments. Major sources of desert dust include the Sahara, the Middle East, central and eastern Asia, and parts of Australia, but dust-raising occurs all across the global drylands and, on occasion, beyond. Dust storms occur throughout the year and they vary in frequency and intensity over a number of timescales. Long-range transport of desert dust typically takes place along seasonal transport paths. Desert dust hazards are here reviewed according to the three phases of the wind erosion system: where dust is entrained, during the transport phase, and on deposition. This paper presents a synthesis of these hazards. It draws on empirical examples in physical geography, medical geology and geomorphology to discuss case studies from all over the world and in various fields. These include accelerated soil erosion in agricultural zones - where dust storms represent a severe form of accelerated soil erosion - the health effects of air pollution caused by desert aerosols via their physical, chemical and biological properties, transport accidents caused by poor visibility during desert dust events, and impacts on electricity generation and distribution. Given the importance of desert dust as a hazard to human societies, it is surprising to note that there have been relatively few attempts to assess their impact in economic terms. Existing studies in this regard are also reviewed, but the wide range of impacts discussed in this paper indicates that desert dust storms deserve more attention in this respect.

  2. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' université, F-67000 Strasbourg (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Hughes, Annie; Hony, Sacha [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Wong, Tony [University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States); Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter St., Madison, WI 53706 (United States); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Clayton, Geoffrey C. [Louisiana State University, Department of Physics and Astronomy, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching (Germany); Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Glover, Simon [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Li, Aigen, E-mail: duval@stsci.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2014-12-20

    and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H{sub 2}. Our analysis demonstrates that obtaining robust ISM masses remains a non-trivial endeavor even in the local Universe using state-of-the-art maps of thermal dust emission.

  3. Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks.

    Science.gov (United States)

    Vella, Alfred J; Chircop, Cynthia; Micallef, Tamara; Pace, Colette

    2015-07-15

    We report on the presence of perchlorate in the settleable dust of Malta, a small central Mediterranean island. Both dust fall collected directly as it precipitated from atmosphere over a period of one month and deposited indoor dust from domestic residences were studied. Perchlorate was determined by ion chromatography of water extracts of the collected dusts. Dust fall was collected from 43 towns during 2011 to 2013 and indoor dust was sampled from homes in the same localities. Perchlorate was detected in 108 of 153 samples of dust fall (71%) and in 28 of 37 indoor dust samples (76%). Detectable perchlorate in dust fall ranged from 0.52μgg(-1) to 561μgg(-1) with a median value of 6.2μgg(-1); in indoor dust, levels were from 0.79μgg(-1) to 53μgg(-1) with a median value of 7.8μgg(-1), the highest recorded anywhere to date. Statistical analysis suggested that there was no significant difference in perchlorate content of indoor dust and dust fall. Perchlorate levels in dust fall escalate during the summer in response to numerous religious feasts celebrated with fireworks and perchlorate persists at low μgg(-1) concentrations for several months beyond the summer festive period. In Malta, perchlorate derives exclusively from KClO4, imported for fireworks manufacture. Its residue in dust presents an exposure risk to the population, especially via ingestion by hand to mouth transfer. Our results suggest that wherever intensive burning of fireworks takes place, the environmental impact may be much longer lived than realised, mainly due to re-suspension and deposition of contaminated settled dust in the urban environment.

  4. Out of the Dust, A Planet is Born

    Science.gov (United States)

    2004-01-01

    In this artist's conception, a possible newfound planet spins through a clearing in a nearby star's dusty, planet-forming disc. This clearing was detected around the star CoKu Tau 4 by NASA's Spitzer Space Telescope. Astronomers believe that an orbiting massive body, like a planet, may have swept away the star's disc material, leaving a central hole. The possible planet is theorized to be at least as massive as Jupiter, and may have a similar appearance to what the giant planets in our own solar system looked like billions of years ago. A graceful ring, much like Saturn's, spins high above the planet's cloudy atmosphere. The ring is formed from countless small orbiting particles of dust and ice, leftovers from the initial gravitational collapse that formed the possible giant planet. If we were to visit a planet like this, we would have a very different view of the universe. The sky, instead of being the familiar dark expanse lit by distant stars, would be dominated by the thick disc of dust that fills this young planetary system. The view looking toward CoKu Tau 4 would be relatively clear, as the dust in the interior of the disc has fallen into the accreting star. A bright band would seem to surround the central star, caused by light scattered back by the dust in the disc. Looking away from CoKu Tau 4, the dusty disc would appear dark, blotting out light from all the stars in the sky except those which lie well above the plane of the disc.

  5. eblur/dust: a modular python approach for dust extinction and scattering

    Science.gov (United States)

    Corrales, Lia

    2016-03-01

    I will present a library of python codes -- github.com/eblur/dust -- which calculate dust scattering and extinction properties from the IR to the X-ray. The modular interface allows for custom defined dust grain size distributions, optical constants, and scattering physics. These codes are currently undergoing a major overhaul to include multiple scattering effects, parallel processing, parameterized grain size distributions beyond power law, and optical constants for different grain compositions. I use eblur/dust primarily to study dust scattering images in the X-ray, but they may be extended to applications at other wavelengths.

  6. Emergence of product of constant curvature spaces in loop quantum cosmology

    CERN Document Server

    Dadhich, Naresh; Singh, Parampreet

    2015-01-01

    The loop quantum dynamics of Kantowski-Sachs spacetime and the interior of higher genus black hole spacetimes with a cosmological constant has some peculiar features not shared by various other spacetimes in loop quantum cosmology. As in the other cases, though the quantum geometric effects resolve the physical singularity and result in a non-singular bounce, after the bounce a spacetime with small spacetime curvature does not emerge in either the subsequent backward or the forward evolution. Rather, in the asymptotic limit the spacetime manifold is a product of two constant curvature spaces. Interestingly, though the spacetime curvature of these asymptotic spacetimes is very high, their effective metric is a solution to the Einstein's field equations. Analysis of the components of the Ricci tensor shows that after the singularity resolution, the Kantowski-Sachs spacetime leads to an effective metric which can be interpreted as the `charged' Nariai, while the higher genus black hole interior can similarly be ...

  7. Dust tori in radio galaxies

    CERN Document Server

    van der Wolk, G; Peletier, R F; Pel, J W

    2009-01-01

    We investigate the validity of the quasar - radio galaxy unification scenario and determine the presence of dust tori among radio galaxies of various types. Actively accreting supermassive black holes in the centres of radio galaxies may be uncovered through their dust tori reradiating the optical and ultraviolet continuum in mid-infrared bands. Using VISIR on the VLT, we have obtained sub-arcsecond (~0.40") resolution N-band images, at a wavelength of 11.85 micron, of the nuclei of a sample of 27 radio galaxies of four types in the redshift range z=0.006-0.156. The sample consists of 8 edge-darkened, low-power Fanaroff-Riley class I (FR-I) radio galaxies, 6 edge-brightened, class II (FR-II) radio galaxies displaying low-excitation optical emission, 7 FR-IIs displaying high-excitation optical emission, and 6 FR-II broad emission line radio galaxies. Out of the sample of 27 objects, 10 nuclei are detected and several have constraining non-detections at 10 sigma sensitivities of 7 mJy. On the basis of the core ...

  8. Dust polarization and ISM turbulence

    CERN Document Server

    Caldwell, Robert R; Kamionkowski, Marc

    2016-01-01

    Perhaps the most intriguing result of Planck's dust-polarization measurements is the observation that the power in the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust powers in E and B modes. Here we show how the E- and B-mode powers depend on the detailed properties of the fluctuations in the magnetized interstellar medium. These fluctuations are classified into the slow, fast, and Alfv\\'en magnetohydrodynamic (MHD) waves, which are determined once the ratio of gas to magnetic-field pressures is specified. We also parametrize models in terms of the power amplitudes and power anisotropies for the three types of waves. We find that the observed EE/BB ratio (and its scale invariance) and positive TE correlation cannot be easily explained in terms of favored models for MHD turbulence. The observed power-law index for temperature/polarization fluctuations also disfavors MHD turbulence. We thus speculate that the 0.1--30 pc length scales probed by these ...

  9. Galaxy Zoo: Dust in Spirals

    CERN Document Server

    Masters, Karen L; Bamford, Steven; Mosleh, Moein; Lintott, Chris J; Andreescu, Dan; Edmondson, Edward M; Keel, William C; Murray, Phil; Raddick, M Jordan; Schawinski, Kevin; Slosar, Anze; Szalay, Alexander S; Thomas, Daniel; Vandenberg, Jan

    2010-01-01

    We investigate the effect of dust on spiral galaxies by measuring the inclination-dependence of optical colours for 24,276 well-resolved SDSS galaxies visually classified in Galaxy Zoo. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 magnitudes for the ugri passbands. We split the sample into "bulgy" (early-type) and "disky" (late-type) spirals using the SDSS fracdeV (or f_DeV) parameter and show that the average face-on colour of "bulgy" spirals is redder than the average edge-on colour of "disky" spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disk ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with "disky" spirals at M_r ~ -21.5 mags having the most reddening. This decrease of reddening for the most luminous spirals has not been observed before ...

  10. TWO-POP-PY: Two-population dust evolution model

    Science.gov (United States)

    Birnstiel, T.; Klahr, H.; Ercolano, B.

    2017-08-01

    TWO-POP-PY runs a two-population dust evolution model that follows the upper end of the dust size distribution and the evolution of the dust surface density profile and treats dust surface density, maximum particle size, small and large grain velocity, and fragmentation. It derives profiles that describe the dust-to-gas ratios and the dust surface density profiles well in protoplanetary disks, in addition to the radial flux by solid material rain out.

  11. Dust Charging in Electronegative SiH4 Plasmas

    Institute of Scientific and Technical Information of China (English)

    DUAN Ping; WANG Zheng-Xiong; LIU Yue; LIU Jin-Yuan; WANG Xiao-Gang

    2005-01-01

    @@ We theoretically investigate the dust charging in electronegative silane (SiH4) plasmas, taking into account the effects of UV photodetachment. It is found that UV photodetachment could significantly lower the dust negative charge and even makes dust grains be positively charged under some special conditions. In addition, the other parameters, involving the negative ion and dust number densities, electron temperature and dust radius, have great effects upon the dust charging.

  12. Wind modeling of Chihuahuan Desert dust outbreaks

    Science.gov (United States)

    Rivera Rivera, Nancy I.; Gill, Thomas E.; Gebhart, Kristi A.; Hand, Jennifer L.; Bleiweiss, Max P.; Fitzgerald, Rosa M.

    The Chihuahuan Desert region of North America is a significant source of mineral aerosols in the Western Hemisphere, and Chihuahuan Desert dust storms frequently impact the Paso del Norte (El Paso, USA/Ciudad Juarez, Mexico) metropolitan area. A statistical analysis of HYSPLIT back trajectory residence times evaluated airflow into El Paso on all days and on days with synoptic (non-convective) dust events in 2001-2005. The incremental probability—a measure of the areas most likely to have been traversed by air masses arriving at El Paso during dusty days—was only strongly positively associated with the region west-southwest of the city, a zone of known dust source areas. Focused case studies were made of major dust events on 15 April and 15 December 2003. Trajectories approached the surface and MM5 (NCAR/Penn State Mesoscale Model) wind speeds increased at locations consistent with dust sources observed in satellite imagery on those dates. Back trajectory and model analyses suggested that surface cyclones adjacent to the Chihuahuan Desert were associated with the extreme dust events, consistent with previous studies of dust storms in the Southern High Plains to the northeast. The recognition of these meteorological patterns serves as a forecast aid for prediction of dust events likely to impact the Paso del Norte.

  13. 30 CFR 56.9315 - Dust control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dust control. 56.9315 Section 56.9315 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... control. Dust shall be controlled at muck piles, material transfer points, crushers, and on haulage...

  14. Health risks due to coffee dust.

    Science.gov (United States)

    Oldenburg, Marcus; Bittner, Cordula; Baur, Xaver

    2009-08-01

    This study assessed current health risks due to occupational exposure to coffee dust. We performed a cross-sectional study in a coffee haulage company (n = 24), a coffee silo (n = 19), and a decaffeinating company (n = 17). Cross-shift and cross-week case histories of these employees as well as lung function values were recorded. During the handling of green coffee, measurements of airborne dust were conducted. The employees in these workplaces were mainly affected by erythematous and rhinoconjunctival symptoms. They occurred especially in subjects exposed to a high dust load (> 10 mg of inhalable dust per cubic meter of air; n = 28) [Pearson chi(2) test, p = 0.020 and p = 0.023]. IgE antibodies to green coffee and castor beans were detected in 3 workers and 10 workers, respectively. The majority of them (two employees and six employees, respectively) had shown respiratory symptoms during the past 12 months. The preshift lung function values were below average but were not dependent on the level of the inhalable coffee dust exposure. Employees with a coffee dust load > 10 mg/m(3) of air showed higher unspecific bronchial responsiveness more frequently than those with lower exposures. During the transshipment (especially during unloading) of green coffee, a high and clinically relevant exposure to irritative and sensitizing dust occurs. Therefore, efforts to reduce these dust exposures are generally recommended.

  15. 29 CFR 1910.1043 - Cotton dust.

    Science.gov (United States)

    2010-07-01

    ... of the instrument must have a means of correcting volumes to body temperature saturated with water... 29 Labor 6 2010-07-01 2010-07-01 false Cotton dust. 1910.1043 Section 1910.1043 Labor Regulations...), U.S. Department of Health and Human Services, or designee. Equivalent Instrument means a cotton dust...

  16. Dust Dynamics in Kelvin-Helmholtz Instabilities

    Science.gov (United States)

    Hendrix, Tom; Keppens, Rony

    2013-04-01

    The Kelvin-Helmholtz instability (KHI) is a fluid instability which arises when two contacting flows have different tangential velocities. As shearing flows are very common in all sorts of (astro)physical fluid setups, the KHI is frequently encountered. In many astrophysical fluids the gas fluid in loaded with additional dust particles. Here we study the influence of these dust particles on the initiation of the KHI, as well as the effect the KHI has on the density distribution of dust species in a range of different particle sizes. This redistribution by the instability is of importance in the formation of dust structures in astrophysical fluids. To study the effect of dust on the linear and nonlinear phase of the KHI, we use the multi-fluid dust + gas module of the MPI-AMRVAC [1] code to perform 2D and 3D simulations of KHI in setups with physical quantities relevant to astrophysical fluids. A clear dependency on dust sizes is seen, with larger dust particles displaying significantly more clumping than smaller ones.

  17. Design and Implementation of Space Dust Database

    Institute of Scientific and Technical Information of China (English)

    左维; 李春来; 徐琳; 刘剑; 刘建军

    2004-01-01

    Space debris is very dangerous to the security of on-the-orbit spacecrafts, and it is increasing in number at high speed with the expansion of human space exploration. Space debris has become a serious space pollutant noticed by many astronomers. The increase of space dust sources and the development of research on space dust urgently need space dust data sharing and exchanging. It is necessary for us to establish the Space Dust Database to realize the sharing and canonical management of the data. The Space Dust Database (SDD) management system, based on the 3-layer B/S computer mode, was designed and implemented in this paper. The system's features include significantly improved runtime efficiency, good scalability and maintainability. The Space Dust Database can provide some scientific bases for the study of the chemical constituents, mineral composition, origin and sources of space dust, but also provide excellent data services and decision-making support for the protection of space and model construction of space dust.

  18. Airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Dete

  19. Personal gravimetric dust sampling and risk assessment.

    CSIR Research Space (South Africa)

    Unsted, AD

    1996-03-01

    Full Text Available . At all the sampling sites extremely large variation in dust concentrations were measured on a day to day and shift basis. Correlation of dust concentrations between personal and stationary samples was very poor as was the correlation between quartz...

  20. Mechanical properties of dust collected by dust separators in iron ore sinter plants.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2015-01-01

    The flow-related mechanical properties of dusts from the de-dusting systems of several sinter plants were investigated. The mass median diameters of the dusts were in the range from approximately 3 to 100 µm. Also, the bulk density of the dusts varied in a wide range (approximately 400 to 2300 kg/m³). A good correlation between the bulk density and the mass median diameter for most of the dusts was found. In contrast, the angles of repose did not vary very much, only for the coarsest dust a significantly lower value was measured. The angles of internal friction as well as the wall friction angles were lower for coarse dust and higher for fine dust. The shear tests showed that both angles depend considerably on the stress level. At low stress, the angles decreased significantly with increasing values of stress, whereas at higher stress, the dependence was small or even disappeared. The only exception to this behaviour was shown by the finest dust. The flowability decreased with the particle size. The flowability categories suggested by the three flowability indicators were passable only for the coarser dusts. For the finer dusts, the flowability was overestimated by all flowability indicators.

  1. Nano-metric Dust Particles as a Hardly Detectable Component of the Interplanetary Dust Cloud

    Indian Academy of Sciences (India)

    I. Simonia; Sh. Nabiyev

    2015-09-01

    The present work introduces the hypothesis of existence of a hardly detectable component of the interplanetary dust cloud and demonstrates that such a component is a dust formation consisting of the dust particles of nano-metric dimensions. This work describes the main physical properties of such a kind of nano-dust, and its possible chemical and mineralogical peculiarities proposes new explanations related to reddening of the dynamically cold transneptunian objects on account of scattering their light by nano-dust of the hardly detectable component of the interplanetary dust cloud. We propose the relation for the coefficient of absorption by the nano-dust and provide results of the statistical analysis of the TNO color index–orbital inclinations. We also present a critical assessment of the proposed hypothesis.

  2. Inorganic analysis of dust fall and office dust in an industrial area of Jordan.

    Science.gov (United States)

    Jaradat, Qasem M; Momani, Kamal A; Jbarah, Abdel-Aziz Q; Massadeh, Adnan

    2004-10-01

    This article deals with the determination and comparison of heavy metals and water-soluble anions and cations in indoor dust and outdoor dust fall in the petroleum refinery area in Jordan. Three sampling sites were considered in the Jordanian petroleum refinery complex for the collection of dust fall and office dust samples. These samples were analyzed for water-soluble anions (F-, Cl-, Br-, NO3-, C2O4(2-), and SO4(2-)) and cations (Li+, Na+, K+, Mg2+, and Ca2+) using auto-suppressed ion chromatography. Heavy metals (Pb, Cd, Cu, Zn, Cr, Fe, and Al) were determined using flame or graphite-furnace atomic absorption. No correlations were found between heavy metal concentrations in dust fall and office dust samples, indicating different sources. High enrichment factors for heavy metals were found in dust-fall samples, except for Fe and Cr. Zinc showed the highest and cadmium the lowest flux rates.

  3. How large is the cosmic dust flux into the Earth's atmosphere?

    Science.gov (United States)

    Plane, John; Janches, Diego; Gomez-Martin, Juan Carlos; Bones, David; Diego Carrillo-Sanchez, Juan; James, Sandy; Nesvorny, David; Pokorny, Petr

    2016-07-01

    , ionization and radar detection can be used to compute the probability of detecting a specified meteoroid in the Arecibo beam; an upper limit to the cosmic dust input of 16 t d ^{-1} has been obtained from the radar observations. Underpinning this modelling work is a novel laboratory experiment at the University of Leeds, where a novel Meteor Ablation Simulator is used to study the evaporation of metals from cosmic dust particles that are flash heated to over 3000 K. Finally, rocket-borne measurements of charged meteoric smoke particles indicate that about 5 t d ^{-1} of this cosmic dust ablates in the atmosphere, and another 6 t d ^{-1} fall to the surface as cosmic spherules.

  4. Model of Image Artifacts from Dust Particles

    Science.gov (United States)

    Willson, Reg

    2008-01-01

    A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact

  5. Models of dust around Europa and Ganymede

    CERN Document Server

    Miljkovic, K; Mason, N J; Zarnecki, J C

    2012-01-01

    We use numerical models, supported by our laboratory data, to predict the dust densities of ejecta outflux at any altitude within the Hill spheres of Europa and Ganymede. The ejecta are created by micrometeoroid bombardment and five different dust populations are investigated as sources of dust around the moons. The impacting dust flux (influx) causes the ejection of a certain amount of surface material (outflux). The outflux populates the space around the moons, where a part of the ejecta escapes and the rest falls back to the surface. These models were validated against existing Galileo DDS (Dust Detector System) data collected during Europa and Ganymede flybys. Uncertainties of the input parameters and their effects on the model outcome are also included. The results of this model are important for future missions to Europa and Ganymede, such as JUICE (JUpiter ICy moon Explorer), recently selected as ESA's next large space mission to be launched in 2022.

  6. Coke dust enhances coke plant wastewater treatment.

    Science.gov (United States)

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cosmic Dust in the 21st Century

    CERN Document Server

    Greenberg, J M; Shen, Chuanjian

    2000-01-01

    The past century of interstellar dust has brought us from first ignoring it to finding that it plays an important role in the evolution of galaxies. Current observational results in our galaxy provide a complex physical and chemical evolutionary picture of interstellar dust starting with the formation of small refractory particles in stellar atmospheres to their modification in diffuse and molecular clouds and ultimately to their contribution to star forming regions. Observations of the properties of dust in very young galaxies will be an important probe of the rates of star formation in terms of the production and destruction of dust grains. Future observations of dust at high spectral and spatial resolution will provide detailed information on processes in collapsing clouds up to star formation. Space missions to comets in the next century will first study them in situ but ultimately will bring back pristine nucleus material which will contain the end product of the collapsing protosolar molecular cloud at ...

  8. Recycling of steelmaking dusts: The Radust concept

    Directory of Open Access Journals (Sweden)

    Jalkanen H.

    2005-01-01

    Full Text Available Recycling of dusts and other wastes of steelmaking is becoming to a necessity of two reasons: due to high contents of iron oxides dusts are valuable raw material for steelmaking and tightening environmental legislation makes the landfill disposal of wastes more expensive. Fine dust fractions from various stages of steelmaking route contain besides iron and carbon heavy metals especially zinc and lead and heavy hydrocarbons that are acceptable neither for landfill disposal nor for recycling back to processes without any spe4cial treatments. Some theoretical and practical aspects concerning high temperature treatments of steelmaking dusts for removal of hazardous components and production of clean high iron raw material for recycling is discussed in this paper. The Radust technology developed at Koverhar steelwork in Finland for treatment of the most problematic fine fractions of blast furnace and oxygen converter dusts is shortly presented and discussed.

  9. Dust in the 55 Cancri planetary system

    CERN Document Server

    Jayawardhana, R; Greaves, J S; Dent, W R F; Marcy, G W; Hartmann, L W; Fazio, G G; Jayawardhana, Ray; Holland, Wayne S.; Greaves, Jane S.; Dent, William R. F.; Marcy, Geoffrey W.; Hartmann, Lee W.; Fazio, Giovanni G.

    2000-01-01

    The presence of debris disks around $\\sim$ 1-Gyr-old main sequence stars suggests that an appreciable amount of dust may persist even in mature planetary systems. Here we report the detection of dust emission from 55 Cancri, a star with one, or possibly two, planetary companions detected through radial velocity measurements. Our observations at 850$\\mu$m and 450$\\mu$m imply a dust mass of 0.0008-0.005 Earth masses, somewhat higher than that in the the Kuiper Belt of our solar system. The estimated temperature of the dust grains and a simple model fit both indicate a central disk hole of at least 10 AU in radius. Thus, the region where the planets are detected is likely to be significantly depleted of dust. Our results suggest that far-infrared and sub-millimeter observations are powerful tools for probing the outer regions of extrasolar planetary systems.

  10. Ionization and Dust Charging in Protoplanetary Disks

    CERN Document Server

    Ivlev, A V; Caselli, P

    2016-01-01

    Ionization-recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field and the development of magnetorotational instability in protoplanetary disks. We present a self-consistent analytical model which allows us to exactly calculate abundances of charged species in dusty gas, in the regime where the dust-phase recombination dominates over the gas-phase recombination. The model is employed to verify applicability of a conventional approximation of low dust charges in protoplanetary disks, and to discuss the implications for the dust coagulation and the development of the "dead zone" in the disk. Furthermore, the importance of mutually consistent models for the ionization and dust evolution is addressed: These processes are coupled via several mechanisms operating in the disk, and therefore their interplay can be crucial for the ultimate ...

  11. [Wood dust as inhalative noxious agent].

    Science.gov (United States)

    Kirsten, D; Liebetrau, G; Meister, W

    1985-01-01

    Wood dust is known as a cause of asthma and chronic bronchitis. From 1979 to 1983 we observed 115 patients with chronic lung diseases, who were exposed to wood dust during many years. We found an irritative pathogenesis in 101 patients with asthma or bronchitis. Twenty nine patients had got a positive skin test, especially with makoré, beech, koto, ash, pine. The inhalation test was positive in 7 of them. The occupational etiology was verified in 5 patients. Besides wood dust itself chemicals for wood protection or wood adhesives can have importance in the pathogenesis of these diseases. Fourteen patients had got alveolitis or lung fibrosis after wood-dust exposition. In each case we found precipitating antibodies against moulds, which could be cultivated from wood dust to which the patients were exposed.

  12. Mesospheric dust observations during the MAXIDUSTY campaign

    Science.gov (United States)

    Antonsen, Tarjei; Havnes, Ove; Fredriksen, Åshild; Friedrich, Martin; Sternovsky, Zoltan; Plane, John; Hartquist, Tom; Olsen, Sveinung; Eilertsen, Yngve; Trondsen, Espen; Mann, Ingrid; Hedin, Jonas; Gumbel, Jörg; Moen, Jøran; Latteck, Ralph; Baumgarten, Gerd; Höffner, Josef; Williams, Bifford; Hoppe, Ulf-Peter; Karlberg, Jan-Ove

    2017-04-01

    The MAXIDUSTY rocket payloads, launched from Andøya June 30 and July 8 2016, were equipped with dust impact detectors aiming to characterize mesospheric dust charge state, mass distribution of impact fragments and NLC/PMSE structure. One of the main scientific objectives for the campaign was to confirm that material of meteoric origin is abundant inside the icy mesospheric dust particles. The rockets were launched simultaneously with PMSE and NLC (MAXIDUSTY-1) and PMSE (MAXIDUSTY-1B) respectively, and radar measurements were made coincident with the rocket flight path. We report here on the initial results from the rocket probes and remote soundings, with emphasis on the dust impact detector results. Results from the Multiple Dust Detector (MUDD) confirm that NLC ice particles probably have a relatively high content of meteoric smoke particles with a filling factor of up to several percent. Comparisons of the DUSTY faraday bucket and PMSE show that there is no simple correlation between the two.

  13. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    Science.gov (United States)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  14. Release of monomers from composite dust.

    Science.gov (United States)

    Cokic, S M; Duca, R C; Godderis, L; Hoet, P H; Seo, J W; Van Meerbeek, B; Van Landuyt, K L

    2017-05-01

    Dental personnel are more at risk to develop asthmatic disease, but the exact reason is so far unknown. During abrasive procedures, dental personnel are exposed to nano-sized dust particles released from dental composite. The aim of this study was to investigate whether respirable composite dust may also release monomers. Respirable (composite dust was collected and the release of methacrylate monomers and Bisphenol A (BPA) in water and ethanol was evaluated by liquid chromatography/mass spectroscopy (LC-MS/MS). The dust was ultra-morphologically and chemically analyzed by transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM-EDS). LC-MS/MS analysis revealed that, irrespective of the type of composite, the respirable fraction of composite dust may release relatively high concentrations of unpolymerized methacrylate monomers, both in water and ethanol. Higher release was observed in ethanol. The endocrine disruptor BPA also emanated from the composite dust particles. TEM showed that most particles were nano-sized, although particle size ranged between 6nm and 5μm with a mode value between 12 and 39nm. Most particles consisted of several filler particles in resin matrix, although single nano-filler particles could also be observed. Elemental analysis by TEM-EDS proved that the particles collected on the filters originated from the dental composites. Theoretically, composite dust may function as a vehicle to transport monomers deeply into the respiratory system. The results of this study may shed another light on the increasing incidence of respiratory disease among dental personnel, and more care should be taken to prevent inhalation of composite dust. Special care should be taken to prevent inhalation of composite dust, as the dust particles may release methacrylate monomers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ocular toxicity of authentic lunar dust

    Directory of Open Access Journals (Sweden)

    Meyers Valerie E

    2012-07-01

    Full Text Available Abstract Background Dust exposure is a well-known occupational hazard for terrestrial workers and astronauts alike and will continue to be a concern as humankind pursues exploration and habitation of objects beyond Earth. Humankind’s limited exploration experience with the Apollo Program indicates that exposure to dust will be unavoidable. Therefore, NASA must assess potential toxicity and recommend appropriate mitigation measures to ensure that explorers are adequately protected. Visual acuity is critical during exploration activities and operations aboard spacecraft. Therefore, the present research was performed to ascertain the ocular toxicity of authentic lunar dust. Methods Small (mean particle diameter = 2.9 ± 1.0 μm, reactive lunar dust particles were produced by grinding bulk dust under ultrapure nitrogen conditions. Chemical reactivity and cytotoxicity testing were performed using the commercially available EpiOcularTM assay. Subsequent in vivo Draize testing utilized a larger size fraction of unground lunar dust that is more relevant to ocular exposures (particles Results In vitro testing indicated minimal irritancy potential based on the time required to reduce cell viability by 50% (ET50. Follow-up testing using the Draize standard protocol confirmed that the lunar dust was minimally irritating. Minor irritation of the upper eyelids was noted at the 1-hour observation point, but these effects resolved within 24 hours. In addition, no corneal scratching was observed using fluorescein stain. Conclusions Low-titanium mare lunar dust is minimally irritating to the eyes and is considered a nuisance dust for ocular exposure. No special precautions are recommended to protect against ocular exposures, but fully shielded goggles may be used if dust becomes a nuisance.

  16. What can the occult do for you? Understanding dust geometry in other galaxies from overlapping galaxy pairs.

    Science.gov (United States)

    Holwerda, Benne Willem

    2015-08-01

    Interstellar dust is still the dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. My STARSMOG program uses HST observation of occulting galaxy pairs to accurately map the distribution of dust in foreground galaxies in fine (interstellar dust grains and re-emitted at longer wavelengths. To model this accurately, one needs to know the distribution and detailed geometry of dust in galaxies. The travel of light through an inhomogeneous medium is radically different from the smooth one and depends strongly on the medium’s inner structure. Secondly, the model for our Universe today includes dark energy, inferred from the distances to supernova, which themselves may be dimmed by intervening dust. An accurate model for the dust extinction in supernova host galaxies is critical to evolve this technique to the next level of accuracy needed to map dark energy. And finally, the fine-scale maps of dust extinction in occuling galaxies can be used to trace the molecular cloud sizes and the role of turbulence in the ISM of these disks. Furthermore, Integral Field Unit observations of such pairs will map the effective extinction curve in these occulting galaxies, disentangling the role of fine-scale geometry and grain composition on these curves.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: the dust geometry, a probability function of the amount of dimming as a function of galaxy type, its dependence on wavelength and evolution of all these properties with cosmic time (from more distant pairs).

  17. The Interstellar Gas Dust Streams and Seeds of Life

    Science.gov (United States)

    Oleg, Khavroshkin; Vladislav, Tsyplakov

    systems solar system and interacting with lunar surface. Characteristic of binary stars systems and picked out periods of lunar seismicity are publish. Genesis of Life. If the solar system is reached by the gas-dust streams from binary stars, then all bodes in space have particles of star dust on their surfaces and/or atmospheres. Solar system has made 8-10 revolutions around galactic center and thus captured dust from many thousands stars. As these stars caught in turn dust particles from other stars too then probably our solar system has mainly dust samples from all objects of our galaxy. The age of galaxy and old stars is approximately more than15 billion years and that of the Earth is only 4, 5 Gyr. Genesis of Life for the Earth has not more than 3 billion years. Thus comparative analysis of simple balance of these times shows that the genesis of Life for Earth is the result of galactic processes/objects and not of the solar system of course. Peculiarity of Genesis. After formation of the solar system all old and new captured dust particles are first accumulated in the Oort cloud and then they are carried by comets to planets. The modern state of the Earth exists for more than 3 billion years, so possibilities for appearing Life were always. These processes had happened a few times during this period of the Earth state. The sizes of the universe and galaxies at t0 original organic molecules and thus the hilarity of the existing biological world. Some types of radiations functionally could replace enzymes during formation of self-reproducing molecular structures. Man is used only 10 % of the genetic information. It indicates the common total surplus of a genetic material of biosphere of the Earth. Probably, at the moment t0 in unique conditions and with sufficient time for creation the universal galactic gene was created which different elements are capable to create biospheres on planets with the widest set of external conditions and for various stages of development

  18. Noncommutative Black Holes

    CERN Document Server

    Bastos, C; Dias, N C; Prata, J N

    2010-01-01

    One considers phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model to study the interior of a Schwarzschild black hole. It is shown that the potential function of the corresponding quantum cosmology problem has a local minimum. One deduces the thermodynamics and show that the Hawking temperature and entropy exhibit an explicit dependence on the momentum noncommutativity regime and it is shown that the wave function vanishes in this limit.

  19. A quantum cosmological model in Ho\\v{r}ava-Lifshitz gravity

    CERN Document Server

    Obregón, O

    2013-01-01

    A Wheeler-DeWitt equation for the Kantowski-Sachs model is derived within the framework of the minimal quantum gravity theory proposed by Ho\\v{r}ava. We study the solution to this equation in the ultraviolet limit for the specific case where the {\\lambda} parameter of the theory takes its relativistic value {\\lambda} = 1. It is observed that the minisuperspace variables switch their role compared with their usual infrared (General Relativity) behavior.

  20. Towards Noncommutative Quantum Black Holes

    CERN Document Server

    Lopez-Dominguez, J C; Ramírez, C; Sabido, M

    2006-01-01

    In this paper we study noncommutative black holes. We use a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Trough the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular we calculate the Hawking's temperature and entropy for the Noncommutative Schwarzschild black hole.

  1. Power-law mass inflation in Einstein-Yang-Mills-Higgs black holes

    CERN Document Server

    Galtsov, D V

    1997-01-01

    Analytical formulas are presented describing a generic singularity inside the static spherically symmetric black holes in the SU(2) Einstein-Yang-Mills-Higgs theories with triplet or doublet Higgs field. The singularity is spacelike and exhibits a `power-low mass inflation'. Alternatively this asymptotic may be interpreted as a pointlike singularity with a non-vanishing shear in the Kantowski-Sachs anisotropic cosmology.

  2. Noncommutative black holes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-DomInguez, J C [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); Obregon, O [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico); RamIrez, C [Facultad de Ciencias FIsico Matematicas, Universidad Autonoma de Puebla, PO Box 1364, 72000 Puebla (Mexico); Sabido, M [Instituto de Fisica de la Universidad de Guanajuato PO Box E-143, 37150 Leoen Gto. (Mexico)

    2007-11-15

    We study noncommutative black holes, by using a diffeomorphism between the Schwarzschild black hole and the Kantowski-Sachs cosmological model, which is generalized to noncommutative minisuperspace. Through the use of the Feynman-Hibbs procedure we are able to study the thermodynamics of the black hole, in particular, we calculate Hawking's temperature and entropy for the 'noncommutative' Schwarzschild black hole.

  3. Noncommutative Black Holes and the Singularity Problem

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.pt, E-mail: orfeu.bertolami@fc.up.pt, E-mail: ncdias@mail.telepac.pt, E-mail: joao.prata@mail.telepac.pt [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2011-09-22

    A phase-space noncommutativity in the context of a Kantowski-Sachs cosmological model is considered to study the interior of a Schwarzschild black hole. Due to the divergence of the probability of finding the black hole at the singularity from a canonical noncommutativity, one considers a non-canonical noncommutativity. It is shown that this more involved type of noncommutativity removes the problem of the singularity in a Schwarzschild black hole.

  4. Noncanonical Phase-Space Noncommutative Black Holes

    CERN Document Server

    Bastos, Catarina; Dias, Nuno; Prata, João

    2012-01-01

    In this contribution we present a noncanonical phase-space noncommutative (NC) extension of a Kantowski Sachs (KS) cosmological model to describe the interior of a Schwarzschild black hole (BH). We evaluate the thermodynamical quantities inside this NC Schwarzschild BH and compare with the well known quantities. We find that for a NCBH the temperature and entropy have the same mass dependence as the Hawking quantities for a Schwarzschild BH.

  5. Changing scene highlights III. [Iowa State University

    Energy Technology Data Exchange (ETDEWEB)

    Fassel, V. A.; Harl, Neil E.; Legvold, Sam; Ruedenberg, Klaus; Swenson, Clayton A.; Burnet, George; Fisher, Ray W.; Gschneidner, Karl A.; Hansen, Robert S.; Kliewer, Kenneth L.; Wildman, Ruth

    1979-01-01

    The research programs in progress at Ames Laboratory, Iowa State University, are reviewed: hydrogen (storage), materials, catalysts, TRISTAN (their laboratory isotope separator), coal preparation, coal classification, land reclamation (after surface mining, nitinol, neutron radiography, grain dust explosions, biomass conversion, etc). (LTC)

  6. AEROSE 2004 - An Interdisciplinary Atmosphere-Ocean Saharan Dust Expedition

    Science.gov (United States)

    Clemente-Colón, P.

    2004-05-01

    The NOAA Center for Atmospheric Sciences (NCAS) is sponsoring a Trans-Atlantic Saharan Dust AERosol and Ocean Science Expedition (AEROSE) aboard the NOAA Ship Ronald H. Brown in March 2004. The fundamental purpose of this aerosol cruise is to study the impacts and microphysical evolution of Saharan dust aerosol as it is transported across the Atlantic Ocean. The mission encompasses both, atmospheric and oceanographic components. Participating institutions include Howard University, NCAS lead institution, the University of Puerto Rico at Mayagüez, the Canary Institute of Marine Sciences, the Spanish Institute of Oceanography, the Laboratory of Atmospheric Physics Siméon Fongang, the University of Miami Rosenstiel School of Marine and Atmospheric Science, the University of Washington Applied Physics Laboratory, NASA Goddard Space Flight Center, the NOAA Cooperative Institute for Meteorological Satellite Studies at the University of Wisconsin-Madison, NASA Jet Propulsion Laboratory, and the NOAA/NESDIS Office of Research and Applications. This collaboration provides unique atmospheric and oceanic observations across the North Tropical Atlantic during eastward and westward tracks during a period of nearly one month. Characterization of microphysical properties of Saharan dust aerosol is done trough direct observations of mass, size, and particle number distributions, chemical composition, spatial distributions, and air chemistry. Aerosol radiative properties are studied through a suite of sensors that include a Multi-Angle Absorption Photometer (MAAP), the Marine-Atmosphere Emitted Radiance Interferometer (M-AERI), sunphotometers, and an assortment of other radiometers. Characterization of atmospheric conditions is done through a combination of over 250 radiosonde and ozonesonde launches at 3 to 5 hour intervals during the duration of the cruise and in coordination with satellite overpasses. AEROSE is also supporting the collection of bio-optics and oceanographic

  7. Water and organics in interplanetary dust particles

    Science.gov (United States)

    Bradley, John P.

    2015-08-01

    Interplanetary dust particles (IDPs) and larger micrometeorites (MMs) impinge on the upper atmosphere where they decelerate at ~90 km altitude and settle to the Earth’s surface. Comets and asteroids are the major sources and the flux, 30,000-40,000 tons/yr, is comparable to the mass of larger meteorites impacting the Earth’s surface. The sedimentary record suggests that the flux was much higher on the early Earth. The chondritic porous (CP) subset of IDPs together with their larger counterparts, ultracarbonaceous micrometeorites (UCMMs), appear to be unique among known meteoritic materials in that they are composed almost exclusively of anhydrous minerals, some of them contain >> 50% organic carbon by volume as well as the highest abundances of presolar silicate grains including GEMS. D/H and 15N abundances implicate the Oort Cloud or presolar molecular cloud as likely sources of the organic carbon. Prior to atmospheric entry, IDPs and MMs spend ~104-105 year lifetimes in solar orbit where their surfaces develop amorphous space weathered rims from exposure to the solar wind (SW). Similar rims are observed on lunar soil grains and on asteroid Itokawa regolith grains. Using valence electron energy-loss spectroscopy (VEELS) we have detected radiolytic water in the rims on IDPs formed by the interaction of solar wind protons with oxygen in silicate minerals. Therefore, IDPs and MMs continuously deliver both water and organics to the earth and other terrestrial planets. The interaction of protons with oxygen-rich minerals to form water is a universal process.Affiliations:a University of Hawaii at Manoa, Hawaii Institute of Geophysics and Planetology, 1680 East-West Road, Honolulu, HI 96822, USA.b National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.c Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.d Department of Materials Science & Engineering, University of California

  8. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R. B.; Tratt, D. M.; Schichtel, B. A.; Falke, S. R.; Li, F.; Jaffe, D.; Gassó, S.; Gill, T.; Laulainen, N. S.; Lu, F.; Reheis, M. C.; Chun, Y.; Westphal, D.; Holben, B. N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G. C.; McClain, C.; Frouin, R. J.; Merrill, J.; Dubois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W. E.; Sassen, K.; Sugimoto, N.; Malm, W. C.

    2001-08-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 μg/m3 with local peaks >100 μg/m3. The dust mass mean diameter was 2-3 μm, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  9. Asian dust events of April 1998

    Science.gov (United States)

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  10. An improved dust emission model with insights into the global dust cycle's climate sensitivity

    Science.gov (United States)

    Kok, J. F.; Mahowald, N. M.; Albani, S.; Fratini, G.; Gillies, J. A.; Ishizuka, M.; Leys, J. F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R. S.; Ward, D. S.; Zobeck, T. M.

    2014-03-01

    Simulations of the global dust cycle and its interactions with a changing Earth system are hindered by the empirical nature of dust emission parameterizations in climate models. Here we take a step towards improving global dust cycle simulations by presenting a physically-based dust emission model. The resulting dust flux parameterization depends only on the wind friction speed and the soil's threshold friction speed, and can therefore be readily implemented into climate models. We show that our parameterization's functional form is supported by a compilation of quality-controlled vertical dust flux measurements, and that it better reproduces these measurements than existing parameterizations. Both our theory and measurements indicate that many climate models underestimate the dust flux's sensitivity to soil erodibility. This finding can explain why dust cycle simulations in many models are improved by using an empirical preferential sources function that shifts dust emissions towards the most erodible regions. In fact, implementing our parameterization in a climate model produces even better agreement against aerosol optical depth measurements than simulations that use such a source function. These results indicate that the need to use a source function is at least partially eliminated by the additional physics accounted for by our parameterization. Since soil erodibility is affected by climate changes, our results further suggest that many models have underestimated the climate sensitivity of the global dust cycle.

  11. Dust in the planetary system: Dust interactions in space plasmas of the solar system

    Science.gov (United States)

    Mann, Ingrid; Meyer-Vernet, Nicole; Czechowski, Andrzej

    2014-03-01

    Cosmic dust particles are small solid objects observed in the solar planetary system and in many astronomical objects like the surrounding of stars, the interstellar and even the intergalactic medium. In the solar system the dust is best observed and most often found within the region of the orbits of terrestrial planets where the dust interactions and dynamics are observed directly from spacecraft. Dust is observed in space near Earth and also enters the atmosphere of the Earth where it takes part in physical and chemical processes. Hence space offers a laboratory to study dust-plasma interactions and dust dynamics. A recent example is the observation of nanodust of sizes smaller than 10 nm. We outline the theoretical considerations on which our knowledge of dust electric charges in space plasmas are founded. We discuss the dynamics of the dust particles and show how the small charged particles are accelerated by the solar wind that carries a magnetic field. Finally, as examples for the space observation of cosmic dust interactions, we describe the first detection of fast nanodust in the solar wind near Earth orbit and the first bi-static observations of PMSE, the radar echoes that are observed in the Earth ionosphere in the presence of charged dust.

  12. Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks.

    Science.gov (United States)

    Williams, Ross H; McGee, David; Kinsley, Christopher W; Ridley, David A; Hu, Shineng; Fedorov, Alexey; Tal, Irit; Murray, Richard W; deMenocal, Peter B

    2016-11-01

    Saharan mineral dust exported over the tropical North Atlantic is thought to have significant impacts on regional climate and ecosystems, but limited data exist documenting past changes in long-range dust transport. This data gap limits investigations of the role of Saharan dust in past climate change, in particular during the mid-Holocene, when climate models consistently underestimate the intensification of the West African monsoon documented by paleorecords. We present reconstructions of African dust deposition in sediments from the Bahamas and the tropical North Atlantic spanning the last 23,000 years. Both sites show early and mid-Holocene dust fluxes 40 to 50% lower than recent values and maximum dust fluxes during the deglaciation, demonstrating agreement with records from the northwest African margin. These quantitative estimates of trans-Atlantic dust transport offer important constraints on past changes in dust-related radiative and biogeochemical impacts. Using idealized climate model experiments to investigate the response to reductions in Saharan dust's radiative forcing over the tropical North Atlantic, we find that small (0.15°C) dust-related increases in regional sea surface temperatures are sufficient to cause significant northward shifts in the Atlantic Intertropical Convergence Zone, increased precipitation in the western Sahel and Sahara, and reductions in easterly and northeasterly winds over dust source regions. Our results suggest that the amplifying feedback of dust on sea surface temperatures and regional climate may be significant and that accurate simulation of dust's radiative effects is likely essential to improving model representations of past and future precipitation variations in North Africa.

  13. Dust grains from the heart of supernovae

    Science.gov (United States)

    Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.

    2016-03-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the

  14. Distribution of dust from Kuiper belt objects

    CERN Document Server

    Gorkavyi, N N; Taidakova, T; Mather, J C; Gorkavyi, Nick N.; Ozernoy, Leonid M.; Taidakova, Tanya; Mather, John C.

    2000-01-01

    (Abridged) Using an efficient computational approach, we have reconstructed the structure of the dust cloud in the Solar system between 0.5 and 100 AU produced by the Kuiper belt objects. Our simulations offer a 3-D physical model of the `kuiperoidal' dust cloud based on the distribution of 280 dust particle trajectories produced by 100 known Kuiper belt objects ; the resulting 3-D grid consists of $1.9\\times 10^6$ cells containing $1.2\\times 10^{11}$ particle positions. The following processes that influence the dust particle dynamics are taken into account: 1) gravitational scattering on the eight planets (neglecting Pluto); 2) planetary resonances; 3) radiation pressure; and 4) the Poynting-Robertson (P-R) and solar wind drags. We find the dust distribution highly non-uniform: there is a minimum in the kuiperoidal dust between Mars and Jupiter, after which both the column and number densities of kuiperoidal dust sharply increase with heliocentric distance between 5 and 10 AU, and then form a plateau betwee...

  15. Subregional inversion of North African dust sources

    Science.gov (United States)

    Escribano, Jerónimo; Boucher, Olivier; Chevallier, Frédéric; Huneeus, Nicolás.

    2016-07-01

    The emission of mineral dust aerosols in arid and semiarid regions is a complex process whose representation in atmospheric models remains crude, due to insufficient knowledge about the aerosol lifting process itself, the lack of global data on soil characteristics, and the impossibility for the models to resolve the fine-scale variability in the wind field that drives some of the dust events. As a result, there are large uncertainties in the total emission flux of mineral dust, its natural variability at various timescales, and the possible contribution from anthropogenic land use changes. This work aims for estimating dust emissions and reduces their uncertainty over the Sahara desert and the Arabian Peninsula—the largest dust source region of the globe. We use a data assimilation approach to constrain dust emission fluxes at a monthly resolution for 18 subregions. The Moderate Resolution Imaging Spectroradiometer satellite-derived aerosol optical depth is assimilated in a regional configuration of a general circulation model coupled to an aerosol model. We describe this data assimilation system and apply it for 1 year, resulting in a total mineral dust emissions flux estimate of 2900 Tg yr-1 over the Sahara desert and the Arabian Peninsula for the year 2006. The analysis field of aerosol optical depth shows an improved fit relative to independent Aerosol Robotic Network measurements as compared to the model prior field.

  16. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  17. Galaxy Simulation with Dust Formation and Destruction

    CERN Document Server

    Aoyama, Shohei; Shimizu, Ikkoh; Hirashita, Hiroyuki; Todoroki, Keita; Choi, Jun-Hwan; Nagamine, Kentaro

    2016-01-01

    We perform smoothed particle hydrodynamics (SPH) simulations of an isolated galaxy with a new treatment for dust formation and destruction. To this aim, we treat dust and metal production self-consistently with star formation and supernova feedback. For dust, we consider a simplified model of grain size distribution by representing the entire range of grain sizes with large and small grains. We include dust production in stellar ejecta, dust destruction by supernova (SN) shocks, grain growth by accretion and coagulation, and grain disruption by shattering. We find that the assumption of fixed dust-to-metal mass ratio becomes no longer valid when the galaxy is older than 0.2 Gyr, at which point the grain growth by accretion starts to contribute to the nonlinear rise of dust-to-gas ratio. As expected in our previous one-zone model, shattering triggers grain growth by accretion since it increases the total surface area of grains. Coagulation becomes significant when the galaxy age is greater than $\\sim$ 1 Gyr: a...

  18. Cold dust clumps in dynamically hot gas

    CERN Document Server

    Kim, S; Madden, S C; Meixner, M; Hony, S; Panuzzo, P; Sauvage, M; Roman-Duval, J; Gordon, K D; Engelbracht, C; Israel, F P; Misselt, K; Okumura, K; Li, A; Bolatto, A; Skibba, R; Galliano, F; Matsuura, M; Bernard, J -P; Bot, C; Galametz, M; Hughes, A; Kawamura, A; Onishi, T; Paradis, D; Poglitsch, A; Reach, W T; Robitaille, T; Rubio, M; Tielens, A G G M

    2010-01-01

    We present clumps of dust emission from Herschel observations of the Large Magellanic Cloud (LMC) and their physical and statistical properties. We catalog cloud features seen in the dust emission from Herschel observations of the LMC, the Magellanic type irregular galaxy closest to the Milky Way, and compare these features with HI catalogs from the ATCA+Parkes HI survey. Using an automated cloud-finding algorithm, we identify clouds and clumps of dust emission and examine the cumulative mass distribution of the detected dust clouds. The mass of cold dust is determined from physical parameters that we derive by performing spectral energy distribution fits to 250, 350, and 500 micronm emission from SPIRE observations using DUSTY and GRASIL radiative transfer calculation with dust grain size distributions for graphite/silicate in low-metallicity extragalactic environments. The dust cloud mass spectrum follows a power law distribution with an exponent of gamma=-1.8 for clumps larger than 400 solar mass and is si...

  19. Electric Field Generation in Martian Dust Devils

    Science.gov (United States)

    Barth, Erika L.; Farrell, William M.; Rafkin, Scot C. R.

    2015-01-01

    Terrestrial dust devils are known to generate electric fields from the vertical separation of charged dust particles. The particles present within the dust devils on Mars may also be subject to similar charging processes and so likely contribute to electric field generation there as well. However, to date, no Marsin situ instrumentation has been deployed to measure electric field strength. In order to explore the electric environment of dust devils on Mars, the triboelectric dust charging physics from the MacroscopicTriboelectric Simulation (MTS) code has been coupled to the Mars Regional Atmospheric ModelingSystem (MRAMS). Using this model, we examine how macroscopic electric fields are generated within martian dust disturbances and attempt to quantify the time evolution of the electrodynamical system.Electric fields peak for several minutes within the dust devil simulations. The magnitude of the electric field is a strong function of the size of the particles present, the average charge on the particles and the number of particles lifted. Varying these parameters results in peak electric fields between tens of millivolts per meter and tens of kilovolts per meter.

  20. THE MEASUREMENT AND DISTRIBUTION OF WOOD DUST

    Directory of Open Access Journals (Sweden)

    Andrea Rosario Proto

    2010-03-01

    Full Text Available In Italy, the woodworking industry presents many issues in terms of occupational health and safety. This study on exposure to wood dust could contribute to the realization of a prevention model in order to limit exposure to carcinogenic agents to the worker. The sampling methodology illustrated the analysis of dust emissions from the woodworking machinery in operation throughout the various processing cycles. The quantitative and qualitative assessment of exposure was performed using two different methodologies. The levels of wood dust were determined according to EN indications and sampling was conducted using IOM and Cyclon personal samplers. The qualitative research of wood dust was performed using an advanced laser air particle counter. This allowed the number of particles present to be counted in real time. The results obtained allowed for an accurate assessment of the quality of the dust emitted inside the workplace during the various processing phases. The study highlighted the distribution of air particles within the different size classes, the exact number of both thin and ultra-thin dusts, and confirmed the high concentration of thin dust particles which can be very harmful to humans.

  1. Dust Sources of Saturn's E Ring

    Science.gov (United States)

    Spahn, F.; Schmidt, J.; Albers, N.; Kempf, S.; Krivov, A. V.; Sremcevic, M.

    The recent detection of a dust plume at Enceladus' south pole sheds new light on the origin of the E ring of Saturn. The particles probably condense from gas vents escaping from a system of cracks covering the south pole that appears unusually hot in the Cassini infrared experiments. The main fraction of the E ring dust is created in these gas vents. Still, significant amounts of dust should originate from grains ejected by hypervelocity impacts of E ring particles (ERPs), or alternatively, of interplanetary dust grains (IDPs) on the Saturnian moons embedded in the E ring. We estimate the contributions of impactor -ejecta created dust at these various satellites in the ring, relative to the production rate of grains in the plume at Enceladus. Furthermore, we compare the amount of dust created by both projectile families - ERPs and IDPs - and predict that one can clearly discriminate between the ejecta raised by either projectile families in the data of the Cassini dust detector (CDA) collected at close flybys with the moons embedded in the E ring.

  2. The evolution of the dust-to-metals ratio in high-redshift galaxies probed by GRB-DLAs

    CERN Document Server

    Wiseman, P; Bolmer, J; Krühler, T; Yates, R M; Greiner, J; Fynbo, J P U

    2016-01-01

    Context: Several issues regarding the nature of dust at high redshift remain unresolved: its composition, its production and growth mechanisms, and its effect on background sources. Aims: This paper aims to provide a more accurate relation between dust depletion levels and dust-to-metals ratio (DTM), and to use the DTM to investigate the origin and evolution of dust in the high redshift Universe via GRB-DLAs. Methods: We use absorption-line measured metal column densities for a total of 19 GRB-DLAs, including five new GRB afterglow spectra from VLT/X-shooter. We use the latest linear models to calculate the dust depletion strength factor in each DLA. Using this we calculate total dust and metal column densities to determine a DTM. We explore the evolution of DTM with metallicity, and compare this to previous trends in DTM measured with different methods. Results: We find significant dust depletion in 16 of our 19 GRB-DLAs, yet 18 of the 19 have a DTM significantly lower than the Milky Way. We find that DTM is...

  3. Evolution of grain size distribution in high-redshift dusty quasars: Integrating large amounts of dust and unusual extinction curves

    CERN Document Server

    Nozawa, Takaya; Hirashita, Hiroyuki; Takeuchi, Tsutomu T

    2014-01-01

    The discoveries of huge amounts of dust and unusual extinction curves in high-redshift quasars (z > 4) cast challenging issues on the origin and properties of dust in the early universe. In this Letter, we investigate the evolutions of dust content and extinction curve in a high-z quasar, based on the dust evolution model taking account of grain size distribution. First, we show that the Milky-Way extinction curve is reproduced by introducing a moderate fraction (~0.2) of dense molecular-cloud phases in the interstellar medium for a graphite-silicate dust model. Then we show that the peculier extinction curves in high-z quasars can be explained by taking a much higher molecular-cloud fraction (>0.5), which leads to more efficient grain growth and coagulation, and by assuming amorphous carbon instead of graphite. The large dust content in high-z quasar hosts is also found to be a natural consequence of the enhanced dust growth. These results indicate that grain growth and coagulation in molecular clouds are ke...

  4. Pebble Bed Reactor Dust Production Model

    Energy Technology Data Exchange (ETDEWEB)

    Abderrafi M. Ougouag; Joshua J. Cogliati

    2008-09-01

    The operation of pebble bed reactors, including fuel circulation, can generate graphite dust, which in turn could be a concern for internal components; and to the near field in the remote event of a break in the coolant circuits. The design of the reactor system must, therefore, take the dust into account and the operation must include contingencies for dust removal and for mitigation of potential releases. Such planning requires a proper assessment of the dust inventory. This paper presents a predictive model of dust generation in an operating pebble bed with recirculating fuel. In this preliminary work the production model is based on the use of the assumption of proportionality between the dust production and the normal force and distance traveled. The model developed in this work uses the slip distances and the inter-pebble forces computed by the authors’ PEBBLES. The code, based on the discrete element method, simulates the relevant static and kinetic friction interactions between the pebbles as well as the recirculation of the pebbles through the reactor vessel. The interaction between pebbles and walls of the reactor vat is treated using the same approach. The amount of dust produced is proportional to the wear coefficient for adhesive wear (taken from literature) and to the slip volume, the product of the contact area and the slip distance. The paper will compare the predicted volume with the measured production rates. The simulation tallies the dust production based on the location of creation. Two peak production zones from intra pebble forces are predicted within the bed. The first zone is located near the pebble inlet chute due to the speed of the dropping pebbles. The second peak zone occurs lower in the reactor with increased pebble contact force due to the weight of supported pebbles. This paper presents the first use of a Discrete Element Method simulation of pebble bed dust production.

  5. Characterization of African dust over southern Italy

    Science.gov (United States)

    Blanco, A.; Dee Tomasi, F.; Filippo, E.; Manno, D.; Perrone, M. R.; Serra, A.; Tafuro, A. M.; Tepore, A.

    2003-12-01

    Dust samples from rainfall residues have been collected in southeast Italy (40º 20' N, 18º 6' E) during dust outbreaks occurred from April to June 2002 to characterize morphological and elemental particle composition by different techniques, and investigate the dependence of particle properties on source regions. Four-day analytical back trajectories and satellite images have been used to infer source regions of the investigated dust samples. It has been found that the TOMS absorbing aerosol index was in the range 0.7-2.2 over Southern Italy when samples have been collected. The particle-size and -shape analysis by a scanning electron microscope (SEM) has revealed either that the particle-diameter distribution was between 0.3 and 30 mm with median-diameter values between 1.7-2.4 mm, and that the particles were characterized by a roundness factor varying from 0.8 to 2.5. The infrared transmission spectra have allowed recognizing that all dust samples contained a significant amount of illite. The X-ray energy dispersive (EDX) measurements have revealed that the Al/Si ratio of the transported dust varies from 0.41 to 0.50, and that the Al/Si, Ca/Al, K/Ca, and Fe/Ca ratios differ according to source regions and therefore can be used as indicators of dust source regions. Indeed, it has been found that dust samples with larger Ca/Al and Si/Al ratios and lower Fe/Ca and K/Ca ratios, have been collected along dust events with a source region in northwestern Sahara. On the contrary, the samples collected along dust events with the origin mainly in Chad, Niger, Algeria and Lybia were characterized by larger Fe/Ca and K/Ca ratios.

  6. Characterization of African dust over southern Italy

    Directory of Open Access Journals (Sweden)

    A. Blanco

    2003-01-01

    Full Text Available Dust samples from rainfall residues have been collected in southeast Italy (40º 20' N, 18º 6' E during dust outbreaks occurred from April to June 2002 to characterize morphological and elemental particle composition by different techniques, and investigate the dependence of particle properties on source regions. Four-day analytical back trajectories and satellite images have been used to infer source regions of the investigated dust samples. It has been found that the TOMS absorbing aerosol index was in the range 0.7-2.2 over Southern Italy when samples have been collected. The particle-size and -shape analysis by a scanning electron microscope (SEM has revealed either that the particle-diameter distribution was between 0.3 and 30 mm with median-diameter values between 1.7-2.4 mm, and that the particles were characterized by a roundness factor varying from 0.8 to 2.5. The infrared transmission spectra have allowed recognizing that all dust samples contained a significant amount of illite. The X-ray energy dispersive (EDX measurements have revealed that the Al/Si ratio of the transported dust varies from 0.41 to 0.50, and that the Al/Si, Ca/Al, K/Ca, and Fe/Ca ratios differ according to source regions and therefore can be used as indicators of dust source regions. Indeed, it has been found that dust samples with larger Ca/Al and Si/Al ratios and lower Fe/Ca and K/Ca ratios, have been collected along dust events with a source region in northwestern Sahara. On the contrary, the samples collected along dust events with the origin mainly in Chad, Niger, Algeria and Lybia were characterized by larger Fe/Ca and K/Ca ratios.

  7. Modeling the effects of dust evolution on the SEDs of galaxies of different morphological type

    CERN Document Server

    Schurer, A; Silva, L; Pipino, A; Granato, G L; Matteucci, F; Maiolino, R

    2009-01-01

    We present photometric evolution models of galaxies, in which, in addition to the stellar component, the effects of an evolving dusty interstellar medium have been included with particular care. Starting from the work of Calura, Pipino & Matteucci (2008), in which chemical evolution models have been used to study the evolution of both the gas and dust components of the interstellar medium in the solar neighbourhood, elliptical and irregular galaxies, it has been possible to combine these models with a spectrophotometric stellar code that includes dust reprocessing (GRASIL) (Silva et al. 1998) to analyse the evolution of the spectral energy distributions (SED) of these galaxies. We test our models against observed SEDs both in the local universe and at high redshift and use them to predict how the percentage of reprocessed starlight evolves for each type of galaxy. The importance of following the dust evolution is investigated by comparing our results with those obtained by adopting simple assumptions to t...

  8. Multidimensional Global Monopole and Nonsingular Cosmology

    CERN Document Server

    Bronnikov, K A; Bronnikov, Kirill A.; Meierovich, Boris E.

    2003-01-01

    We consider a spherically symmetric global monopole in general relativity in $(D=d+2)$-dimensional spacetime. The monopole is shown to be asymptotically flat up to a solid angle defect in case $\\gamma < d-1$, where $\\gamma$ is a parameter characterizing the gravitational field strength. In the range $d-1< \\gamma < 2d(d+1)/(d+2)$ the monopole space-time contains a cosmological horizon. Outside the horizon the metric corresponds to a cosmological model of Kantowski-Sachs type, where spatial sections have the topology ${\\R\\times \\S}^d$. In the important case when the horizon is far from the monopole core, the temporal evolution of the Kantowski-Sachs metric is described analytically. The Kantowski-Sachs space-time contains a subspace with a $(d+1)$-dimensional Friedmann-Robertson-Walker metric, and its possible cosmological application is discussed. Some numerical estimations in case $d=3$ are made showing that this class of nonsingular cosmologies can be viable. Other results, generalizing those known ...

  9. Convective dust clouds in a complex plasma

    CERN Document Server

    Mitic, S; Ivlev, A V; Hoefner, H; Thoma, M H; Zhdanov, S; Morfill, G E

    2008-01-01

    The plasma is generated in a low frequency glow discharge within an elongated glass tube oriented vertically. The dust particles added to the plasma are confined above the heater and form counter-rotating clouds close to the tube centre. The shape of the clouds and the velocity field of the conveying dust particles are determined. The forces acting on the particles are calculated. It is shown that convection of the dust is affected by the convective gas motion which is triggered, in turn, by thermal creep of the gas along the inhomogeneously heated walls of the tube.

  10. Dusts in ITER: diagnostics and removal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rosanvallon, S.; Grisolia, C.; Worms, J.; Hong, S.H. [Association Euratom-CEA Cadarache (DRFC/SIPP), 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Delaporte, P. [Universite de la Mediterranee, LP3, UMR 6182 CNRS, 13 - Marseille (France); Onofrie, J.F. [University of Provence, IUSTI-CNRS, 13 - Marseille (France); Counsell, G. [Association Euratom/UKAEA, Culham Science Centre, Abingdon (United Kingdom); Winter, J. [lnstitute of Experimental Physics 2, Bochum (Germany)

    2007-07-01

    Full text of publication follows: Dusts will be present in ITER and will represent an issue in terms of safety. As a matter of facts, dusts will be created by interaction of the plasma with the in-vessel materials and will be thus made of carbon, beryllium and tungsten. They will be activated, tritiated and chemically toxic. Safety limits have been set in order to reduce these dust hazards. The first set of limits is based on a limitation of the radiological impact on environment in case of dust spreading. Tungsten has been used as representative of ITER dust because it is the most radiologically hazardous of the plasma facing materials. Thus the mobilizable dust inside the vacuum vessel has to be limited to few hundreds of kilograms of carbon, beryllium and tungsten. The objective of the second set of limits is to ensure that the dust chemical reactivity is adequately controlled. Indeed this reactivity is greatly enhanced on the hot surfaces of the divertor in case of steam ingress, oxidation of the metals, beryllium in particular, leading to hydrogen production and possible explosion. The dusts on the hot surfaces of the divertor should not exceed few kilograms of carbon, beryllium and tungsten. Some calculations have shown that the dusts limits inside the vacuum vessel could be reached in about 500 plasma pulses, and in any case before the assumed replacement of the divertor for planned maintenance. Thus techniques for dust diagnostics and removal need to be developed for ITER to ensure that the set of safety limits are fulfilled. To minimize the impact on the machine operation time, these techniques have to be elaborated considering the ITER vacuum vessel constraints if entering the machine (magnetic field, radiation, vacuum and temperature) or to be non invasive. This paper will present a strategy that could be developed at different periods of the machine operation (during/between pulses and during short or long maintenance periods) in order to monitor the

  11. Point discharge current measurements beneath dust devils

    Science.gov (United States)

    Lorenz, Ralph D.; Neakrase, Lynn D. V.; Anderson, John P.; Harrison, R. Giles; Nicoll, Keri A.

    2016-12-01

    We document for the first time observations of point discharge currents under dust devils using a novel compact sensor deployed in summer 2016 at the USDA-ARS Jornada Experimental Range in New Mexico, USA. A consistent signature is noted in about a dozen events seen over 40 days, with a positive current ramping up towards closest approach, switching to a decaying negative current as the devil recedes. The currents, induced on a small wire about 10 cm above the ground, correlate with dust devil intensity (pressure drop) and dust loading, and reached several hundred picoAmps.

  12. Dust Extinction in Compact Planetary Nebulae

    OpenAIRE

    Lee, TH; Kwok, S.

    2005-01-01

    The effects of dust extinction on the departure from axisymmetry in the morphology of planetary nebulae (PNs) are investigated through a comparison of the radio free-free emission and hydrogen recombination line images. The dust extinction maps from five compact PNs are derived using high-resolution (̃0"1) Hα and radio maps of the HST and VLA. These extinction maps are then analyzed by an ellipsoidal shell ionization model including the effects of dust extinction to infer the nebulae's intrin...

  13. Radiation and Dynamics of Dust Particle

    CERN Document Server

    Klacka, J

    2002-01-01

    Relativistically covariant form of equation of motion for arbitrarily shaped dust particle (neutral in charge) under the action of electromagnetic radiation is derived -- emission, scattering and absorption of radiation is considered. The result is presented in the form of optical quantities used in optics of dust particles. The obtained equation of motion represents a generalization of the Poynting-Robertson (P-R) effect, which is standardly used in orbital evolution of dust particles in astrophysics. Simultaneous action of electromagnetic radiation and gravitational fields of the central body -- star -- on the motion of the particle is discussed.

  14. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  15. Saharan dust - a carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    Directory of Open Access Journals (Sweden)

    V.H Garrison

    2006-12-01

    Full Text Available An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI, Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs, trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde and the Caribbean (USVI and Trinidad & Tobago. Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs and polycyclic aromatic hydrocarbons (PAHs and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable micro-organisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable micro-organisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions. Rev. Biol. Trop. 54 (Suppl. 3: 9-21. Epub 2007 Jan. 15.

  16. Phthalates in dormitory and house dust of northern Chinese cities: Occurrence, human exposure, and risk assessment.

    Science.gov (United States)

    Li, Hai-Ling; Song, Wei-Wei; Zhang, Zi-Feng; Ma, Wan-Li; Gao, Chong-Jing; Li, Jia; Huo, Chun-Yan; Mohammed, Mohammed O A; Liu, Li-Yan; Kannan, Kurunthachalam; Li, Yi-Fan

    2016-09-15

    Phthalates are widely used chemicals in household products, which severely affect human health. However, there were limited studies emphasized on young adults' exposure to phthalates in dormitories. In this study, seven phthalates were extracted from indoor dust that collected in university dormitories in Harbin, Shenyang, and Baoding, in the north of China. Dust samples were also collected in houses in Harbin for comparison. The total concentrations of phthalates in dormitory dust in Harbin and Shenyang samples were significantly higher than those in Baoding samples. The total geometric mean concentration of phthalates in dormitory dust in Harbin was lower than in house dust. Di-(2-ethylhexyl) phthalate (DEHP) was the most abundant phthalate in both dormitory and house dust. The daily intakes of the total phthalates, carcinogenic risk (CR) of DEHP, hazard index (HI) of di-isobutyl phthalate (DiBP), dibutyl phthalate (DBP), and DEHP were estimated, the median values for all students in dormitories were lower than adults who live in the houses. Monte Carlo simulation was applied to predict the human exposure risk of phthalates. HI of DiBP, DBP, and DEHP was predicted according to the reference doses (RfD) provided by the United States Environmental Protection Agency (U.S.EPA) and the reference doses for anti-androgenicity (RfD AA) developed by Kortenkamp and Faust. The results indicated that the risks of some students had exceeded the limitation, however, the measured results were not exceeded the limitation. Risk quotients (RQ) of DEHP were predicted based on China specific No Significant Risk Level (NSRL) and Maximum Allowable Dose Level (MADL). The predicted results of CR and RQ of DEHP suggested that DEHP could pose a health risk through intake of indoor dust.

  17. An improved radiance simulation for hyperspectral infrared remote sensing of Asian dust

    Science.gov (United States)

    Han, Hyo-Jin; Sohn, Byung-Ju; Huang, Hung-Lung; Weisz, Elisabeth; Saunders, Roger; Takamura, Tamio

    2012-05-01

    The fast Radiative Transfer for Television Infrared Observation Satellite (TIROS) Operational Vertical Sounder (RTTOV) (Version 9.3) model was used for simulating the effect of East Asian dust on top of atmosphere radiances. The size distribution of Asian dust was retrieved from nine years of sky radiometer measurements at Dunhunag located in the east of Taklimakan desert of China. The default surface emissivity in RTTOV was replaced by the geographically and monthly varying data from University of Wisconsin (UW)/Cooperative Institute for Meteorological Satellite Studies (CIMSS) infrared surface spectral emissivities. For a given size distribution and surface emissivity, the effects of three refractive indices of Optical Properties of Aerosols and Clouds (OPAC) mineral aerosol, dust-like aerosol by Volz, and High Resolution Transmission (HITRAN) quartz were examined. Results indicate that the specification of surface emissivity using geographically and monthly varying UW/CIMSS data significantly improved the performance of the simulation of AIRS brightness temperature (TB) difference (BTD) between window channels, in comparison to the results from the use of default emissivity value of 0.98 in the RTTOV model, i.e., increase of the correlation coefficient from 0.1 to 0.83 for BTD between 8.9 μm and 11 μm, and from 0.31 to 0.61 for BTD between 3.8 μm and 11 μm. On the other hand, the use of Asian dust size distributions contributed to a general reduction of radiance biases over dust-sensitive window bands. A further improvement of the TB simulations has been made by considering the Volz refractive index, suggesting that hyperspectral infrared remote sensing of Asian dust can be improved using the proper optical properties of the dust and surface emissivity.

  18. Coma dust environment observed by GIADA during the Perihelion of 67P/Churyumov-Gerasimenko.

    Science.gov (United States)

    Rotundi, A.; Della Corte, V.; Fulle, M.; Ferrari, M.; Ivanovski, S. L.; Sordini, R.; Mazzotta Epifani, E.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Zakharov, V.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Gruen, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zarnecki, J.; Cosi, M.; Giovane, F.; Gustafson, B.; Herranz, M.; Jeronimo, J. M.; Leese, M.; Lopez-Jimenez, A.; Morales, R.

    2015-12-01

    GIADA (Grain Impact Analyzer and Dust Accumulator) is an in-situ instrument mounted onboard Rosetta monitoring the dust environment of comet 67P/Churyumov-Gerasimenko. GIADA is composed of 3 sub-systems: 1) the Grain Detection System, based on particle detection through light scattering; 2) the Impact Sensor, giving momentum measurement; 3) the Micro-Balances System, constituted of 5 quartz crystal microbalances, giving cumulative deposited dust. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the speed distribution of dust particles emitted from the comet nucleus. We will present the coma dust environment as observed by GIADA during the perihelion phase of the Rosetta space mission. Despite the large distance from the nucleus, more than 200 km, GIADA was able to detect temporal and spatial variation of dust density distribution. Specific high dust spatial density sectors of the coma have been identified and their evolution during the perihelion phase was studied. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site.

  19. Three-dimensional kinetic modeling of the neutral and charged dust in the coma of Rosetta’s target comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tenishev, Valeriy; Borovikov, Dmitry; Combi, Michael R.; Fougere, Nicolas; Huang, Zhenguang; Bieler, Andre; Hansen, Kenneth; Toth, Gabor; Jia, Xianzhe; Shou, Yinsi; Gombosi, Tamas; Rubin, Martin; Rotundi, Alessandra; Della Corte, Vincenzo

    2015-11-01

    Rosetta is the first mission that escorts a comet along its way through the Solar System for an extended amount of time. As a result, the target of the mission, comet 67P/Churyumov-Gerasimenko, is an object of great scientific interest.Dust ejected from the nucleus is entrained into the coma by the escaping gas. Interacting with the ambient plasma the dust particles are charged by the electron and ion collection currents. The photo and secondary emission currents can also change the particle charge. The resulting Lorentz force together with the gas drag, gravity, and radiation pressure define the dust particle trajectories.At altitudes comparable to those of the Rosetta trajectory, direction of a dust particle velocity can be significantly different from that in the innermost vicinity of the coma near the nucleus. At such altitudes the angular distribution of the dust grains velocity has a pronounced tail-like structure. This is consistent with Rosetta’s GIADA dust observations showing dust grains moving in the anti-sunward direction.Here, we present results of our model study of the neutral and charged dust in the coma of comet 67P/Churyumov-Gerasimenko, combining the University of Michigan AMPS kinetic particle model and the BATSRUS MHD model. Trajectories of dust particles within the observable size range of Rosetta’s GIADA dust instrument have been calculated accounting for the radiation pressure, gas drag, the nucleus gravity, the Lorentz force, and the effect of the nucleus rotation. The dust grain electric charge is calculated by balancing the collection currents at the grain’s location. We present angular velocity distribution maps of these charged dust grains for a few locations representative of Rosetta's trajectory around the comet.This work was supported by US Rosetta project contracts JPL-1266313 and JPL-1266314 and NASA Planetary Atmospheres grant NNX14AG84G

  20. Can dust emission mechanisms be determined from field measurements?

    Science.gov (United States)

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  1. 30 CFR 33.33 - Allowable limits of dust concentration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Allowable limits of dust concentration. 33.33... MINES Test Requirements § 33.33 Allowable limits of dust concentration. (a) The concentration of dust determined by the control sample shall be subtracted from the average concentration of dust determined by the...

  2. 30 CFR 33.32 - Determination of dust concentration.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of dust concentration. 33.32... MINES Test Requirements § 33.32 Determination of dust concentration. (a) Concentrations of airborne dust... microscopic technique shall be employed in determining concentrations of dust in terms of millions of...

  3. Dust-acoustic solitary waves in dusty plasma with variable dust charge

    CERN Document Server

    Forozani, Gh

    2011-01-01

    In this article we are going to consider dust acoustic wave in dusty plasma whose constituents are inertial negative charged dust particles, Boltzmann distributed electrons and non-thermal distributed ions with variable dust charge. Using reductive perturbation method, we have obtained Korteweg-de Veries (kdv) and modified kdv(mkdv) equations. A Sagdeev potential for the system and stability conditions for solitonic solution are also derived.

  4. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    CERN Document Server

    Camps, Peter; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-01-01

    The EAGLE cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A di...

  5. Saharan dust transport and deposition towards the Tropical Northern Atlantic

    Directory of Open Access Journals (Sweden)

    K. Schepanski

    2008-08-01

    Full Text Available We present a study of Saharan dust export towards the tropical North Atlantic using the regional dust emission, transport and deposition model LM-MUSCAT. Horizontal and vertical distribution of dust optical thickness, concentration, and dry and wet deposition rates are used to describe seasonality of dust export and deposition towards the eastern Atlantic for three exemplary months in different seasons. Deposition rates strongly depend on the vertical dust distribution, which differs with seasons. Furthermore the contribution of dust originating from the Bodélé Depression to Saharan dust over the Atlantic is investigated. A maximum contribution of Bodélé dust transported towards the Cape Verde Islands is evident in winter when the Bodélé source area is most active and dominant with regard activation frequency and dust emission. Limitations of using satellite retrievals to estimate dust deposition are highlighted.

  6. The morphological structure of leaves and the dust-retaining capability of afforested plants in urban Guangzhou, South China.

    Science.gov (United States)

    Liu, Lu; Guan, Dongsheng; Peart, M R

    2012-09-01

    loadings of the four urban-type areas. The highest amount of dust accumulation was associated with the industrial area in which shipyard and steelworks occurred whilst the lowest dust accumulation was associated with the grounds of the University which was the control area.

  7. Indoor Air Quality in Brazilian Universities

    OpenAIRE

    Sonia R. Jurado; Bankoff, Antônia D. P.; Andrea Sanchez

    2014-01-01

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceed...

  8. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    Science.gov (United States)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-04-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES (Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  9. Interstellar dust. Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft.

    Science.gov (United States)

    Westphal, Andrew J; Stroud, Rhonda M; Bechtel, Hans A; Brenker, Frank E; Butterworth, Anna L; Flynn, George J; Frank, David R; Gainsforth, Zack; Hillier, Jon K; Postberg, Frank; Simionovici, Alexandre S; Sterken, Veerle J; Nittler, Larry R; Allen, Carlton; Anderson, David; Ansari, Asna; Bajt, Saša; Bastien, Ron K; Bassim, Nabil; Bridges, John; Brownlee, Donald E; Burchell, Mark; Burghammer, Manfred; Changela, Hitesh; Cloetens, Peter; Davis, Andrew M; Doll, Ryan; Floss, Christine; Grün, Eberhard; Heck, Philipp R; Hoppe, Peter; Hudson, Bruce; Huth, Joachim; Kearsley, Anton; King, Ashley J; Lai, Barry; Leitner, Jan; Lemelle, Laurence; Leonard, Ariel; Leroux, Hugues; Lettieri, Robert; Marchant, William; Ogliore, Ryan; Ong, Wei Jia; Price, Mark C; Sandford, Scott A; Sans Tresseras, Juan-Angel; Schmitz, Sylvia; Schoonjans, Tom; Schreiber, Kate; Silversmit, Geert; Solé, Vicente A; Srama, Ralf; Stadermann, Frank; Stephan, Thomas; Stodolna, Julien; Sutton, Stephen; Trieloff, Mario; Tsou, Peter; Tyliszczak, Tolek; Vekemans, Bart; Vincze, Laszlo; Von Korff, Joshua; Wordsworth, Naomi; Zevin, Daniel; Zolensky, Michael E

    2014-08-15

    Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

  10. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    Science.gov (United States)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  11. The Marriage of Gas and Dust

    Science.gov (United States)

    Price, D. J.; Laibe, G.

    2015-10-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  12. The marriage of gas and dust

    CERN Document Server

    Price, Daniel

    2014-01-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  13. Dust Mitigation for the Lunar Surface Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The lunar surface is, to a large extent, covered with a dust layer several meters thick. Known as lunar regolith, it has been produced by meteorite impacts since the...

  14. Predicting the Mineral Composition of Dust Aerosols

    Science.gov (United States)

    Perlwitz, J. P.; Perez, C.; Miller, R. L.; Rodriguez, S.

    2012-12-01

    Models of the soil (''mineral'') dust aerosol cycle, embedded in climate and Earth system models, are essential tools for understanding the causal relationships and feedbacks between dust and climate. Many soil dust schemes in Earth system models use a simplified representation of soil dust aerosols, where the soil dust is distinguished by size bins or size distribution modes, with a globally uniform representation of the mineralogical composition of the particles. Although models with such a simplified assumption about the properties of soil dust particles have already significantly contributed to the understanding of the role of soil dust aerosols in climate, this is a limitation for a number of reasons: 1. The response of clouds and the large-scale circulation depends on the radiative properties like the single scattering albedo, which should vary with the mineral composition of the source region; 2. Chemical processes at the surface of the soil dust particles that form sulfate and nitrate coatings depend on the dust mineral composition; 3. The availability of soil dust minerals as cloud condensation nuclei depends on their hygroscopicity, which in turn depends on the mineral composition; 4. Fertilization of phytoplankton with soluble iron, a process that influences ocean carbon uptake, depends upon mineral types. We present a new version of the soil dust scheme in the NASA GISS Earth System ModelE, which takes into account the mineral composition of the soil dust particles. Soil dust aerosols are represented as a mixture of externally and internally mixed minerals, such as Illite, Kaolinite, Smectite, Calcite, Iron(hydr)oxide, Quartz, Feldspar, and Gypsum, as well as aggregates between Iron(hydr)oxide and each of the minerals. We test two approaches to constrain the mineral composition of the soil dust particles against data from measurements published in literature as well as measurements from Izaña (Tenerife). The comparison between modeled and measured data

  15. UV extinction properties of carina nebular dust

    Science.gov (United States)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  16. High-Fidelity Lunar Dust Simulant Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The severity of the lunar dust problems encountered during the Apollo missions were consistently underestimated by ground tests, illustrating the need to develop...

  17. Global coherence of dust density waves

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  18. Planetary science: Cometary dust under the microscope

    Science.gov (United States)

    Kolokolova, Ludmilla

    2016-09-01

    The Rosetta spacecraft made history by successfully orbiting a comet. Data from the craft now reveal the structure of the comet's dust particles, shedding light on the processes that form planetary systems. See Letter p.73

  19. From Dust Bowl to Conservation Tillage.

    Science.gov (United States)

    McDonald, Dale

    1992-01-01

    Examines the causes of the dust bowl and recent changes in tillage practices in Oklahoma and other prairie states that conserve soil. Briefly discusses the success of programs that target school children for conservation education. (LZ)

  20. Stochastic Models of Molecule Formation on Dust

    Science.gov (United States)

    Charnley, Steven; Wirstroem, Eva

    2011-01-01

    We will present new theoretical models for the formation of molecules on dust. The growth of ice mantles and their layered structure is accounted for and compared directly to observations through simulation of the expected ice absorption spectra

  1. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  2. Waste-moulding dusts modified with polyelectrolytes

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2010-04-01

    Full Text Available In the article described problems of the influence of advanced oxidizing process, the supersonic tooling of waste - moulding dusts and their modification with polyelectrolytes, on the technological proprieties of the moulding sands prepared with their participation.Physicochemical characterization of the used polyelectrolytes PSS (poli 4-styreno sodium sulfonate and PEI (poli etyleno imine, in theaspect of their modificatory influences on the waste - moulding dust, was described. Defined the influence of adsorption proprieties ofthe polyelectrolyte PEI on the surface of small parts of the waste - dust, on technological proprieties of the sandmix. Ascertained theprofitable influence of this electrolyte on mechanical proprieties of the moulding sands, that is to say the increase in value of thecompression strength (about 10% and tensile strenght (about 13%, comparatively to analogous proprieties of the moulding sandsprepared with the participation of the not modified waste- dust.

  3. Organic matter in comets and cometary dust.

    Science.gov (United States)

    Llorca, Jordi

    2005-03-01

    Comets are primitive conglomerates of the solar system containing a mixture of frozen gases, refractory grains, and carbonaceous particles rich in biogenic elements. The dramatic display of comets is mostly caused by a cloud of micrometer-sized dust particles that leave the comet nucleus when frozen gases sublimate as they approach the Sun. Analyses of cometary dust captured in the stratosphere together with data obtained from space missions to comets have revealed the presence of a great variety of organic molecules. Since substantial amounts of cometary dust were gently deposited on Earth, their organic content could have played a major role in prebiotic processes prior to the appearance of microorganisms. This review discusses the description and implications for life of the organic content of comets and cometary dust.

  4. Shock Heated Dust in Young Supernova Remnants

    Science.gov (United States)

    Braun, R.; Strom, R. G.; van der Laan, H.; Greidanus, H.

    Infrared emission in young supernova remnants is interpreted as coming from shock-heated dust. Using models and data from other wavelength regimes, many physical parameters of the remnants can accurately be derived.

  5. Alpha self-absorption in monazite dusts.

    Science.gov (United States)

    Terry, K W

    1995-10-01

    Measurements have been made of the self-absorption effects in monazite of alpha particles of the 232Th decay series. Samples of six size fractions of monazite were deposited on filters at different dust concentrations and then the gross alpha activity determined. Self-absorption effects were negligible in monazite particles up to 8 microns diameter provided dust concentrations were less than 1 mg cm-2. Significant self-absorption effects occurred for both larger particle sizes and higher dust loadings. As reported AMAD values in the mineral sands industry range up to 15 microns, which is equivalent to an actual mean size of 8 microns diameter monazite particle, minimal self-absorption occurs in samples collected in air monitoring programs conducted in the industry provided that dust concentrations on the filters are less than 1 mg cm-2.

  6. Nanotube Electrodes for Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Dust mitigation is critical to the survivability of vehicle and infrastructure components and systems and to the safety of astronauts during EVAs and planetary...

  7. Can dust coagulation trigger streaming instability?

    CERN Document Server

    Drazkowska, Joanna

    2014-01-01

    Streaming instability can be a very efficient way of overcoming growth and drift barriers to planetesimal formation. However, it was shown that strong clumping, which leads to planetesimal formation, requires a considerable number of large grains. State-of-the-art streaming instability models do not take into account realistic size distributions resulting from the collisional evolution of dust. We investigate whether a sufficient quantity of large aggregates can be produced by sticking and what the interplay of dust coagulation and planetesimal formation is. We develop a semi-analytical prescription of planetesimal formation by streaming instability and implement it in our dust coagulation code based on the Monte Carlo algorithm with the representative particles approach. We find that planetesimal formation by streaming instability may preferentially work outside the snow line, where sticky icy aggregates are present. The efficiency of the process depends strongly on local dust abundance and radial pressure g...

  8. Obliquely propagating dust-density waves

    Science.gov (United States)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-02-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.

  9. Nanotube Electrodes for Dust Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Dust mitigation is critical to the survivability of vehicle and infrastructure components and systems and to the safety of astronauts during EVAs and planetary...

  10. Compression Behaviour of Porous Dust Agglomerates

    CERN Document Server

    Seizinger, Alexander; Kley, Wilhelm

    2012-01-01

    The early planetesimal growth proceeds through a sequence of sticking collisions of dust agglomerates. Very uncertain is still the relative velocity regime in which growth rather than destruction can take place. The outcome of a collision depends on the bulk properties of the porous dust agglomerates. Continuum models of dust agglomerates require a set of material parameters that are often difficult to obtain from laboratory experiments. Here, we aim at determining those parameters from ab-initio molecular dynamics simulations. Our goal is to improveon the existing model that describe the interaction of individual monomers. We use a molecular dynamics approach featuring a detailed micro-physical model of the interaction of spherical grains. The model includes normal forces, rolling, twisting and sliding between the dust grains. We present a new treatment of wall-particle interaction that allows us to perform customized simulations that directly correspond to laboratory experiments. We find that the existing i...

  11. Chemical composition of interstellar dust

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    Study of chemical evolution of interstellar medium is well recognized to be a challenging task. Interstellar medium (ISM) is a rich reservoir of complex molecules. So far, around 180 gas phase molecules and around 20 molecular species on the interstellar dust have been detected in various regions of ISM, especially in regions of star formation. In last decade, it was well established that gas phase reactions alone cannot explain molecular abundances in ISM. Chemical reactions which occur on interstellar dust grains are essential to explain formation of several molecules especially hydrogenated species including simplest and most abundant molecule H2. Interstellar grains provide surface for accreted species to meet and react. Therefore, an understanding of formation of molecules on grain surfaces is of prime importance. We concentrate mainly on water, methanol, carbon dioxide, which constitute nearly 90% of the grain mantle. These molecules are detected on grain surface due to their strong absorption bands arising out of multiple vibrational modes. Water is the most abundant species (with a surface coverage >60% ) on a grain in dense interstellar medium. CO2 is second most abundant molecule in interstellar medium with an abundance of around 20% with respect to H2O. However, this can vary from cloud to cloud. In clouds like W 33A it could be even less than 5% of water abundance. The next most abundant molecule is CO, which is well studied ice with an abundance varying between 2%\\ to 15% of water. Methanol (CH3OH) is also very abundant having abundance 2% to 30% of water. Measurement of water deuterium fractionation is a relevant tool for understanding mechanisms of water formation and evolution from prestellar phase to formation of planets and comets. We are also considering deuterated species in our simulation. We use Monte Carlo method (considering multilayer regime) to mimic the exact scenario. We study chemical evolution of interstellar grain mantle by varying

  12. The Dust Accelerator Facility at CCLDAS

    Science.gov (United States)

    Shu, A. J.; Collette, A.; Drake, K.; Gruen, E.; Horanyi, M.; Leblanc, S.; Munsat, T.; Northway, P.; Robertson, S. H.; Srama, R.; Sternovsky, Z.; Thomas, E.; Wagner, M.; Colorado CenterLunar Dust; Atmospheric Studies

    2010-12-01

    At the Colorado Center for Lunar Dust and Atmospheric Science (CCLDAS) we are in the process of assembling a 3MV macroscopic (~1um) dust particle accelerator. The acceleration unit is being made by the National Electrostatics Corporation (NEC). The accelerator consists of a pelletron generator and potential rings encased in an enclosure held at 6 atm of SF6. A pulsed dust source is used to inject particles into the accelerator. Here we describe advancements in dust accelerator technology at CCLDAS to allow more functionality and ease of use, focusing primarily on dust source control, and the capability to select a precise range in dust mass and velocity. Previously, the dust source was controlled by long plastic rods turning potentiometers inside the SF6 environment providing little to no feedback and repeatability. We describe a fiber optic control system that allows full control of the pulse characteristics being sent to the dust source using a LabVIEW control program to increase usability. An electrostatic Einzel lens is being designed using the ion-optics code SIMION to determine the properties of the electrodes needed for the optimum focusing of the dust beam. Our simulations studies indicate that the dust beam can be directed into a 0.5mm diameter spot. Our planned experiments require a high degree of control over particles size, speed, charge and other characteristics. In order to ensure that only particles of the desired characteristics are allowed to pass into the target chamber, two deflection plates are used to eliminate unwanted particles from the beam. Further simulations are being done to determine the possibility of bending the beamline to allow active selection of particles. The current design of the selection unit uses nuclear accelerator techniques to determine the velocity and charge of each particle and digital timing and logic to choose particles that will be allowed to pass. This requires a high signal to noise ratio due to the need for a well

  13. LADEE Search for a Dust Exosphere: A Historical Perspective

    Science.gov (United States)

    Glenar, D. A.; Stubbs, T. J.; Elphic, R.

    2014-01-01

    The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.

  14. Clearing the Martian air - The troubled history of dust storms

    Science.gov (United States)

    Martin, L. J.

    1984-03-01

    This note is an attempt to resolve some misconceptions regarding the historical record of the Martian atmospheric phenomena referred to as 'dust storms,' but often called yellow storms, yellow clouds, planetwide dust storms, global dust storms, great dust storms, etc. The known frequency of planet-encircling storms will be specifically addressed. Better knowledge of the sizes, frequencies, and locations of Martian dust storms is needed for atmospheric modeling and for future mission planning.

  15. Allergy to house dust mites and asthma.

    Science.gov (United States)

    Milián, Evelyn; Díaz, Ana María

    2004-03-01

    House dust mites have been shown to be important sources of indoor allergens associated with asthma and other allergic conditions. Asthma is a chronic respiratory disease that affects millions of people worldwide, and numerous scientific studies have shown that the prevalence of asthma is increasing. The most common dust mite species around the world include Dermatophagoides pteronyssinus (Dp), Dermatophagoides farinae (Df), Euroglyphus maynei (Em) and Blomia tropicalis (Bt). Over the past three decades, many important allergens from these species have been identified and characterized at the molecular level. The biological function of several house dust mite allergens has been elucidated, with many of them showing enzymatic activity. However, Bt allergens remain the least studied, even though this mite is very common in tropical and subtropical regions of the world, including Puerto Rico. Therefore, it is very important to include Bt in diagnostic and therapeutic strategies for house dust mite induced allergy and asthma, particularly in areas where Bt exposure and sensitization is high. Recombinant DNA technology, as well as other molecular biology and immunological techniques, have played a fundamental role in advances towards a better understanding of the biology of house dust mites and their role in allergic diseases. This kind of study also contributes to the understanding of the complex immunologic mechanisms involved in allergic reactions. The development of effective diagnostic and therapeutic approaches depends on the continuity of research of house dust mite allergens. The objectives of this review are to describe the most important aspects of house dust mite allergy and to acquaint the scientific community with the latest findings pertaining to house dust mite allergens, particularly those derived from Bt.

  16. Waste and dust utilisation in shaft furnaces

    OpenAIRE

    Senk, D.; Babich, A.; Gudenau, H. W.

    2005-01-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC) has been studied when injecting into shaft furnaces. Following sha...

  17. Cosmic Dust in the 21st Century

    OpenAIRE

    2000-01-01

    The past century of interstellar dust has brought us from first ignoring it to finding that it plays an important role in the evolution of galaxies. Current observational results in our galaxy provide a complex physical and chemical evolutionary picture of interstellar dust starting with the formation of small refractory particles in stellar atmospheres to their modification in diffuse and molecular clouds and ultimately to their contribution to star forming regions. Observations of the prope...

  18. Cotton dust-mediated lung epithelial injury.

    OpenAIRE

    Ayars, G H; Altman, L C; O'Neil, C E; Butcher, B T; Chi, E Y

    1986-01-01

    To determine if constituents of cotton plants might play a role in byssinosis by injuring pulmonary epithelium, we added extracts of cotton dust, green bract, and field-dried bract to human A549 and rat type II pneumocytes. Injury was measured as pneumocyte lysis and detachment, and inhibition of protein synthesis. Extracts of cotton dust and field-dried bract produced significant dose- and time-dependent lysis and detachment of both target cells, while green bract extract was less damaging. ...

  19. Parameterization of cloud glaciation by atmospheric dust

    Science.gov (United States)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Pejanovic, Goran; Petkovic, Slavko

    2016-04-01

    The exponential growth of research interest on ice nucleation (IN) is motivated, inter alias, by needs to improve generally unsatisfactory representation of cold cloud formation in atmospheric models, and therefore to increase the accuracy of weather and climate predictions, including better forecasting of precipitation. Research shows that mineral dust significantly contributes to cloud ice nucleation. Samples of residual particles in cloud ice crystals collected by aircraft measurements performed in the upper tropopause of regions distant from desert sources indicate that dust particles dominate over other known ice nuclei such as soot and biological particles. In the nucleation process, dust chemical aging had minor effects. The observational evidence on IN processes has substantially improved over the last decade and clearly shows that there is a significant correlation between IN concentrations and the concentrations of coarser aerosol at a given temperature and moisture. Most recently, due to recognition of the dominant role of dust as ice nuclei, parameterizations for immersion and deposition icing specifically due to dust have been developed. Based on these achievements, we have developed a real-time forecasting coupled atmosphere-dust modelling system capable to operationally predict occurrence of cold clouds generated by dust. We have been thoroughly validated model simulations against available remote sensing observations. We have used the CNR-IMAA Potenza lidar and cloud radar observations to explore the model capability to represent vertical features of the cloud and aerosol vertical profiles. We also utilized the MSG-SEVIRI and MODIS satellite data to examine the accuracy of the simulated horizontal distribution of cold clouds. Based on the obtained encouraging verification scores, operational experimental prediction of ice clouds nucleated by dust has been introduced in the Serbian Hydrometeorological Service as a public available product.

  20. Carbonaceous Components in the Comet Halley Dust

    Science.gov (United States)

    Fomenkova, M. N.; Chang, S.; Mukhin, L. M.

    1994-01-01

    Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.

  1. Lead in Chinese villager house dust

    Science.gov (United States)

    Bi, Xiangyang; Liu, Jinling; Han, Zhixuan

    2016-04-01

    House dust has been recognized as an important contributor to children's blood Pb. Here we conducted a comprehensive study to investigate geographical variation of Pb in Chinese villager house dust. The concentrations of Pb in 477 house dust samples collected from twenty eight areas throughout China varied from 12 to 2510 mg/kg, with geometric mean and median concentration of 54 mg/kg and 42 mg/kg, respectively. The median Pb concentrations in different geographical areas ranged from 16 (Zhangjiakou, Hebei) to 195 mg/kg (Loudi, Hunan). The influences of outdoor soil Pb concentrations, dates of construction, house decorative materials, heating types, and site specific pollution on Pb concentrations in house dust were evaluated. No correlations were found between the house dust Pb concentrations and the age of houses, as well as house decorative materials. Whereas outdoor soil, coal combustion, and site specific pollution may be potential Pb sources. The results of scanning electron microscopy (SEM) showed that Pb bearing particles appeared as cylindrical, flaky and irregular aggregates with the particle size ranging from about 10 to 800 μm. The energy dispersive X-ray microanalysis (EDX) suggested that Pb in the dust particles may be associated with calcium compounds. But the major fraction of Pb in the household dust samples was found to be strongly bound to Fe-Mn oxide phases (37%) while Pb present in minor fractions individually making up between 14 and 18% was characterized in falling order as residual, carbonate, organic/sulphide and exchangeable fractions by the sequential extraction method applied. Bioaccessible Pb making up an average proportion of 53% in the household dusts was significantly correlated to the Fe-Mn oxide phases of Pb.

  2. Evolution of the dust-to-metals ratio in high-redshift galaxies probed by GRB-DLAs

    Science.gov (United States)

    Wiseman, P.; Schady, P.; Bolmer, J.; Krühler, T.; Yates, R. M.; Greiner, J.; Fynbo, J. P. U.

    2017-02-01

    Context. Several issues regarding the nature of dust at high redshift remain unresolved: its composition, its production and growth mechanisms, and its effect on background sources. Aims: We provide a more accurate relation between dust depletion levels and dust-to-metals ratio (DTM), and to use the DTM to investigate the origin and evolution of dust in the high-redshift Universe via gamma-ray burst damped Lyman-alpha absorbers (GRB-DLAs). Methods: We use absorption-line measured metal column densities for a total of 19 GRB-DLAs, including five new GRB afterglow spectra from VLT/X-Shooter. We use the latest linear models to calculate the dust depletion strength factor in each DLA. Using these values we calculate total dust and metal column densities to determine a DTM. We explore the evolution of DTM with metallicity, and compare it to previous trends in DTM measured with different methods. Results: We find significant dust depletion in 16 of our 19 GRB-DLAs, yet 18 of the 19 have a DTM significantly lower than the Milky Way. We find that DTM is positively correlated with metallicity, which supports a dominant ISM grain-growth mode of dust formation. We find a substantial discrepancy between the dust content measured from depletion and that derived from the total V-band extinction, AV, measured by fitting the afterglow SED. We advise against using a measurement from one method to estimate that from the other until the discrepancy can be resolved. Based on observations collected at the European Southern Observatory, Paranal, Chile, Program IDs: 088.A-0051(B), 089.A-0067(B), 091.C-0934, 094.A-0134(A).

  3. Universal Usability

    Science.gov (United States)

    Horton, Sarah; Leventhal, Laura

    Universal usability of World Wide Web (Web) environments—that is, having 90% of households as successful users—requires universal access, usability, and universal design. Factors such as Web technology and user-centered design contribute to universal access and usability, but key to universal usability is a universal design methodology. Universal design principles for the Web follow from universal design principles for the built environment, and emphasize perceptibility, self-explanation, and tailorability for the user. Universally usable Web environments offer the benefit of expanded participation, as well as the unanticipated benefits that generally follow from innovative design initiatives. However, to achieve Web universal usability, Web designers need tools that facilitate the design of intuitive interfaces without sacrificing universal access.

  4. Lunar Dust Separation for Toxicology Studies

    Science.gov (United States)

    Cooper, Bonnie L.; McKay, D. S.; Riofrio, L. M.; Taylor, L. A.; Gonzalex, C. P.

    2010-01-01

    During the Apollo missions, crewmembers were briefly exposed to dust in the lunar module, brought in after extravehicular activity. When the lunar ascent module returned to micro-gravity, the dust that had settled on the floor now floated into the air, causing eye discomfort and occasional respiratory symptoms. Because our goal is to set an exposure standard for 6 months of episodic exposure to lunar dust for crew on the lunar surface, these brief exposures of a few days are not conclusive. Based on experience with industrial minerals such as sandblasting quartz, an exposure of several months may cause serious damage, while a short exposure may cause none. The detailed characteristics of sub-micrometer lunar dust are only poorly known, and this is the size range of particles that are of greatest concern. We have developed a method for extracting respirable dust (<2.5 micron) from Apollo lunar soils. This method meets stringent requirements that the soil must be kept dry, exposed only to pure nitrogen, and must conserve and recover the maximum amount of both respirable dust and coarser soil. In addition, we have developed a method for grinding coarser lunar soil to produce sufficient respirable soil for animal toxicity testing while preserving the freshly exposed grain surfaces in a pristine state.

  5. The Dust Management Project: Final Report

    Science.gov (United States)

    Hyatt, Mark J.; Straka, Sharon

    2011-01-01

    A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting longterm operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, approach, accomplishments, summary of deliverables, and lessons learned are presented.

  6. The Cosmic Dust Experiment of AIM

    Science.gov (United States)

    Poppe, A.; James, D.; Horanyi, M.

    2008-12-01

    The Cosmic Dust Experiment (CDE) onboard the Aeronomy of Ice in the Mesosphere (AIM) mission is a dust impact experiment designed to monitor the variability of the cosmic dust in ux. The instrument consists of fourteen permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about a micron in particle radius. The variability of these small grains is assumed to follow the variability of the dominant 100 micron radius particles, hence the measured flux can be used in correlation studies with various Noctilucent Cloud (NLC) activity indexes. CDE has been observing the cosmic dust influx since June 2007. In this talk, we present the first nine months of reduced data, focusing on the observed temporal and spatial variability of the dust influx. Data collected after February 2008 show increased levels of background noise and preliminary work on reducing this data will also be presented.

  7. Interstellar Dust Inside and Outside the Heliosphere

    CERN Document Server

    Krueger, Harald

    2008-01-01

    In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10e-13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of 'big' interstellar grains (up to 10e-13 kg) and a gas-to-dust-mass ratio i...

  8. Dust grains from the heart of supernovae

    CERN Document Server

    Bocchio, M; Schneider, R; Bianchi, S; Limongi, M; Chieffi, A

    2016-01-01

    Dust grains are classically thought to form in the winds of AGB stars. However, nowadays there is increasing evidence for dust formation in SNe. In order to establish the relative importance of these two classes of stellar sources of dust it is important to know what is the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows to follow the dynamics of dust grains in the shocked SN ejecta and to compute the time evolution of the mass, composition and size distribution of the grains. We consider four well studied SNe in the Milky Way and LMC: SN 1987a, Cas A, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Conversely, in the other three SNe, the reverse shock has already destroyed between 10 and 40% of the...

  9. Abundant dust found in intergalactic space

    CERN Document Server

    Xilouris, E; Alikakos, J; Xilouris, K; Boumis, P; Goudis, C

    2006-01-01

    Galactic dust constitutes approximately half of the elements more massive than helium produced in stellar nucleosynthesis. Notwithstanding the formation of dust grains in the dense, cool atmospheres of late-type stars, there still remain huge uncertainties concerning the origin and fate of galactic stardust. In this paper, we identify the intergalactic medium (i.e. the region between gravitationally-bound galaxies) as a major sink for galactic dust. We discover a systematic shift in the colour of background galaxies viewed through the intergalactic medium of the nearby M81 group. This reddening coincides with atomic, neutral gas previously detected between the group members. The dust-to-HI mass ratio is high (1/20) compared to that of the solar neighborhood (1/120) suggesting that the dust originates from the centre of one or more of the galaxies in the group. Indeed, M82, which is known to be ejecting dust and gas in a starburst-driven superwind, is cited as the probable main source.

  10. Continuous respirable mine dust monitor development

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, B.K.; Williams, K.L.; Stein, S.W. [and others

    1996-12-31

    In June 1992, the Mine Safety and Health Administration (MSHA) published the Report of the Coal Mine Respirable Dust Task Group, Review of the Program to Control Respirable Coal Mine Dust in the United States. As one of its recommendations, the report called for the accelerated development of two mine dust monitors: (1) a fixed-site monitor capable of providing continuous information on dust levels to the miner, mine operator, and to MSHA, if necessary, and (2) a personal sampling device capable of providing both a short-term personal exposure measurement as well as a full-shift measurement. In response to this recommendation, the U.S. Bureau of Mines initiated the development of a fixed-site machine-mounted continuous respirable dust monitor. The technology chosen for monitor development is the Rupprecht and Patashnick Co., Inc. tapered element oscillating microbalance. Laboratory and in-mine tests have indicated that, with modification, this sensor can meet the humidity and vibration requirements for underground coal mine use. The U.S. Department of Energy Pittsburgh Research Center (DOE-PRC) is continuing that effort by developing prototypes of a continuous dust monitor based on this technology. These prototypes are being evaluated in underground coal mines as they become available. This effort, conducted as a joint venture with MSHA, is nearing completion with every promise of success.

  11. Radial transport of dust in spiral galaxies

    CERN Document Server

    Vorobyov, E I; Shchekinov, Yu. A.

    2006-01-01

    Motivated by recent observations which detect dust at large galactocentric distances in the disks of spiral galaxies, we propose a mechanism of outward radial transport of dust by spiral stellar density waves. We consider spiral galaxies in which most of dust formation is localized inside the corotation radius. We show that in the disks of such spiral galaxies, the dust grains can travel over radial distances that exceed the corotation radius by roughly 25%. A fraction of the dust grains can be trapped on kidney-shaped stable orbits between the stellar spiral arms and thus can escape the destructive effect of supernova explosions. These grains form diffuse dusty spiral arms, which stretch 4-5 kpc from the sites of active star formation. About 10% of dust by mass injected inside corotation, can be transported over radial distances 3-4 kpc during approximately 1.0 Gyr. This is roughly an order of magnitude more efficient than can be provided by the turbulent motions.

  12. DIFFUSE EXTRAPLANAR DUST IN NGC 891

    Energy Technology Data Exchange (ETDEWEB)

    Seon, Kwang-il; Shinn, Jong-ho; Kim, Il-joong [Korea Astronomy and Space Science Institute, Daejeon, 305-348 (Korea, Republic of); Witt, Adolf N., E-mail: kiseon@kasi.re.kr [Ritter Astrophysical Research Center, University of Toledo, Toledo, OH 43606 (United States)

    2014-04-10

    We report the detection of vertically extended far-ultraviolet and near-UV emissions in an edge-on spiral galaxy NGC 891, which we interpret as being due to dust-scattered starlight. Three-dimensional radiative transfer models are used to investigate the content of the extraplanar dust that is required to explain the UV emission. The UV halos are well reproduced by a radiative transfer model with two exponential dust disks, one with a scale height of ≈0.2-0.25 kpc and the other with a scale height of ≈1.2-2.0 kpc. The central face-on optical depth of the geometrically thick disk is found to be τ{sub B}{sup thick}≈0.3--0.5 at the B band. The results indicate that the dust mass at |z| > 2 kpc is ≈3%-5% of the total dust mass, which is in good accordance with the recent Herschel submillimeter observation. Our results, together with the recent discovery of the UV halos in other edge-on galaxies, suggest the widespread existence of a geometrically thick dust layer above the galactic plane in spirals.

  13. Dust grains from the heart of supernovae

    CERN Document Server

    Bocchio, M; Schneider, R; Bianchi, S; Limongi, M; Chieffi, A

    2016-01-01

    Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. We have developed a new code (GRASH\\_Rev) which follows the newly-formed dust evolution throughout the supernova explosion until the merging of the forward shock with the circumstellar ISM. We have considered four well studied SNe in the Milky Way and Large Magellanic Cloud: SN1987A, CasA, the Crab Nebula, and N49. For all the simulated models, we find good agreement with observations and estimate that between 1 and 8$\\%$ of the observed mass will survive, leading to a SN dust production rate of $(3.9 \\pm 3.7) \\times 10^{-4}$ M$_{\\odot}$yr$^{-1}$ in the Milky Way. This value i...

  14. Dust Formation and Survival in Supernova Ejecta

    CERN Document Server

    Bianchi, S

    2007-01-01

    The presence of dust at high redshift requires efficient condensation of grains in SN ejecta, in accordance with current theoretical models. Yet, observations of the few well studied SNe and SN remnants imply condensation efficiencies which are about two orders of magnitude smaller. Motivated by this tension, we have (i) revisited the model of Todini & Ferrara (2001) for dust formation in the ejecta of core collapse SNe and (ii) followed, for the first time, the evolution of newly condensed grains from the time of formation to their survival - through the passage of the reverse shock - in the SN remnant. We find that 0.1 - 0.6 M_sun of dust form in the ejecta of 12 - 40 M_sun stellar progenitors. Depending on the density of the surrounding ISM, between 2-20% of the initial dust mass survives the passage of the reverse shock, on time-scales of about 4-8 x 10^4 yr from the stellar explosion. Sputtering by the hot gas induces a shift of the dust size distribution towards smaller grains. The resulting dust ex...

  15. Modeling Respiratory Toxicity of Authentic Lunar Dust

    Science.gov (United States)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  16. Volcanic loading: The dust veil index

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, H.H. [Univ. of East Anglia, Norwich (United Kingdom). Climatic Research Unit

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  17. Shielding of emitting dust particles

    Science.gov (United States)

    Luca Delzanno, Gian; Lapenta, Giovanni; Rosenberg, Marlene

    2003-10-01

    In the present work we focus on the role of electron emission (either thermionic or photoelectric) in charging an object immersed in a plasma. In fact, it is well known that the higher mobility of the plasma electrons (that would lead to negatively charged objects) can be overcome by electron emission, thus reversing the object polarity. Moreover, recent work [1] has shown how electron emission can fundamentally affect the shielding potential around the dust. In particular, depending on the physical parameters of the system (that were chosen such to correspond to common experimental conditions), the shielding potential can develop an attractive potential well. The aim of the present work is two-fold. First, we will present a parametric study in order to enlight the conditions for the formation, as well as the stability of the well. Furthermore, simulations will be presented with physical parameters corresponding to the ionosphere, thus extending our study to the case of meteroids. [1] G.L. Delzanno, G. Lapenta, M. Rosenberg, "Attractive Potential among Thermionically Emitting Microparticles", submitted.

  18. High Energy Studies of Astrophysical Dust

    Science.gov (United States)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how

  19. Molecular and dust scattering processes in astrophysical environments

    Science.gov (United States)

    Lupu, Roxana-Elena

    2009-06-01

    Understanding the formation and evolution of structure in the universe requires knowledge of the stellar energy output and its processing by gas and dust, evaluating the abundances of atomic and molecular species, and constraining thermodynamic parameters. Molecules, with molecular hydrogen and carbon monoxide being the most abundant, are a major component of the interstellar medium, and play an essential role in structure formation, by participating in gas cooling. Molecular fluorescence studies aim to provide a better interpretation of far-ultraviolet observations, constraining the molecular abundances and their interaction with the radiation field. The fluorescent emission lines offer a set of diagnostics for molecules complementary to absorption line spectroscopy and to observations at infrared and radio wavelengths, but are often poorly reproduced by models. In this work, I have developed and expanded fluorescence models for molecular hydrogen and carbon monoxide, and employed them in determining the spatial distribution of CO in cometary comae, in characterizing the effects of partial frequency redistribution for emission line scattering in planetary atmospheres and reflection nebulae, and in abundance determinations from Bowen fluorescence lines of H 2 in planetary nebulae. Follow-up optical and infrared observations were used in addition to UV data to diagnose molecular excitation, temperature, and spatial distribution in planetary nebula M27. Knowledge of the spectral energy distribution of the exciting stars in the far- ultraviolet is essential in constraining both the fluorescence models and understanding the scattering properties of nebular gas and dust. Sounding rocket observations of the Trifid and Orion nebulae, performed as part of this work, provided the necessary dynamic range and spatial resolution to measure simultaneously the nebular scattered light and the spectral energy distribution of the illuminating stars. These low extinction sight lines

  20. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  1. Intense dust episodes in the Mediterranean and possible effects on atmospheric lapse rates

    Science.gov (United States)

    Hatzianastassiou, Nikos; Gkikas, Antonis; Papadimas, Christos D.; Gavrouzou, Maria

    2016-04-01

    Dust aerosols are major contributor to the atmospheric particulate matter, having significant effects on climate and weather patterns as well as on human health, not to mention others like agriculture or ocean chlorophyll. Moreover, these effects are maximized under conditions of massive dust concentration in the atmosphere, namely dust episodes or events. Such events are caused by uplifting and transport of dust from arid and semi-arid areas under favorable synoptic conditions. The Mediterranean basin, nearby to the greatest world deserts of North Africa and Middle East, frequently undergoes dust episodes. During such Mediterranean episodes, the number and mass concentration of dust is high, due to the proximity of its source areas. The dust episodes, through the direct interaction of dust primarily withthe shortwave but also with longwave radiation can lead to strong local warming in the atmosphere, possibly causing temperature inversion during daytime. The existence of such temperature inversions, associated with intense dust episodes in the Mediterranean, is the focus in this study. The methodology followed to achieve the scientific goal of the study consists in the use of a synergy of different data. This synergy enables: (i) the determination of intense dust episodes over the Mediterranean, (ii) the investigation and specification of temperature lapse rates and inversions during the days of dust episodes and (iii) the identification of vertical distribution of aerosols in the atmosphere over specific locations during the days of the episodes. These objectives are achieved through the use of data from: (i) the AERosol Robotic NETwork (AERONET) network, (ii) the Upper Air Observations (radiosondes) database of the University of Wyoming (UoW) and (iii) the European Aerosol Research Lidar Network (EARLINET) database. The study period spans the years from 2000 to 2013, constrained by the data availability of the databases. A key element of the methodology is the

  2. Dust Accumulation on MER Solar Panels

    Science.gov (United States)

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.

    2011-12-01

    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the

  3. CHARACTERIZATION OF THE DUST GENERATED IN THE RECYCLING PROCESS OF THE ELECTRIC ARC FURNACE DUST

    Directory of Open Access Journals (Sweden)

    Fábio Gonçalves Rizz

    2013-10-01

    Full Text Available Electric Arc Furnace Dust (EAFD is a solid waste generated by the production of steel through the Electric Arc Furnace. This waste is labeled dangerous, which motivates studies aiming its recycling. Experiments were made to study a pyrometallurgical process for the recycling of the dust, using the insertion of dust briquettes in molten pig iron in three temperatures. In the briquettes, there were made additions of calcium fluoride in four different concentrations. This paper has the objective to characterize the dust that results from this process, verifying the influence of the temperature and the concentration of calcium fluoride in the briquette in the morphology and chemical composition of the new dust, determining the optimal conditions for the recovery of the zinc content of the dust. This newly generated dust was analyzed in an Scanning Electronic Microscope, used to capture micrographs and chemical composition by EDS. The micrographs show that the temperature and the calcium fluoride concentration interfere in the way the dust particles agglomerate. Chemical analysis points that the higher zinc recuperation occurrs in the experiments at 1500°C with 7% addition of calcium fluoride.

  4. Assessment of dust activity and dust-plume pathways over Jazmurian Basin, southeast Iran

    Science.gov (United States)

    Rashki, A.; Arjmand, M.; Kaskaoutis, D. G.

    2017-02-01

    Jazmurian (or hamun-e Jaz Murian) is a dried lake located in a topographic-low basin in southeast Iran and a major source for high dust emissions under favorable weather conditions. This work examines for the first time the dust activity over the basin by classifying the dust events (DEs, visibility Iran, while no significant tendency is found during the period 1990-2013. Further, the DEs and DSEs exhibit a clear diurnal pattern with highest frequency between 15:30 and 18:30 LST due to thermal convection and transported dust plumes. The analysis reveals an average frequency of 12.7 dust-storm days per year, while the DSEs last for 5.1 h, on average, during the dust-storm days. The dust storms originating from Jazmurian affect mostly the northern coast of the Arabian Sea (Makran mountains), the Oman Sea, the southeastern Arabian Peninsula and the western Pakistan, while air masses from the arid/desert areas of central-eastern Iran and Arabia seem to further aggravate the dust-aerosol loading over Jazmurian.

  5. Molecules and dust in Cassiopeia A: II - Dust sputtering and diagnosis for dust survival in supernova remnants

    CERN Document Server

    Biscaro, Chiara

    2015-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains formed in the Type II-b supernova by modelling the sputtering of grains located in dense ejecta clumps crossed by the reverse shock. Further sputtering in the inter-clump medium once the clumps are disrupted by the reverse shock is investigated. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also studied. We study oxygen-rich clumps that describe the ejecta oxygen core, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the dust components formed in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive dust grain size distributions and masses as a function of time. We find that non-thermal sputtering in clumps is important and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density and the grain type and size. A Type II-b SN form...

  6. Characterizing Dust Attenuation in Local Star Forming Galaxies

    Science.gov (United States)

    Battisti, Andrew; Calzetti, Daniela; Chary, Ranga-Ram

    2017-01-01

    The dust attenuation for a sample of ~10000 local (z ≤ 0.1) star forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multi-wavelength data from the UV-to-NIR, available from the Galaxy Evolution Explorer, the Sloan Digital Sky Survey, the United Kingdom Infrared Telescope, and the Two Micron All-Sky Survey, to ensure that regions of comparable size in each galaxy are being analyzed. We characterize the dust attenuation through the slope of the UV flux density and the Balmer decrement (Hα/Hβ). The observed relationship between these quantities is similar to the local starburst relation and is not seen to vary strongly with galactic properties. We derive the total attenuation curve over the range 1250 Å < λ < 28500 Å and find that a single attenuation curve is effective for characterizing the majority of galaxies in our sample. This attenuation curve is slightly lower in the far-UV than local starburst galaxies, by roughly 15%, but appears similar at longer wavelengths and has a normalization of RV = 3.7±0.4 (V-band). This indicates that a single attenuation curve is reasonable for wide application in the local Universe.

  7. Electrical Characteristics of Simulated Tornadoes and Dust Devils

    Science.gov (United States)

    Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.

    2012-01-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.

  8. Microscopic Comparison of Airfall Dust to Martian Soil

    Science.gov (United States)

    2008-01-01

    This pair of images taken by the Optical Microscope on NASA's Phoenix Mars Lander offers a side-by-side comparison of an airfall dust sample collected on a substrate exposed during landing (left) and a soil sample scooped up from the surface of the ground beside the lander. In both cases the sample is collected on a silicone substrate, which provides a sticky surface holding sample particles for observation by the microscope. Similar fine particles at the resolution limit of the microscope are seen in both samples, indicating that the soil has formed from settling of dust. The microscope took the image on the left during Phoenix's Sol 9 (June 3, 2008), or the ninth Martian day after landing. It took the image on the right during Sol 17 (June 11, 2008). The scale bar is 1 millimeter (0.04 inch). The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Dust Combustion Safety Issues for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  10. Electrostatic Dust Detection and Removal for ITER

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-09-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.

  11. Twelve thousand years of dust: the Holocene global dust cycle constrained by natural archives

    Directory of Open Access Journals (Sweden)

    S. Albani

    2014-11-01

    Full Text Available Mineral dust plays an important role in the climate system by interacting with radiation, clouds, and biogeochemical cycles. In addition, natural archives show that the dust cycle experienced variability in the past in response to global and local climate change. The compilation of the DIRTMAP paleodust datasets in the last two decades provided a target for paleoclimate models that include the dust cycle, following a time slice approach. We propose an innovative framework to organize a paleodust dataset that moves on from the positive experience of DIRTMAP and takes into account new scientific challenges, by providing a concise and accessible dataset of temporally resolved records of dust mass accumulation rates and particle grain-size distributions. We consider data from ice cores, marine sediments, loess/paleosol sequences, lake sediments, and peat bogs for this compilation, with a temporal focus on the Holocene period. This global compilation allows investigation of the potential, uncertainties and confidence level of dust mass accumulation rates reconstructions, and highlights the importance of dust particle size information for accurate and quantitative reconstructions of the dust cycle. After applying criteria that help to establish that the data considered represent changes in dust deposition, 43 paleodust records have been identified, with the highest density of dust deposition data occurring in the North Atlantic region. Although the temporal evolution of dust in the North Atlantic appears consistent across several cores and suggest that minimum dust fluxes are likely observed during the Early to mid-Holocene period (6000–8000 years ago, the magnitude of dust fluxes in these observations is not fully consistent, suggesting that more work needs to be done to synthesize datasets for the Holocene. Based on the data compilation, we used the Community Earth System Model to estimate the mass balance and variability of the global dust cycle

  12. Particle Distribution Of A Moon-Fed Dust Torus

    Science.gov (United States)

    Jamrath, E.; Makuch, M.; Spahn, F.

    2008-09-01

    Enceladus' south-polar gey- sers support a huge gas-dust plume towering the south pole of the moon. It is considered to be the main source Saturns E-ring, the largest dust complex of the solar system. Contrary to the spherically sym- metric impactor ejecta dust cre- ation, the dust plume provides a directed particle outflow from the moon. Using a simple probabilistic model, we study the effects of this asymmetric dust ejection on Enceladus' dust torus. Dust con- figurations are described by par- ticle distribution functions and the dynamical properties of the system are adressed through a set of transformations. The re- sulting distribution function of orbital elements describes the unperturbed dust torus. We showcase the differences in the resulting particle distributions between impactor ejecta pro- cesses and dust production by Enceladus plume, modeled by a directed point-sized source. The obtained orbital element distri- bution is compared to the results of numerical simulations of the problem.

  13. Characterization of Settled Atmospheric Dust by the DART Experiment

    Science.gov (United States)

    Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo

    1999-01-01

    The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.

  14. Deuterium enrichment of interstellar dusts

    Science.gov (United States)

    Das, Ankan; Chakrabarti, Sandip Kumar; Majumdar, Liton; Sahu, Dipen

    2016-07-01

    High abundance of some abundant and simple interstellar species could be explained by considering the chemistry that occurs on interstellar dusts. Because of its simplicity, the rate equation method is widely used to study the surface chemistry. However, because the recombination efficiency for the formation of any surface species is highly dependent on various physical and chemical parameters, the Monte Carlo method is best suited for addressing the randomness of the processes. We carry out Monte-Carlo simulation to study deuterium enrichment of interstellar grain mantle under various physical conditions. Based on the physical properties, various types of clouds are considered. We find that in diffuse cloud regions, very strong radiation fields persists and hardly a few layers of surface species are formed. In translucent cloud regions with a moderate radiation field, significant number of layers would be produced and surface coverage is mainly dominated by photo-dissociation products such as, C, CH_3, CH_2D, OH and OD. In the intermediate dense cloud regions (having number density of total hydrogen nuclei in all forms ˜2 × 10^4 cm^{-3}), water and methanol along with their deuterated derivatives are efficiently formed. For much higher density regions (˜10^6 cm^{-3}), water and methanol productions are suppressed but surface coverage of CO, CO_2, O_2, O_3 are dramatically increased. We find a very high degree of fractionation of water and methanol. Observational results support a high fractionation of methanol but surprisingly water fractionation is found to be low. This is in contradiction with our model results indicating alternative routes for de-fractionation of water.

  15. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    Science.gov (United States)

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities.

  16. Dust Formation in Milky Way-like Galaxies

    CERN Document Server

    McKinnon, Ryan; Vogelsberger, Mark

    2015-01-01

    We introduce a dust model for cosmological simulations implemented in the moving-mesh code AREPO and present a suite of cosmological hydrodynamical zoom-in simulations to study dust formation within galactic haloes. Our model accounts for the stellar production of dust, accretion of gas-phase metals onto existing grains, destruction of dust through local supernova activity, and dust driven by winds from star-forming regions. We find that accurate stellar and active galactic nuclei feedback is needed to reproduce the observed dust-metallicity relation and that dust growth largely dominates dust destruction. Our simulations predict a dust content of the interstellar medium which is consistent with observed scaling relations at $z = 0$, including scalings between dust-to-gas ratio and metallicity, dust mass and gas mass, dust-to-gas ratio and stellar mass, and dust-to-stellar mass ratio and gas fraction. We find that roughly two-thirds of dust at $z = 0$ originated from Type II supernovae, with the contribution ...

  17. Colloidal Plasmas : Effect of nonthermal ion distribution and dust temperature on nonlinear dust acoustic solitary waves

    Indian Academy of Sciences (India)

    Tarsem Singh Gill; Harvinder Kaur

    2000-11-01

    The effects of nonthermal ion distribution and finite dust temperature are incorporated in the investigation of nonlinear dust acoustic waves in an unmagnetized dusty plasma. Sagdeev pseudopotential method which takes into account the full nonlinearity of plasma equations, is used here to study solitary wave solutions. Possibility of co-existence of refractive and compressive solitons as a function of Mach number, dust temperature and concentration of nonthermal ions, is considered. For the fixed value of nonthermal ions, it is found that the effect of increase in dust temperature is to reduce the range of co-existence of compressive and refractive solitons. Particular concentration of nonthermal ions results in disappearance of refractive solitons while the decrease in dust temperature, at this concentration restores the lost refractive solitons.

  18. Numerically reconstructing the geometry of the Universe from data

    OpenAIRE

    Bester, Hertzog L.; Larena, Julien; Bishop, Nigel T.

    2016-01-01

    We give an outline of an algorithm designed to reconstruct the background cosmological metric within the class of spherically symmetric dust universes that may include a cosmological constant. Luminosity and age data are used to derive constraints on the geometry of the universe up to a redshift of $z = 1.75$. It is shown that simple radially inhomogeneous void models that are sometimes used as alternative explanations for the apparent acceleration of the late time Universe cannot be ruled ou...

  19. Numerical modeling of windblown dust in the Pacific Northwest with improved meteorology and dust emission models

    Science.gov (United States)

    Sundram, Irra; Claiborn, Candis; Strand, Tara; Lamb, Brian; Chandler, Dave; Saxton, Keith

    2004-12-01

    Soil erosion by wind is a serious consequence of dry land agriculture in eastern Washington, where the main adverse effects are loss of nutrient-rich soil, reduced visibility during dust storms and degradation of air quality. A multidisciplinary research effort to study windblown dust in central and eastern Washington was initiated under the Columbia Plateau PM10 (CP3) program, which involved measuring wind erosion and windblown dust emissions at sites throughout the region and developing a transport and dispersion model for the area. The modeling system includes the prognostic meteorological model, Mesoscale Metorological Model Version 5 (MM5), coupled with the CALMET/CALGRID Eularian modeling pair and a new dust emission module (EMIT-PM). Improvements to the modeling system included employing higher spatial resolutions for the meteorological models and improved parameterizations of emission factors in EMIT-PM. Meteorological fields, dust emissions and the resulting dust concentrations were simulated for six historical regional dust storms: 23 November 1990, 21 October 1991, 11 September 1993, 3 November 1993, 30 August 1996 and 23-25 September 1999. For all the simulated events, with the exception of the August 1996 event, ratios of observed to predicted concentrations were favorable, within a range of 0.5-6.0 without calibration of the dust emission model; PM10 emissions averaged 22 Gg per 24-hour event, representing approximately 1% of the daily dust flux on a global basis. These results showed that the model performed best for large, strong dust storms but did not simulate smaller storms as well.

  20. Ice nucleation by soil dusts: relative importance of mineral dust and biogenic components

    Directory of Open Access Journals (Sweden)

    D. O'Sullivan

    2013-08-01

    Full Text Available Agricultural dust emissions have been estimated to contribute around 20% to the global dust burden. In contrast to dusts from arid source regions, the ice-nucleating abilities of which have been relatively well studied, soil dusts from fertile sources often contain a substantial fraction of organic matter. Using an experimental methodology which is sensitive to a wide range of ice nucleation efficiencies, we have characterised the immersion mode ice-nucleating activities of dusts extracted from fertile soils collected at four locations around England. By controlling droplet sizes, which ranged in volume from 10−12 to 10−6 L, we have been able to determine the ice nucleation behaviour of soil dust particles at temperatures ranging from 267 K (−6 °C down to the homogeneous limit of freezing at about 237 K (−36 °C. At temperatures above 258 K (−15 °C we find that the ice-nucleating activity of soil dusts is diminished by heat treatment or digestion with hydrogen peroxide, suggesting that the ice nuclei stem from biogenic components in the soil. However, below 258 K, we find that the ice active site densities tend towards those expected from the mineral components in the soils, suggesting that the inorganic fraction of soil dusts, in particular the K-feldspar fraction, becomes increasingly important in the initiation of the ice phase at lower temperatures. We conclude that although only a relatively minor contributor to the global atmospheric dust burden, the enhanced IN activities of dusts generated from agricultural activities may play an important role in cloud glaciation, particularly at temperatures above 258 K.

  1. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    Science.gov (United States)

    Manktelow, P. T.; Carslaw, K. S.; Mann, G. W.; Spracklen, D. V.

    2010-01-01

    A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp1.0 μm) by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN) modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN). Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  2. Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method: Preparing for Gaia

    CERN Document Server

    Kh., S Rezaei; Hanson, R J; Fouesneau, M

    2016-01-01

    We present a non-parametric model for inferring the three-dimensional (3D) distribution of dust density in the Milky Way. Our approach uses the extinction measured towards stars at different locations in the Galaxy at approximately known distances. Each extinction measurement is proportional to the integrated dust density along its line-of-sight. Making simple assumptions about the spatial correlation of the dust density, we can infer the most probable 3D distribution of dust across the entire observed region, including along sight lines which were not observed. This is possible because our model employs a Gaussian Process to connect all lines-of-sight. We demonstrate the capability of our model to capture detailed dust density variations using mock data as well as simulated data from the Gaia Universe Model Snapshot. We then apply our method to a sample of giant stars observed by APOGEE and Kepler to construct a 3D dust map over a small region of the Galaxy. Due to our smoothness constraint and its isotropy,...

  3. Experimental Method for Measuring Dust Load on Surfaces in Rooms

    DEFF Research Database (Denmark)

    Lengweiler, Philip; Nielsen, Peter V.; Moser, Alfred

    A new experimental setup to investigate the physical process of dust deposition and resuspension on and from surfaces is introduced. Dust deposition can reduce the airborne dust concentration considerably. As a basis for developing methods to eliminate dust-related problems in rooms......, there is a need for better understanding of the mechanism of dust deposition and resuspension. With the presented experimental setup, the dust load on surfaces in a channel can be measured as a function of the environmental and surface conditions and the type of particles under controlled laboratory conditions....

  4. Toroidal vortices as a solution to the dust migration problem

    CERN Document Server

    Loren-Aguilar, Pablo

    2015-01-01

    In an earlier letter, we reported that dust settling in protoplanetary discs may lead to a dynamical dust-gas instability that produces global toroidal vortices. In this letter, we investigate the evolution of a dusty protoplanetary disc with two different dust species (1 mm and 50 cm dust grains), under the presence of the instability. We show how toroidal vortices, triggered by the interaction of mm grains with the gas, stop the radial migration of metre-sized dust, potentially offering a natural and efficient solution to the dust migration problem.

  5. Thermophoresis and dust devils on the planet Mars.

    Science.gov (United States)

    Gheynani, Babak T; Emami-Razavi, Mohsen; Taylor, Peter A

    2011-11-01

    In the Martian atmosphere dust is abundant and is continuously replenished by the entrainment of materials and sediments from the surface of the planet. The sediment concentrations are particularly high and noticeable in whirlwinds, also known as dust devils. Assuming the thermophoresis force as the main driver of dust particles lifting from the surface, the dust process of the Martian atmosphere and its naturally formed dust devils are investigated for the northern polar region of the planet. Our simulated convective boundary layer shows that it may be unlikely that visible dust devils are formed only due to thermophoresis effects and some other lifting mechanisms are required.

  6. Thermophoresis and dust devils on the planet Mars

    Science.gov (United States)

    Gheynani, Babak T.; Emami-Razavi, Mohsen; Taylor, Peter A.

    2011-11-01

    In the Martian atmosphere dust is abundant and is continuously replenished by the entrainment of materials and sediments from the surface of the planet. The sediment concentrations are particularly high and noticeable in whirlwinds, also known as dust devils. Assuming the thermophoresis force as the main driver of dust particles lifting from the surface, the dust process of the Martian atmosphere and its naturally formed dust devils are investigated for the northern polar region of the planet. Our simulated convective boundary layer shows that it may be unlikely that visible dust devils are formed only due to thermophoresis effects and some other lifting mechanisms are required.

  7. Direct observations of the atmospheric processing of Asian mineral dust

    Directory of Open Access Journals (Sweden)

    R. C. Sullivan

    2006-05-01

    Full Text Available The accumulation of secondary acid products and ammonium on individual mineral dust particles during ACE-Asia has been measured in real-time using ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles corresponded to different air mass source regions. During volcanically influenced periods, dust mixed with sulphate dominated. This rapidly switched to dust predominantly mixed with chloride when the first Asian dust front reached the R/V Ronald Brown. We hypothesise that the high degree of mixing of dust with chloride was caused by the prior reaction of NOy(g and volcanic SO2(g with sea salt particles, reducing the availability of nitrate and sulphate precursors while releasing HCl(g, which then reacted with the incoming dust front. The segregation of sulphate from nitrate and chloride in individual dust particles is demonstrated for the first time. This is likely caused by the dust plume encountering elevated SO2(g in the Chinese interior before reaching coastal urban areas polluted by both SO2(g and NOx(g. This caused the fractions of dust mixed with nitrate and/or chloride to be strongly dependent on the total dust loadings, whereas dust mixed with sulphate did not show this same dust concentration dependence. Ammonium was also significantly mixed with dust and the amount correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent statements that they exist as an external mixture. The size distribution of the mixing state of dust with these secondary species validates previous models and mechanisms of the atmospheric processing of dust. The uptake of secondary acids was also dependent on the individual dust particle mineralogy; nitrate accumulated on calcium-rich dust while sulphate accumulated on aluminosilicate-rich dust. Oxidation of S

  8. On the health effects of transported and resuspended dusts

    Science.gov (United States)

    Rudich, Yinon

    2017-04-01

    In the Mediterranean area people are often exposed to high levels of both transported mineral dust and to resuspended urban dust. High exposure to particulate matter is a known risk factor to exposed population, but the detailed understanding of how these dusts affect health remain elusive. In this talk I will describe two aspects of how dust may impact health. First, transport of bacteria by desert dust and its effects on the local microbiome will be described. Then, we will describe the biological effects due to exposing water soluble extracts of fresh and aged dust particles from the Israeli Negev Desert to alveolar macrophages.

  9. On dust entrainment in photoevaporative winds

    Science.gov (United States)

    Hutchison, Mark A.; Price, Daniel J.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We investigate dust entrainment by photoevaporative winds in protoplanetary discs using dusty smoothed particle hydrodynamics. We use unequal-mass particles to resolve more than five orders of magnitude in disc/outflow density and a one-fluid formulation to efficiently simulate an equivalent magnitude range in drag stopping time. We find that only micron-sized dust grains and smaller can be entrained in extreme-UV radiation-driven winds. The maximum grain size is set by dust settling in the disc rather than aerodynamic drag in the wind. More generally, there is a linear relationship between the base flow density and the maximum entrainable grain size in the wind. A pileup of micron-sized dust grains can occur in the upper atmosphere at critical radii in the disc as grains decouple from the low-density wind. Entrainment is a strong function of location in the disc, resulting in a size sorting of grains in the outflow - the largest grain being carried out between 10 and 20 au. The peak dust density for each grain size occurs at the inner edge of its own entrainment region.

  10. Decimetre dust aggregates in protoplanetary discs

    CERN Document Server

    Teiser, Jens; 10.1051/0004-6361/200912027

    2011-01-01

    The growth of planetesimals is an essential step in planet formation. Decimetre-size dust agglomerates mark a transition point in this growth process. In laboratory experiments we simulated the formation, evolution, and properties of decimetre-scale dusty bodies in protoplanetary discs. Small sub-mm size dust aggregates consisting of micron-size SiO$_2$ particles randomly interacted with dust targets of varying initial conditions in a continuous sequence of independent collisions. Impact velocities were 7.7 m/s on average and in the range expected for collisions with decimetre bodies in protoplanetary discs. The targets all evolved by forming dust \\emph{crusts} with up to several cm thickness and a unique filling factor of 31% $\\pm$3%. A part of the projectiles sticks directly. In addition, some projectile fragments slowly return to the target by gravity. All initially porous parts of the surface, i.e. built from the slowly returning fragments, are compacted and firmly attached to the underlying dust layers b...

  11. Interstellar Dust in the Solar System

    CERN Document Server

    Krueger, Harald; Altobelli, Nicolas; Gruen, Eberhard

    2007-01-01

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged gr...

  12. Observational Constraints on Submillimeter Dust Opacity

    CERN Document Server

    Shirley, Yancy L; Pontoppidan, Klaus M; Wilner, David J; Stutz, Amelia M; Bieging, John H; Evans, Neal J

    2010-01-01

    Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (\\kaprat) and the submillimeter opacity power-law index ($\\kappa \\propto \\lambda^{-\\beta}$). Using the average value of theoretical dust opacity models at 2.2 \\micron, we constrain the dust opacity at 850 and 450 \\micron . Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are $\\frac{\\kappa_{850}}{\\kappa_{2.2}} = (3.21 - 4.80)^{+0.44}_{-0.30} \\times 10^{-4}$ and $\\frac{\\kappa_{450}}{\\kappa_{2.2}} = (12.8 - 24.8)^{+2.4}_{-1.3} \\times 10^{-4}$ with a submillimeter opacity power-law index of $\\beta_{smm}...

  13. Lidar Methods for Observing Mineral Dust

    Institute of Scientific and Technical Information of China (English)

    Nobuo SUGIMOTO; HUANG Zhongwei

    2014-01-01

    Lidar methods for observing mineral dust aerosols are reviewed. These methods include Mie scattering lidars, polarization lidars, Raman scattering lidars, high-spectral-resolution lidars, and fluorescence lidars. Some of the lidar systems developed by the authors and the results of the observations and applications are introduced. The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions. Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols. The lidar network data are actually used for validation and assimilation of dust transport models, which can evaluate emission, transport, and deposition of mineral dust. The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols. Evolution of the lidar data analysis methods for aerosol characterization is also reviewed. Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment. Directions of the researches with lidar methods in the near future are discussed.

  14. Dusting off the Diffuse Interstellar Bands

    CERN Document Server

    Baron, Dalya; Watson, Darach; Yao, Yushu; Prochaska, J Xavier

    2014-01-01

    Using over a million and a half extragalactic spectra we study the properties of the mysterious Diffuse Interstellar Bands (DIBs) in the Milky Way. These data provide us with an unprecedented sampling of the skies at high Galactic-latitude and low dust-column-density. In this first paper we present our method, study the correlation of the equivalent width of 12 DIBs with dust extinction and with a few atomic species, and the distribution of four DIBs over nearly 15,000 square degrees. As previously found, DIBs strengths correlate with extinction and therefore inevitably with each other. However, we find that DIBs can exist even in dust free areas. Furthermore, we find that the DIBs correlation with dust varies significantly over the sky. DIB under- or over-densities, relative to the expectation from dust, are often spread over hundreds of square degrees. These patches are different for the four DIBs, showing that they are unlikely to originate from the same carrier.

  15. Monte Carlo models of dust coagulation

    CERN Document Server

    Zsom, Andras

    2010-01-01

    The thesis deals with the first stage of planet formation, namely dust coagulation from micron to millimeter sizes in circumstellar disks. For the first time, we collect and compile the recent laboratory experiments on dust aggregates into a collision model that can be implemented into dust coagulation models. We put this model into a Monte Carlo code that uses representative particles to simulate dust evolution. Simulations are performed using three different disk models in a local box (0D) located at 1 AU distance from the central star. We find that the dust evolution does not follow the previously assumed growth-fragmentation cycle, but growth is halted by bouncing before the fragmentation regime is reached. We call this the bouncing barrier which is an additional obstacle during the already complex formation process of planetesimals. The absence of the growth-fragmentation cycle and the halted growth has two important consequences for planet formation. 1) It is observed that disk atmospheres are dusty thr...

  16. Gravitational collapse of thin shells of dust in Shape Dynamics

    CERN Document Server

    Gomes, Henrique; Mercati, Flavio; Napoletano, Andrea

    2015-01-01

    Shape dynamics is a theory of gravity whose physical configuration space is composed of spatial conformal equivalence classes of 3-dimensional geometries. This physical configuration space is not a priori related to the one given by 4-dimensional space-time geometries, familiar to general relativists. Although one can largely match dynamical solutions arising in each theory, this is not always the case. One expects such differences in collapse situations that lead to the formation of black holes. In this paper we study spherical collapse of thin-shells of pressureless dust as a fully back-reacting dynamical system, in a context related to both shape dynamics and general relativity in ADM form in Constant Mean Curvature (CMC) gauge -- the particular time slicing where any correspondence between ADM and shape dynamics is manifest. To better accommodate the relational setting of shape dynamics, we also begin a study of collapse of two such shells in a compact Universe.

  17. Submillimeter Observations of CLASH 2882 and the Evolution of Dust in this Galaxy

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G; Kovacs, Attila; Decarli, Roberto; Egami, Eiichi; Michalowski, Michal J.; Rawle, Timothy D.; Toft, Sune; Walter, Fabian

    2015-01-01

    Two millimeter observations of the MACS J1149.6+2223 cluster have detected a source that was consistent with the location of the lensed MACS 1149-JD galaxy at z = 9.6. A positive identification would have rendered this galaxy as the youngest dust forming galaxy in the universe. Follow up observation with the AzTEC 1.1 mm camera and the IRAM NOrthern Extended Millimeter Array (NOEMA) at 1.3 mm have not confirmed this association. In this paper we show that the NOEMA observations associate the 2 mm source with [PCB2012] 2882,12 source number 2882 in the Cluster Lensing And Supernova survey with Hubble (CLASH) catalog of MACS J1149.6 +2223. This source, hereafter referred to as CLASH 2882, is a gravitationally lensed spiral galaxy at z = 0.99. We combine the Goddard IRAM Superconducting 2-Millimeter Observer (GISMO) 2 mm and NOEMA 1.3 mm fluxes with other (rest frame) UV to far-IR observations to construct the full spectral energy distribution of this galaxy, and derive its star formation history, and stellar and interstellar dust content. The current star formation rate of the galaxy is 54/mu/Solar Mass/yr, and its dust mass is about 5 × 10(exp 7)/mu Solar Mass, where mu is the lensing magnification factor for this source, which has a mean value of 2.7. The inferred dust mass is higher than the maximum dust mass that can be produced by core collapse supernovae and evolved AGB stars. As with many other star forming galaxies, most of the dust mass in CLASH 2882 must have been accreted in the dense phases of the interstellar medium.

  18. Using Dust Lines to Learn About Planetary Birthplaces

    Science.gov (United States)

    Kohler, Susanna

    2017-05-01

    Observations of the protoplanetary disks that surround young stars provide crucial information about the initial conditions for planet formation. In a recent study, a team of scientists has proposed a novel new approach for determining disk properties from observations.Limitations to Direct MeasurementArtists impression of a protoplanetary disk surrounding a young star. [ESO/L. Calada]The surface density of protoplanetary disks (i.e., how much mass is there and where is it concentrated?) cant be measured directly, since most of the disk mass is in molecular hydrogen gas, which doesnt readily emit.Instead, disk surface densities are inferred by measuring other components of the disk, like dust or molecules like CO or HD, and then making assumptions about the molecular abundances or the dust-to-gas ratio in the disk. Disk surface density estimatesare therefore heavily dependent upon the assumptions that went into them.Now, a team of scientists led by Diana Powell (University of California Santa Cruz) has proposed a new technique in which observations of adisk in different wavelengths can be used to determine itssurface density profile without the need for such assumptions.Schematic showing disk dust lines for three different particle sizes, s1 s2 s3. Particles of size s1 exist in the yellow region, so in observations at wavelength obs=s1, a disk the size of the yellow region will be seen. Particles of size s2 exist in the yellow and red region, so a disk will extend to the end of the red region for obs=s2. Particles of size s3 exist throughout the disk, so the full disk size will be seen for obs=s3. [Powell et al. 2017]How Does It Work?Particles in a protoplanetary disk collide and stick together, thereby growing over time. But particles are also removed from the outskirts of the disk by a process called drift. More massive particles are removed from closer in to the star, so average particle sizes get smaller the further from the star you move out in a disk. For

  19. Zhejiang University

    Institute of Scientific and Technical Information of China (English)

    玄之

    2008-01-01

    In September 1998,a new Zhejiang University was established on the basis of the amalgamation of the four former individual universities,namely Zhejiang University,Hangzhou University,Zhejiang Agricultural University and Zhejiang Medical University,which were all located in the garden city of Hangzhou.Approved by the State Council,the founding of the new Zhejiang University has been a significant move in the reform and development of China’s higher education.The four universities have grown out of the same ancestry,the Qiushi(with the literal meaning of "seeking truth" in Chinese) Academy,which was founded a century ago as one of the earliest institutions of higher learning in China.As a result,they have all inherited from it the spirit of "Qiushi" and at the same time,built up their owndistinctive features in teaching and research.

  20. Dust Studies in DIII-D and TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Rudakov, D L; Litnovsky, A; West, W P; Yu, J H; Boedo, J A; Bray, B D; Brezinsek, S; Brooks, N H; Fenstermacher, M E; Groth, M; Hollmann, E M; Huber, A; Hyatt, A W; Krasheninnikov, S I; Lasnier, C J; Moyer, R A; Pigarov, A Y; Philipps, V; Pospieszczyk, A; Smirnov, R D; Sharpe, J P; Solomon, W M; Watkins, J G; Wong, C C

    2009-02-17

    Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicron sized dust is routinely observed using Mie scattering from a Nd:Yag laser. The source is strongly correlated with the presence of Type I edge localized modes (ELMs). Larger size (0.005-1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Direct heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust. Large flakes or debris falling into the plasma may result in a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micron-size dust in plasma discharges. In DIII-D, a sample holder filled with {approx}30 mg of dust is introduced in the lower divertor and exposed to high-power ELMing H-mode discharges with strike points swept across the divertor floor. After a brief exposure ({approx}0.1 s) at the outer strike point, part of the dust is injected into the plasma, raising the core carbon density by a factor of 2-3 and resulting in a twofold increase of the radiated power. In TEXTOR, instrumented dust holders with 1-45 mg of dust are exposed in the scrape-off layer 0-2 cm radially outside of the last closed flux surface in discharges heated with neutral beam injection (NBI) power of 1.4 MW. At the given configuration of the launch, the dust did not penetrate the core plasma and only moderately perturbed the edge plasma, as evidenced by an increase of the edge carbon content.