WorldWideScience

Sample records for kantowski-sachs anisotropic universe

  1. Kantowski-Sachs Universes sourced by a Skyrme fluid

    CERN Document Server

    Parisi, Luca; Vilasi, Gaetano

    2014-01-01

    The Kantowski-Sachs cosmological model sourced by a Skyrme field and a cosmological constant is considered in the framework of General Relativity. Assuming a constant radial profile function for the hedgehog ansatz, the Skyrme contribution to Einstein equations is shown to be equivalent to an anisotropic fluid. Using dynamical system techniques, a qualitative analysis of the cosmological equations is presented. Physically interesting features of the model such as isotropization, bounce and recollapse are discussed.

  2. The choice of time in quantum cosmology: two different approaches to Kantowski-Sachs quantum universe

    CERN Document Server

    Alvarenga, F G; Freitas, R C; Gonçalves, S V B

    2015-01-01

    In this paper we study the quantum Kantowski-Sachs model and we solve the Wheeler-DeWitt equation in minisuperspace to obtain the wave function of the corresponding universe. The perfect fluid is described by the Schutz's canonical formalism, which allows to attribute dynamical degrees of freedom to matter. The time is introduced phenomenologically using the fluid's degrees of freedom. In particular, we adopt a stiff matter fluid. The Kantowski-Sachs model is also presented with the introduction of so-called geometric time. Finally, the agreement between the results is analyzed and the possibility of equivalence between the two approaches is discussed.

  3. Kantowski-Sachs Universe Models in $f(T)$ Theory of Gravity

    CERN Document Server

    Amir, M Jamil

    2015-01-01

    The $f(T)$ theory is recently proposed to explain the present cosmic accelerating expansion of the universe. $f(T)$ theory is an extension of Teleparallel theory of gravity, where $T$ is the torsion scalar. This paper contains the construction of $f(T)$ models within the Kantowski-Sachs universe. For this purpose, we use conservation equation and equation of state parameter, which represents the different phases of the universe. We discuss possible cases for the matter dominated era, radiation dominated era, present dark energy phase and their combinations. Particularly, a constant solution has been obtained which may correspond to the cosmological constant. Further, we consider two well known $f(T)$ models and derive the equation of state parameter and discuss the cosmic acceleration. Also, the Hubble parameter and average scale factor have been evaluated.

  4. Kantowski-Sachs Universe in the Varying Speed of Light Theory

    CERN Document Server

    Khadekar, G S; Ray, Saibal

    2016-01-01

    In this work we consider the Kantowski-Sachs (KS) universe in the framework of varying speed of light theory. We present the general solutions of the gravitational field equations with variable speed of light $c(t)$, gravitational coupling parameter $G(t)$ and the decaying vacuum energy $\\Lambda(t)$ for the KS model. In the limiting case for the equation of state (EOS) parameter $\\gamma=2$ (stiff fluid with $p=\\rho c^2$) and $\\gamma =1$ (dust with $p=0$), exact solutions of the field equations are obtained. The numerical solutions are also presented for both the cases. Moreover, it is shown that in the limiting case of large time, the mean anisotropy parameter tends to zero for $\\gamma=2$ and $\\gamma=1$. Thus the time variation of the fundamental constants provides an effective mechanism for the isotropization of the KS universe.

  5. (Non) singular Kantowski-Sachs Universe from quantum spherically reduced matter

    CERN Document Server

    Nojiri, S; Odintsov, S D; Osetrin, K E

    1999-01-01

    Using s-wave and large $N$ approximation the one-loop effective action for 2d dilaton coupled scalars and spinors which are obtained by spherical reduction of 4d minimal matter is found. Quantum effective equations for reduced Einstein gravity are written. Their analytical solutions corresponding to 4d Kantowski-Sachs (KS) Universe are presented. For quantum-corrected Einstein gravity we get non-singular KS cosmology which represents 1) quantum-corrected KS cosmology which existed on classical level or 2)purely quantum solution which had no classical limit. The analogy with Nariai BH is briefly mentioned. For purely induced gravity (no Einstein term) we found general analytical solution but all KS cosmologies under discussion are singular. The corresponding equations of motion are reformulated as classical mechanics problem of motion of unit mass particle in some potential $V$.

  6. Exact solution of the Einstein-Skyrme model in a Kantowski-Sachs spacetime

    Science.gov (United States)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2017-04-01

    We consider a Skyrme fluid with a constant radial profile in locally rotational Kantowski-Sachs spacetime. The Skyrme fluid is an anisotropic fluid with zero heat flux and with an equation of state parameter wS that |ws | ≤ 1/3. From the Einstein field equations we define the Wheeler-DeWitt equation. For the last equation we perform a Lie symmetry classification and we determine the invariant solutions for the wavefunction of the model. Moreover from the Lie symmetries of the Wheeler-DeWitt equation we construct Noetherian conservation laws for the field equations which we use in order to write the solution in closed form. We show that all of the cosmological parameters are expressed in terms of the scale factor of the two dimensional sphere of the Kantowski-Sachs spacetime. Finally from the application of Noether's theorem for the Wheeler-DeWitt equation we derive conservation laws for the wavefunction of the universe.

  7. Bianchi type-I, type-III and Kantowski-Sachs solutions in f( T) gravity

    Science.gov (United States)

    Rodrigues, M. E.; Kpadonou, A. V.; Rahaman, F.; Oliveira, P. J.; Houndjo, M. J. S.

    2015-06-01

    In the context of modified tele-parallel theory of gravity, we undertake cosmological anisotropic models and search for their solutions. Within a suitable choice of non-diagonal tetrads, the decoupled equations of motion are obtained for Bianchi-I, Bianchi-III and Kantowski-Sachs models, from which we obtain the correspondent solutions. By the way, energy density and pressures are also obtained, showing, as an important result, that our universe may live a quintessence like universe even while anisotropic models are considered.

  8. No bounce behaviour in Kantowski-Sachs Cosmologies

    CERN Document Server

    Solomons, D M; Ellis, G; Solomons, Deon; Dunsby, Peter; Ellis, George

    2001-01-01

    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the {\\it reality condition} $\\dot{\\phi}^2\\geq 0$.

  9. Kantowski-Sachs cosmological solutions in the generalized teleparallel gravity via Noether symmetry

    Science.gov (United States)

    Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.

    2016-04-01

    We study the f(T) theory as an extension of teleparallel gravity and consider the Noether symmetry of Kantowski-Sachs (KS) anisotropic model for this theory. We specify the explicit teleparallel form of f(T) and find the corresponding exact cosmological solutions under the assumption that the Lagrangian admits the Noether symmetry. It is found that the universe experiences a power law expansion for the scale factors in the context of f(T) theory. By deriving equation of state (EOS) parameter, we show that the universe passes through the phantom and ΛCDM theoretical scenarios. In this way, we estimate a lower limit age for the universe in excellent agreement with the value reported from recent observations. When KS model reduces to the flat Friedmann-Robertson-Walker (FRW) metric, our results are properly transformed into the corresponding values.

  10. Perturbations of Kantowski-Sachs models

    CERN Document Server

    Bradley, Michael; Keresztes, Zoltán; Gergely, László Á; Dunsby, Peter K S

    2013-01-01

    Perturbations of Kantowski-Sachs models with a positive cosmological constant are considered in a harmonic decomposition, in the framework of gauge invariant 1+3 and 1+1+2 covariant splits of spacetime. Scalar, vector and tensor modes are allowed, however they remain vorticity-free and of perfect fluid type. The dynamics is encompassed in six evolution equations for six harmonic coefficients.

  11. Bounce behaviour in Kantowski-Sachs and Bianchi cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Solomons, Deon [Cape Peninsula University of Technology, Cape Town (South Africa); Dunsby, Peter K S [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Ellis, George F R [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)

    2006-12-07

    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the reality condition {phi}-dot{sup 2} {>=}0. This also holds true for other isotropic spatially homogeneous Bianchi models, with the exception of closed Friedmann-Robertson-Walker and Bianchi IX models; bounce behaviour violates the weak energy condition {rho} {>=} 0 and {rho} + p {>=} 0. We turn to the Randall-Sundrum type braneworld scenario for a possible resolution of this problem.

  12. Kantowski-Sachs Einstein-aether perfect fluid models

    CERN Document Server

    Latta, Joey

    2016-01-01

    We investigate Kantowski-Sachs models in Einstein-aether theory with a perfect fluid source using dynamical system tools. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A. A. Coley, G. Leon, P. Sandin and J. Latta, JCAP {\\bf 12}, 010 (2015) are then re-obtained as particular cases. Additionally, we select other values for non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. Particularly, we find solutions with infinite shearing, zero curvature, and infinity matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. From the cosmological point of view, the more interesting fixed points are those representing accelerated solutions. However, the accelerated solutions do not isotropize, and th...

  13. Kantowski-Sachs Einstein-æther perfect fluid models

    Science.gov (United States)

    Latta, Joey; Leon, Genly; Paliathanasis, Andronikos

    2016-11-01

    We investigate Kantowski-Sachs models in Einstein-æ ther theory with a perfect fluid source using the singularity analysis to prove the integrability of the field equations and dynamical system tools to study the evolution. We find an inflationary source at early times, and an inflationary sink at late times, for a wide region in the parameter space. The results by A.A. Coley, G. Leon, P. Sandin and J. Latta (JCAP 12 (2015) 010), are then re-obtained as particular cases. Additionally, we select other values for the non-GR parameters which are consistent with current constraints, getting a very rich phenomenology. In particular, we find solutions with infinite shear, zero curvature, and infinite matter energy density in comparison with the Hubble scalar. We also have stiff-like future attractors, anisotropic late-time attractors, or both, in some special cases. Such results are developed analytically, and then verified by numerics. Finally, the physical interpretation of the new critical points is discussed.

  14. Perturbations of Kantowski-Sachs models with a cosmological constant

    CERN Document Server

    Keresztes, Zoltán; Bradley, Michael; Dunsby, Peter K S; Gergely, László Á

    2013-01-01

    We investigate perturbations of Kantowski-Sachs models with a positive cosmological constant, using the gauge invariant 1+3 and 1+1+2 covariant splits of spacetime together with a harmonic decomposition. The perturbations are assumed to be vorticity-free and of perfect fluid type, but otherwise include general scalar, vector and tensor modes. In this case the set of equations can be reduced to six evolution equations for six harmonic coefficients.

  15. Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski-Sachs spacetime

    Science.gov (United States)

    Saini, Sahil; Singh, Parampreet

    2016-12-01

    Resolution of singularities in the Kantowski-Sachs model due to non-perturbative quantum gravity effects is investigated. Using the effective spacetime description for the improved dynamics version of loop quantum Kantowski-Sachs spacetimes, we show that even though expansion and shear scalars are universally bounded, there can exist events where curvature invariants can diverge. However, such events can occur only for very exotic equations of state when pressure or derivatives of energy density with respect to triads become infinite at a finite energy density. In all other cases curvature invariants are proved to remain finite for any evolution in finite proper time. We find the novel result that all strong singularities are resolved for arbitrary matter. Weak singularities pertaining to above potential curvature divergence events can exist. The effective spacetime is found to be geodesically complete for particle and null geodesics in finite time evolution. Our results add to a growing evidence for generic resolution of strong singularities using effective dynamics in loop quantum cosmology by generalizing earlier results on isotropic and Bianchi-I spacetimes.

  16. Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior

    Science.gov (United States)

    Djordjevic, Goran S.; Nesic, Ljubisa; Radovancevic, Darko

    2016-08-01

    In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum, homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model is presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model is written, and then an adelic wave function is constructed. Finally, thermodynamics of the model is studied by using the Feynman-Hibbs procedure.

  17. Two-oscillator Kantowski-Sachs model of the Schwarzschild black hole interior

    CERN Document Server

    Djordjevic, Goran S; Radovancevic, Darko

    2015-01-01

    In this paper the interior of the Schwarzschild black hole, which is presented as a vacuum homogeneous and anisotropic Kantowski-Sachs minisuperspace cosmological model, is considered. Lagrangian of the model is reduced by a suitable coordinate transformation to Lagrangian of two decoupled oscillators with the same frequencies and with zero energy in total (an oscillator-ghost-oscillator system). The model will be presented in a classical, a p-adic and a noncommutative case. Then, within the standard quantum approach Wheeler-DeWitt equation and its general solutions, i.e. a wave function of the model, will be written, and then an adelic wave function will be constructed. Finally, thermodynamics of the model will be studied by using the Feynman-Hibbs procedure.

  18. Unitary evolution for a quantum Kantowski-Sachs cosmology

    CERN Document Server

    Pal, Sridip

    2015-01-01

    It is shown that like Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows a unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of the anisotropy. Non-unitarity, if there is any, cannot escape notice in this as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave-packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving time independent probability density. For $\\alpha\

  19. Non-Canonical Phase-Space Noncommutativity and the Kantowski-Sachs singularity for Black Holes

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2010-01-01

    We consider a cosmological model based upon a non-canonical noncommutative extension of the Heisenberg-Weyl algebra to address the thermodynamical stability and the singularity problem of both the Schwarzschild and the Kantowski-Sachs black holes. The interior of the black hole is modelled by a noncommutative extension of the Wheeler-DeWitt equation. We compute the temperature and entropy of a Kantowski-Sachs black hole and compare our results with the Hawking values. Again, the noncommutativity in the momenta sector allows us to have a minimum in the potential, which is relevant in order to apply the Feynman-Hibbs procedure. For Kantowski-Sachs black holes, the same model is shown to generate a non-unitary dynamics, predicting vanishing total probability in the neighborhood of the singularity. This result effectively regularizes the Kantowski-Sachs singularity and generalizes a similar result, previously obtained for the case of Schwarzschild black hole.

  20. Qualitative analysis of Kantowski-Sachs metric in a generic class of f(R) models

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Roque, Armando A., E-mail: genly.leon@ucv.cl, E-mail: arestrada@ucf.edu.cu [Grupo de Estudios Avanzados, Universidad de Cienfuegos, Carretera a Rodas, Cuatro Caminos, s/n. Cienfuegos (Cuba)

    2014-05-01

    In this paper we investigate, from the dynamical systems perspective, the evolution of a Kantowski-Sachs metric in a generic class of f(R) models. We present conditions (i.e., differentiability conditions, existence of minima, monotony intervals, etc.) for a free input function related to the f(R), that guarantee the asymptotic stability of well-motivated physical solutions, specially, self-accelerated solutions, allowing to describe both inflationary- and late-time acceleration stages of the cosmic evolution. We discuss which f(R) theories allows for a cosmic evolution with an acceptable matter era, in correspondence to the modern cosmological paradigm. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or phantom solutions. Additionally, we find that a cosmological bounce and turnaround are realized in a part of the parameter-space as a consequence of the metric choice.

  1. Qualitative analysis of Kantowski-Sachs metric in a generic class of $f(R)$ models

    CERN Document Server

    Leon, Genly

    2013-01-01

    In this paper we investigate, from the dynamical systems perspective, the evolution of a Kantowski-Sachs metric in a generic class of $f(R)$ models. We present conditions (i. e., differentiability conditions, existence of minima, monotony intervals, etc.) for a free input function related to the $f(R)$, that guarantee the asymptotic stability of well-motivated physical solutions, specially, self-accelerated solutions, allowing to describe both inflationary- and late-time acceleration stages of the cosmic evolution. We discuss which $f(R)$ theories allows for a cosmic evolution with an acceptable matter era, in correspondence to the modern cosmological paradigm. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or phantom solutions. Additionally, we find that a cosmological bounce and turnaround are realized in a part of the parameter-space as a consequence of the metric choice...

  2. Noncanonical phase-space noncommutativity and the Kantowski-Sachs singularity for black holes

    Science.gov (United States)

    Bastos, Catarina; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2011-07-01

    We consider a cosmological model based upon a noncanonical noncommutative extension of the Heisenberg-Weyl algebra to address the thermodynamical stability and the singularity problem of black holes whose interior are described by the Kantowski-Sachs metric and modeled by a noncommutative extension of the Wheeler-DeWitt equation. We compute the temperature and entropy of these black holes and compare the results with the Hawking values. We observe that it is actually the noncommutativity in the momentum sector that allows for the existence of a minimum in the potential, which is the key to apply the Feynman-Hibbs procedure. It is shown that this noncommutative model generates a nonunitary dynamics that predicts a vanishing probability in the neighborhood of the singularity. This result effectively regularizes the Kantowski-Sachs singularity and generalizes a similar result, previously obtained for the case of Schwarzschild black holes.

  3. A note on proper affine symmetry in Kantowski-Sachs and Bianchi type III space-times

    CERN Document Server

    Shabbir, Ghulam

    2016-01-01

    We investigate proper affine symmetry for the Kantowski-Sachs and Bianchi type III space-times by using holonomy and decomposability, the rank of the 6X6 Riemann matrix and direct integration techniques. It is shown that the very special classes of the above space-times admit proper affine vector fields.

  4. A note on classification of proper homothetic vector fields in Kantowski-Sachs and Bianchi type III Lorentzian manifolds

    CERN Document Server

    Shabbir, Ghulam

    2011-01-01

    A complete study of Kantowski-Sachs and Bianchi type III space-times according to their proper homothetic vector fields is given by using direct integration technique. Using the above mentioned technique we have shown that very special classes of the above space-times admit proper homothetic vector fields. The dimension of homothetic vector fields is five.

  5. Anisotropic higher derivative gravity and inflationary universe

    CERN Document Server

    Kao, W F

    2006-01-01

    Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.

  6. Dynamics of anisotropic f(R) cosmology

    CERN Document Server

    Leon, Genly

    2010-01-01

    We construct general anisotropic cosmological scenarios governed by an f(R) gravitational sector. Focusing then on Kantowski-Sachs geometries in the case of $R^n$-gravity we perform a detailed phase-space analysis. We find that at late times the universe can result to a state of accelerating expansion, and additionally, for a particular n-range (2universe. Finally, we can also obtain the realization of the cosmological bounce and turnaround, as well as of cyclic cosmology. These features indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors comparing to the simple isotropic scenarios.

  7. Full dynamical analysis of anisotropic scalar-field cosmology with arbitrary potentials

    CERN Document Server

    Fadragas, Carlos R; Saridakis, Emmanuel N

    2013-01-01

    We perform a detailed dynamical analysis of anisotropic scalar-field cosmologies, and in particular of the most significant Kantowski-Sachs, Bianchi I and Bianchi III cases. We follow the new and powerful method of $f$-devisers, which allows us to perform the whole analysis for arbitrary potentials. Thus, one can just substitute the specific potential form in the final results and obtain the corresponding behavior, without the need of new calculations. We find a very rich behavior, and amongst others the universe can result in isotropized solutions with observables in agreement with observations, such as de Sitter, quintessence-like, or stiff-dark energy solutions. Additionally, in the case of Kantowski-Sachs geometry we find that a cosmological bounce and turnaround are realized in a part of the parameter-space. Finally, applying the general results to the well-studied exponential and power-law potentials, we find that some of the general stable solutions disappear. This feature may be an indication that suc...

  8. New exact solutions of Bianchi I, Bianchi III and Kantowski-Sachs spacetimes in scalar-coupled gravity theories via Noether gauge symmetries

    CERN Document Server

    Camci, U; Oz, I Basaran

    2016-01-01

    The Noether symmetry approach is useful tool to restrict the arbitrariness in a gravity theory when the equations of motion are underdetermined due to the high number of functions to be determined in the ansatz. We consider two scalar-coupled theories of gravity, one motivated by induced gravity, the other more standard; in Bianchi I, Bianchi III and Kantowski-Sachs cosmological models. For these models, we present a full set of Noether gauge symmetries, which are more general than those obtained by the strict Noether symmetry approach in our recent work. Some exact solutions are derived using the first integrals corresponding to the obtained Noether gauge symmetries.

  9. Geometric properties of the Kantowski-Sachs and Bianchi-type Killing algebra in relation to a Klein-Gordon equation

    Science.gov (United States)

    Jamal, Sameerah; Shabbir, Ghulam

    2017-02-01

    We study the geometric properties of generators for the Klein-Gordon equation in Kantowski-Sachs and certain Bianchi-type spaces. Several versions of the Klein-Gordon equation are derived from its dependence on a potential function. The criteria for different versions of the (1+3) Klein-Gordon equation originates from analyzing three sources, viz. through generators that are identically the Killing algebra, or with the Killing vector fields that are recast into linear combinations and thirdly, real sub-algebras within the conformal algebra. In turn, these equations admit a catalogue of infinitesimal symmetries that are equivalent to the corresponding Killing vector fields in Kantowski-Sachs, Bianchi type III, IX, VIII, VI0 and VII0 space-times, with the exception of a linear vector W=upartialu in every case. The sheer number of results are displayed in appropriate tables. Subsequently, in application, we derive some Noetherian conservation laws and identify some exact solutions by quadratures.

  10. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  11. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  12. The closed-universe recollapse conjecture

    Science.gov (United States)

    Barrow, John D.; Galloway, Gregory J.; Tipler, Frank J.

    1986-12-01

    It is widely believed that all expanding S3 closed universes that satisfy the standard energy conditions recollapse to a second singularity. The authors show that this is false even for Friedmann universes: they construct an ever-expanding S3 Friedmann universe in which the matter tensor satisfies the strong, weak and dominant energy conditions and the generic condition. The authors prove a general recollapse theorem for Friedmann universes: if the positive pressure criterion, dominant energy condition and matter regularity condition hold, then an S3 Friedmann universe must recollapse. The authors show that all known vacuum solutions with Cauchy surface topology S3 or S2×S1 recollapse, and they conjecture that this is a property of all vacuum solutions of Einstein's equations with such Cauchy surfaces. The authors consider a number of Kantowski-Sachs and Bianchi IX universes with various matter tensors, and formulate a new recollapse conjecture for matter-filled universes.

  13. Gravitational Baryogenesis in Anisotropic Universe

    CERN Document Server

    Saaidi, Kh

    2010-01-01

    The interaction between Ricci scalar curvature and the baryon number current, dynamically breaks CPT in an expanding universe and leads to baryon asymmetry. Using this kind of interaction and study the gravitational baryogenesis in the Bianchi type I universe. We find out the effect of anisotropy of the universe on the baryon asymmetry for the case which the equation of state parameter, $\\omega$, is dependent to time.

  14. Constraining the Anisotropic Expansion of Universe

    CERN Document Server

    Cai, Rong-Gen; Tang, Bo; Tuo, Zhong-Liang

    2013-01-01

    We study the possibly existing anisotropy in the accelerating expansion Universe with the Union2 Type Ia supernovae data and Gamma-ray burst data. We construct a direction-dependent dark energy model and constrain the anisotropy direction and strength of modulation. We find that the maximum anisotropic deviation direction is $(l,\\,b)=(126^{\\circ},\\,13^{\\circ})$ (or equivalently $(l,\\,b)=(306^{\\circ},\\,-13^{\\circ})$), and the anisotropy level is $g_0=0.030_{+0.010}^{-0.030}$ (obtained using Union2 data, at $1\\sigma$ confidence level). Our results do not show strong evidence for the anisotropic dark energy model. We also discuss potential methods that may distinguish the peculiar velocity field from the anisotropic dark energy model.

  15. Accretion of radiation and Primordial black holes in anisotropic universe

    CERN Document Server

    Mahapatra, Swapna

    2013-01-01

    We consider Primordial black holes (PBHs) in a LRS (locally rotationally symmetric) Bianchi-I anisotropic space time and study the effect of accretion of radiation in the radiation dominated era. We show that the life time of PBHs in anisotropic universe becomes longer by accretion of radiation. We generalize the result by including nonzero angular momentum parameter and study the PBH evolution equation. We find that the evaporation time gets prolonged and it depends on the accretion efficiency as well as angular momentum parameter. This supports the conjecture that Primordial black holes can be considered as a viable candidate for dark matter.

  16. Anisotropic Friedmann-Robertson-Walker universe from nonlinear massive gravity

    CERN Document Server

    Gumrukcuoglu, A Emir; Mukohyama, Shinji

    2012-01-01

    In the scope of the nonlinear massive gravity, we study fixed points of evolution equations for a Bianchi type--I universe. We find a new attractor solution with non-vanishing anisotropy, on which the physical metric is isotropic but the Stuckelberg configuration is anisotropic. As a result, at the background level, the solution describes a homogeneous and isotropic universe, while a statistical anisotropy is expected from perturbations, suppressed by smallness of the graviton mass.

  17. Absence of anisotropic universal transport in YBCO

    OpenAIRE

    Wu, W C; Carbotte, J. P.

    1998-01-01

    There exists significant in-plane anisotropy between $a$ and $b$ axis for various properties in YBCO. However recent thermal conductivity measurement by Chiao et al. which confirms previous microwave conductivity measurement by Zhang et al., shows no obvious anisotropy in the context of universal transport. We give a possible explanation of why the anisotropy is seen in most properties but not seen in the universal transport.

  18. Quantum cosmology in an anisotropic n-dimensional universe

    CERN Document Server

    Alves-Júnior, F A P; Barreto, A B; Romero, C

    2016-01-01

    We investigate quantum cosmological models in an n-dimensional anisotropic universe in the presence of a massless scalar field. Our basic inspiration comes from Chodos and Detweiler's classical model which predicts an interesting behaviour of the extra dimension, shrinking down as time goes by. We work in the framework of a recent geometrical scalar-tensor theory of gravity. Classically, we obtain two distinct type of solutions. One of them has an initial singularity while the other represents a static universe considered as a whole. By using the canonical approach to quantum cosmology, we investigate how quantum effects could have had an influence in the past history of these universes.

  19. Singularity-free Bianchi spaces with nonlinear electrodynamics

    CERN Document Server

    García-Salcedo, R; Garcia-Salcedo, Ricardo; Breton, Nora

    2004-01-01

    In this paper we present the analysis to determine the existence of singularities in spatially homogeneous anisotropic universes filled with nonlinear electromagnetic radiation. These spaces are conformal to Bianchi spaces admitting a three parameter group of motions G$_3$. We study analytical extensions as well as geodesic completeness. It is shown that with nonlinear electromagnetic field some of the Bianchi spaces are geodesically complete, like G$_3$II and G$_3$VIII; however Bianchi G$_3$IX presents the phenomenon of geodesics that are imprisoned. In contrast, diagonal Bianchi spaces like G$_3$I, G$_3$III and Kantowski-Sachs have a finite time existence ending in a scalar polynomial curvature singularity.

  20. Interacting Dark Fluid in Anisotropic Universe with Dynamical Deceleration Parameter

    Science.gov (United States)

    Adhav, K. S.; Bokey, V. D.; Bansod, A. S.; Munde, S. L.

    2016-10-01

    In this paper we have studied the anisotropic and homogeneous Bianchi Type-I and V universe filled with Interacting Dark Matter and Holographic Dark Energy. The solutions of field equations are obtained for both models under the assumption of linearly varying deceleration parameter which yields dynamical deceleration parameter. It has been observed that the anisotropy of expansion dies out very quickly (soon after inflation) in both models (B-I, B-V). The physical and geometrical parameters for the both models have been obtained and discussed in details.

  1. Noether symmetry analysis of anisotropic universe in modified gravity

    Science.gov (United States)

    Shamir, M. Farasat; Kanwal, Fiza

    2017-05-01

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R,G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R,G)=f_0R^l+f_1G^n is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f( R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R,G) model, i.e., f(R,G)=f_0R^nG^{1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving Λ CDM cosmology may be reconstructed for some suitable value of n.

  2. Noether symmetry analysis of anisotropic universe in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Kanwal, Fiza [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)

    2017-05-15

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R, G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R, G) = f{sub 0}R{sup l} + f{sub 1}G{sup n} is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f(R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R, G) model, i.e., f(R, G) = f{sub 0}R{sup n}G{sup 1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving ΛCDM cosmology may be reconstructed for some suitable value of n. (orig.)

  3. Constraining anisotropic models of early Universe with WMAP9 data

    CERN Document Server

    Ramazanov, Sabir

    2013-01-01

    We constrain several models of the early Universe that predict statistical anisotropy of the CMB sky. We make use of WMAP9 maps deconvolved with beam asymmetries. As compared to previous releases of WMAP data, they do not exhibit the anomalously large quadrupole of the statistical anisotropy. This allows to strengthen limits on parameters of models established earlier in literature. In particular, the amplitude of the special quadrupole, whose direction is aligned with ecliptic poles, is now constrained as g_* =0.002 \\pm 0.041 at 95% CL (\\pm 0.020 at 68% CL). The upper limit is obtained on the total number of e-folds in anisotropic inflation with the Maxwellian term non-minimally coupled to the inflaton, namely N_{tot} Universe. The strongest constraint is obtained for spectator scenarios involving a long stage of subhorizon evolution after conformal rolling, which reads h^2 < 0.006 at 95% CL, in terms ...

  4. Bayesian analysis of an anisotropic universe model: systematics and polarization

    CERN Document Server

    Groeneboom, Nicolaas E; Wehus, Ingunn Kathrine; Eriksen, Hans Kristian

    2009-01-01

    We revisit the anisotropic universe model previously developed by Ackerman, Carroll and Wise (ACW), and generalize both the theoretical and computational framework to include polarization and various forms of systematic effects. We apply our new tools to simulated WMAP data in order to understand the potential impact of asymmetric beams, noise mis-estimation and potential Zodiacal light emission. We find that neither has any significant impact on the results. We next show that the previously reported ACW signal is also present in the 1-year WMAP temperature sky map presented by Liu & Li, where data cuts are more aggressive. Finally, we reanalyze the 5-year WMAP data taking into account a previously neglected (-i)^{l-l'}-term in the signal covariance matrix. We still find a strong detection of a preferred direction in the temperature map. Including multipoles up to l=400, the anisotropy amplitude for the W-band is found to be g = 0.29 +- 0.031, nonzero at 9 sigma. However, the corresponding preferred direc...

  5. Perfect Fluid Quantum Anisotropic Universe: Merits and Challenges

    CERN Document Server

    Majumder, Barun

    2012-01-01

    The present paper deals with quantization of perfect fluid anisotropic cosmological models. Bianchi type V and IX models are discussed following Schutz's method of expressing fluid velocities in terms of six potentials. The wave functions are found for several examples of equations of state. In one case a complete wave packet could be formed analytically. The initial singularity of a zero proper volume can be avoided in this case, but it is plagued by the usual problem of non-unitarity of anisotropic quantum cosmological models. It is seen that a particular operator ordering alleviates this problem.

  6. Anisotropic Bianchi-I universe with phantom field and cosmological constant

    Indian Academy of Sciences (India)

    Bikash Chandra Paul; Dilip Paul

    2008-12-01

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.

  7. Dynamics of an Anisotropic Universe in $f(R,T)$ Theory

    CERN Document Server

    Mishra, B; Tripathy, S K

    2016-01-01

    Dynamics of an anisotropic universe is studied in $f(R,T)$ gravity using a rescaled functional $f(R,T)$. Three models have been constructed assuming a power law expansion of the universe. Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from the work that, the $BVI_h$ model in the modified gravity can favour quintessence and phantom phase.

  8. Thermodynamics of anisotropic emergent universe in nonlinear electrodynamics

    Science.gov (United States)

    Sharif, M.; Sarwar, Ayesha

    2016-07-01

    In this paper, we study the emergent universe (EU) with interacting fluids in the background of Bianchi type I (BI) universe model. For this purpose, we consider polytropic equation of state (EoS) which constitutes three non-interacting fluids. In order to check the viability of the cosmological models, we take a two-fluid model interacting with dust fluid and a three-fluid model in which each fluid has nonlinear EoS interacting at t ≥ t0. It turns out that both models are realistic cosmological viable. We also check the validity of the generalized second law of thermodynamics (GSLT) for EU with interacting fluids. Finally, we study its validity in the framework of nonlinear electrodynamics (NLED) on apparent horizon.

  9. The Influence of the Shear on the Gravitational Waves in the Early Anisotropic Universe

    CERN Document Server

    Song, Yoogeun

    2016-01-01

    We study the singularity of the congruences for both timelike and null geodesic curves using the expansion of the early anisotropic Bianchi type I Universe. In this paper, we concentrate on the influence of the shear of the timelike and null geodesic congruences in the early Universe. Under some natural conditions, we derive the Raychaudhuri type equation for the expansion and the shear-related equations. Recently, scientists working on the LIGO (Laser Interferometer Gravitational-Wave Observatory) have shown many possibilities to observing the anisotropy of the primordial gravitational wave background radiation. We deduce the evolution equation for the shear that may be responsible for those observational results.

  10. Study of Tachyonic Field and its statefinder diagnostics in Various Scenarios of The Anisotropic Universe

    CERN Document Server

    Ranjit, Chayan; 10.1139/P11-143

    2012-01-01

    In the present work, we have considered N-dimensional Einstein field equations in which 4-dimensional space-time is described by a FRW metric and that of the extra d-dimensions by an Euclidean metric. Considering the universe filled with tachyonic field we have reconstructed the potential $V(\\phi)$ corresponding to the field reconstructions in an anisotropic universe under \\emph{Emergent-Power law}, \\emph{Emergent-Intermediate}, \\emph{Emergent-Logamediate}and \\emph{Logamediate-Intermediate} scenarios. The statefinder parameters have been investigated in all of the said scenarios.

  11. A Class of LQC--inspired Models for Homogeneous, Anisotropic Cosmology in Higher Dimensional Early Universe

    CERN Document Server

    Rama, S Kalyana

    2016-01-01

    The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by Loop Quantum Cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC -- inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.

  12. A class of LQC-inspired models for homogeneous, anisotropic cosmology in higher dimensional early universe

    Science.gov (United States)

    Rama, S. Kalyana

    2016-12-01

    The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by loop quantum cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC-inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.

  13. An Expanding Locally Anisotropic (ELA) Metric Describing Matter in an Expanding Universe

    CERN Document Server

    Ferreira, P Castelo

    2010-01-01

    It is suggested an expanding locally anisotropic metric (ELA) ansatz describing matter in a flat expanding universe which interpolates between the Schwarzschild (SC) metric near point-like central bodies of mass 'M' and the Robertson-Walker (RW) metric for large radial coordinate: 'ds^2=Z(cdt)2 - 1/Z (dr1-(Hr1/c) Z^(alpha/2+1/2)(cdt))^2-r1^2 dOmega', where 'Z=1-U' with 'U=2GM/(c^2r1)', 'G' is the Newton constant, 'c' is the speed of light, 'H=H(t)=\\dot(a)/a' is the time-dependent Hubble rate, 'dOmega=dtheta^2+sin^2(theta) dvarphi^2' is the solid angle element, 'a' is the universe scale factor and we are employing the coordinates 'r1=ar', being 'r' the radial coordinate for which the RW metric is diagonal. For constant exponent 'alpha=alpha0=0' it is retrieved the isotropic McVittie (McV) metric and for 'alpha=alpha0=1' it is retrieved the locally anisotropic Cosmological-Schwarzschild (SCS) metric, both already discussed in the literature. However it is shown that only for constant exponent 'alpha=alpha0> 1' ...

  14. Bianchi type I anisotropic universe and stability interacting ghost dark energy in Brans-Dicke theories

    CERN Document Server

    Hossienkhani, Hossien

    2016-01-01

    A spatially homogeneous and anisotropic Bianchi type I universe has been studied with the ghost dark energy (GDE) in the framework of Brans-Dicke theory. For this purpose, we use the squared sound speed $v_s^2$ whose sign determines the stability of the model. At first, we obtain the equation of state parameter, $\\omega_\\Lambda$, the deceleration parameter $q$ and the evolution equation of the ghost dark energy. Then, we extend our study to the case of ghost dark energy in a non-isotropic and Brans-Dicke framework and find out that the transition of $\\omega_\\Lambda$ to the phantom regime can be more easily accounted for than when it is restored into the Einstein field equations. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behaviour the ghost dark energy models. In conclusion, we find evidence that the ghost dark energy in BD theory can lead to a stable universe favored by observations at the present time.

  15. Noether symmetries and anisotropic universe models in f(R, T) gravity

    Science.gov (United States)

    Sharif, M.; Nawazish, Iqra

    2017-08-01

    This paper investigates the existence of Noether symmetries of some anisotropic homogeneous universe models in non-minimally coupled f(R, T) gravity (R and T represent Ricci scalar and trace of the energy-momentum tensor). We evaluate symmetry generators and the corresponding conserved quantities for two models of this theory admitting direct and indirect non-minimal curvature-matter coupling. We also discuss exact solutions for dust as well as non-dust matter distribution and study the physical behavior of some cosmological parameters through these solutions. For dust distribution, the exact solution corresponds to power-law expansion and Einstein universe while exponential expansion appears for non-dust matter. The graphical analysis of these solutions and cosmological parameters provide consistent results with recent observations about accelerated cosmic expansion. We conclude that Noether symmetry generators and conserved quantities exist for both models.

  16. Bicritical universality of the anisotropic Heisenberg model in a crystal field.

    Science.gov (United States)

    Freire, R T S; Plascak, J A

    2015-03-01

    The bicritical properties of the three-dimensional classical anisotropic Heisenberg model in a crystal field are investigated through extensive Monte Carlo simulations on a simple cubic lattice, using Metropolis and Wolff algorithms. Field-mixing and multidimensional histogram techniques were employed in order to compute the probability distribution function of the extensive conjugate variables of interest and, using finite-size scaling analysis, the first-order transition line of the model was precisely located. The fourth-order cumulant of the order parameter was then calculated along this line and the bicritical point located with good precision from the cumulant crossings. The bicritical properties of this point were further investigated through the measurement of the universal probability distribution function of the order parameter. The results lead us to conclude that the studied bicritical point belongs in fact to the three-dimensional Heisenberg universality class.

  17. Instability of Interacting Ghost Dark Energy Model in an Anisotropic Universe

    Science.gov (United States)

    Azimi, N.; Barati, F.

    2016-07-01

    A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order {Λ }3_{QCD} and Λ Q C D ˜ 100 M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed {vs2} the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.

  18. Noether Symmetry of an Anisotropic Universe in a Modified Teleparallel Gravity

    CERN Document Server

    Tajahmad, Behzad

    2016-01-01

    In this paper, we have presented the Noether symmetries of locally rotationally symmetric Bianchi type I (LRS BI), anisotropic model, in the context of the teleparallel gravity. We have studied a certain modified teleparallel theory based on action that, in particular, contains a coupling between the scalar field and field strength (magnetism part). We derive the symmetry generators and show that, by means of cyclic variables approach, we can not reach at solutions for field equations. Hence by the use of B.N.S. approach we have solve the equations which carries Noether currents as well. The main goal of the paper is to give an interpretation laying at the last half of the age of universe that is accelerating. By data analysis of the obtained results, we have showed a compatible results with observational data.

  19. Kinematics of an Ideal Fluid into a Spatially Flat Anisotropic Axisymmetric Universe

    CERN Document Server

    López, Ericsson; Aldás, Franklin

    2016-01-01

    The Standard Cosmological Model assumes that the Universe is, on average, homogeneous and isotropic for large scales (z>1), but this principle has been questioned from the results about Cosmic Microwave Background. This radiation has anomalies that are not explained from the Standard Model, such as temperature fluctuations in the order of 10-5K or aligning polar moments. These anomalies could be explained by anisotropic cosmological models. We propose a transformation to spherical coordinates considering different temporal scale factors in the Cartesian axes, from which a reducible to flat spatial Friedmann-Lemaitre-Robertson-Walker metric is obtained. In the model, we consider the axisymmetric case and analyze the cinematic behavior of an ideal fluid at rest.

  20. The accretion of dark matter subhaloes within the cosmic web: primordial anisotropic distribution and its universality

    CERN Document Server

    Kang, Xi

    2015-01-01

    The distribution of galaxies displays anisotropy on different scales and it is often referred as galaxy alignment. To understand the origin of galaxy alignments on small scales, one must investigate how galaxies were accreted in the early universe and quantify their primordial anisotropic at the time of accretion. In this paper we use N-body simulations to investigate the accretion of dark matter subhaloes, focusing on their alignment with the host halo shape and the orientation of mass distribution on large scale, defined using the hessian matrix of the density field. The large/small (e1/e3) eigenvalues of the hessian matrix define the fast/slow collapse direction of dark matter on large scale. We find that: 1) the halo major axis is well aligned with the e3 (slow collapse) direction, and it is stronger for massive haloes; 2) subhaloes are predominately accreted along the major axis of the host halo, and the alignment increases with the host halo mass. Most importantly, this alignment is universal; 3) accret...

  1. An expanding locally anisotropic (ELA) metric describing matter in an expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Castelo Ferreira, P., E-mail: pedro.castelo.ferreira@ist.utl.p [CENTRA-Instituto Superior Tecnico, Av. Rovisco Pais 1, 1100-001 Lisboa (Portugal); U. Lusofona de Humanidades e Tecnologia-Eng. Electrotecnica, Campo Grande 376, 1749-024 Lisboa (Portugal)

    2010-02-08

    It is suggested an expanding locally anisotropic metric (ELA) ansatz describing matter in a flat expanding universe which interpolates between the Schwarzschild (SC) metric near point-like central bodies of mass M and the Robertson-Walker (RW) metric for large radial coordinate: ds{sup 2}=Zc{sup 2}dt{sup 2}-1/Z (dr{sub 1}-(Hr{sub 1})/c Z{sup (alpha)/2+1/2} cdt){sup 2}-r{sub 1}{sup 2}dOMEGA, where Z=1-U{sub SC} with U{sub SC}=2GM/(c{sup 2}r{sub 1}), G is the Newton constant, c is the speed of light, H=H(t)=a{sup .}/a is the time-dependent Hubble rate, dOMEGA=dtheta{sup 2}+sin{sup 2}thetadphi{sup 2} is the solid angle element, a is the universe scale factor and we are employing the coordinates r{sub 1}=ar, being r the radial coordinate for which the RW metric is diagonal. For constant exponent alpha=alpha{sub 0}=0 it is retrieved the isotropic McVittie (McV) metric and for alpha=alpha{sub 0}=1 it is retrieved the locally anisotropic Cosmological-Schwarzschild (SCS) metric, both already discussed in the literature. However it is shown that only for constant exponent alpha=alpha{sub 0}>1 exists an event horizon at the SC radius r{sub 1}=2GM/c{sup 2} and only for alpha=alpha{sub 0}>=3 space-time is singularity free for this value of the radius. These bounds exclude the previous existing metrics, for which the SC radius is a naked extended singularity. In addition it is shown that for alpha=alpha{sub 0}>5 space-time is approximately Ricci flat in a neighborhood of the event horizon such that the SC metric is a good approximation in this neighborhood. It is further shown that to strictly maintain the SC mass-pole at the origin r{sub 1}=0 without the presence of more severe singularities it is required a radial coordinate-dependent correction to the exponent alpha(r{sub 1})=alpha{sub 0}+alpha{sub 1}2GM/(c{sup 2}r{sub 1}) with a negative coefficient alpha{sub 1}<0. The energy-momentum density, pressures and equation of state are discussed.

  2. Bayesian analysis of sparse anisotropic universe models and application to the 5-yr WMAP data

    CERN Document Server

    Groeneboom, Nicolaas E

    2008-01-01

    We extend the previously described CMB Gibbs sampling framework to allow for exact Bayesian analysis of anisotropic universe models, and apply this method to the 5-year WMAP temperature observations. This involves adding support for non-diagonal signal covariance matrices, and implementing a general spectral parameter MCMC sampler. As a worked example we apply these techniques to the model recently introduced by Ackerman et al., describing for instance violations of rotational invariance during the inflationary epoch. After verifying the code with simulated data, we analyze the foreground-reduced 5-year WMAP temperature sky maps. For l < 400 and the W-band data, we find tentative evidence for a preferred direction pointing towards (l,b) = (110 deg, 10 deg) with an anisotropy amplitude of g* = 0.15 +- 0.039, nominally equivalent to a 3.8 sigma detection. Similar results are obtained from the V-band data [g* = 0.11 +- 0.039; (l,b) = (130 deg, 20 deg)]. Further, the preferred direction is stable with respect ...

  3. Power-law mass inflation in Einstein-Yang-Mills-Higgs black holes

    CERN Document Server

    Galtsov, D V

    1997-01-01

    Analytical formulas are presented describing a generic singularity inside the static spherically symmetric black holes in the SU(2) Einstein-Yang-Mills-Higgs theories with triplet or doublet Higgs field. The singularity is spacelike and exhibits a `power-low mass inflation'. Alternatively this asymptotic may be interpreted as a pointlike singularity with a non-vanishing shear in the Kantowski-Sachs anisotropic cosmology.

  4. Anisotropic universe space-time non-commutativity and scalar particle creation in the presence of a constant electric field

    CERN Document Server

    Zaim, Slimane

    2015-01-01

    We study the effect of the non-commutativity on the creation of scalar particles from vacuum in the anisotropic universe space-time. We derive the deformed Klein-Gordon equation up to second order in the non-commutativity parameter using the general modified field equation. Then the canonical method based on Bogoliubov transformation is applied to calculate the probability of particle creation in vacuum and the corresponding number density in the $k$ mode. We deduce that the non-commutative space-time introduces a new source of particle creation.

  5. Noncommutative Quantum Cosmology

    CERN Document Server

    García-Compéan, H; Ramírez, C

    2001-01-01

    We propose a model for noncommutative quantum cosmology by means of a deformation of minisuperspace. For the Kantowski-Sachs metric we are able to find the exact solution to the deformed Wheeler-DeWitt equation. We construct wave packets and show that noncommutativity could remarkably modify the quantum behavior of the universe. We discuss the relation with space-time noncommutativity and exhibit a program to search for the influence of noncommutativity at early times in the universe.

  6. Statistical Anisotropy from Anisotropic Inflation

    CERN Document Server

    Soda, Jiro

    2012-01-01

    We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).

  7. THE ACCRETION OF DARK MATTER SUBHALOS WITHIN THE COSMIC WEB: PRIMORDIAL ANISOTROPIC DISTRIBUTION AND ITS UNIVERSALITY

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xi; Wang, Peng, E-mail: kangxi@pmo.ac.cn [Purple Mountain Observatory, the Partner Group of MPI für Astronomie, 2 West Beijing Road, Nanjing 210008 (China)

    2015-11-01

    The distribution of galaxies displays anisotropy on different scales and it is often referred to as galaxy alignment. To understand the origin of galaxy alignments on small scales, one must investigate how galaxies were accreted in the early universe and quantify their primordial anisotropy at the time of accretion. In this paper we use N-body simulations to investigate the accretion of subhalos, focusing on their alignment with halo shape and the orientation of mass distribution on the large scale, defined using the Hessian matrix of the density field. The large/small (e1/e3) eigenvalues of the Hessian matrix define the fast/slow collapse direction of matter on the large scale. We find that: (1) the halo major axis is well aligned with the e3 (slow collapse) direction, and it is stronger for massive halos; (2) subhalos are predominantly accreted along the major axis of the host halo, and the alignment increases with the host halo mass. Most importantly, this alignment is universal; (3) accretion of subhalos with respect to the e3 direction is not universal. In massive halos, subhalos are accreted along the e3 (even more strongly than the alignment with the halo major axis), but in low-mass halos subhalos are accreted perpendicular to e3. The transitional mass is lower at high redshift. The last result well explains the puzzling correlation (both in recent observations and simulations) that massive galaxies/halos have their spin perpendicular to the filament, and the spin of low-mass galaxies/halos is slightly aligned with the filament, under the assumption that the orbital angular momentum of subhalos is converted to halo spin.

  8. The Accretion of Dark Matter Subhalos within the Cosmic Web: Primordial Anisotropic Distribution and its Universality

    Science.gov (United States)

    Kang, Xi; Wang, Peng

    2015-11-01

    The distribution of galaxies displays anisotropy on different scales and it is often referred to as galaxy alignment. To understand the origin of galaxy alignments on small scales, one must investigate how galaxies were accreted in the early universe and quantify their primordial anisotropy at the time of accretion. In this paper we use N-body simulations to investigate the accretion of subhalos, focusing on their alignment with halo shape and the orientation of mass distribution on the large scale, defined using the Hessian matrix of the density field. The large/small (e1/e3) eigenvalues of the Hessian matrix define the fast/slow collapse direction of matter on the large scale. We find that: (1) the halo major axis is well aligned with the e3 (slow collapse) direction, and it is stronger for massive halos; (2) subhalos are predominantly accreted along the major axis of the host halo, and the alignment increases with the host halo mass. Most importantly, this alignment is universal; (3) accretion of subhalos with respect to the e3 direction is not universal. In massive halos, subhalos are accreted along the e3 (even more strongly than the alignment with the halo major axis), but in low-mass halos subhalos are accreted perpendicular to e3. The transitional mass is lower at high redshift. The last result well explains the puzzling correlation (both in recent observations and simulations) that massive galaxies/halos have their spin perpendicular to the filament, and the spin of low-mass galaxies/halos is slightly aligned with the filament, under the assumption that the orbital angular momentum of subhalos is converted to halo spin.

  9. Universal anisotropic finite-size critical behavior of the two-dimensional Ising model on a strip and of d-dimensional models on films.

    Science.gov (United States)

    Kastening, Boris

    2012-10-01

    Anisotropy effects on the finite-size critical behavior of a two-dimensional Ising model on a general triangular lattice in an infinite-strip geometry with periodic, antiperiodic, and free boundary conditions (bc) in the finite direction are investigated. Exact results are obtained for the scaling functions of the finite-size contributions to the free energy density. With ξ(>) the largest and ξ(temperature near criticality, we find that the dependence of these functions on the ratio ξ() and on the angle parametrizing the orientation of the correlation volume is of geometric nature. Since the scaling functions are independent of the particular microscopic realization of the anisotropy within the two-dimensional Ising model, our results provide a limited verification of universality. We explain our observations by considering finite-size scaling of free energy densities of general weakly anisotropic models on a d-dimensional film (i.e., in an L×∞(d-1) geometry) with bc in the finite direction that are invariant under a shear transformation relating the anisotropic and isotropic cases. This allows us to relate free energy scaling functions in the presence of an anisotropy to those of the corresponding isotropic system. We interpret our results as a simple and transparent case of anisotropic universality, where, compared to the isotropic case, scaling functions depend additionally on the shape and orientation of the correlation volume. We conjecture that this universality extends to cases where the geometry and/or the bc are not invariant under the shear transformation and argue in favor of validity of two-scale factor universality for weakly anisotropic systems.

  10. Detection prospects for high energy neutrino sources from the anisotropic matter distribution in the local Universe

    Science.gov (United States)

    Mertsch, Philipp; Rameez, Mohamed; Tamborra, Irene

    2017-03-01

    Constraints on the number and luminosity of the sources of the cosmic neutrinos detected by IceCube have been set by targeted searches for point sources. We set complementary constraints by using the 2MASS Redshift Survey (2MRS) catalogue, which maps the matter distribution of the local Universe. Assuming that the distribution of the neutrino sources follows that of matter, we look for correlations between ``warm'' spots on the IceCube skymap and the 2MRS matter distribution. Through Monte Carlo simulations of the expected number of neutrino multiplets and careful modelling of the detector performance (including that of IceCube-Gen2), we demonstrate that sources with local density exceeding 10‑6 Mpc‑3 and neutrino luminosity Lν lesssim 1042 erg s‑1 (1041 erg s‑1) will be efficiently revealed by our method using IceCube (IceCube-Gen2). At low luminosities such as will be probed by IceCube-Gen2, the sensitivity of this analysis is superior to requiring statistically significant direct observation of a point source.

  11. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  12. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  13. Anisotropic inflation in Finsler spacetime

    CERN Document Server

    Li, Xin; Chang, Zhe

    2015-01-01

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for quantum fluctuation of the inflation field. It depends not only on the magnitude of wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in angular correlation coefficients if $l'=l+1$. The numerical results of the angular correlation coefficients are given to describe the anisotropic effect.

  14. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  15. New Isotropic and Anisotropic Sudden Singularities

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2004-01-01

    We show the existence of an infinite family of finite-time singularities in isotropically expanding universes which obey the weak, strong, and dominant energy conditions. We show what new type of energy condition is needed to exclude them ab initio. We also determine the conditions under which finite-time future singularities can arise in a wide class of anisotropic cosmological models. New types of finite-time singularity are possible which are characterised by divergences in the time-rate of change of the anisotropic-pressure tensor. We investigate the conditions for the formation of finite-time singularities in a Bianchi type $VII_{0}$ universe with anisotropic pressures and construct specific examples of anisotropic sudden singularities in these universes.

  16. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  17. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  18. Fast Anisotropic Gauss Filters

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.

    2003-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computing perspective. An implementation scheme for normal covolution and f

  19. Loop quantization of the Schwarzschild interior revisited

    CERN Document Server

    Corichi, Alejandro

    2015-01-01

    The loop quantization of the Schwarzschild interior region, as described by a homogenous anisotropic Kantowski-Sachs model, is re-examined. As several studies of different --inequivalent-- loop quantizations have shown, to date there exists no fully satisfactory quantum theory for this model. This fact posses challenges to the validity of some scenarios to address the black hole information problem. Here we put forward a novel viewpoint to construct the quantum theory that builds from some of the models available in the literature. The final picture is a quantum theory that is both independent of any auxiliary structure and possesses a correct low curvature limit. It represents a subtle but non-trivial modification of the original prescription given by Ashtekar and Bojowald. It is shown that the quantum gravitational constraint is well defined past the singularity and that its effective dynamics possesses a bounce into an expanding regime. The classical singularity is avoided, and a semiclassical spacetime sa...

  20. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  1. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  2. Theory of Compton scattering by anisotropic electrons

    CERN Document Server

    Poutanen, Juri

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...

  3. Anisotropic inflation in the Finsler spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Wang, Sai [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Chang, Zhe [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China)

    2015-06-15

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for the quantum fluctuation of the inflation field. It depends not only on the magnitude of the wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and we obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in the angular correlation coefficients if l' = l + 1. The numerical results of the angular correlation coefficients are given describing the anisotropic effect. (orig.)

  4. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  5. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  6. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  7. Anisotropic hydrodynamics -- basic concepts

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2013-01-01

    Due to the rapid longitudinal expansion of the quark-gluon plasma created in relativistic heavy ion collisions, potentially large local rest frame momentum-space anisotropies are generated. The magnitude of these momentum-space anisotropies can be so large as to violate the central assumption of canonical viscous hydrodynamical treatments which linearize around an isotropic background. In order to better describe the early-time dynamics of the quark gluon plasma, one can consider instead expanding around a locally anisotropic background which results in a dynamical framework called anisotropic hydrodynamics. In this proceedings contribution we review the basic concepts of the anisotropic hydrodynamics framework presenting viewpoints from both the phenomenological and microscopic points of view.

  8. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  9. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  10. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  11. Mixture of Anisotropic Fluids

    Science.gov (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  12. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech

    2013-01-01

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  13. Anisotropic contrast optical microscope

    Science.gov (United States)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  14. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  15. Anisotropic models for compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Dayanandan, Baiju

    2015-01-01

    In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\

  16. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  17. Anisotropic Grid Generation

    Science.gov (United States)

    2016-03-24

    tensor . The...release. Figure 2. Examples of previous anisotropic surfaces include the original holographic tensor impedance surface created by the author (left... tensor that can be extracted from the properties of each unit cell. This impedance tensor can be mapped back onto the surface, and simulations of

  18. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  19. Noncommutative quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C; Bertolami, O [Departamento de Fisica, Institute Superior Teico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Dias, N C; Prata, J N, E-mail: cbastos@fisica.ist.utl.p, E-mail: orfeu@cosmos.ist.utl.p, E-mail: ncdias@mail.telepac.p, E-mail: joao.prata@mail.telepac.p [Departamento de Matematica, Universidade Lusofona de Humanidades e Tecnologias, Avenida Campo Grande, 376, 1749-024 Lisboa (Portugal)

    2009-06-01

    We present a phase-space noncommutative extension of Quantum Cosmology in the context of a Kantowski-Sachs (KS) minisuperspace model. We obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten map. The resulting WDW equation explicitly depends on the phase-space noncommutative parameters, theta and eta. Numerical solutions of the noncommutative WDW equation are found and, interestingly, also bounds on the values of the nonommutative parameters. Moreover, we conclude that the noncommutativity in the momenta sector lead to a damped wave function implying that this type of noncommutativity can be relevant for a selection of possible initial states for the universe.

  20. Noncommutative Quantum Mechanics and Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno

    2009-01-01

    We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.

  1. Phase-Space Noncommutative Quantum Cosmology

    CERN Document Server

    Bastos, Catarina; Dias, Nuno Costa; Prata, João Nuno

    2007-01-01

    We present a noncommutative extension of Quantum Cosmology and study the Kantowski-Sachs (KS) cosmological model requiring that the two scale factors of the KS metric, the coordinates of the system, and their conjugate canonical momenta do not commute. Through the ADM formalism, we obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system. The Seiberg-Witten map is used to transform the noncommutative equation into a commutative one, i.e. into an equation with commutative variables, which depend on the noncommutative parameters, $\\theta$ and $\\eta$. Numerical solutions are found both for the classical and the quantum formulations of the system. These solutions are used to characterize the dynamics and the state of the universe. From the classical solutions we obtain the behavior of quantities such as the volume expansion, the shear and the characteristic volume. However the analysis of these quantities does not lead to any restriction on the value of the noncommutative parameters, $\\theta$ and $\\...

  2. Effect of inflation on anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L.G.; Stein-Schabes, J.A.

    1986-03-01

    The effects of anisotropic cosmologies on inflation are studied. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi Model and of the initial anisotropy. 6 refs.

  3. On Radiative Fluids in Anisotropic Spacetimes

    OpenAIRE

    Shogin, Dmitry; Amundsen, Per Amund

    2016-01-01

    We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the ...

  4. Effect of inflation on anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, L.G.; Stein-Schabes, J.A.

    1986-08-15

    We study the effects of anisotropic cosmologies on inflation. By properly formulating the field equations it is possible to show that any model that undergoes sufficient inflation will become isotropic on scales greater than the horizon today. Furthermore, we shall show that it takes a very long time for anisotropies to become visible in the observable part of the Universe. It is interesting to note that the time scale will be independent of the Bianchi model and of the initial anisotropy.

  5. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  6. On Radiative Fluids in Anisotropic Spacetimes

    CERN Document Server

    Shogin, Dmitry

    2016-01-01

    We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the Universe. Also, we show that, in constrast to the mathematical fluid models widely used before, the radiative fluid does approach local thermal equilibrium at late times, although very slowly, due to the cosmological expansion.

  7. Spin precession in anisotropic media

    Science.gov (United States)

    Raes, B.; Cummings, A. W.; Bonell, F.; Costache, M. V.; Sierra, J. F.; Roche, S.; Valenzuela, S. O.

    2017-02-01

    We generalize the diffusive model for spin injection and detection in nonlocal spin structures to account for spin precession under an applied magnetic field in an anisotropic medium, for which the spin lifetime is not unique and depends on the spin orientation. We demonstrate that the spin precession (Hanle) line shape is strongly dependent on the degree of anisotropy and on the orientation of the magnetic field. In particular, we show that the anisotropy of the spin lifetime can be extracted from the measured spin signal, after dephasing in an oblique magnetic field, by using an analytical formula with a single fitting parameter. Alternatively, after identifying the fingerprints associated with the anisotropy, we propose a simple scaling of the Hanle line shapes at specific magnetic field orientations that results in a universal curve only in the isotropic case. The deviation from the universal curve can be used as a complementary means of quantifying the anisotropy by direct comparison with the solution of our generalized model. Finally, we applied our model to graphene devices and find that the spin relaxation for graphene on silicon oxide is isotropic within our experimental resolution.

  8. The Nature of Primordial Fluctuations from Anisotropic Inflation

    CERN Document Server

    Watanabe, Masa-aki; Soda, Jiro

    2010-01-01

    We study the statistical nature of primordial fluctuations from an anisotropic inflation which is realized by a vector field coupled to an inflaton. We find a suitable gauge, which we call the canonical gauge, for anisotropic inflation by generalizing the flat slicing gauge in conventional isotropic inflation. Using the canonical gauge, we reveal the structure of the couplings between curvature perturbations, vector waves, and gravitational waves. We identify two sources of anisotropy, i.e. the anisotropy due to the anisotropic expansion of the universe and that due to the anisotropic couplings among variables. It turns out that the latter effect is dominant. Since the coupling between the curvature perturbations and vector waves is the strongest one, the statistical anisotropy in the curvature perturbations is larger than that in gravitational waves. We find the cross correlation between the curvature perturbations and gravitational waves which never occurs in conventional inflation. We also find the linear ...

  9. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  10. MHz Gravitational Waves from Short-term Anisotropic Inflation

    CERN Document Server

    Ito, Asuka

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around $10^{-26}$ ~ $10^{-27}$ are copiously produced in high-frequency bands 10MHz~100MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  11. MHz gravitational waves from short-term anisotropic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Department of Physics, Kobe University,Kobe 657-8501 (Japan)

    2016-04-18

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10{sup −26}∼10{sup −27} are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  12. Anisotropic Thermal Diffusion

    Science.gov (United States)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  13. Anisotropic Power-law Inflation

    CERN Document Server

    Kanno, Sugumi; Watanabe, Masa-aki

    2010-01-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  14. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  15. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  16. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  17. Anisotropic Spin Cluster as a Qubit

    Institute of Scientific and Technical Information of China (English)

    YAN Xiao-Bo; WANG Ming-Ji

    2007-01-01

    We study an anisotropic spin cluster of 3 spin S=1/2 particles with antiferromagnetic exchange interaction with non-uniform coupling constants. A time-dependent magnetic field is applied to control the time evolution of the cluster. It is well known that for an odd number og sites a spin cluster qubit can be defined in terms of the ground state doublet. The universal one-qubit logic gate can be constructed from the time evolution operator of the non-autonomous many-body system, and the six basic one-qubit gates can be realized by adjusting the applied time-dependent magnetic field.

  18. Anisotropic Four-Dimensional NS-NS String Cosmology

    CERN Document Server

    Chen, C M; Mak, M K; Chen, Chiang-Mei

    2001-01-01

    An anisotropic (Bianchi type I) cosmology is considered in the four-dimensional NS-NS sector of low-energy effective string theory coupled to a dilaton and an axion-like $H$-field within a de Sitter-Einstein frame background. The time evolution of this Universe is discussed in both the Einstein and string frames.

  19. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  20. Gradient expansion for anisotropic hydrodynamics

    Science.gov (United States)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Spaliński, Michał

    2016-12-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of nonhydrodynamic modes.

  1. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  2. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  3. Phase Space of Anisotropic $R^n$ Cosmologies

    CERN Document Server

    Leon, Genly

    2014-01-01

    We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.

  4. Anisotropic assembly and pattern formation

    Science.gov (United States)

    von Brecht, James H.; Uminsky, David T.

    2017-01-01

    We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.

  5. Generation of Curvature Perturbations with Extra Anisotropic Stress

    CERN Document Server

    Kojima, Kazuhiko; Mathews, Grant J

    2009-01-01

    We study the evolution of curvature perturbations and the cosmic microwave background (CMB) power spectrum in the presence of an hypothesized extra anisotropic stress in the early universe. Such extra anisotropic stress terms might arise, for example, from the presence of the dark radiation term in brane-world cosmology. For the first time we evolve the scalar modes of such perturbations before and after neutrino decoupling and analyze their effects on the CMB spectrum. A novel result of this work is that the cancellation of the neutrino and extra anisotropic stress could lead to a spectrum of residual curvature perturbations which by themselves could reproduce the observed CMB power spectrum. This possibility may be testable as it would generate non-Gaussian fluctuations which could be constrained by future observations of density fluctuations.

  6. Creating Statistically Anisotropic and Inhomogeneous Perturbations

    CERN Document Server

    Armendariz-Picon, C

    2007-01-01

    In almost all structure formation models, primordial perturbations are created within a homogeneous and isotropic universe, like the one we observe. Because their ensemble averages inherit the symmetries of the spacetime in which they are seeded, cosmological perturbations then happen to be statistically isotropic and homogeneous. Certain anomalies in the cosmic microwave background on the other hand suggest that perturbations do not satisfy these statistical properties, thereby challenging perhaps our understanding of structure formation. In this article we relax this tension. We show that if the universe contains an appropriate triad of scalar fields with spatially constant but non-zero gradients, it is possible to generate statistically anisotropic and inhomogeneous primordial perturbations, even though the energy momentum tensor of the triad itself is invariant under translations and rotations.

  7. Anisotropic dark energy: dynamics of the background and perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Tomi; Mota, David F, E-mail: T.Koivisto@thphys.uni-heidelberg.de, E-mail: D.Mota@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg (Germany)

    2008-06-15

    We investigate cosmologies where the accelerated expansion of the universe is driven by a field with an anisotropic equation of state. We model such scenarios within the Bianchi I framework, introducing two skewness parameters to quantify the deviation of pressure from isotropy. We study the dynamics of the background expansion in these models. A special case of an anisotropic cosmological constant is analyzed in detail. The anisotropic expansion is then confronted with the redshift and angular distribution of the type Ia supernovae. In addition, we investigate the effects on the cosmic microwave background (CMB) anisotropies for which the main signature appears to be a quadrupole contribution. We find that the two skewness parameters can be very well constrained. Tightest bounds are imposed by the CMB quadrupole, but there are anisotropic models which avoid these bounds completely. Within these bounds, the anisotropy can be beneficial as a potential explanation for various anomalous cosmological observations, especially in the CMB at the largest angles. We also consider the dynamics of linear perturbations in these models. The covariant approach is used to derive the general evolution equations for cosmological perturbations, taking into account imperfect sources in an anisotropic background. The implications for galaxy formation are then studied. These results might help to make contact between the observed anomalies in CMB and large-scale structure and fundamental theories exhibiting Lorentz violation.

  8. Dynamics of anisotropic power-law f(R) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M. F., E-mail: farasat.shamir@nu.edu.pk [National University of Computer and Emerging Sciences, Lahore Campus, Department of Sciences and Humanities (Pakistan)

    2016-12-15

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.

  9. Dynamics of anisotropic power-law f( R) cosmology

    Science.gov (United States)

    Shamir, M. F.

    2016-12-01

    Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f( R) theory has been investigated extensively due to important f( R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f( R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f( R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f( R) gravity supports the crucial issue of accelerated expansion of the universe.

  10. Anisotropic expansion and SNIa: An open issue

    Directory of Open Access Journals (Sweden)

    Jose Beltrán Jiménez

    2015-02-01

    Full Text Available We review the appropriateness of using SNIa observations to detect potential signatures of anisotropic expansion in the Universe. We focus on Union2 and SNLS3 SNIa datasets and use the hemispherical comparison method to detect possible anisotropic features. Unlike some previous works where non-diagonal elements of the covariance matrix were neglected, we use the full covariance matrix of the SNIa data, thus obtaining more realistic and not underestimated errors. As a matter of fact, the significance of previously claimed detections of a preferred direction in the Union2 dataset completely disappears once we include the effects of using the full covariance matrix. Moreover, we also find that such a preferred direction is aligned with the orthogonal direction of the SDSS observational plane and this suggests a clear indication that the SDSS subsample of the Union2 dataset introduces a significant bias, making the detected preferred direction unphysical. We thus find that current SNIa surveys are inappropriate to test anisotropic features due to their highly non-homogeneous angular distribution in the sky. In addition, after removal of the highest inhomogeneous sub-samples, the number of SNIa is too low. Finally, we take advantage of the particular distribution of SNLS SNIa sub-sample in the SNLS3 data set, in which the observations were taken along four different directions. We fit each direction independently and find consistent results at the 1σ level. Although the likelihoods peak at relatively different values of Ωm, the low number of data along each direction gives rise to large errors so that the likelihoods are sufficiently broad as to overlap within 1σ.

  11. Light propagation through anisotropic turbulence.

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  12. Universe

    CERN Document Server

    2011-01-01

    Updated for 2011, the Universe, is one book in the Britannica Illustrated Science Library Series that covers today's most popular science topics, from digital TV to microchips to touchscreens and beyond. Perennial subjects in earth science, life science, and physical science are all explored in detail. Amazing graphics-more than 1,000 per title-combined with concise summaries help students understand complex subjects. Correlated to the science curriculum in grades 5-9, each title also contains a glossary with full definitions for vocabulary.

  13. Universe

    CERN Document Server

    2009-01-01

    The Universe, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  14. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  15. Hyperspherical theory of anisotropic exciton

    CERN Document Server

    Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772

    2012-01-01

    A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.

  16. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  17. Isotropization of the universe during inflation

    CERN Document Server

    Pereira, Thiago

    2015-01-01

    A primordial inflationary phase allows one to erase any possible anisotropic expansion thanks to the cosmic no-hair theorem. If there is no global anisotropic stress, then the anisotropic expansion rate tends to decrease. What are the observational consequences of a possible early anisotropic phase? We first review the dynamics of anisotropic universes and report analytic approximations. We then discuss the structure of dynamical equations for perturbations and the statistical properties of observables, as well as the implication of a primordial anisotropy on the quantization of these perturbations during inflation. Finally we briefly review models based on primordial vector field which evade the cosmic no-hair theorem.

  18. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  19. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  20. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  1. Anisotropic Poisson Processes of Cylinders

    CERN Document Server

    Spiess, Malte

    2010-01-01

    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  2. Anisotropic magnetoresistance effect field sensors

    CERN Document Server

    Hauser, H; Stangl, G; Chabicovsky, R; Janiba, M; Riedling, K

    2000-01-01

    The parameters of the sensor layout and sensitivity considerations are discussed. The anisotropic magnetoresistive effect of DC-sputtered Ni 81%-Fe 19% films has been increased up to DELTA rho/rho=3.93% at 50 nm thickness and a sensitivity of 500 mu V/mu T can be achieved by an elliptically shaped sensor layout.

  3. Anisotropic Power-law Inflation: A counter example to the cosmic no-hair conjecture

    CERN Document Server

    Soda, Jiro

    2014-01-01

    It is widely believed that anisotropy in the expansion of the universe will decay exponentially fast during inflation. This is often referred to as the cosmic no-hair conjecture. However, we find a counter example to the cosmic no-hair conjecture in the context of supergravity. As a demonstration, we present an exact anisotropic power-law inflationary solution which is an attractor in the phase space. We emphasize that anisotropic inflation is quite generic in the presence of anisotropic sources which couple with an inflaton.

  4. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  5. Recent progress in anisotropic hydrodynamics

    CERN Document Server

    Strickland, Michael

    2016-01-01

    The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, . In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  6. Conductivities in an anisotropic medium

    Science.gov (United States)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong

    2016-10-01

    In order to imitate the anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in the low frequency limit shows a Drude peak and that, in the intermediate frequency regime, it reveals the power law behavior. Specifically, when the anisotropy increases, the exponent of the power law becomes smaller. In addition, we find that a critical value for the anisotropy exists at which the dc conductivity reaches to its maximum value.

  7. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  8. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  9. Slotted Antenna with Anisotropic Covering

    Science.gov (United States)

    2015-08-06

    08-2015 Publication Slotted Antenna with Anisotropic Covering David A. Tonn et al Naval Under Warfare Center Division, Newport 1176 Howell St...NUWC 300055 Distribution A An antenna includes a tubular, conductive radiator having a longitudinal slot formed therein from a first end of the...conductive radiator to a second end of the conductive radiator. An antenna feed can be joined to the conductive radiator adjacent to and across the slot

  10. Propagation in Diagonal Anisotropic Chirowaveguides

    Directory of Open Access Journals (Sweden)

    S. Aib

    2017-01-01

    Full Text Available A theoretical study of electromagnetic wave propagation in parallel plate chirowaveguide is presented. The waveguide is filled with a chiral material having diagonal anisotropic constitutive parameters. The propagation characterization in this medium is based on algebraic formulation of Maxwell’s equations combined with the constitutive relations. Three propagation regions are identified: the fast-fast-wave region, the fast-slow-wave region, and the slow-slow-wave region. This paper focuses completely on the propagation in the first region, where the dispersion modal equations are obtained and solved. The cut-off frequencies calculation leads to three cases of the plane wave propagation in anisotropic chiral medium. The particularity of these results is the possibility of controlling the appropriate cut-off frequencies by choosing the adequate physical parameters values. The specificity of this study lies in the bifurcation modes confirmation and the possible contribution to the design of optical devices such as high-pass filters, as well as positive and negative propagation constants. This negative constant is an important feature of metamaterials which shows the phenomena of backward waves. Original results of the biaxial anisotropic chiral metamaterial are obtained and discussed.

  11. Anisotropic characterization of magnetorheological materials

    Science.gov (United States)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  12. Inflationary Weak Anisotropic Model with General Dissipation Coefficient

    CERN Document Server

    Sharif, M

    2015-01-01

    This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.

  13. Anisotropic Thermal Conduction in Polymers and its Molecular Origins

    Science.gov (United States)

    Nieto Simavilla, David; Venerus, David; Schieber, Jay; uCoSm Team

    2014-03-01

    Anisotropy in thermal conductivity has a significant impact on both processing and final properties of materials. Simple molecular arguments suggest that Fourier?s law must be generalized to allow for anisotropic thermal conductivity. We present two complementary experimental methods to obtain quantitative measurements of the thermal diffusivity (conductivity) tensor. We report anisotropic thermal diffusivity and stress in molten, cross-linked and solid polymers under several types of flows. Our results support the validity of a linear relationship between stress and anisotropy in thermal conductivity. When the proportionality constant, the stress-thermal coefficient, is made dimensionless by the plateau modulus of the polymer melt, a universal value of approximately 0.03 is observed for all chemistries. Such a universality is surprising, since phonon transport mechanisms are sensitive to chemical structure. For instance, the analogous stress-optic coefficient depends strongly on chemistry, and can even change sign. Connecting these measurements with current theories for thermal transport in amorphous materials, such as Minimum Thermal Conductivity (MTC) model, is crucial to understand the molecular origins of anisotropic thermal conduction in polymers.

  14. Anisotropic Homogeneous Turbulence: Hierarchy and Intermittency of Scaling Exponents in the Anisotropic Sectors

    NARCIS (Netherlands)

    Biferale, Luca; Toschi, Federico

    2001-01-01

    We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flo

  15. Optical Propagation in Anisotropic Metamaterials (Postprint)

    Science.gov (United States)

    2017-02-22

    AFRL-RX-WP-JA-2017-0309 OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) Rudra Gnawali, Partha P. Banerjee, and...October 2013 – 26 December 2016 4. TITLE AND SUBTITLE OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-13-D...ABSTRACT (Maximum 200 words) Anisotropic metamaterials are widely used in the field of optics because of their unique electromagnetic properties. These

  16. PHENOMENOLOGICAL DAMAGE MODELS OF ANISOTROPIC STRUCTURAL MATERIALS

    OpenAIRE

    Bobyr, M.; Khalimon, O.; Bondarets, O.

    2015-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. A formulation for anisotropic damage is established in the framework of the principle of strain equivalence, principle of increment complementary energy equivalence and principle of elastic energy equivalence. This paper presents the development of an anisotropic damage theory. This work is focused on the development of evolution anisotropic damage models which is based on a Young’s modulus/Poisson’s ratio change of...

  17. Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Li-Qing Fang

    2015-01-01

    Full Text Available We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated.

  18. On the Angular Width of Diffractive Beam in Anisotropic Media

    CERN Document Server

    Lock, Edwin H

    2011-01-01

    2-D diffraction patterns arising in the far-field region were investigated theoretically for the case, when the plane wave with non collinear group and phase velocities is incident on the wide slit in opaque screen with arbitrary orientation. This investigation was carried out by consideration as an example of magnetostatic surface wave diffraction in tangentially magnetized ferrite slab. It was deduced the universal analytical formula, which one can use to calculate the angular width of diffractive beam in any 2-D anisotropic geometries for the waves of various nature. It was shown, that in 2-D anisotropic geometries this width may be not only more or less then the value L/D (L - wavelength of incident wave, D - length of slit), but it also may be equal to zero in certain conditions.

  19. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...

  20. Evolution of initially contracting Bianchi Class A models in the presence of an ultra-stiff anisotropic pressure fluid

    CERN Document Server

    Barrow, John D

    2015-01-01

    We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropisation on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialise to consider the closed Bianchi type IX universe and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionl...

  1. Comments on inhomogeneous anisotropic cosmology

    CERN Document Server

    Kaya, Ali

    2016-01-01

    Recently a new no-global-recollapse argument is given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this note we point out a few important issues about the proposed deformations and in particular indicate that in the presence of large spatial variations the mean curvature flow may deform an initially spacelike surface to a surface with null or timelike portions. The time evolution of the spatial scalar curvature that prevents recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis also indicates a possible caveat in numerical solutions that give rise to inflation.

  2. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  3. Remarks on inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  4. Recent progress in anisotropic hydrodynamics

    Directory of Open Access Journals (Sweden)

    Strickland Michael

    2017-01-01

    Full Text Available The quark-gluon plasma created in a relativistic heavy-ion collisions possesses a sizable pressure anisotropy in the local rest frame at very early times after the initial nuclear impact and this anisotropy only slowly relaxes as the system evolves. In a kinetic theory picture, this translates into the existence of sizable momentum-space anisotropies in the underlying partonic distribution functions, 〈 pL2〉 ≪ 〈 pT2〉. In such cases, it is better to reorganize the hydrodynamical expansion by taking into account momentum-space anisotropies at leading-order in the expansion instead of as a perturbative correction to an isotropic distribution. The resulting anisotropic hydrodynamics framework has been shown to more accurately describe the dynamics of rapidly expanding systems such as the quark-gluon plasma. In this proceedings contribution, I review the basic ideas of anisotropic hydrodynamics, recent progress, and present a few preliminary phenomenological predictions for identified particle spectra and elliptic flow.

  5. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...

  6. Reflection of light from an anisotropic medium

    CERN Document Server

    Ignatovich, Filipp V

    2010-01-01

    We present here a general approach to treat reflection and refraction of light of arbitrary polarization from single axis anisotropic plates. We show that reflection from interface inside the anisotropic medium is accompanied by beam splitting and can create surface waves.

  7. ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Shipeng MAO; Hui LIANG

    2006-01-01

    The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.

  8. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  9. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  10. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  11. Shear-free Anisotropic Cosmological Models in f(R) Gravity

    CERN Document Server

    Abebe, Amare; Myrzakulov, Ratbay

    2015-01-01

    We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f(R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f(R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in $f(R)$ gravity. For the Starobinsky model of f(R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

  12. Anisotropic inflation from extra dimensions

    CERN Document Server

    Litterio, M; Amendola, L; Dyrek, A; Litterio, Marco; Amendola, Luca; Dyrek, Andrzej

    1995-01-01

    Vacuum multidimensional cosmological models with internal spaces being compact n-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.

  13. Spatially anisotropic Heisenberg kagome antiferromagnet

    Science.gov (United States)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  14. Mechanics of anisotropic spring networks

    Science.gov (United States)

    Zhang, T.; Schwarz, J. M.; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, px and py, for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of px and py. We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  15. Anisotropic grid adaptation in LES

    Science.gov (United States)

    Toosi, Siavash; Larsson, Johan

    2016-11-01

    The modeling errors depend directly on the grid (or filter) spacing in turbulence-resolving simulations (LES, DNS, DES, etc), and are typically at least as significant as the numerical errors. This makes adaptive grid-refinement complicated, since it prevents the estimation of the local error sources through numerical analysis. The present work attempts to address this difficulty with a physics-based error-source indicator that accounts for the anisotropy in the smallest resolved scales, which can thus be used to drive an anisotropic grid-adaptation process. The proposed error indicator is assessed on a sequence of problems, including turbulent channel flow and flows in more complex geometries. The formulation is geometrically general and applicable to complex geometries.

  16. Spin Relaxation in Kondo Lattice Systems with Anisotropic Kondo Interaction

    Science.gov (United States)

    Belov, S. I.; Kutuzov, A. S.

    2016-12-01

    We study the influence of the Kondo effect on the spin relaxation in systems with anisotropic Kondo interaction at temperatures both high and low as compared with the static magnetic field. In the absence of the Kondo effect, the electron spin resonance linewidth is not narrowed in the whole temperature range due to the high anisotropy of the Kondo interaction. The Kondo effect leads to the universal energy scale, which regulates the temperature and magnetic field dependence of different kinetic coefficients and results in a mutual cancelation of their singular parts in a collective spin mode.

  17. Anisotropic microstructure near the sun

    Science.gov (United States)

    Coles, W. A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.

    1996-07-01

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 Rsolar [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ``background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 Rsolar which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a ``Maltese Cross'' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 Rsolar, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 Rsolar

  18. The Universe With Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Exact solutions for a model with variable G, A and bulk viscosity areobtained. Inflationary solutions with constant (de Sitter-type) and variable energydensity are found. An expanding anisotropic universe is found to isotropize duringits expansion but a static universe cannot isotropize. The gravitational constant isfound to increase with time and the cosmological constant decreases with time asAo∝t-2.

  19. Anisotropic inflation in Gauss-Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    Lahiri, Sayantani [ZARM, University of Bremen,Am Falltrum, 28359 Bremen (Germany)

    2016-09-19

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  20. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  1. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  2. Imprints of Anisotropic Inflation on the CMB

    CERN Document Server

    Watanabe, Masa-aki; Soda, Jiro

    2010-01-01

    We study the imprints of anisotropic inflation on the CMB temperature fluctuations and polarizations. The statistical anisotropy stems not only from the direction dependence of curvature and tensor perturbations, but also from the cross correlation between curvature and tensor perturbations, and the linear polarization of tensor perturbations. We show that off-diagonal $TB$ and $EB$ spectrum as well as on- and off-diagonal $TT, EE, BB, TE$ spectrum are induced from anisotropic inflation. We emphasize that the off-diagonal spectrum induced by the cross correlation could be a characteristic signature of anisotropic inflation.

  3. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  4. Research on anisotropic parameters by synthetic seismogram

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-ping; LI Qing-he; YANG Cong-jie

    2005-01-01

    ased on the extensive-dilatancy anisotropy theory, the method of synthetic seismogram is used to estimate the anisotropic parameters. The advantages of the method lie in that it avoids the singularity resolution and saves calculation time of computer by using the eigenvalue and eigenvector analytical expressions of Christoffel equation, at the same time, the result is tested by coherence function. The test result reveals there exists a fine linear relation between original records and synthetic records, indicating the anisotropic parameters estimated by synthetic seismogram can reflect and describe the anisotropic characteristics of the given region medium.

  5. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    slab geometry, two studies were conducted exploring the relative effect of anisotropic scatter as compared to isotropic scatter in the center of mass... anisotropic scatter. In order to address this question, first anisotropic scatter was implemented, then verified, and finally, the measurement of the... measured value. The relative error between neutron counts in isotropic and anisotropic time- integrated energy bins, isotropic anisotropicrel

  6. Spatial interpolation approach based on IDW with anisotropic spatial structures

    Science.gov (United States)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  7. Monte Carlo simulation with aspect-ratio optimization: anomalous anisotropic scaling in dimerized antiferromagnets.

    Science.gov (United States)

    Yasuda, Shinya; Todo, Synge

    2013-12-01

    We present a method that optimizes the aspect ratio of a spatially anisotropic quantum lattice model during the quantum Monte Carlo simulation, and realizes the virtually isotropic lattice automatically. The anisotropy is removed by using the Robbins-Monro algorithm based on the correlation length in each direction. The method allows for comparing directly the value of the critical amplitude among different anisotropic models, and identifying the universality more precisely. We apply our method to the staggered dimer antiferromagnetic Heisenberg model and demonstrate that the apparent nonuniversal behavior is attributed mainly to the strong size correction of the effective aspect ratio due to the existence of the cubic interaction.

  8. Overview of anisotropic flow measurements from ALICE

    Directory of Open Access Journals (Sweden)

    Zhou You

    2016-01-01

    Full Text Available Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP, created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb–Pb, p–Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  9. Slotted Antenna with Anisotropic Magnetic Loading

    Science.gov (United States)

    2016-07-26

    magnetic material having a uniaxial permeability tensor is positioned in the slot between the two fins. This material is oriented such that it has a...volume of slot 14 between fins 24 and 26 is filled with an anisotropic magnetic material 28 with a uniaxial permeability tensor . This means that the...uniaxial dielectric tensor . Thus, properties are different through the radial depth of the anisotropic magnetic material. The coordinate axis used is

  10. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  11. Inflation in anisotropic scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, L.O.; Stein-Schabes, J.

    1989-01-05

    The existence of an inflationary phase in anisotropic scalar-tensor theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a non-trivial potential. We then use the explicit form of the potential and the no hair theorem to conclude that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  12. Inflation in anisotropic scalar-tensor theories

    Science.gov (United States)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  13. Accelerating anisotropic cosmological model in f(R,T) theory of gravity

    Science.gov (United States)

    Santhi Kumar, R.; Satyannarayana, B.

    2017-10-01

    Field equations in a modified theory of gravitation proposed by Harko et al. (Phys Rev D 84:024020, 8) are obtained with the aid of a spatially homogeneous and anisotropic LRS Bianchi type-I metric. Cosmological models corresponding to false vacuum and dust universe are obtained. Some physical and kinematical properties of each of the models are discussed. These models may be physically significant for discussion at an early stage of evolution of the universe.

  14. Radar velocity tomography in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Ho; Cho, Seong Jun; Yi Myeong Jong; Chung, Seung Hwan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    Radar tomography inversion method was developed in the elliptic anisotropic environment with the parametrization of maximum, minimum velocity, and the direction of symmetry axis. Nonlinear least-square method with smoothness constraint was adopted as inversion scheme. Newly developed algorithm was successfully tested with the 2-D numerical cross-borehole data in isotropic environment. Seismic data from physical modelling in partially anisotropic environment was also inverted and compared with the reconstruction technique assuming isotropic media. We could confirm the effectiveness of our algorithm, even though the tested data were generated from isotropic or partially anisotropic media. Cross-hole radar field data in limestone area in Korea was analyzed that the limestone bedrock is systematically anisotropic in the sense of radar application. The data set was inverted with the new anisotropy algorithm. The anisotropic effect in the data was corrected and also inverted for the comparison through the algorithm with isotropic assumption. Applying two different algorithm and comparing the various images, the tomographic image of maximum velocity from anisotropic inversion could give the most excellent way to visualize underground. An addition to the high resolution image, we could grasp some information on the material type from the feature of maximum velocity distribution the degree of anisotropy which can be inferred from the ratio of maximum and minimum velocity. The newly developed algorithm will be expected to provide a good way to image underground, especially in sedimentary or metamorphosed bedrock. (author). 9 refs., 21 figs.

  15. Progress in Anisotropic Plasma Physics

    CERN Document Server

    Romatschke, P; Romatschke, Paul; Strickland, Michael

    2004-01-01

    In 1959 Weibel demonstrated that when a QED plasma has a temperature anisotropy there exist unstable transverse magnetic excitations which grow exponentially fast. In this paper we will review how to determine the growth rates for these unstable modes in the weak-coupling and ultrarelativistic limits in which the collective behavior is describable in terms are so-called "hard-loops". We will show that in this limit QCD is subject to instabilities which are analogous to the Weibel instability in QED. The presence of such instabilities dominates the early time evolution of a highly anisotropic plasma; however, at longer times it is expected that these instabilities will saturate (condense). I will discuss how the presence of non-linear interactions between the gluons complicates the determination of the saturated state. In order to discuss this I present the generalization of the Braaten-Pisarski isotropic hard-thermal-loop effective action to a system with a temperature anisotropy in the parton distribution fu...

  16. Correlation functions in isotropic and anisotropic turbulence the role of the symmetry group

    CERN Document Server

    Arad, I; Procaccia, I; Arad, Itai; L'vov, Victor S.; Procaccia, Itamar

    1998-01-01

    The theory of fully developed turbulence is usually considered in an idealized homogeneous and isotropic state. Real turbulent flows exhibit the effects of anisotropic forcing. The analysis of correlation functions and structure functions in isotropic and anisotropic situations is facilitated and made rational when performed in terms of the irreducible representations of the relevant symmetry group which is the group of all rotations SO(3). In this paper we firstly consider the needed general theory and explain why we expect different (universal) scaling exponents in the different sectors of the symmetry group. We exemplify the theory context of isotropic turbulence (for third order tensorial structure functions) and in weakly anisotropic turbulence (for the second order structure function). The utility of the resulting expressions for the analysis of experimental data is demonstrated in the context of high Reynolds number measurements of turbulence in the atmosphere.

  17. Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE)

    CERN Document Server

    Placidi, Luca; Seddik, Hakime; Faria, Sergio H

    2009-01-01

    A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...

  18. Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez-Ballester theory of gravitation

    Science.gov (United States)

    Verma, M. K.; Chandel, S.; Ram, Shri

    2017-01-01

    The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez-Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter. Three physically viable cosmological models of the Universe are presented for the values of parameter K occurring in the metric of the space-time. The model for K = 0 corresponds to an accelerating Universe with isotropic dark energy. The other two models for K = 1 and -1 represent accelerating Universe with anisotropic dark energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.

  19. Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation

    Indian Academy of Sciences (India)

    M K VERMA; S CHANDEL; SHRI RAM

    2017-01-01

    The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble’s parameter that yields a constant negative value of the deceleration parameter. Three physically viable cosmological models of the Universe are presented for the values of parameter $K$ occurring in the metric of the space–time. The model for $K = 0$ corresponds to an accelerating Universe with isotropic dark energy. The other two models for $K = 1$ and $−1$ represent accelerating Universe with anisotropic dark energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.

  20. Anisotropic thermal conductivity of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Fang; Yimin Xuan; Qiang Li

    2009-01-01

    Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.

  1. Anisotropic matching principle for the hydrodynamic expansion

    Science.gov (United States)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  2. Anisotropic nanomaterials: structure, growth, assembly, and functions.

    Science.gov (United States)

    Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  3. Anisotropic nanomaterials: structure, growth, assembly, and functions

    Directory of Open Access Journals (Sweden)

    Panikkanvalappil R. Sajanlal

    2011-02-01

    Full Text Available Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D, two-dimensional (2D, and three-dimensional (3D arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  4. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  5. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    Science.gov (United States)

    Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.

    2016-11-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.

  6. Modelling anisotropic fluid spheres in general relativity

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2015-01-01

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  7. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  8. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  9. Leith diffusion model for homogeneous anisotropic turbulence

    Science.gov (United States)

    Rubinstein, Robert; Clark, Timothy; Kurien, Susan

    2016-11-01

    A new spectral closure model for homogeneous anisotropic turbulence is proposed. The systematic development begins by closing the third-order correlation describing nonlinear interactions by an anisotropic generalization of the Leith diffusion model for isotropic turbulence. The correlation tensor is then decomposed into a tensorially isotropic part, or directional anisotropy, and a trace-free remainder, or polarization anisotropy. The directional and polarization components are then decomposed using irreducible representations of the SO(3) symmetry group. Under the ansatz that the decomposition is truncated at quadratic order, evolution equations are derived for the directional and polarization pieces of the correlation tensor. Numerical simulation of the model equations for a freely decaying anisotropic flow illustrate the non-trivial effects of spectral dependencies on the different return-to-isotropy rates of the directional and polarization contributions.

  10. Convective dissolution in anisotropic porous media

    Science.gov (United States)

    de Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2016-11-01

    Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability γ (the vertical-to-horizontal permeability ratio) on the distribution of solutal concentration in fluid saturated porous medium. Interestingly, we find that the finite-time (short-term) amount of solute that can be dissolved in anisotropic sedimentary rocks (γ < 1 , i.e. vertical permeability smaller than horizontal permeability) is much larger than in isotropic rocks. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. CINECA Supercomputing Centre and ISCRA Computing Initiative are gratefully acknowledged for generous allowance of computer resources. Support from Regione Autonoma Friuli Venezia Giulia under Grant PAR FSC 2007/2013 is also gratefully acknowledged.

  11. Micromechanics and dislocation theory in anisotropic elasticity

    CERN Document Server

    Lazar, Markus

    2016-01-01

    In this work, dislocation master-equations valid for anisotropic materials are derived in terms of kernel functions using the framework of micromechanics. The second derivative of the anisotropic Green tensor is calculated in the sense of generalized functions and decomposed into a sum of a $1/R^3$-term plus a Dirac $\\delta$-term. The first term is the so-called "Barnett-term" and the latter is important for the definition of the Green tensor as fundamental solution of the Navier equation. In addition, all dislocation master-equations are specified for Somigliana dislocations with application to 3D crack modeling. Also the interior Eshelby tensor for a spherical inclusion in an anisotropic material is derived as line integral over the unit circle.

  12. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  13. Gravitational stresses in anisotropic rock masses

    Science.gov (United States)

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  14. Anisotropic non-gaussianity with noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Akhilesh

    2014-01-20

    We study single field inflation in noncommutative spacetime and compute two-point and three-point correlation functions for the curvature perturbation. We find that both power spectrum and bispectrum for comoving curvature perturbation are statistically anisotropic and the bispectrum is also modified by a phase factor depending upon the noncommutative parameters. The non-linearity parameter f{sub NL} is small for small statistical anisotropic corrections to the bispectrum coming from the noncommutative geometry and is consistent with the recent PLANCK bounds. There is a scale dependence of f{sub NL} due to the noncommutative spacetime which is different from the standard single field inflation models and statistically anisotropic vector field inflation models. Deviations from statistical isotropy of CMB, observed by PLANCK can tightly constraint the effects due to noncommutative geometry on power spectrum and bispectrum.

  15. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  16. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... crystalline plates. An analysis of the compliance tensor for the 32 different crystal classes shows, that for thin plates, only 5 different types of plates exist. An anisotropic plate equation valid for crystalline thin plates is derived and solved for circular, elliptic, rectangular and square plates using...... are presented. These expressions are in excellent agreement with anisotropic finite element calculations. The calculated deflection differs less than 0.1%, for both circular and rectangular plates, compared to finite element calculations. The results are presented as ready-to-use facilitating accurate...

  17. Quantum cosmology in Ho\\v{r}ava-Lifshitz gravity

    CERN Document Server

    Obregón, O

    2013-01-01

    Quantum cosmology is studied within the framework of the minimal quantum gravity theory proposed by Ho\\v{r}ava. For this purpose we choose the Kantowski-Sachs (KS) model and construct the corresponding Wheeler-DeWitt equation. We study the solution to this equation in the ultraviolet limit for different values of the running parameter {\\lambda} of the theory. It is observed that the wave packet for this Universe changes completely compared with the one observed in the infrared (general relativity) regime. We also look at the classical solutions by means of a WKB semiclassical approximation. It is observed that if {\\lambda} takes its relativistic value {\\lambda} = 1 a generalized KS metric is obtained which differs from the usual KS solution in general relativity by an additional term arising from the higher-order curvature terms in the action and which dominates the behavior of the solution for very small values of the time parameter. We discuss the physical properties of this solution by comparing it with th...

  18. The Initial State of a Primordial Anisotropic Stage of Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,Maria Diaz de Haro 3, 48013 Bilbao (Spain); Minamitsuji, Masato [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502 (Japan); CENTRA, Instituto Superior Tecnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2015-06-12

    We investigate the possibility that the inflationary period in the early universe was preceded by a primordial stage of strong anisotropy. In particular we focus on the simplest model of this kind, where the spacetime is described by a non-singular Kasner solution that quickly evolves into an isotropic de Sitter space, the so-called Kasner-de Sitter solution. The initial Big Bang singularity is replaced, in this case, by a horizon. We show that the extension of this metric to the region behind the horizon contains a timelike singularity which will be visible by cosmological observers. This makes it impossible to have a reliable prediction of the quantum state of the cosmological perturbations in the region of interest. In this paper we consider the possibility that this Kasner-de Sitter universe is obtained as a result of a quantum tunneling process effectively substituting the region behind the horizon by an anisotropic parent vacuum state, namely a 1+1 dimensional spacetime compactified over an internal flat torus, T{sub 2}, which we take it to be of the form de Sitter{sub 2}×T{sub 2} or Minkowski{sub 2}×T{sub 2}. As a first approximation to understand the effects of this anisotropic initial state, we compute the power spectrum of a massless scalar field in these backgrounds. In both cases, the spectrum converges at small scales to the isotropic scale invariant form and only present important deviations from it at the largest possible scales. We find that the decompactification scenario from M{sub 2}×T{sub 2} leads to a suppressed and slightly anisotropic power spectrum at large scales which could be related to some of the anomalies present in the current CMB data. On the other hand, the spectrum of the universe with a dS{sub 2}×T{sub 2} parent vacuum presents an enhancement in power at large scales not consistent with observations.

  19. Anisotropic strange star with de Sitter spacetime

    Science.gov (United States)

    Kalam, Mehedi; Rahaman, Farook; Ray, Saibal; Hossein, Sk. Monowar; Karar, Indrani; Naskar, Jayanta

    2012-12-01

    Stars can be treated as self-gravitating fluid. Krori and Barua (J. Phys. A., Math. Gen. 8:508, 1975) gave an analytical solution to that kind of fluids. In this connection, we propose a de Sitter model for an anisotropic strange star with the Krori-Barua spacetime. We incorporate the existence of the cosmological constant on a small scale to study the structure of anisotropic strange stars and come to the conclusion that this doping is very well compatible with the well-known physical features of strange stars.

  20. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  1. Relativistic Solutions of Anisotropic Compact Objects

    CERN Document Server

    Paul, Bikash Chandra

    2016-01-01

    We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.

  2. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  3. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  4. Enhanced-transmission metamaterials as anisotropic plates

    Science.gov (United States)

    Baida, F. I.; Boutria, M.; Oussaid, R.; van Labeke, D.

    2011-07-01

    We present an original design of anisotropic metamaterial plates exhibiting extraordinary transmission through perfectly conductor metallic screens perforated by a subwavelength double-pattern rectangular aperture array. The polarization properties of the fundamental guided mode inside the apertures are at the origin of the anisotropy. The metal thickness is a key parameter that is adjusted in order to get the desired value of the phase difference between the two transversal electromagnetic field components. As an example, we treat the case of a half-wave plate having 92% transmission coefficient. Such a study can be easily extended to design anisotropic plates operating in terahertz or microwave domains.

  5. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  6. Raman Tensor Formalism for Optically Anisotropic Crystals.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-03-25

    We present a formalism for calculating the Raman scattering intensity dependent on the polarization configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large scattering depth, the observed Raman intensities converge and can be described by an effective Raman tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is demonstrated.

  7. Anisotropic massive strings in the scalar-tensor theory of gravitation

    Institute of Scientific and Technical Information of China (English)

    Anil Kumar Yadav

    2013-01-01

    We present the model of an anisotropic universe with string fluid as the source of matter within the framework of the scalar-tensor theory of gravitation.An exact solution of field equations is obtained by applying Berman's law of variation to Hubble's parameter which yields a constant value of the deceleration parameter.The nature of classical potential is examined for the model under consideration.It has also been found that the massive strings dominate in the early universe and finally disappear from the universe.This is in agreement with current astronomical observations.The physical and dynamical properties of the model are also discussed.

  8. ASYMPTOTIC ELASTIC STRESS FIELD NEAR A BLUNT CRACK TIP IN AN ANISOTROPIC MATERIAL

    Institute of Scientific and Technical Information of China (English)

    HUANG; Zhen-yu(

    2001-01-01

    [1]Williams M L.Oh the stress distribution at the base of a stationary crack[J].ASME J App Mech,1957,24:109~114.[2]Creager M,Paris P C,Elastic field equations for blunt cracks with reference to stress corrosion crack-ing[J].Int J Fracture,1967,3:247~251[3]Kuang Z B.The stress field near the blunt crack tip and the fracture criterion[J].Engng Fracture Mech,1982,16:19~33.[4]Ting T C T.Anisotropic Elasticity and its applica-tion[M].London:Oxford University Press,1996.[5]Ting T C T ,Hwu C.Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N[J].Int J S olids Structures,1988,24:65~76.[6]Yang X X,Shen S,Kuang Z B.The degenerate so-lution for piezothermoelastic materials[J].Eur J Mech A/Solid,1997,16:779~793[7]Hwu C,Yen W J.On the anisotropic elastic inclu-sions in plane elastostatics[J].ASME J A pp Mech,1993,60:626~632.[8]Lekhnitskii S G.Theory of elasticity of an anisotrop-ic elastic body[M].Moscow:Mir Publishers,1981.[9]Hoenig A.Near-tip behavior of a crack in a plane anisotropic elastic body[J].Engng Fracture Mech,1982,16:393~403.[10]匡震邦,马法尚。裂纹端部场[M].西安:西安交通大学出版社,2001

  9. Introduction to the anisotropic geometrodynamics

    CERN Document Server

    Siparov, Sergey

    2012-01-01

    The aim of the book is to provide a new and fruitful approach to the challenging problems of modern physics, astrophysics, and cosmology. The well-known observations of the flat rotation curves of spiral galaxies and of the gravitational lensing effect greatly exceeding the expectations based on the classical GRT can be explained without bringing in the notion of dark matter. The Tully-Fisher law and the unusual features of globular clusters' motion become clear. It also turns out that new features appear in the cosmological picture that involves the Universe expansion and the acceleration of

  10. Orphan-Free Anisotropic Voronoi Diagrams

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.

  11. The Kepler Problem with Anisotropic Perturbations

    CERN Document Server

    Diacu, Florin; Santoprete, Manuele

    2009-01-01

    We study a 2-body problem given by the sum of the Newtonian potential and an anisotropic perturbation that is a homogeneous function of degree $-\\beta$, $\\beta\\ge 2$. For $\\beta>2$, the sets of initial conditions leading to collisions/ejections and the one leading to escapes/captures have positive measure. For $\\beta>2$ and $\\beta\

  12. Observational signatures of anisotropic inflationary models

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F_{mu nu}F^{mu nu} and (ii) a two-form kinetic term H_{mu nu lambda}H^{mu nu lambda}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g_* are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n_s in both models. In the light of the recent Planck bounds of n_s and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector ...

  13. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...

  14. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...

  15. Frontiers in Anisotropic Shock-Wave Modeling

    Science.gov (United States)

    2012-02-01

    contact info: Tel.: +44 07840355383, Fax: +44 (0) 1234 758217. Studies of anisotropic materials and the discovery of various novel and unexpected phenomena...19 Figure 4. The Kevlar ...Epoxy IFPT simulated and experimental back surface velocities for 572, 788, and 1015 m/s. The experimental data Kevlar /Epoxy materials recovered after

  16. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  17. ANISOTROPIC PARABOLIC EQUATIONS WITH MEASURE DATA

    Institute of Scientific and Technical Information of China (English)

    Li Fengquan; Zhao Huixiu

    2001-01-01

    In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in Lm space (with m "small").

  18. A discrete anisotropic model for Scheibe aggregates

    Directory of Open Access Journals (Sweden)

    O. Bang

    1991-05-01

    Full Text Available A discrete anisotropic nonlinear model for the dynamics of Scheibe aggregates is investigated. The collapse of the collective excitations found by Möbius and Kuhn is described as a shrinking ring wave, which is eventually absorbed by an acceptor molecule. An optimal acceptor loss is found.

  19. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  20. Constraining an Expanding Locally Anisotropic metric from the Pioneer anomaly

    CERN Document Server

    Ferreira, P Castelo

    2012-01-01

    It is discussed the possibility of a fine-tuneable contribution to the two way Doppler acceleration either towards, either outwards the Sun for heliocentric distances above 20 AU by considering a background described by an Expanding Locally Anisotropic (ELA) metric. This metric encodes both the standard local Schwarzschild gravitational effects and the cosmological Universe expansion effects allowing simultaneously to fine-tune other gravitational effects at intermediate scales, which may be tentatively interpreted as a covariant parameterization of either cold dark matter either gravitational interaction corrections. Are derived bounds for the ELA metric functional parameter by considering the bounds on the deviation from standard General Relativity imposed by the current updated limits for the Pioneer anomaly, taking in consideration both the natural outgassing and on-board radiation pressure, resulting in an average Doppler acceleration outwards the Sun of a_p = +0.4^{+2.1}_{-2.0} x 10^{-10} (m/s^2). It is...

  1. Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity

    Science.gov (United States)

    Santhi, M. Vijaya; Rao, V. U. M.; Aditya, Y.

    2017-02-01

    A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type- I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter ( ω Λ), deceleration parameter ( q) and squared speed of sound {vs2}) and planes (ω _{Λ }-dot {ω }_{Λ } and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter ( β) and cosmic time ( t).

  2. Anomalous Scaling in the Anisotropic Sectors of the Kriachnan Model of Passive Scalar Advection

    CERN Document Server

    Lvov, A I; Procaccia, I; L'vov, Itai Arad Victor S.; Podivilov, Evgenii; Procaccia, Itamar

    1999-01-01

    Kraichnan's model of passive scalar advection is studied as a case model for understanding the anomalous scaling in the anisotropic sectors. We show here that the solutions of the Kraichnan equation for the $n$ order correlations foliate into sectors that are classified by the irreducible representations of the SO(d) group. We find a discrete spectrum of universal anomalous exponents in every sector. Generically the correlations and structure functions appear as sums over all the contributions, with non-universal amplitudes which are determined by the anisotropic boundary conditions. The isotropic sector is always characterized by the smallest exponent, and therefore for sufficiently small scales local isotropy is always restored. The calculation of the anomalous exponents is done in two complementary ways. In the first they are obtained from the analysis of correlations of gradient fields. The corresponding theory involves the control of logarithmic divergences which translate into anomalous scaling with the...

  3. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  4. Region-based adaptive anisotropic diffusion for image enhancement and denoising

    Science.gov (United States)

    Wang, Yi; Niu, Ruiqing; Zhang, Liangpei; Shen, Huanfeng

    2010-11-01

    A novel region-based adaptive anisotropic diffusion (RAAD) is presented for image enhancement and denoising. The main idea of this algorithm is to perform the region-based adaptive segmentation. To this end, we use the eigenvalue difference of the structure tensor of each pixel to classify an image into homogeneous detail, and edge regions. According to the different types of regions, a variable weight is incorporated into the anisotropic diffusion partial differential equation for compromising the forward and backward diffusion, so that our algorithm can adaptively encourage strong smoothing in homogeneous regions and suitable sharpening in detail and edge regions. Furthermore, we present an adaptive gradient threshold selection strategy. We suggest that the optimal gradient threshold should be estimated as the mean of local intensity differences on the homogeneous regions. In addition, we modify the anisotropic diffusion discrete scheme by taking into account edge orientations. We believe our algorithm to be a novel mechanism for image enhancement and denoising. Qualitative experiments, based on various general digital images and several T1- and T2-weighted magnetic resonance simulated images, show significant improvements when the RAAD algorithm is used versus the existing anisotropic diffusion and the previous forward and backward diffusion algorithms for enhancing edge features and improving image contrast. Quantitative analyses, based on peak signal-to-noise ratio, the universal image quality index, and the structural similarity confirm the superiority of the proposed algorithm.

  5. Anisotropic Spin Splitting in Step Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo

    2009-01-01

    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  6. Observation of an Anisotropic Wigner Crystal

    Science.gov (United States)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  7. Designing novel anisotropic lenses with transformation optics

    Science.gov (United States)

    Jiang, Wei Xiang; Bao, Di; Cui, Tie Jun

    2016-04-01

    Transformation optics (TO), based on the formally invariant property of Maxwell’s equations, has provided a powerful strategy to design anisotropic or nearly-isotropic devices, in both time-varied and static fields. In this paper, we present and investigate the negative refraction or reflection phenomena by positive-index anisotropic materials based on transformation-optics design. First, we propose and design an inhomogeneous transformed planar lens, in which we will show the negative-refraction-like properties of transformation media. Secondly, we present a homogeneous transformed lens based on linear spatial transformation, in which we will reveal the negative-reflection properties of positive transformation media. Both transformed lenses have unusual properties which are different from those in natural materials.

  8. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli

    2013-04-01

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  9. Anisotropic dark energy and CMB anomalies

    CERN Document Server

    Battye, Richard

    2009-01-01

    We investigate the breaking of global statistical isotropy caused by a dark energy component with an energy-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background energy-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark energy based models contribute to ...

  10. Rainbow metric from quantum gravity: anisotropic cosmology

    CERN Document Server

    Assanioussi, Mehdi

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  11. Rainbow metric from quantum gravity: Anisotropic cosmology

    Science.gov (United States)

    Assanioussi, Mehdi; Dapor, Andrea

    2017-03-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter β in the modified dispersion relation of the modes, hence, inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [M. Assanioussi, A. Dapor, and J. Lewandowski, Phys. Lett. B 751, 302 (2015), 10.1016/j.physletb.2015.10.043], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  12. Anisotropic properties of tracheal smooth muscle tissue.

    Science.gov (United States)

    Sarma, P A; Pidaparti, R M; Meiss, R A

    2003-04-01

    The anisotropic (directional-dependent) properties of contracting tracheal smooth muscle tissue are estimated from a computational model based on the experimental data of length-dependent stiffness. The area changes are obtained at different muscle lengths from experiments in which stimulated muscle undergoes unrestricted shortening. Then, through an interative process, the anisotropic properties are estimated by matching the area changes obtained from the finite element analysis to those derived from the experiments. The results obtained indicate that the anisotropy ratio (longitudinal stiffness to transverse stiffness) is about 4 when the smooth muscle undergoes 70% strain shortening, indicating that the transverse stiffness reduces as the longitudinal stiffness increases. It was found through a sensitivity analysis from the simulation model that the longitudinal stiffness and the in-plane shear modulus are not very sensitive as compared to major Poisson's ratio to the area changes of the muscle tissue. Copyright 2003 Wiley Periodicals, Inc.

  13. On Cracking of Charged Anisotropic Polytropes

    CERN Document Server

    Azam, M

    2016-01-01

    Recently in \\cite{34}, the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways $(i)$ by perturbing polytropic constant, anisotropy and charge parameter $(ii)$ by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to \\cite{33} in the absence of charge.

  14. Anisotropic stellar models admitting conformal motion

    Science.gov (United States)

    Banerjee, Ayan; Banerjee, Sumita; Hansraj, Sudan; Ovgun, Ali

    2017-04-01

    We address the problem of finding static and spherically symmetric anisotropic compact stars in general relativity that admit conformal motions. The study is framed in the language of f( R) gravity theory in order to expose opportunity for further study in the more general theory. Exact solutions of compact stars are found under the assumption that spherically symmetric spacetimes admit conformal motion with anisotropic matter distribution in nature. In this work, two cases have been studied for the existence of such solutions: first, we consider the model given by f(R)=R and then f(R)=aR+b . Finally, specific characteristics and physical properties have been explored analytically along with graphical representations for conformally symmetric compact stars in f( R) gravity.

  15. Bond diluted anisotropic quantum Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit, E-mail: umit.akinci@deu.edu.tr

    2013-10-15

    Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined.

  16. Optical sharper focusing in an anisotropic crystal.

    Science.gov (United States)

    Wang, Sicong; Xie, Xiangsheng; Gu, Min; Zhou, Jianying

    2015-06-01

    Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial crystal with the optic axis perpendicular to the interface under a tight focusing configuration are studied with rigorous theoretical and numerical analysis. The significant effect of the Poynting vector on the focal position introduces an obvious displacement of the focal spot formed by the extraordinary waves (e-ray). Moreover, a sharper focus with a lateral size of 0.22λ is obtained as a result of the effective separation of the ordinary waves (o-ray) and the e-ray. It provides a new tool to fabricate optical structures with higher resolutions than that in an isotropic medium through the far-field method.

  17. Formation of Anisotropic Block Copolymer Gels

    Science.gov (United States)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  18. Comparing anisotropic displacement parameters in protein structures.

    Science.gov (United States)

    Merritt, E A

    1999-12-01

    The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.

  19. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  20. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  1. and Models: A Self-Similar Approach

    Directory of Open Access Journals (Sweden)

    José Antonio Belinchón

    2013-01-01

    equations (FEs admit self-similar solutions. The methods employed allow us to obtain general results that are valid not only for the FRW metric, but also for all the Bianchi types as well as for the Kantowski-Sachs model (under the self-similarity hypothesis and the power-law hypothesis for the scale factors.

  2. Electromagnetic field representation in inhomogeneous anisotropic media

    Science.gov (United States)

    Mohsen, A.

    1973-01-01

    Some of the basic developments in the theory of electromagnetic field representation in terms of Hertz vectors are reviewed. A solution for the field in an inhomogeneous anisotropic medium is given in terms of the two Hertz vectors. Conditions for presentation of the field in terms of uncoupled transverse electric and transverse magnetic modes, in a general orthogonal coordinate system, are derived when the permeability and permittivity tensors have only diagonal components. These conditions are compared with some known special cases.

  3. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  4. Electromagnetic Effects on Cracking of Anisotropic Polytropes

    CERN Document Server

    Sharif, M

    2016-01-01

    In this paper, we study the electromagnetic effects on stability of spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman Oppenheimer Volkoff equations. We apply perturbations on matter variables via polytropic constant as well as polytropic index and formulate the force distribution function. It is found that the compact object is stable for feasible choice of perturbed polytropic index in the presence of charge.

  5. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    Science.gov (United States)

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  6. Symmetry analysis for anisotropic field theories

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  7. Electromagnetic effects on cracking of anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-10-15

    In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)

  8. On anisotropic black branes with Lifshitz scaling

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the method of scalar perturbations, we construct the anisotropic charged Lifshitz background perturbatively up to leading order in the anisotropy. We perform our analysis both in the extremal as well as in the non-extremal limit. Finally, we probe the so called superfluid phase of the boundary theory and explore the effects of anisotropy on the superconducting condensate.

  9. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  10. Crossing Statistics of Anisotropic Stochastic Surface

    CERN Document Server

    Nezhadhaghighi, M Ghasemi; Yasseri, T; Allaei, S M Vaez

    2015-01-01

    We use crossing statistics and its generalization to determine the anisotropic direction imposed on a stochastic fields in $(2+1)$Dimension. This approach enables us to examine not only the rotational invariance of morphology but also we can determine the Gaussianity of underlying stochastic field in various dimensions. Theoretical prediction of up-crossing statistics (crossing with positive slope at a given threshold $\\alpha$ of height fluctuation), $\

  11. Anisotropic nanomaterials: structure, growth, assembly, and functions

    OpenAIRE

    Panikkanvalappil R. Sajanlal; Theruvakkattil S. Sreeprasad; Samal, Akshaya K.; Thalappil Pradeep

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates...

  12. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  13. Anisotropic cosmological solutions in massive vector theories

    Science.gov (United States)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-11-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/H decreases with the decrease of v. As long as the conditions |Σ| ll H and v2 ll phi2 are satisfied around the onset of late-time cosmic acceleration, where phi is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state wDE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value wDE(iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  14. Active Damping Using Distributed Anisotropic Actuators

    Science.gov (United States)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  15. Anisotropic power-law k-inflation

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...

  16. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  17. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  18. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  19. ARTc: Anisotropic reflectivity and transmissivity calculator

    Science.gov (United States)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  20. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  1. Longitudinal fluctuations and decorrelation of anisotropic flow

    Science.gov (United States)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-12-01

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  2. Anisotropic properties of TaS2

    Institute of Scientific and Technical Information of China (English)

    Qiao Yan-Bin; Li Yan-Ling; Zhong Guo-Hua; Zeng Zhi; Qin Xiao-Ying

    2007-01-01

    The anisotropic properties of 1T- and 2H-TaS2 are investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the εxx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.

  3. Anisotropic cosmological solutions in massive vector theories

    CERN Document Server

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...

  4. Inflation and primordial power spectra at anisotropic spacetime inspired by Planck's constraints on isotropy of CMB

    CERN Document Server

    Chang, Zhe

    2013-01-01

    The recently released Planck 2013 results show that the primordial fluctuations are deviated from isotropy. The deviations from isotropy are robust against component separation algorithm, mask and frequency dependence. To incorporate the Planck's data into standard cosmological model, we propose an inflation of the very early universe in an anisotropic spacetime. A generalized Friedmann-Robertson-Walker (FRW) metric is presented in the Randers-Finsler spacetime. By employing the osculating Rieammian metric approach, we obtain the primordial power spectra of the scalar perturbation with direction dependence. This is in good agreement with the deviations from isotropy of the universe found by the Planck satellite.

  5. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...

  6. Classical and quantum solutions to anisotropic cosmological Bianchi type I model from a time-dependent toroidal compactification

    CERN Document Server

    Sesma, L Toledo; Loaiza, O

    2015-01-01

    In this work we construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus. This approach is applied to anisotropic cosmological Bianchi type I model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Under this approach, we present an isotropization mechanism for the Bianchi I cosmological model through the analysis of the ratio between the anisotropic parameters and the volume of the Universe which in general keeps constant or runs into zero for late times. Finally, we present some solutions to the corresponding Wheeler-DeWitt (WDW) equation in the context of Standard Quantum Cosmology.

  7. Accelerating dark energy models with anisotropic fluid in Bianchi type-$VI_{0}$ space-time

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, we have discussed some features of the Bianchi type-$VI_{0}$ universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter in general relativity. We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type-$VI_{0}$ space-time. To prevail the deterministic solution we choose the scale factor $a(t) = \\sqrt{t^{n}e^{t}}$, which yields a time-dependent deceleration parameter (DP), representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase. Under the suitable condition, the anisotropic models approach to isotropic scenario. The EoS for dark energy $\\omega$ is found to be time-dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. 2003), SNe Ia...

  8. Modelling of a compact anisotropic star as an anisotropic fluid sphere in $f(T)$ gravity

    CERN Document Server

    Momeni, D; Qaisar, S; Zaz, Zaid; Myrzakulov, R

    2016-01-01

    In this paper, we have studied the new exact model of anisotropic star in $f(T)$ theory of gravity. The dynamical equations in $f(T)$ theory with the anisotropic fluid have been solved by using Krori-Barua solution. We have determined that all the obtained solutions are free from central singularity and potentially stable. The observed values of mass and radius of the different strange stars RX J 1856-37, Her X-1, and Vela X-12 have been used to calculate the values of unknown constants in Krori and Barua metric. The physical parameters like anisotropy, stability and redshift of the stars have been investigated in detail.

  9. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    CERN Document Server

    Takezawa, Akihiro

    2014-01-01

    The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...

  10. Anisotropic Open Cosmological Models of Spin Matter with Magnetic Moment

    Institute of Scientific and Technical Information of China (English)

    SHENLi-ming; SUNNai-jiang; 等

    2001-01-01

    We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interacton among the spinning particles prevailling in spatially homogeneous,but anisotropically cosmological models of Bianchi type V based on Einstein-Cartan theory.We analyze the field equations in three different equations of states specified by p=1(1/3)ρand p=0,The analytical solutions found are non-singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe,We have also deduced that the minimum particle numers for the radiation(p=(1/3)ρ) and matter(p=0) epochs are 1088 and 10108 respectively.the minimum particle number for the state p=ρ is 1096,leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti-particles under torsion and strong gravitational field in the early Universe.

  11. On Separate Universes

    CERN Document Server

    Dai, Liang; Schmidt, Fabian

    2015-01-01

    The separate universe conjecture states that in General Relativity a density perturbation behaves locally (i.e. on scales much smaller than the wavelength of the mode) as a separate universe with different background density and curvature. We prove this conjecture for a spherical compensated tophat density perturbation of arbitrary amplitude and radius in $\\Lambda$CDM. We then use Conformal Fermi Coordinates to generalize this result to scalar perturbations of arbitrary configuration and scale in a general cosmology with a mixture of fluids, but to linear order in perturbations. In this case, the separate universe conjecture holds for the isotropic part of the perturbations. The anisotropic part on the other hand is exactly captured by a tidal field in the Newtonian form. We show that the separate universe picture is restricted to scales larger than the sound horizons of all fluid components. We then derive an expression for the locally measured matter bispectrum induced by a long-wavelength mode of arbitrary...

  12. Fronts of Stress Wave in Anisotropic Piezoelectric Media

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣; 高凌天

    2004-01-01

    The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.

  13. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  14. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  15. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  16. Anisotropic Babinet-invertible metasurfaces to realize transmission-reflection switching for orthogonal polarizations of light

    CERN Document Server

    Nakata, Yosuke; Okimura, Kunio; Nakanishi, Toshihiro; Takeda, Mitsuo Wada; Kitano, Masao

    2016-01-01

    The electromagnetic properties of an extremely thin metallic checkerboard drastically change from resonant reflection (transmission) to resonant transmission (reflection) when the local electrical conductivity at the interconnection points of the checkerboard is switched. To date, such critical transitions of metasurfaces have been applied only when they have 4-fold rotational symmetry, and their application to polarization control, which requires anisotropy, has been unexplored. To overcome this applicability limitation and open up new pathways for dynamic deep-subwavelength polarization control by utilizing critical transitions of checkerboard-like metasurfaces, we introduce a universal class of anisotropic Babinet-invertible metasurfaces enabling transmission-reflection switching for each orthogonally polarized wave. As an application of anisotropic Babinet-invertible metasurfaces, we experimentally realize a reconfigurable terahertz polarizer whose transmitting axis can be dynamically rotated by $90^\\circ...

  17. Physical attributes of anisotropic compact stars in f( R, G) gravity

    Science.gov (United States)

    Shamir, M. Farasat; Zia, Saeeda

    2017-07-01

    Modified gravity is one of the potential candidates to explain the accelerated expansion of the universe. Current study highlights the materialization of anisotropic compact stars in the context of f( R, G) theory of gravity. In particular, to gain insight in the physical behavior of three stars namely, Her X1, SAX J 1808-3658 and 4U 1820-30, energy density, and radial and tangential pressures are calculated. The f( R, G) gravity model is split into a Starobinsky like f( R) model and a power law f( G) model. The main feature of the work is a 3-dimensional graphical analysis in which, anisotropic measurements, energy conditions and stability attributes of these stars are discussed. It is shown that all three stars behave as usual for positive values of the f( G) model parameter n.

  18. Accelerating Cosmologies with an Anisotropic Equation of State: Vector Fields, Modified Gravity and Astrophysical Constraints

    CERN Document Server

    Koivisto, Tomi

    2008-01-01

    We investigate cosmologies where the accelerated expansion of the Universe is driven by a field with an anisotropic equation of state. We model such scenarios within the Bianchi I framework, introducing two skewness parameters to quantify the deviation of pressure from isotropy. Several viable vector alternatives to the inflaton and quintessence scalar fields are found. We reconstruct a vector-Gauss-Bonnet model which generates the concordance model background expansion at late times and supports an inflationary epoch at high curvatures. We show general conditions for the existence of scaling solutions for spatial fields. In particular, a vector with an inverse power-law potential, even if minimally coupled, scales with the matter component. Asymmetric generalizations of a cosmological constant are presented also. The anisotropic expansion is then confronted with, in addition to the cosmic microwave background (CMB) anisotropies for which the main signature appears to be a quadrupole contribution, the redshif...

  19. An eigen theory of static electromagnetic field for anisotropic media

    Institute of Scientific and Technical Information of China (English)

    Shao-hua GUO

    2009-01-01

    Static electromagnetic fields are studied based on standard spaces of the physical presentation,and the modal equations of static electromagnetic fields for anisotropic media are derived. By introducing a new set of first-order potential functions,several novel theoretical results are obtained. It is found that,for isotropic media,electric or magnetic potentials are scalar; while for anisotropic media,they are vectors. Magnitude and direction of the vector potentials are related to the anisotropic subspaces. Based on these results,we discuss the laws of static electromagnetic fields for anisotropic media.

  20. Scintillations of higher order laser beams in anisotropic atmospheric turbulence.

    Science.gov (United States)

    Baykal, Yahya; Luo, Yujuan; Ji, Xiaoling

    2016-11-20

    The scintillation index of higher order laser beams is examined when such beams propagate in anisotropic atmospheric turbulence. Anisotropy is introduced through non-Kolmogorov atmospheric turbulence. The scintillation index results are obtained by employing the Rytov method solution; thus the results are valid for weak anisotropic atmospheric turbulence and for horizontal links. Variations in the scintillations are shown for various higher order laser modes against the changes in the optical source size, power law exponent of anisotropic non-Kolmogorov spectrum, anisotropic factors, and link length. Our results can be used in the design of optical wireless communication systems used between airplanes.

  1. Computation of Large Anisotropic Seismic Heterogeneities (CLASH)

    Science.gov (United States)

    Beucler, Éric; Montagner, Jean-Paul

    2006-05-01

    A general tomographic technique is designed in order (i) to operate in anisotropic media; (ii) to account for the uneven seismic sampling and (iii) to handle massive data sets in a reasonable computing time. One modus operandi to compute a 3-D body wave velocity model relies on surface wave phase velocity measurements. An intermediate step, shared by other approaches, consists in translating, for each period of a given mode branch, the phase velocities integrated along ray paths into local velocity perturbations. To this end, we develop a method, which accounts for the azimuthal anisotropy in its comprehensive form. The weakly non-linear forward problem allows to use a conjugate gradient optimization. The Earth's surface is regularly discretized and the partial derivatives are assigned to the individual grid points. Possible lack of lateral resolution, due to the inescapable uneven ray path coverage, is taken into account through the a priori covariances on parameters with laterally variable correlation lengths. This method allows to efficiently separate the 2ψ and the 4ψ anisotropic effects from the isotropic perturbations. Fundamental mode and overtone phase velocity maps, derived with real Rayleigh wave data sets, are presented and compared with previous maps. The isotropic models concur well with the results of Trampert & Woodhouse. Large 4ψ heterogeneities are located in the tectonically active regions and over the continental lithospheres such as North America, Antarctica or Australia. At various periods, a significant 4ψ signature is correlated with the Hawaii hotspot track. Finally, concurring with the conclusions of Trampert & Woodhouse, our phase velocity maps show that Rayleigh wave data sets do need both 2ψ and 4ψ anisotropic terms.

  2. Self-organized motion in anisotropic swarms

    Institute of Scientific and Technical Information of China (English)

    Tianguang CHU; Long WANG; Tongwen CHEN

    2003-01-01

    This paper considers an anisotropic swarm model with a class of attraction and repulsion functions. It is shown that the members of the swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover,It is also proved that under certain conditions, the swarm system can be completely stable, i. e., every solution converges to the equilibrium points of the system. The model and results of this paper extend a recent work on isotropic swarms to more general cases and provide further insight into the effect of the interaction pattern on self-organized motion in a swarm system.

  3. Relativistic Cyclotron Instability in Anisotropic Plasmas

    Science.gov (United States)

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  4. Anisotropic electrostatic turbulence and zonal flow generation

    Energy Technology Data Exchange (ETDEWEB)

    Balescu, R [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium); Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I.Cuza Str., 200585 Craiova (Romania); Negrea, M [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I.Cuza Str., 200585 Craiova (Romania)

    2005-12-15

    In this paper we analyse the running and asymptotic diffusion coefficients of a plasma in the case of zonal flow generation by an anisotropic stochastic electrostatic potential. Both the weak and relatively strong turbulence regimes were analysed. The analysis of the diffusion coefficients in wave vector space provides an illustration of the fragmentation of drift wave structures in the radial direction and the generation of long-wavelength structures in the poloidal direction that are identified as zonal flows. We have shown that the fragmentation of drift wave structures is strongly influenced by the anisotropy parameter, the electrostatic Kubo number and by the initial values of the wave vector.

  5. Generalized Jones matrices for anisotropic media.

    Science.gov (United States)

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2013-03-25

    The interaction of arbitrary three-dimensional light beams with optical elements is described by the generalized Jones calculus, which has been formally proposed recently [Azzam, J. Opt. Soc. Am. A 28, 2279 (2011)]. In this work we obtain the parametric expression of the 3×3 differential generalized Jones matrix (dGJM) for arbitrary optical media assuming transverse light waves. The dGJM is intimately connected to the Gell-Mann matrices, and we show that it provides a versatile method for obtaining the macroscopic GJM of media with either sequential or simultaneous anisotropic effects. Explicit parametric expressions of the GJM for some relevant optical elements are provided.

  6. Anisotropic spin fluctuations in metallic erbium

    Energy Technology Data Exchange (ETDEWEB)

    Waeppling, R.; Hartmann, O.; Harris, S.; Karlsson, E. (Uppsala Univ., Dept. of Physics (Sweden)); Kalvius, G.M.; Asch, L.; Kratzer, A. (Physik Dept., Technische Univ. Muenchen, Garching (Germany)); Dalmas de Reotier, P.; Yaouanc, A. (CENG/DRFMC/LIH, 38 - Grenoble (France))

    1993-02-01

    From a [mu]SR study of metallic erbium single crystals, the presence of anisotropic spin correlations in the paramagnetic state at temperatures well above T[sub N] has been detected. The temperature dependence of the depolarization rate of the muon precession signal gives a dynamical critical exponent of 0.15(3) for the fluctuations of the magnetic field component at the muon site that is parallel with the c-axis. For magnetic field components perpendicular to the c-axis there are no indications of slowing down of fluctuations due to the onset of spin correlations on approaching T[sub N]. (orig.).

  7. Gauge Field Optics with Anisotropic Media

    CERN Document Server

    Liu, Fu

    2014-01-01

    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

  8. Multichannel image regularization using anisotropic geodesic filtering

    Energy Technology Data Exchange (ETDEWEB)

    Grazzini, Jacopo A [Los Alamos National Laboratory

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  9. Anisotropic flow in striped superhydrophobic channels

    CERN Document Server

    Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I

    2012-01-01

    We report results of dissipative particle dynamics simulations and develop a semi-analytical theory and of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.

  10. Ultrasonic Linear Motor with Anisotropic Composite

    Institute of Scientific and Technical Information of China (English)

    曾周末; 王新辉; 赵伯雷

    2004-01-01

    An idea to make up the vibrating body of ultrasonic motor with anisotropic composite is proposed and a linear piezoelectric motor is developed in this paper. Relative problems such as actuating mechanism, resonant frequency are discussed theoretically. According to the feature that impulse exists between the elastic body of composite ultrasonic linear motor and the base, an impulse analysis is presented to calculate the motor′s friction driving force and frictional conversion efficiency. The impulse analysis essentially explains the reason why the ultrasonic motor has great driving force, and can be applied to analyze the non-linear ultrasonic motor.

  11. Generalised model for anisotropic compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Deb, Debabrata [Indian Institute of Engineering Science and Technology, Shibpur, Department of Physics, Howrah, West Bengal (India)

    2016-12-15

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 (SS1) and SAX J 1808.4-3658 (SS2) are concerned. (orig.)

  12. Hydrodynamics of anisotropic quark and gluon fluids

    Science.gov (United States)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  13. Hydrodynamics of anisotropic quark and gluon fluids

    CERN Document Server

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael

    2012-01-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory with the collisional kernel treated in the relaxation-time approximation. Baryon number conservation is enforced in the quark and anti-quark components of the fluid, but overall parton number non-conservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  14. Temperature and Polarization Patterns in Anisotropic Cosmologies

    CERN Document Server

    Sung, Rockhee

    2010-01-01

    We study the coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models. We show results for all Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V, VII$_{0}$, VII$_{h}$ and IX) to illustrate the range of possible behaviour. We discuss the role of spatial curvature, shear and rotation in the geodesic equations for each model and establish some basic results concerning the symmetries of the patterns produced. We also give examples of the time-evolution of these patterns in terms of the Stokes parameters $I$, $Q$ and $U$.

  15. Anisotropic bond percolation in two dimensions

    Science.gov (United States)

    Arovas, D.; Bhatt, R. N.; Shapiro, B.

    1983-08-01

    A new single-parameter renormalization-group equation is formulated for anisotropic bond percolation in two dimensions using a position-space renormalization approach. The new equation yields the exact critical line px+py=1 within both the Migdal-Kadanoff decimation and cell renormalization schemes. For large anisotropy, however, an additional critical line appears leading to a spurious divergence in the correlation-length critical exponent. An alternative scheme, which does not preserve the exact critical surface, but yields a correlation-length exponent relatively independent of anisotropy, is also examined.

  16. Wireless energy transfer between anisotropic metamaterials shells

    CERN Document Server

    Diaz-Rubio, Ana; Sanchez-Dehesa, Jose

    2013-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.

  17. Charged Anisotropic Star on Paraboloidal Spacetime

    CERN Document Server

    Ratanpal, B S

    2015-01-01

    The charged anisotropic star on paraboloidal spacetime is reported by choosing particular form of radial pressure and electric field intensity. The non-singular solution of Einstein-Maxwell system of equation have been derived and it is shown that model satisfy all the physical plausibility conditions. It is observed that in the absence of electric field intensity, model reduces to particular case of uncharged Sharma \\& Ratanpal model. It is also observed that the parameter used in electric field intensity directly effects the mass of the star.

  18. Anisotropic Density Estimation in Global Illumination

    DEFF Research Database (Denmark)

    Schjøth, Lars

    2009-01-01

    Density estimation employed in multi-pass global illumination algorithms gives cause to a trade-off problem between bias and noise. The problem is seen most evident as blurring of strong illumination features. This thesis addresses the problem, presenting four methods that reduce both noise...... and bias in estimates. Good results are obtained by the use of anisotropic filtering. Two methods handles the most common cases; filtering illumination reflected from object surfaces. One methods extends filtering to the temporal domain and one performs filtering on illumination from participating media...

  19. Testing the isotropy of the Universe by using the JLA compilation of type-Ia supernovae

    CERN Document Server

    Lin, Hai-Nan; Chang, Zhe; Li, Xin

    2015-01-01

    We probe the possible anisotropy in the accelerated expanding Universe by using the JLA compilation of type-Ia supernovae. We constrain the amplitude and direction of anisotropy in the anisotropic cosmological models. For the dipole-modulated $\\Lambda$CDM model, the anisotropic amplitude has an upper bound $D<1.04\\times10^{-3}$ at the $68\\%$ confidence level. Similar results are found in the dipole-modulated $w$CDM and CPL models. Our studies show that there are no significant evidence for the anisotropic expansion of the Universe. Thus the Universe is still well compatible with the isotropy.

  20. Quantum electrodynamics of inhomogeneous anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-02-01

    In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)

  1. On Backus average for generally anisotropic layers

    CERN Document Server

    Bos, Len; Slawinski, Michael A; Stanoev, Theodore

    2016-01-01

    In this paper, following the Backus (1962) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (1962) for the case of isotropic and transversely isotropic layers. In over half-a-century since the publications of Backus (1962) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of mathematical underpinnings of the original formulation; hence, this paper. We prove that---within the long-wave approximation---if the thin layers obey stability conditions then so does the equivalent medium. We examine---within the Backus-average context---the approximation of the average of a product as the product of averages, and express it as a proposition in terms of an upper bound. In the presented examination we use the e...

  2. Scaling Argument of Anisotropic Random Walk

    Institute of Scientific and Technical Information of China (English)

    XU Bing-Zhen; JIN Guo-Jun; WANG Fei-Feng

    2005-01-01

    In this paper, we analytically discuss the scaling properties of the average square end-to-end distance for anisotropic random walk in D-dimensional space ( D ≥ 2), and the returning probability Pn(ro) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for and Pn (ro), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain ~ n, where ⊥ refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have ~ n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than the dimensions of the space, we must have ~ n2 for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.

  3. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  4. Radial stability of anisotropic strange quark stars

    Science.gov (United States)

    Arbañil, José D. V.; Malheiro, M.

    2016-11-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = pt-pr are considered, where pt and pr are respectively the tangential and the radial pressure: one that is null at the star's surface defined by pr(R) = 0, and one that is nonnull at the surface, namely, σs = 0 and σs ≠ 0. In the case σs = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σs ≠ 0, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σs. Thus, the stability star regions are determined always by the condition dM/dρc > 0 only when the tangential pressure is maintained fixed at the star surface's pt(R). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.

  5. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  6. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  7. Anisotropic artificial substrates for microwave applications

    Science.gov (United States)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  8. DECAY OF ENERGY FOR A DISSIPATIVE ANISOTROPIC ELASTIC SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qin Yuming; Liu Xin; Deng Shuxian

    2011-01-01

    In this article, we study the large-time behavior of energy for a N-dimensional dissipative anisotropic elastic system. By means of multiplicative techniques, energy method, and Zuazua's estimate technique, we prove the decay property of energy for anisotropic elastic system.

  9. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  10. Symmetric Periodic Solutions of the Anisotropic Manev Problem

    OpenAIRE

    Santoprete, Manuele

    2002-01-01

    We consider the Manev Potential in an anisotropic space, i.e., such that the force acts differently in each direction. Using a generalization of the Poincare' continuation method we study the existence of periodic solutions for weak anisotropy. In particular we find that the symmetric periodic orbits of the Manev system are perturbed to periodic orbits in the anisotropic problem.

  11. Anisotropic Flow Measurements in ALICE at the Large Hadron Collider

    NARCIS (Netherlands)

    Bilandzic, A.

    2012-01-01

    Anisotropic flow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy

  12. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Science.gov (United States)

    Ageev, Dmitry

    2016-10-01

    The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  13. Holographic Wilson loops in anisotropic quark-gluon plasma.

    Directory of Open Access Journals (Sweden)

    Ageev Dmitry

    2016-01-01

    Full Text Available The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  14. Some Weighted Hardy-Type Inequalities on Anisotropic Heisenberg Groups

    Directory of Open Access Journals (Sweden)

    Yang Qiao-Hua

    2011-01-01

    Full Text Available We prove some weighted Hardy type inequalities associated with a class of nonisotropic Greiner-type vector fields on anisotropic Heisenberg groups. As an application, we get some new Hardy type inequalities on anisotropic Heisenberg groups which generalize a result of Yongyang Jin and Yazhou Han.

  15. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  16. SUPERCONVERGENCE ANALYSIS OF A NONCONFORMING TRIANGULAR ELEMENT ON ANISOTROPIC MESHES

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Hui LIANG; Caixia WANG

    2007-01-01

    The class of anisotropic meshes we conceived abandons the regular assumption. Some distinct properties of Carey's element are used to deal with the superconvergence for a class of twodimensional second-order elliptic boundary value problems on anisotropic meshes. The optimal results are obtained and numerical examples are given to confirm our theoretical analysis.

  17. Optical anisotropic reflectance from W720 LIPSS surface

    Science.gov (United States)

    Silvennoinen, Martti; Penttinen, Niko; Hasoň, Stanislav; Silvennoinen, Raimo

    2013-05-01

    Optical anisotropic reflectance from laser induced periodic surface structures (LIPSS) of stainless steel (W720LIPSS), which were produced by a femtosecond laser, were investigated by using polarized probe beam in a spectrophotometer. Remarkable repeatability in optical anisotropic reflectance was recognized.

  18. The characteristics of magnetotelluric responses for anisotropic conductivity

    DEFF Research Database (Denmark)

    Xiong, Bin; Luo, Tianyan; Cai, Hongzhu

    2013-01-01

    compute the apparent resistivity for magnetotelluric (MT). Based on the forward modeling of MT field, we will analysis the difference of EM field for isotropic and anisotropic medium for TEZ polarization model. Our study shows that the MT field can be significantly affected by anisotropic medium...

  19. THE SUPERCONVERGENCE ANALYSIS OF AN ANISOTROPIC FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    SHI Dongyang; ZHU Huiqing

    2005-01-01

    This paper deals with the high accuracy analysis of bilinear finite element on the class of anisotropic rectangular meshes. The inverse inequalities on anisotropic meshes are established. The superclose and the superconvergence are obtained for the second order elliptic problem. A numerical test is given, which coincides with our theoretical analysis.

  20. Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics

    CERN Document Server

    Hopkins, Philip F

    2016-01-01

    We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect), and turbulent 'eddy diffusion.' We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV) as well as smoothed-particle hydrodynamics (SPH). We show the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators ...

  1. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm.

    Science.gov (United States)

    Değirmenci, Evren; Eyüboğlu, B Murat

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  2. Unruh effect in vacua with anisotropic scaling: Applications to multilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Katsnelson, M.I. [Radboud University Nijmegen, Institute for Molecules and Materials, Heyndaalseweg 135, NL-6525AJ Nijmegen (Netherlands); Volovik, G.E. [Low Temperature Laboratory, School of Science and Technology, Aalto University, P.O. Box 15100, FI-00076 Aalto (Finland); L. D. Landau Institute for Theoretical Physics, Kosygina 2, 119334 Moscow (Russian Federation); Zubkov, M.A., E-mail: zubkov@itep.ru [ITEP, B.Cheremushkinskaya 25, Moscow, 117259 (Russian Federation)

    2013-09-15

    We extend the calculation of the Unruh effect to the universality classes of quantum vacua obeying topologically protected invariance under anisotropic scaling r→br, t→b{sup z}t. Two situations are considered. The first one is related to the accelerated detector which detects the electron–hole pairs. The second one is related to the system in external electric field, when the electron–hole pairs are created due to the Schwinger process. As distinct from the Unruh effect in relativistic systems (where z=1) the calculated radiation is not thermal, but has properties of systems in the vicinity of quantum criticality. The vacuum obeying anisotropic scaling can be realized, in particular, in multilayer graphene with the rhombohedral stacking. Opportunities of the experimental realization of the Unruh effect in this situation are discussed. -- Highlights: •Unruh effect in the system with anisotropic scaling (multilayer graphene) is investigated. •The accelerated detector is considered which detects the electron–hole pairs. •The system in external electric field is considered as the “accelerated vacuum”. •Unruh effect in the nonrelativistic case differs from that of the relativistic case.

  3. Tearing Instability in an Anisotropic Neutral Sheet.

    Science.gov (United States)

    1983-09-07

    E. Szuszczewicz) Columbia University Code 4187 (P. Rodriguez) New York, New York 10027 code 2628 20 copies ATTN: R. Taussig R.A. Gross University of...Minnesota Minneapolis, MN 55455 Schulz, Michael Aerospace Corp. A6/2451, P.O. Box 92957 Los Angeles, California 90009 Shawhan, Stanley Dept. of...Physics & Astronomy University of Iowa Iowa City, Iowa 52242 Temerin, Michael Space Science Lab. University of California Berkeley, California 94720 Vlahos

  4. Minimally coupled scalar field cosmology in anisotropic cosmological model

    Science.gov (United States)

    Singh, C. P.; Srivastava, Milan

    2017-02-01

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.

  5. Shortcut to adiabaticity for an anisotropic unitary Fermi gas

    CERN Document Server

    Deng, Shujin; Yu, Qianli; Wu, Haibin

    2016-01-01

    Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...

  6. Minimally coupled scalar field cosmology in anisotropic cosmological model

    Indian Academy of Sciences (India)

    C P SINGH; MILAN SRIVASTAVA

    2017-02-01

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic formof scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.

  7. Recent results on anisotropic flow and related phenomena in ALICE

    CERN Document Server

    Bilandzic, Ante

    2016-01-01

    The exploration of properties of an extreme state of matter, the Quark--Gluon Plasma, has broken new ground with the recent Run 2 operation of the Large Hadron Collider with heavy-ion collisions at the highest energy to date. With the heavy-ion data taken at the end of 2015, the ALICE Collaboration has made the first observation of anisotropic flow of charged particles and related phenomena in lead--lead collisions at the record breaking energy of 5.02 TeV per nucleon pair. The Run 2 results come after the proton-lead collisions, which provided a lot of unexpected results obtained with two- and multi-particle correlation techniques. In these proceedings, a brief overview of these results will be shown. We will discuss how they further enlighten the properties of matter produced in ultrarelativistic nuclear collisions. We indicate the possibility that, to leading order, the striking universality of flow results obtained with correlation techniques in pp, p--A and A--A collisions might have purely mathematical ...

  8. Two-point correlation functions in inhomogeneous and anisotropic cosmologies

    Science.gov (United States)

    Marcori, Oton H.; Pereira, Thiago S.

    2017-02-01

    Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.

  9. Anisotropic phenomena in gauge/gravity duality

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Hansjoerg

    2014-05-26

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  10. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  11. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different...... spatial directions or different ordering wave vectors. Theoretical predictions based on known parameters for the phase diagrams and magnetic moments for the binary rare-earth alloys of Tb, Dy, Ho, and Er, Tb-Tm, Nd-Pr, and pure double-hcp Nd agree qualitatively with the experimental observations....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  12. Quantum electrodynamics of inhomogeneous anisotropic media

    CERN Document Server

    Lopez, Adrian E Rubio

    2014-01-01

    In this work we calculate the closed time path (CTP) generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then, we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss and give insights about how the gauge invariance must be treated in the formalism w...

  13. Anisotropic plasmas from axion and dilaton deformations

    CERN Document Server

    Donos, Aristomenis; Sosa-Rodriguez, Omar

    2016-01-01

    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to $AdS_5\\times X_5$, where $X_5$ is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same $AdS_5\\times X_5$ solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  14. Transient motion of thick anisotropic plates

    Science.gov (United States)

    Nayfeh, Adnan H.; Taylor, Timothy W.

    1991-01-01

    Analyses are developed for the response of anisotropic plate strips to a transient load. The load is taken in the form of a line load of normal stress on the surface or within the body of the strip. The characteristic free vibrational modes of the strip are derived and used to derive the secular equation for this case in closed form and to isolate the mathematical conditions for symmetric and antisymmetric wave mode propagation in completely separate terms. The applied loads are expanded in terms of these normal modes and the response of the plate is obtained by superposition of the appropriate components. Material systems of higher symmetry are contained implicitly in the analysis.

  15. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)

    2016-12-15

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  16. Anisotropic metamaterials with simultaneous attenuation and amplification

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    Anisotropic metamaterials that are neither wholly dissipative nor wholly active at a specific frequency are permitted by classical electromagnetic theory. Well-established formalisms for the homogenization of particulate composite materials indicate that such a metamaterial may be conceptualized quite simply as a random mixture of electrically small spheroidal particles of at least two different isotropic dielectric materials, one of which must be dissipative but the other active. The realization of this metametarial is influenced by the volume fraction, spatial distribution, particle shape and size, and the relative permittivities of the component materials. Metamaterials displaying both dissipation and amplification at the same frequency with more complicated linear as well as nonlinear constitutive properties are possible.

  17. Mean field magnetization of gapped anisotropic multiplet

    Science.gov (United States)

    Paixão, L. S.; Reis, M. S.

    2014-06-01

    Some materials have a large gap between the ground and first excited states. At temperatures smaller than the gap value, the thermodynamic properties of such materials are mainly ruled by the ground state. It is also common to find materials with magnetocrystalline anisotropy, which arises due to interatomic interactions. The present paper uses a classical approach to deal large angular momenta in such materials. Based on analytical expressions for the thermodynamics of paramagnetic gapped anisotropic multiplets, we use mean field theory to study the influence of the anisotropy upon the properties of interacting systems. We also use Landau theory to determine the influence of the anisotropy in first and second order phase transitions. It is found that the anisotropy increases the critical temperature, and enlarges the hysteresis of first order transitions. We present analytical expressions for the quantities analyzed.

  18. Anisotropic criteria for the type of superconductivity

    Science.gov (United States)

    Kogan, V. G.; Prozorov, R.

    2014-08-01

    The classical criterion for classification of superconductors as type I or type II based on the isotropic Ginzburg-Landau theory is generalized to arbitrary temperatures for materials with anisotropic Fermi surfaces and order parameters. We argue that the relevant quantity for this classification is the ratio of the upper and thermodynamic critical fields Hc2/Hc, rather than the traditional ratio of the penetration depth and the coherence length λ /ξ. Even in the isotropic case, Hc2/Hc coincides with √2 λ /ξ only at the critical temperature Tc and they differ as T decreases, the long-known fact. Anisotropies of Fermi surfaces and order parameters may amplify this difference and render false the criterion based on the value of κ =λ/ξ.

  19. Adiabatic theory for anisotropic cold molecule collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  20. Anisotropic plasmas from axion and dilaton deformations

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Sosa-Rodriguez, Omar

    2016-11-01

    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to AdS 5 × X 5, where X 5 is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same AdS 5 × X 5 solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  1. Spectral functions from anisotropic lattice QCD

    Science.gov (United States)

    Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.

    2016-12-01

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  2. Particle Behavior at Anisotropically Curved Liquid Interfaces

    Science.gov (United States)

    McEnnis, Kathleen; Zeng, Chuan; Davidovitch, Benny; Dinsmore, Anthony; Russell, Thomas

    2011-03-01

    A particle bound to an anisotropically curved liquid interface, such as a cylinder or catenoid, cannot maintain a constant contact angle without deforming the interface. Theory suggests that the particles will experience a force that depends on the interfacial shape and migrate to minimize the total interfacial energy. To test these predictions, particles were deposited on top of liquid semi-cylinders of ionic liquid or melted polystyrene confined on chemically patterned surfaces. Particles were also deposited on liquid catenoid structures created by placing a melted polymer film under an electric field. The location of the particles on these structures was observed by optical, confocal, and scanning electron microscopy. The implications for the directed assembly of particles and stability of Pickering emulsions are also discussed.

  3. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  4. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  5. Anisotropic turbulence in weakly stratified rotating magnetoconvection

    CERN Document Server

    Giesecke, A

    2010-01-01

    Numerical simulations of the 3D MHD-equations that describe rotating magnetoconvection in a Cartesian box have been performed using the code NIRVANA. The characteristics of averaged quantities like the turbulence intensity and the turbulent heat flux that are caused by the combined action of the small-scale fluctuations are computed. The correlation length of the turbulence significantly depends on the strength and orientation of the magnetic field and the anisotropic behavior of the turbulence intensity induced by Coriolis and Lorentz force is considerably more pronounced for faster rotation. The development of isotropic behavior on the small scales -- as it is observed in pure rotating convection -- vanishes even for a weak magnetic field which results in a turbulent flow that is dominated by the vertical component. In the presence of a horizontal magnetic field the vertical turbulent heat flux slightly increases with increasing field strength, so that cooling of the rotating system is facilitated. Horizont...

  6. Anisotropic magnetic fluctuations in 3-k antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Caciuffo, R. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany)]. E-mail: roberto.caciuffo@ec.europa.eu; Magnani, N. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany); Istituto dei Materiali per l' Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, I-43010 Fontanini (PR) (Italy); Santini, P. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Carretta, S. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Amoretti, G. [Dipartimento di Fisica, Universita di Parma, Viale G. P. Usberti 7/A, I-43100 Parma (Italy); Blackburn, E. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany); Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Enderle, M. [Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Brown, P.J. [Institute Laue-Langevin, Boite Postal 156-X, F-38042 Grenoble Cedex (France); Lander, G.H. [European Commission, Joint Research Center, Institute for Transuranium Elements, Postfach 2340, Karlsruhe D-76125 (Germany)

    2007-03-15

    The anisotropy of magnetic fluctuations propagating along the high-symmetry directions in cubic systems with 3-k magnetic order is analyzed within the random-phase approximation assuming anisotropic exchange interactions. Both transverse and longitudinal structures are considered, with reference to the UO{sub 2} and USb compounds, respectively. In the case of UO{sub 2}, the spin-waves polarizations calculated for acoustic and optical branches are favorably compared with three-dimensional polarization analysis experiments carried out on a triple axis spectrometer. The overall spin-waves polarization behavior emerges as a consequence of the 3-k nature of the magnetic order, whatever the strength of the exchange coupling assumed.

  7. Quench dynamics of the anisotropic Heisenberg model.

    Science.gov (United States)

    Liu, Wenshuo; Andrei, Natan

    2014-06-27

    We develop an analytical approach for the study of the quench dynamics of the anisotropic Heisenberg model (XXZ model) on the infinite line. We present the exact time-dependent wave functions after a quench in an integral form for any initial state and for any anisotropy Δ by means of a generalized Yudson contour representation. We calculate the evolution of several observables from two particular initial states: starting from a local Néel state we calculate the time evolution of the antiferromagnetic order parameter-staggered magnetization; starting from a state with consecutive flipped spins (1) we calculate the evolution of the local magnetization and express it in terms of the propagation of magnons and bound state excitations, and (2) we predict the evolution of the induced spin currents. These predictions can be confronted with experiments in ultracold gases in optical lattices. We also show how the "string" solutions of Bethe ansatz equations emerge naturally from the contour approach.

  8. Anisotropic Cloth Modeling for Material Fabric

    Science.gov (United States)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  9. Transport processes in anisotropic gravitational collapse

    CERN Document Server

    Martínez, J

    1996-01-01

    In this paper we introduce a new method to study the influence of thermal conduction and viscous processes in anisotropic gravitational collapse. To this end we employ the HJR method to solve the Einstein equations. The Maxwell-Cattaneo type transport equations are used to find the temperature and bulk and shear viscous pressures. Under some conditions Maxwell-Cattaneo transport equations comply with relativistic causality. Thus, it is advisable to use them instead of Eckart transport equations. In the inner layers of the star the temperature ceases to be sensitive to the boundary condition. This behavior, which can be explained in terms of the Eddington approximation, allows us to find the thickness of the neutrinosphere. The dynamics of collapsing dense stars is deeply influenced by the neutrino emission/absorption processes. These cool the star and drive it to a new equilibrium state. Therefore, the calculation of transport coefficients is based on these processes.

  10. Anisotropic criteria for the type of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Vladimir G [Ames Laboratory; Prozorov, Ruslan [Ames Laboratory

    2014-08-01

    The classical criterion for classification of superconductors as type I or type II based on the isotropic Ginzburg-Landau theory is generalized to arbitrary temperatures for materials with anisotropic Fermi surfaces and order parameters. We argue that the relevant quantity for this classification is the ratio of the upper and thermodynamic critical fields Hc2/Hc, rather than the traditional ratio of the penetration depth and the coherence length λ/ξ. Even in the isotropic case, Hc2/Hc coincides with 2√λ/ξ only at the critical temperature Tc and they differ as T decreases, the long-known fact. Anisotropies of Fermi surfaces and order parameters may amplify this difference and render false the criterion based on the value of κ=λ/ξ.

  11. A model for anisotropic strange stars

    CERN Document Server

    Deb, Debabrata; Ray, Saibal; Rahaman, Farook; Guha, B K

    2016-01-01

    We attempt to find a singularity free interior solution for a neutral and static stellar model. We consider that (i) the star is made up of anisotropic fluid and (ii) the MIT bag model can be used. The total system is defined by assuming the density profile given by Mak and Harko \\cite{Mak2002}, which satisfies all the physical conditions of a stellar system and is stable by nature. We find that those stellar systems which obey such a non-linear density function must have maximum anisotropy at the surface. We also perform several tests for physical features of the proposed model and show that these are mostly acceptable within certain range. As a special mention, from our investigation we find that the maximum mass and radius of the quark star are $11.811 km$ and $3.53 {M}_{\\odot}$ respectively.

  12. Anisotropic photon migration in human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Binzoni, T [Departement de Neurosciences Fondamentales, University of Geneva (Switzerland); Department of Radiology, University Hospital, Geneva (Switzerland); Courvoisier, C [Departement d' optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche Comte, Besancon (France); Giust, R [Departement d' optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche Comte, Besancon (France); Tribillon, G [Departement d' optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche Comte, Besancon (France); Gharbi, T [Departement d' optique PM Duffieux, Institut FEMTO-ST, UMR CNRS 6174, Universite de Franche Comte, Besancon (France); Hebden, J C [Department of Medical Physics and Bioengineering, University College London (United Kingdom); Leung, T S [Department of Medical Physics and Bioengineering, University College London (United Kingdom); Roux, J [Hamamatsu Photonics, Grenoble (France); Delpy, D T [Department of Medical Physics and Bioengineering, University College London (United Kingdom)

    2006-03-07

    It is demonstrated in the short head of the human biceps brachii of 16 healthy subjects (12 males and 4 females) that near infrared photon migration is anisotropic. The probability for a photon to travel along the direction of the muscle fibres is higher ({approx}0.4) than that of travelling along a perpendicular axis ({approx}0.3) while in the adipose tissue the probability is the same ({approx}0.33) in all directions. Considering that the muscle fibre orientation is different depending on the type of muscle considered, and that inside a given skeletal muscle the orientation may change, the present findings in part might explain the intrasubject variability observed in the physiological parameters measured by near infrared spectroscopy techniques. In other words, the observed regional differences might not only be physiological differences but also optical artefacts. (note)

  13. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  14. Anisotropic compact stars in Karmarkar spacetime

    CERN Document Server

    Singh, Ksh Newton; Govender, M

    2016-01-01

    We present a new class of solutions to the Einstein field equations for an anisotropic matter distribution in which the interior space-time obeys the Karmarkar condition. The necessary and sufficient condition required for a spherically symmetric space-time to be of class one reduces the gravitational behavior of the model to a single metric function. By assuming a physically viable form for the $g_{rr}$ metric potential we obtain an exact solution of the Einstein field equations which is free from any singularities and satisfies all the physical criteria. We utilize this solution to predict the masses and radii of well-known compact objects such as Cen X-3, PSR J0348+0432, PSRB0943+10 and XTE J1739-285. To be publish in Chinese Physics C (Accepted)

  15. Plasmons in Anisotropic Quark-Gluon Plasma

    CERN Document Server

    Carrington, Margaret E; Mrowczynski, Stanislaw

    2014-01-01

    Plasmons of quark-gluon plasma - gluon collective modes - are systematically studied. The plasma is, in general, non-equilibrium but homogeneous. We consider anisotropic momentum distributions of plasma constituents which are obtained from the isotropic one by stretching or squeezing in one direction. This leads to prolate or oblate distributions, respectively. We study all possible degrees of one dimensional deformation from the extremely prolate case, when the momentum distribution is infinitely elongated in one direction, to the extremely oblate distribution, which is infinitely squeezed in the same direction. In between these extremes we discuss arbitrarily prolate, weakly prolate, isotropic, weakly oblate and arbitrarily oblate distributions. For each case, the number of modes is determined using a Nyquist analysis and the complete spectrum of plasmons is found analytically if possible, and numerically when not. Unstable modes are shown to exist in all cases except that of isotropic plasma. We derive con...

  16. Translation correlations in anisotropically scattering media

    CERN Document Server

    Judkewitz, Benjamin; Vellekoop, Ivo M; Yang, Changhuei

    2014-01-01

    Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of applications in biomedical imaging. However finding the right wavefront to shape is a challenge when the scattering transmission matrix is not known. Correlations in transmission matrices, especially the so-called memory-effect, have been exploited to address this limitation. However, the traditional memory-effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media. Here, we report on analogous transmission matrix correlations within thick anisotropically scattering media, with wide-ranging implications for biomedical imaging. We use a simple conceptual framework to explain these findings and relate them to the traditional memory effect.

  17. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  18. Electrodynamic features of anisotropic hard superconductors

    CERN Document Server

    Voloshin, I F; Fisher, L M; Aksenov, A V; Yampolskij, V A

    2001-01-01

    The low-frequency electromagnetic response of the superconducting plates, which are characterized by strong anisotropy of the current-carrying capacity in the sample plane, is experimentally and theoretically studied. The measurements are carried out on the polycrystalline textured plates of the Y-123 system as well as on the monocrystal. It is shown that the form of curves describing the dependence of the q relative losses on the h sub 0 alternate field amplitudes is highly sensitive to the h sub 0 vector orientation in the sample plane. The q(h sub 0) dependence by the h sub 0 orientation along one of the main directions of the current anisotropic critical density symmetry the q(h sub 0) dependence is characterized by the single dimensional maximum. Two dimensional maxima are observed on the q(h sub 0) curve by the h sub 0 significant deviation from the main directions

  19. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  20. Individualization of the anisotropic phenomena of the imbalanced Nature

    Science.gov (United States)

    Shlafman, L. M.; Kontar, V. A.

    2013-05-01

    What is an individual phenomenon of Nature? Where are the boundaries? Why it is considered as an individual phenomenon? etc. People cannot directly detect the "something isotropic." Sometimes we notice that there is a "black box." But on closer inspection, especially with new methods, the "black box" began to lighten. It seems that his "blackness" is the result of imperfect human sensors and interpretations, but not a phenomenon of Nature. Really people can identify only the anisotropic phenomena of Nature, but with the significant errors. Let's take a look at our home planet Earth. Where are the borders of our planet? It is may seem as the very simple question. People walk on the land and swim on the seas. This is the border on the surface of land and water. But what is about the dust? The dust is a part of the land, which is in the air. Weight of dust is very small compared to the weight of the planet. But it is the dust has formed valleys. Dust can rise very high above the planet's surface and even fly into the space. A similar situation is with the water. The bulk of the liquid water is in surface and underground waters. Water vapor is in the atmosphere. Atmospheric water is much less than on the earth and under the earth. But atmospheric water plays a huge role in the world and even extends into the space. Without a full accounting of dust and water impossible correctly describe the planet. But with considering the dust and water the planet is not solid-liquid ball. It is like "fuzzy blowball" with the boundaries that go to infinity. This "fuzziness" refers to gravity. The gravitational field does not end in the Lagrange points. This "fuzziness" illustrated by the electro-magnetic fields, etc. Our planet can be seen as a multidimensional anisotropic phenomenon of Nature. The anisotropy precisely is, and therefore is the gradient and movement. This phenomenon is clearly imbalanced because nothing ever repeats itself exactly, etc. The borders of any anisotropic

  1. Quantization of the radiation field in an anisotropic dielectric medium

    Institute of Scientific and Technical Information of China (English)

    Li Wei; Liu Shi-Bing; Yang Wei

    2009-01-01

    There are both loss and dispersion characteristics for most dielectric media. In quantum theory the loss in medium is generally described by Langevin force in the Langevin noise (LN) scheme by which the quantization of the radiation field in various homogeneous absorbing dielectrics can be successfully actualized. However, it is invalid for the anisotropic dispersion medium. This paper extends the LN theory to an anisotropic dispersion medium and presented the quantization of the radiation field as well as the transformation relation between the homogeneous and anisotropic dispersion media.

  2. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  3. Design of anisotropic reflector with birefringent thin films

    Institute of Scientific and Technical Information of China (English)

    Jianguo Wang; Kui Yi; Jianda Shao; Zhengxiu Fan

    2005-01-01

    A novel design for dielectric anisotropic mirrors with birefringent thin films for normal incidence is presented. This mirror consists of a stack of quarter-wave biaxial layers. The biaxial anisotropic layers can be fabricated by oblique deposition. The reflectance is different for two linear polarizations of light incidence on the mirrors. As a numerical example, the design is carried out on glass with TiO2 and ZrO2. These thin films could be applied to anisotropic reflective devices for lasers.

  4. Magnetic Anisotropic Energy Gap and Strain Effect in Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shih Po-Hsun

    2009-01-01

    Full Text Available Abstract We report on the observation of the size effect of thermal magnetization in Au nanoparticles. The thermal deviation of the saturation magnetization departs substantially from that predicted by the Bloch T3/2-law, indicating the existence of magnetic anisotropic energy. The results may be understood using the uniaxial anisotropy Heisenberg model, in which the surface atoms give rise to polarized moments while the magnetic anisotropic energy decreases as the size of the Au nanoparticles is reduced. There is a significant maximum magnetic anisotropic energy found for the 6 nm Au nanoparticles, which is associated with the deviation of the lattice constant due to magnetocrystalline anisotropy.

  5. Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles

    CERN Document Server

    Liu, Wei; Miroshnichenko, Andrey E

    2016-01-01

    We investigate the scattering and absorption properties of anisotropic metal-dielectric core-shell nanoparticles. It is revealed that the radially anisotropic dielectric layer can accelerate the evanescent decay of the localized resonant surface modes, leading to Q-factor and absorption rate enhancement. Moreover, the absorption cross section can be maximized to reach the single resonance absorption limit. We further show that such artificial anisotropic cladding materials can be realized by isotropic layered structures, which may inspire many applications based on scattering and absorption of plasmonic nanoparticles.

  6. Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles

    CERN Document Server

    Song, J

    2013-01-01

    Electrochemical impedance spectra for battery electrodes are usually interpreted using models that assume isotropic active particles, having uniform current density and symmetric diffusivities. While this can be reasonable for amorphous or polycrystalline materials with randomly oriented grains, modern electrode materials increasingly consist of highly anisotropic, single-crystalline, nanoparticles, with different impedance characteristics. In this paper, analytical expressions are derived for the impedance of anisotropic particles with tensorial diffusivities and orientation-dependent surface reaction rates and capacitances. The resulting impedance spectrum contains clear signatures of the anisotropic material properties and aspect ratio, as well as statistical variations in any of these parameters.

  7. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  8. Accelerating dark energy models with anisotropic fluid in Bianchi type Ⅵ0 space-time

    Institute of Scientific and Technical Information of China (English)

    Anirudh Pradhan

    2013-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data,we have discussed some features of Bianchi type Ⅵ0 universes in the presence of a fluid that has an anisotropic equation of state (EoS) parameter in general relativity.We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type Ⅵ0 space-time.To ensure a deterministic solution,we choose the scale factor a(t) =(√tnet),which yields a time-dependent deceleration parameter,representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase.Under suitable conditions,the anisotropic models approach an isotropic scenario.The EoS for DE ω is found to be time-dependent and its existing range for derived models is in good agreement with data from recent observations of type Ⅰa supernovae (SNe Ⅰa) (Knop et al.2003),SNe Ⅰa data combined with cosmic microwave background (CMB) anisotropy and galaxy clustering statistics (Tegmark et al.2004a),as well as the latest combination of cosmological datasets coming from CMB anisotropies,luminosity distances of high redshift SNe Ⅰa and galaxy clustering.For different values of n,we can generate a class of physically viable DE models.The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e.the present epoch),which is corroborated by results from recent SN Ⅰa observations.We also observe that our solutions are stable.The physical and geometric aspects of both models are also discussed in detail.

  9. Fabrication of anisotropic multifunctional colloidal carriers

    Science.gov (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  10. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    Science.gov (United States)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  11. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  12. Modelling of anisotropic compact star of emending class one

    CERN Document Server

    Bhar, Piyali; Manna, Tuhina

    2016-01-01

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of metric function $\

  13. Weibel instability driven by spatially anisotropic density structures

    CERN Document Server

    Tomita, Sara

    2016-01-01

    Observations of afterglows of gamma-ray bursts suggest (GRBs) that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating of the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron--positron plasmas with the spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by the spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that the temperature ...

  14. Anisotropic thermal conduction in galaxy clusters with MHD in Gadget

    CERN Document Server

    Arth, Alexander; Beck, Alexander M; Petkova, Margarita; Lesch, Harald

    2014-01-01

    We present an implementation of thermal conduction including the anisotropic effects of magnetic fields for SPH. The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the GADGET code and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with an efficiency of one per cent. In contrast to isotropic conduction our new formalism ...

  15. An engineered anisotropic nanofilm with unidirectional wetting properties

    Science.gov (United States)

    Malvadkar, Niranjan A.; Hancock, Matthew J.; Sekeroglu, Koray; Dressick, Walter J.; Demirel, Melik C.

    2010-12-01

    Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.

  16. Numerical study of domain coarsening in anisotropic stripe patterns.

    Science.gov (United States)

    Boyer, Denis

    2004-06-01

    We study the coarsening of two-dimensional smectic polycrystals characterized by grains of oblique stripes with only two possible orientations. For this purpose, an anisotropic Swift-Hohenberg equation is solved. For quenches close enough to the onset of stripe formation, the average domain size increases with time as t(1/2). Further from onset, anisotropic pinning forces similar to Peierls stresses in solid crystals slow down defects, and growth becomes anisotropic. In a wide range of quench depths, dislocation arrays remain mobile and dislocation density roughly decays as t(-1/3), while chevron boundaries are totally pinned. We discuss some agreements and disagreements found with recent experimental results on the coarsening of anisotropic electroconvection patterns.

  17. Generalized Pseudopotentials for the Anisotropic Fractional Quantum Hall Effect

    Science.gov (United States)

    Yang, Bo; Hu, Zi-Xiang; Lee, Ching Hua; Papić, Z.

    2017-04-01

    We generalize the notion of Haldane pseudopotentials to anisotropic fractional quantum Hall (FQH) systems that are physically realized, e.g., in tilted magnetic field experiments or anisotropic band structures. This formalism allows us to expand any translation-invariant interaction over a complete basis, and directly reveals the intrinsic metric of incompressible FQH fluids. We show that purely anisotropic pseudopotentials give rise to new types of bound states for small particle clusters in the infinite plane, and can be used as a diagnostic of FQH nematic order. We also demonstrate that generalized pseudopotentials quantify the anisotropic contribution to the effective interaction potential, which can be particularly large in models of fractional Chern insulators.

  18. Duals of Orphan-Free Anisotropic Voronoi Diagrams are Triangulations

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We show that, under mild conditions on the underlying metric, duals of appropriately defined anisotropic Voronoi diagrams are embedded triangulations. Furthermore, they always triangulate the convex hull of the vertices, and have other properties that parallel those of ordinary Delaunay triangulations. These results apply to the duals of anisotropic Voronoi diagrams of any set of vertices, so long as the diagram is orphan-free.

  19. On the interpretation of time-resolved anisotropic diffraction patterns

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    In this paper, we review existing systematic treatments for the interpretation of anisotropic diffraction patterns from partially aligned symmetric top molecules. Such patterns arise in the context of time-resolved diffraction experiments. We calculate diffraction patterns for ground-state NaI ex......I excited with an ultraviolet laser. The results are interpreted with the help of a qualitative analytic model, and general recommendations on the analysis and interpretation of anisotropic diffraction patterns are given....

  20. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  1. Holographic study on the jet quenching parameter in anisotropic systems

    CERN Document Server

    Wang, Luying

    2016-01-01

    We first calculate the jet quenching parameter of an anisotropic plasma with a U(1) chemical potential via the AdS/CFT duality. The effects of charge, anisotropy parameter and quark motion direction on the jet quenching parameter are investigated. We then discuss the situation of anisotropic black brane in the IR region. We study both the jet quenching parameters along the longitudinal direction and transverse plane.

  2. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  3. Modeling and Measurements of CMUTs with Square Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian;

    2013-01-01

    The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic...... plate equation and the Galerkin method. Utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is

  4. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-03-01

    Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ∝ -2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density

  5. ON THE ANISOTROPIC ACCURACY ANALYSIS OF ACM'S NONCONFORMING FINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Dong-yang Shi; Shi-peng Mao; Shao-chun Chen

    2005-01-01

    The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h2). Lastly, some numerical tests are presented to verify the theoretical analysis.

  6. Holographic study of the jet quenching parameter in anisotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Luying [Shanghai University, Department of Physics, Shanghai (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)

    2016-11-15

    We first calculate the jet quenching parameter of an anisotropic plasma with a U(1) chemical potential via AdS/CFT duality. The effects of charge, anisotropy parameter, and quark motion direction on the jet quenching parameter are investigated. We then discuss the situation of an anisotropic black brane in the IR region. We study both the jet quenching parameters along the longitudinal direction and the transverse plane. (orig.)

  7. Wave propagation and radiation in gyrotropic and anisotropic media

    CERN Document Server

    Eroglu, Abdullah

    2010-01-01

    ""Wave Propagation and Radiation in Gyrotropic and Anisotropic Media"" fills the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using composite structures where gyrotropic, anisotropic materials are used. The book provides engineers with the information on theory and practical skills they need to understand wave propagation and radiation characteristics of materials and the ability to design devices at higher frequencies with optimum device performance.

  8. Neutron transport with anisotropic scattering: theory and applications

    OpenAIRE

    Van den Eynde, Gert

    2005-01-01

    This thesis is a blend of neutron transport theory and numerical analysis. We start with the study of the problem of the Mika/Case eigenexpansion used in the solution process of the homogeneous one-speed Boltzmann neutron transport equation with anisotropic scattering for plane symmetry. The anisotropic scattering is expressed as a finite Legendre series in which the coefficients are the ``scattering coefficients'. This eigenexpansion consists of a discrete spectrum of eigenvalues with its co...

  9. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  10. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    We present a novel approach to improving volume rendering by using synthesized textures in combination with a custom transfer function. First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to the synthesis method, we acquire high quality....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  11. How isotropic is the Universe?

    CERN Document Server

    Saadeh, Daniela; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-01-01

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of $(\\sigma_V/H)_0 < 4.7 \\times 10^{-11}$ (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, $(\\sigma_{T,\\rm reg}/H)_0<1.0 \\times 10^{-6}$ (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is...

  12. Ductile Fracture Initiation of Anisotropic Metal Sheets

    Science.gov (United States)

    Dong, Liang; Li, Shuhui; He, Ji

    2017-07-01

    The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a simple expression is formulated by the method of total strain theory under the assumption of proportional loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts, flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their longitudinal axis inclined with the angle of 0°, 45°, and 90° to the rolling direction, respectively. A 3D digital image correlation system is used in this study to measure the anisotropy parameter r 0, r 45, r 90 and the equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple expression proposed in this study.

  13. Details of tetrahedral anisotropic mesh adaptation

    Science.gov (United States)

    Jensen, Kristian Ejlebjerg; Gorman, Gerard

    2016-04-01

    We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.

  14. Coefficient adaptive triangulation for strongly anisotropic problems

    Energy Technology Data Exchange (ETDEWEB)

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  15. Anisotropic evolution of 5D FRW spacetime

    CERN Document Server

    Middleton, Chad A

    2011-01-01

    We examine the time evolution of the five-dimensional Einstein field equations subjected to a flat, anisotropic Robertson-Walker metric, where the 3D and higher-dimensional scale factors are allowed to dynamically evolve at different rates. By adopting equations of state relating the 3D and higher-dimensional pressures to the density, we find an exact expression relating the higher-dimensional scale factor to a function of the 3D scale factor. This relation allows us to write the FRW field equations exclusively in terms of the 3D scale factor, thus yielding a set of 4D effective FRW field equations. We first examine these effective field equations in two limiting cases and obtain the solutions that correspond to the 5D vacuum solution of Chodos and Detweiler and to the dynamical compactification scenario of Mohammedi. We then examine the effective field equations in the general case and obtain an exact expression relating a function of the 3D scale factor to the time. This expression involves a hypergeometric...

  16. Lattice Study of Anisotropic QED-3

    CERN Document Server

    Hands, S; Hands, Simon; Thomas, Iorwerth Owain

    2004-01-01

    We present results from a Monte Carlo simulation of non-compact lattice QED in 3 dimensions on a $16^3$ lattice in which an explicit anisotropy between $x$ and $y$ hopping terms has been introduced into the action. This formulation is inspired by recent formulations of anisotropic QED$_3$ as an effective theory of the non-superconducting portion of the cuprate phase diagram, with relativistic fermion degrees of freedom defined near the nodes of the gap function on the Fermi surface, and massless photon degrees of freedom reproducing the dynamics of the phase disorder of the superconducting order parameter. Using a parameter set corresponding to broken chiral symmetry in the isotropic limit, our results show that the renormalised anisotropy, defined in terms of the ratio of correlation lengths of gauge invariant bound states in the $x$ and $y$ directions, exceeds the explicit anisotropy $\\kappa$ introduced in the lattice action, implying in contrast to recent analytic results that anisotropy is a relevant defo...

  17. Biomimetic collagen scaffolds with anisotropic pore architecture.

    Science.gov (United States)

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment.

  18. Structural relaxation in dense liquids composed of anisotropic particles.

    Science.gov (United States)

    Shen, Tianqi; Schreck, Carl; Chakraborty, Bulbul; Freed, Denise E; O'Hern, Corey S

    2012-10-01

    We perform extensive molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles in two dimensions that interact via purely repulsive contact forces. We measure the structural relaxation times obtained from the long-time α decay of the self part of the intermediate scattering function for the translational and rotational degrees of freedom (DOF) as a function of packing fraction φ, temperature T, and aspect ratio α. We are able to collapse the packing-fraction and temperature-dependent structural relaxation times for disks, and dimers and ellipses over a wide range of α, onto a universal scaling function F(±)(|φ-φ(0)|,T,α), which is similar to that employed in previous studies of dense liquids composed of purely repulsive spherical particles in three dimensions. F(±) for both the translational and rotational DOF are characterized by the α-dependent scaling exponents μ and δ and packing fraction φ(0)(α) that signals the crossover in the scaling form F(±) from hard-particle dynamics to super-Arrhenius behavior for each aspect ratio. We find that the fragility of structural relaxation at φ(0), m(φ(0)), decreases monotonically with increasing aspect ratio for both ellipses and dimers. For α>α(p), where α(p) is the location of the peak in the packing fraction φ(J) at jamming onset, the rotational DOF are strongly coupled to the translational DOF, and the dynamic scaling exponents and φ(0) are similar for the rotational and translational DOF. For 1composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic. Thus, zero-temperature contact counting arguments do not apply to structural relaxation of dense liquids of anisotropic particles near the glass transition.

  19. Cosmic Transit and Anisotropic Models in f(R,T) Gravity

    CERN Document Server

    Sahu, S K; Sahoo, P K; Nath, A

    2016-01-01

    Accelerating cosmological models are constructed in a modified gravity theory at the backdrop of an anisotropic Bianchi type-III universe. The models are constructed for two different ways of modification of the Einstein-Hilbert action that includes a bit of matter field. Exact solutions of the field equations are obtained by a novel of method of integration. We have explored the behaviour of the cosmic transit from an decelerated phase of expansion to an accelerated phase to get the dynamical features of the universe. We obtained that, the modification of the Einstein-Hilbert action does not affect the scale factor, however, it significantly affects the dynamics of the effective dark energy equation of state.

  20. Constraining anisotropy of the universe from different groups of type-Ia supernovae

    CERN Document Server

    Chang, Zhe; Lin, Hai-Nan; Wang, Sai

    2014-01-01

    Recent released Planck data and other astronomical observations show that the universe may be anisotropic on large scales. Inspired by this, anisotropic cosmological models have been proposed. We note that the Finsler-Randers spacetime provides an appropriate framework for the anisotropic cosmology. By adding an arbitrary 1-form to the Friedmann-Robertson-Walker (FRW) line element, a privileged axis in the universe is picked out. The distance-redshift relation is modified to be direction-dependent. We wish that the anisotropic cosmological model may be tested crossly by independent observations. Type-Ia supernovae (SNe Ia) calibrated from four different light curve fitters are used to constrain possible anisotropy of the universe. The magnitudes of anisotropy are all between 2% --- 5%, but the systematic uncertainty cannot be excluded. The directions of privileged axis seem to differ from each other. The statistical significance is not high enough to make a convincing conclusion. Nevertheless, the $1\\sigma$ c...

  1. Fracture Interface Waves in an Anisotropic Medium

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Shao, S.; Abell, B.

    2011-12-01

    The detection of fractures in an anisotropic medium is complicated by discreet modes that are guided or confined by fractures and that travel with velocities close (~92%) to the shear wave velocity. For instance, fractures can mask the presence of textural anisotropy in a rock, and can increase the apparent shear wave velocity anisotropy. In this study, we examine how fracture interface waves affect the interpretation of shear wave velocities for two orthogonal polarizations propagating parallel to the layers. Samples with textural anisotropy measuring 100 x 100 x 100 mm were fabricated from garolite, an epoxy - cloth laminate, with layer thickness on the order of 0.5 mm. Three fracture samples were created with: (1) a fracture oriented parallel to layering, (2) a fracture oriented perpendicular to layering, and (3) two intersecting orthogonal fractures. An intact sample without fractures was used a standard. A seismic array, consisting of source and receiver arrays, was used to perform full waveform measurements. Each array contained two compressional and five shear wave piezoelectric contact transducers with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). When the shear wave was polarized parallel to a fracture, the shear wave traveled at the bulk shear velocity respective to the layering. However, when the shear wave was polarized perpendicular to a fracture, the measured velocity ranged between the Rayleigh wave velocity at low stress and the bulk shear wave at high stress. The shear wave velocities perpendicular and parallel to the layering (propagation direction parallel to the layers) were ~1500 m/s and ~1600 m/s, respectively, in the intact sample. However, in the fractured samples, the observed shear wave anisotropy depended on the stress and fracture orientation relative to the layering. When the

  2. PURCELL EFFECT IN EXTREMELY ANISOTROPIC ELLIPTIC METAMATERIALS

    Directory of Open Access Journals (Sweden)

    Alexander V. Chebykin

    2014-11-01

    Full Text Available The paper deals with theoretical demonstration of Purcell effect in extremely anisotropic metamaterials with elliptical isofrequency surface. This effect is free from association with divergence in density of states unlike the case of hyperbolic metamaterials. It is shown that a large Purcell factor can be observed without excitation of modes with large wave vectors in one direction, and the component of the wave vector normal to the layers is less than k0. For these materials the possibility is given for increasing of the power radiated in the medium, as well as the power radiated from material into free space across the medium border situated transversely to the layers. We have investigated isofrequency contours and the dependence of Purcell factor from the frequency for infinite layered metamaterial structure. In the visible light range strong spatial dispersion gives no possibility to obtain enhancement of spontaneous emission in metamaterial with unit cell which consists of two layers. This effect can be achieved in periodic metal-dielectric layered nanostructures with a unit cell containing two different metallic layers and two dielectric ones. Analysis of the dependences for Purcell factor from the frequency shows that the spontaneous emission is enhanced by a factor of ten or more only for dipole orientation along metamaterial layers, but in the case of the transverse orientation radiation can be enhanced only 2-3 times at most. The results can be used to create a new type of metamaterials with elliptical isofrequency contours, providing a more efficient light emission in the far field.

  3. Collisionless magnetic reconnection under anisotropic MHD approximation

    Science.gov (United States)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  4. PIV anisotropic denoising using uncertainty quantification

    Science.gov (United States)

    Wieneke, B.

    2017-08-01

    Recently, progress has been made to reliably compute uncertainty estimates for each velocity vector in planar flow fields measured with 2D-or stereo-PIV. This information can be used for a post-processing denoising scheme to reduce errors by a spatial averaging scheme preserving true flow fluctuations. Starting with a 5 × 5 vector kernel, a second-order 2D-polynomial function is fitted to the flow field. Vectors just outside will be included in the filter kernel if they lie within the uncertainty band around the fitted function. Repeating this procedure, vectors are added in all directions until the true flow field can no longer be approximated by the second-order polynomial function. The center vector is then replaced by the value of the fitted function. The final shape and size of the filter kernel automatically adjusts to local flow gradients in an optimal way preserving true velocity fluctuations above the noise level. This anisotropic denoising scheme is validated first on synthetic vector fields varying spatial wavelengths of the flow field and noise levels relative to the fluctuation amplitude. For wavelengths larger than 5-7 times the spatial resolution, a noise reduction factor of 2-4 is achieved significantly increasing the velocity dynamic range. For large noise levels above 50% of the flow fluctuation, the denoising scheme can no longer distinguish between true flow fluctuations and noise. Finally, it is shown that the procedure performs well for typical experimental PIV vector fields. It provides an effective alternative to more complicated adaptive PIV algorithms optimizing interrogation window sizes and shapes based on seeding density, local flow gradients, and other criteria.

  5. The luminosity distance-redshift relation up to second order in the Poisson gauge with anisotropic stress

    CERN Document Server

    Marozzi, Giovanni

    2014-01-01

    We present the generalization of previously published results, about the perturbed redshift and the luminosity-redshift relation up to second order in perturbation theory, for the case of the Poisson gauge with anisotropic stress. The results are therefore valid for general dark energy models and (most) modify gravity models. We use an innovative approach based on the recently proposed "geodesic light-cone" gauge. We then compare our finding with other results, which recently appeared in the literature, for the particular case of vanishing anisotropic stress. To arrive at a common accepted expression for the non-linear and relativistic corrections to the redshift and distance-redshift relation is of fundamental importance in view of future cosmological surveys. Thanks to these surveys the Universe will be further probed with high precision and at very different scales, where non-linear and relativistic effects can play a key role.

  6. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems

    Directory of Open Access Journals (Sweden)

    Jalani G

    2014-05-01

    Full Text Available Ghulam Jalani,* Chan Woo Jung,* Jae Sang Lee, Dong Woo Lim Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea*These authors contributed equally to this workAbstract: Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide poly(NIPAM copolymers, and poly(NIPAM-co-stearyl acrylate poly(NIPAM-co-SA, while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA. Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be

  7. Anisotropic Porous Biodegradable Scaffolds for Musculoskeletal Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Eric L. W. de Mulder

    2009-10-01

    Full Text Available It has been generally accepted that tissue engineered constructs should closely resemble the in-vivo mechanical and structural properties of the tissues they are intended to replace. However, most scaffolds produced so far were isotropic porous scaffolds with non-characterized mechanical properties, different from those of the native healthy tissue. Tissues that are formed into these scaffolds are initially formed in the isotropic porous structure and since most tissues have significant anisotropic extracellular matrix components and concomitant mechanical properties, the formed tissues have no structural and functional relationships with the native tissues. The complete regeneration of tissues requires a second differentiation step after resorption of the isotropic scaffold. It is doubtful if the required plasticity for this remains present in already final differentiated tissue. It would be much more efficacious if the newly formed tissues in the scaffold could differentiate directly into the anisotropic organization of the native tissues. Therefore, anisotropic scaffolds that enable such a direct differentiation might be extremely helpful to realize this goal. Up to now, anisotropic scaffolds have been fabricated using modified conventional techniques, solid free-form fabrication techniques, and a few alternative methods. In this review we present the current status and discuss the procedures that are currently being used for anisotropic scaffold fabrication.

  8. 2D seismic reflection tomography in strongly anisotropic media

    Science.gov (United States)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin

    2014-12-01

    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  9. What is the Brillouin zone of an anisotropic photonic crystal?

    Science.gov (United States)

    Sivarajah, P.; Maznev, A. A.; Ofori-Okai, B. K.; Nelson, K. A.

    2016-02-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest band gap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ—defined as the Wigner-Seitz cell in the reciprocal lattice—is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic two-dimensional PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.

  10. Multiple anisotropic collisions for advection-diffusion Lattice Boltzmann schemes

    Science.gov (United States)

    Ginzburg, Irina

    2013-01-01

    This paper develops a symmetrized framework for the analysis of the anisotropic advection-diffusion Lattice Boltzmann schemes. Two main approaches build the anisotropic diffusion coefficients either from the anisotropic anti-symmetric collision matrix or from the anisotropic symmetric equilibrium distribution. We combine and extend existing approaches for all commonly used velocity sets, prescribe most general equilibrium and build the diffusion and numerical-diffusion forms, then derive and compare solvability conditions, examine available anisotropy and stable velocity magnitudes in the presence of advection. Besides the deterioration of accuracy, the numerical diffusion dictates the stable velocity range. Three techniques are proposed for its elimination: (i) velocity-dependent relaxation entries; (ii) their combination with the coordinate-link equilibrium correction; and (iii) equilibrium correction for all links. Two first techniques are also available for the minimal (coordinate) velocity sets. Even then, the two-relaxation-times model with the isotropic rates often gains in effective stability and accuracy. The key point is that the symmetric collision mode does not modify the modeled diffusion tensor but it controls the effective accuracy and stability, via eigenvalue combinations of the opposite parity eigenmodes. We propose to reduce the eigenvalue spectrum by properly combining different anisotropic collision elements. The stability role of the symmetric, multiple-relaxation-times component, is further investigated with the exact von Neumann stability analysis developed in diffusion-dominant limit.

  11. Formulation of cross-anisotropic failure criterion for soils

    Directory of Open Access Journals (Sweden)

    Yi-fei SUN

    2013-10-01

    Full Text Available Inherently anisotropic soil fabric has a considerable influence on soil strength. To model this kind of inherent anisotropy, a three-dimensional anisotropic failure criterion was proposed, employing a scalar-valued anisotropic variable and a modified general three- dimensional isotropic failure criterion. The scalar-valued anisotropic variable in all sectors of the deviatoric plane was defined by correlating a normalized stress tensor with a normalized fabric tensor. Detailed comparison between the available experimental data and the corresponding model predictions in the deviatoric plane was conducted. The proposed failure criterion was shown to well predict the failure behavior in all sectors, especially in sector II with the Lode angle ranging between 60º and 120º, where the prediction was almost in accordance with test data. However, it was also observed that the proposed criterion overestimated the strength of dense Santa Monica Beach sand in sector III where the intermediate principal stress ratio b varied from approximately 0.2 to 0.8, and slightly underestimated the strength when b was between approximately 0.8 and 1. The difference between the model predictions and experimental data was due to the occurrence of shear bending, which might reduce the measured strength. Therefore, the proposed anisotropic failure criterion has a strong ability to characterize the failure behavior of various soils and potentially allows a better description of the influence of the loading direction with respect to the soil fabric.

  12. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    Science.gov (United States)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  13. Selection Theory of Dendritic Growth with Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Martin von Kurnatowski

    2015-01-01

    Full Text Available Dendritic patterns frequently arise when a crystal grows into its own undercooled melt. Latent heat released at the two-phase boundary is removed by some transport mechanism, and often the problem can be described by a simple diffusion model. Its analytic solution is based on a perturbation expansion about the case without capillary effects. The length scale of the pattern is determined by anisotropic surface tension, which provides the mechanism for stabilizing the dendrite. In the case of liquid crystals, diffusion can be anisotropic too. Growth is faster in the direction of less efficient heat transport (inverted growth. Any physical solution should include this feature. A simple spatial rescaling is used to reduce the bulk equation in 2D to the case of isotropic diffusion. Subsequently, an eigenvalue problem for the growth mode results from the interface conditions. The eigenvalue is calculated numerically and the selection problem of dendritic growth with anisotropic diffusion is solved. The length scale is predicted and a quantitative description of the inverted growth phenomenon is given. It is found that anisotropic diffusion cannot take the stabilizing role of anisotropic surface tension.

  14. Weibel Instability Driven by Spatially Anisotropic Density Structures

    Science.gov (United States)

    Tomita, Sara; Ohira, Yutaka

    2016-07-01

    Observations of afterglows of gamma-ray bursts (GRBs) suggest that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron-positron plasmas with spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that a temperature anisotropy is generated and the Weibel instability becomes unstable. Our simulation results suggest that the Weibel instability driven by an anisotropic density structure can generate sufficiently large magnetic fields and they can cover sufficiently large regions to explain the afterglow emission of GRBs.

  15. Nonconforming rotated Q1 element on non-tensor product anisotropic meshes

    Institute of Scientific and Technical Information of China (English)

    MAO; Shipeng; SHI; Zhongci

    2006-01-01

    In this paper, we consider the nonconforming rotated Q1 element for the second order elliptic problem on the non-tensor product anisotropic meshes, i.e. the anisotropic affine quadrilateral meshes. Though the interpolation error is divergent on the anisotropic meshes,we overcome this difficulty by constructing another proper operator. Then we give the optimal approximation error and the consistency error estimates under the anisotropic affine quadrilateral meshes. The results of this paper provide some hints to derive the anisotropic error of some finite elements whose interpolations do not satisfy the anisotropic interpolation properties. Lastly, a numerical test is carried out, which coincides with our theoretical analysis.

  16. Anisotropic shrinkage characteristics of tape cast alumina

    Science.gov (United States)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  17. Debonding Analyses in Anisotropic Materials with Strain-Gradient Effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a microreinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  18. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    M D Sharma; Neetu Garg

    2006-04-01

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase velocities.These derivatives are,further,used to calculate the group velocities and ray directions of the three quasi-waves in a pre-stressed anisotropic medium.Effect of initial stress on wave propagation is observed through the deviations in phase velocity,group velocity and ray direction for each of the quasi-waves.The variations of these deviations with the phase direction are plotted for a numerical model of general anisotropic medium with triclinic/ monoclinic/orthorhombic symmetry.

  19. Cosmological MHD simulations of cluster formation with anisotropic thermal conduction

    CERN Document Server

    Ruszkowski, M; Bruggen, M; Parrish, I; Oh, S Peng

    2010-01-01

    (abridged) The ICM has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially. Using cosmological simulations of the Santa Barbara cluster we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and SKA and future X-ray spectroscopic stu...

  20. Anisotropic models are unitary: A rejuvenation of standard quantum cosmology

    CERN Document Server

    Pal, Sridip

    2016-01-01

    The present work proves that the folk-lore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed to be a symmetric operator, thereby making the problem of non-unitarity in context of anisotropic homogeneous model a ghost. Moreover, it is indicated that the self-adjoint extension is not unique and this non-uniqueness is suspected not to be a feature of Anisotropic model only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension, albeit for isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian i.e {\\it Friedrichs extension}. Details of calculations are carried out for a Bianchi III model.

  1. Anisotropic viscoelastic models in large deformation for architectured membranes

    Science.gov (United States)

    Rebouah, Marie; Chagnon, Gregory; Heuillet, Patrick

    2016-08-01

    Due to the industrial elaboration process, membranes can have an in-plane anisotropic mechanical behaviour. In this paper, anisotropic membranes elaborated with two different materials were developed either by calendering or by inducing a force in one direction during the process. Experimental tests are developed to measure the differences of mechanical behaviour for both materials in different in-plane properties: stiffness, viscoelasticity and stress-softening. A uniaxial formulation is developed, and a homogenisation by means of a sphere unit approach is used to propose a three-dimensional formulation to represent the materials behaviour. An evolution of the mechanical parameters, depending on the direction, is imposed to reproduce the anisotropic behaviour of the materials. Comparison with experimental data highlights very promising results.

  2. Modeling anisotropic Maxwell-Jüttner distributions: derivation and properties

    Science.gov (United States)

    Livadiotis, George

    2016-12-01

    In this paper we develop a model for the anisotropic Maxwell-Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell-Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann-Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell-Jüttner distribution.

  3. Self-force on dislocation segments in anisotropic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, S P [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Aubry, S, E-mail: steve.fitzgerald@ccfe.ac.u [Department of Mechanical Engineering, Stanford University, Stanford, CA (United States)

    2010-07-28

    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of {alpha}-iron, which becomes increasingly anisotropic as the temperature approaches that of the {alpha}-{gamma} phase transition at 912 {sup 0}C.

  4. Scattering of electromagnetic light waves from a deterministic anisotropic medium

    Science.gov (United States)

    Li, Jia; Chang, Liping; Wu, Pinghui

    2015-11-01

    Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.

  5. The Derived Equivalent Circuit Model for Magnetized Anisotropic Graphene

    CERN Document Server

    Cao, Ying S; Ruehli, Albert E

    2015-01-01

    Due to the static magnetic field, the conductivity for graphene becomes a dispersive and anisotropic tensor, which complicates most modeling methodologies. In this paper, a novel equivalent circuit model is proposed for graphene with the magnetostatic bias based on the electric field integral equation (EFIE). To characterize the anisotropic property of the biased graphene, the resistive part of the unit circuit is replaced by a resistor in series with current control voltage sources (CCVSs). The CCVSs account for the off-diagonal parts of the surface conductivity tensor for the magnetized graphene. Furthermore, the definitions of the absorption cross section and the scattering cross section are revisited to make them feasible for derived circuit analysis. This proposed method is benchmarked with several numerical examples. This paper also provides a new equivalent circuit model to deal with dispersive and anisotropic materials.

  6. Reduction of noise in diffusion tensor images using anisotropic smoothing.

    Science.gov (United States)

    Ding, Zhaohua; Gore, John C; Anderson, Adam W

    2005-02-01

    To improve the accuracy of tissue structural and architectural characterization with diffusion tensor imaging, a novel smoothing technique is developed for reducing noise in diffusion tensor images. The technique extends the traditional anisotropic diffusion filtering method by allowing isotropic smoothing within homogeneous regions and anisotropic smoothing along structure boundaries. This is particularly useful for smoothing diffusion tensor images in which direction information contained in the tensor needs to be restored following noise corruption and preserved around tissue boundaries. The effectiveness of this technique is quantitatively studied with experiments on simulated and human in vivo diffusion tensor data. Illustrative results demonstrate that the anisotropic smoothing technique developed can significantly reduce the impact of noise on the direction as well as anisotropy measures of the diffusion tensor images.

  7. Anisotropic metamaterial as an analogue of a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Núñez, Isabel; Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu

    2016-01-08

    Propagation of light in a metamaterial medium which mimics curved spacetime and acts like a black hole is studied. We show that for a particular type of spacetimes and wave polarization, the time dilation appears as dielectric permittivity, while the spatial curvature manifests as magnetic permeability. The optical analogue to the relativistic Hamiltonian which determines the ray paths (null geodesics) in the anisotropic metamaterial is obtained. By applying the formalism to the Schwarzschild metric, we compare the ray paths with full-wave simulations in the equivalent optical medium. - Highlights: • Optical analogue to the static anisotropic spacetime metric obeying rotational symmetries is studied. • Explicit expressions for the permittivity and permeability tensors are obtained. • Explicit expression for the optical Hamiltonian is found. • Ray paths are compared with full-wave simulations for the Schwarzschild metric in anisotropic and isotropic cases.

  8. Geodesic acoustic mode in anisotropic plasma with heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  9. Nonlinear analysis of traffic jams in an anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar Gupta; Sapna Sharma

    2010-01-01

    This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.

  10. Well behaved anisotropic compact star models in general relativity

    Science.gov (United States)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  11. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography.

    Directory of Open Access Journals (Sweden)

    Amanda K W Buck

    Full Text Available To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI.3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%, and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level.Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing.Modest anisotropic smoothing (10% improved fiber-tracking results, while preserving structural features.

  12. Strongly interacting particles on an anisotropic kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Chisa; Pollmann, Frank, E-mail: chisa@cc.kyoto-su.ac.j [Kyoto Sangyo University, Department of Physics, Faculty of Science, Kyoto 603-8555, Japan Department of Physics, University of California, Berkeley, CA94720 (United States)

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  13. Strongly interacting particles on an anisotropic kagome lattice

    Science.gov (United States)

    Hotta, Chisa; Pollmann, Frank

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  14. Vacuum self similar anisotropic cosmologies in $F(R)-$gravity

    CERN Document Server

    Apostolopoulos, Pantelis S

    2016-01-01

    The implications from the existence of a proper Homothetic Vector Field (HVF) on the dynamics of vacuum anisotropic models in $F(R)$ gravitational theory are studied. The fact that \\emph{every} Spatially Homogeneous vacuum model is equivalent, formally, with a \\textquotedblleft flux\\textquotedblright -free anisotropic fluid model in standard gravity and the induced power-law form of the functional $F(R)$ due to self-similarity enable us to close the system of equations. We found some new exact anisotropic solutions that arise as fixed points in the associated dynamical system. The non-existence of Kasner-like (Bianchi type I) solutions in proper $F(R)-$gravity (i.e. $R\

  15. Anisotropic spreading of liquid metal on a rough intermetallic surface

    Directory of Open Access Journals (Sweden)

    Liu Wen

    2011-01-01

    Full Text Available An anisotropic wicking of molten Sn-Pb solder over an intermetallic rough surface has been studied. The phenomenon features preferential spreading and forming of an elliptical spread domain. A theoretically formulated model was established to predict the ratio of the wicking distance along the long axis (rx to that along the short axis (ry of the final wicking pattern. The phenomenon was simultaneously experimentally observed and recorded with a hotstage microscopy technique. The anisotropic wicking is established to be caused by a non-uniform topography of surface micro structures as opposed to an isotropic wicking on an intermetallic surface with uniformly distributed surface micro features. The relative deviation between the theoretically predicted rx/ry ratio and the corresponding average experimental value is 5%. Hence, the small margin of error confirms the validity of the proposed theoretical model of anisotropic wicking.

  16. Anisotropic Electron Tail Generation during Tearing Mode Magnetic Reconnection

    Science.gov (United States)

    DuBois, Ami M.; Almagri, Abdulgader F.; Anderson, Jay K.; Den Hartog, Daniel J.; Lee, John David; Sarff, John S.

    2017-02-01

    The first experimental evidence of anisotropic electron energization during magnetic reconnection that favors a direction perpendicular to the guide magnetic field in a toroidal, magnetically confined plasma is reported in this Letter. Magnetic reconnection plays an important role in particle heating, energization, and transport in space and laboratory plasmas. In toroidal devices like the Madison Symmetric Torus, discrete magnetic reconnection events release large amounts of energy from the equilibrium magnetic field. Fast x-ray measurements imply a non-Maxwellian, anisotropic energetic electron tail is formed at the time of reconnection. The tail is well described by a power-law energy dependence. The expected bremsstrahlung from an electron distribution with an anisotropic energetic tail (v⊥>v∥ ) spatially localized in the core region is consistent with x-ray emission measurements. A turbulent process related to tearing fluctuations is the most likely cause for the energetic electron tail formation.

  17. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, R.

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  18. The Shear Viscosity in an Anisotropic Unitary Fermi Gas

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P

    2016-01-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...

  19. Decorrelation of anisotropic flow along the longitudinal direction

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Qin, Guang-You [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Roy, Victor [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Wang, Xin-Nian [Central China Normal University, Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Wuhan (China); Lawrence Berkeley National Laboratory, Nuclear Science Division MS70R0319, Berkeley, CA (United States)

    2016-04-15

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity (η). Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations. (orig.)

  20. Decorrelation of anisotropic flow along the longitudinal direction

    Science.gov (United States)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-04-01

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.

  1. Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films

    Science.gov (United States)

    Jian, Zhihao

    Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.

  2. Reconstructing the nature of the first cosmic sources from the anisotropic 21-cm signal

    CERN Document Server

    Fialkov, Anastasia; Cohen, Aviad

    2015-01-01

    The redshifted 21-cm background is expected to be a powerful probe of the early Universe, carrying both cosmological and astrophysical information from a wide range of redshifts. In particular, the power spectrum of fluctuations in the 21-cm brightness temperature is anisotropic due to the line-of-sight velocity gradient, which in principle allows for a simple extraction of this information in the limit of linear fluctuations. However, recent numerical studies suggest that the 21-cm signal is actually rather complex, and its analysis likely depends on detailed model fitting. We present the first realistic simulation of the anisotropic 21-cm power spectrum over a wide period of early cosmic history. We show that on observable scales, the anisotropy is large and thus measurable at most redshifts, and its form tracks the evolution of 21-cm fluctuations as they are produced early on by Lyman-a radiation from stars, then switch to X-ray radiation from early heating sources, and finally to ionizing radiation from s...

  3. An acoustic bending waveguide designed by anisotropic density-near-zero metamaterial

    Science.gov (United States)

    Wang, Yang-Yang; Ding, Er-Liang; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2016-12-01

    Anisotropic metamaterial with only one component of the mass density tensor near zero (ADNZ) is proposed to control the sound wave propagation. We find that such an anisotropic metamaterial can be used to realize perfect bending waveguides. According to a coordinate transformation, the surface waves on the input and output interfaces of the ADNZ metamaterial induces the sound energy flow to be redistributed and match smoothly with the propagating modes inside the metamaterial waveguide. According to the theory of bending waveguide, we realize the “T”-type sound shunting and convergence, as well as acoustic channel selection by embedding small-sized defects. Numerical calculations are performed to confirm the above effects. Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant No. 11474160), the Fundamental Research Funds for the Central Universities, China (Grant No. 020414380001), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201609), and the Priority Academic Program Development of Jiangsu Higher Education Institution, China.

  4. Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity

    CERN Document Server

    Adak, Muzaffer; Dereli, Tekin; Sert, Ozcan

    2016-01-01

    We consider the non-minimal model of gravity in $Y(R) F^2$-form. We investigate a particular case of the model, for which the higher order derivatives are eliminated but $R$ is kept to be dynamical. The effective fluid obtained can be represented by interacting electromagnetic fields and vacuum depending on $Y(R)$, namely, the energy density of the vacuum tracks the scalar curvature while energy density of the conventional electromagnetic fields are dynamically scaled with the factor $\\frac{Y(R)}{2}$. We give exact solutions for anisotropic inflation by assuming the volume scale factor of the universe exhibits a power-law expansion. The directional scale factors do not necessarily exhibit power-law expansion, which would give rise to a constant expansion anisotropy, but expand non-trivially and give rise to a non-monotonically evolving expansion anisotropy that eventually converges to a non-zero constant. Relying on this fact, we discuss the anisotropic e-fold during the inflation by considering observed scal...

  5. The thermoelectric magnetic field of isotropic inclusions in anisotropic metals

    Science.gov (United States)

    Faidi, W. I.; Nayfeh, A. H.

    2006-02-01

    In this paper we model the thermoelectric magnetic field around isotropic inclusions in anisotropic media. It is demonstrated that while the presence of the inclusion will be the dominant source of the thermoelectric signal, the anisotropy of the host material will affect the signal. Although such a phenomenon will occur for all shapes of inclusions, for simplicity we shall demonstrate our theoretical and numerical modeling on the more mathematically tractable case of a cylindrical inclusion aligned along an axis of symmetry of an anisotropic metal medium.

  6. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    P R Sengupta; Sisir Nath

    2001-08-01

    The aim of this paper is to investigate surface waves in anisotropic fibre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the fibre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.

  7. Stopping power of an electron gas with anisotropic temperature

    Science.gov (United States)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  8. Anisotropic magnetotransport in Dirac-Weyl magnetic junctions

    Science.gov (United States)

    Ominato, Yuya; Kobayashi, Koji; Nomura, Kentaro

    2017-02-01

    We theoretically study the anisotropic magnetotransport in Dirac-Weyl magnetic junctions where a doped ferromagnetic Weyl semimetal is sandwiched between doped Dirac semimetals. We calculate the conductance using the Landauer formula and find that the system exhibits extraordinarily large anisotropic magnetoresistance (AMR). The AMR depends on the ratio of the Fermi energy to the strength of the exchange interaction. The origin of the AMR is the shift of the Fermi surface in the Weyl semimetal, and the mechanism is completely different from the conventional AMR originating from the spin dependent scattering and the spin-orbit interaction.

  9. Electric double layer of anisotropic dielectric colloids under electric fields

    Science.gov (United States)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  10. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  11. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS

    Institute of Scientific and Technical Information of China (English)

    Dong-yang Shi; Shi-peng Mao; Shao-chun Chen

    2005-01-01

    The main aim of this paper is to study the error estimates of a nonconforming finite element with some superconvergence results under anisotropic meshes. The anisotropic interpolation error and consistency error estimates are obtained by using some novel approaches and techniques, respectively. Furthermore, the superclose and a superconvergence estimate on the central points of elements are also obtained without the regularity assumption and quasi-uniform assumption requirement on the meshes. Finally, a numerical test is carried out, which coincides with our theoretical analysis.

  12. Anisotropic Landau-Lifshitz-Gilbert models of dissipation in qubits

    Science.gov (United States)

    Crowley, Philip J. D.; Green, A. G.

    2016-12-01

    We derive a microscopic model for dissipative dynamics in a system of mutually interacting qubits coupled to a thermal bath that generalizes the dissipative model of Landau-Lifshitz-Gilbert to the case of anisotropic bath couplings. We show that the dissipation acts to bias the quantum trajectories towards a reduced phase space. This model applies to a system of superconducting flux qubits whose coupling to the environment is necessarily anisotropic. We study the model in the context of the D-Wave computing device and show that the form of environmental coupling in this case produces dynamics that are closely related to several models proposed on phenomenological grounds.

  13. Tunable waveguide bends with graphene-based anisotropic metamaterials

    Science.gov (United States)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  14. Interfacial contribution to thickness dependent in-plane anisotropic magnetoresistance

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2015-12-01

    Full Text Available We have studied in-plane anisotropic magnetoresistance (AMR in cobalt films with overlayers having designed electrically interface transparency. With an electrically opaque cobalt/overlayer interface, the AMR ratio is shown to vary in inverse proportion to the cobalt film thickness; an indication that in-plane AMR is a consequence of anisotropic scattering with both volume and interfacial contributions. The interface scattering anisotropy opposes the volume scattering contribution, causing the AMR ratio to diminish as the cobalt film thickness is reduced. An intrinsic interface effect explains the significantly reduced AMR ratio in ultra-thin films.

  15. Anisotropic magnetoresistance dominant in a three terminal Hanle measurement

    Science.gov (United States)

    Malec, Christopher; Miller, Michael M.; Johnson, Mark

    2016-02-01

    Experiments are performed on mesoscopic nonlocal lateral spin valves with aluminum channels and Permalloy electrodes. Four-terminal magnetoresistance and Hanle measurements characterize the spin accumulation with results that compare well with published work. Three-terminal Hanle measurements of the Permalloy/aluminum (Py/Al) interfaces show bell-shaped curves that can be fit to Lorentzians. These curves are three orders of magnitude larger than the spin accumulation. Using anisotropic magnetoresistance measurements of individual Permalloy electrodes, we demonstrate that the three-terminal measurements are dominated by anisotropic magnetoresistance effects unrelated to spin accumulation.

  16. Notes on shear viscosity bound violation in anisotropic models

    CERN Document Server

    Ge, Xian-Hui

    2015-01-01

    The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis. The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic phases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.

  17. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  18. Anomalous Positive Refraction in an Anisotropic Left-Handed Medium

    Institute of Scientific and Technical Information of China (English)

    HU Wei; LUO Hai-Lu; CAO Jing-Xiao

    2005-01-01

    @@ We investigate the refraction phenomena of extraordinary light at a planar interface associated with a uniaxial left-handed medium. It is found that the anomalous positive refraction can occur at the interface from anisotropic right-handed medium to a uniaxially anisotropic left-handed medium. When the optical axis of a uniaxial left-handed medium is not normal or parallel to the interface, the refraction of the Poynting vector for the extraordinary waves can be either positive or negative depending on the incident angles, while the refraction of the wave vector is always negative. The physical essential of the anomalous positive refraction results from the anisotropy of uniaxial crystals.

  19. Q-factor enhancement in all-dielectric anisotropic nanoresonators

    CERN Document Server

    Liu, Wei; Kivshar, Yuri S

    2016-01-01

    It is proposed and demonstrated that Q-factor of optical resonators can be significantly enhanced by introducing an extra anisotropic cladding. We study the optical resonances of all-dielectric core-shell nanoresonators and reveal that radially anisotropic claddings can be employed to squeeze more energy into the core area, leading to stronger light confinement and thus significant Q-factor enhancement. We further show that the required homogenous claddings of unusual anisotropy parameters can be realized through all-dielectric multi-layered isotropic structures, which offers realistic extra flexibilities of resonance manipulations for optical resonators.

  20. Laser ceramics with rare-earth-doped anisotropic materials.

    Science.gov (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2010-11-01

    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  1. The design of metamaterial cloaks embedded in anisotropic medium

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Zhang Jie-Qiu; Wang Jia-Fu

    2009-01-01

    By using coordinate transformation method, this paper obtains an useful equation of designing meta-material cloaks embedded in anisotropic medium. This equation is the generalization of what was introduced early by Pendry et al (2006 Science 312 1780) and can be more widely used. As an example of its applications, this paper deduces the material parameter equation for cylinder cloaks embedded in anisotropic medium, and then offers the numerical simulation. The results show that such a cylinder cloak has perfect cloaking performance and therefore verifies the method proposed in this paper.

  2. Electric fields inside and outside an anisotropic dielectric sphere

    Institute of Scientific and Technical Information of China (English)

    Li Ying-Le; Wang Ming-Jun

    2009-01-01

    Analytical expressions of electric fields inside and outside an anisotropic dielectric sphere are presented by transforming an anisotropic medium into an isotropic one based on the multi-scale transformation of electromagnetic theory.The theoretical expressions are consistent with those in the literature. The inside electric field, the outside electric field and the angle between their directions are derived in detail. Numerical simulations show that the direction of the outside field influences the magnitude of the inside field, while the dielectric constant tensor greatly affects its direction.

  3. Thermal Entanglement of Anisotropic XY Chains in a Transverse Field

    Institute of Scientific and Technical Information of China (English)

    ZHAI Xiao-Yue; TONG Pei-Qing

    2007-01-01

    By using the concept of concurrence, we numerically investigate the thermal entanglement between any two nearest-neighbour spins in uniform and periodic anisotropic XY chains in a transverse field at finite temperature T. It is found that the entanglement has more than one critical temperatures on some parameter regions for uniform and periodic chains. We also discuss the behaviour of the thermal entanglement at the vicinity of quantum phase transition of periodic anisotropic XY chains and find that all the derivatives (δ)λC have similar behaviour as that of the uniform chain.

  4. Anisotropic thermoelement in emf and current generation mode

    Directory of Open Access Journals (Sweden)

    Anatychuk L. I.

    2011-06-01

    Full Text Available Computer methods for the description of the anisotropic thermoelement (AT properties with regard to all necessary model approximations have been elaborated. Configurations of eddy thermoelectric currents in the anisotropic thermoele-ment caused by current contacts have been found. The pro-perties of the AT with regard to temperature dependences of material properties, contact resistances and current contacts have been determined for concrete cases. Optimal dimensions of current contacts have been found. The optimization of AT construction allowed to increase its efficiency by 15%.

  5. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  6. Propagation of linear waves in relativistic anisotropic magnetohydrodynamics.

    Science.gov (United States)

    Gebretsadkan, W B; Kalra, G L

    2002-11-01

    Gedalin [Phys. Rev. E 47, 4354 (1993)] derived a dispersion relation for linear waves in relativistic anisotropic Magnetohydrodynamics (MHD). This dispersion relation is used to point out the regions where the relativistic anisotropic MHD leads to new results that cannot be obtained using usual collisional relativistic MHD. This is highlighted by plotting a Fresnal ray surface. Conditions for the onset of firehose and mirror instabilities are also indicated. Such a study can be applied to astrophysical features such as pulsar winds, propagation of cosmic rays, etc.

  7. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...

  8. Light propagation in inhomogeneous and anisotropic cosmologies

    CERN Document Server

    Fleury, Pierre

    2015-01-01

    The standard model of cosmology is based on the hypothesis that the Universe is spatially homogeneous and isotropic. When interpreting most observations, this cosmological principle is applied stricto sensu: the light emitted by distant sources is assumed to propagate through a Friedmann-Lema\\^itre spacetime. The main goal of the present thesis was to evaluate how reliable this assumption is, especially when small scales are at stake. After having reviewed the laws of geometric optics in curved spacetime, and the standard interpretation of cosmological observables, the dissertation reports a comprehensive analysis of light propagation in Swiss-cheese models, designed to capture the clumpy character of the Universe. The resulting impact on the interpretation of the Hubble diagram is quantified, and shown to be relatively small, thanks to the cosmological constant. When applied to current supernova data, the associated corrections tend however to improve the agreement between the cosmological parameters inferre...

  9. Is the Universe odd?

    CERN Document Server

    Land, K; Land, Kate; Magueijo, Joao

    2005-01-01

    We investigate the point-parity and mirror-parity handedness of the large angle anisotropy in the cosmic microwave background (CMB). In particular we consider whether the observed low CMB quadrupole could more generally signal odd point-parity, i.e. suppression of even multipoles. Even though this feature is ``visually'' present in most renditions of the WMAP dataset we find that it never supports parity preference beyond the meagre 95% confidence level. This is fortunate as point parity handedness implies almost certainly a high level of galactic contamination. Mirror reflection parity, on the contrary, is related to the emergence of a preferred axis, defining the symmetry plane. We use this technique to make contact with recent claims for an anisotropic Universe, showing that the detected preferred axis is associated with positive (even) mirror parity. This feature may be an important clue in identifying the culprit for this unexpected signal.

  10. Studies on the formation mechanism and the structure of the anisotropic collagen gel prepared by dialysis-induced anisotropic gelation.

    Science.gov (United States)

    Furusawa, Kazuya; Sato, Shoichi; Masumoto, Jyun-ichi; Hanazaki, Yohei; Maki, Yasuyuki; Dobashi, Toshiaki; Yamamoto, Takao; Fukui, Akimasa; Sasaki, Naoki

    2012-01-09

    We have found that dialysis of 5 mg/mL collagen solution into the phosphate solution with a pH of 7.1 and an ionic strength of 151 mM [corrected] at 25 °C results in a collagen gel with a birefringence and tubular pores aligned parallel to the growth direction of the gel. The time course of averaged diameter of tubular pores during the anisotropic gelation was expressed by a power law with an exponent of 1/3, suggesting that the formation of tubular pores is attributed to a spinodal decomposition-like phase separation. Small angle light scattering patterns and high resolution confocal laser scanning microscope images of the anisotropic collagen gel suggested that the collagen fibrils are aligned perpendicular to the growth direction of the gel. The positional dependence of the order parameter of the collagen fibrils showed that the anisotropic collagen gel has an orientation gradient.

  11. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fan, B.B. [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Yang, X.B. [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Zhang, R., E-mail: zhangray@zzu.edu.c [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Zhengzhou Institute of Aeronautical Industry Management, Henan 450046 (China)

    2010-06-14

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp{sup 2} hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  12. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  13. Anisotropic in-Plane Thermal Conductivity Observed in Few-Layer Black Phosphorus

    Science.gov (United States)

    2015-10-16

    report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and...transport particularly in few-layer BP. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer BP measured by micro-Raman spectro...are all anisotropic quantities (Fig. 3c), owing to anisotropic optical conductivity , and our measured absorptivity of the 9.5-nm-thick suspended film

  14. On the question of creep of anisotropic polycrystals

    Directory of Open Access Journals (Sweden)

    Simonyan A. M.

    2012-03-01

    Full Text Available On the base of dislocation slip conception the rheological behaviour of anisotropic polycrystals at complex stress state is considered. It is assumed that the anisotropy of polycrystals takes the place as a result of uneven distribution of slip system directions because of uneven distribution of single crystal grain orientations.

  15. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    Science.gov (United States)

    2015-03-01

    JD. Modeling nonlinear electromechanical behavior of shocked silicon carbide. Journal of Applied Physics . 2010;107:013520. 30. Clayton JD. A... Physics by JD Clayton Approved for public release; distribution unlimited. NOTICES Disclaimers...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  16. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He

    2014-10-01

    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  17. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  18. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  19. Anisotropic Effects on Magnetoelastic Transition in Magnetic Molecular Rings

    Institute of Scientific and Technical Information of China (English)

    LI Peng-Fei; CHEN Yu-Guang; CHEN Hong

    2006-01-01

    @@ We numerically study the anisotropic effects on the magnetoelastic transition in an S = 1/2 XXZ model with a finite lattice number. It is found that the order of the magnetoelastic transition is strongly affected by the anisotropy parameter A and there may exist a critical λc dividing the first-order transition and the continuous transition.

  20. Self-collimation in photonic crystals with anisotropic constituents

    Institute of Scientific and Technical Information of China (English)

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.