WorldWideScience

Sample records for kangaroo rat kidneys

  1. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology.

    Science.gov (United States)

    Udy, Dylan B; Voorhies, Mark; Chan, Patricia P; Lowe, Todd M; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.

  2. Monitoring the Stephen's kangaroo rat: An analysis of monitoring methods and recommendations for future monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document covers a series of analyses to explore and summarize previous monitoring efforts of Stephens Kangaroo Rats (SKR) and make recommendations for future...

  3. Positive interactions between desert granivores: localized facilitation of harvester ants by kangaroo rats.

    Directory of Open Access Journals (Sweden)

    Andrew J Edelman

    Full Text Available Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis mounds and rough harvester ant (Pogonomyrmex rugosus colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (<10 m. Mortality risk of vulnerable, recently founded harvester ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.

  4. Positive interactions between desert granivores: localized facilitation of harvester ants by kangaroo rats.

    Science.gov (United States)

    Edelman, Andrew J

    2012-01-01

    Facilitation, when one species enhances the environment or performance of another species, can be highly localized in space. While facilitation in plant communities has been intensely studied, the role of facilitation in shaping animal communities is less well understood. In the Chihuahuan Desert, both kangaroo rats and harvester ants depend on the abundant seeds of annual plants. Kangaroo rats, however, are hypothesized to facilitate harvester ants through soil disturbance and selective seed predation rather than competing with them. I used a spatially explicit approach to examine whether a positive or negative interaction exists between banner-tailed kangaroo rat (Dipodomys spectabilis) mounds and rough harvester ant (Pogonomyrmex rugosus) colonies. The presence of a scale-dependent interaction between mounds and colonies was tested by comparing fitted spatial point process models with and without interspecific effects. Also, the effect of proximity to a mound on colony mortality and spatial patterns of surviving colonies was examined. The spatial pattern of kangaroo rat mounds and harvester ant colonies was consistent with a positive interspecific interaction at small scales (ant colonies was lower when located close to a kangaroo rat mound and proximity to a mound partly predicted the spatial pattern of surviving colonies. My findings support localized facilitation of harvester ants by kangaroo rats, likely mediated through ecosystem engineering and foraging effects on plant cover and composition. The scale-dependent effect of kangaroo rats on abiotic and biotic factors appears to result in greater founding and survivorship of young colonies near mounds. These results suggest that soil disturbance and foraging by rodents can have subtle impacts on the distribution and demography of other species.

  5. Botfly (Diptera:Oestridae) parasitism of Ord's kangaroo rats (Dipodomys ordii) at Suffield National Wildlife Area, Alberta, Canada.

    Science.gov (United States)

    Gummer, D L; Forbes, M R; Bender, D J; Barclay, R M

    1997-08-01

    During field study of Ord's kangaroo rat (Dipodomys ordii) at Suffield National Wildlife Area, Alberta, Canada, a high prevalence of parasitism by botfly (Diptera: Oestridae) larvae was observed. Botflies have not previously been documented as parasites of kangaroo rats. Botfly parasitism could have a significant impact on the growth, survival, and reproduction of Ord's kangaroo rat, which is considered a vulnerable species in Canada. Therefore, it is important to investigate how botfly parasitism varies with season and with gender or age of host. In 1995, 525 individual kangaroo rats were caught by nightlighting and live trapping for a total of 952 capture records. Upon capture, each kangaroo rat was ear-tagged and thoroughly examined for parasites and wounds. Third-instar botfly (Cuterebra polita) larvae were observed in kangaroo rats between 16 June and 23 August. Prevalence was 34% based on 454 kangaroo rats sampled during that time, whereas the mean intensity was 2.3 larvae per infested host (n = 156, range = 1-11). In contrast to some other studies of botfly parasitism of rodents, there were no gender or age biases in either prevalence or intensity of infestation. The index of dispersion was 2.8, indicating that the parasites were aggregated in hosts. Botfly parasitism could be an important factor affecting northern populations of kangaroo rats; future investigations into the potential effects of botfly larvae on host fitness are warranted.

  6. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  7. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    Science.gov (United States)

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  8. Kidneys in Rats

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Bandegi

    2014-12-01

    Conclusion: These observations indicate that saffron and its active constituent crocin can prevent chronic stress–induced oxidative stress damage of the brain, liver and kidneys and suggest that these substances may be useful against oxidative stress.

  9. Radiation damage in rat kidney microvasculature.

    Science.gov (United States)

    Nelson, A C; Shah-Yukich, A; Babayan, R

    1984-01-01

    Scanning electron microscopy (SEM) combined with a specialized polymer injection casting technique permits the analysis of radiation induced damage in rat kidney glomeruli. A lead shielding device is constructed to enable the irradiation of the living rat left kidney, while the remainder of the animal is shielded from the dose, the right kidney serves as a control. The source of radiation is 137Cs which produces 0.66 MeV gamma-rays to achieve a kidney dose of 100 rad and 5000 rad in these experiments. Radiation damage to kidney glomeruli is assessed at intervals of 0, 1, 3 and 7 days post-irradiation at the two dose levels. It is found that radiation damage to kidney glomeruli is expressed morphologically at 7 days post-irradiation at the 100 rad dose level, while glomerular damage is apparent as early as 3 days post-irradiation at the 5000 rad dose level. Moreover, by 7 days post-irradiation with a 5000 rad dose, the kidney glomerulus thoroughly degenerates to a leaky fused mass of vessels. From a morphological viewpoint, kidney glomeruli are significantly more sensitive to radiation than surrounding vasculature. The methods developed here for assessment of radiation damage are highly repeatable and could serve as a standard technique in radiobiology.

  10. Effect of dental materials on gluconeogenesis in rat kidney tubules

    NARCIS (Netherlands)

    Reichl, F.X.; Durner, J.; Mückter, H.; Elsenhans, B.; Forth, W.; Kunzelmann, K.H.; Hickel, R.; Spahl, W.; Hume, W.R.; Moes, G.W.

    1999-01-01

    The effect of dental composite components triethyleneglycoldimethacrylate (TEGDMA) and hydroxyethylmethacrylate (HEMA) as well as mercuric chloride (HgCl2) and methylmercury chloride (MeHgCl) on gluconeogenesis was investigated in isolated rat kidney tubules. From starved rats kidney tubules were pr

  11. Reversible compensatory hypertrophy in transplanted brown Norway rat kidneys.

    Science.gov (United States)

    Churchill, M; Churchill, P C; Schwartz, M; Bidani, A; McDonald, F

    1991-07-01

    Recently we described methods for optimizing the function of transplanted rat kidneys. In unilaterally nephrectomized recipients, one week after surgery, the left transplanted kidney was identical to the right native kidney with respect to wet weight and the clearances of inulin and para-aminohippuric acid (PAH). The goals of the present experiments were first, to extend the post-surgery period to three weeks (sufficient to allow hypertrophic changes), and second, to study function of transplanted hypertrophied kidneys. Genetically identical Brown Norway rats were used as donor and recipients. Three weeks after transplanting a normal kidney into a unilaterally-nephrectomized recipient, the transplanted kidney had a normal plasma flow and was identical to the contralateral native kidney with respect to wet weight and the clearances of inulin and PAH. Three weeks after transplanting a normal kidney into a bilaterally-nephrectomized recipient, the wet weight, inulin and PAH clearances, and plasma flow of the transplanted kidney were all higher than control, and not significantly different from those observed in unilaterally-nephrectomized control rats. Thus, transplanted and native kidneys exhibited the same degree of compensatory hypertrophy. Hypertrophied donor kidneys (that is, the donor rat had been unilaterally-nephrectomized three weeks previously) remained hypertrophied in bilaterally-nephrectomized recipients, but in unilaterally-nephrectomized recipients, they regressed towards normal (that is, the values of wet weight, inulin and PAH clearances and plasma flow were significantly less than those in rats with only one kidney) while the contralateral native kidney remained normal (values of wet weight and inulin and PAH clearances were not different from control).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The relationship between chemical-induced kidney weight increases and kidney histopathology in rats.

    Science.gov (United States)

    Craig, Evisabel A; Yan, Zhongyu; Zhao, Q Jay

    2015-07-01

    The kidney is a major site of chemical excretion, which results in its propensity to exhibit chemically-induced toxicological effects at a higher rate than most other organs. Although the kidneys are often weighed in animal toxicity studies, the manner in which these kidney weight measurements are interpreted and the value of this information in predicting renal damage remains controversial. In this study we sought to determine whether a relationship exists between chemically-induced kidney weight changes and renal histopathological alterations. We also examined the relative utility of absolute and relative (kidney-to-body weight ratio) kidney weight in the prediction of renal toxicity. For this, data extracted from oral chemical exposure studies in rats performed by the National Toxicology Program were qualitatively and quantitatively evaluated. Our analysis showed a statistically significant correlation between absolute, but not relative, kidney weight and renal histopathology in chemically-treated rats. This positive correlation between absolute kidney weight and histopathology was observed even with compounds that statistically decreased terminal body weight. Also, changes in absolute kidney weight, which occurred at subchronic exposures, were able to predict the presence or absence of kidney histopathology at both subchronic and chronic exposures. Furthermore, most increases in absolute kidney weight reaching statistical significance (irrespective of the magnitude of change) were found to be relevant for the prediction of histopathological changes. Hence, our findings demonstrate that the evaluation of absolute kidney weight is a useful method for identifying potential renal toxicants.

  13. Hypertension after bilateral kidney irradiation in young and adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Jongejan, H.T.; van der Kogel, A.J.; Provoost, A.P.; Molenaar, J.C.

    1987-09-01

    The mechanism of a rise in blood pressure after kidney irradiation is unclear but most likely of renal origin. We have investigated the role of the renin-angiotensin system and dietary salt restriction in the development of systolic hypertension after bilateral kidney irradiation in young and adult rats. Three to 12 months after a single X-ray dose of 7.5 or 12.5 Gy to both kidneys of young and adult rats, the systolic blood pressure (SBP) and plasma renin concentration (PRC) were measured regularly. A single X-ray dose of 12.5 Gy caused a moderate rise in SBP and a slight reduction in PRC in both young and adult rats. A dose of 7.5 Gy did not significantly alter the SBP or PRC during the follow-up period of 1 year. In a second experiment, the kidneys of young rats received an X-ray dose of 20 Gy. Subsequently, rats were kept on a standard diet (110 mmol sodium/kg) or a sodium-poor diet (10 mmol sodium/kg). On both diets, SBP started to rise rapidly 3 months after kidney irradiation. Sodium balance studies carried out at that time revealed an increased sodium retention in the irradiated rats compared to controls on the same diet. In rats on a low sodium intake, there was neither a delay nor an alleviation in the development of hypertension. Compared to controls, the PRC tended to be lower in irradiated rats up to 4 months after irradiation. Subsequently, malignant hypertension developed in all 20 Gy rats, resulting in pressure natriuresis, stimulating the renin-angiotensin system. Our findings indicated that hypertension after bilateral kidney irradiation was not primarily the result of an activation of the renin-angiotensin system. Although there were some indications that sodium retention played a role, dietary sodium restriction did not influence the development of hypertension.

  14. Renin and angiotensinogen gene expression in maturing rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R.A.; Lynch, K.R.; Chevalier, R.L.; Wilfong, N.; Everett, A.; Carey, R.M.; Peach, M.J. (Univ. of Virginia, Charlottesville (USA))

    1988-04-01

    To determine whether angiotensinogen (A{sub o}) and renin are synthesized by the immature kidney and to assess the changes in intrarenal reinin distribution that occur with maturation, the kidneys from 24 newborn and 12 adult Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were processed for renin immunocytochemistry using a highly specific anti-rat renin antibody. Kidney renin and A{sub o} relative mRNA levels (mRNA/total RNA) were detected by Northern and dot blot techniques, using full-length rat renin and A{sub o} cDNAs. Renal renin concentration (RRC) was measured by radioimmunoassay of angiotensin I (ANG I) and expressed as ng ANG I{center dot}h{sup {minus}1}{center dot}mg protein{sup {minus}1} in the incubation media. RRC was higher in newborn than in adult SHR (979 {+-} 164 vs. 206 {+-} 47) and WKY. In the newborn kidneys of both rat strains, renin was distributed throughout the entire length of the afferent arterioles and interlobular arteries, whereas in the adult kidneys renin was confined to the classical juxtaglomerular position. With maturation, there was a decrease in the proportion of immunoreactive juxtaglomerular apparatuses and arterial segments that contained renin. Kidney renin mRNA levels were 7.9-fold higher in the newborn than in the adult animals. A{sub o} mRNA was detected in the newborn and adult kidneys of both rat strains. This study demonstrates conclusively that both renin and A{sub o} genes are expressed in the newborn kidney, providing evidence for a local renin-angiotensin system that is subjected to developmental changes.

  15. Reversible compensatory hypertrophy in rat kidneys: morphometric characterization.

    Science.gov (United States)

    Schwartz, M M; Churchill, M; Bidani, A; Churchill, P C

    1993-03-01

    Functional renal compensatory hypertrophy (RCH) in the uninephrectomized rat is completely reversible by transplantation in Brown Norway (BN) rats, while anatomic RCH is not. To determine the nephron element(s) responsible for persistent anatomic RCH, we performed morphometric analysis on perfusion fixed rat kidneys following renal function studies. In this model the function of renal transplants is not different from contralateral and unmanipulated control kidneys, and there is no histological evidence of rejection. Rats uninephrectomized for three or six weeks had larger glomeruli than controls, and after transplantation of a previously hypertrophied kidney into a rat with a normal or a solitary hypertrophied kidney, glomerular size returned to control levels. Increased glomerular capillary volume (CVCP) in kidneys with RCH was due to increased capillary length (LCP; 13.1 +/- 1.0 mm cf. 10.3 +/- 0.9, P < 0.01) without increase in capillary radius (RCP; 3.26 +/- 0.33 microM cf. 3.28 +/- 0.24). In contrast, return of CVCP to control levels in kidneys undergoing regression was associated with persistently elevated LCP (13.0 +2- 2.9 mm; native previously hypertrophied kidney; 12.2 +/- 0.9; transplanted previously hypertrophied kidney vs. 10.3 +/- 0.9, P < 0.01) and decreased RCP (2.79 +/- 0.10 microM and 2.73 +/- 0.09, cf 3.28 +/- 0.24, P < 0.01). RCH was associated with proportional increases in glomerular, tubular, and vascular-interstitial volumes while only elevated tubular volume persisted during regression. Altered glomerular capillary dimensions and increased tubular volumes acquired during renal RCH induced by unilateral nephrectomy persisted during complete functional regression.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Dietary citrate treatment of polycystic kidney disease in rats.

    Science.gov (United States)

    Tanner, George A; Tanner, Judith A

    2003-01-01

    Progression of autosomal-dominant polycystic kidney disease (ADPKD) in the heterozygous male Han:SPRD rat is dramatically slowed by ingestion of potassium or sodium citrate. This study examined the efficacy of delayed therapy with sodium citrate, the effect of sodium citrate therapy on kidney cortex levels of transforming growth factor-beta (TGF-beta), and the response to calcium citrate ingestion. Rats were provided with citrate salts in their food, and renal clearance, blood pressure, blood chemistry, and survival determinations were made. Sodium citrate therapy was most effective when started at age 1 month, and delay of therapy until age 3 months produced no benefit. Kidney cortex TGF-beta levels were elevated in 3- and 8-month-old rats with ADPKD, but not in 6-week-old rats. Sodium citrate treatment, started at age 1 month, lowered TGF-beta levels to normal in 3-month-old rats, but this is probably not the primary mechanism of citrate's beneficial effect. Calcium citrate had only a modest effect in preserving glomerular filtration rate. Effective treatment of ADPKD in this rat model requires early administration of a readily absorbed alkalinizing citrate salt. Existing data on ADPKD patients on vegetarian diets or with kidney stones should be studied in light of these findings.

  17. Research of combined liver-kidney transplantation model in rats

    Institute of Scientific and Technical Information of China (English)

    Jiageng Zhu; Jun Li; Ruipeng Jia; Jianghao Su; Mingshun Shen; Zhigang Cao

    2007-01-01

    Objective: To set up a simple and reliable rat model of combined liver-kidney transplantation. Methods: SD rats served as both donors and recipients. 4℃ sodium lactate Ringer's was infused from portal veins to donated livers,and from abdominal aorta to donated kidneys, respectively. Anastomosis of the portal vein and the inferior vena cava (IVC) inferior to the right kidney between the graft and the recipient was performed by a double cuff method, then the superior hepatic vena cava with suture. A patch of donated renal artery was anastomosed to the recipient abdominal aorta. The urethra and bile duct were reconstructed with a simple inside bracket. Results: Among 65 cases of combined liver-kidney transplantation, the success rate in the late 40 cases was 77.5%. The function of the grafted liver and kidney remained normal. Conclusion: This rat model of combined liver-kidney transplantation can be established in common laboratory conditions with high success rate and meet the needs of renal transplantation experiment.

  18. (Kangaroo grass) at various growth stages

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-06

    Apr 6, 2009 ... Key words: Kangaroo grass, biomass, dry matter, rangeland, growth stages. INTRODUCTION ... Soil organic matter, soil porosity and nutrient ... as soil moisture approaches field capacity (Nolan, 1994). Because Kangaroo ...

  19. Ursolic Acid provides kidney protection in diabetic rats.

    Science.gov (United States)

    Ling, Chen; Jinping, Lu; Xia, Li; Renyong, Yang

    2013-12-01

    Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and the leading cause of end-stage renal failure. However, the treatment of DN is still a problem in the world. Inflammatory process plays a critical role in the development of DN. Therefore, anti-inflammatory treatment of DN is worth exploring now and in the future. The study aimed to evaluate the impact of ursolic acid (UA) on renal function in streptozotocin-induced diabetes. Rats with streptozotocin-induced diabetes were treated with UA for 16 weeks. After 16 weeks, urine albumin excretion, serum creatinine, and blood urea nitrogen were measured. In addition, renal oxidative stress level, nuclear factor kappa-B (NF-κB) activity, P-selectin expression, and kidney histopathologic changes were evaluated. Sixteen weeks following streptozotocin injection, the rats produced significant alteration in renal function and increased oxidative stress, NF-κB activity, and P-selectin expression in the kidneys. Interestingly, UA significantly prevented biochemical and histopathologic changes in the kidneys associated with diabetes. Compared with untreated diabetic rats, UA treatment lowered urine albumin excretion, renal oxidative stress level, NF-κB activity, and P-selectin expression. Moreover, UA treatment also improved renal histopathologic changes in rats with diabetes. UA treatment exhibited a protective effect on kidneys in diabetic rats, implying that UA could be a potential treatment for diabetic nephropathy.

  20. Effect of Nigella sativa on the kidney function in rats

    Directory of Open Access Journals (Sweden)

    Mohammad Aziz Dollah

    2013-04-01

    Full Text Available Objectives: Nigella sativa (N. sativa is an amazing herb which is used in traditional medicine for a wide range of illnesses including bronchial asthma, dysentery, gastrointestinal problems, as well as beneficial effect on blood lipids, lowering blood pressure, serum cholesterol, and triglycerides level. This study aimed to determine the toxic effect of N. sativa powder on the kidney function which was evaluated by serum urea and creatinine and through histopathological examination of kidney tissue. Methods and Materials: In this study, 24 male Sprague Dawley rats were randomly divided into four groups (six each. The rats were kept in the separate cage with three rats per cage. The treatment groups were given rat pellet containing N. sativa dose at 0.01, 0.10, and 1.00 g/kg body weight which were considered as low, normal, and high dose for five weeks while control group fed with rat chow pellet without supplementation. At the end of 35 days, the rats were sacrificed to take the blood sample and to remove the kidney organ for toxicity evaluation. Statistical analyses were done through one-way ANOVA using SPSS. Results: The finding revealed that there was no significant difference in serum urea of treatment groups compared with the control group. The results showed a significant decline in serum creatinine of high dose of Nigella sativa  treated  compared with low dose treated and control groups (p

  1. Uric acid metabolism of kidney and intestine in a rat model of chronic kidney disease.

    Science.gov (United States)

    Nagura, Michito; Tamura, Yoshifuru; Kumagai, Takanori; Hosoyamada, Makoto; Uchida, Shunya

    2016-12-01

    Uric acid (UA) is a potential risk factor of the progression of chronic kidney disease (CKD). Recently, we reported that intestinal UA excretion might be enhanced via upregulation of the ATP-binding cassette transporter G2 (Abcg2) in a 5/6 nephrectomy (Nx) rat model. In the present study, we examined the mRNA and protein expressions of UA transporters, URAT1, GLUT9/URATv1, ABCG2 and NPT4 in the kidney and ileum in the same rat model. Additionally, we investigated the Abcg2 mRNA expression of ileum in hyperuricemic rat model by orally administering oxonic acid. Male Wistar rats were randomly assigned to three groups consisting of Nx group, oxonic acid-treated (Ox) group and sham-operated control group, and sacrificed at 8 weeks. Creatinine and UA were measured and the mRNA expressions of UA transporters in the kidney and intestine were evaluated by a real time PCR. UA transporters in the kidney sections were also examined by immunohistochemistry. Serum creatinine elevated in the Nx group whereas serum UA increased in the Ox group. Both the mRNA expression and the immunohistochemistry of the UA transporters were decreased in the Nx group, suggesting a marginal role in UA elevation in decreased kidney function. In contrast, the mRNA expression of Abcg2 in the ileum significantly increased in the Ox group. These results suggest that the upregulation of Abcg2 mRNA in the ileum triggered by an elevation of serum UA may play a compensatory role in increasing intestinal UA excretion.

  2. Using an isolated rat kidney model to identify kidney origin proteins in urine.

    Directory of Open Access Journals (Sweden)

    Lulu Jia

    Full Text Available The use of targeted proteomics to identify urinary biomarkers of kidney disease in urine can avoid the interference of serum proteins. It may provide better sample throughput, higher sensitivity, and specificity. Knowing which urinary proteins to target is essential. By analyzing the urine from perfused isolated rat kidneys, 990 kidney origin proteins with human analogs were identified in urine. Of these proteins, 128 were not found in normal human urine and may become biomarkers with zero background. A total of 297 proteins were not found in normal human plasma. These proteins will not be influenced by other normal organs and will be kidney specific. The levels of 33 proteins increased during perfusion with an oxygen-deficient solution compared to those perfused with oxygen. The 75 proteins in the perfusion-driven urine have a significantly increased abundance ranking compared to their ranking in normal human urine. When compared with existing candidate biomarkers, over ninety percent of the kidney origin proteins in urine identified in this study have not been examined as candidate biomarkers of kidney diseases.

  3. About Skin-to-Skin Care (Kangaroo Care)

    Science.gov (United States)

    ... Size Email Print Share About Skin-to-Skin Care Page Content Article Body You may be able ... care, also called kangaroo care. What is Kangaroo Care? Kangaroo care was developed in South America as ...

  4. [Uncaria tomentosa and acute ischemic kidney injury in rats].

    Science.gov (United States)

    de Fátima Fernandes Vattimo, Maria; da Silva, Natalia Oliveira

    2011-03-01

    The objective of this study was to evaluate the renoprotective effects of Uncaria Tomentosa (cat's claw) on ischemic acute kidney injury induced by renal clamping in rats. The hypoxia and hypoperfusion increase the production of reactive species already present in the inflammatory process. Results showed that the renal function evaluated by creatinine clearance, the urinary excretion of peroxides and malondealdehyde indexes demonstrated that UT induced renoprotection, probably related to its antioxidant activities.

  5. Kidney transplantation procedures in rats: assessments, complications, and management.

    Science.gov (United States)

    Pahlavan, Payam S; Smallegange, Corry; Adams, Michael A; Schumacher, Martin

    2006-01-01

    Kidney transplantation in rats is an experimental model often used for the development of general microsurgical or transplantation techniques, for immunologic studies, and for analyzing transplant-associated long-term arterial blood-pressure changes. The aim of the present study was to analyze different surgical techniques of kidney transplantation in rats, with emphasis on minimizing surgical complications and establishing guidelines for their prevention and management. Complications were categorized into general (e.g., core body temperature drop, ischemic time) and surgically related vascular and urinary tract complications. In conclusion, a significant reduction of the complication rate in renal transplantation in rats can be achieved by placing the animal on a heating pad at an appropriate temperature. To reduce the risk of vascular thrombosis, ice-cold saline with heparin and careful flushing of the donor kidneys are recommended. Vascular complications can be avoided by performing "end-to-end" anastomosis techniques. The use of stents and cannulas in the urinary tract is associated with a high risk of urinary tract obstruction, and therefore is not recommended.

  6. Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters?

    Science.gov (United States)

    Janis, Christine M; Buttrill, Karalyn; Figueirido, Borja

    2014-01-01

    Sthenurine kangaroos (Marsupialia, Diprotodontia, Macropodoidea) were an extinct subfamily within the family Macropodidae (kangaroos and rat-kangaroos). These "short-faced browsers" first appeared in the middle Miocene, and radiated in the Plio-Pleistocene into a diversity of mostly large-bodied forms, more robust than extant forms in their build. The largest (Procoptodon goliah) had an estimated body mass of 240 kg, almost three times the size of the largest living kangaroos, and there is speculation whether a kangaroo of this size would be biomechanically capable of hopping locomotion. Previously described aspects of sthenurine anatomy (specialized forelimbs, rigid lumbar spine) would limit their ability to perform the characteristic kangaroo pentapedal walking (using the tail as a fifth limb), an essential gait at slower speeds as slow hopping is energetically unfeasible. Analysis of limb bone measurements of sthenurines in comparison with extant macropodoids shows a number of anatomical differences, especially in the large species. The scaling of long bone robusticity indicates that sthenurines are following the "normal" allometric trend for macropodoids, while the large extant kangaroos are relatively gracile. Other morphological differences are indicative of adaptations for a novel type of locomotor behavior in sthenurines: they lacked many specialized features for rapid hopping, and they also had anatomy indicative of supporting their body with an upright trunk (e.g., dorsally tipped ischiae), and of supporting their weight on one leg at a time (e.g., larger hips and knees, stabilized ankle joint). We propose that sthenurines adopted a bipedal striding gait (a gait occasionally observed in extant tree-kangaroos): in the smaller and earlier forms, this gait may have been employed as an alternative to pentapedal locomotion at slower speeds, while in the larger Pleistocene forms this gait may have enabled them to evolve to body sizes where hopping was no longer

  7. Protective effect of pioglitazone on kidney injury in diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui Peng; Pei-Yu Liang; Shan-Ji Ou; Xiong-Bing Zu

    2014-01-01

    Objective:To investigate the protective effect of pioglitazone on kidney injury in diabetic rat model and its mechanisms.Methods:Forty healthySpragueDawley rats were selected and randomly divided into five groups, with8 rats in each group.GroupA served as control group and were administered with sterile citrate buffer(i.p.) as placebo.GroupsB,C,D andE rats were injected(i.p.) with streptozotocin to induce typeⅠdiabetes.Diabetic rats inGroupB were intragastrically administered with sterile saline solution alone.GroupsC,D andE rats were intragastrically given pioglitazone hydrochloride suspension at doses of10,20,30 mg/kg per day, respectively.After eight weeks of treatment, all rats were anesthetized and blood was withdrawn from the abdominal aortic for detection of hemoglobinA1c, serum creatinine(SCr) and blood urea nitrogen(BUN) levels.Rats were then sacrificed and the left kidney was excised for calculation of kidney hypertrophy index(KHI), observation of renal pathological changes using light microscope and electron microscope.Mean glomerular cross-sectional areas(MGA), mean glomerular volume (MGV), glomerular basement membrane thickness and foot process fusion ratio were calculated. RT-PCR was employed for detection of podocalyxin(PCX) protein expression.Results:Results showed that levels of hemoglobinA1c,BUN,SCr inGroupsB,C,D andE rats were significantly higher than those inGroupA(P<0.05), whileBUN andSCr levels in rats ofGroupsC,D andE were significantly lower than those inGroupB(P<0.05).KHI,MGA andMGV levels were significantly higher inGroupsB,C,D andE rats than those inGroupA(P<0.05);KHI andMGA levels inGroup B rats were significantly higher than those inGroupsC,D andE(P<0.05) andMGV inGroups D andE was significantly lower than that inGroupsB andC(P<0.05).Histology study showed normal glomerulus structure, morphology, volume, endothelial cells and mesangial cells as well as clear glomerular capillary inGroupA rats.Renal mesangial matrix proliferation and

  8. Glomerulonephritis-induced changes in kidney gene expression in rats

    Directory of Open Access Journals (Sweden)

    Mira Pavkovic

    2015-12-01

    Full Text Available We investigated a glomerulonephritis (GN model in rats induced by nephrotoxic serum (NTS which contains antibodies against the glomerular basement membrane (GBM. The anti-GBM GN model in rats is widely used since its biochemical and histopathological characteristics are similar to crescentic nephritis and Goodpasture's disease in humans (Pusey, 2003 [2]. Male Wistar Kyoto (WKY and Sprague–Dawley (SD rats were dosed once with 1, 2.5 and 5 ml/kg nephrotoxic serum (NTS or 1.5 and 5 ml/kg NTS, respectively. GN and tubular damage were observed histopathologically in all treated rats after 14 days. To obtain insight into molecular processes during GN pathogenesis, mRNA expression was investigated in WKY and SD kidneys using Affymetrix's GeneChip Rat genome 230_2.0 arrays (GSE64265. The immunopathological processes during GN are still not fully understood and likely involve both innate and adaptive immunity. In the present study, several hundred mRNAs were found deregulated, which functionally were mostly associated with inflammation and regeneration. The β-chain of the major histocompatibility complex class II RT1.B (Rt1-Bb and complement component 6 (C6 were identified as two mRNAs differentially expressed between WKY and SD rat strains which could be related to known different susceptibilities to NTS of different rat strains; both were increased in WKY and decreased in SD rats (Pavkovic et al., 2015 [1]. Increased Rt1-Bb expression in WKY rats could indicate a stronger and more persistent cellular reaction of the adaptive immune system in this strain, in line with findings indicating adaptive immune reactions during GN. The complement cascade is also known to be essential for GN development, especially terminal cascade products like C6.

  9. Effects of Samarium on Liver and Kidney of Rats

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Spraque-Dawley(SD)big rats with weaning weight of (195±15) g were randomly divided into 4 groups with 8 males and 8 females each group. One group drank de-ionized water served as control and also used for analysis with the background. The other three groups were cultured for five months by drinking de-ionized water with 3.0, 4.5 and 6.0 mg·L-1 Sm (NO3)3, respectively. Compared with the rats in control, it is found that the organs of the treated rats are apparently pathologically changed, such as liver swell, lung intumescence, peritoneum conglutination and hardness. Especially, in the high Sm group, the pathological percentage in liver and lung is up to 30%. The pathological changes in liver and lung show that rare earth Sm does hazard biological effects to animals. With increasing Sm concentration, the weight rate of organ/body has a tendency of increasing; the activity of superoxide dismutase (SOD) in liver and kidney decreases, but the maglonydiadehyde (MDA) concentration increases, indicating the abilities of anti-oxidation and the lipid per-oxidation inhibition degenerate, which leads to hard pathological changes in organs. Moreover, the relative weight rate of organ/body, the activity of SOD and the MDA concentration are remarkably lager in liver than in kidney and other organs, suggesting that the biological effect of Sm on liver is the greatest and Sm has a high affinity for liver.

  10. How Does a Hopping Kangaroo Breathe?

    Science.gov (United States)

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  11. Histopathologic effects of formaldehyde exposure on rat kidney

    Directory of Open Access Journals (Sweden)

    M.J. Golalipour

    2007-01-01

    Full Text Available AbstractBackground and purpose: Formaldehyde is a chemical traditionally used for fixing the cadaver. It is vaporized during dissection and practical studying on cadaver. Studies show that this vapour can cause some clinical sympotms such as throat, eye, skin and nasal irritation.This study was designed to determine the histopathological changes of rat kidney tissue exposed to formaldehyde for 18 weeks.Materials and Methods: This study was performed on 28, 6-7 weeks postnatal albino Wistar rats. The rats were divided into 3 case groups (E1: 4hrs/d, 4d/w; E2: 2hrs/d, 4d/w; E3: 2hrs/d, 2d/w and one control group (C. The kidney specimens were sectioned and stained with H&E technique for histopathological study.Results: In all histopathology sections of groups E1, E2 and E3, the following similar changes were observed: Mild congestion in the glumeroles, focal congestion and vacuolar (hydropic degeneration of tubular cells only mild non-specific congestion in renal vessels. There were no evidences of fibrotic change or inflammatory cells infiltration among interstitial tissue. Also there were no abnormalities in the staining of nucleus and cytoplasm. In Control group (C, no histopathologic changes were observed.Conclusion: The results of this study showed that formaldehyde vapour with a concentrations used in our study, can not induce histopathologic changes which could be detectable by light microscope. Also, there is no direct relationship between the duration of exposure to formaldehyde vapour and the intensity of histopathologic changes in the kidney.

  12. Mistletoe alkali inhibits peroxidation in rat liver and kidney

    Institute of Scientific and Technical Information of China (English)

    Zheng-Ming Shi; Ping Feng; Dong-Qiao Jiang; Xue-Jiang Wang

    2006-01-01

    AIM: To explore the antioxidant and free radical scavenger properties of mistletoe alkali (MA).METHODS: The antioxidant effect of mistletoe alkali on the oxidative stress induced by carbon tetrachloride (CCl4) in rats was investigated. The rats were divided into four groups (n = 8): CCl4-treated group (1 mL/kg body weight), MA -treated group (90 mg/kg), CCl4+MA-treated group and normal control group. After 4 wk of treatment,the level of malondialdehyde (MDA), a lipid peroxidation product (LPO) was measured in serum and homogenates of liver and kidney. Also, the level of glutathione (GSH),and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), and glutathione-S-transferase (GST) in liver and kidney were determined. Scavenging effects on hydroxyl free radicals produced in vitro by Fenton reaction were studied by ESR methods using 5,5-dimethyl-1-pyrroline-N-oxidesource. Urinary 8-hydroxydeoxyguanosine (8-OHdG) was determined by competitive ELISA.RESULTS: In CCl4-treated group, the level of LPO in serum of liver and kidney was significantly increased compared to controls. The levels of GSH and enzyme activities of SOD, GSPx and GR in liver and kidney were significantly decreased in comparison with controls. In CCl4+MA-treated group, the changes in the levels of LPO in serum of liver and kidney were not statistically significant compared to controls. The levels of SOD, GSPx and GR in liver and kidney were significantly increased in comparison with controls. There was a significant difference in urinary excretion of 8-OHdG between the CCl4-treated and MA-treated groups.CONCLUSION: Oxidative stress may be a major mechanism for the toxicity of CCl4. MA has a protective www.wjgnet.comeffect against CCl4 toxicity by inhibiting the oxidative damage and stimulating GST activities. Thus, clinical application of MA should be considered in cases with carbon tetrachloride-induced injury.

  13. Fluorosis Caused Cellular Apoptosis and Oxidative Stress of Rat Kidneys

    Institute of Scientific and Technical Information of China (English)

    SONG Yang; WANG Jin-cheng; XU Hui; DU Zhen-wu; ZHANG Gui-zhen; SELIM Hamid Abdu; LI Guang-sheng

    2013-01-01

    As the strongest electronegative element,fluorine can stimulate the production of superoxide radicals in cells.In view of the important roles of kidneys in bone metabolism,the authors analyzed the quantitative pathomorphological characteristics of renal damage and the potential cellular apoptosis and oxidative stress mechanisms in rats treated with excessive fluoride.Wistar rats were exposed to 50 mg F-(110.5 mg NaF)/L,100 mg F-(221.0 mg NaF)/Land 150 mg F (331.5 mg NaF)/L in drinking water for 70 and 140 d,respectively.Microscope with image analysis was used to quantitate pathomorphological changes in renal tissues of the rats.Reactive oxygen species(ROS),the cell cycle and apoptosis of renal cells were measured by flow cytometry and TUNEL technique(terminal deoxynucleotidyl transferase dUTP nick end labeling),respectively.The ion concentrations in serum and renal functional parameters were detected by automatic biochemical analyzer.Quantitative analysis results demonstrate the expanded Bowman's space of glomerulus and obvious dilatation of renal tubule.TUNEL technique revealed that NBT/BCIP (nitro blue tetrazoliurn/5-bromo-4-chloro-3′-indolylphosphate,p-toluidine salt)-staining positive apoptotic cells selectively located in medullocortical junction areas.The data suggest that renal damage in chronic fluorostic rats is associated with the cellular apoptosis and oxidative stress.

  14. Chronic Kidney Disease Impairs Bone Defect Healing in Rats.

    Science.gov (United States)

    Liu, Weiqing; Kang, Ning; Seriwatanachai, Dutmanee; Dong, Yuliang; Zhou, Liyan; Lin, Yunfeng; Ye, Ling; Liang, Xing; Yuan, Quan

    2016-03-09

    Chronic kidney disease (CKD) has been regarded as a risk for bone health. The aim of this study was to evaluate the effect of CKD on bone defect repair in rats. Uremia was induced by subtotal renal ablation, and serum levels of BUN and PTH were significantly elevated four weeks after the second renal surgery. Calvarial defects of 5-mm diameter were created and implanted with or without deproteinized bovine bone mineral (DBBM). Micro-CT and histological analyses consistently revealed a decreased newly regenerated bone volume for CKD rats after 4 and 8 weeks. In addition, 1.4-mm-diameter cortical bone defects were established in the distal end of femora and filled with gelatin sponge. CKD rats exhibited significantly lower values of regenerated bone and bone mineral density (BMD) within the cortical gap after 2 and 4 weeks. Moreover, histomorphometric analysis showed an increase in both osteoblast number (N.Ob/B.Pm) and osteoclast number (N.Oc/B.Pm) in CKD groups due to hyperparathyroidism. Notably, collagen maturation was delayed in CKD rats as verified by Masson's Trichrome staining. These data indicate that declined renal function negatively affects bone regeneration in both calvarial and femoral defects.

  15. Effects of microcystin-LR in isolated perfused rat kidney

    Directory of Open Access Journals (Sweden)

    A.C.L. Nobre

    1999-08-01

    Full Text Available Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5 of both sexes (240-280 g were utilized. Microcystin-LR (1 µg/ml was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C = 0.20 ± 0.01 and treated (T = 0.32 ± 0.01 ml g-1 min-1, P<0.05. At 90 min there was a significant increase in perfusate pressure (C = 129.7 ± 4.81 and T = 175.0 ± 1.15 mmHg and glomerular filtration rate (C = 0.66 ± 0.07 and T = 1.10 ± 0.04 ml g-1 min-1 and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 ± 0.98 and T = 73.9 ± 0.95%. Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases.

  16. The histopathological effects of salvia officinalis on the kidney and liver of rats

    Directory of Open Access Journals (Sweden)

    D.A. Adekomi

    2013-03-01

    Full Text Available The aim of this investigation was to evaluate some of the effects of aqueous leaf extract of Salvia officinalis on the kidney and liver of male Sprague Dawley rats. Ten Sprague-Dawley rats (7-11 weeks old were randomly assigned into two groups; A and B. Aqueous extract of S. officinalis leaves (300 mg/kg body weight was administered orally to the rats in group B while the rats in group A received equal volume of normal saline for 14d. At termination of treatment, the histopathology of the kidney and liver were assessed. The kidney and the liver in the extract treated rat displayed organized and preserved histological profile. Our findings suggest that S. officinalis has no deleterious effects on the kidney and liver of the rats.  

  17. A model for prediction of cisplatin induced nephrotoxicity by kidney weight in experimental rats

    Directory of Open Access Journals (Sweden)

    Mehdi Nematbakhsh

    2013-01-01

    Full Text Available Background: Cisplatin (cis-diamminedichloroplatinum II; CP is used widely as an antitumor drug in clinics, but is accompanied with renal toxicity. Cisplatin induced nephrotoxicity consists of change in kidney weight, histological changes in kidney and increase in serum creatinine (Cr and blood urea nitrogen (BUN. This study was designed to find out a model for prediction of cisplatin induced nephrotoxicity. Materials and Methods: Pathological damage score, kidney weight, BUN, and Cr of 227 rats that were involved in different projects were determined. A total of 187 rats were treated with 7 mg/kg cisplatin and sacrificed 1 week later. Results: There was a good significant correlation between normalized kidney weight and logarithmic scale of BUN and Cr. Relationship between BUN, Cr or normalized kidney weight and pathology damage score was significant. Conclusion: Normalized kidney weight and pathology damage score is a good predictor of renal function in cisplatin induced nephrotoxicity in experimental rats.

  18. Chronic kidney disease aggravates arteriovenous fistula damage in rats.

    Science.gov (United States)

    Langer, Stephan; Kokozidou, Maria; Heiss, Christian; Kranz, Jennifer; Kessler, Tina; Paulus, Niklas; Krüger, Thilo; Jacobs, Michael J; Lente, Christina; Koeppel, Thomas A

    2010-12-01

    Neointimal hyperplasia (NIH) and impaired dilatation are important contributors to arteriovenous fistula (AVF) failure. It is unclear whether chronic kidney disease (CKD) itself causes adverse remodeling in arterialized veins. Here we determined if CKD specifically triggers adverse effects on vascular remodeling and assessed whether these changes affect the function of AVFs. For this purpose, we used rats on a normal diet or on an adenine-rich diet to induce CKD and created a fistula between the right femoral artery and vein. Fistula maturation was followed noninvasively by high-resolution ultrasound (US), and groups of rats were killed on 42 and 84 days after surgery for histological and immunohistochemical analyses of the AVFs and contralateral femoral vessels. In vivo US and ex vivo morphometric analyses confirmed a significant increase in NIH in the AVFs of both groups with CKD compared to those receiving a normal diet. Furthermore, we found using histological evaluation of the fistula veins in the rats with CKD that the media shrank and their calcification increased significantly. Afferent artery dilatation was significantly impaired in CKD and the downstream fistula vein had delayed dilation after surgery. These changes were accompanied by significantly increased peak systolic velocity at the site of the anastomosis, implying stenosis. Thus, CKD triggers adverse effects on vascular remodeling in AVFs, all of which contribute to anatomical and/or functional stenosis.

  19. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    Koppen, A. van; Papazova, D.A.; Oosterhuis, N.R.; Gremmels, H.; Giles, R.H.; Fledderus, J.O.; Joles, J.A.; Verhaar, M.C.

    2015-01-01

    Introduction: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  20. Ex vivo exposure of bone marrow from chronic kidney disease donor rats to pravastatin limits renal damage in recipient rats with chronic kidney disease

    NARCIS (Netherlands)

    van Koppen, Arianne; Papazova, Diana A.; Oosterhuis, Nynke R.; Gremmels, Hendrik; Giles, Rachel H.; Fledderus, Joost O.; Joles, Jaap A.; Verhaar, Marianne C.

    2015-01-01

    INTRODUCTION: Healthy bone marrow cell (BMC) infusion improves renal function and limits renal injury in a model of chronic kidney disease (CKD) in rats. However, BMCs derived from rats with CKD fail to retain beneficial effects, demonstrating limited therapeutic efficacy. Statins have been reported

  1. Permanent catheterization of the carotid artery induces kidney infection and inflammation in the rat

    DEFF Research Database (Denmark)

    Fonseca, Uno Nicolas Kjærup; Nielsen, Sanne Gram; Hau, Jann

    2010-01-01

    Catheterization of the carotid artery and the jugular vein is one of the most commonly applied techniques used to gain intravascular access in pharmacology studies on rodents. We catheterized 10 rats by conventional clean techniques, 10 rats by aseptic techniques and 10 rats by conventional clean...... techniques using a heparin-coated catheter rather than an ordinary non-coated polyvinyl chloride catheter. In all groups, approximately 80% of the rats developed kidney infection and 10-30% of the rats were septicaemic. Clinical chemistry did not indicate severe kidney damage, but serum haptoglobin and body...

  2. Altered magnesium transport in slices of kidney cortex from chemically-induced diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, B.

    1981-10-01

    The uptake of magnesium-28 was measured in slices of kidney cortex from rats with alloxan-diabetes and from rats with streptozotocin-diabetes of increasing durations. In both forms of chemically-induced diabetes, magnesium-28 uptake by kidney cortex slices was significantly increased over uptake measured in kidney cortex slices from control rats. Immediate institution of daily insulin therapy to the diabetic rats prevented the diabetes-induced elevated uptake of magnesium without controlling blood glucose levels. Late institution of daily insulin therapy was ineffective in restoring the magnesium uptake to control values. These alterations in magnesium uptake occurred prior to any evidence of nephropathy (via the classic indices of proteinuria and increased BUN levels). The implications of these findings, together with our earlier demonstrations of altered calcium transport by kidney cortex slices from chemically-induced diabetic rats, are discussed in terms of disordered divalent cation transport being at least part of the basic pathogenesis underlying diabetic nephropathy.

  3. Hydration status affects osteopontin expression in the rat kidney.

    Science.gov (United States)

    Lee, Su-Youn; Lee, Sae-Jin; Piao, Hong-Lin; Yang, Suk-Young; Weiner, I David; Kim, Jin; Han, Ki-Hwan

    2016-09-30

    Osteopontin (OPN) is a secretory protein that plays an important role in urinary stone formation. Hydration status is associated with the development of urolithiasis. This study was conducted to examine the effects of dehydration and hydration on OPN expression in the rat kidney. Animals were divided into three groups, control, dehydrated, and hydrated. Kidney tissues were processed for light and electron microscope immunocytochemistry, in situhybridization, and immunoblot analysis. Dehydration induced a significant increase in OPN protein expression, whereas increased fluid intake induced a decrease in protein expression. Under control conditions, OPN protein and mRNA expression were only detected in the descending thin limb (DTL). Dehydration induced increased expression in the DTL and the development of detectable expression in the thick ascending limb (TAL). In contrast, OPN expression levels declined to less than the controls in the DTL after hydration, while no expression of either protein or mRNA was detectable in the TAL. Immunoelectron microscopy demonstrated that hydration status altered tubular ultrastructure and intracellular OPN expression in the Golgi apparatus and secretory cytoplasmic vesicles. These data confirm that changes in oral fluid intake can regulate renal tubular epithelial cell OPN expression.

  4. Effect of dental materials on gluconeogenesis in rat kidney tubules

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, F.X.; Durner, J.; Mueckter, H.; Elsenhans, B.; Forth, W. [Muenchen Univ. (Germany). Walter-Straub-Institut fuer Pharmakologie und Toxikologie; Kunzelmann, K.H.; Hickel, R. [Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-University of Munich (Germany); Spahl, W. [Institute of Organic Chemistry, Ludwig-Maximilians-University of Munich (Germany); Hume, W.R. [Dental Research Institute, Univ. of California, Los Angeles, CA (United States); Moes, G.W. [TNO Prins-Maurits-Laboratorium, Rijswijk (Netherlands)

    1999-09-01

    The effect of dental composite components triethyleneglycoldimethacrylate (TEGDMA) and hydroxyethylmethacrylate (HEMA) as well as mercuric chloride (HgCl{sub 2}) and methylmercury chloride (MeHgCl) on gluconeogenesis was investigated in isolated rat kidney tubules. From starved rats kidney tubules were prepared and isolated by digestion with collagenase. Every 10 min up to 60 min 1-ml samples were drawn from the cell suspension for quantitating the glucose content. Glucose formation in controls was 3.3 {+-} 0.2 nmol/mg . per min (mean {+-} SEM, n=21). Relative rates of glucose formation were obtained by expressing individual rates as a percentage of the corresponding control. X-Y concentration curves (effective concentration, EC) of the substances were calculated by fitting a four-parametric sigmoid function to the relative rates of glucose formation at various test concentrations. At the end of the incubation period cell viability was assessed by trypan blue exclusion. Cell viability decreased within the 60 min interval from 90 to approx. 80% (controls), <25 (HEMA), <20 (TEGDMA), <10 (MeHgCl), and <10% (HgCl{sub 2}). Values of 50% effective concentration (EC{sub 50}) were calculated from fitted curves. EC{sub 50} values were (mmol; mean {+-} SEM; n=4): HEMA, 17.7 {+-} 2.9; TEGDMA, 1.8 {+-} 0.2; MeHgCl, 0.018 {+-} 0.0005; and HgCl{sub 2}, 0.0016 {+-} 0.0005. The toxic effect of HgCl{sub 2} was {proportional{underscore}to}1000 or 10 000 higher than that of the dental composite components TEGDMA or HEMA, respectively. (orig.)

  5. Curative effect of sesame oil in a rat model of chronic kidney disease.

    Science.gov (United States)

    Liu, Chuan-Teng; Chien, Se-Ping; Hsu, Dur-Zong; Periasamy, Srinivasan; Liu, Ming-Yie

    2015-12-01

    Chronic kidney disease causes a progressive and irreversible loss of renal function. We investigated the curative effect of sesame oil, a natural, nutrient-rich, potent antioxidant, in a rat model of chronic kidney disease. Chronic kidney disease was induced by subcutaneously injecting uni-nephrectomized rats with deoxycorticosterone acetate (DOCA) and 1% NaCl [DOCA/salt] in drinking water. Four weeks later, the rats were gavaged with sesame oil (0.5 or 1 mL/kg per day) for 7 days. Renal injury, histopathological changes, hydroxyl radical, peroxynitrite, lipid peroxidation, Nrf2, osteopontin expression, and collagen were assessed 24 h after the last dose of sesame oil. Blood urea nitrogen, creatinine, urine volume, and albuminuria were significantly higher in the DOCA/salt treated rats than in control rats. Sesame oil significantly decreased these four tested parameters in DOCA/salt treated rats. In addition, creatinine clearance rate and nuclear Nrf2 expression were significantly decreased in the DOCA/salt treated rats compared to control rats. Sesame oil significantly decreased hydroxyl radical, peroxynitrite level, lipid peroxidation, osteopontin, and renal collagen deposition, but increased creatinine clearance rate and nuclear Nrf2 expression in DOCA/salt treated rats. We conclude that supplementation of sesame oil mitigates DOCA/salt induced chronic kidney disease in rats by activating Nrf2 and attenuating osteopontin expression and inhibiting renal fibrosis in rats. © 2015 Asian Pacific Society of Nephrology.

  6. Effects of immunosuppressive treatment on protein expression in rat kidney

    Directory of Open Access Journals (Sweden)

    Kędzierska K

    2014-09-01

    Full Text Available Karolina Kędzierska,1 Katarzyna Sporniak-Tutak,2 Krzysztof Sindrewicz,2 Joanna Bober,3 Leszek Domański,1 Mirosław Parafiniuk,4 Elżbieta Urasińska,5 Andrzej Ciechanowicz,6 Maciej Domański,1 Tomasz Smektała,2 Marek Masiuk,5 Wiesław Skrzypczak,6 Małgorzata Ożgo,6 Joanna Kabat-Koperska,1 Kazimierz Ciechanowski1 1Department of Nephrology, Transplantology, and Internal Medicine, 2Department of Dental Surgery, 3Department of Medical Chemistry, 4Department of Forensic Medicine, 5Department of Pathomorphology, Pomeranian Medical University, 6Department of Physiology, Cytobiology, and Proteomics, West Pomeranian University of Technology, Szczecin, Poland Abstract: The structural proteins of renal tubular epithelial cells may become a target for the toxic metabolites of immunosuppressants. These metabolites can modify the properties of the proteins, thereby affecting cell function, which is a possible explanation for the mechanism of immunosuppressive agents' toxicity. In our study, we evaluated the effect of two immunosuppressive strategies on protein expression in the kidneys of Wistar rats. Fragments of the rat kidneys were homogenized after cooling in liquid nitrogen and then dissolved in lysis buffer. The protein concentration in the samples was determined using a protein assay kit, and the proteins were separated by two-dimensional electrophoresis. The obtained gels were then stained with Coomassie Brilliant Blue, and their images were analyzed to evaluate differences in protein expression. Identification of selected proteins was then performed using mass spectrometry. We found that the immunosuppressive drugs used in popular regimens induce a series of changes in protein expression in target organs. The expression of proteins involved in drug, glucose, amino acid, and lipid metabolism was pronounced. However, to a lesser extent, we also observed changes in nuclear, structural, and transport proteins' synthesis. Very slight differences

  7. Kinetics of Label Retaining Cells in the Developing Rat Kidneys.

    Directory of Open Access Journals (Sweden)

    Jianwen Wang

    Full Text Available The kidney is a specialized low-regenerative organ with several different types of cellular lineages. The BrdU label-retaining cell (LRCs approach has been used as part of a strategy to identify tissue-specific stem cells in the kidney; however, because the complementary base pairing in double-stranded DNA blocks the access of the anti-BrdU antibody to BrdU subunits, the stem cell marker expression in BrdU-labeled cells are often difficult to detect. In this study, we introduced a new cell labeling and detection method in which BrdU was replaced with 5-ethynyl-2-deoxyuridine (EdU and examined the time-dependent dynamic changes of EdU-labeled cells and potential stem/progenitor markers in the development of kidney.Newborn rats were intraperitoneally injected with EdU, and their kidneys were harvested respectively at different time points at 1 day, 3 days, 1 week, 2 weeks, and 6 weeks post-injection. The kidney tissues were processed for EdU and cellular markers by immunofluorescence staining.At the early stage, LRCs labeled by EdU were 2176.0 ± 355.6 cells at day one in each renal tissue section, but dropped to 168 ± 48.4 cells by week 6. As time increased, the numbers of LRCs were differentially expressed in the renal cortex and papilla. At the postnatal day one, nearly twice as many cells in the cortex were EdU-labeled as compared to the papilla (28.6 ± 3.6% vs. 15.6 ± 3.4%, P<0.05, while there were more LRCs within the renal papilla since the postnatal week one, and at the postnatal week 6, one third as many cells in the cortex were EdU-labeled as compared to the papilla (2.5 ± 0.1% vs. 7.7 ± 2.7%, P<0.05. The long-term LRCs at 6-week time point were associated exclusively with the glomeruli in the cortex and the renal tubules in the papilla. At 6 weeks, the EdU-labeled LRCs combined with expression of CD34, RECA-1, Nestin, and Synaptopodin were discretely but widely distributed within the glomeruli; Stro-1 around the glomeruli; and

  8. Parents\\' lived experience of providing kangaroo care to their ...

    African Journals Online (AJOL)

    Parents\\' lived experience of providing kangaroo care to their preterm infants. ... While there is good evidence to demonstrate the benefits of kangaroo care in low ... experience of birth; anxiety and barriers; an intimate connection; adjustments, ...

  9. Functionally induced changes in water transport in the proximal tubule segment of rat kidneys

    DEFF Research Database (Denmark)

    Faarup, Poul; von Holstein-Rathlou, Niels-Henrik; Nørgaard, Tove

    2011-01-01

    To eliminate freezing artifacts in the proximal tubule cells, two cryotechniques were applied to normal rat kidneys, ie, freeze substitution and special freeze drying. In addition, salt depletion and salt loading were applied to groups of rats to evaluate whether the segmental structure of the pr......To eliminate freezing artifacts in the proximal tubule cells, two cryotechniques were applied to normal rat kidneys, ie, freeze substitution and special freeze drying. In addition, salt depletion and salt loading were applied to groups of rats to evaluate whether the segmental structure...

  10. The Effects of Pollen on Serum Parameters, and Liver and Kidney Tissues on Rats

    Directory of Open Access Journals (Sweden)

    Güldeniz Selmanoğlu

    2007-01-01

    Full Text Available The objective of this study was to investigate any positive effects or possible side effects of the use of pollen. Mature male rats were fed pollen of three different plant sources (Trifolium spp., Raphanus spp. and Cistus spp. at the rate of 60 mg/animal/day over a periodof 30 days. After treatment, biochemical parameters and serum enzyme activities were analysed and weights of liver and kidney measured. Liver and kidney tissues of rats were examined by light microscope.Serum cholesterol and HDL levels decreased in rats fed on pollen of Trifolium spp. and Cistus spp. Serum glucose levels increased in rats given pollen of Trifolium spp. and Raphanus spp. There was no change in serum enzyme levels in rats of any pollen group.While absolute liver weights of rats fed on pollen of Trifolium spp. and Cistus spp. increased, no change at all in absolute kidney weight and relative weight (organ weight/body weight of liver and kidney of rats was found in any pollen group. Histopathological changes in theliver and kidney of rats given pollen were not observed. Although serum cholesterol and HDL levels decreased, we cannot suggest that pollen caused either adverse or beneficial effects because of the short tretment period of 30 days.

  11. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    OpenAIRE

    Ibrahim M. Salman; Divya Sarma Kandukuri; Joanne Lesley Harrison; Cara Margaret Hildreth; Jacqueline Kathleen Phillips

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male...

  12. Determinants of renal tissue hypoxia in a rat model of polycystic kidney disease.

    Science.gov (United States)

    Ow, Connie P C; Abdelkader, Amany; Hilliard, Lucinda M; Phillips, Jacqueline K; Evans, Roger G

    2014-11-15

    Renal tissue oxygen tension (PO2) and its determinants have not been quantified in polycystic kidney disease (PKD). Therefore, we measured kidney tissue PO2 in the Lewis rat model of PKD (LPK) and in Lewis control rats. We also determined the relative contributions of altered renal oxygen delivery and consumption to renal tissue hypoxia in LPK rats. PO2 of the superficial cortex of 11- to 13-wk-old LPK rats, measured by Clark electrode with the rat under anesthesia, was higher within the cysts (32.8 ± 4.0 mmHg) than the superficial cortical parenchyma (18.3 ± 3.5 mmHg). PO2 in the superficial cortical parenchyma of Lewis rats was 2.5-fold greater (46.0 ± 3.1 mmHg) than in LPK rats. At each depth below the cortical surface, tissue PO2 in LPK rats was approximately half that in Lewis rats. Renal blood flow was 60% less in LPK than in Lewis rats, and arterial hemoglobin concentration was 57% less, so renal oxygen delivery was 78% less. Renal venous PO2 was 38% less in LPK than Lewis rats. Sodium reabsorption was 98% less in LPK than Lewis rats, but renal oxygen consumption did not significantly differ between the two groups. Thus, in this model of PKD, kidney tissue is severely hypoxic, at least partly because of deficient renal oxygen delivery. Nevertheless, the observation of similar renal oxygen consumption, despite markedly less sodium reabsorption, in the kidneys of LPK compared with Lewis rats, indicates the presence of inappropriately high oxygen consumption in the polycystic kidney.

  13. Androgens drive divergent responses to salt stress in male versus female rat kidneys.

    Science.gov (United States)

    Gerhold, David; Bagchi, Ansuman; Lu, Meiqing; Figueroa, David; Keenan, Kevin; Holder, Dan; Wang, Yuhong; Jin, Hong; Connolly, Brett; Austin, Christopher; Alonso-Galicia, Magdalena

    2007-06-01

    Dahl-Iwai (DI) salt-sensitive rats were studied using microarrays to identify sex-specific differences in the kidney, both basal differences and differences in responses to a high-salt diet. In DI rat kidneys, gene expression profiles demonstrated inflammatory and fibrotic responses selectively in females. Gonadectomy of DI rats abrogated sex differences in gene expression. Gonadectomized female and gonadectomized male DI rats both responded to high salt with the same spectrum of gene expression changes as intact female DI rats. Androgens dominated the sex-selective responses to salt. Several androgen-responsive genes with roles potentiating the differential responses to salt were identified, including increased male expression of angiotensin-vasopressin receptor and prolactin receptor, decreased 5 alpha-reductase, and mixed increases and decreases in expression of Cyp4a genes that can produce eicosanoid hormones. These sex differences potentiate sodium retention by males and increase kidney function during gestation in females.

  14. Salivary Alterations in Rats with Experimental Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Ana Carolina Romero

    Full Text Available This study aimed to analyze changes in saliva composition and salivary secretion process of rats with chronic kidney disease induced by 5/6 nephrectomy to set the foundation for salivary studies related to CKD.CKD was induced in Wistar rats via 5/6 nephrectomy. Blood and saliva samples were collected from Control, Sham and CKD groups at 8 and 12 weeks after the surgery. Salivation was stimulated via intraperitoneal injections of pilocarpine (1.0 mg/Kg body weight or isoproterenol (5.0 mg/Kg body weight. Saliva was collected and immediately stored at -80°C until analysis. The salivary flow rate, total protein, amylase and peroxidase activities, and urea concentrations were measured. The blood urea nitrogen (BUN and serum creatinine concentrations were also evaluated.Increases in BUN and serum creatinine concentrations were observed in the CKD groups. Amylase activity was significantly reduced in response to both stimuli in the CKD groups at 8 weeks and increased in the CKD groups at 12 weeks in response to isoproterenol stimulus. The peroxidase activities of the CKD groups were significantly reduced in response to isoproterenol stimulation and were increased at 12 weeks in response to pilocarpine stimulation. Salivary urea was significantly increased in the CKD groups at 8 weeks in response to the isoproterenol stimuli and at 12 weeks in response to both salivary agonists.The pattern of alterations observed in this experimental model is similar to those observed in patients and clearly demonstrates the viability of 5/6 nephrectomy as an experimental model in future studies to understand the alterations in salivary compositions and in salivary glands that are elicited by CKD.

  15. Salivary Alterations in Rats with Experimental Chronic Kidney Disease

    Science.gov (United States)

    Romero, Ana Carolina; Bergamaschi, Cassia Toledo; de Souza, Douglas Nesadal; Nogueira, Fernando Neves

    2016-01-01

    Objective This study aimed to analyze changes in saliva composition and salivary secretion process of rats with chronic kidney disease induced by 5/6 nephrectomy to set the foundation for salivary studies related to CKD. Methods CKD was induced in Wistar rats via 5/6 nephrectomy. Blood and saliva samples were collected from Control, Sham and CKD groups at 8 and 12 weeks after the surgery. Salivation was stimulated via intraperitoneal injections of pilocarpine (1.0 mg/Kg body weight) or isoproterenol (5.0 mg/Kg body weight). Saliva was collected and immediately stored at -80°C until analysis. The salivary flow rate, total protein, amylase and peroxidase activities, and urea concentrations were measured. The blood urea nitrogen (BUN) and serum creatinine concentrations were also evaluated. Results Increases in BUN and serum creatinine concentrations were observed in the CKD groups. Amylase activity was significantly reduced in response to both stimuli in the CKD groups at 8 weeks and increased in the CKD groups at 12 weeks in response to isoproterenol stimulus. The peroxidase activities of the CKD groups were significantly reduced in response to isoproterenol stimulation and were increased at 12 weeks in response to pilocarpine stimulation. Salivary urea was significantly increased in the CKD groups at 8 weeks in response to the isoproterenol stimuli and at 12 weeks in response to both salivary agonists. Conclusions The pattern of alterations observed in this experimental model is similar to those observed in patients and clearly demonstrates the viability of 5/6 nephrectomy as an experimental model in future studies to understand the alterations in salivary compositions and in salivary glands that are elicited by CKD. PMID:26859883

  16. Arterial flow regulator enables transplantation and growth of human fetal kidneys in rats.

    Science.gov (United States)

    Chang, N K; Gu, J; Gu, S; Osorio, R W; Concepcion, W; Gu, E

    2015-06-01

    Here we introduce a novel method of transplanting human fetal kidneys into adult rats. To overcome the technical challenges of fetal-to-adult organ transplantation, we devised an arterial flow regulator (AFR), consisting of a volume adjustable saline-filled cuff, which enables low-pressure human fetal kidneys to be transplanted into high-pressure adult rat hosts. By incrementally withdrawing saline from the AFR over time, blood flow entering the human fetal kidney was gradually increased until full blood flow was restored 30 days after transplantation. Human fetal kidneys were shown to dramatically increase in size and function. Moreover, rats which had all native renal mass removed 30 days after successful transplantation of the human fetal kidney were shown to have a mean survival time of 122 days compared to 3 days for control rats that underwent bilateral nephrectomy without a prior human fetal kidney transplant. These in vivo human fetal kidney models may serve as powerful platforms for drug testing and discovery.

  17. Immunohistochemical distribution of leptin in kidney tissues of melatonin treated diabetic rats.

    Science.gov (United States)

    Elis Yildiz, S; Deprem, T; Karadag Sari, E; Bingol, S A; Koral Tasci, S; Aslan, S; Nur, G; Sozmen, M

    2015-05-01

    We examined using immunohistochemistry the distribution of leptin in kidney tissues of melatonin treated, streptozotocin (STZ) diabetic rats. The animals were divided into five groups: control, sham, melatonin-treated, diabetic and melatonin-treated diabetic. Kidney sections were prepared and stained with hematoxylin and eosin, and Crossman's triple staining for histological examination. The immunohistochemical localization of leptin in the kidney tissue was determined using the streptavidin-biotin-peroxidase method. We determined that on days 7 and 14, the leptin immunoreactivity of the diabetic and melatonin-treated diabetic groups was weaker than for the other groups. Weak immunoreactivity was found in the proximal and distal tubules of the kidney in the diabetic and melatonin-treated diabetic groups on days 7 and 14, and strong immunoreactivity was found in the control, sham and melatonin groups. Melatonin application had no significant effect on leptin production in the kidney tissues of diabetic rats.

  18. Betanin attenuates oxidative stress and inflammatory reaction in kidney of paraquat-treated rat.

    Science.gov (United States)

    Tan, Dehong; Wang, Yiheng; Bai, Bing; Yang, Xuelian; Han, Junyan

    2015-04-01

    The effects of natural pigment betanin on oxidative stress and inflammation in kidney of paraquat-treated rat were investigated. Paraquat was injected intraperitoneally into rats to induce renal damage. The rats were randomly divided into four groups: a control group, a paraquat group, and two paraquat groups that were treated with betanin at 25 and 100 mg/kg/d three days before and two days after paraquat administration. Treatment with betanin alleviated the paraquat-incurred acute kidney injury, evidenced by histological improvement, reduced serum and urine markers for kidney injury. Betanin antagonized the paraquat-induced inflammation, indicated by reduced expression of inducible nitric oxide synthase and cyclooxygenase, blunted activation of nuclear factor kappa B, and diminished lysosomal protease activities. Betanin also decreased oxidative stress elicited by paraquat. In conclusion, betanin may have a protective effect against paraquat-induced acute kidney damage. The mechanisms of the protection appear to be the inhibition of oxidative stress and inflammation.

  19. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    Alterations in basement membrane components, notably proteoglycans, in a rat model of polycystic kidney disease have been investigated. Rats were fed phenol II (2-amino-4-hydroxyphenyl-5-phenyl thiazole) for 4 days and then changed to normal diet for a 7-day recovery period. Marked dilation of di...

  20. [Glomerular changes in the contralateral kidney in the rat with experimental hydronephrosis].

    Science.gov (United States)

    Castillo Bernabéu, R; Gázquez Ortiz, A; Bonillo Morales, A; Sierra Planas, M A; Ocaña Losa, J M; Romanos Lezcano, A

    1985-10-31

    We have studied under optic and electronmicroscopes the alterations of glomeruli in contralateral kidneys of rats with experimental hydronephrosis. Forty-eight Wistar rats, divided into two groups (control and experimental) were used. They were sacrificed 3, 6, 9 and 12 days after ureteral obstruction. There was a slight hypertrophy of glomeruli and hiperplasia of other components accompanied by a increased development of podocytes.

  1. DIFFERENCE OF REJECTION IN SINGLE VERSUS COMBINED PANCREAS AND KIDNEY TRANSPLANTATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    朱预; 肖毅; 乔海泉; 姜洪池; 代文杰

    2000-01-01

    Objective. To investigate the difference of rejection in single versus combined pancreas and kidney transplantation in rats. Methods. Allograft models including simultaneous pancreas and kidney(SPK) transplant and pancreas or kidney transplant alone were established in SD-Wistar rats, rejections of pancreas and kidney in different models were com-pared morphologically and functionally. Results. Mean survival time (MST) of pancreas was significantly prolonged in SPK than in pancreas transplant alone (PTA) (11.5 days vs. 9.2 days, P <0.05). Incidence of interstitial pancreatic rejection at grade Ⅱ and grade Ⅲ was much obvious in PTA than in SPK (42.9% vs. 12.5% at grade Ⅱ and 28.6% vs 6.3% at grade Ⅲ , P<0.05). No significant difference was found in MST between SPK and kidney transplant alone(KTA). Administration of cyclesporine A prolonged the MST of pancreas and kidney, without altering the tendency stated above. Condusions. In SPK, the function of pancreas is protected by kidney hence the severity of rejection is reduced, whereas the function of kidney is not protected by pancreas. It suggests that different organs differ in immunoaller-gization and immunoregulation, and immune response tend to attack organs with greater immunoactivity, those organs with minor one could be protected. Cyclesporine A is effective on prolonging the MST of pancreas and kidney.

  2. DIFFERENCE OF REJECTION IN SINGLE VERSUS COMBINED PANCREAS AND KIDNEY TRANSPLANTATION IN RATS

    Institute of Scientific and Technical Information of China (English)

    乔海泉; 姜洪池; 代文杰; 朱预; 肖毅

    2000-01-01

    Objective. To investigate the difference of rejection in single versus combined pancreas and kidney transplantation in rats. Methods. All ograft models including simultaneous pancreas and kidney(SPK)transplant and pancreas or kidney transplant alone were established in SD-Wistar rats, rejections of pancreas and kidney in different models were com pared morphologically and functionally. Results. Mean survival time (MST)of pancreas was significantly prolonged in SPK than in pancreas transplant alone(PTA)( 11.5 days vs. 9.2 days, P < 0.05). Incidence of interstitial pancreatic rejection at grade Ⅱ and grade Ⅲ was much obvious in PTA than in SPK(42.9% vs. 12.5% at grade Ⅱ and 28.6% vs 6.3% at grade Ⅲ , P < 0.05). No significant difference was found in MST between SPK and kidney transplant alone(KTA). Administration of cyclosporine A prolonged the MS T of pancreas and kidney, without altering the tendency stated above. Conclusions. In SPK, the function of pancreas is protected by kidney hence the severity of rejection is reduced, whereas the function of kidney is not protected by pancreas. It suggests that different organs differ in immunoaller gization and immunoregula tion, and immune response tend to attack organs with greater immunoactivity, those organs with minor one could be protected. Cyclosporine A is effective on prolonging the MST of pancreas and kidney.

  3. Tangzhiqing Granules Alleviate Podocyte Epithelial-Mesenchymal Transition in Kidney of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Haiyan Xu

    2017-01-01

    Full Text Available This study discussed the effect of Tangzhiqing granules on podocyte epithelial-mesenchymal transition in kidney of diabetic rats. The diabetic rats were divided randomly into five groups: DM group treated with vehicle, Tangzhiqing granules low-dose treatment group, Tangzhiqing granules middle-dose treatment group, and Tangzhiqing granules high-dose treatment group. Eight Wistar rats used as control group were given saline solution. The intervention was all intragastric administration for 8 weeks. At the end of the 8 weeks, biochemical parameters and kidney weight/body weight ratio were measured. The kidney tissues were observed under light microscope and transmission electron microscopy. To search for the underlying mechanism, we examined the epithelial-to-mesenchymal transition (EMT related molecular markers and TGF-β/smad signaling pathway key proteins expression. The results showed that Tangzhiqing granules relieved the structural damage and functional changes of diabetic kidneys. Kidney podocyte EMT related molecular markers nephrin and CD2AP expression were increased, when desmin and α-SMA levels were decreased by Tangzhiqing granules in diabetic rats. Further TGF-β/smad signaling pathway key proteins TGF-β1 and p-smad2/3 levels were decreased in diabetic rats after treatment with Tangzhiqing granules. These findings suggest that Tangzhiqing granules may protect the podocytes of diabetic nephropathy rats via alleviating podocyte EMT and likely activating TGFβ/smad signaling pathway.

  4. The kidneys play an important role in the clearance of rFVIIa in rats

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Appa, Rupa S.; Lykkesfeldt, Jens

    2014-01-01

    study was to evaluate the importance of the kidneys in the clearance process of rFVIIa after iv administration to rats using a nephrectomy model. MATERIALS AND METHODS: A nephrectomized rat model was established and validated using inulin, a compound primarily cleared by the kidneys, as a test substance...... of mixed effects methods, where a pharmacokinetic model was used to simultaneously model all data from healthy, sham operated, and nephrectomized rats. RESULTS: Nephrectomized animals showed stable rectal temperature, SpO2 and pulse and as expected, clearance of inulin was essentially abolished compared...

  5. The Effect of Zofenopril on Pancreas, Kidney and Liver of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Ayşe ÇARLIOĞLU

    2014-05-01

    Full Text Available OBJECTIVE: Oxidative stress is responsible for some important complications of diabetes mellitus. Zofenopril, which has an antioxidant effect, may decrease the oxidative stress of the diabetic microenvironment. The aim of our study was to evaluate the effect of zofenopril in the liver, pancreas and kidney of alloxan-induced diabetic rats. MATERIAL and METHODS: Rats were divided into five groups: control group (n=6, rats treated with zonenopril (50 mg/kg/day, orally four weeks; n=6, rats exposed to alloxane (120 mg/kg single dose intraperitoneal injection, n=6, rats administered alloxan+zofenopril (n=6 and rats administered insulin plus alloxan. RESULTS: After one month, we observed histological improvement in the kidneys but not in the pancreas and liver. CONCLUSION: In conclusion, zofenopril may be effective on the renal complications of diabetes mellitus.

  6. A modified technique of renal artery anastomosis in rat kidney transplantation.

    Science.gov (United States)

    Zhang, G; Zhao, H; Sun, Z-Y

    2010-01-01

    To reduce warm ischemic time and avoid irreversible damage to the graft in rat kidney transplantation. After left nephrectomy, recipients were transplanted with syngeneic kidney grafts using microsurgical techniques. In control rats (n = 20), the renal artery anastomoses were performed with 8-9 interrupted sutures by the conventional technique. In experimental animals (n = 20), a modified anastomosis was performed using fewer (5-6) sutures and fibrin glue devoid of thrombin. The number of sutures in the control group was 8.09 + or - 0.35 while that in the experimental group was 5.65 + or - 0.48 (p experimental group (p experimental and control groups were 90 and 85%, respectively. Our modified technique for renal artery anastomosis significantly reduced the warm ischemic time in rat kidney transplantation. This technique would be a safe and reliable method for rat renal artery anastomosis as well as for other microarterial anastomoses, particularly for novice surgeons. Copyright 2009 S. Karger AG, Basel.

  7. Effects of Aminoguanidine on Lipid and Protein Oxidation in Diabetic Rat Kidneys

    OpenAIRE

    Yavuz, Dilek Gogas; Küçükkaya, Belgin; Ersöz, H. önder; Yalçin, A. Süha; Emerk, Kaya; Akalin, Sema

    2002-01-01

    Nonenzymatic glycation of tissue and plasma proteins may stimulate the production of oxidant and carbonyl stress in diabetes. The aim of this study was to evaluate the effects of aminoguanidine (AG) on lipid peroxidation, protein oxidation and nitric oxide (NO) release in diabetic rat kidneys. After induction of diabetes with streptozotocin, female Wistar rats were divided into 2 groups. Group DAG (n=9) rats were given AG hydrogen carbonate (1 g/L) in drinking water and group D (n=8) was diab...

  8. Establishment of rat model of combined kidney-adrenal gland allotransplantation

    Institute of Scientific and Technical Information of China (English)

    Yanjun Shi; Ruipeng Jia; Jiageng Zhu; Guangcheng Zhou

    2006-01-01

    Objective: To establish a rat model of combined kidney-adrenal gland and allotransplantation, and to explore the immunoprotecive effect of the transplanted adrenal gland on the transplanted kidney in the combined transplantation.Methods: SD rats 160 served as donors and recipients. The combined kidney-adrenal gland allotransplantation was performed.Infusion was conducted and prepared at prime position ,and the kidney and adrenal gland were at the left side. Direct vascular anastomosis and operation of connecting ureter attached part of bladder with the bladder were conducted. The kidney pedicle of the right side was ligated. Results: A stable and mature rat model of combined transplantation was established. The warm ischemia time was 30 seconds, and the cold ischemia time was 90-120min. The average time was 100 min. The operation time was 150 min.The survival time of the recipients was 21 days. The successful rate of the operation was 75%. Conclusion: The model of the combined kidney-adrenal gland allotransplantation can be established with higher successful rate. The model can be used to explore that transplanted adrenal gland may have immunoprotecive effect on the transplanted kidney in the combined transplantation.

  9. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats

    Science.gov (United States)

    Van, Tan Vu; Watari, Eriko; Taketani, Yutaka; Kitamura, Tomoyo; Shiota, Asuka; Tanaka, Terumi; Tanimura, Ayako; Harada, Nagakatsu; Nakaya, Yutaka; Yamamoto, Hironori; Miyamoto, Ken-ichi; Takeda, Eiji

    2012-01-01

    Hyperphosphatemia causes endothelial dysfunction as well as vascular calcification. Management of serum phosphate level by dietary phosphate restriction or phosphate binders is considered to be beneficial to prevent chronic kidney disease patients from cardiovascular disease, but it has been unclear whether keeping lower serum phosphate level can ameliorate endothelial dysfunction. In this study we investigated whether low-phosphate diet can ameliorate endothelial dysfunction in adenine-induced kidney disease rats, one of useful animal model of chronic kidney disease. Administration of 0.75% adenine-containing diet for 21 days induced renal failure with hyperphosphatemia, and impaired acetylcholine-dependent vasodilation of thoracic aortic ring in rats. Then adenine-induced kidney disease rats were treated with either control diet (1% phosphate) or low-phosphate diet (0.2% phosphate) for 16 days. Low-phosphate diet ameliorated not only hyperphosphatemia but also the impaired vasodilation of aorta. In addition, the activatory phosphorylation of endothelial nitric oxide synthase at serine 1177 and Akt at serine 473 in the aorta were inhibited by in adenine-induced kidney disease rats. The inhibited phosphorylations were improved by the low-phosphate diet treatment. Thus, dietary phosphate restriction can improve aortic endothelial dysfunction in chronic kidney disease with hyperphosphatemia by increase in the activatory phosphorylations of endothelial nitric oxide synthase and Akt. PMID:22798709

  10. Feeding flaxseed oil but not secoisolariciresinol diglucoside results in higher bone mass in healthy rats and rats with kidney disease.

    Science.gov (United States)

    Weiler, H A; Kovacs, H; Nitschmann, E; Bankovic-Calic, N; Aukema, H; Ogborn, M

    2007-05-01

    Flaxseed's oil and lignan, secoisolariciresinol diglucoside (SDG), are implicated in attainment of health and treatment of renal injury and osteoporosis. To test for these benefits, weanling Han:SPRD-cy rats (n=171) with or without kidney disease were randomized to diets made with either corn oil or flaxseed oil and with or without SDG for 12 weeks. In females, weight was lower with the SDG diet. In males fed flaxseed oil, lean mass was higher and fat % was lower. In both sexes, fat % was lower in diseased rats. Bone mineral content (BMC) and density were higher in rats fed flaxseed oil and lower in diseased rats, additionally; BMC was lower in SDG-supplemented females. The benefit of flaxseed oil on body composition is sex specific but the effect on bone mass is not. Lastly, reduced weight due to early rat kidney disease is not due to loss of lean body mass.

  11. High resolution helium ion scanning microscopy of the rat kidney.

    Science.gov (United States)

    Rice, William L; Van Hoek, Alfred N; Păunescu, Teodor G; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide

  12. Exercise training upregulates nitric oxide synthases in the kidney of rats with chronic heart failure.

    Science.gov (United States)

    Ito, Daisuke; Ito, Osamu; Mori, Nobuyoshi; Cao, Pengyu; Suda, Chihiro; Muroya, Yoshikazu; Hao, Kiyotaka; Shimokawa, Hiroaki; Kohzuki, Masahiro

    2013-09-01

    There is an interaction between heart and kidney diseases, which is a condition termed cardiorenal syndrome. Exercise training has cardioprotective effects, involving upregulation of endothelial (e) nitric oxide synthase (NOS) in the cardiovascular system. However, the effects of exercise training on NOS in the kidney with heart disease are unknown. The aim of the present study was to investigate whether exercise training upregulates NOS in the kidney, left ventricle and aorta of rats with chronic heart failure (CHF). Male Sprague-Dawley rats underwent left coronary artery ligation (LCAL) to induce CHF and were randomly assigned to sedentary or treadmill exercise groups 4 weeks after LCAL. Three days after exercising for 4 weeks, urine samples were collected for 24 h and blood samples were collected following decapitation. Nitric oxide synthase activity and protein expression were examined. Significant interactions between CHF and exercise training were observed on parameters of cardiac and renal function. Exercise training improved cardiac function, decreased plasma B-type natriuretic peptide levels, decreased urinary albumin excretion and increased creatinine clearance in CHF rats. Nitric oxide synthase activity, eNOS expression and neuronal (n) NOS expression were significantly decreased in the left ventricle and kidney of CHF rats. Exercise training significantly increased NOS activity and eNOS and nNOS expression. Upregulation of NOS in the kidney and left ventricle may contribute, in part, to the renal and cardiac protective effects of exercise training in cardiorenal syndrome in CHF rats.

  13. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    Directory of Open Access Journals (Sweden)

    Dilek Pandir

    2016-01-01

    Full Text Available Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ-induced diabetic rat kidney. At the end of the experimental period (28 days, we found that lycopene markedly decreased the malondialdehide (MDA levels in the kidney, urea, uric acid and creatinine levels in the serum of furan-treated rats. The increase of histopathology in the kidney of furan-treated rats were effectively suppressed by lycopene. Furthermore, lycopene markedly restored superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx and glutathione-S-transferase (GST activities in the kidney of furan-treated rats. In conclusion, these results suggested that lycopene could protect the rat kidney against furan-induced injury by improving renal function, attenuating histopathologic changes, reducing MDA production and renewing the activities of antioxidant enzymes.

  14. Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in nonclipped kidneys of two-kidney, one-clip hypertensive rats.

    Science.gov (United States)

    Shao, Weijian; Miyata, Kayoko; Katsurada, Akemi; Satou, Ryousuke; Seth, Dale M; Rosales, Carla B; Prieto, Minolfa C; Mitchell, Kenneth D; Navar, L Gabriel

    2016-08-01

    In angiotensin II (ANG II)-dependent hypertension, there is an angiotensin type 1 receptor-dependent amplification mechanism enhancing intrarenal angiotensinogen (AGT) formation and secretion in the tubular fluid. To evaluate the role of increased arterial pressure, AGT mRNA, protein expression, and urinary AGT (uAGT) excretion and tissue injury were assessed in both kidneys of two-kidney, one-clip Sprague-Dawley hypertensive rats subjected to left renal arterial clipping (0.25-mm gap). By 18-21 days, systolic arterial pressure increased to 180 ± 3 mmHg, and uAGT increased. Water intake, body weights, 24-h urine volumes, and sodium excretion were similar. In separate measurements of renal function in anesthetized rats, renal plasma flow and glomerular filtration rate were similar in clipped and nonclipped kidneys and not different from those in sham rats, indicating that the perfusion pressure to the clipped kidneys remained within the autoregulatory range. The nonclipped kidneys exhibited increased urine flow and sodium excretion. The uAGT excretion was significantly greater in nonclipped kidneys compared with clipped and sham kidneys. AGT mRNA was 2.15-fold greater in the nonclipped kidneys compared with sham (1.0 ± 0.1) or clipped (0.98 ± 0.15) kidneys. AGT protein levels were also greater in the nonclipped kidneys. The nonclipped kidneys exhibited greater glomerular expansion and immune cell infiltration, medullary fibrosis, and cellular proliferation than the clipped kidneys. Because both kidneys have elevated ANG II levels, the greater tissue injury in the nonclipped kidneys indicates that an increased arterial pressure synergizes with increased intrarenal ANG II to stimulate AGT production and exert greater renal injury.

  15. Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Arianne van Koppen

    Full Text Available Chronic kidney disease (CKD is a major health care problem, affecting more than 35% of the elderly population worldwide. New interventions to slow or prevent disease progression are urgently needed. Beneficial effects of mesenchymal stem cells (MSC have been described, however it is unclear whether the MSCs themselves or their secretome is required. We hypothesized that MSC-derived conditioned medium (CM reduces progression of CKD and studied functional and structural effects in a rat model of established CKD. CKD was induced by 5/6 nephrectomy (SNX combined with L-NNA and 6% NaCl diet in Lewis rats. Six weeks after SNX, CKD rats received either 50 µg CM or 50 µg non-CM (NCM twice daily intravenously for four consecutive days. Six weeks after treatment CM administration was functionally effective: glomerular filtration rate (inulin clearance and effective renal plasma flow (PAH clearance were significantly higher in CM vs. NCM-treatment. Systolic blood pressure was lower in CM compared to NCM. Proteinuria tended to be lower after CM. Tubular and glomerular damage were reduced and more glomerular endothelial cells were found after CM. DNA damage repair was increased after CM. MSC-CM derived exosomes, tested in the same experimental setting, showed no protective effect on the kidney. In a rat model of established CKD, we demonstrated that administration of MSC-CM has a long-lasting therapeutic rescue function shown by decreased progression of CKD and reduced hypertension and glomerular injury.

  16. Arterial baroreflex function does not influence telomere length in kidney of rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-fei ZHANG; Rui-fang YANG; Jin WANG; Lei ZHAO; Ling LI; Fu-ming SHEN; Ding-feng SU

    2006-01-01

    Aim:To investigate the relationship between arterial baroreflex (ABR) function and telomere length in kidney of rats.Methods:Stroke-prone spontaneously hypertensive rats (SHR-SP) and sinoaortic denervated rats (SAD) were used as models with depressed arterial baroreflex.In the first experiments,SHR-SP rats were examined at the age of 24 weeks for both sexes and 40 weeks for female rats. In the second experiments,SAD rats were studied 4 and 35 weeks after SAD operation.Blood pressure was continuously recorded for 4 h in a conscious state. After the determination of baroreflex sensitivity (BRS),the terminal restriction fragment (TRF) of rat kidney was analyzed using Southern blot.Results:The TRF length was found shorter in:a) male SHR-SP compared with age-matched female SHR-SP;b) female SHR-SP 40 weeks of age compared with 24 weeks of age; c) in rats 35 weeks after operation compared with rats 4 weeks post operation in both sham-operated and SAD rats.Conclusion:In SHR-SP,the TRF length did not correlate with BRS.In addition.SAD did not affect TRF length at either 4 or 35 weeks post-surgery.It may be concluded that baroreflex function does not influence the terminal restriction fragment (TRF) length in rats.

  17. Effects of ultraviolet radiation on mole rats kidney: A histopathologic and ultrastructural study

    Directory of Open Access Journals (Sweden)

    Hüseyin Türker

    2014-04-01

    Full Text Available The purpose of this study was to realize the ultrastructural effects of ultraviolet radiation on the kidney tissue cells of mole rats (Spalax leucodon. The mole rats of 180–200 g body weight were divided into the control and radiation-trial groups. The control group was not given any radiation. The other groups were irradiated with artificially produced UVC radiation for 14, 28 and 60 days. The kidney tissue samples were prepared at the end of experiments and analyzed by the light and electron microscope. Several effects were observed in the kidney tissues cells analyzed in accordance with the dose magnitude of radiation. These results clearly show the detrimental effects of UVC radiation on kidney tissue cells in exposure periods dependent on radiation dose and exposure time.

  18. Magnetic resonance imaging (MRI) and pathophysiology of the rat kidney in streptozotocin-induced diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Lohr, J.; Mazurchuk, R.J.; Acara, M.A.; Nickerson, P.A.; Fiel, R.J. (State Univ. of New York, Buffalo (USA))

    1991-01-01

    Proton magnetic resonance imaging was performed on rats before induction of diabetes with streptozotocin (STZ) and at 2 and 12 days postinduction. Images revealed an increase in maximal longitudinal and axial dimensions of the kidneys at 2 days and a further increase at 12 days. Similarly, an increase in the size of the remaining kidney was seen in a rat which underwent uninephrectomy as a positive control. Two major differences were observed between the kidney undergoing compensatory hypertrophy and those developing diabetic nephropathy: (i) Expansion of the renal vasculature was seen only in images of the diabetic rat; (ii) A loss in conspicuity of the normal corticomedullary junction was seen in the T2-weighted images of the diabetic rat but not in the uninephrectomized rat. Histologic examination revealed that the medulla increased to a size greater than the cortex during diabetic nephropathy whereas the medullary volume was less than that of the cortex during compensatory hypertrophy. In vitro T1 relaxation times in cortex, outer medulla and inner medulla of kidneys from control rats were measured and compared with the same respective regions in diabetic rats. When these values were correlated with tissue water content, a linear increase in relaxation rate versus percent water content from cortex to inner medulla was found in the control kidneys, but this correlation was absent in diabetic nephropathy. These studies demonstrate that MRI is an effective noninvasive tool for studying the course of renal hypertrophy and hydration changes in the development of renal disease in STZ-induced diabetes in the rat.

  19. Lycopene Protects the Diabetic Rat Kidney Against Oxidative Stress-mediated Oxidative Damage Induced by Furan

    OpenAIRE

    Dilek Pandir; Betul Unal; Hatice Bas

    2016-01-01

    Furan is a food and environmental contaminant and a potent carcinogen in animals. Lycopene is one dietary carotenoid found in fruits such as tomato, watermelon and grapefruit. The present study was designed to explore the protective effect of lycopene against furan-induced oxidative damage in streptozotocin (STZ)-induced diabetic rat kidney. At the end of the experimental period (28 days), we found that lycopene markedly decreased the malondialdehide (MDA) levels in the kidney, urea, uric aci...

  20. Discovery of sphingosine 1-O-methyltransferase in rat kidney and liver homogenates

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Dong-soon IM

    2008-01-01

    Aim:To characterize sphingosine methyltransferase in rat tissues.Methods:By using S-adenosyl-L-(methyl-3H) methionine,enzymatic activity was measured in the rat liver and kidney homogenates.Results:The optimum pH and reaction time for the enzyme assay were pH 7.8 and 1 h.ZnCl2 inhibited the activity,but not MgCl2,CaCl2,CoCl2,or NiCl2.In the kidney homogenate,enzymatic activity was detectable in the cytosol and all membrane fractions from the plasma membrane and other organelles; however,in the liver homogenate,enzymatic activity was detectable in all membrane fractions,but not in the cytosol.We also tested the enzymatic activity with structurally-modified sphingosine derivatives.Conclusion:We found sphingosine l-O-methyltransferase activity in the rat liver and kidney homogenates.

  1. Urinary epidermal growth factor is excreted from the rat isolated perfused kidney in the absence of plasma

    DEFF Research Database (Denmark)

    Jørgensen, P E; Hilchey, S D; Nexø, Ebba;

    1993-01-01

    . Administration of the proteinase inhibitor aprotinin reduced urinary EGF excretion from the rat isolated perfused kidney by approximately 50%. In conclusion, the rat isolated perfused kidney excreted significant amounts of urinary EGF without having access to plasma, and EGF excretion was reduced by aprotinin...

  2. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  3. Characterization of kidney sulfotransferases during lead-induced nephrotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Templer, L.A.; Kong, J.; Ronis, M.J.J.; Ringer, D.P. [Univ. Arkansas Medical School, Little Rock, AR (United States)

    1996-03-08

    Kidney sulfotransferases (ST) have been shown to be involved in the biotransformation of steroid and thyroid hormones as well as xenobiotics varying from carcinogenic heterocyclic amines to drugs such as acetaminophen. In order to examine the impact of lead-induced nephrotoxicity on kidney aryl, estrogen and DHEA STs during growth and development, time-impregnated female Sprague-Dawley rats were exposed ad libitum to lead acetate (0.6%) in drinking water from gestational day 5 and continuing in male and female pups until they were sacrificed at day 85. Cytosols from male rat kidneys showed levels of estrogen ST activity (59% of females) that were significantly lowered (P{le}0.05) after lead exposure (6-20% of male). Aryl ST activity was relatively unchanged in male rats after rat kidney cytosol. Immunochemical analysis of cytosols from normal males and females with the antiserums to the three STs substantiated the presence of only the aryl and estrogen STs. Immunohistochemical techniques localized the aryl and estrogen STs primarily to the S3 section of the proximal tubules. These findings indicate that kidney STs may be differently modulated during lead exposure.

  4. Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Josiah Obaghwarhievwo Adjene

    2010-05-01

    Full Text Available Background: Health concerns over soda pop drinks have been severally report. However, histological perspectives are not very common. Aim: The objective of this study is to investigate histological effect of chronic consumption of soda pop drinks on the kidney of adult Wistar rats. Materials and methods: The rats of both sexes (n = 24, with average weight of 200g were randomly assigned into two treatment (A & B (n=16 and Control (c (n=8 groups. The rats in the treatment group (A received a brand of soda pop drink on a daily basis for thirty days. The rats in treatment group (B received another brand of soda drink, while the control group (C received equal amount of water for the same period. The rats were given the drinks as well as feeds liberally for thirty days, and sacrificed by cervical dislocation on the thirty-first day of the experiment. The kidney was carefully dissected out and quickly fixed in 10% formal saline for histological study. Results: The findings indicate that rats in the treated groups (A&B showed some varying degree of distortion and disruption of the renal structure. There are observable diffuse signs of glomerulonephritis with some congestion and tubular necrosis as compared to the control group. Conclusion: Chronic consumption of soda pop drinks may affect the microanatomy of the kidney of adult Wistar rats. Further study aimed at corroborating these observations in humans is warranted.

  5. Histological effects of chronic consumption of soda pop drinks on kidney of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Josiah Obaghwarhievwo Adjene

    2010-01-01

    Full Text Available Background : Health concerns over soda pop drinks have been severally report. However, histological perspectives are not very common. Aim: The objective of this study is to investigate histological effect of chronic consumption of soda pop drinks on the kidney of adult Wistar rats. Materials and methods : The rats of both sexes (n = 24, with average weight of 200g were randomly assigned into two treatment (A & B (n=16 and Control (c (n=8 groups. The rats in the treatment group (A received a brand of soda pop drink on a daily basis for thirty days. The rats in treatment group (B received another brand of soda drink, while the control group (C received equal amount of water for the same period. The rats were given the drinks as well as feeds liberally for thirty days, and sacrificed by cervical dislocation on the thirty-first day of the experiment. The kidney was carefully dissected out and quickly fixed in 10% formal saline for histological study. Results : The findings indicate that rats in the treated groups (A&B showed some varying degree of distortion and disruption of the renal structure. There are observable diffuse signs of glomerulonephritis with some congestion and tubular necrosis as compared to the control group. Conclusion : Chronic consumption of soda pop drinks may affect the microanatomy of the kidney of adult Wistar rats. Further study aimed at corroborating these observations in humans is warranted.

  6. Intravenous injection of Xuebijing attenuates acute kidney injury in rats with paraquat intoxication

    Science.gov (United States)

    Xu, Jia-jun; Zhen, Jian-tao; Tang, Li; Lin, Qing-ming

    2017-01-01

    BACKGROUND: The study aimed to investigate the therapeutic benefits of intravenous Xuebijing on acute kidney injury (AKI) in rats with paraquat intoxication. METHODS: Male Sprague-Dawley rats were randomly divided equally into three groups: sham group (n=8), paraquat group (n=8) and Xuebijing-treated group (n=8) using a random number table. The rats were intraperitoneally injected with 50 mg/kg of paraquat. One hour after paraquat administration, the rats were treated intravenously with Xuebijing (8 mL/kg). At 12 hours after paraquat administration, serum was collected to evaluate kidney function, then the rats were sacrificed and kidney samples were immediately harvested. AKI scores were evaluated by renal histopathology and pro-inflammatory cytokines mRNA levels in kidney were assayed using real-time RT-PCR. RESULTS: Serum urea nitrogen, creatinine and AKI scores were significantly higher in the paraquat group, compared with the sham group (Pparaquat group (Pparaquat group (Pparaquat poisoning by suppressing inflammatory response. PMID:28123623

  7. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats.

    Science.gov (United States)

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-04-01

    Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  8. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj on brain cerebrum, liver & kidney in rats

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar

    2014-01-01

    Full Text Available Background & objectives: Sidh Makardhwaj (SM is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg, mercuric chloride (1 mg/kg and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA, reduced glutathione (GSH in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin and kidney (serum urea and creatinine function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney.

  9. The Preventive Effect of Vitamin C on Styrene-Induced Toxicity in Rat Liver and Kidney

    Directory of Open Access Journals (Sweden)

    Ahmadizadeh

    2015-04-01

    Full Text Available Background Styrene (ST is widely used as an organic solvent in many industrial settings. Increasing evidence indicated that ST induced toxicity in human and animals. Occupational exposure to ST can result in multiple-organ toxicity. Objectives The aim of the present study was to investigate the preventive effect of vitamin C (Vit C on ST- induced toxicity in rat liver and kidney. Materials and Methods Adult male rats were pretreated with 300 mg/kg Vit C intraperitoneally. Control rats received vehicle only (distilled water, D H2O. Thirty minutes later, animals were given different doses (0, 200, 400, or 600 mg/kg of ST. Twenty-four hours later, animals were killed and their blood samples were processed for determination of biochemical parameters. Liver damage was estimated by measuring serum aspartate aminotransferase (AST, alanine aminotransferase (ALT, and alkaline phosphatase (ALP activity. nephrotoxicity was evaluated by measuring blood urea nitrogen (BUN and creatinine (CR concentrations. Liver and kidney tissues were removed, fixed and processed for light microscopy. Results Styrene induced a dose-dependent elevation in the AST, ALT, ALP, BUN, and CR levels when compared to those of the control animals. The liver and kidney tissues were intact in control rats. Moreover, ST provoked a dose-dependent injury in the liver and kidney tissues. Vitamin C significantly decreased all biochemical parameters and protected liver and kidney cells against ST-induced toxicity. Conclusions The results of this study showed that Vit C has potential to protect rat liver and kidney tissues against styrene toxicity.

  10. Measurement of kidney stone formation in the rat model using micro-computed tomography

    Science.gov (United States)

    Umoh, Joseph U.; Pitelka, Vasek; Goldberg, Harvey A.; Holdsworth, David W.

    2012-03-01

    Kidney stones were induced in 5 rats by treating them with 1% ethylene glycol and 1% ammonium chloride through free drinking water for six weeks. The animals were anesthetized and imaged in vivo before the treatment at week 0, to obtain baseline data, then at weeks 2 and 6 to monitor the kidney stone formation. Micro-CT imaging was performed with x-ray tube voltage of 90 kV and a current of 40 mA. At week 2, kidney stone formation was observed. A micro-computed tomography methodology of estimating the volume and hydroxyapatite-equivalent mineral content of the kidney stone is presented. It determines the threshold CT number (390 HU) that separates the kidney stone from the tissue. The mean volume of the stones in the 10 kidneys significantly increased from 3.81+/-0.72 mm3 at week 2 to 23.96+/-9.12 mm3 at week 6 (perror was about 4%. This method allows analysis of the kidney stone formation to be carried out in vivo, with fewer experimental animals compared with other ex vivo methods, in which animals are sacrificed. It is precise, accurate, non-destructive, and could be used in pre-clinical research to study the formation of kidney stones in live small animals.

  11. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats

    OpenAIRE

    Gajendra Kumar; Amita Srivastava; Surinder Kumar Sharma; Yogendra Kumar Gupta

    2014-01-01

    Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behaviou...

  12. Taurine decreased uric acid levels in hyperuricemic rats and alleviated kidney injury.

    Science.gov (United States)

    Feng, Ying; Sun, Fang; Gao, Yongchao; Yang, Jiancheng; Wu, Gaofeng; Lin, Shumei; Hu, Jianmin

    2017-07-29

    Hyperuricemia can lead to direct kidney damage. Taurine participates in several renal physiological processes and has been shown as a renoprotective agent. It has been reported that taurine could reduce uric acid levels in diabetic rats, but to date there was no research on the effects of taurine on hyperuricemic rats with kidney injury. In present study, hyperuricemic rat models were induced by intragastric administration of adenine and ethambutol hydrochloride for 10 days, and taurine (1% or 2%) were added in the drinking water 7 days in advance for consecutively 17 days. The results showed that taurine alleviated renal morphological and pathological changes as well as kidney dysfunction in hyperuricemic rats. Taurine could efficiently decrease the elevated xanthine oxidase activities in hyperuricemic rats, indicating its effect on the regulation of uric acid formation. The reabsorption and secretion of uric acid are dependent on a number of urate transporters. Expressions of three urate transporters were significantly down-regulated in hyperuricemic rats, while taurine prevented the decrease of mRNA and protein expression levels of these urate transporters. The results indicate that taurine might play a role in the regulation of renal uric acid excretion. Therefore, taurine could be a promising agent for the treatment of hyperuricemia. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Exhaustive swimming exercise related kidney injury in rats - protective effects of acetylbritannilactone.

    Science.gov (United States)

    Wu, G L; Chen, Y S; Huang, X D; Zhang, L X

    2012-01-01

    The aim of this study was to investigate the protective effects of acetylbritannilactone (ABL) on renal injury induced by acute exhaustive exercise in the rat. The exhaustive exercise induced kidney injury in rats was established by exhaustive swimming (ES). ABL (26 mg/kg) or polyglycol (control) were administrated orally by gastric gavage 24 h before training. Renal function, biochemical index, renal histopathological change, oxidative stress indices, renal cell apoptosis and inflammatory molecules were checked after ES, for 6 h and 24 h. It was found that immediately after exhaustive swimming, the serum urea and creatinine were significantly higher in ES rats, and the same for serum creatine kinase. All the values were reduced in the ES rats treated with ABL. The increase of superoxide dismutase activity and decrease of malondialdehyde content in the kidney were found in rats with ABL treatment. Tubular cell apoptosis at different time points after ES were significantly reduced by the ABL treatment. The increased expression of TNF-α and NF-κB induced by ES was also significantly decreased by ABL treatment. Our results suggest that ABL protects rats from overtraining-induced kidney injury by inhibiting renal cell apoptosis and suppressing oxidative-stress generation and inhibiting inflammation. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Dynamic renal scintigraphic estimation of deceased donor kidneys in a rat model

    Directory of Open Access Journals (Sweden)

    Huseyin Aydin Mitil

    2017-01-01

    Full Text Available At present a large number of the renal transplantations are being performed from the deceased donors. The success of these transplantations depends on the viability of the deceased donor kidneys. The aim of this study was to investigate the reliability of scintigraphic estimation of function of deceased donor kidneys by comparing the histopathologic and scintigraphic findings. Ten rats were included in the study (2–3 months old, 250–300 g, all male. Control scintigraphy was performed to all the rats by injection of 37 MBq Tc-99m DTPA from the tail vein in a dynamic manner. Brain death of the rats was achieved by inflation of a Fogartys catheter in the cranial cavity. Immediately, after brain death confirmation, dynamic renal scintigraphy was performed with the same parameters of control scintigraphy. In the comparison of scintigraphies obtained in the before and just after brain death period, there was impairment of tubular functions, concentration and excretion functions in the postbrain death period. In the immediate postbrain death period, there was a significant elevation in the glomerular filtration rate and time to maximum concentration values. In the histopathological evaluation of the kidney samples in the postbrain death period, there were definitive findings of tubular impairment. Dynamic renal scintigraphy also demonstrated definite impairment of tubular system and tubular functions in the deceased donor kidneys. This could explain the reason of the increased frequency of acute tubular necrosis seen among deceased donor kidneys.

  15. Oenanthe javanica extract increases immunoreactivities of antioxidant enzymes in the rat kidney

    Institute of Scientific and Technical Information of China (English)

    Hyun-Jin Tae; Joon Ha Park; Jeong-Hwi Cho; In Hye Kim; Ji Hyeon Ahn; Jae Chul Lee; Jong-Dai Kim

    2014-01-01

    Background Oenanthe javanica is an aquatic perennial herb originated from East Asia.Nowadays,the effects of Oenanthe javanica have been proven in various disease models.Studies regarding the antioxidant effect of Oenanthe javanica in the kidney are still unclear.Methods This study was therefore performed to investigate the effect of the Oenanthe javanica extract (OJE) in the rat kidney using immunohistochemistry for antioxidant enzymes,copper,zinc-superoxide dismutase (SOD1),manganese superoxide dismutase (SOD2),catalase (CAT) and glutathione peroxidase (GPx).Sprague-Dawley rats were randomly assigned to three groups:(1) normal diet fed-group (normal-group),(2) diet containing ascorbic acid (AA)-fed group (AA-group) as a positive control,(3) diet containing OJE-fed group (OJE-group).AA and OJE were supplied during 28 days.Results The side-effects were not observed in all the groups.Immunoreactivities of SOD1,SOD2,CAT and GPx were easily detected in the distal tubules of the kidney,and their immunoreactivities in the AA-and OJE-groups were increased to about 1.4-1.5 times and 2 times,respectively,compared with those in the normal-group.Conclusion OJE significantly increased expressions of SOD1 & 2,CAT and GPx immunoreactivities in the distal tubules of the rat kidney,and this finding suggests that significant enhancements of endogenous enzymatic antioxidants by OJE treatment may be a legitimate strategy for decreasing oxidative stresses in the kidney.

  16. The Investigation of Garlic (Allium Sativum Extract on Lead Detoxification of Neonatal Rats Kidney

    Directory of Open Access Journals (Sweden)

    Habibollah Johari

    2014-06-01

    in kidney poisoning treatment induced by lead in neonatal rat.Materials & Methods: Rats were divided into 7 groups of 8. The First group was the control group, which had received no materials. The second group had received 0/1 ml distilled water, the third group had received the lead with a dose of 0/6 gram per liter. The forth group had just received 0/4 g/kg garlic alcoholic – water extract. The fifth, sixth, and seventh group had first received 0/6 g lead perliter and then received doses of 0/1, 0/2, 0/4 g/kg garlic. Then, injections was performed orally in 10 consecutive days. The data were analysed then using T. Results: Based on the obtained results, there is a significant increase in the body weight and the kidney of the third, fifth, sixth and seventh groups compared with the control group. However, the body weight and kidney of rats in the fourth group showed a meaningful decrease comparing with the lead group. Regarding the third group, there was a meaningful increase in Urea, uric acid, creatinine and potassium compared with the control group but a significant decrease in the sodium. Conclusion: Protective effects of garlic on kidney are related to antioxidant properties, since different types of oxidation reactions have negative effects on glomerular filtration rate. Garlic is eliminating the poisoning effect of lead on the kidney because of having properties such as antioxidant and protective effect.

  17. Hydrogen sulfide ameliorates the kidney dysfunction and damage in cisplatin-induced nephrotoxicity in rat

    Directory of Open Access Journals (Sweden)

    Akram Ahangarpour

    2014-06-01

    Full Text Available Hydrogen Sulfide (H2S prevents and treats a variety of disorders via its cytoprotective effects. However, the effects of H2S on rats with cisplatin (CP nephrotoxicity are unclear. The aim was to study the effects of H2S on rats with CP nephrotoxicity. Thirty male Sprague-Dawley rats were divided into three groups: control group, nephrotoxic group received single dose of CP (6 mg kg-1 and nephrotoxic groups that received single dose 100 µmol kg-1 NaHS. On fifth day after injection, urine of each rat was collected over a 24-hr period. Animals were sacrificed 6 days after CP (or vehicle treatment, and blood, urine, and kidneys were obtained, prepared for light microscopy evaluation, lipid peroxidation content and laboratory analysis. The results showed that plasma urea (226%, creatinine (271%, renal lipid peroxidation content (151%, Na and K fractional excretion, urine protein, volume and kidney weight in CP nephrotoxic rats were significantly higher and urine osmolarity and creatinine clearance lower than in controls. Increases of the proximal tubular cells apoptosis and mesangial matrix in CP nephrotoxicity group rats were observed. Hydrogen sulfide reversed the CP-induced changes in the experimental rats H2S prevented the progression of CP nephrotoxicity in rats possibly through its cytoprotective effects such as antioxidant properties.

  18. BROMATE-INDUCED TRANSCRIPTIONAL CHANGES IN LONG-EVANS RAT KIDNEYS

    Science.gov (United States)

    Bromate-Induced Transcriptional Changes in Long-Evans Rat Kidneys.Ozone disinfection of surface waters containing bromide ion (Br-) results in the oxidation of bromide to bromate, which can be found in finished drinking water as a by-product. Potassium bromate (KBrO3)...

  19. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2014-01-01

    transiently after a 1-desamino-8-D-arginine vasopressin challenge. COX-2 inhibition did not reduce cortical lithium-induced cell proliferation and phosphorylation of glycogen synthase kinase-3β (GSK-3β). COX-1 protein abundance increased in rat kidney cortex in response to lithium. COX-1 immunoreactivity...

  20. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-19

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of (/sup 125/I)-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of (/sup 3/H)-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet.

  1. EFFECT OF MULTIGLYCOSIDES OF TRIPTERYGIUM WILFORDH (GTW) ON RAT TESTIS, HEART, LIVER AND KIDNEY

    Institute of Scientific and Technical Information of China (English)

    ZHOULan-Fang; LEIHai-Peng

    1989-01-01

    Adult male Wistar rats were given GTW orally at 50 rag/kg or 20 mg / kg for 4 or 5 weeks. Control animals were given the vehicle only. ARer treatment, testis, heart, liver and kidney were removed and examined. The scminiferous tubules of the treated

  2. Insulin-mediated oxidative stress and DNA damage in LLC-PK1 pig kidney cell line, female rat primary kidney cells, and male ZDF rat kidneys in vivo.

    Science.gov (United States)

    Othman, Eman Maher; Kreissl, Michael C; Kaiser, Franz R; Arias-Loza, Paula-Anahi; Stopper, Helga

    2013-04-01

    Hyperinsulinemia, a condition with excessively high insulin blood levels, is related to an increased cancer incidence. Diabetes mellitus is the most common of several diseases accompanied by hyperinsulinemia. Because an elevated kidney cancer risk was reported for diabetic patients, we investigated the induction of genomic damage by insulin in LLC-PK1 pig kidney cells, rat primary kidney cells, and ZDF rat kidneys. Insulin at a concentration of 5nM caused a significant increase in DNA damage in vitro. This was associated with the formation of reactive oxygen species (ROS). In the presence of antioxidants, blockers of the insulin, and IGF-I receptors, and a phosphatidylinositol 3-kinase inhibitor, the insulin-mediated DNA damage was reduced. Phosphorylation of protein kinase B (PKB or AKT) was increased and p53 accumulated. Inhibition of the mitochondrial and nicotinamide adenine dinucleotide phosphatase oxidase-related ROS production reduced the insulin-mediated damage. In primary rat cells, insulin also induced genomic damage. In kidneys from healthy, lean ZDF rats, which were infused with insulin to yield normal or high blood insulin levels, while keeping blood glucose levels constant, the amounts of ROS and the tumor protein (p53) were elevated in the high-insulin group compared with the control level group. ROS and p53 were also elevated in diabetic obese ZDF rats. Overall, insulin-induced oxidative stress resulted in genomic damage. If the same mechanisms are active in patients, hyperinsulinemia might cause genomic damage through the induction of ROS contributing to the increased cancer risk, against which the use of antioxidants and/or ROS production inhibitors might exert protective effects.

  3. Localization of prostaglandin E(2) EP2 and EP4 receptors in the rat kidney

    DEFF Research Database (Denmark)

    Jensen, B L; Stubbe, J; Hansen, P B

    2001-01-01

    -selective agonist, dose dependently raised cAMP levels in microdissected DTL and outer medullary vasa recta specimens but had no effect in EP2-negative outer medullary collecting duct segments. Dietary salt intake did not alter EP2 expression in the kidney medulla. These results suggest that PGE(2) may act......We investigated the localization of cAMP-coupled prostaglandin E(2) EP2 and EP4 receptor expression in the rat kidney. EP2 mRNA was restricted to the outer and inner medulla in rat kidney, as determined by RNase protection assay. RT-PCR analysis of microdissected resistance vessels and nephron...... segments showed EP2 expression in descending thin limb of Henle's loop (DTL) and in vasa recta of the outer medulla. The EP4 receptor was expressed in distal convoluted tubule (DCT) and cortical collecting duct (CCD) in preglomerular vessels, and in outer medullary vasa recta. Butaprost, an EP2 receptor...

  4. Modulatory effect of Mangifera indica against carbon tetrachloride induced kidney damage in rats.

    Science.gov (United States)

    Awodele, Olufunsho; Adeneye, Adejuwon Adewale; Aiyeola, Sheriff Aboyade; Benebo, Adokiye Senibo

    2015-12-01

    There is little scientific evidence on the local use of Mangifera indica in kidney diseases. This study investigated the reno-modulatory roles of the aqueous stem bark extract of Mangifera indica (MIASE) against CCl4-induced renal damage. Rats were treated intragastrically with 125, 250 and 500 mg/kg/day MIASE for 7 days before and after the administration of CCl4 (3 ml/kg of 30% CCl4, i.p.). Serum levels of electrolytes (Na+, K+, Cl(-), HCO3(-)), urea and creatinine were determined. Renal tissue reduced glutathione (GSH), malondialdehyde (MDA), catalase (CAT), superoxide (SOD) activities were also assessed. The histopathological changes in kidneys were determined using standard methods. In CCl4 treated rats the results showed significant (pMangifera indica may present a great prospect for drug development in the management of kidney disease with lipid peroxidation as its etiology.

  5. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Ding

    2014-01-01

    Full Text Available Previous studies reported the oral administration of Naja naja atra venom (NNAV reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180 μg/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson’s trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.

  6. Ameliorating Adriamycin-Induced Chronic Kidney Disease in Rats by Orally Administrated Cardiotoxin from Naja naja atra Venom.

    Science.gov (United States)

    Ding, Zhi-Hui; Xu, Li-Min; Wang, Shu-Zhi; Kou, Jian-Qun; Xu, Yin-Li; Chen, Cao-Xin; Yu, Hong-Pei; Qin, Zheng-Hong; Xie, Yan

    2014-01-01

    Previous studies reported the oral administration of Naja naja atra venom (NNAV) reduced adriamycin-induced chronic kidney damage. This study investigated the effects of intragastric administrated cardiotoxin from Naja naja atra venom on chronic kidney disease in rats. Wistar rats were injected with adriamycin (ADR; 6 mg/kg body weight) via the tail vein to induce chronic kidney disease. The cardiotoxin was administrated daily by intragastric injection at doses of 45, 90, and 180  μ g/kg body weight until the end of the protocol. The rats were placed in metabolic cages for 24 hours to collect urine, for determination of proteinuria, once a week. After 6 weeks, the rats were sacrificed to determine serum profiles relevant to chronic kidney disease, including albumin, total cholesterol, phosphorus, blood urea nitrogen, and serum creatinine. Kidney histology was examined with hematoxylin and eosin, periodic acid-Schiff, and Masson's trichrome staining. The levels of kidney podocin were analyzed by Western blot analysis and immunofluorescence. We found that cardiotoxin reduced proteinuria and can improve biological parameters in the adriamycin-induced kidney disease model. Cardiotoxin also reduced adriamycin-induced kidney pathology, suggesting that cardiotoxin is an active component of NNAV for ameliorating adriamycin-induced kidney damage and may have a potential therapeutic value on chronic kidney disease.

  7. High Resolution Ultrasonography for Assessment of Renal Cysts in the PCK Rat Model of Autosomal Recessive Polycystic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Sarika Kapoor

    2016-03-01

    Full Text Available Background/Aims: The PCK rat model of polycystic kidney disease is characterized by the progressive development of renal medullary cysts. Here, we evaluated the suitability of high resolution ultrasonography (HRU to assess the kidney and cyst volume in PCK rats, testing three different ultrasound image analysis methods, and correlating them with kidneys weights and histological examinations. Methods: After inducing anesthesia, PCK rats (n=18 were subjected to HRU to visualize the kidneys, to perform numeric and volumetric measurements of the kidney and any cysts observed, and to generate 3-dimensional images of the cysts within the kidney parenchyma. Results: HRU provided superior information in comparison to microscopic analysis of stained kidney sections. HRU-based kidney volumes correlated strongly with kidney weights (R2=0.809; PConclusion: HRU represents a useful diagnostic tool for kidney and cyst volume measurements in PCK rats. Sequential HRU examinations may be useful to study the effect of drugs on cyst growth without the need to euthanize experimental animals.

  8. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Directory of Open Access Journals (Sweden)

    Niamh E Goulding

    2015-06-01

    Full Text Available Aim: Chronic kidney disease (CKD is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA and renal excretory function in cisplatin-induced renal failure.Methods: Rats were either intact or bilaterally renally denervated four days prior to receiving cisplatin (5mg/kg i.p. and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys.Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3-4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalised following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation.

  9. The effects of Artemisia deserti ethanolic extract on pathology and function of rat kidney

    Directory of Open Access Journals (Sweden)

    Ali Noori

    2014-11-01

    Full Text Available Objectives: Medicinal plants played an important role in human health. The kidney is a major organ for elimination the additional materials of body. Some of metabolic waste products are excreted through the kidneys, give us useful information about kidney health. Therefore, the aim of this research was to study the effects of A. deserti flowering tips extract on kidney. Materials and Methods: Three groups of animal were studied. Wistar rats were divided into three groups. Group 1 was injected with saline, group 2 and 3 were injected with extract, 100 mg/kg and 200 mg/kg, respectively. The animals were anesthetized, blood samples were collected 2 days after the last injection, then urea, uric acid and creatinine levels were assayed. Also, the kidney histology was studied. Results: No significant changes in urea and uric acid were observed. But, creatinine concentration was changed significantly in group 3 compared to other groups. The extract caused histologic changes in the kidney, including, glomerular atrophy, congestion of inflammatory cells and degeneration of the renal tubules. Conclusion: The results showed that A. deserti extract was able to damage the kidney tissue. However, the reason for these histopathological changes remains to be clarified.

  10. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Directory of Open Access Journals (Sweden)

    K J Kelly

    Full Text Available Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  11. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Science.gov (United States)

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  12. Gender differences in adenine-induced chronic kidney disease and cardiovascular complications in rats.

    Science.gov (United States)

    Diwan, Vishal; Small, David; Kauter, Kate; Gobe, Glenda C; Brown, Lindsay

    2014-12-01

    Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) and associated cardiovascular disease. To induce kidney damage in male and female Wistar rats (n = 12/group), a 0.25% adenine diet for 16 wk was used. Kidney function (blood urea nitrogen, plasma creatinine, proteinuria) and structure (glomerular damage, tubulointerstitial atrophy, fibrosis, inflammation); cardiovascular function (blood pressure, ventricular stiffness, vascular responses, echocardiography) and structure (cardiac fibrosis); plasma testosterone and estrogen concentrations; and protein expression for oxidative stress [heme oxygenase-1, inflammation (TNF-α), fibrosis (transforming growth factor-β), ERK1/2, and estrogen receptor-α (ER-α)] were compared in males and females. Adenine-fed females had less decline in kidney function than adenine-fed males, although kidney atrophy, inflammation, and fibrosis were similar. Plasma estrogen concentrations increased and plasma testosterone concentrations decreased in adenine-fed males, with smaller changes in females. CKD-associated molecular changes in kidneys were more pronounced in males than females except for expression of ER-α in the kidney, which was completely suppressed in adenine-fed males but unchanged in adenine-fed females. Both genders showed increased blood pressure, ventricular stiffness, and cardiac fibrosis with the adenine diet. Cardiovascular changes with adenine were similar in males and females, except males developed concentric, and females eccentric cardiac hypertrophy. In hearts from adenine-fed male and female rats, expression of ER-α and activation of the ERK1/2 pathway were increased, in part explaining changes in cardiac hypertrophy. In summary, adenine-induced kidney damage may be increased in males due to the suppression of ER-α.

  13. [Pentosan polysulfate sodium prevents kidney morphological changes and albuminuria in rats with type 1 diabetes].

    Science.gov (United States)

    Mathison Natera, Y; Finol, H J; Quero, Z; González, R; González, J

    2010-01-01

    Decreased levels of glycosaminoglycans (GAGs) have been observed in the kidney and other organs, in human and animal models of diabetes. Long-term administration of heparins and other glycosaminoglycans has demonstrated a beneficial effect on morphological and functional kidney abnormalities in diabetic rats. We assessed the effect of pentosan polysulfate sodium (PPS), a semi-synthetic glycosaminoglycan with low anticoagulant activity, on kidney involvement in streptozotocin diabetic rats. Diabetes was induced in male Sprague-Dawley rats by i.v. administration of streptozotocin (STZ). Animals were randomly allocated to three groups: C = control, STZ and STZ + PPS = pretreated with PPS (15 mg/kg, s.c.). After three months of follow-up, blood and 24 h-urine samples were obtained, the animals were sacrificed and the kidney microdissected for morphometric analysis. Urinary albumin excretion was markedly increased in untreated diabetic rats (C = 0.26 ± 0.03 vs STZ = 7.75 ± 1.8 mg/24 h) and PPS treatment partially prevented the albumin rise (3.7 ± 0.7 mg/24 h), without affecting the metabolic control HbA1c (C = 3.6 ± 1.7; STZ = 8.82 ± 0.47; STZ + PPS = 8.63 ± 0.54). Electron microscope observation revealed typical renal lesions described in experimental diabetes (STZ group). PPS administration prevents the tubular basement membrane thickening and the loss of cytoarchitecture induced by experimental diabetes. Our data demonstrate that long-term administration of PPS has a favourable effect on morphological and functional abnormalities in kidneys of diabetic rats and suggests a potential therapeutic use for this compound.

  14. Development of kidney tumors in the male F344/N rat after treatment with dimethyl methylphosphonate.

    Science.gov (United States)

    Dunnick, J K; Eustis, S L; Haseman, J K

    1988-07-01

    Dimethyl methylphosphonate (DMMP), a chemical that has been used as a flame retardant and as a nerve gas simulant to mimic the physical but not biologic properties of nerve gases, was administered by gavage in corn oil for up to 2 years at doses of 0, 500, or 1000 mg/kg/day to male and female F344/N rats and at doses of 0, 1000, or 2000 mg/kg/day to male and female B6C3F1 mice. Survival in dosed male rats was reduced, due in part to kidney toxicity, and lesions in the kidney included increased severity of spontaneous nephropathy, calcification, hyperplasia of the tubular and transitional epithelium, tubular cell adenocarcinomas, and transitional cell papillomas and carcinomas. Survival in female rats was similar among groups; survival in mice was reduced and this reduced survival decreased the sensitivity for detecting a carcinogenic response. There were no dose-related neoplastic responses in female rats or male or female mice. The spectrum of kidney lesions seen in the male rat given DMMP is similar to that seen after the long-term administration of a variety of other chemicals including unleaded gasoline, hydrocarbon solvents, and 1,4-dichlorobenzene.

  15. Dexamethasone pretreatment attenuates lung and kidney injury in cholestatic rats induced by hepatic ischemia/reperfusion.

    Science.gov (United States)

    Zhou, Liangyi; Yao, Xiangqing; Chen, Yanling

    2012-02-01

    Hepatic ischemia followed by reperfusion (IR) results in mild to severe organ injury, in which tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) seem to be involved. Thus, we aim to assess the influence of hepatic ischemia/reperfusion injury on remote organs in addition to cholestasis and consider the possible efficacy of steroid pretreatment in reducing the injury. A common bile duct ligation model was done on 24 male Sprague-Dawley rats. After 7 days, the rats were divided randomly into control group, IR group, and dexamethasone (DEX) group. The IR group showed significant increases in serum alanine aminotransferase, aspartate aminotransferase, and creatinine levels compared with the control and DEX groups. By ELISA techniques, higher levels of TNF-α and IL-1β in lung and kidney tissues were measured in the IR group than in the control and DEX groups, these were verified by immunohistochemistry. The lung histology of the IR group rats showed neutrophil infiltration, interstitial edema, and alveolar wall thickening. Kidney histology of the IR group rats showed vacuolization of the proximal tubular epithelial cells and tubular dilatation with granular eosinophilic casts. Better morphological aspects were observed in the DEX-pretreated animals. Minimal lesions were observed in the control. The results suggest that hepatic ischemia/reperfusion injury in cholestatic rats induced lung and kidney injuries. Pretreatment with dexamethasone reduced the IR-induced injury in addition to cholestasis.

  16. The effect of the leptin and its receptor expression in CRF rat by the Reinforcing Kidney and Exhausting Toxin Mixture

    Institute of Scientific and Technical Information of China (English)

    Yu Junsheng; Zhuang Wen Qing; Du Ya jing; Luo Bing

    2004-01-01

    Objective :To investigate the adjusting malnutrition mechanism by the Reinforcing Kidney and Exhausting Toxic Mixture(REM) on the chronic renal failure (CRF) rat. Methods :60 wistar rats weved ivided into 3 groups randomly :the normal controc group(group Ⅰ ), CRF group(group Ⅱ ), and CRF rat perfusing with REM group(group Ⅲ ). Taking their fat, kidney tissue for detecting the protein expression of the leptin, leptin receptor (Ob- R) by the means of immunohistochemistry. Result :Comparing with control group, the leptin protein express intensely in CRF rat; In kidney tissue, the ob -R express weakly. After perfusing the REM, comparing with CRF group the renal ob - R express strongly than CRF group. Conclusion: Maybe the REM could do a little better with the malnutrition of CRF rats by adjustting the activity of ob - R in kidney.

  17. Ameliorated Effects of Green Tea Extract on Lead Induced Kidney Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Nadia Ait Hamadouche

    2015-01-01

    Full Text Available In the present study, the protective effect of an aqueous extract of green tea (GTE against renal oxidative damage induced by lead was undertaken. Adult males rats were divided into 4 groups: Control group receives distilled water as sole drinking source. GTE group received green tea extract (6.6% w/v.Pb group received Pb at dose of 0.4 % w/v in distilled water. Pb + GTE group received mixture of Pb and GTE as sole drinking source. Renal oxidative damage was observed in Pb-treated rats as evidenced via augmentation in kidney lipid peroxidation (LPO as well as depletion in kidney antioxidant enzymes; catalase (CAT, superoxide dismutase (SOD and glutathione peroxidase (GPx. Histopathological analysis revealed degeneration in the endothelium of glomerular tuft and the epithelium of lining tubules. In conclusion, GTE appeared to be beneficial to rats, to a great extent by attenuating and restoring the damage sustained by lead exposure.

  18. Beta-adrenoceptors in kidney tubules of spontaneously hypertensive and normotensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Struyker-Boudier, H.A.J.; Vervoort-Peters, L.H.T.M.; Rousch, M.J.M.; Smits, J.F.M.; Thijssen, H.H.W.

    1986-01-13

    Beta-adrenoceptor binding characteristics were determined in different fractions of rat kidney tubules using a (/sup 125/Iodo)-(-)-cyanopindolol (ICYP) binding assay. The highest amount of binding sites was found in a fraction containing predominantly distal tubular fragments. In a separate series of experiments the ICYP binding characteristics were compared in whole tubular fractions from spontaneously hypertensive (SHR) and normotensive Wistar Kyoto rats (WKY) of different ages. The maximum number of binding sites was significantly higher both in young (3 weeks) and adult (14 weeks) SHR when compared to age-matched WKY. These studies showed the presence of beta-adrenoceptor binding sites in rat kidney tubules and support the potential importance of tubular beta-adrenoceptors in the development of spontaneous hypertension and in the mechanism of antihypertensive action of beta-blockers. 35 references, 1 figure, 3 tables.

  19. Matrix Gla Protein is Involved in Crystal Formation in Kidney of Hyperoxaluric Rats

    Directory of Open Access Journals (Sweden)

    Xiuli Lu

    2013-02-01

    Full Text Available Background: Matrix Gla protein (MGP is a molecular determinant regulating vascular calcification of the extracellular matrix. However, it is still unclear how MGP may be invovled in crystal formation in the kidney of hyperoxaluric rats. Methods: Male Sprague-Dawley rats were divided into the hyperoxaluric group and control group. Hyperoxaluric rats were administrated by 0.75% ethylene glycol (EG for up to 8 weeks. Renal MGP expression was detected by the standard avidin-biotin complex (ABC method. Renal crystal deposition was observed by a polarizing microscope. Total RNA and protein from the rat kidney tissue were extracted. The levels of MGP mRNA and protein expression were analyzed by the real-time polymerase chain reaction (RT-PCR and Western blot. Results: Hyperoxaluria was induced successfully in rats. The MGP was polarly distributed, on the apical membrane of renal tubular epithelial cells, and was found in the ascending thick limbs of Henle's loop (cTAL and the distal convoluted tubule (DCT in hyperoxaluric rats, its expression however, was present in the medullary collecting duct (MCD in stone-forming rats. Crystals with multilaminated structure formed in the injurious renal tubules with lack of MGP expression.MGP mRNA expression was significantly upregulated by the crystals' stimulations. Conclusion: Our results suggested that the MGP was involved in crystals formation by the continuous expression, distributing it polarly in the renal tubular cells and binding directly to the crystals.

  20. Newly Developed Rat Model of Chronic Kidney Disease-Mineral Bone Disorder.

    Science.gov (United States)

    Watanabe, Kentaro; Fujii, Hideki; Goto, Shunsuke; Nakai, Kentaro; Kono, Keiji; Watanabe, Shuhei; Shinohara, Masami; Nishi, Shinichi

    2017-07-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is associated with all-cause and cardiovascular morbidity and mortality in patients with CKD. Thus, elucidating its pathophysiological mechanisms is essential for improving the prognosis. We evaluated characteristics of CKD-MBD in a newly developed CKD rat model. We used male Sprague-Dawley (SD) rats and spontaneously diabetic Torii (SDT) rats, which are used as models for nonobese type 2 diabetes. CKD was induced by 5/6 nephrectomy (Nx). At 10 weeks, the rats were classified into six groups and administered with a vehicle or a low- or high-dose paricalcitol thrice a week. At 20 weeks, the rats were sacrificed; blood and urinary biochemical analyses and histological analysis of the aorta were performed. At 20 weeks, hemoglobin A1c (HbA1c) levels, blood pressure, and renal function were not significantly different among the six groups. Serum calcium and phosphate levels tended to be higher in SDT-Nx rats than in SD-Nx rats. The urinary excretion of calcium and phosphate was significantly greater in SDT-Nx rats than in SD-Nx rats. After administering paricalcitol, serum parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) levels were significantly higher in SDT-Nx rats than in SD-Nx rats. The degree of aortic calcification was significantly more severe and the aortic calcium content was significantly greater in SDT-Nx rats than in SD-Nx rats. We suggest that our new CKD rat model using SDT rats represents a useful CKD-MBD model, and this model was greatly influenced by paricalcitol administration. Further studies are needed to clarify the detailed mechanisms underlying this model.

  1. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-01-01

    Full Text Available Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24, with average weight of 220g were randomly assigned into two treatments (A & B of (n=16 and Control (c (n=8 groups. The rats in the treatment groups (A & B received 0.1g (500mg/kg body weight and 0.2g (1000mg/kg body weight of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c received equal amount of feeds daily without nutmeg added for forty-two days. The growers′ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings.

  2. Histological effects of oral administration of nutmeg on the kidneys of adult Wister rats

    Directory of Open Access Journals (Sweden)

    Andrew Osayame Eweka

    2010-04-01

    Full Text Available Aims: The effects of oral administration of nutmeg commonly used as spice in various dishes, as components of teas and soft drinks or mixed in milk and alcohol on the kidneys of adult Wistar rats were carefully studied. Material and Methods: Rats of both sexes (n = 24, with average weight of 220g were randomly assigned into two treatments (A & B of (n=16 and Control (c (n=8 groups. The rats in the treatment groups (A & B received 0.1g (500mg/kg body weight and 0.2g (1000mg/kg body weight of nutmeg thoroughly mixed with the feeds respectively on a daily basis for forty-two days. The control group (c received equal amount of feeds daily without nutmeg added for forty-two days. The growers’ mash feeds was obtained from Edo Feeds and Flour Mill Limited, Ewu, Edo state, Nigeria and the rats were given water liberally. The rats were sacrificed by cervical dislocation on the forty-third day of the experiment. The kidneys were carefully dissected out and quickly fixed in 10% buffered formaldehyde for routine histological study after hematoxylin and eosin method. Result: The histological findings in the treated sections of the kidneys showed distortion of the renal cortical structures, vacuolations appearing in the stroma and some degree of cellular necrosis, with degenerative and atrophic changes when compared to the control group. Conclusion: These findings indicate that oral administration of nutmeg may have some deleterious effects on the kidneys of adult Wistar rats at higher doses and by extension may affect its excretory and other metabolic functions. It is recommended that caution should therefore be advocated in the intake of this product and further studies be carried out to examine these findings.

  3. Short-term treatment with diminazene aceturate ameliorates the reduction in kidney ACE2 activity in rats with subtotal nephrectomy.

    Directory of Open Access Journals (Sweden)

    Elena Velkoska

    Full Text Available Angiotensin converting enzyme (ACE 2 is an important modulator of the renin angiotensin system (RAS through its role to degrade angiotensin (Ang II. Depletion of kidney ACE2 occurs following kidney injury due to renal mass reduction and may contribute to progressive kidney disease. This study assessed the effect of diminazine aceturate (DIZE, which has been described as an ACE2 activator, on kidney ACE2 mRNA and activity in rats with kidney injury due to subtotal nephrectomy (STNx. Sprague Dawley rats were divided into Control groups or underwent STNx; rats then received vehicle or the DIZE (s.c. 15 mg/kg/day for 2 weeks. STNx led to hypertension (P<0.01, kidney hypertrophy (P<0.001 and impaired kidney function (P<0.001 compared to Control rats. STNx was associated with increased kidney cortical ACE activity, and reduced ACE2 mRNA in the cortex (P<0.01, with reduced cortical and medullary ACE2 activity (P<0.05, and increased urinary ACE2 excretion (P<0.05 compared to Control rats. Urinary ACE2 activity correlated positively with urinary protein excretion (P<0.001, and negatively with creatinine clearance (P=0.04. In STNx rats, DIZE had no effect on blood pressure or kidney function, but was associated with reduced cortical ACE activity (P<0.01, increased cortical ACE2 mRNA (P<0.05 and increased cortical and medullary ACE2 activity (P<0.05. The precise in vivo mechanism of action of DIZE is not clear, and its effects to increase ACE2 activity may be secondary to an increase in ACE2 mRNA abundance. In ex vivo studies, DIZE did not increase ACE2 activity in either Control or STNx kidney cortical membranes. It is not yet known if chronic administration of DIZE has long-term benefits to slow the progression of kidney disease.

  4. The diabetic rat kidney mediates inosituria and selective urinary partitioning of D-chiro-inositol.

    Science.gov (United States)

    Chang, Hao-Han; Choong, Bernard; Phillips, Anthony R J; Loomes, Kerry M

    2015-01-01

    Diabetic nephropathy is a serious complication of diabetes mellitus with a pressing need for effective metabolic markers to detect renal impairment. Of potential significance are the inositol compounds, myo-inositol (MI), and the less abundant stereoisomer, D-chiro-inositol (DCI), which are excreted at increased levels in the urine in diabetes mellitus, a phenomenon known as inosituria. There is also a selective urinary excretion of DCI compared to MI. As the biological origins of altered inositol metabolism in diabetes mellitus are unknown, the aim of this study was to determine whether the diabetic kidney was directly responsible. Kidneys isolated from four-week streptozotocin-induced diabetic rats were characterized by a 3-fold reduction in glomerular filtration rate (GFR) compared to matched non-diabetic kidneys. When perfused with fixed quantities of MI (50 µM) and DCI (5 µM) under normoglycemic conditions (5 mM glucose), GFR-normalized urinary excretion of MI was increased by 1.7-fold in diabetic vs. non-diabetic kidneys. By comparison, GFR-normalized urinary excretion of DCI was increased by 4-fold. Perfusion conditions replicating hyperglycemia (20 mM glucose) potentiated DCI but not MI urinary excretion in both non-diabetic and diabetic kidneys. Overall, there was a 2.4-fold increase in DCI urinary excretion compared to MI in diabetic kidneys that was independent of glucose ambience. This increased urinary excretion of DCI and MI in diabetic kidneys occurred despite increased renal expression of the inositol transporters, sodium myo-inositol transporter subtype 1 and 2 (SMIT1 and SMIT2). These findings show that the diabetic kidney primarily mediates inosituria and altered urinary partitioning of MI and DCI. Urinary inositol levels might therefore serve as an indicator of impaired renal function in diabetes mellitus with wider implications for monitoring chronic kidney disease.

  5. Genetic susceptibility to hypertension-induced renal damage in the rat. Evidence based on kidney-specific genome transfer.

    Science.gov (United States)

    Churchill, P C; Churchill, M C; Bidani, A K; Griffin, K A; Picken, M; Pravenec, M; Kren, V; St Lezin, E; Wang, J M; Wang, N; Kurtz, T W

    1997-09-15

    To test the hypothesis that genetic factors can determine susceptibility to hypertension-induced renal damage, we derived an experimental animal model in which two genetically different yet histocompatible kidneys are chronically and simultaneously exposed to the same blood pressure profile and metabolic environment within the same host. Kidneys from normotensive Brown Norway rats were transplanted into unilaterally nephrectomized spontaneously hypertensive rats (SHR-RT1.N strain) that harbor the major histocompatibility complex of the Brown Norway strain. 25 d after the induction of severe hypertension with deoxycorticosterone acetate and salt, proteinuria, impaired glomerular filtration rate, and extensive vascular and glomerular injury were observed in the Brown Norway donor kidneys, but not in the SHR-RT1.N kidneys. Control experiments demonstrated that the strain differences in kidney damage could not be attributed to effects of transplantation-induced renal injury, immunologic rejection phenomena, or preexisting strain differences in blood pressure. These studies (a) demonstrate that the kidney of the normotensive Brown Norway rat is inherently much more susceptible to hypertension-induced damage than is the kidney of the spontaneously hypertensive rat, and (b) establish the feasibility of using organ-specific genome transplants to map genes expressed in the kidney that determine susceptibility to hypertension-induced renal injury in the rat.

  6. Renal Primordia Activate Kidney Regenerative Events in a Rat Model of Progressive Renal Disease

    Science.gov (United States)

    Imberti, Barbara; Corna, Daniela; Rizzo, Paola; Xinaris, Christodoulos; Abbate, Mauro; Longaretti, Lorena; Cassis, Paola; Benedetti, Valentina; Benigni, Ariela; Zoja, Carlamaria; Remuzzi, Giuseppe; Morigi, Marina

    2015-01-01

    New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration. PMID:25811887

  7. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Luca Villa

    2016-10-01

    Full Text Available Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI. We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1 normal; (2 infused for eight weeks with ouabain (30 µg/kg/day, OHR or (3 saline; (4 ouabain; or (5 saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2–3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2 increased blood pressure (from 111.7 to 153.4 mmHg and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3. All these changes were blunted by rostafuroxin treatment (groups 4 and 5. These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO.

  8. Protective effects of exogenous β-hydroxybutyrate on paraquat toxicity in rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Teng; Tian, Wulin; Liu, Fangning; Xie, Guanghong, E-mail: xiegh@jlu.edu.cn

    2014-05-16

    Highlights: • β-Hydroxybutyrate inhibits paraquat-induced toxicity in rat kidney. • β-Hydroxybutyrate inhibits lipid peroxidation and caspase-mediated apoptosis. • β-Hydroxybutyrate increases the activities of SOD and CAT. • The study describes a novel finding for the renoprotective ability of β-hydroxybutyrate. - Abstract: In this study, we demonstrated the protective effects of β-hydroxybutyrate (β-HB) against paraquat (PQ)-induced kidney injury and elucidated the underlying molecular mechanisms. By histological examination and renal dysfunction specific markers (serum BUN and creatinine) assay, β-HB could protect the PQ-induced kidney injury in rat. PQ-induced kidney injury is associated with oxidative stress, which was measured by increased lipid peroxidation (MDA) and decreased intracellular anti-oxidative abilities (SOD, CAT and GSH). β-HB pretreatment significantly attenuated that. Caspase-mediated apoptosis pathway contributed importantly to PQ toxicity, as revealed by the activation of caspase-9/-3, cleavage of PARP, and regulation of Bcl-2 and Bax, which were also effectively blocked by β-HB. Moreover, treatment of PQ strongly decreased the nuclear Nrf2 levels. However, pre-treatment with β-HB effectively suppressed this action of PQ. This may imply the important role of β-HB on Nrf2 pathway. Taken together, this study provides a novel finding that β-HB has a renoprotective ability against paraquat-induced kidney injury.

  9. A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats.

    Science.gov (United States)

    Tanvir, E M; Afroz, R; Chowdhury, Maz; Gan, S H; Karim, N; Islam, M N; Khalil, M I

    2016-09-01

    This study investigated the main target sites of chlorpyrifos (CPF), its effect on biochemical indices, and the pathological changes observed in rat liver and kidney function using gas chromatography/mass spectrometry. Adult female Wistar rats (n = 12) were randomly assigned into two groups (one control and one test group; n = 6 each). The test group received CPF via oral gavage for 21 days at 5 mg/kg daily. The distribution of CPF was determined in various organs (liver, brain, heart, lung, kidney, ovary, adipose tissue, and skeletal muscle), urine and stool samples using GCMS. Approximately 6.18% of CPF was distributed in the body tissues, and the highest CPF concentration (3.80%) was found in adipose tissue. CPF also accumulated in the liver (0.29%), brain (0.22%), kidney (0.10%), and ovary (0.03%). Approximately 83.60% of CPF was detected in the urine. CPF exposure resulted in a significant increase in plasma transaminases, alkaline phosphatase, and total bilirubin levels, a significant reduction in total protein levels and an altered lipid profile. Oxidative stress due to CPF administration was also evidenced by a significant increase in liver malondialdehyde levels. The detrimental effects of CPF on kidney function consisted of a significant increase in plasma urea and creatinine levels. Liver and kidney histology confirmed the observed biochemical changes. In conclusion, CPF bioaccumulates over time and exerts toxic effects on animals.

  10. Estimation of Early Postmortem Interval Through Biochemical and Pathological Changes in Rat Heart and Kidney.

    Science.gov (United States)

    Abo El-Noor, Mona Mohamed; Elhosary, Naema Mahmoud; Khedr, Naglaa Fathi; El-Desouky, Kareema Ibraheem

    2016-03-01

    Accurate estimation of time passed since death is a complicated task in forensic medicine especially in homicide or unwitnessed death investigations. Changes in oxidant/antioxidant parameters were investigated if it can be relied upon in estimating the early postmortem interval (EPI) in rat heart and kidney, and whether these changes were correlated with histopathological findings in these tissues. Heart and kidney tissues of 84 male albino rats were divided into 2 parts. One part used for estimation of levels of malondialdehyde (MDA), nitric oxide (NO), and total thiol as well as the activity of glutathione reductase (GR), glutathione S transferase, and catalase. The second part was examined histopathologically. It was found that MDA and NO were significantly increased earlier in the heart than kidney tissues. Meanwhile, total thiol, catalase, glutathione S transferase, and GR were commenced to be significantly decreased in the heart before kidney tissues. Linear regression analysis of independent variables of heart was found to be of a high predictive value of 97.2% (EPI = 8.607 - 0.240 GR + 0.002 MDA + 0.014 NO). Structural deterioration of heart started 3 to 4 hours compared with renal sections that began 5 to 6 hours after death. The relationship between oxidant and antioxidant parameters is crucial in determining the EPI. The kidney was found to be more resistible to oxidative damage. Further research on humans is needed.

  11. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury

    Science.gov (United States)

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-01-01

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2–3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO. PMID:27754425

  12. Altered heart and kidney phospholipid fatty acid composition are associated with cardiac hypertrophy in hypertensive rats.

    Science.gov (United States)

    Kim, Oh Yoen; Jung, Young-Sang; Cho, Yoonsu; Chung, Ji Hyung; Hwang, Geum-Sook; Shin, Min-Jeong

    2013-08-01

    We examined the association of cardiac hypertrophy or fibrosis with the phospholipid fatty acid (FA) composition of heart and kidney in hypertensive rats. Eight-week-old spontaneously hypertensive rats (SHRs) (n=8) and Wistar Kyoto rats (WKYs, n=8) as a normotensive control, were fed ad libitum for 6 weeks with regular AIN-76 diet. Phospholipid FA compositions in the left ventricle and kidney were measured and histological analyses were performed. Compared with WKYs, SHRs had lower proportions of γ-linolenic acid, α-linolenic acid, eicosadienoic acid, eicosatrienoic acid, dihomo-γ-linoleic acid, docosadienoic acid and nervonic acid in heart, and stearic acid (SA), γ-linolenic acid, and eicosapentaenoic acid (EPA) in kidney. After adjusting for food intake, SHRs still maintained higher proportions of SA, and total saturated FAs in the heart and a lower proportion of eicosapentaenoic acid in the kidney. Additionally, compared with WKYs, SHRs showed larger cardiomyocyte diameters in the left ventricles, indicating cardiac hypertrophy and interstitial fibrosis. Cardiomyocyte diameters also positively correlated with cardiac SA (r=0.550, pcardiac hypertrophy in a hypertensive setting, implicating the pathogenic role of tissue FAs in hypertension and related complications. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Polycystic kidney disease gene in the Lewis polycystic kidney rat is mapped to chromosome 10q21–q26

    Directory of Open Access Journals (Sweden)

    Yengkopiong JP

    2012-08-01

    Full Text Available Jada Pasquale YengkopiongDr John Garang Memorial University of Science and Technology, Faculty of Science and Technology, Bor, Republic of South SudanBackground: Polycystic kidney disease (PKD is a life-threatening disorder that affects the kidneys of millions of people across the world. The disease is normally inherited, but it can also be acquired, and leads to development of many cysts in the renal nephrons. In this study, the aim was to characterize PKD in the Lewis polycystic kidney (LPK rat, the newest model for human PKD.Methods: Mating experiments were performed between male LPK rats with PKD and female Brown Norway and Wistar Kyoto rats without PKD to raise second filial (F2 and backcross 1 (BC1 progeny, respectively. Rats that developed PKD were identified. Histological examination of the kidneys and liver was performed. Liver tissue samples were collected from each rat and used to extract DNA. The extracted DNA was amplified, and mapping and linkage analyses were performed to identify the quantitative trait locus that controlled the disease phenotypes.Results: It was established that the disease was controlled by a recessive mutation in a single gene (F2: PKD = 42, non-PKD = 110, χ2 = 0.53; BC1: PKD = 67, non-PKD = 72, χ2 = 0.18, P > 0.05 and that the disease was inherited as autosomal recessive polycystic kidney disease (ARPKD. The rats with PKD developed larger fluid-filled cystic kidneys, higher systolic blood pressure, and anemia. However, there were no extrarenal cysts and no pup deaths. Mapping studies and linkage analyses associated the disease phenotypes in both the F2 and BC1 rats to chromosome 10q21–q26, giving a maximum LOD score of 7.9 (P = 0.00001 between peak markers D10Rat180 and D10Rat26.Conclusion: The quantitative trait locus on chromosome 10q21–q26 does not contain the Pkhd-1 gene, and it is different from quantitative trait loci that control ARPKD in other murine models. The candidate genes located in the

  14. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    Science.gov (United States)

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues.

  15. Life cycle analysis of kidney gene expression in male F344 rats.

    Directory of Open Access Journals (Sweden)

    Joshua C Kwekel

    Full Text Available Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs. Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

  16. Life cycle analysis of kidney gene expression in male F344 rats.

    Science.gov (United States)

    Kwekel, Joshua C; Desai, Varsha G; Moland, Carrie L; Vijay, Vikrant; Fuscoe, James C

    2013-01-01

    Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

  17. Effects of Short Term Exposure of Atrazine on the Liver and Kidney of Normal and Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Dinesh Babu Jestadi

    2014-01-01

    Full Text Available The present study evaluates the effects of short term (15 days exposure of low dose (300 μg kg−1 of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine on antioxidant status and markers of liver and kidney damage in normal (nondiabetic and diabetic male Wistar rats. Rats were divided into four groups: Group I as normal control, Group II as atrazine treated, Group III as diabetic control, and Group IV as atrazine treated diabetic rats. Atrazine administration resulted in increased MDA concentration as well as increased activities of SOD, CAT, and GPx in both liver and kidney of atrazine treated and atrazine treated diabetic rats. However, GSH level was decreased in both liver and kidney of atrazine treated and atrazine treated diabetic rats. Atrazine administration led to significant increase in liver damage biomarkers such as AST, ALT, and ALP as well as kidney damage biomarkers such as creatinine and urea in both normal and diabetic rats, but this increase was more pronounced in diabetic rats when compared to normal rats. In conclusion, the results of the present study demonstrate that short term exposure of atrazine at a dose of 300 μg kg−1 could potentially induce oxidative damage in liver and kidney of both normal and diabetic rats.

  18. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats.

    Science.gov (United States)

    Rossi, Noreen F; Pajewski, Russell; Chen, Haiping; Littrup, Peter J; Maliszewska-Scislo, Maria

    2016-01-15

    Renal artery stenosis is increasing in prevalence. Angioplasty plus stenting has not proven to be better than medical management. There has been a reluctance to use available denervation methodologies in this condition. We studied conscious, chronically instrumented, two-kidney, one-clip (2K-1C) Goldblatt rats, a model of renovascular hypertension, to test the hypothesis that renal denervation by cryoablation (cryo-DNX) of the renal nerve to the clipped kidney decreases mean arterial pressure (MAP), plasma and tissue ANG II, and contralateral renal sympathetic nerve activity (RSNA). Five-week-old male Sprague-Dawley rats underwent sham (ShC) or right renal artery clipping (2K-1C), placement of telemetry transmitters, and pair-feeding with a 0.4% NaCl diet. After 6 wk, rats were randomly assigned to cryo-DNX or sham cryotreatment (sham DNX) of the renal nerve to the clipped kidney. MAP was elevated in 2K-1C and decreased significantly in both ShC cryo-DNX and 2K-1C cryo-DNX. Tissue norepinephrine was ∼85% lower in cryo-DNX kidneys. Plasma ANG II was higher in 2K-1C sham DNX but not in 2K-1C cryo-DNX vs ShC. Renal tissue ANG II in the clipped kidney decreased after cryo-DNX. Baseline integrated RSNA of the unclipped kidney was threefold higher in 2K-1C versus ShC and decreased in 2K-1C cryo-DNX to values similar to ShC. Maximum reflex response of RSNA to baroreceptor unloading in 2K-1C was lower after cryo-DNX. Thus, denervation by cryoablation of the renal nerve to the clipped kidney decreases not only MAP but also plasma and renal tissue ANG II levels and RSNA to the contralateral kidney in conscious, freely moving 2K-1C rats.

  19. The kidneys play a central role in the clearance of rhGH in rats

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Thygesen, Peter; Kreilgaard, Mads;

    2016-01-01

    The kidneys are thought to play an important role in the clearance of recombinant human growth hormone (rhGH), but the relative importance is not clear. Obtaining knowledge of clearance pathway is an important prerequisite for the development of new long acting growth hormone analogues targeted...... at treatment of patients with growth hormone disorders. The purpose of this study was to investigate the relative importance of the kidneys in the clearance of rhGH. The study employed a newly validated nephrectomy rat model and a population based pharmacokinetic approach to assess renal clearance of rh...

  20. Opioid binding sites in the guinea pig and rat kidney: Radioligand homogenate binding and autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C. (Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge (England))

    1991-07-01

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE bound with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.

  1. Smad signaling pathway in pathogenesis of kidney injury induced by calcium oxalate stone in rats

    Institute of Scientific and Technical Information of China (English)

    Fan Zhang

    2016-01-01

    Objective:To investigate the involvement of Smad signaling pathway in the pathogenesis of kidney injury induced by calcium oxalate stone in rats to provide a reference for clinical treatment.Methods: Clean SD rats were randomly divided into 3 group, namely the control group, model group and pirfenidone group. Ethylene glycol + αhydroxy vitamin D3 was used as a stone-inducing agent to replicate the renal calcium oxalate stone model. Rats in the pirfenidone group were treated with pirfenidone intragastric administration. The serum Cr, BUN and 24-hour oxalate and calcium in renal tissues were assayed. The expressions of Bax/Bcl2 protein, Caspase3 protein, TGFβ, Smad1, Smad2 and Smad3 proteins were detected by the fluorescent quantitation PCR method.Results:Compared with the rats of the control group, the results showed that the levels of serum BUN, Cr and 24-hour oxalate in rats of the model group were increased greatly,BaxandCaspase3 mRNA also increased while the level ofBcl2 decreased significantly, and the expressions of TGFβ, Smad1, Smad2 and Smad3 proteins increased distinctly as well (P<0.01). These abnormal parameters could be normalized effectively by pirfenidone.Conclusions:Activated TGFβ/Smad signaling pathway is involved in the pathogenesis of kidney injury induced by calcium oxalate stone in rats.

  2. The kidneys play a central role in the clearance of rhGH in rats.

    Science.gov (United States)

    Vestergaard, Bill; Thygesen, Peter; Kreilgaard, Mads; Fels, Johannes Josef; Lykkesfeldt, Jens; Agersø, Henrik

    2016-04-30

    The kidneys are thought to play an important role in the clearance of recombinant human growth hormone (rhGH), but the relative importance is not clear. Obtaining knowledge of clearance pathway is an important prerequisite for the development of new long acting growth hormone analogues targeted at treatment of patients with growth hormone disorders. The purpose of this study was to investigate the relative importance of the kidneys in the clearance of rhGH. The study employed a newly validated nephrectomy rat model and a population based pharmacokinetic approach to assess renal clearance of rhGH in non-anesthetized rats, anesthetized rats and in nephrectomized anesthetized rats. Clearance in non-anesthetized rats was 290 ml/h/kg. This was reduced to 185 ml/h/kg by anesthesia and further reduced to 18 ml/h/kg by nephrectomy. As nephrectomy was able to reduce clearance with 90%, we conclude that renal clearance plays a pivotal role in the elimination of rhGH in rats.

  3. Increased Expression of p-Akt correlates with Chronic Allograft Nephropathy in a Rat Kidney Model.

    Science.gov (United States)

    Zhou, Li-Na; Wang, Ning; Dong, Yang; Zhang, Yiqin; Zou, Hequn; Li, Qingqin; Shi, Yangling; Chen, Ling; Zhou, Wenying; Han, Conghui; Wang, Yuxin

    2015-04-01

    Chronic allograft nephropathy (CAN) is the most common cause of chronic graft dysfunction leading to graft failure, our study investigates the expression and significance of p-Akt in the pathogenesis of CAN in rats. Kidneys of Fisher (F344) rats were orthotopically transplanted into Lewis (LEW) rats. The animals were evaluated at 4, 8, 12, 16, and 24 weeks post-transplantation for renal function and histopathology. Phosphorate Akt (p-Akt) protein expression was determined by Western blot and immunohistological assays. Our data show that 24-h urinary protein excretion in CAN rats increased significantly at week 16 as compared with F344/LEW controls. Allografts got severe interstitial infiltration of mononuclear cells at week 4 and week 8, but it was degraded as the time went on after week 16. Allografts markedly presented with severe interstitial fibrosis (IF) and tubular atrophy at 16 and 24 weeks. p-Akt expression was upregulated in rat kidneys with CAN, and the increase became more significant over time after transplantation. p-Akt expression correlated significantly with 24-h urinary protein excretion, serum creatinine levels, tubulointerstitial mononuclear cells infiltration, smooth muscle cells (SMCs) migration in vascular wall, and IF. It was concluded that p-Akt overexpression might be the key event that involved mononuclear cells infiltration and vascular SMCs migration at early stage, and IF and allograft nephroangiosclerosis at the late stage of CAN pathogenesis in rats.

  4. Elevated BSC-1 and ROMK expression in Dahl salt-sensitive rat kidneys.

    Science.gov (United States)

    Hoagland, Kimberly M; Flasch, Averia K; Dahly-Vernon, Annette J; dos Santos, Elisabete Alcantara; Knepper, Mark A; Roman, Richard J

    2004-04-01

    This study compared the expression of enzymes and transport and channel proteins involved in the regulation of sodium reabsorption in the kidney of Dahl salt-sensitive (DS) and salt-resistant Brown-Norway (BN) and consomic rats (SS.BN13), in which chromosome 13 from the BN rat has been introgressed into the DS genetic background. The expression of the Na+/K+/2Cl- (BSC-1) cotransporter, Na+/H+ exchanger (NHE3), and Na+-K+-ATPase proteins were similar in the renal cortex of DS, BN, and SS.BN13 rats fed either a low-salt (0.1% NaCl) or a high-salt (8% NaCl) diet. The expression of the BSC-1 and the renal outer medullary K+ channel (ROMK) were higher, whereas the expression of the cytochrome P4504A proteins responsible for the formation of 20-hydroxyeicosatetraenoic (20-HETE) was lower in the outer medulla of the kidney of DS than in BN or SS.BN13 rats fed either a low-salt or a high-salt diet. In addition, the renal formation and excretion of 20-HETE was lower in DS than in BN and SS.BN13 rats. These results suggest that overexpression of ROMK and BSC-1 in the thick ascending limb combined with a deficiency in renal formation of 20-HETE may predispose Dahl S rats fed a high-salt diet to Na+ retention and hypertension.

  5. Occipital Artery Function during the Development of 2-Kidney, 1-Clip Hypertension in Rats

    Directory of Open Access Journals (Sweden)

    Stephen P. Chelko

    2014-01-01

    Full Text Available This study compared the contractile responses elicited by angiotensin II (AII, arginine vasopressin (AVP, and 5-hydroxytryptamine (5-HT in isolated occipital arteries (OAs from sham-operated (SHAM and 2-kidney, 1-clip (2K-1C hypertensive rats. OAs were isolated and bisected into proximal segments (closer to the common carotid artery and distal segments (closer to the nodose ganglion and mounted separately on myographs. On day 9, 2K-1C rats had higher mean arterial blood pressures, heart rates, and plasma renin concentrations than SHAM rats. The contractile responses to AII were markedly diminished in both proximal and distal segments of OAs from 2K-1C rats as compared to those from SHAM rats. The responses elicited by AVP were substantially greater in distal than in proximal segments of OAs from SHAM rats and that AVP elicited similar responses in OA segments from 2K-1C rats. The responses elicited by 5-HT were similar in proximal and distal segments from SHAM and 2K-1C rats. These results demonstrate that continued exposure to circulating AII and AVP in 2K-1C rats reduces the contractile efficacy of AII but not AVP or 5-HT. The diminished responsiveness to AII may alter the physiological status of OAs in vivo.

  6. [Effects of activating silent information regulator 1 on early kidney damage in rats with severe burn].

    Science.gov (United States)

    Bai, X Z; He, T; Liu, Y; Zhang, W; Han, F; Yang, C; Cai, W X; Jia, Y H; Shi, J H; Han, J T; Su, L L; Hu, D H

    2017-06-20

    Objective: To investigate the effects of activating silent information regulator 1 (SIRT1) on the early kidney damage in rats with severe burn. Methods: Thirty healthy male SD rats were divided into sham injury group (SI), pure burn group (PB), and SIRT1 activator group (SA) according to the random number table, with 10 rats in each group. Rats in groups PB and SA were inflicted with 30% total body surface area full-thickness scald (hereinafter referred to as burn) on the back. Immediately after injury, rats in group PB were intraperitoneally injected with normal saline in the dosage of 50 mL/kg, and those in group SA with 1 mg/mL (final mass concentration) resveratrol in the dosage of 50 mL/kg. Rats in group SI were sham injured and intraperitoneally injected with normal saline in the dosage of 50 mL/kg immediately after injury. Kidney tissue and abdominal aorta blood of rats in the three groups were collected at 24 hours after injury. The morphology of kidney tissue was observed after HE staining. The serum content of creatinine and urea nitrogen was determined with enzyme-linked immunosorbent assay. Protein expressions of SIRT1, Bax, and Bcl-2 in kidney tissue were determined with Western blotting. mRNA expressions of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-10 in kidney tissue were determined with real-time fluorescent quantitative reverse transcription polymerase chain reaction. Data were processed with one-way analysis of variance and LSD-t test. Results: (1) In rats of group SI, structures of kidney tubules and glomeruli were intact. In rats of group PB, structures of kidney tubules were not clear with casts in them, and glomeruli showed pyknosis. In rats of group SA, structures of kidney tubules were relatively intact, and the pyknosis of glomeruli were slighter as compared with that of group PB with fewer glomeruli showing pyknosis. (2) The serum content of creatinine and urea nitrogen in rats of group PB was (67±14)

  7. A method to facilitate and monitor expression of exogenous genes in the rat kidney using plasmid and viral vectors

    National Research Council Canada - National Science Library

    Peter R. Corridon; George J. Rhodes; Ellen C. Leonard; David P. Basile; Vincent H. Gattone II; Robert L. Bacallao; Simon J. Atkinson

    2013-01-01

    .... Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys...

  8. Amide hydrolysis of a novel chemical series of microsomal prostaglandin E synthase-1 inhibitors induces kidney toxicity in the rat

    National Research Council Canada - National Science Library

    Bylund, Johan; Annas, Anita; Hellgren, Dennis; Bjurström, Sivert; Andersson, Håkan; Svanhagen, Alexander

    2013-01-01

    A novel microsomal prostaglandin E synthase 1 (mPGES-1) inhibitor induced kidney injury at exposures representing less than 4 times the anticipated efficacious exposure in man during a 7-day toxicity study in rats...

  9. The protective role of bee honey against the toxic effect of melamine in the male rat kidney.

    Science.gov (United States)

    Al-Seeni, Madeha N; El Rabey, Haddad A; Al-Solamy, Suad M

    2015-06-01

    This study aimed to test the protective role of natural bee honey against melamine toxicity in the kidney of male albino rats. The dietary supplementation of melamine at a dose of 20,000 ppm for 28 days induced renal dysfunction, as reflected by a significant increase in kidney function parameters (urea, creatinine, and uric acid) and an increase in potassium levels. In addition, a decrease in catalase and glutathione-S-transferase and an increase in lipid peroxide in the kidney tissue homogenate were also observed. Histological changes in the melamine-treated group revealed hyperplasia and damage in kidney cells and the accumulation of melamine crystals in kidney tissues. Honey treatment for 28 days in rats concurrently administered melamine at a dose of 2.5 g/kg body weight for 28 days improved the kidney function, increased antioxidant enzymes, and decreased lipid peroxide levels. The morphology of the kidney cells of the melamine-fed rats was also improved as a result of honey treatment. In conclusion, this study revealed that natural bee honey protects the kidney against the adverse effects induced by melamine toxicity in male albino rats. © The Author(s) 2014.

  10. The study regarding effect of paraoxon on oxidative stress index in kidney tissue of rats

    Directory of Open Access Journals (Sweden)

    Maryam Abbasnezhad1

    2009-01-01

    Full Text Available (Received 14 July, 2009 ; Accepted 23 December, 2009AbstractBackground and purpose: Paraoxon is the active form of parathion, which is an organophosphate pesticide (OP. The toxic effects of some OPs are not limited to inhibition of cholinesterase, they are capable to produce free radicals and induce disturbance in body antioxidant systems. The purpose of this study was to evaluate the effect of paraoxon on oxidative stress index in the kidney of rat.Materials and methods: Wistar male rats were randomly divided in four groups including: control (corn oil as paraoxon solvent and three paraoxon groups receiving different doses (0.3, 0.7 and 1mg/kg by intraperitoneal injection. 24 hours after injection, animal was given anesthesia and kidney tissue removed. After kidney tissue hemogenation, superoxide dismutase (SOD and catalase (CAT, lactate dehydrogenase (LDH and glutathione S- transferase (GST activities, glutathione (GSH and malondialdehyde (MDA levels were determined by biochemical methods.Results: At doses higher than 0.3 mg/kg paraoxon, kidney SOD and CAT activities were significantly increased, comparing with the control, while GSH level was significantly decreased. There were no significant changes observed in GST, LDH activities and MDA levels.Conclusion: The results suggest that paraoxon induces the production of free radicals and oxidative stress. The enhanced activity of antioxidant enzymes in kidney of rats probably was a function of the increased detoxification capacity. Depletion of tissue GSH is a prime factor, which can impair the cell’s defense against the toxic actions of free radicals.J Mazand Univ Med Sci 2009; 19(73: 17-26 (Persian.

  11. Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media.

    Science.gov (United States)

    Rouse, Rodney L; Stewart, Sharron R; Thompson, Karol L; Zhang, Jun

    2013-01-01

    Contrast-induced nephropathy (CIN) refers to a decline in renal function following exposure to iodinated contrast media (CM). The present study was initiated to explore the role of known human risk factors (spontaneous hypertension, diabetes, protein-losing nephropathy) on CIN development in rodent models and to determine the effect of CM administration on kidney injury biomarkers in the face of preexisting kidney injury. Spontaneously hypertensive rats (hypertension), streptozotocin-treated Sprague Dawley rats (diabetes), and Dahl salt-sensitive rats (protein-losing nephropathy) were given single intravenous injections of the nonionic, low osmolar contrast medium, iohexol. Blood urea nitrogen (BUN), serum creatinine (sCr), and urinary biomarkers; albumin, lipocalin 2 (Lcn-2), osteopontin (Opn), kidney injury molecule 1 (Kim-1), renal papillary antigen 1 (Rpa-1), α-glutathione S-transferase (α-Gst), µ-glutathione S-transferase (µ-Gst), and beta-2 microglobulin (β2m) were measured in disease models and appropriate controls to determine the response of these biomarkers to CM administration. Each disease model produced elevated biomarkers of kidney injury without CM. Preexisting histopathology was exacerbated by CM but little or no significant increases in biomarkers were observed. When 1.5-fold or greater sCr increases from pre-CM were used to define true positives, receiver-operating characteristic curve analysis of biomarker performance showed sCr was the best predictor of CIN across disease models. β2m, Lcn-2, and BUN were the best predictors of histopathology defined kidney injury.

  12. Kidney-Specific Reduction of Oxidative Phosphorylation Genes Derived from Spontaneously Hypertensive Rat.

    Directory of Open Access Journals (Sweden)

    Jason A Collett

    Full Text Available Mitochondrial (Mt dysfunction contributes to the pathophysiology of renal function and promotes cardiovascular disease such as hypertension. We hypothesize that renal Mt-genes derived from female spontaneously hypertensive rats (SHR that exhibit hypertension have reduced expression specific to kidney cortex. After breeding a female Okamoto-Aoki SHR (SAP = 188mmHg with Brown Norway (BN males (SAP = 100 and 104 mmHg, hypertensive female progeny were backcrossed with founder BN for 5 consecutive generations in order to maintain the SHR mitochondrial genome in offspring that contain over increasing BN nuclear genome. Mt-protein coding genes (13 total and nuclear transcription factors mediating Mt-gene transcription were evaluated in kidney, heart and liver of normotensive (NT: n = 20 vs. hypertensive (HT: n = 20 BN/SHR-mtSHR using quantitative real-time PCR. Kidney cortex, but not liver or heart Mt-gene expression was decreased ~2-5 fold in 12 of 13 protein encoding genes of HT BN/SHR-mtSHR. Kidney cortex but not liver mRNA expression of the nuclear transcription factors Tfam, NRF1, NRF2 and Pgc1α were also decreased in HT BN/SHR-mtSHR. Kidney cortical tissue of HT BN/SHR-mtSHR exhibited lower cytochrome oxidase histochemical staining, indicating a reduction in renal oxidative phosphorylation but not in liver or heart. These results support the hypothesis that renal cortex of rats with SHR mitochondrial genome has specifically altered renal expression of genes encoding mitochondrial proteins. This kidney-specific coordinated reduction of mitochondrial and nuclear oxidative metabolism genes may be associated with heritable hypertension in SHR.

  13. Urine Metabolites Reflect Time-Dependent Effects of Cyclosporine and Sirolimus on Rat Kidney Function☆

    Science.gov (United States)

    Klawitter, Jost; Bendrick-Peart, Jamie; Rudolph, Birgit; Beckey, Virginia; Klawitter, Jelena; Haschke, Manuel; Rivard, Christopher; Chan, Laurence; Leibfritz, Dieter; Christians, Uwe; Schmitz, Volker

    2009-01-01

    Background The clinical use of the immunosuppressant calcineurin inhibitor cyclosporine is limited by its nephrotoxicity. This is enhanced when combined with the immunosuppressive mTOR inhibitor sirolimus. Nephrotoxicity of both drugs is not yet fully understood. Methods The goal was to gain more detailed mechanistic insights into the time-dependent effects of cyclosporine and sirolimus on the rat kidney by using a comprehensive approach including metabolic profiling in urine (1H-NMR spectroscopy), kidney histology, kidney function parameters in plasma, measurement of glomerular filtration rates, the oxidative stress marker 15-F2t-isoprostane in urine and immunosuppressant concentrations in blood and kidney. Male Wistar rats were treated with vehicle (controls), cyclosporine (10/25mg/kg/d) and/or sirolimus (1mg/kg/d) by oral gavage once daily for 6 and 28 days. Results Twenty-eight day treatment led to a decrease of glomerular filtration rates (cyclosporine -59%, sirolimus -25%). These were further decreased when both drugs were combined (-86%). Histology revealed tubular damage after treatment with cyclosporine, which was enhanced when sirolimus was added. No other part of the kidney was affected. 1H-NMR spectroscopy analysis of urine (day 6) revealed time-dependent changes of 2-oxoglutarate, citrate and succinate concentrations. In combination with increased urine isoprostane concentrations these changes indicated oxidative stress. After 28 days of cyclosporine treatment, urine metabonomics shifted to patterns typical for proximal tubular damage with reduction of Krebs cycle intermediates and trimethylamine-N-oxide concentrations whereas acetate, lactate, trimethylamine and glucose concentrations increased. Again, sirolimus enhanced these negative effects. Conclusions Our results indicate that cyclosporine and/or sirolimus induce damage of the renal tubular system. This is reflected by urine metabolite patterns, which seem to be more sensitive than currently used

  14. Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats.

    Science.gov (United States)

    Rajeh, Nisreen A; Al-Dhaheri, Najlaa M

    2017-02-01

    To explore renal toxicity caused by sub-acute exposure of acrylamide and to study the protective effect of 5-Aminosalicylic acid (5-ASA) and Vitamin E (vit-E)on Acrylamide (ACR) induced renal toxicity. Methods: This study was conducted at King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, between August and November 2015. A total of 49 adult Wistar rats (250 ± 20g) aged 60 days were kept in a controlled environment and used in the present study. The rats were divided into 7 groups (control, ACR alone, ACR+5-ASA, ACR+vit-E, ACR+ASA+vit-E, vit-E alone, and ASA alone). After 5 days of ACR oral gavage treatment, the rats were observed for 24 hours then killed. Histopathology for the kidney and lactate dehydrogenase assay were carried out.  Results: Acrylamide produced significant pathological changes in the kidney with acute tubular necrosis in the distal tubules that could be reversed by concomitant injection of rat with 5-ASA. Together with vitamin E, 5-ASA, showed maximum renal protection. No statistically significant difference was observed in either body weights or lactate dehydrogenase activity of ACR treated rats.  Conclusion: Acrylamide exposure leads to adverse clinical pathologies of renal tubules, which were reversed by a concomitant treatment with 5-ASA and vitamin-E.

  15. Immunohistochemical identification of kidney nephron segments in the dog, rat, mouse, and cynomolgus monkey.

    Science.gov (United States)

    Bauchet, Anne-Laure; Masson, Regis; Guffroy, Magali; Slaoui, Mohamed

    2011-12-01

    Kidney is a major target organ in preclinical studies. In recent years, intense research has been undertaken to characterize novel renal toxicity biomarkers. In this context, we studied nephron segment specific antibodies against aquaporin-1 (AQP-1), α-glutathione-S-transferase (alpha-GST), Tamm-Horsfall protein (TH), calbindin-D(28K) (CalD), and aquaporin-2 (AQP-2), using an immunoperoxidase method on formalin-fixed paraffin-embedded kidney tissues of dogs, rats, mice, and Cynomolgus monkeys. AQP-1 was specific for proximal tubules and thin descending limbs of Henle's loops and AQP-2 for connecting and collecting ducts in dogs, rats, mice, and Cynomolgus monkeys. Alpha-GST stained the straight part of proximal tubules in dogs and proximal convoluted tubule and straight part of proximal tubules in rats. TH was specific for thick ascending limbs of Henle's loops in mice, rats, dogs, and Cynomolgus monkeys and stained additionally scattered cells in cortical connecting/collecting ducts of dogs. CalD was found in distal convoluted tubules and cortical connecting and collecting ducts of dogs, rats, and mice and in distal convoluted tubules, connecting ducts, and cortical and medullary collecting ducts of Cynomolgus monkey. This panel of antibodies may be a helpful tool to identify renal tubules by light microscopy in preclinical studies and to validate new biomarkers of renal toxicity.

  16. Human apolipoprotein B transgenic SHR/NDmcr-cp rats show exacerbated kidney dysfunction

    Science.gov (United States)

    ASAHINA, Makoto; SHIMIZU, Fumi; OHTA, Masayuki; TAKEYAMA, Michiyasu; TOZAWA, Ryuichi

    2015-01-01

    Nephropathy frequently co-occurs with metabolic syndrome in humans. Metabolic syndrome is a cluster of metabolic diseases including obesity, diabetes, hypertension, and dyslipidemia, and some previous studies revealed that dyslipidemia contributes to the progression of kidney dysfunction. To establish a new nephropathy model with metabolic syndrome, we produced human apolipoprotein B (apoB) transgenic (Tg.) SHR/NDmcr-cp (SHR-cp/cp) rats, in which dyslipidemia is exacerbated more than in an established metabolic syndrome model, SHR-cp/cp rats. Human apoB Tg. SHR-cp/cp rats showed obesity, hyperinsulinemia, hypertension, and severe hyperlipidemia. They also exhibited exacerbated early-onset proteinuria, accompanied by increased kidney injury and increased oxidative and inflammatory markers. Histological analyses revealed the characteristic features of human apoB Tg. SHR-cp/cp rats including prominent glomerulosclerosis with lipid accumulation. Our newly established human apoB Tg. SHR-cp/cp rat could be a useful model for the nephropathy in metabolic syndrome and for understanding the interaction between dyslipidemia and renal dysfunction in metabolic syndrome. PMID:25912321

  17. Renal neutrophil gelatinase associated lipocalin expression in lipopolysaccharide-induced acute kidney injury in the rat

    Directory of Open Access Journals (Sweden)

    Han Mei

    2012-06-01

    Full Text Available Abstract Background Neutrophil gelatinase associated lipocalin (NGAL is a highly predictive biomarker of acute kidney injury. To understand the role of NGAL in renal injury during sepsis, we investigated the temporal changes and biological sources of NGAL in a rat model of acute kidney injury, and explored the relationship between renal inflammation, humoral NGAL and NGAL expression during endotoxemia. Methods To induce acute renal injury, rats were treated with lipopolysaccharide (LPS, 3.5 mg/kg, ip, and the location of NGAL mRNA was evaluated by in situ hybridization. Quantitative RT-PCR was also used to determine the dynamic changes in NGAL, tumor necrosis factor α (TNFα and interleukin (IL-6 mRNA expression 1, 3, 6, 12, and 24 hours following LPS treatment. The correlation among NGAL, TNFα and IL-6 was analyzed. Urinary and plasma NGAL (u/pNGAL levels were measured, and the relationship between humoral NGAL and NGAL expression in the kidney was investigated. Results Renal function was affected 3–12 hours after LPS. NGAL mRNA was significantly upregulated in tubular epithelia at the same time (P P P P Conclusions NGAL upregulation is sensitive to LPS-induced renal TNFα increase and injury, which are observed in the tubular epithelia. Urinary NGAL levels accurately reflect changes in NGAL in the kidney.

  18. Protective effect of propolis on methotrexate-induced kidney injury in the rat.

    Science.gov (United States)

    Ulusoy, Hasan Basri; Öztürk, İsmet; Sönmez, Mehmet Fatih

    2016-06-01

    Objectives Propolis is a potent antioxidant and a free radical scavenger. Pharmacological induction of heat shock proteins (HSPs) has been investigated for restoring normal cellular function following an injury. In this study, effect of propolis on HSP-70 expression in methotrexate-induced nephrotoxicity and direct preventive effect of propolis in this toxicity were investigated. Material and methods A total of 40 male Wistar albino rats were divided into four groups: Group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20 mg/kg. Groups 3 and 4 received 100 mg/kg/day propolis (by oral gavage) for 15 d by the first day of the experimental protocol. Then the rats were decapitated under ketamine esthesia and their kidney tissues were removed. HSP-70 expression, apoptosis, and histopathological damage scores were then compared. Results MTX caused epithelial desquamation into the lumen of the tubules, dilatation, and congestion of the peritubular vessels and renal corpuscles with obscure Bowman's space. The number of apoptotic cells (p = 0.000) and HSP-70 (p = 0.002) expression were increased in group 2. Propolis prevented the rise in number of apoptotic cells (p = 0.017), HSP-70 (p = 0.000) expression, and improved kidney morphology. Conclusions It was found that methotrexate gives rise to serious damage in the kidney and propolis is a potent antioxidant agent in preventing kidney injury.

  19. Uranium XAFS analysis of kidney from rats exposed to uranium

    Science.gov (United States)

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Homma-Takeda, Shino

    2017-01-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III-edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate. PMID:28244440

  20. Renoprotective effects of moringa oleifera leaf extract on the kidneys of adult wistar rats

    Directory of Open Access Journals (Sweden)

    Ezejindu D. N

    2016-07-01

    Full Text Available Moringa oleifera is one of several nutritional supplements giving wide spread popularity in Nigeria and many other countries of the world. The leaves and flowers are being used by the population with great dietary importance. The aim of this study is to investigate the effects of oral administration of Moringa oleifera leaf extract on the kidneys of adult wistar rats. 24 apparently healthy adult wistar rats weighing between190- 230kg were divided into four groups of six animals each. Group A served as the control and received 0.3ml of distilled water orally. The experimental groups B, C & D received 0.5ml, 0.6ml &0.7ml of Moringa oleifera extract orally respectively. The administration lasted for twenty one days. The animals were weighed, sacrificed using chloroform vapour. The kidney tissue were removed, weighed and trimmed down for histological studies. Result of this study showed non-distortion of the kidney cells. The findings of this study suggest that chronic Moringa oleifera consumption may not put the kidneys at risk of adverse histopathological conditions.

  1. Resistance to Recombinant Human Erythropoietin Therapy in a Rat Model of Chronic Kidney Disease Associated Anemia.

    Science.gov (United States)

    Garrido, Patrícia; Ribeiro, Sandra; Fernandes, João; Vala, Helena; Rocha-Pereira, Petronila; Bronze-da-Rocha, Elsa; Belo, Luís; Costa, Elísio; Santos-Silva, Alice; Reis, Flávio

    2015-12-25

    This study aimed to elucidate the mechanisms explaining the persistence of anemia and resistance to recombinant human erythropoietin (rHuEPO) therapy in a rat model of chronic kidney disease (CKD)-associated anemia with formation of anti-rHuEPO antibodies. The remnant kidney rat model of CKD induced by 5/6 nephrectomy was used to test a long-term (nine weeks) high dose of rHuEPO (200 UI/kg bw/week) treatment. Hematological and biochemical parameters were evaluated as well as serum and tissue (kidney, liver and/or duodenum) protein and/or gene expression of mediators of erythropoiesis, iron metabolism and tissue hypoxia, inflammation, and fibrosis. Long-term treatment with a high rHuEPO dose is associated with development of resistance to therapy as a result of antibodies formation. In this condition, serum EPO levels are not deficient and iron availability is recovered by increased duodenal absorption. However, erythropoiesis is not stimulated, and the resistance to endogenous EPO effect and to rHuEPO therapy results from the development of a hypoxic, inflammatory and fibrotic milieu in the kidney tissue. This study provides new insights that could be important to ameliorate the current therapeutic strategies used to treat patients with CKD-associated anemia, in particular those that become resistant to rHuEPO therapy.

  2. Epoxyeicosatrienoic acid analogue mitigates kidney injury in a rat model of radiation nephropathy.

    Science.gov (United States)

    Hye Khan, Md Abdul; Fish, Brian; Wahl, Geneva; Sharma, Amit; Falck, John R; Paudyal, Mahesh P; Moulder, John E; Imig, John D; Cohen, Eric P

    2016-04-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by CYP epoxygenases, and EETs are kidney protective in multiple pathologies. We determined the ability of an EET analogue, EET-A, to mitigate experimental radiation nephropathy. The kidney expression of the EET producing enzyme CYP2C11 was lower in rats that received total body irradiation (TBI rat) compared with non-irradiated control. At 12 weeks after TBI, the rats had higher systolic blood pressure and impaired renal afferent arteriolar function compared with control, and EET-A or captopril mitigated these abnormalities. The TBI rats had 3-fold higher blood urea nitrogen (BUN) compared with control, and EET-A or captopril decreased BUN by 40-60%. The urine albumin/creatinine ratio was increased 94-fold in TBI rats, and EET-A or captopril attenuated that increase by 60-90%. In TBI rats, nephrinuria was elevated 30-fold and EET-A or captopril decreased it by 50-90%. Renal interstitial fibrosis, tubular and glomerular injury were present in the TBI rats, and each was decreased by EET-A or captopril. We further demonstrated elevated renal parenchymal apoptosis in TBI rats, which was mitigated by EET-A or captopril. Additional studies revealed that captopril or EET-A mitigated renal apoptosis by acting on the p53/Fas/FasL (Fas ligand) apoptotic pathway. The present study demonstrates a novel EET analogue-based strategy for mitigation of experimental radiation nephropathy by improving renal afferent arteriolar function and by decreasing renal apoptosis.

  3. Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase‐2

    OpenAIRE

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels; Jensen, Boye L.

    2014-01-01

    Abstract In patients, chronic treatment with lithium leads to renal microcysts and nephrogenic diabetes insipidus (NDI). It was hypothesized that renal cyclooxygenase‐2 (COX‐2) activity promotes microcyst formation and NDI. Kidney microcysts were induced in male adolescent rats by feeding dams with lithium (50 mmol/kg chow) from postnatal days 7–34. Lithium treatment induced somatic growth retardation, renal microcysts and dilatations in cortical collecting duct; it increased cortical cell pr...

  4. Alkalosis and renal excretion of ammonia by rat kidney.

    Science.gov (United States)

    Solomon, S

    1988-05-15

    Upon sulfate administration, UpH falls more in alkalotic rats than in controls. Alkalosis can lead to a reduction in UNH3 V at highly acidic urine. The significance of this process is doubtful at UpH ranging from about 6 to 7. At lower UpH less NH3 would be excreted, thereby less H+ would be trapped in urine and some acid would be conserved.

  5. Cold preservation with hyperbranched polyglycerol-based solution improves kidney functional recovery with less injury at reperfusion in rats

    Science.gov (United States)

    Li, Shadan; Liu, Bin; Guan, Qiunong; Chafeeva, Irina; Brooks, Donald E; Nguan, Christopher YC; Kizhakkedathu, Jayachandran N; Du, Caigan

    2017-01-01

    Minimizing donor organ injury during cold preservation (including cold perfusion and storage) is the first step to prevent transplant failure. We recently reported the advantages of hyperbranched polyglycerol (HPG) as a novel substitute for hydroxyethyl starch in UW solution for both cold heart preservation and cold kidney perfusion. This study evaluated the functional recovery of the kidney at reperfusion after cold preservation with HPG solution. The impact of HPG solution compared to conventional UW and HTK solutions on tissue weight and cell survival at 4°C was examined using rat kidney tissues and cultured human umbilical vein endothelial cells (HUVECs), respectively. The kidney protection by HPG solution was tested in a rat model of cold kidney ischemia-reperfusion injury, and was evaluated by histology and kidney function. Here, we showed that preservation with HPG solution prevented cell death in cultured HUVECs and edema formation in kidney tissues at 4°C similar to UW solution, whereas HTK solution was less effective. In rat model of cold ischemia-reperfusion injury, the kidneys perfused and subsequently stored 1-hour with cold HPG solution showed less leukocyte infiltration, less tubular damage and better kidney function (lower levels of serum creatinine and blood urea nitrogen) at 48 h of reperfusion than those treated with UW or HTK solution. In conclusion, our data show the superiority of HPG solution to UW or HTK solution in the cold perfusion and storage of rat kidneys, suggesting that the HPG solution may be a promising candidate for improved donor kidney preservation prior to transplantation. PMID:28337272

  6. Regulation of elongation factor-1 expression by vitamin E in diabetic rat kidneys.

    Science.gov (United States)

    Al-Maghrebi, May; Cojocel, Constantin; Thompson, Mary S

    2005-05-01

    Translation elongation factor-1 (EF-1) forms a primary site of regulation of protein synthesis and has been implicated amongst others in tumorigenesis, diabetes and cell death. To investigate whether diabetes-induced oxidative stress affects EF-1 gene expression, we used a free radical scavenger, vitamin E. The following groups of rats (5/group) were studied: control, vitamin E control, diabetic and diabetic treated with vitamin E. Markers of hyperglycemia, kidney function, oxidative stress, and kidney hypertrophy were elevated in diabetic rats. Increased urinary protein excretion indicated early signs of glomerular and tubular dysfunction. The mRNA and protein levels of the three EF-1 subunits (A, Balpha, and Bgamma) were determined in renal cortex extracts using semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), northern blot analysis and western blotting. EF-1A mRNA expression in renal cortex extracts was significantly increased by at least 2-fold (p glycemic and oxidative stresses in renal cortex and kidney hypertrophy. EF-1A mRNA and protein levels were also reduced to control levels. In conclusion, EF-1A but not EF-1Balpha and EF-1Bgamma gene expression is significantly enhanced in the renal cortex of diabetic rats. Normalization of enhanced EF-1A expression by vitamin E treatment suggests a role for EF-1A during diabetes-induced oxidative stress.

  7. Oxidative stress and alteration of biochemical markers in liver and kidney by malathion in rat pups.

    Science.gov (United States)

    Selmi, Slimen; El-Fazaa, Saloua; Gharbi, Najoua

    2015-09-01

    The present study was undertaken to determine the effects of malathion exposure through maternal milk on oxidative stress, functional an metabolic parameters in kidney and liver of rat pups. We found that lactational exposure to malation (200 mg/kg, body weight (bw)) induced an oxidative stress status assessed by an increase in malondialdhyde (MDA) content, reflecting lipoperoxidation, a decrease in thiol groups' content as well as depletion of enzyme activities as a superoxide dismutase (SOD) and catalase (CAT) on postnatal days (Pnds) 21 and 51. Moreover, the current study showed that malathion induced liver and kidney dysfunctions demonstrated by considerable increase in phosphatase alkaline (PAL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as total and direct bilirubin, creatinine urea and acid uric contents. We also observed an increase in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and a decrease in high-density lipoprotein cholesterol (HDL-C) in the plasma of treated rat pups. These findings evidenced that malathion exposure during lactation through maternal milk of rats pups induced kidney and liver oxidative stress as well as functional and metabolic disorders that play a role in the development of others pathologies as cardiovascular diseases and cancers.

  8. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney.

    Science.gov (United States)

    Sener, Umit; Uygur, Ramazan; Aktas, Cevat; Uygur, Emine; Erboga, Mustafa; Balkas, Gulseren; Caglar, Veli; Kumral, Bahadir; Gurel, Ahmet; Erdogan, Hasan

    2016-01-01

    We aimed to investigate the protective role of thymoquinone (TQ) by targeting its antiapoptotic and antioxidant properties against kidney damage induced by arsenic in rats. We have used the 24 male Sprague-Dawley rats. Rats were divided into three groups. Physiological serum in 10 mL/kg dose as intragastric was given to the control group. Sodium arsenite (10 mg/kg, intragastric by gavage for fifteen days) was given to the arsenic group. Sodium arsenite (10 mg/kg, intragastric by gavage for fifteen days) and TQ (10 mg/kg, intragastric by gavage for 15 days) was given to the arsenic + TQ group. After 15 days, the animals' kidneys were taken theirs, then we have performed histological and apoptotic assessment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzyme activities and malondialdehyde (MDA) levels have examined as the oxidative stress parameters. We have determined the levels of arsenic. Increased renal injury and apoptotic cells have been detected in the arsenic group. Degenerative changes in the arsenic + TQ group were diminished. Although the MDA levels were augmented in the arsenic group, SOD, CAT and GSH-Px enzyme activities were lessened than the other groups. Our findings suggest that TQ may impede the oxidative stress, the cells have been damaged and also the generation of apoptotic cells arisen from arsenic. TQ plays a protective role against arsenic-induced toxicity in kidney and may potentially be used as a remedial agent.

  9. Effects of Chronic Exposure to Sodium Arsenate on Kidney of Rats

    Directory of Open Access Journals (Sweden)

    Namdar Yousofvand

    2015-09-01

    Full Text Available Background: In the present study, histopathological effects of chronic exposure to sodium arsenate in drinkable water were studied on a quantity of organs of rat. Methods: Rats were divided into two groups, group I; served as control group, were main-tained on deionized drinkable water for 2 months, and group II; the study group were given 60 g/ml of sodium arsenate in deionized drinkable water for 2 months. Blood and urine samples from two groups of animals were collected under anesthesia and the animals were sacrificed under deep anesthesia (a-chloralose, 100 mg/kg, I.P. Their kidney, liver, aorta, and heart were dissected out and cleaned of surrounding connective tissue. The organs were kept in formaldehyde (10% for histopathologic examination. Serum and urine samples from two groups were collected and analyzed for arsenic level. Total quantity of arsenic in serum and urine of animal was measured through graphic furnace atomic absorption spectrometry (GF-AAS. Results:Examination with light microscopy did not show any visible structural changes in the aorta, myocardium, and liver of chronic arsenic treated animals.However, a significant effect was observed in the kidneys of chronic arsenic treated rats showing distinct changes in proxi-mal tubular cells. There was high concentration of arsenic in serum and urine of arsenic ex-posed animals (group II significantly (P<0.001. Conclusion:Swollen tubular cells in histopathologic study of kidney may suggest toxic effects of arsenic in the body.

  10. Protective effect of chenodeoxycholic acid against lipid kidney injury induced by high-fructose feeding in rats and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    胡志娟

    2013-01-01

    Objective To study the intervention of chenodeoxycholic acid(CDCA) on kidney of high-fructose-fed rats,and investigate the mechanism of CDCA on lipid kidney injury.Methods Forty-eight healthy male Wistar

  11. DNA damage by ochratoxin A in rat kidney assessed by the alkaline comet assay

    Directory of Open Access Journals (Sweden)

    D. Zeljezic

    2006-12-01

    Full Text Available There are few studies of ochratoxin A (OTA genotoxicity in experimental animals and the results obtained with cell cultures are inconsistent, although the carcinogenic potential of OTA for the kidney of experimental animals has been well established. We studied the genotoxic potential of OTA in the kidney of adult female Wistar rats (5 in each group treated intraperitoneally with OTA (0.5 mg kg body weight-1 day-1 for 7, 14, and 21 days measuring DNA mobility on agarose gel stained with ethidium-bromide using standard alkaline single-cell gel electrophoresis (comet assay. Negative control animals were treated with solvent (Tris buffer, 1.0 mg/kg and positive control animals were treated with methyl methanesulfonate (40 mg/kg according to the same schedule. OTA concentrations in plasma and kidney homogenates in 7-, 14-, and 21-day treated animals were 4.86 ± 0.53, 7.52 ± 3.32, 7.85 ± 2.24 µg/mL, and 0.87 ± 0.09, 0.99 ± 0.06, 1.09 ± 0.15 µg/g, respectively. In all OTA-treated groups, the tail length, tail intensity, and tail moment in kidney tissue were significantly higher than in controls (P < 0.05. The tail length and tail moment were higher after 14 days than after 7 days of treatment (P < 0.05, and still higher after 21 days (P < 0.05. The highest tail intensity was observed in animals treated for 21 days, and it differed significantly from animals treated for 7 and 14 days (P < 0.05. OTA concentrations in plasma and kidney tissue increased steadily and OTA concentration in kidney tissue strongly correlated with tail intensity and tail moment values. These results confirm the genotoxic potential of OTA, and show that the severity of DNA lesions in kidney correlates with OTA concentration.

  12. HYPOALDOSTERONISM IN A MATSCHIE'S TREE KANGAROO (DENDROLAGUS MATSCHIEI).

    Science.gov (United States)

    Whoriskey, Sophie T; Bartlett, Susan L; Baitchman, Eric

    2016-06-01

    A 20-yr-old female Matschie's tree kangaroo (Dendrolagus matschiei) was diagnosed with hypoaldosteronism, a rare condition in which the body fails to produce normal amounts of the mineralocorticoid aldosterone. Aldosterone plays a key role in body salt homeostasis, increasing sodium reabsorption and promoting excretion of potassium. Hypoaldosteronism resulted in decreased appetite, lethargy, and weight loss in conjunction with hyponatremia, hyperkalemia, and hypercalcemia in this tree kangaroo. The animal was successfully managed with mineralocorticoid replacement using desoxycorticosterone pivalate. To the authors' knowledge this is the first report of hypoaldosteronism in a tree kangaroo and one of the few reports in the veterinary literature in any species.

  13. Livolin Forte Ameliorates Cadmium-Induced Kidney Injury in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Akomolafe Rufus O.

    2016-06-01

    Full Text Available The kidney, which is an integral part of the drug excretion system, was reported as one of the targets of cadmium toxicity. Early events of cadmium toxicity in the cell include a decrease in cell membrane fluidity, breakdown of its integrity, and impairment of its repair mechanisms. Phosphatidylcholine and vitamin E have a marked fluidizing effect on cellular membranes. We hypothesized that Livolin forte (LIV could attenuate kidney damage induced by cadmium in rats. Twenty-five adult male Wistar rats were divided into five groups of five rats each: group I (control group received 0.3 ml/kg/day of propylene glycol for six weeks; group II was given 5 mg/kg/day of cadmium (Cd i.p for 5 consecutive days; group III rats were treated in a similar way as group II but were allowed a recovery period of 4 weeks; group IV was treated with LIV (5.2 mg/kg/day for a period of 4 weeks after inducing renal injury with Cd similarly to group II; and group V was allowed a recovery period of 2 weeks after a 4-week LIV treatment (5.2 mg/kg/day following Cd administration. A significant increase in plasma creatinine, urea, uric acid, and TBARS were observed in groups II and III compared to the control rats. Significant reductions in total protein, glucose, and GSH activity were also recorded. The urine concentrations of creatinine, urea, and uric acid in groups II and III were significantly lower than the control group. Th is finding was accompanied by a significant decrease in creatinine and urea clearance. Post-treatment with LIV caused significant decreases in plasma creatinine, urea, uric acid, and TBARS. Significant increases in total protein, glucose, and GSH activity of groups IV and V were observed compared to group II. A significant increase in urine concentrations of creatinine, urea, and uric acid and significant decreases in total protein, glucose, and GSH activity were observed in groups IV and V compared to group II. Photomicrographs of the rat kidneys

  14. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    Directory of Open Access Journals (Sweden)

    Sarika Kapoor

    Full Text Available The sodium-glucose-cotransporter-2 (SGLT2 inhibitor dapagliflozin (DAPA induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD, we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group. Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d. DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  15. Effect of Sodium-Glucose Cotransport Inhibition on Polycystic Kidney Disease Progression in PCK Rats.

    Science.gov (United States)

    Kapoor, Sarika; Rodriguez, Daniel; Riwanto, Meliana; Edenhofer, Ilka; Segerer, Stephan; Mitchell, Katharyn; Wüthrich, Rudolf P

    2015-01-01

    The sodium-glucose-cotransporter-2 (SGLT2) inhibitor dapagliflozin (DAPA) induces glucosuria and osmotic diuresis via inhibition of renal glucose reabsorption. Since increased diuresis retards the progression of polycystic kidney disease (PKD), we investigated the effect of DAPA in the PCK rat model of PKD. DAPA (10 mg/kg/d) or vehicle was administered by gavage to 6 week old male PCK rats (n=9 per group). Renal function, albuminuria, kidney weight and cyst volume were assessed after 6 weeks of treatment. Treatment with DAPA markedly increased glucose excretion (23.6 ± 4.3 vs 0.3 ± 0.1 mmol/d) and urine output (57.3 ± 6.8 vs 19.3 ± 0.8 ml/d). DAPA-treated PCK rats had higher clearances for creatinine (3.1 ± 0.1 vs 2.6 ± 0.2 ml/min) and BUN (1.7 ± 0.1 vs 1.2 ± 0.1 ml/min) after 3 weeks, and developed a 4-fold increase in albuminuria. Ultrasound imaging and histological analysis revealed a higher cyst volume and a 23% higher total kidney weight after 6 weeks of DAPA treatment. At week 6 the renal cAMP content was similar between DAPA and vehicle, and staining for Ki67 did not reveal an increase in cell proliferation. In conclusion, the inhibition of glucose reabsorption with the SGLT2-specific inhibitor DAPA caused osmotic diuresis, hyperfiltration, albuminuria and an increase in cyst volume in PCK rats. The mechanisms which link glucosuria to hyperfiltration, albuminuria and enhanced cyst volume in PCK rats remain to be elucidated.

  16. Daily Intake of Grape Powder Prevents the Progression of Kidney Disease in Obese Type 2 Diabetic ZSF1 Rats

    Directory of Open Access Journals (Sweden)

    Salwa M. K. Almomen

    2017-03-01

    Full Text Available Individuals living with metabolic syndrome (MetS such as diabetes and obesity are at high risk for developing chronic kidney disease (CKD. This study investigated the beneficial effect of whole grape powder (WGP diet on MetS-associated CKD. Obese diabetic ZSF1 rats, a kidney disease model with MetS, were fed WGP (5%, w/w diet for six months. Kidney disease was determined using blood and urine chemical analyses, and histology. When compared to Vehicle controls, WGP intake did not change the rat bodyweight, but lowered their kidney, liver and spleen weight, which were in parallel with the lower serum glucose and the higher albumin or albumin/globin ratio. More importantly, WGP intake improved the renal function as urination and proteinuria decreased, or it prevented kidney tissue damage in these diabetic rats. The renal protection of WGP diet was associated with up-regulation of antioxidants (Dhcr24, Gstk1, Prdx2, Sod2, Gpx1 and Gpx4 and downregulation of Txnip (for ROS production in the kidneys. Furthermore, addition of grape extract reduced H2O2-induced cell death of cultured podocytes. In conclusion, daily intake of WGP reduces the progression of kidney disease in obese diabetic rats, suggesting a protective function of antioxidant-rich grape diet against CKD in the setting of MetS.

  17. Staged microvascular anastomosis training program for novices:transplantation of both kidneys from one rat donor

    Institute of Scientific and Technical Information of China (English)

    Zhou Shoujun; Li Enchun; He Jun; Weng Guobin; Yuan Hexing; Hou Jianquan

    2014-01-01

    Background Rat renal transplantation is an essential experimental model and requires greater microsurgical skills.Thus,training novices to perform quick and reliable microvascular anastomosis is of vital importance for rat renal transplantation.In this study,we developed and evaluated a staged microvascular anastomosis training program for novices,harvesting and transplanting both kidneys from one rat donor.Methods Five trainees without any prior microsurgical experience underwent a training program in which the goals were staged according to difficulty.Each trainee had to achieve satisfactory results as evaluated by a mentor before entering the next stage.Rat renal transplantation was accomplished by end-to-end technique with a bladder patch.In the intensive rat renal transplantation stage,the trainees required an average of 20 independent attempts at isotransplantation as final training assessment.Results After 2 months of intensive practice,all trainees had achieved stable and reproducible rat renal transplantation,with a satisfactory survival rate of 85.9% at postoperative Day 7.The total mean operative time was 78.0 minutes and the mean hot ischemia time was 26.2 minutes.With experience increasing,the operative time for each trainee showed a decreasing trend,from 90-100 minutes to 60-70 minutes.After 20 cases,the mean operative time of the trainees was not statistically significantly different from that of the mentor.Conclusion Harvesting and transplanting both kidneys from one rat donor after a staged microvascular anastomosis training program is feasible for novices without any prior microsurgical skills.

  18. Effects of pioglitazone on expressions of matrix metalloproteinases 2 and 9 in kidneys of diabetic rats

    Institute of Scientific and Technical Information of China (English)

    董凤芹; 李红; 蔡卫民; 陶君; 李群; 阮昱; 郑芬萍; 张哲

    2004-01-01

    Background The changes in matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) expressions were examined in the kidneys of diabetic rats to investigate the degradative pathway of collagen type Ⅳ (C-Ⅳ) and the protective effects of pioglitazone on an experimental model of diabetic nephropathy.Methods In 54 SD rats used in our study, 18 served as normal controls. Diabetes mellitus was induced in 36 age- and weight-matched rats by intraperitoneal injection of streptozotocin (70 mg/kg); 18 of the diabetic rats were allocated at random to receive pioglitazone (20 mg*kg-1*d-1) in their drinking water and 18 served as diabetic controls. Rats were killed after 2, 4, or 8 weeks of treatment. Kidneys were examined pathomorphologically and the expressions of MMP-2, MMP-9, and C-Ⅳ were analyzed by immunohistochemistry, and the results were quantified by image analysis techniques.Results Diabetes mellitus was associated with a decrease in the expression of MMP-2 in the glomeruli (P0.05, vs control). The expression of MMP-9 did not show any change when comparing the three groups (P>0.05, vs control). STZ-diabetic rats were also associated with an increase in the expression of C-Ⅳ in the glomeruli and the interstitium (P<0.05, vs control). All diabetes-associated changes in MMP-2 expression were attenuated by pioglitazone treatment in association with reduced C-Ⅳ accumulation. Conclusions These results indicate that a decrease in MMP-2 expression in the glomeruli of diabetic rats may lead to impairment of C-Ⅳ degradation and contribute to the matrix accumulation in diabetic nephropathy. Pioglitazone treatment, which can attenuate the decrease of glomerular MMP-2 and the increase of C-Ⅳ degradation, has curative effects on diabetic nephropathy.

  19. Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex

    Directory of Open Access Journals (Sweden)

    Mei-Ling Hou

    2016-03-01

    Full Text Available Maleic acid has been shown to be used as a food adulterant in the production of modified starch by the Taiwan Food and Drug Administration. Due to the potential toxicity of maleic acid to the kidneys, this study aimed to develop an analytical method to investigate the pharmacokinetics of maleic acid in rat blood and kidney cortex. Multiple microdialysis probes were simultaneously inserted into the jugular vein and the kidney cortex for sampling after maleic acid administration (10 or 30 mg/kg, i.v., respectively. The pharmacokinetic results demonstrated that maleic acid produced a linear pharmacokinetic phenomenon within the doses of 10 and 30 mg/kg. The area under concentration versus time curve (AUC of the maleic acid in kidney cortex was 5-fold higher than that in the blood after maleic acid administration (10 and 30 mg/kg, i.v., respectively, indicating that greater accumulation of maleic acid occurred in the rat kidney.

  20. Corticoadrenal activity in rat regulates betaine-homocysteine S-methyltransferase expression with opposite effects in liver and kidney

    Indian Academy of Sciences (India)

    Osvaldo Fridman; Analía V Morales; Laura E Bortoni; Paula C Turk-Noceto; Elio A Prieto

    2012-03-01

    Betaine-homocysteine -methyltransferase (BHMT) is an enzyme that converts homocysteine (Hcy) to methionine using betaine as a methyl donor. Betaine also acts as osmolyte in kidney medulla, protecting cells from high extracellular osmolarity. Hepatic BHMT expression is regulated by salt intake. Hormones, particularly corticosteroids, also regulate BHMT expression in rat liver. We investigated to know whether the corticoadrenal activity plays a role in kidney BHMT expression. BHMT activity in rat kidneys is several orders of magnitude lower than in rat livers and only restricted to the renal cortex. This study confirms that corticosteroids stimulate BHMT activity in the liver and, for the first time in an animal model, also up-regulate the BHMT gene expression. Besides, unlike the liver, corticosteroids in rat kidney down-regulate BHMT expression and activity. Given that the classical effect of adrenocortical activity on the kidney is associated with sodium and water re-absorption by the distal tubule leading to volume expansion, by promoting lesser use of betaine as a methyl donor, corticosteroids would preserve betaine for its other role as osmoprotectant against changes in the extracellular osmotic conditions. We conclude that corticosteroids are, at least in part, responsible for the inhibition of BHMT expression and activity in rat kidneys.

  1. Antioxidant effects of damiana (Turnera diffusa Willd. ex Schult.) in kidney mitochondria from streptozotocin-diabetic rats.

    Science.gov (United States)

    Edgar Romualdo, Esquivel-Gutiérrez; Lilia, Alcaraz-Meléndez; Rafael, Salgado-Garciglia; Alfredo, Saavedra-Molina

    2017-09-26

    The antioxidant effects of water-ethanol extract (WEE) from Turnera diffusa (damiana) in kidney mitochondria from experimental streptozotocin-induced diabetes mellitus (STZ-DM) rats was evaluated. STZ-DM rats were orally treated during three and five weeks. After experimental periods, kidney mitochondria were isolated and malondialdehyde (MDA), nitric oxide (NO•) and protein nitrosylation levels were measured. Also, blood glucose (BG) and body weight (BW) were recorded. Damiana significantly reduced the MDA and NO• levels in kidney mitochondria, although no changes in protein nitrosylation were observed and it did not have the potential to reverse the hyperglycaemia. In conclusion, WEE of T. diffusa have antioxidant properties that may prevent damage induced by mitochondrial oxidative stress in kidneys of STZ-DM rats.

  2. l-Carnitine improves cognitive and renal functions in a rat model of chronic kidney disease.

    Science.gov (United States)

    Abu Ahmad, Nur; Armaly, Zaher; Berman, Sylvia; Jabour, Adel; Aga-Mizrachi, Shlomit; Mosenego-Ornan, Efrat; Avital, Avi

    2016-10-01

    Over the past decade, the prevalence of chronic kidney disease (CKD) has reached epidemic proportions. The search for novel pharmacological treatment for CKD has become an area of intensive clinical research. l-Carnitine, considered as the "gatekeeper" responsible for admitting long chain fatty acids into cell mitochondria. l-Carnitine synthesis and turnover are regulated mainly by the kidney and its levels inversely correlate with serum creatinine of normal subjects and CKD patients. Previous studies showed that l-carnitine administration to elderly people is improving and preserving cognitive function. As yet, there are no clinical intervention studies that investigated the effect of l-carnitine administration on cognitive impairment evidenced in CKD patients. Thus, we aimed to investigate the effects of l-carnitine treatment on renal function and on the cognitive performance in a rat model of progressive CKD. To assess the role of l-carnitine on CKD condition, we estimated the renal function and cognitive abilities in a CKD rat model. We found that all CKD animals exhibited renal function deterioration, as indicated by elevated serum creatinine, BUN, and ample histopathological abnormalities. l-Carnitine treatment of CKD rats significantly reduced serum creatinine and BUN, attenuated renal hypertrophy and decreased renal tissue damage. In addition, in the two way shuttle avoidance learning, CKD animals showed cognitive impairment which recovered by the administration of l-carnitine. We conclude that in a rat model of CKD, l-carnitine administration significantly improved cognitive and renal functions.

  3. Effect of diesel exhaust particles on renal vascular responses in rats with chronic kidney disease.

    Science.gov (United States)

    Al Suleimani, Y M; Al Mahruqi, A S; Al Za'abi, M; Shalaby, A; Ashique, M; Nemmar, A; Ali, B H

    2017-02-01

    Several recent studies have indicated the possible association between exposure to particulate air pollution and the increased rate of morbidity and mortality in patients with kidney diseases. The link of this observation to vascular damage has not been adequately addressed. Therefore, this study aims to investigate possible vascular damage that might be associated with exposure to diesel exhaust particles (DP) in adenine (AD)-induced chronic kidney disease (CKD) in rats, and the possible ameliorative effect of gum acacia (GA). CKD was induced by feeding AD (0.75%, w/w), and DP (0.5 mg/kg) was instilled intratracheally every second day and GA was given concomitantly in the drinking water at a dose of 15% w/v. All treatments were given concomitantly for 28 days. Changes in renal blood flow (RBF) and systolic and diastolic blood pressure were monitored in these animals after anesthesia, together with several other endpoints. Exposure to DP significantly reduced RBF and this was significantly potentiated in AD-treated rats. Phenylephrine-induced decreases in RBF and increases in systolic and diastolic blood pressure were severely potentiated in rats exposed to DP, and these actions were significantly augmented in AD-treated rats. GA did not significantly affect the vascular impairment induced by AD and DP given together. This study provides experimental evidence that exposure to particulate air pollution can exacerbate the vascular damage seen in patients with CKD. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 541-549, 2017.

  4. Strain-Related Differences on Response of Liver and Kidney Antioxidant Defense System in Two Rat Strains Following Diazinon Exposure

    Directory of Open Access Journals (Sweden)

    Maryam Salehi

    2016-02-01

    Full Text Available Background Diazinon (DZN is one of the most organophosphates that widely used in agriculture and ectoparasiticide formulations. Its extensive use as an effective pesticide was associated with the environmental deleterious effects on biological systems. Objectives The aim of this study was to investigate the potency of DZN to affect serum biochemical parameters and the antioxidant defense system in the liver and kidney of two rat strains. Materials and Methods In this experimental study, 30 female Wistar and 30 female Norway rats were randomly divided into control and DZN groups. DZN group was divided into four subgroups: 25, 50, 100 and 200 mg/kg of DZN administered groups by i.p. injection. The parameters were evaluated after 24 hours. Results At higher doses of DZN, superoxide dismutase, catalase, glutathione S-transferase and lactate dehydrogenase activities and glutathione (GSH and malondialdehyde levels in liver and kidney of Wistar rats were higher than Norway rats. At these concentrations, DZN increased some serum biochemical indices such as liver enzymes activities and levels of urea, uric acid and creatinine in Wistar rat. Conclusions DZN at higher doses alters the oxidant-antioxidant balance in liver and kidney of both rat strains and induces oxidative stress, which is associated with a depletion of GSH and increased lipid peroxidation. However, Wistar rats are found to be more sensitive to the toxicity of DZN compared to Norway rats. In addition, the effect of DZN on liver antioxidant system was more than kidney.

  5. Biochemical and histological study of rat liver and kidney injury induced by Cisplatin.

    Science.gov (United States)

    Palipoch, Sarawoot; Punsawad, Chuchard

    2013-09-01

    Cisplatin is a chemotherapeutic agent widely used in treatment of several cancers. It is documented as a major cause of clinical nephrotoxicity and hepatotoxicity. The purpose of this study was to investigate the involvement of oxidative stress in the pathogenesis of cisplatin-induced liver and kidney injury. Wistar rats were divided into four groups. Group 1 (control) was intraperitoneally (IP) injected with a single dose of 0.85% normal saline. Groups 2, 3 and 4 were IP injected with single doses of cisplatin at 10, 25 and 50 mg/kg body weight (BW), respectively. At 24, 48, 72, 96 and 120 h after injection, BW, levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine, malondialdehyde (MDA), and activity of superoxide dismutase (SOD) and histology of the liver and kidney were evaluated. Cisplatin caused a reduction in BW of rats in groups 2, 3 and 4 at all post injection intervals. The levels of serum ALT, AST, BUN and creatinine and MDA of the kidney and liver were markedly increased especially at 48 and 72 h, whereas the activity of SOD was decreased after cisplatin injection. Liver sections revealed moderate to severe congestion with dilation of the hepatic artery, portal vein and bile duct and disorganization of hepatic cords at 50 mg/kg of cisplatin. Kidney sections illustrated mild to moderate tubular necrosis at 25 and 50 mg/kg of cisplatin. Therefore, oxidative stress was implicated in the pathogenesis of liver and kidney injury causing biochemical and histological alterations.

  6. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats.

    Science.gov (United States)

    Koriem, Khaled M M; Arbid, Mahmoud S; Emam, Kawther R

    2014-07-01

    Octylphenol (OP) is one of ubiquitous pollutants in the environment. It belongs to endocrine-disrupting chemicals (EDC). It is used in many industrial and agricultural products. Pectin is a family of complex polysaccharides that function as a hydrating agent and cementing material for the cellulose network. The aim of this study was to evaluate the therapeutic effect of pectin in kidney dysfunction, oxidative stress and apoptosis induced by OP exposure. Thirty-two male albino rats were divided into four equal groups; group 1 control was injected intraperitoneally (i.p) with saline [1 ml/kg body weight (bwt)], groups 2, 3 & 4 were injected i.p with OP (50 mg/kg bwt) three days/week over two weeks period where groups 3 & 4 were injected i.p with pectin (25 or 50 mg/kg bwt) three days/week over three weeks period. The results of the present study revealed that OP significantly decreased glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT), reduced glutathione (GSH), glutathione reductase (GR) and superoxide dismutase (SOD) levels while increased significantly lipid peroxidation (MDA), nitric oxide (NO) and protein carbonyls (PC) levels in the kidney tissues. On the other hand, OP increased serum urea and creatinine. Furthermore, OP increased significantly serum uric acid but decreased significantly the kidney weight. Moreover, OP decreased p53 expression while increased bcl-2 expression in the kidney tissue. The treatment with either dose of pectin to OP-exposed rats restores all the above parameters to approach the normal values where pectin at higher dose was more effective than lower one. These results were supported by histopathological investigations. In conclusion, pectin has antioxidant and anti-apoptotic activities in kidney toxicity induced by OP and the effect was dose-dependent.

  7. Contribution of renal innervation to hypertension in rat autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Gattone, Vincent H; Siqueira, Tibério M; Powell, Charles R; Trambaugh, Chad M; Lingeman, James E; Shalhav, Arieh L

    2008-08-01

    The kidney has both afferent (sensory) and efferent (sympathetic) nerves that can influence renal function. Renal innervation has been shown to play a role in the pathogenesis of many forms of hypertension. Hypertension and flank pain are common clinical manifestations of autosomal dominant (AD) polycystic kidney disease (PKD). We hypothesize that renal innervation contributes to the hypertension and progression of cystic change in rodent PKD. In the present study, the contribution of renal innervation to hypertension and progression of renal histopathology and dysfunction was assessed in male Han:SPRD-Cy/+ rats with ADPKD. At 4 weeks of age, male offspring from crosses of heterozygotes (Cy/+) were randomized into either 1) bilateral surgical renal denervation, 2) surgical sham denervation control, or 3) nonoperated control groups. A midline laparotomy was performed to allow the renal denervation (i.e., physical stripping of the nerves and painting the artery with phenol/alcohol). Blood pressure (tail cuff method), renal function (BUN) and histology were assessed at 8 weeks of age. Bilateral renal denervation reduced the cystic kidney size, cyst volume density, systolic blood pressure, and improved renal function (BUN) as compared with nonoperated controls. Operated control cystic rats had kidney weights, cyst volume densities, systolic blood pressures, and plasma BUN levels that were intermediate between those in the denervated animals and the nonoperated controls. The denervated group had a reduced systolic blood pressure compared with the operated control animals, indicating that the renal innervations was a major contributor to the hypertension in this model of ADPKD. Renal denervation was efficacious in reducing some pathology, including hypertension, renal enlargement, and cystic pathology. However, sham operation also affected the cystic disease but to a lesser extent. We hypothesize that the amelioration of hypertension in Cy/+ rats was due to the effects

  8. Histological changes in kidneys of adult rats treated with Monosodium glutamate: A light microscopic study

    Directory of Open Access Journals (Sweden)

    Singh BR, Ujwal Gajbe, Anil Kumar Reddy, Vandana Kumbhare

    2015-01-01

    Full Text Available Introduction: Monosodium Glutamate (MSG, which is chemically known as AJI-NO-MOTO also familiar as MSG in routine life. MSG is always considered to be a controversial food additive used in the world. It is a natural excitatory neurotransmitter, helps in transmitting the fast synaptic signals in one third of CNS. Liver and kidney play a crucial role in metabolism as well as elimination of MSG from the body. Present study is to detect structural changes in adult rat kidney tissue treated with MSG; observations are done with a light microscope. Materials & Methods: The study was conducted in the department of Anatomy, J.N.M.C, Sawangi (M Wardha. Thirty (30 adult Wistar rats (2-3 months old weighing about (200 ± 20g were used in the current study, animals were divided into three groups (Group – A, B, C. Group A: Control, Group B: 3 mg /gm body weight, Group C: 6 mg /gm body weight, MSG were administered orally daily for 45 days along with the regular diet. Observations & Results: The Mean values of animals weight at the end of experiment (46th day respectively were 251.2 ± 13, 244.4 ± 19.9 and 320 ± 31.1. Early degenerative changes like, Glomerular shrinkage (GSr, loss of brush border in proximal convoluted tubules and Cloudy degeneration was observed in sections of kidney treated with 3 mg/gm body weight of MSG. Animals treated with 6 mg/gm body weight of MSG showed rare changes like interstitial chronic inflammatory infiltrate with vacuolation in some of the glomeruli, and much glomerular shrinkage invaginated by fatty lobules. Conclusion: The effects of MSG on kidney tissues of adult rats revealed that the revelatory changes are directly proportional to the doses of MSG.

  9. Setting up Kangaroo Mother Care at Queen Elizabeth Central ...

    African Journals Online (AJOL)

    Central Hospital, Blantyre - A practical approach .... It is not sustainable .... This is a very distressing event for the mother, other mothers and .... management of well preterm infants: a pilot study. ... Kangaroo Mother Care — A practical guide.

  10. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney.

    Science.gov (United States)

    Graca, J A Z; Schepelmann, M; Brennan, S C; Reens, J; Chang, W; Yan, P; Toka, H; Riccardi, D; Price, S A

    2016-03-15

    The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca(2+)]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.

  11. Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney.

    Science.gov (United States)

    Holthöfer, H

    1988-08-01

    The ontogeny of lectin-positive epithelial cell types and the maturation of polarized expression of the glycocalyx of the collecting ducts (CD) of the rat kidney were studied from samples of 18th-day fetal and neonatal kidneys of various ages. Lectins from Dolichos biflorus (DBA) and Vicia villosa (VVA), with preferential affinity to principal cells, stained virtually all CD cells of the fetal kidneys. However, within two days postnatally, the number of cells positive for DBA and VVA decreased to amounts found in the adult kidneys. Moreover, a characteristic change occurred rapidly after birth in the intracellular polarization of the reactive glycoconjugates, from a uniform plasmalemmal to a preferentially apical staining. In contrast, lectins from Arachis hypogaea (PNA), Maclura pomifera (MPA) and Lotus tetragonolobus (LTA), reacting indiscriminatively with principal and intercalated cells of adult kidneys, stained most CD cells in the fetal kidneys, and failed to show any postnatal change in the amount of positive cells or in the intracellular polarization. The immunocytochemical tests for (Na + K)-ATPase and carbonic anhydrase (CA II) revealed the characteristic postnatal decrease in the amount of principal cells and simultaneous increase in the amount of CA II rich intercalated cells. DBA and VVA reactive cells also decreased postnatally, paralleling the changes observed in the (Na + K)-ATPase positive principal cells. The present results suggest that the expression of the cell type-specific glycocalyx of principal and intercalated cells is developmentally regulated, undergoes profound changes during maturation, and is most likely associated with electrolyte transport phenomena.

  12. THE LOCALIZATION OF ADRENOMEDULLIN IN RAT KIDNEY TISSUE AND ITS INHIBITORY EFFECT ON THE GROWTH OF CULTURED RAT MESANGIAL CELLS

    Institute of Scientific and Technical Information of China (English)

    刘学光; 张志刚; 张秀荣; 朱虹光; 陈琦; 郭慕依

    2002-01-01

    Objective. To observe the localization of adrenomedullin (AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC). Methods. A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry. The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC) and MsC were investigated by Northern blot assay, and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H]thymidine incorporation as an index. Results. A specific monoclonal antibody against AM was successfully developed. AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells), some cortical proximal tubules, medullary collecting duct cells, interstitial cells, vascular smooth muscle cells and endothelial cells. Northern blot assay showed that AM mRNA was expressed only on cultured GEC, but not on MsC, however, AM receptor CRLR mRNA was only expressed on MsC. GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect. Conclusion. AM produced by GEC inhibits the proliferation of MsC, which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.

  13. THE LOCALIZATION OF ADRENOMEDULLIN IN RAT KIDNEY TISSUE AND ITS INHIBITORY EFFECT ON THE GROWTH OF CULTURED RAT MESANGIAL CELLSA

    Institute of Scientific and Technical Information of China (English)

    刘学光; 张志刚; 等

    2002-01-01

    Objective:To observe the localization of adrenomedullin(AM) in rat kidney tissue and its inhibitory effect on the growth of cultured rat mesangial cells (MsC).Methods:A monoclonal antibody against AM developed by our laboratory was used to detect the localization of AM protein in rat kidney tissue by avidin-biotin complex immunohistochemistry.The expressions of AM and its receptor CRLR mRNA on cultured glomerular epithelial cells (GEC)and MsC were investigated by Northern blot assay,and the possible effect of AM secreted by GEC on MsC proliferation was observed using [3H] thymidine incorporation as an index.Results:A specific monoclonal antibody against AM was successfull developed.AM was immunohistochemically localized mainly in glomeruli (GEC and endothelial cells),some cortical proximal tubules,medullary collecting duct cells,interstitial cells,vascular smooth muscle cells and endothelial cells.Northern blot assay showed the AM mRNA was expressed only on cultured GEC,but not on MsC,however,AM receptor CRLR mRNA was only expressed on MsC.GEC conditioned medium containing AM can inhibit MsC growth and AM receptor blocker CGRP8-37 may partially decreased this inhibitory effect.Conclusion:AM produced by GEC inhibits the proliferation of MsC,which suggests that AM as an important regulator is involved in glomerular normal physiological functions and pathologic processes.

  14. Zinc prevention of electromagnetically induced damage to rat testicle and kidney tissues.

    Science.gov (United States)

    Ozturk, Ahmet; Baltaci, Abdülkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2003-01-01

    The aim of this study was to investigate the extent of lipid peroxidation when zinc is administered to rats periodically exposed to a 50-Hz electromagnetic field for 5 min at a time over a period of 6 mo. Twenty-four Sprague-Dawley adult male rats were subdivided in groups of eight animals each. Group 1 served as untreated controls, group 2 was exposed to an electromagnetic field but received no additional treatment, and group 3 was exposed to electromagnetic radiation and treated with 3-mg/kg daily intraperitoneal injections of zinc sulfate. The erythrocyte glutathione activity (GSH) and the plasma, testicle, and kidney tissue levels of zinc (Zn) and of malondialdehyde (MDA) were measured in all of the animals. The plasma and testicle MDA levels in group 2 were higher than those in groups 1 and 3, with group 3 values significantly higher than those in group 1 (ptesticle and kidney tissues, the GSH levels in group 1 were lower than for groups 2 and 3, with group 2 significantly lower than group 3 (ptesticle and kidney tissue damage caused by periodic exposure to an electromagnetic field are ameliorated or prevented by zinc supplementation.

  15. Long-term cadmium exposure induces anemia in rats through hypoinduction of erythropoietin in the kidneys

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Hyogo [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Sato, Masao [Department of Biomolecular Sciences, Institute of Biomedical Sciences, Fukushima Medical College, Fukushima (Japan); Konno, Nobuhiro [Department of Public Health, Fukushima Medical College, Fukushima (Japan); Fukushima, Masaaki [Department of Public Health, Fukushima Medical College, Fukushima (Japan)

    1996-11-01

    Cadmium (Cd), a highly toxic heavy metal, is distributed widely in the general environment of today. The characteristic clinical manifestations of chronic Cd intoxication include renal proximal tubular dysfunction, general osteomalacia with severe pains, and anemia. We have recently reported that the serum level of erythropoietin (EPO) remained low despite the severe anemia in patients with Itai-itai disease, the most severe form of chronic Cd intoxication. In order to prove that the anemia observed in chronic Cd intoxication arises from low production of EPO in the kidneys following the renal injury, we administered Cd to rats for a long period and performed the analysis of EPO mRNA inducibility in the kidneys. The rats administered Cd for 6 and 9 months showed anemia with low levels of plasma EPO as well as biochemical and histological renal tubular damage, and also hypoinduction of EPO mRNA in the kidneys. The results indicate that chronic Cd intoxication causes anemia by disturbing the EPO-production capacity of renal cells. (orig.). With 4 figs., 4 tabs.

  16. [Nucleoside-5'-triphosphate hydrolysis in the liver and kidney of rats with chronic alloxan diabetes].

    Science.gov (United States)

    Rusina, I M; Makarchikov, A F; Makar, E A; Kubyshin, V L

    2006-01-01

    Activity and some properties of a soluble enzyme hydrolyzing nucleoside-5'-triphosphates were studied in the liver and kidney of normal and diabetic rats. The enzyme activity was shown to be reduced by 34% (p < 0.01) in the liver extracts of diabetic animals, while no difference was observed in the kidney. When ITP was used as substrate, the apparent Michaelis constant of the enzyme was significantly lower in the liver of controls as compared to experimental rats (32.3 +/- 1.3 microM and 54.3 +/- 1.0 microM, respectively, p < 0.01). The KM values of the enzyme in the kidney were not distinguishable in both groups. NTPase exhibits maximal activity at pH 7.0 and has a broad substrate specificity with respect to different nucleoside-5'-tri- and diphosphates. Molecular mass of the enzyme was estimated by gel filtration to be 63.7 +/- 0.9 kD.

  17. Protective effect of Phyllanthus fraternus against bromobenzene-induced mitochondrial dysfunction in rat kidney

    Institute of Scientific and Technical Information of China (English)

    Vadde Ramakrishna; Sriram Gopi; Oruganti H.Setty

    2012-01-01

    Phyllanthus fraternus (PF) (Euphorbiaceae) is used in ancient Indian traditional phytomedicine to treat various human diseases including hepatic and renal disorders.The present study was designed to investigate the protective effect of PF aqueous extract against bromobenzene-induced mitochondrial dysfunction in rat kidney,compared with vitamin E used as positive control.Male Wistar rats divided into six (A-F) groups and the experimental animals were administered bromobenzene with or without prior administration of PF extract or vitamin E.Animals were sacrificed and the kidneys obtained for studying mitochondrial function and histopathology.Administration of bromobenzene caused significant changes,including decrease in the mitochondrial respiration and P/O ratios,an increase in lipid peroxidation and protein oxidation,and a decrease in the activities of antioxidant enzymes (catalase,superoxide dismutase,glutathione reductase,and glutathione peroxidase) in mitochondria with significant histopathological changes in the kidney.However,prior administration of the PF extract showed significant protection against bromobenzene induced renal damage by reversing all above parameters.Mitochondrial dysfunction induced by bromobenzene was protected much better with the PF extract than with vitamin E.These results suggested that the Phyllanthus fraternus extract is an efficient armament against nephrotoxicity induced by bromobenzene.

  18. Lead-induced alterations in rat kidneys and testes in vivo.

    Science.gov (United States)

    Massanyi, Peter; Lukac, Norbert; Makarevich, Alexander V; Chrenek, Peter; Forgacs, Zsolt; Zakrzewski, Marian; Stawarz, Robert; Toman, Robert; Lazor, Peter; Flesarova, Slavka

    2007-04-01

    The purpose of this study was to assess the effects of lead administration on the kidney and testicular structure of adult rats. Rats received lead (PbNO(3)) in single intraperitoneal dose 50 mg/kg (group A), 25 mg/kg (group B) and 12.5 mg (group C) per kilogram of body weight and were killed 48 h following lead administration. After the preparation of histological samples the results were compared with control. After the lead administration dilated Bowman's capsules and blood vessels in interstitium of kidney with evident hemorrhagic alterations were noted. Quantitative analysis determined increased relative volume of interstitium and tubules. Also, the diameter of renal corpuscules, diameter of glomeruli and diameter of Bowman's capsule were significantly increased, especially in group A, with the highest lead concentration. In testes, dilatation of blood capillaries in interstitium, undulation of basal membrane and occurrence of empty spaces in seminiferous epithelium were detected. An apoptosis assay confirmed increased incidence of apoptosis in the spermatogenetic cells after the lead administration. Also further morphometric analysis showed significant differences in evaluated parameters between control and treated groups. The number of cell nuclei was decreased in lead-treated groups, which is concerned with the occurrence of empty spaces as well as with the higher apoptosis incidence in germinal epithelium. This study reports a negative effect of lead on the structure and function of kidney and testes.

  19. Ginger extract protects rat's kidneys against oxidative damage after chronic ethanol administration.

    Science.gov (United States)

    Shirpoor, Aireza; Rezaei, Farzaneh; Fard, Amin Abdollahzade; Afshari, Ali Taghizadeh; Gharalari, Farzaneh Hosseini; Rasmi, Yousef

    2016-12-01

    Chronic alcohol ingestion is associated with pronounced detrimental effects on the renal system. In the current study, the protective effect of ginger extract on ethanol-induced damage was evaluated through determining 8-OHdG, cystatin C, glomerular filtration rate, and pathological changes such as cell proliferation and fibrosis in rats' kidneys. Male wistar rats were randomly divided into three groups and were treated as follows: (1) control, (2) ethanol and (3) ginger extract treated ethanolic (GETE) groups. After a six weeks period of treatment, the results revealed proliferation of glomerular and tubular cells, fibrosis in glomerular and peritubular and a significant rise in the level of 8-OHdG, cystatin C, plasma urea and creatinine. Moreover, compared to the control group, the ethanol group showed a significant decrease in the urine creatinine and creatinine clearance. In addition, significant amelioration of changes in the structure of kidneys, along with restoration of the biochemical alterations were found in the ginger extract treated ethanolic group, compared to the ethanol group. These findings indicate that ethanol induces kidneys abnormality by oxidative DNA damage and oxidative stress, and that these effects can be alleviated using ginger as an antioxidant and anti-inflammatory agent.

  20. Changes in the expression of the Toll-like receptor system in the aging rat kidneys.

    Directory of Open Access Journals (Sweden)

    Yue Xi

    Full Text Available BACKGROUND: The mechanisms of kidney aging are not yet clear. Studies have shown that immunological inflammation is related to kidney aging. Toll-like receptors (TLRs are one of the receptor types of the body's innate immune system. The function of the TLR system and the mechanisms by which it functions in renal aging remain unclear. In the present study, we, for the first time, systematically investigated the role of the TLR system and the inflammation responses activated by TLRs during kidney aging. METHODS: We used western blot and immunohistochemistry to systematically analyze the changes in the expression and activation of the endogenous TLR ligands HSP70 and HMGB1, the TLRs (TLR1-TLR11, their downstream signaling pathway molecules MyD88 and Phospho-IRF-3, and the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα (NF-κB inhibition factor α, NF-κBp65, and Phospho-NF-κBp65 (activated NF-κB p65 in the kidneys of 3 months old (youth group, 12 months old (middle age group, and 24 months old (elderly group rats. We used RT-qPCR to detect the mRNA expression changes of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b in the rat renal tissues of the various age groups. RESULTS: We found that during kidney aging, the HSP70 and HMGB1 expression levels were significantly increased, and the expression levels of TLR1, 2, 3, 4, 5, and 11 and their downstream signaling pathway molecules MyD88 and Phospho-IRF-3 were markedly elevated. Further studies have shown that in the aging kidneys, the expression levels of the NF-κB signaling pathway molecules Phospho-IKKβ, Phospho-IκBα, NF-κBp65, and Phospho-NF-κBp65 were obviously increased, and those of the proinflammatory cytokines CCL3, CCL4, CCL5, CD80, TNF-α, and IL-12b were significantly upregulated. CONCLUSIONS: These results showed that the TLR system might play an important role during the kidney aging process maybe by activating the NF-κB signaling

  1. Alterations in the metabolomics of sulfur-containing substances in rat kidney by betaine.

    Science.gov (United States)

    Kim, Young Chul; Kwon, Do Young; Kim, Ji Hyun

    2014-04-01

    Earlier studies have shown that betaine administration may modulate the metabolism of sulfur amino acids in the liver. In this study, we determined the changes in the metabolomics of sulfur-containing substances induced by betaine in the kidney, the other major organ actively involved in the transsulfuration reactions. Male rats received betaine (1%) in drinking water for 2 weeks before killing. Betaine intake did not affect betaine-homocysteine methyltransferase activity or its protein expression in the renal tissue. Expression of methionine synthase was also unchanged. However, methionine levels were increased significantly both in plasma and kidney. Renal methionine adenosyltransferase activity and S-adenosylmethionine concentrations were increased, but there were no changes in S-adenosylhomocysteine, homocysteine, cysteine levels or cystathionine β-synthase expression. γ-Glutamylcysteine synthetase expression or glutathione levels were not altered, but cysteine dioxygenase and taurine levels were decreased significantly. In contrast, betaine administration induced cysteine sulfinate decarboxylase and its metabolic product, hypotaurine. These results indicate that the metabolomics of sulfur-containing substances in the kidney is altered extensively by betaine, although the renal capacity for methionine synthesis is unresponsive to this substance unlike that of the liver. It is suggested that the increased methionine availability due to an enhancement of its uptake from plasma may account for the alterations in the metabolomics of sulfur-containing substances in the kidney. Further studies need to be conducted to clarify the physiological/pharmacological significance of these findings.

  2. Thiazide diuretic drug receptors in rat kidney: Identification with ( sup 3 H)metolazone

    Energy Technology Data Exchange (ETDEWEB)

    Beaumont, K.; Vaughn, D.A.; Fanestil, D.D. (Univ. of California, San Diego, La Jolla (USA))

    1988-04-01

    Thiazides and related diuretics inhibit NaCl reabsorption in the distal tubule through an unknown mechanism. The authors report here that ({sup 3}H)metolazone, a diuretic with a thiazide-like mechanism of action, labels a site in rat kidney membranes that has characteristics of the thiazide-sensitive ion transporter. ({sup 3}H)Metolazone bound with high affinity to a site with a density of 0.717 pmol/mg of protein in kidney membranes. The binding site was localized to the renal cortex, with little or not binding in other kidney regions and 11 other tissues. The affinities of thiazide-type diuretics for this binding site were significantly correlated with their clinical potency. Halide anions specifically inhibited high-affinity binding of ({sup 3}H)metolazone to this site. ({sup 3})Metolazone also bound with lower affinity to sites present in kidney as well as in liver, testis, lung, brain, heart, and other tissues. Calcium antagonists and certain smooth muscle relaxants had K{sub i} values of 0.6-10 {mu}M for these low-affinity sites, which were not inhibited by most of the thiazide diuretics tested. Properties of the high-affinity ({sup 3}H)metolazone binding site are consistent with its identity as the receptor for thiazide-type diuretics.

  3. Mothers’ Experiences with Premature Neonates about Kangaroo Care: Qualitative Approaches

    Directory of Open Access Journals (Sweden)

    Tahere Salimi

    2014-01-01

    Full Text Available Introduction:  Premature neonates admitted in NICU besides being separated from their mothers are prone to inevitably painful and stressful situations. Kangaroo care is the most effective method to get rid of this separation and its negative consequences. This study was performed to determine the experiences of mothers having premature neonates concerning Kangaroo care.   Material and Methods: The present study is a qualitative research in which focus group discussion method is used for data collection. Research society consisted of mothers having premature neonates Research group reread and categorized the qualitative findings. Contents of interviews were analyzed using the conventional interpretation approach introduced by Dicklman Method.   Results: Through content analysis of information emerged two major categories including mothers’ experiences about advantages of kangaroo care in interaction with neonate, and, feeling of physical-mental healthiness of neonate. Executive obstacles of kangaroo care from mothers’ standpoint were also discussed, which will be subsequently presented.   Discussion: According to the obtained results, it seems vital to highlight kangaroo care as a safe and effective clinical care-taking treatment in nursery of premature neonates in all hospitals. Nurses shall provide all mothers with the needed instructions for holding the premature and lower-weight neonate properly on their chests and shall promote their knowledge level concerning positive effects of kangaroo care including induction of tranquil sleep, optimization of physiological conditions of neonate, and removal of suckling obstacles.

  4. Effect of mesenchymal stem cells on anti-Thy1,1 induced kidney injury in albino rats

    Institute of Scientific and Technical Information of China (English)

    Saber Sakr; Laila Rashed; Waheba Zarouk; Rania El-Shamy

    2013-01-01

    Objective: To evaluate the effect of mesenchymal stem cells (MSCs) in rats with anti-Thy1,1 nephritis. Methods: Female albino rats were divided into three groups, control group, anti-Thy1,1 group and treatment with i.v. MSCs group. MSCs were derived from bone marrow of male albino rats, Y-chromosome gene was detected by polymerase chain reaction in the kidney. Serum urea and creatinine were estimated for all groups. Kidney of all studied groups was examined histologically and histochemically (total carbohydrates and total proteins). DNA fragmentation and expression of α-SMA were detected. Results:Kidney of animals injected with anti-Thy1,1 showed inflammatory leucocytic infiltration, hypertrophied glomeruli, tubular necrosis and congestion in the renal blood vessels. The kidney tissue also showed reduction of carbohydrates and total proteins together with increase in apoptosis and in expression ofα-SMA. Moreover, the levels of urea and creatinine were elevated. Treating animals with MSCs revealed that kidney tissue displayed an improvement in the histological and histochemical changes. Apoptosis and α-SMA expression were decreased, and the levels of urea and creatinine decreased. Conclusions:The obtained results demonstrated the potential of MSCs to ameliorate the structure and function of the kidney in rats with anti-Thy1,1 nephritis possibly through the release of paracrine growth factor(s).

  5. Attenuation of cellular antioxidant defense mechanisms in kidney of rats intoxicated with carbofuran.

    Science.gov (United States)

    Kaur, Bhupindervir; Khera, Alka; Sandhir, Rajat

    2012-10-01

    Carbofuran, an anticholinestrase carbamate, is commonly used as an insecticide. Its toxic effect on kidney is less established. The present study was designed to investigate the effect of carbofuran on kidneys and to understand the mechanism involved in its nephrotoxicity. Male Wistar rats were divided into two groups of eight animals each; control animals received sunflower oil (vehicle) and carbofuran exposed animals were treated with carbofuran (1 mg/kg body weight) orally for 28 days. At the end of the treatment, significant increase was observed in urea and creatinine levels in serum along with the inhibition of acetylcholinesterase, suggesting nephrotoxicity. The antioxidant defense system of animals treated with carbofuran was altered in terms of increased lipid peroxidation, reduced glutathione, and total thiols and decreased activity of antioxidant enzymes (superoxide dismutase and catalase). The results indicate that carbofuran is nephrotoxic and increased oxidative stress appears to be involved in its nephrotoxic effects.

  6. Effect of GLP-1 on the expression of NADPH oxidase subunits in the kidney of type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jin-jin LIU

    2013-09-01

    Full Text Available Objective To observe the effect of exenatide, a glucagon-like peptide-1 (GLP-1 receptor agonist, on the expression of NADPH oxidase subunits NOX4 and p22phox and connective tissue growth factor (CTGF in the kidney of streptozotocin (STZ-induced type 1 diabetic rats, and explore the protective effects and mechanisms of exenatide on the kidney of diabetic rats. Methods Thirty male Sprague-Dawley (SD rats were divided into control group (group A, n=7 and diabetic model group (n=23. Type 1 diabetic model was reproduced by intraperitoneal injection of streptozotocin. It was successful in 19 rats. Diabetic rats were randomly divided into diabetic control group (group B, n=10 and diabetic with treatment of exenatide group (group C, n=9. Rats in group C were injected subcutaneously with exenatide in dose of 5μg/kg twice daily. Rats in group A and B were given equivalent volume of normal saline by subcutaneous injection. All rats were sacrificed after eight weeks. The mRNA expression of renal p22phox and NOX4 were detected by real-time fluorescence quantitative PCR. The protein expression of CTGF was detected by immunohistochemical staining. Results The levels of blood glucose, lipids, creatinine, and urea nitrogen, the albumin excretion rate, kidney index, the mRNA expressions of renal NOX4 and p22phox, and the protein expression of renal CTGF were significantly increased in group B compared with that in group A (P0.05. Conclusion Exenatide can decrease the expressions of renal NOX4, p22phox and CTGF, decline the index of urinary protein, and alleviate the kidney hypertrophy in type 1 diabetic rats, implying that exenatide exerted a protective effect on the kidney.

  7. The protective effect of Malva sylvestris on rat kidney damaged by vanadium

    Directory of Open Access Journals (Sweden)

    Murat Jean-Claude

    2011-04-01

    Full Text Available Abstract Background The protective effect of the common mallow (Malva sylvestris decoction on renal damages in rats induced by ammonium metavanadate poisoning was evaluated. On the one hand, vanadium toxicity is associated to the production of reactive oxygen species, causing a lipid peroxidation and an alteration in the enzymatic antioxidant defence. On the other hand, many medicinal plants are known to possess antioxidant and radical scavenging properties, thanks to the presence of flavonoids. These properties were confirmed in Malva sylvestris by two separate methods; namely, the Diphenyl-2-picrylhydrazyl assay and the Nitroblue Tetrazolium reduction assay. Results In 80 rats exposed to ammonium metavanadate (0.24 mmol/kg body weight in drinking water for 90 days, lipid peroxidation levels and superoxide dismutase, catalase and glutathione peroxidase activities were measured in kidney. A significant increase in the formation of free radicals and antioxidant enzyme activities was noticed. In addition, a histological examination of kidney revealed a structural deterioration of the renal cortical capsules and a shrinking of the Bowman space. In animals intoxicated by metavanadate but also given a Malva sylvestris decoction (0.2 g dry mallow/kg body weight, no such pathologic features were observed: lipid peroxidation levels, antioxidant enzyme activities and histological features appeared normal as compared to control rats. Conclusion Malva sylvestris is proved to have a high antioxidative potential thanks to its richness in phenolic compounds.

  8. Immature CD4+ dendritic cells conditioned with donor kidney antigen prolong renal allograft survival in rats

    Institute of Scientific and Technical Information of China (English)

    WANG Tao; XU Lin; LI Heng; HUANG Zheng-yu; ZHANG Sheng-ping; MIAO Bin; NA Ning

    2012-01-01

    Background AIIogeneic transplant rejection is currently a major problem encountered during organ transplantation.The dendritic cell (DC) is the most effective powerful known professional antigen-presenting cell,and recent studies have found that DCs can also induce immune tolerance,and avoid or reduce the degree of transplant rejection.The aim of this study was to evaluate the effect of transfused immature CD4+ DCs on renal allografts in the rat model.Methods In this study,we induced CD4+ immature DCs from rat bone marrow cells by a cytokine cocktail.The immature CD4+ DCs were identified by morphological analysis and then the suppressive activity of these cells conditioned with donor kidney antigen was evaluated in vitro and in vivo.Results Immature CD4+ DCs conditioned with donor kidney antigen possessed immunosuppressive activity in vitro and they were able to prolong renal transplant survival in an allograft rat model in vivo.Conclusions Our study provides new information on efficacious renal transplantation,which might be useful for understanding the function of immature CD4+ DCs in modulating renal transplant rejection and improving clinical outcome in future studies.

  9. SIRT1/3 Activation by Resveratrol Attenuates Acute Kidney Injury in a Septic Rat Model

    Science.gov (United States)

    Xu, Siqi; Wei, Siwei; Dai, Xingui

    2016-01-01

    Sepsis often results in damage to multiple organ systems, possibly due to severe mitochondrial dysfunction. Two members of the sirtuin family, SIRT1 and SIRT3, have been implicated in the reversal of mitochondrial damage. The aim of this study was to determine the role of SIRT1/3 in acute kidney injury (AKI) following sepsis in a septic rat model. After drug pretreatment and cecal ligation and puncture (CLP) model reproduction in the rats, we performed survival time evaluation and kidney tissue extraction and renal tubular epithelial cell (RTEC) isolation. We observed reduced SIRT1/3 activity, elevated acetylated SOD2 (ac-SOD2) levels and oxidative stress, and damaged mitochondria in RTECs following sepsis. Treatment with resveratrol (RSV), a chemical SIRT1 activator, effectively restored SIRT1/3 activity, reduced acetylated SOD2 levels, ameliorated oxidative stress and mitochondrial function of RTECs, and prolonged survival time. However, the beneficial effects of RSV were greatly abrogated by Ex527, a selective inhibitor of SIRT1. These results suggest a therapeutic role for SIRT1 in the reversal of AKI in septic rat, which may rely on SIRT3-mediated deacetylation of SOD2. SIRT1/3 activation could therefore be a promising therapeutic strategy to treat sepsis-associated AKI. PMID:28003866

  10. Age-related change of endocytic receptors megalin and cubilin in the kidney in rats.

    Science.gov (United States)

    Odera, Keiko; Goto, Sataro; Takahashi, Ryoya

    2007-10-01

    Megalin and cubilin are the major endocytic receptors responsible for resorption of glomerular filtrate proteins, particularly albumin, in the renal proximal tubule. In order to better understand the mechanism of the development of albuminuria with age in rats, we investigated age-related change of the amount and cellular localization of both receptors in the kidney. Immunoblot analysis of the kidney extracts showed that the amount of megalin significantly decreased with age. Although there was no age-related change in the amount of intact cubilin, the amount of cubilin fragments increased with age. Immunohistochemical study revealed that megalin and cubilin were predominantly localized in brush border membrane of proximal tubular cells in young rats, but the receptors tended to diffuse into the cytoplasm in the old rats. Interestingly, low but significant amounts of megalin and cubilin were present in the glomerular cells in addition to the proximal tubular cells. The quantity of receptors progressively increased in the glomerulus with age. This age-related increase might be to compensate for the age-related defect of the uptake of albumin by the proximal tubules. Thus, although it is unclear whether megalin and cubilin in the glomerulus contribute to the uptake of albumin in primary urine, the age-related increase in the amount of albumin in urine might at least partly be due to quantitative and qualitative alterations of both receptors in the proximal tubule.

  11. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease.

    Science.gov (United States)

    Salman, Ibrahim M; Sarma Kandukuri, Divya; Harrison, Joanne L; Hildreth, Cara M; Phillips, Jacqueline K

    2015-01-01

    Chronic kidney disease (CKD) is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK) rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n = 16) were instrumented for telemetric recording of RSNA and MAP. At 12-13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2) and central chemoreflex (hypercapnia: 7% CO2) activation and acute stress (open-field exposure), were measured. As indicators of renal function, urinary protein (UPro) and creatinine (UCr) levels were assessed. LPK rats had higher resting RSNA (1.2 ± 0.1 vs. 0.6 ± 0.1 μV, p dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  12. Effects of ubiquinol with fluid resuscitation following haemorrhagic shock on rat lungs, diaphragm, heart and kidneys.

    Science.gov (United States)

    Bennetts, Paul; Shen, Qiuhua; Thimmesch, Amanda R; Diaz, Francisco J; Clancy, Richard L; Pierce, Janet D

    2014-07-01

    Haemorrhagic shock (HS) and fluid resuscitation can lead to increased reactive oxygen species (ROS), contributing to ischaemia-reperfusion injury and organ damage. Ubiquinol is a potent antioxidant that decreases ROS. This study examined the effects of ubiquinol administered with fluid resuscitation following controlled HS. Adult male Sprague-Dawley rats were randomly assigned to treatment [ubiquinol, 1 mg (100 g body weight)(-1)] or control groups. Rats were subjected to 60 min of HS by removing 40% of the total blood volume to a mean arterial pressure ∼45-55 mmHg. The animals were resuscitated with blood and lactated Ringer solution, with or without ubiquinol, and monitored for 120 min. At the end of the experiments, the rats were killed and the lungs, diaphragm, heart and kidneys harvested. Leucocytes were analysed for mitochondrial superoxide at baseline, end of shock and 120 min following fluid resuscitation using MitoSOX Red. Diaphragms were examined for hydrogen peroxide using dihydrofluorescein diacetate and confocal microscopy. The apoptosis in lungs, diaphragm, heart and kidneys was measured using fluorescence microscopy with acridine orange and ethidium bromide. Leucocyte mitochondrial superoxide levels were significantly lower in rats that received ubiquinol than in the control animals. Production of hydrogen peroxide and apoptosis were significantly reduced in the organs of rats treated with ubiquinol. These findings suggest that ubiquinol, administered with fluid resuscitation after HS, attenuates ROS production and apoptosis. Thus, ubiquinol is a potent antioxidant that may be used as a potential treatment to reduce organ injury following haemorrhagic events. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.

  13. A recommended technique of renal vein anastomosis in rat kidney transplantation for trainee

    Institute of Scientific and Technical Information of China (English)

    Ye Dongming; Heng Baoli; Lai Caiyong; Guo Zexiong; Su Zexuan

    2014-01-01

    Background Various rat kidney transplantation models have been introduced over the decades and the study on the models seems to lack novelty and necessity.However,vascular anastomosis,especially renal vein,is still very difficult for trainees.The aim of this study was to provide the modified renal venous anastomosis of rat kidney transplantation to substitute the currant method for trainees.Methods Male Wistar rats were used as donors and recipients,respectively.Left orthotopic transplantation was performed with a modified technique of renal vein anastomosis,combining the end-to-end sutures with epidural catheter.Meanwhile,the survival rate,warm ischemia time,renal venous anastomosis time,and complications were recorded to evaluate the merits of the modified technique compared with the current recommended technique of rat renal vein.Two trainees took part in the learning of the models in two methods for performing 30 operations,respectively.Results The difference in warm ischemia time (from (57.25±7.30) minutes in the first 10 operations to (30.05±1.85)minutes in the third 10 operations) and renal vein anastomosis time (from (32.80±3.80) minutes in the first 10 operations to (19.30±0.98) minutes in the third 10 operations) was significantly short (P<0.01) and the survival rate was statistically high (from (25±7)% in the first 10 operations to 70% in the third 10 operations) in equal number of operations (P<0.01) by comparing with the current recommended method ((47.60±7.19) minutes to (22.8±1.85) minutes,(22.40±3.10) minutes to (9.95±1.50) minutes,45%±7% to 80%±0,respectively).The intraoperative complications and postoperative complications of renal venous anastomosis were also significantly decreased (P<0.01).Conclusions The technique with epidural catheter can shorten the learning curve of the trainee learning rat kidney transplantation.It may replace the currently recommended technique of rat renal vein for trainees.

  14. Effects of salt restriction on renal growth and glomerular injury in rats with remnant kidneys.

    Science.gov (United States)

    Lax, D S; Benstein, J A; Tolbert, E; Dworkin, L D

    1992-06-01

    Male Munich-Wistar rats underwent right nephrectomy and infarction of two thirds of the left kidney. Rats were randomly assigned to ingest standard chow (REM) or a moderately salt restricted chow (LS). A third group of rats were fed the low salt diet and were injected with an androgen (LSA). Eight weeks after ablation, glomerular volume and glomerular capillary radius were markedly increased in REM. This increase was prevented by the low salt diet, however, the antihypertrophic effect of the diet was overcome by androgen. Values for glomerular volume and capillary radius were similar in LSA and REM. Morphologic studies revealed that approximately 25% of glomeruli were abnormal in REM. Much less injury was observed in salt restricted rats, however, the protective effect of the low salt diet was significantly abrogated when renal growth was stimulated in salt restricted rats by androgen. Micropuncture studies revealed that glomerular pressure was elevated in all three groups and not affected by diet or androgen. Serum cholesterol was also similar in the three groups. These findings indicate that renal and glomerular hypertrophy are correlated with the development of glomerular injury after reduction in renal mass and suggest that dietary salt restriction lessens renal damage, at least in part, by inhibiting compensatory renal growth.

  15. Genetic and histopathological alterations induced by cypermethrin in rat kidney and liver: Protection by sesame oil.

    Science.gov (United States)

    Soliman, Mohamed Mohamed; Attia, Hossam F; El-Ella, Ghada A Abou

    2015-12-01

    Pesticides are widespread synthesized substances used for public health protection and agricultural programs. However, they cause environmental pollution and health hazards. This study aimed to examine the protective effects of sesame oil (SO) on the genetic alterations induced by cypermethrin (CYP) in the liver and kidney of Wistar rats. Male rats were divided into four groups, each containing 10 rats: the control group received vehicle, SO group (5 mL/kg b.w), CYP group (12 mg/kg b.w), and protective group received SO (5 mL/kg b.w) plus CYP (12 mg/kg b.w). Biochemical analysis showed an increase in albumin, urea, creatinine, GPT, GOT, and lipid profiles in the CYP group. Co-administration of SO with CYP normalized such biochemical changes. CYP administration decreased both the activity and mRNA expression of the examined antioxidants. SO co-administration recovered CYP, downregulating the expression of glutathione-S-transferase (GST), catalase, and superoxide dismutase. Additionally, SO co-administration with CYP counteracted the CYP- altering the expression of renal interleukins (IL-1 and IL-6), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), anigotensinogen (AGT), AGT receptors (AT1), and genes of hepatic glucose and fatty acids metabolism. CYP induced degenerative changes in the kidney and liver histology which are ameliorated by SO. In conclusion, SO has a protective effect against alterations and pathological changes induced by CYP in the liver and kidney at genetic and histological levels.

  16. Effect of ageing and oxidative stress on antioxidant enzyme activity in different regions of the rat kidney.

    Science.gov (United States)

    Thiab, Noor Riyadh; King, Nicola; Jones, Graham L

    2015-10-01

    Oxidative stress has been implicated in ageing and the pathogenesis of chronic kidney disease. We examined levels of antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione S-transferase, catalase and superoxide dismutase as modulated by age and oxidative stress in different regions of the kidney. Antioxidant enzymes were examined in different regions of the kidney in male Wistar rats. Kidneys from rats of different ages (5, 12, 36 and 60 weeks) were dissected into cortex, outer medulla and inner medulla. Tissues were incubated for 30 min with or without 0.2 mM H2O2 to induce oxidative stress. Antioxidant enzyme activities progressively decreased with age under both control and stress conditions (P Antioxidant enzyme activities were greater in the cortex (P < 0.05) by comparison with the outer and inner medulla, respectively.

  17. Royal jelly modulates oxidative stress and apoptosis in liver and kidneys of rats treated with cisplatin.

    Science.gov (United States)

    Karadeniz, Ali; Simsek, Nejdet; Karakus, Emre; Yildirim, Serap; Kara, Adem; Can, Ismail; Kisa, Fikrullah; Emre, Habib; Turkeli, Mehmet

    2011-01-01

    Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg(-1) body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.

  18. Royal Jelly Modulates Oxidative Stress and Apoptosis in Liver and Kidneys of Rats Treated with Cisplatin

    Directory of Open Access Journals (Sweden)

    Ali Karadeniz

    2011-01-01

    Full Text Available Cisplatin (CDDP is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg-1 body weight i.p., single dose; group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day; group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA and glutathione (GSH levels, glutathione S-transferase (GST, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA, elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.

  19. DISSOCIATION OF STRUCTURE AND FUNCTION AFTER ISCHAEMIA-REPERFUSION INJURY IN THE ISOLATED PERFUSED RAT KIDNEYS

    Directory of Open Access Journals (Sweden)

    M. Kadkhodaee

    1999-08-01

    Full Text Available Oxygen-derived free radical* (OFR involvement in ischacmia-rcpcrfusion (IR injury was investigated in a rat isolated kidney model, using 20 minutes iscliaemia followed by 15 or 60 minutes reperfusion. Two antioxidants, the xanthine oxidase inhibitor allopurinol and the hydroxyl radical scavenger dimcthylthiourca (DMTU, were uscit to try and prevent OFR-relatcd damage. Renal function was estimated from the inulin clearance, fractional soiiium excretion and renal vascular resistance, location and extent of tubular damage, and type of cell death (apoptosis vs necrosis were used as morphological parameters of IR-iiuluced change. Cell damage was most extensive in the nephron segments of the outer zone of the outer medulla (straight proximal tubule and thick ascending limb (TAL. I're-treatment with allopttrinol or DMTU did not Improve renal function. Less structural damage was observed in the TAL of allopuriol - or DMTU - treated kidneys compared with IR alone. In allopurinol - treated kidneys, luminal debris was less extensive than that seen in IR kidneys. Most cell death was necrotic in type and morphological features of apoptosis were seen infrequently. Tlic beneficial effects of allopurinol and DMTU on structural change did not correlate with functional improvement during the reperfusion period, litis may require longer repcrfusion or multiple treatments. Tlie results suggest that OFR ■ injury is of limited significance in this model of renal IR injury. Targeting OFR injury may only be useful after very brief periods of iscliaemia where necrosis is minimal ami the potential for recover}- is greater, Tiie results confirm the different susccptibilitcs of individual nephron segments to injury within the intact kidney. Understanding the molecular response to injury in each segment should facilitate development of methods to accelerate repair after [R injury.

  20. Protective Effects of Prunus armeniaca L (Apricot on Low Dose Radiation-Induced Kidney Damage in Rats

    Directory of Open Access Journals (Sweden)

    Meltem KURUS

    2014-05-01

    Full Text Available OBJECTIVE: This experimental study was designed to evaluate radiation-induced kidney damage and the protective effect of apricot against it using histological parameters. MATERIAL and METHODS: Rats were divided into 6 groups each containing 10 Sprague Dawley rats as follows: Regc: Rats on a regular diet (control diet for 28 weeks; control group. Regx: Rats on a regular diet for 28 weeks, XRE on last day of eighth week. Aprc: Rats on an apricot diet for 28 weeks; control for no XRE. Aprx: Rats on an apricot diet for 28 weeks, XRE on last day of eighth week. Reg+Aprc: Rats on a regular diet for 8 weeks, followed by an apricot diet for the following 20 weeks; control. Reg + Aprx: Rats on a regular diet for 8 weeks, XRE on last day of eighth week, followed by an apricot diet for 20 weeks. RESULTS: The kidneys of the control groups showed normal kidney histology, whereas Regx group showed major histopathological changes, such as glomerular collapse, hemorrhage, interstitial fibrosis and inflammatory infiltrates. The Aprx and Reg+Aprx groups showed smaller amounts of degeneration. CONCLUSION: In conclusion, we suggest that agents with antioxidant properties such as apricot may have a positive effect in the treatment of renal diseases.

  1. [Preventive and therapeutic effects of Yishen Huanji Decoction on kidney injury in rats induced by simulation of military overtraining].

    Science.gov (United States)

    Chen, Hong; Yang, Jun; Zhou, Chun-hua

    2008-06-01

    To observe the preventive and therapeutic effects of Yishen Huanji Decoction (YSHJD), a compound traditional Chinese herbal medicine, on military overtraining-induced kidney injury in a rat model. Thirty SD rats were randomly divided into normal control group, untreated group and YSHJD-treated group. The military overtraining-induced kidney injury in rats was established by forcing to run on the treadmill for 8 weeks. The rats in YSHJD-treated group were administered with YSHJD at the same time. The 24-hour urines were collected every weekend for detecting the contents of urinary sediment, 24-hour urine total protein, 24-hour urine albumin and activity of N-acetyl-beta-D-glucosaminidase (NAG). The blood and renal tissues were collected after 8-week training, and the levels of serum urea nitrogen (BUN) and creatinine (SCr) were detected. Angiotensin II (Ang II) was detected by radioimmunoassay and activity of Na(+), K(+)-ATPase in kidney was analyzed by chemical colorimetric method. Compared with the normal control group, after 8-week training, the contents of 24-hour urine protein, activities of NAG in urine, and the levels of BUN and SCr in rats in the untreated group and YSHJD-treated group were obviously increased (Povertraining-induced kidney injury in rats by decreasing the contents of 24-hour urine protein, BUN and SCr, and the activity of NAG, and increasing the activity of Na(+), K(+)-ATPase.

  2. Amelioration of Altered Serum, Liver, and Kidney Antioxidant Enzymes Activities by Sodium Selenite in Alloxan-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Hassan Ahmadvand

    2014-10-01

    Full Text Available Background: The aim of this study was to evaluate the possible protective effect of sodium selenite on serum, liver, and kidney antioxidant enzymes activities in alloxan-induced type 1 diabetic rats. Methods: Forty Sprague-Dawley male rats were randomly divided into four groups; Group one as control, Group two as sham-treated with sodium selenite by 1 mg/kg intraperitoneal (i.p. injections daily, Group three as diabetic untreated, and Group four as diabetic treated with sodium selenite by 1 mg/kg i.p. injections daily . Diabetes was induced in the third and fourth groups by subcutaneous alloxan injections. After eight weeks the animals were euthanized and livers and kidneys were immediately removed and used fresh or kept frozen until analysis. Before the rats were killed blood samples were also collected to measure glutathione peroxidase (GPX and catalase (CAT activities in sera. Results: Glutathione peroxidase and CAT activities serum, liver, and kidney were all significantly less in the diabetic rats than in the controls. Sodium selenite treatment of the diabetic rats resulted in significant increases in GPX activity in the kidneys and livers, and CAT activity in the sera and livers. Conclusions: Our results indicate that sodium selenite might be a potent antioxidant that exerts beneficial effects on both GPX and CAT activities in alloxan-induced type 1 diabetic rats.

  3. Renal vascular effects of leukotriene C4 in the isolated perfused kidney of the rat.

    OpenAIRE

    Frölich, J C; Yoshizawa, M.

    1987-01-01

    1 The vascular effects of leukotriene C4 (LTC4) were investigated in the isolated perfused kidney of the rat. 2 LTC4 (6.4 X 10(-10) to 3.2 X 10(-8) mol kg-1 min-1 given over 5 min) resulted in a prompt, dose-dependent increase in renal vascular resistance in a recirculating system, which lasted for more than 60 min. 3 LTC4 was 10 to 20 fold and 1000 to 2000 fold, respectively, less active on a molar basis than noradrenaline and angiotensin II in eliciting renal vasoconstriction. 4 The vascula...

  4. Early segmental changes in ischemic acute tubular necrosis of the rat kidney

    DEFF Research Database (Denmark)

    Faarup, Poul; Nørgaard, Tove; Hegedüs, Viktor;

    2004-01-01

    and subsequent freeze-substitution in alcohol. The microscopic slides from the kidneys were silver methenamine-PAS stained. In the segments of the proximal convoluted tubules of the nephrons, presence of nuclear pyknosis, places of denuded basement membranes and presence of exfoliated tubular cells were counted...... versus the subsequent loops. The distribution of the structural lesions is in accordance with the previously reported presence of a tubulo-capillary counter-current flow in the proximal convoluted tubule and, when related to the highly variable oxygen tension in the normal renal cortex of the rat...

  5. Immunohistochemical Expression of Leptin (Ob-protein in Experimentally Hypertensive Rat Kidney Tissues

    Directory of Open Access Journals (Sweden)

    Fikret Gevrek

    2016-12-01

    Results: The blood pressure levels of the experimental group were higher than in the control, and their renal tissues had some distinctive histopathological changes. Additionally, Leptin immunostaining scores increased in the excretory tubule cells of hypertensive rats. Conclusion: Upregulation of Leptin expression may indicate that Leptin molecules have an important physiological role such as regulation of some kidney functions to adapt high blood pressure; or, contrary to this, they may be a pathophysiological sign. Further research is necessary to determine whether this situation is physiological or pathophysiological process. [J Contemp Med 2016; 6(4.000: 255-265

  6. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney.

    OpenAIRE

    Brezis, M; Rosen, S.; Silva, P.; Epstein, F H

    1984-01-01

    A specific anatomical lesion sharply localized to the cells of the medullary thick ascending limbs (mTAL) and characterized by mitochondrial swelling progressing to nuclear pyknosis and cell death is elicited reproducibly in isolated rat kidneys perfused for 15 or 90 min with cell-free albumin-Ringer's medium gassed with 5% CO2, 95% O2 (O2 content, 1.5 vol/100 ml). The lesion, involving about half of mTALs, appears first in mTALs removed from vascular bundles and near the inner medulla, areas...

  7. Decrease of FGF receptor (FGFR) and interstitial fibrosis in the kidney of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Cheng, M F; Chen, L J; Wang, M C; Hsu, C T; Cheng, J T

    2014-01-01

    Fibrosis is the final disorder of end-stage renal disease. Activation of fibroblast growth factor (FGF) 23-klotho axis could suppress renal fibrosis in mice. Also, a marked decrease of klotho expression was observed in the kidney of streptozotocin-induced diabetic rats (STZ rats). However, relation of FGF in renal fibrosis remained unclear. This study was aimed to screen the effect of hyperglycemia on FGF receptor (FGFR) and fibrosis in kidney of rats with diabetic nephropathy and investigate this potential mechanism in cultured Madin-Darby Canine Kidney (MDCK) epithelial cells. STZ rats were used to treat with insulin or phloridzin at the dose sufficient to correct hyperglycemia for understanding the changes of renal dysfunction. The cultured MDCK cells were also used to treat with high glucose, hydrogen peroxide, or tiron in addition to transfection of siRNA to silence the klotho. Both insulin and phloridzin reversed fibrosis and FGFR expressions in kidney of STZ rats. It was confirmed in high glucose-exposed MDCK cells. However, klotho failed to modify the level of FGFR in MDCK cells. Meanwhile, FGFR was restored by tiron in MDCK cells and in diabetic rats without changing blood glucose. In conclusion, interstitial fibrosis and decreased FGFR expression are observed in the kidney of diabetic rats. This change is reversed by tiron without the correction of blood glucose. Also, klotho has no effect on expression of FGFR. Thus, decrease of oxidative stress is useful for the recovery of FGFR expression and improvement of renal fibrosis in type-1 like diabetic rats.

  8. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J;

    1994-01-01

    Alterations in basement membrane components, notably proteoglycans, in a rat model of polycystic kidney disease have been investigated. Rats were fed phenol II (2-amino-4-hydroxyphenyl-5-phenyl thiazole) for 4 days and then changed to normal diet for a 7-day recovery period. Marked dilation...... of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  9. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lipsø, Hans Kasper Wigh; Østergaard, Jakob Appel

    2014-01-01

    administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization...... with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which...... did not restore glycemic control, to streptozotocin (STZ)‐diabetic rats using noninvasive hyperpolarized 13C‐pyruvate magnetic resonance imaging (MRI) and blood oxygenation level–dependent (BOLD) 1H‐MRI to determine renal metabolic flux and oxygen availability, respectively. Suboptimal insulin...

  10. Structural Injury after Lithium Treatment in Human and Rat Kidney involves Glycogen Synthase Kinase-3β Positive Epithelium

    DEFF Research Database (Denmark)

    Kjærsgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2011-01-01

    Lithium is reabsorbed by distal nephron segments in sodium depleted states. It was hypothesized that lithium causes permanent injury to the developing kidney particularly in the sodium-retaining phase around weaning through entry into epithelial cells of the distal nephron and inhibition of glyco......Lithium is reabsorbed by distal nephron segments in sodium depleted states. It was hypothesized that lithium causes permanent injury to the developing kidney particularly in the sodium-retaining phase around weaning through entry into epithelial cells of the distal nephron and inhibition...... of glycogen synthase kinase-3β (GSK-3β). GSK-3β and pGSK-3β was investigated in a developing series of rat kidney cortex and medulla. Li+ was given to female wistar rats with litters through food pellets at postnatal (P) days 7-28. In human fetal and adult kidney the expression of GSK-3β was examined and also...... a kidney from a lithium treated patient was investigated. GSK-3β was associated with connecting tubule and collecting ducts in developing and adult human and rat kidney. Renal abundance of inactive, serine9 phosphorylated GSK-3β protein decreased significantly with postnatal development. At P28, plasma Li...

  11. Effects of treatment with the anti-parasitic drug diminazene aceturate on antioxidant enzymes in rat liver and kidney.

    Science.gov (United States)

    Baldissera, Matheus D; Gonçalves, Ricardo A; Sagrillo, Michele R; Grando, Thirssa H; Ritter, Camila S; Grotto, Fabielly S; Brum, Gerson F; da Luz, Sônia C A; Silveira, Sergio O; Fausto, Viviane P; Boligon, Aline A; Vaucher, Rodrigo A; Stefani, Lenita M; da Silva, Aleksandro S; Souza, Carine F; Monteiro, Silvia G

    2016-04-01

    Diminazene aceturate (DA) is the active component of some trypanocidal drugs used for the treatment of animals infected with trypanosomosis and babesiosis. Residues of DA may cause hepatotoxic and nephrotoxic effects. Therefore, the purpose of this study was to investigate the occurrence of oxidative stress, i.e., changes in the antioxidant defense system of rats treated with a single dose of 3.5 mg kg(-1) of DA. All treatments were intramuscularly administered, and evaluations were performed on days 7 and 21 post-treatment (PT). Liver and kidney samples were collected and evaluated by histopathology and oxidative stress parameters (thiobarbituric acid-reactive species, catalase, superoxide dismutase, carbonyl, non-protein thiols, and reduced glutathione). Finally, blood was collected to determine seric DA concentration. Superoxide dismutase (SOD) and catalase (CAT) activities in liver and kidney of rats were dramatically inhibited (p  0.05). Both non-protein thiols (NPSH) and glutathione (GSH) levels in liver and kidney decreased (p kidney tissues on 21 days PT. Histopathology revealed vacuolar degeneration in liver and kidney samples on day 21 PT. Our findings indicate that DA could cause oxidative damage to liver and kidney of rats.

  12. [Gene transfer-induced human heme oxygenase-1 over-expression protects kidney from ischemia-reperfusion injury in rats].

    Science.gov (United States)

    Lü, Jin-xing; Yan, Chun-yin; Pu, Jin-xian; Hou, Jian-quan; Yuan, He-xing; Ping, Ji-gen

    2010-12-14

    To study the protection of gene transfer-induced human heme oxygenase-1 over-expression against renal ischemia reperfusion injury in rats. The model of kidney ischemia-reperfusion injury was established with Sprague-Dawley rats. In the therapy group (n=18), the left kidney was perfused and preserved with Ad-hHO-1 at 2.5×10(9) pfu/1.0 ml after flushed with 0-4°C HC-A organ storage solution via donor renal aorta. The rats in control groups were perfused with 0.9% saline solution (n=12) or the vector carrying no interest gene Ad-EGFP 2.5×10(9) pfu/1.0 ml (n=18) instead of Ad-hHO-1. BUN and Cr in serum were measured by slide chemical methods. The kidney samples of rats were harvested for assay of histology, immunohistochemistry and quantification of HO enzymatic activity. Apoptosis cells in the kidney were measured by TUNEL. Ad-hHO-1 via donor renal aorta could transfect renal cells of rats effectively, enzymatic activity of HO in treated group [(1.62±0.07) nmol×mg(-1)×min(-1)] is higher than in control groups treated with saline solution team [(1.27±0.07) nmol×mg(-1)×min(-1)] and vector EGFP team [(1.22±0.06) nmol×mg(-1)×min(-1)] (PhHO-1 expressed hHO-1 in kidneys at a high level. Corresponding to this, the level of BUN and Cr, as well as the number of apoptosis cells, were decreased, and the damage in histology by HE staining was ameliorated. Over-expression of human HO-1 can protect the kidney from ischemia/reperfusion injury in rats.

  13. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats

    Directory of Open Access Journals (Sweden)

    Haller Hermann

    2002-01-01

    Full Text Available Abstract Background We are investigating a double transgenic rat (dTGR model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1 are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model. Methods We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc and age-matched SD rats.. Blood-pressure- and albuminuria- measurements were monitored during the treatement period (four weeks. The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analsis. Results Chronic treatment with the antioxidant PDTC decreased blood pressure (162 ± 8 vs. 190 ± 7 mm Hg, p = 0.02. Cardiac hypertrophy index was significantly reduced (4.90 ± 0.1 vs. 5.77 ± 0.1 mg/g, p Conclusion Our data show that inhibition of NF-κB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-κB activation plays an important role in ANG II-induced end-organ damage.

  14. Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats.

    Science.gov (United States)

    Jia, Zhiqiang; Liu, Min; Qu, Zhe; Zhang, Yuanyuan; Yin, Shutong; Shan, Anshan

    2014-03-01

    An experiment was conducted to determine the toxic effects of zearalenone (ZEN) on oxidative stress, inflammatory cytokines, biochemical and pathological changes in the kidney of pregnant rats, and to explore the possible mechanism in ZEN induced kidney damage. The rats were fed a normal diet treated with 0.3, 48.5, 97.6 or 146 mg/kg ZEN in feed on gestation days (GDs) 0 through 7, and then all the rats were fed with a normal diet on GDs 8 through 20. The results showed that ZEN induced kidney dysfunction, oxidative damage, pathological changes and increased mRNA and protein expression of TLR4 and inflammatory cytokines in kidney in dose-dependent manner. The results indicated that ZEN caused kidney damage of pregnant rats and TLR4-mediated inflammatory reactions signal pathway was one of the mechanisms of ZEN mediated toxicity in kidney. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Yanling Zhang

    Full Text Available Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2 leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection. To examine this further we administered the SGLT2 inhibitor, dapagliflozin, to 5/6 (subtotally nephrectomised rats, a model of progressive chronic kidney disease (CKD that like CKD in humans is characterised by single nephron hyperfiltration and intraglomerular hypertension and where angiotensin converting enzyme inhibitors and angiotensin receptor blockers are demonstrably beneficial. When compared with untreated rats, both sham surgery and 5/6 nephrectomised rats that had received dapagliflozin experienced substantial glycosuria. Nephrectomised rats developed hypertension, heavy proteinuria and declining GFR that was unaffected by the administration of dapagliflozin. Similarly, SGLT2 inhibition did not attenuate the extent of glomerulosclerosis, tubulointerstitial fibrosis or overexpression of the profibrotic cytokine, transforming growth factor-ß1 mRNA in the kidneys of 5/6 nephrectomised rats. While not precluding beneficial effects in the diabetic setting, these findings indicate that SGLT2 inhibition does not have renoprotective effects in this classical model of progressive non-diabetic CKD.

  16. Effect of alcohol on blood glucose and antioxidant enzymes in the liver and kidney of diabetic rats

    Directory of Open Access Journals (Sweden)

    K R Shanmugam

    2011-01-01

    Full Text Available Objective: Diabetes mellitus affects every organ in the man including eyes, kidney, heart, and nervous system. Alcohol consumption is a widespread practice. As the effects of chronic alcohol consumption on diabetic state have been little studied, this study was conducted with the objective of evaluating the effect of alcohol in diabetic rats. Materials and Methods: For this study, the rats were divided into five groups (n = 6 in each group: normal control (NC, alcohol treatment (At, diabetic control (DC, diabetic plus alcohol treatment (D + At, diabetic plus glibenclamide treatment (D + Gli. Alcohol treatment was given to the diabetic rats for 30 days. During the period the blood glucose levels, and body weight changes were observed at regular intervals. The antioxidant enzymes like superoxide dismutase (SOD, catalase (CAT, and malondialdehyde (MDA levels were assayed in the liver and kidney tissues. Results: The blood glucose levels were significantly (P < 0.001 elevated and body weight significantly (P < 0.001 decreased in alcohol-treated diabetic rats. SOD and CAT activities were decreased and the MDA level increased significantly (P < 0.001 in alcohol-treated diabetic rats. Histopathological studies showed that alcohol damages the liver and kidney tissues in diabetic rats. Conclusion: These finddings concluded that the consumption of alcohol in diabetic rats worsens the condition. So the consumption of alcohol by diabetic subjects may be potentially harmful.

  17. Alpha -tocopherol supplementation on chromium toxicity : a study on rat liver and kidney cell membrane

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Membrane damage is one of the important consequence of chromium, an environmental toxicant, to produce cytotoxicity. α-tocopherol, a membrane protectant can be used to reduce the chromium-induced membrane damage. In the present study, the impact of chromium in presence and absence of α-tocopherol was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100g body weight). Significant increase in membrane cholesterol level as well as significant decrease in membrane phospholipid level in chromium exposed ( 0.8 mg /100g body weight/d, i.p., for 4 weeks) animals suggest structural alteration of both liver and kidney plasma memebrane. The alkaline phosphatase, total ATPase and Na+-K+-ATPase activities of plasma membrane were significantly decreased in both liver and kidney after chromium treatment. However, α-tocopherol (30 mg / 100g diet) supplementation can restrict the changes in these membrane-bound enzyme activities. Thus, the usefulness of dietary supplementation of α-tocopherol to restrain the chromium-induced membrane damage is suggested.

  18. Biochemical effects of gadolinium chloride in rats liver and kidney studied by 1H NMR metabolomics

    Institute of Scientific and Technical Information of China (English)

    LIAO Peiqiu; WEI Lai; Wu Huifeng; LI Weisheng; WU Yijie; LI Xiaojing; NI Jiazuan; PEI Fengkui

    2009-01-01

    The biochemical effects of gadolinium chloride were studied using high-resolution IH nuclear magnetic resonance (NMR) spec-troscopy to investigate the biochemical composition of tissue (liver and kidney) aqueous extracts obtained from control and gadolinium chlo-ride (GdCl3) (10 and 50 mg/kg body weight, intraperitoneal injection, i.p.) treated rats. Tissue samples were collected at 48, 96 and 168 h p.d. after exposure to GdCl3, and extracted using methanol/chloroform solvent system. 1H NMR spectra of tissue extracts were analyzed by pat-tern recognition using principal components analysis. The liver damages caused by GdCl3 were characterized by increased succinate and de-creased glycogen level and elevated lactate, alanine and betaine concentration in liver. Furthermore, the increase of creatine and lactate, and decrease of glutamate, alanine, phosphocholine, glycophosphocholine (GPC), betaine, myo-inositoi and trimethylamine N-oxide (TMAO)levels in kidney illustrated kidney disturbance induced by GdCl3.

  19. Down-regulation of rat kidney calcitonin receptors by salmon calcitonin infusion evidence by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Bouizar, Z.; Rostene, W.H.; Milhaud, G.

    1987-08-01

    In treating age-related osteoporosis and Paget disease of bone, it is of major importance to avoid an escape phenomenon that would reduce effectiveness of the treatment. The factors involved in the loss of therapeutic efficacy with administration of large pharmacological doses of the hormone require special consideration. Down-regulation of the hormone receptors could account for the escape phenomenon. Specific binding sites for salmon calcitonin (sCT) were characterized and localized by autoradiography on rat kidney sections incubated with /sup 125/I-labeled sCT. Autoradiograms demonstrated a heterogeneous distribution of /sup 125/I-labeled sCT binding sites in the kidney, with high densities in both the superficial layer of the cortex and the outer medulla. Infusion of different doses of unlabeled sCT by means of Alzet minipumps for 7 days produced rapid changes in plasma calcium, phosphate, and magnesium levels, which were no longer observed after 2 or 6 days of treatment. Besides, infusion of high doses of sCT induced down-regulation of renal sCT binding sites located mainly in the medulla, where calcitonin (CT) has been shown to exert it physiological effects on water and ion reabsorption. These data suggest that the resistance to high doses of sCT often observed during long-term treatment of patients may be the consequence of not only bone-cell desensitization but also down-regulation of CT-sensitive kidney receptor sites.

  20. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups.

    Science.gov (United States)

    Ahmad, Shadab; Basak, Trayambak; Anand Kumar, K; Bhardwaj, Gourav; Lalitha, A; Yadav, Dilip K; Chandak, Giriraj Ratan; Raghunath, Manchala; Sengupta, Shantanu

    2015-09-08

    Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. [Function and morphology of isolated rat kidney following cellfree perfusion with various plasmaexpanders (author's transl)].

    Science.gov (United States)

    Franke, H; Sobotta, E E; Witzki, G; Unsicker, K

    1975-05-01

    Isolated arteficially perfused rat kidneys prepared as described by Franke et al. (1971) were perfused for 60 min with solutions of Haemaccel, Dextran 40, Pluronic-F-108, or hydroxy-aethyl starch in a single pass system. The glomerular filtration rate (GFR) of the Haemaccel or Dextran 40 perfused organs amounted during the first 30 min to 0.58 ml X g-1 X min-1 and 0.47 ml X g-1 X min-1 respectively. Using Pluronic-F-108 or hydroxy-aethyl starch GFR rose to 0.94 ml X g-1 X min-1 and to 0.85 ml X G-1 X min-1. With Haemaccel or Dextran 40 solutions a mean tubular Na-reabsorption of 75.4 mumol X g-1 X min-1 and of 59 mumol X g-1 X min-1 respectively was determined. Employing Pluronic-F-108 or hydroxy-aethyl starch a mean sodium net transport of 92.6 mumol X g-1 X min-1 in both experimental groups was obtained. The differences described in the functional capabilities of Haemaccel or Dextran 40 and of Pluronic-F-108 or Hydroxyethyl starch perfused kidneys are in good accordance with morphological changes in the ultrastructure. The most striking morphological deviations were found in proximal tubules of those kidneys perfused with Haemaccel solutions. On the other hand after perfusion with hydroxyethyl starch only very few morphological alterations could be detected.

  2. Telmisartan Ameliorates Fibrocystic Liver Disease in an Orthologous Rat Model of Human Autosomal Recessive Polycystic Kidney Disease

    Science.gov (United States)

    Yoshihara, Daisuke; Kugita, Masanori; Sasaki, Mai; Horie, Shigeo; Nakanishi, Koichi; Abe, Takaaki; Aukema, Harold M.; Yamaguchi, Tamio; Nagao, Shizuko

    2013-01-01

    Human autosomal recessive polycystic kidney disease (ARPKD) produces kidneys which are massively enlarged due to multiple cysts, hypertension, and congenital hepatic fibrosis characterized by dilated bile ducts and portal hypertension. The PCK rat is an orthologous model of human ARPKD with numerous fluid-filled cysts caused by stimulated cellular proliferation in the renal tubules and hepatic bile duct epithelia, with interstitial fibrosis developed in the liver. We previously reported that a peroxisome proliferator activated receptor (PPAR)-γ full agonist ameliorated kidney and liver disease in PCK rats. Telmisartan is an angiotensin receptor blocker (ARB) used widely as an antihypertensive drug and shows partial PPAR-γ agonist activity. It also has nephroprotective activity in diabetes and renal injury and prevents the effects of drug-induced hepatotoxicity and hepatic fibrosis. In the present study, we determined whether telmisartan ameliorates progression of polycystic kidney and fibrocystic liver disease in PCK rats. Five male and 5 female PCK and normal control (+/+) rats were orally administered 3 mg/kg telmisartan or vehicle every day from 4 to 20 weeks of age. Treatment with telmisartan decreased blood pressure in both PCK and +/+ rats. Blood levels of aspartate amino transferase, alanine amino transferase and urea nitrogen were unaffected by telmisartan treatment. There was no effect on kidney disease progression, but liver weight relative to body weight, liver cystic area, hepatic fibrosis index, expression levels of Ki67 and TGF-β, and the number of Ki67- and TGF-β-positive interstitial cells in the liver were significantly decreased in telmisartan-treated PCK rats. Therefore, telmisartan ameliorates congenital hepatic fibrosis in ARPKD, possibly through the inhibition of signaling cascades responsible for cellular proliferation and interstitial fibrosis in PCK rats. The present results support the potential therapeutic use of ARBs for the

  3. Histological changes in kidney structure following a long-term administration of paracetamol (acetaminophen) in pregnant Sprague Dawley rats.

    Science.gov (United States)

    Ucheya, R E; Igweh, J C

    2006-01-01

    Histological changes in kidney structure following paracetamol administration in pregnant Sprague - Dawley rats were studied. Ten (10) Sprague-Dawley rats divided into five animals per group were used for the study. They were divided into two groups (A and B). Group A served as a control group, while group B received 7.3 mg x 3/kg/day of paracetamol from 10th day of gestation till the 13th day after parturition. The drug was administered by gavage. They were allowed free access to feed and water ad libitum. The maternal rats were then sacrificed for tissue processing. Three deaths were recorded amongst the maternal rats in the paracetamol treated group during parturition and a prolonged gestation period was also observed in the same animals while two maternal rats had a normal gestation period and a safe parturition. Histopathology results of the maternal control animals showed normal kidney architecture (very minimal capsular spaces and rounded glomeruli intimately surrounded by the Bowman's capsule). Two of the paracetamol treated maternal rats that had a safe parturition at the end of the normal gestation period and showed vascular congestion and glomeruli haemorrhage, while one of the maternal rats that had prolonged gestation period (44 days) with signs of abnormally high bleeding during parturition showed higher degree of kidney derangement which was evidenced by shrunken glomerulus's plus droplets in the tubules, vascular congestion, haemorrhage and tubular necrosis. These findings reflect derangement of kidney architecture. The results suggest that paracetamol though considered safe at a considerable low dose especially in pregnant state, could cause kidney derangement during pregnancy.

  4. Protective effects of keishibukuryogan on the kidney of spontaneously diabetic WBN/Kob rats.

    Science.gov (United States)

    Nakagawa, Takako; Goto, Hirozo; Hikiami, Hiroaki; Yokozawa, Takako; Shibahara, Naotoshi; Shimada, Yutaka

    2007-03-21

    Keishibukuryogan, one of the traditional herbal formulations, is used clinically to improve blood circulation. It consists of the following five crude drugs: Cinnamomi Cortex, Poria, Moutan Cortex, Persicae Semen and Paeoniae Radix. In this study, the effects of keishibukuryogan against renal damage in spontaneously diabetic WBN/Kob rats were examined. Oral administration of keishibukuryogan significantly attenuated urinary protein excretion and serum creatinine levels. It did not affect body weight loss and blood glucose levels, but it suppressed renal and hepatic weights of WBN/Kob rats. Keishibukuryogan also reduced fibronectin and transforming growth factor beta(1) (TGF-beta(1)) protein expression in the renal cortex. Furthermore, lipid peroxidation levels in both kidney and liver were significantly lower than those of untreated control WBN/Kob rats. Urinary excretion of 8-hydroxy-deoxyguanosine was suppressed by keishibukuryogan treatment. These results suggest that keishibukuryogan reduces oxidative stress by hyperglycemia, and that it protects renal function and suppresses fibronectin deposition induced by TGF-beta(1) production in WBN/Kob rats.

  5. Curcumin inhibits adenosine deaminase and arginase activities in cadmium-induced renal toxicity in rat kidney

    Directory of Open Access Journals (Sweden)

    Ayodele Jacob Akinyemi

    2017-04-01

    Full Text Available In this study, the effect of enzymes involved in degradation of renal adenosine and l-arginine was investigated in rats exposed to cadmium (Cd and treated with curcumin, the principal active phytochemical in turmeric rhizome. Animals were divided into six groups (n = 6: saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. The results of this study revealed that the activities of renal adenosine deaminase and arginase were significantly increased in Cd-treated rats when compared with the control (p < 0.05. However, co-treatment with curcumin inhibits the activities of these enzymes compared with Cd-treated rats. Furthermore, Cd intoxication increased the levels of some renal biomarkers (serum urea, creatinine, and electrolytes and malondialdehyde level with a concomitant decrease in functional sulfhydryl group and nitric oxide (NO. However, co-treatment with curcumin at 12.5 mg/kg and 25 mg/kg, respectively, increases the nonenzymatic antioxidant status and NO in the kidney, with a concomitant decrease in the levels of malondialdehyde and renal biomarkers. Therefore, our results reinforce the importance of adenosine deaminase and arginase activities in Cd poisoning conditions and suggest some possible mechanisms of action by which curcumin prevent Cd-induced renal toxicity in rats.

  6. Amino acid metabolism in the kidneys of genetic and nutritionally obese rats.

    Science.gov (United States)

    Herrero, M C; Remesar, X; Bladé, C; Arola, L

    1997-06-01

    The ability of the kidney to take up and/or release amino acids has been determined in two models of obesity in Zucker rats, one genetic and the other nutritional (diet-obese). There was a noticeable increase in gluconeogenic amino acids in the arterial blood of diet-obese animals whereas the genetically obese rats showed small variations in the levels of these amino acids. There were significant decreases in renal Gly and Ser, only in the genetically obese rats. Genetically obese animals showed an increase in Glutamine synthetase activity. The uptake and/or release of amino acids showed important variations between the groups. The diet-obese group exhibited greater variation, since this group took up Glu, Ala, Gy, Phe and Citrulline and released Gln, Ser, Arg and Tyr. Genetically obese rats took up Gln, His and Taurine and released Ser. These different patterns may be related to variations in the whole body metabolic rate, since the diet-obese group was more active than the genetically obese group.

  7. Modelo de tumor experimental em rim de ratos Experimental tumor model in rats kidney

    Directory of Open Access Journals (Sweden)

    Lúcio Flávio Gonzaga Silva

    2002-02-01

    Full Text Available O carcinossarcoma 256 de Walker tem despertado o interesse de muitos pesquisadores como modelo experimental para estudo da biologia tumoral. OBJETIVO: estabelecer um modelo de tumor renal que possa ser usado para estudar in vivo e in vitro, as alterações impostas pelas neoplasias. MÉTODOS: utilizados vinte ratos Wistar, machos, adultos, pesando entre 250-300 g, oriundos do Laboratório de Cirurgia Experimental da Universidade Federal do Ceará. Sob anestesia inalatória procedia-se uma pequena incisão supraumbilical, e com manobra delicada fazia-se a exposição do rim direito. Neste órgão eram inoculadas 3x10(5 células tumorais viáveis. Os animais então eram mantidos em gaiolas individuais com as mesmas condições ambientais e com água e dieta ad libitum. RESULTADOS: o Carcinossarcoma 256 de Walker, implantado no parênquima do rim direito de ratos Wistar apresentou índice de pega de 100%, e crescimento rápido, invadiu por contiguidade as estruturas vizinhas, porém sem apresentar metástases, no entanto, levando os animais a óbito no curso médio de 14 dias. CONCLUSÃO: o modelo de implante de tumor de Walker no parênquima do rim direito de ratos Wistar é eficiente, tem reprodutibilidade, apresentando um índice de pega de 100%, e permitindo seu uso em linhas de pesquisa.Walker carcinossarcoma 256 has a great interest as experimental model for studies on tumoral biology. OBJECTIVE: develop a kidney tumor model to be used in the evaluation of the biological behavior of neoplasms in vitro and in vivo environments. METHODS: twenty adult male Wistar rats weighting between 250-300 g were obtained from the Federal University of the Ceará Experimental Surgery Laboratory. Upon ether anesthesia, the right kidney of each animal was accessed through a supraumbelical incision and inoculated with a solution containing 3 x 10(5 tumor cells (Walker 256 carcinossarcoma tumor cells. Following anesthetic recovery the rats were returned to their

  8. Guidelines for prevention and management of complications following kidney transplantation in rats.

    Science.gov (United States)

    Pahlavan, P S; Mehrabi, A; Kashfi, A; Soleimani, M; Fani-Yazdi, S H; Schemmer, P; Gutt, C N; Friess, H; Weitz, J; Kraus, Th W; Büchler, M W; Schmidt, J

    2005-06-01

    Kidney transplantation in rats is a useful model for microsurgery, transplantation, and immunology studies. Our aim was to analyze various techniques of kidney transplantation in rats with emphasis on guidelines for the prevention and management of complications. Complications were categorized into general, vascular, and urological types and respectively attributed to long transplantation time, core body temperature drop, nonreplaced intraoperative blood loss, anastomosis failure, and ureteral anastomoses with stents or cannulas, which increase the risk of calculus formation. In conclusion, to decrease the complication rates the animal should be placed on a heating pad. For hemodynamic stability NaCl should be administered subcutaneously. To reduce the risk of thrombosis, ice-cold saline containing heparin should be administered. Vascular complications, which mainly depend on the microsurgeon's expertise, can be prevented by meticulous surgical technique (preferably an end-in-end anastomosis). The main urinary complications can be minimized by avoiding stents and cannulas and focusing on using techniques like the bladder-patch technique.

  9. The Effects of Vitamin D on Gentamicin-Induced Acute Kidney Injury in Experimental Rat Model

    Directory of Open Access Journals (Sweden)

    Ender Hur

    2013-01-01

    Full Text Available Introduction. Acute kidney injury (AKI pathogenesis is complex. Findings of gentamicin nephrotoxicity are seen in 30% of the AKI patients. Vitamin D has proven to be effective on renin expression, inflammatory response, oxidative stress, apoptosis, and atherosclerosis. We aimed to investigate the effect of vitamin D in an experimental rat model of gentamicin-induced AKI. Methods. Thirty nonuremic Wistar albino rats were divided into 3 groups: Control group, 1 mL saline intramuscular (im daily; Genta group, gentamicin 100 mg/kg/day (im; Genta + vitamin D, gentamicin 100 mg/kg/day (im in addition to 1α, 25 (OH2D3 0.4 mcg/kg/day subcutaneously for 8 days. Blood pressures and 24-hour urine were measured. Blood urea and creatinine levels and urine tubular injury markers were measured. Renal histology was semiquantitatively assessed. Results. Urea, creatinine and urine neutrophil gelatinase-associated lipocalin, and kidney injury molecule-1 were all increased in Genta group indicating AKI model. Systolic blood pressure decreased, but urine volume and glutathione increased in Genta + Vit D group compared to Control group. Histological scores indicating tubular injury increased in Genta and Genta + Vit D groups. Conclusions. Vitamin D does not seem to be effective on histological findings although it has some beneficial effects via RAS system and a promising effect on antioxidant system.

  10. Effect of Nigella sativa on ischemia-reperfusion induced rat kidney damage

    Directory of Open Access Journals (Sweden)

    Shahrzad Havakhah

    2015-12-01

    Full Text Available Objective(s:There are a few previously reported studies about the effect of Nigella sativa oil on renal ischemia-reperfusion injury (IRI. The aim of the present study was to test the hypothesis whether pre- or post-treatment with N. sativa hydroalcoholic extract (NSE would reduce tissue injury and oxidative damages in a clinically relevant rat model of renal IRI.    Materials and Methods: IRI was induced by clamping of bilateral renal arteries for 40 min fallowed by reperfusion for 180 min. NSE was prepared in a Soxhlet extractor and administrated with doses of 150 mg/kg or 300 mg/kg at 1 hr before ischemia induction (P-150 and 300 or at the beginning of reperfusion phase (T-150 and 300, via jugular catheter intravenously. The kidneys were then removed and subjected to biochemical analysis, comet assay or histopathological examination. Results: The kidneys of untreated IRI rats had a higher histopathological score (P

  11. Effect of mangiferin isolated from Salacia chinensis regulates the kidney carbohydrate metabolism in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Periyar Selvam Sellamuthu; Palanisamy Arulselvan; Balu Periamallipatti Muniappan; Murugesan Kandasamy

    2012-01-01

    Objective: The present investigation was to evaluate the possible anti-diabetic effect of mangiferin from Salacia chinensis (S. chinensis) on the activities of kidney carbohydrate metabolic enzymes in chemically induced diabetic rats. Methods: Diabetes was induced by streptozotocin (STZ) in adult male rats, as a single intraperitoneal injection at a dose of 55 mg/kg body weight. The STZ-induced diabetic rats were treated by mangiferin and glibenclamide (positive control drug) for 30 days. At the end of the experiment, the rats were sacrificed and carbohydrate metabolic enzyme activities were analyzed in the kidney. Results: Diabetic control rats showed a significant increase in the level of fasting blood glucose and also increase the activities of carbohydrate metabolic enzymes in kidney on successive days of the experiment as compared with their basal values. Daily oral administration of mangiferin showed a significant decrease in the blood glucose when compared to diabetic control. The anti-hyperglycemic effect was obtained with the dose of 40 mg/kg b.wt. In addition, treatment of mangiferin shows alteration in kidney carbohydrate metabolic enzymes including gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-disphosphatase. These results were comparable with positive control drug, glibenclamide. Conclusions: The results obtained in this study provide evidence of the anti-diabetic potential of mangiferin, mediated through the regulation of carbohydrate key metabolic enzyme activities.

  12. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Farkhondeh, Tahereh; Samini, Fariborz

    2017-03-01

    Restraint stress has been indicated to induce oxidative damage in tissues. Several investigations have reported that curcumin (CUR) may have a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CUR on restraint stress induced oxidative stress damage in the brain, liver and kidneys. For chronic restraint stress, rats were kept in the restrainers for 1h every day, for 21 consecutive days. The animals received systemic administrations of CUR daily for 21days. In order to evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), as well as antioxidant enzyme activities superoxide dismutase (SOD) glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were measured in the brain, liver and kidney of rats after the end of restraint stress. The restraint stress significantly increased MDA level, but decreased the level of GSH and activists of SOD, GPx, GR, and CAT the brain, liver and kidney of rats in comparison to the normal rats (Poxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense mechanism activity in the tissues versus the control group (Pstress-induced oxidative damage in the brain, liver and kidney of rats and propose that CUR may be useful agents against oxidative stress in the tissues.

  13. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed.

  14. Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate-induced toxicity in rat kidney.

    Science.gov (United States)

    Sawada, Stefanie; Oberemm, Axel; Buhrke, Thorsten; Merschenz, Julia; Braeuning, Albert; Lampen, Alfonso

    2016-06-01

    3-Chloropropane-1,2-diol (3-MCPD) and its fatty acid esters are formed during thermal treatment of fat-containing foodstuff in the presence of salt. Toxicological studies indicate a carcinogenic potential of 3-MCPD, pointing to the kidney as the main target organ. It is assumed that the toxicological property of 3-MCPD esters is constituted by the release of 3-MCPD during digestion. In a repeated-dose 28-day oral toxicity study using Wistar rats, animals were treated with equimolar doses of either 3-MCPD (10 mg/kg body weight) or 3-MCPD dipalmitate (53 mg/kg body weight). A lower dose of 3-MCPD dipalmitate (13.3 mg/kg body weight) was also applied. No histopathologically visible toxicity was observed in the study. To address molecular mechanisms leading to toxicity of 3-MCPD and its esters, kidney samples were analyzed by a comparative, two-dimensional gel electrophoresis/mass spectrometry proteomic approach. After either 3-MCPD or 3-MCPD dipalmitate treatment, alterations in proteins related to various metabolic pathways, including carbohydrate, amino acid, and fatty acid metabolism, were detected. These findings confirm and complement previous data on the inhibition of glucose metabolism by 3-MCPD. Altogether, broad overlap of 3-MCPD- and 3-MCPD dipalmitate-induced proteomic changes was observed. Further analyses revealed that the observed induction of glutathione S-transferase pi 1 (Gstp1) occurred at the transcriptional level and was not related to nuclear factor (erythroid-derived 2)-like 2 activation. Overall, the results indicate common mechanisms of toxicity for 3-MCPD and its dipalmitate ester. Furthermore, data suggest Gstp1 as a sensitive marker for early 3-MCPD-induced effects in rat kidney.

  15. NMR-based urine analysis in rats: prediction of proximal tubule kidney toxicity and phospholipidosis.

    Science.gov (United States)

    Lienemann, Kai; Plötz, Thomas; Pestel, Sabine

    2008-01-01

    The aim of safety pharmacology is early detection of compound-induced side-effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) identifies efficiently differences between toxic and non-toxic compounds; but in most cases multiple administrations of the test compound are necessary. We tested the feasibility of detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics techniques after single compound administration as an early safety pharmacology approach. Rats were treated orally, intravenously, inhalatively or intraperitoneally with different test compounds. Urine was collected at 0-8 h and 8-24 h after compound administration, and (1)H NMR-patterns were recorded from the samples. Variation of post-processing and feature extraction methods led to different views on the data. Support Vector Machines were trained on these different data sets and then aggregated as experts in an Ensemble. Finally, validity was monitored with a cross-validation study using a training, validation, and test data set. Proximal tubule kidney toxicity could be predicted with reasonable total classification accuracy (85%), specificity (88%) and sensitivity (78%). In comparison to alternative histological studies, results were obtained quicker, compound need was reduced, and very importantly fewer animals were needed. In contrast, the induction of phospholipidosis by the test compounds could not be predicted using NMR-based urine analysis or the previously published biomarker PAG. NMR-based urine analysis was shown to effectively predict proximal tubule kidney toxicity after single compound administration in rats. Thus, this experimental design allows early detection of toxicity risks with relatively low amounts of compound in a reasonably short period of time.

  16. Excretory Function of Intestinal Tract Enhanced in Kidney Impaired Rats Caused by Adenine

    Science.gov (United States)

    Yun, Yu; Gao, Tao; Li, Yue; Gao, Zhiyi; Duan, Jinlian; Yin, Hua

    2016-01-01

    The main aim of the study was to prove the compensative effect of intestine for renal function. Rat kidney was impaired by intragastrically administrating adenine (400 mg per day for 5 days). Intestinal tract was harvested and equally divided into 20 segments except cecum. Kidneys were harvested and histologically examined with hematoxylin-eosin staining kits. Uric acid, urea (BUN), and creatinine in serum were determined with assay kits, and BUN and creatinine in every intestinal segment were also determined. The results showed that adenine was able to increase uric acid level in serum from 20.98 ± 6.98 μg/mL to 40.77 ± 7.52 μg/mL and cause renal function damage with BUN (from 3.87 ± 0.62 mM to 12.33 ± 3.27 mM) and creatinine (from 51.48 ± 6.98 μM to 118.25 ± 28.63 μM) increasing in serum and with abnormally micromorphological changes in kidney. The amount of BUN and creatinine distributed in intestinal tract was positively correlated with those in blood. In impaired renal function rats, the amount of BUN (from 4.26 ± 0.21 μMole to 10.72 ± 0.55 μMole) and creatinine (from 681.4 ± 23.3 nMole to 928.7 ± 21.3 nMole) distributed in intestinal tract significantly increased. All the results proved that intestinal tract had excretory function compensative for renal function. PMID:27975080

  17. The role of inspections in the commercial kangaroo industry

    Directory of Open Access Journals (Sweden)

    Keely Boom

    2013-08-01

    Full Text Available This article provides an assessment of the enforcement of the law governing commercial kangaroo killing, focusing particularly upon inspectorial practices. Australia’s kangaroo industry is the largest commercial kill of land-based wildlife in the world. Professional shooters hunt kangaroos in rural and remote locations at night. Due to the remote and decentralised nature of the killing, the industry presents unique challenges to law enforcement agencies that are responsible for the enforcement of animal welfare standards. This article focuses upon the role that inspections have in detecting offences within the commercial kangaroo industry. It provides a comparative analysis across the states, highlighting key differences in terms of inspectorial practices and the resulting outcomes. A common theme across all of the jurisdictions is that none of the agencies responsible for enforcement regularly conduct inspections of shooters, making it impossible to ensure that these parties are complying with the National Code of Practice for the Humane Shooting of Kangaroos and Wallabies. Recommendations for reform are offered, including stronger compliance policy, higher rates of inspection, increased resourcing and the introduction of alternative methods of inspection.

  18. Structural And Histochemical Changes Of Albino Rat Kidney Under The Effect Of Injectable Contraceptive

    Directory of Open Access Journals (Sweden)

    Mamdouh A. Ghali

    2006-03-01

    Full Text Available The choice of safe and effective method for fertility control still under continuous search. So, discovery of structures having long duration of action which made administration by injection was an attractive alternative to oral contraceptives. Medroxyprogesterone acetate emerged from this early work as promising injectable long ­ acting contraceptive with minimal risk. This work was planned to evaluate the structural and histochemical changes induced by injectable contraceptive Depo-provera (MPA, on the kidney of adult female Albino rats as well as testing the degree of reversibility of changes that may develop after the arrest of its use. Thirty adult female Albino rats were used in this work and divided into three equal groups. Group I was used as a control, group II was intramuscularly injected with MPA 4 times (2.7 mg / rat every 3 oestrus cycles and sacrificed one day after arrest of the injection, while , group III the animals were injected with MPA by the same dose and sacrificed 30 days after arrest of the injection. The abdominal aorta was exposed and Indian ink injection was injected to study the renal vascular changes. The animals were sacrificed, the kidney was dissected and paraffin sections were prepared and stained by haematoxylin and eosin and PAS technique to study the microscopic structure and the distribution of PAS+ve materials respectively. Frozen sections were prepared and stained by both Gomori and Nachla's techniques to study the activity of acid phosphatase enzyme and succinic dehydrogenase enzyme respectively. The obtained data were statistically analyzed using Student's t.test. The injected groups showed atrophy of tubular epithelium, dilatation of tubular lumina. All recovery groups were nearly similar to normal state except PAS+ve material of renal tubules which were nearly similar to injected groups. The treated groups showed significant increase in vascular distribution and PAS+ve materials. While, non

  19. Angiotensin Converting Enzyme Activity in the Serum, Lung, Liver and Kidney in Streptozotocin -Induced Diabetic Rats and Diabetic Nephropathy

    OpenAIRE

    Üstündağ, Bilal

    2014-01-01

    To clarify the relationship between the alterations of the levels of angiotensin converting enzyme (ACE) and diabetic nephropathy, ACE activity in the lung, liver, kid-ney and serum were investigated in streptozotocin (STZ)-induced diabetic rats. The levels of serum ACE activity unchanged 3 days post STZ treatment but it was significantly an increase 12 and 30 days post STZ treatment in diabetic rats (p

  20. Nephroprotective effects of Colpomenia sinuosa (Derbes & Solier against carbon tetrachloride induced kidney injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Lekameera Ramarajan

    2012-05-01

    Full Text Available Objective: To establish the protective effect of seaweed Colpomenia sinuosa against carbon tetra chloride (CCl4 induced oxidative stress and resultant dysfunction of rat kidney. Methods: Seven to eight weeks old male Wistar rats (150-220g were exposed to CCl4 (1.5 ml/kg injection then treated with seaweed Colpomenia sinuosa (100 mg/kg body weight in 0.3% CMC solution. Blood was collected at the 5th day of experimental period to estimate the Total count (TC, Hemoglobin (HB, Total protein (TP, Glucose, Albumin, Cholesterol, TGL and Urea. Results: The results shows significantly decreased (P<0.01 level of TC, the cholesterol and urea levels shows significantly increased (P<0.05 in CCl4 treated groups when compared to control groups. These levels were found to be normalized by oral feeding of C. sinuosa. Then the rats were sacrificed and kidneys taken for enzyme analyses and histological examination. In the CCl4 treated group significantly increased activities in TBARS, SOD, CAT, GPX, GSH (P<0.05 when compared to control group. These increased activities were found to near normal in the CCl 4 + C. sinuosa treated group and Seaweed C. sinuosa treated alone group did not change any enzyme activity. Exposure to CCl4 resulted hydrobhic changes in epithelium and Hypercellulartity of glomerulus was seen in the CCl 4 + drug treated group. Conclusions: These results suggest that the nephroprotective effect of C. sinuosa can be attributed to its enhancing effects on antioxidant defense system and lead to prevent the damage by exposure of CCl4 toxicity.

  1. Direct conscious telemetry recordings demonstrate increased renal sympathetic nerve activity in rats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Ibrahim M Salman

    2015-08-01

    Full Text Available Chronic kidney disease (CKD is associated with sympathetic hyperactivity and impaired blood pressure control reflex responses, yet direct evidence demonstrating these features of autonomic dysfunction in conscious animals is still lacking. Here we measured renal sympathetic nerve activity (RSNA and mean arterial pressure (MAP using telemetry-based recordings in a rat model of CKD, the Lewis Polycystic Kidney (LPK rat, and assessed responses to chemoreflex activation and acute stress. Male LPK and Lewis control animals (total n=16 were instrumented for telemetric recording of RSNA and MAP. At 12–13 weeks-of-age, resting RSNA and MAP, sympathetic and haemodynamic responses to both peripheral (hypoxia: 10% O2 and central chemoreflex (hypercapnia: 7% CO2 activation and acute stress (open-field exposure, were measured. As indicators of renal function, urinary protein (UPro and creatinine (Ucr levels were assessed. LPK rats had higher resting RSNA (1.2±0.1 vs. 0.6±0.1 µV, p<0.05 and MAP (151±8 vs. 97±2 mmHg, p<0.05 compared to Lewis. MAP was negatively correlated with Ucr (r=-0.80, p=0.002 and positively correlated with RSNA (r=0.66, p=0.014, with multiple linear regression modeling indicating the strongest correlation was with Ucr. RSNA and MAP responses to activation of the central chemoreflex and open-field stress were reduced in the LPK relative to the Lewis (all p<0.05. This is the first description of dual conscious telemetry recording of RSNA and MAP in a genetic rodent model of CKD. Elevated RSNA is likely a key contributor to the marked hypertension in this model, while attenuated RSNA and MAP responses to central chemoreflex activation and acute stress in the LPK indicate possible deficits in the neural processing of autonomic outflows evoked by these sympathoexcitatory pathways.

  2. Inhibition of Sodium-GlucoseCotransporter 2 with Dapagliflozin in Han: SPRD Rats with Polycystic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Daniel Rodriguez

    2015-12-01

    Full Text Available Background/Aims: Dapagliflozin (DAPA is a selective inhibitor of the sodium-glucose cotransporter 2 (SGLT2 which induces glucosuria and osmotic diuresis. The therapeutic effect of DAPA in progressing stages of polycystic kidney disease (PKD has not been studied. Methods: We examined the effect of DAPA in the Han: SPRD rat model of PKD. DAPA (10 mg/kg/day or vehicle (VEH was administered orally via gavage to 5 week old male Han: SPRD (Cy/+ or control (+/+ rats (n = 8-9 per group for 5 weeks. Blood and urine were collected at baseline and after 2.5 and 5 weeks of treatment to assess renal function and albuminuria. At the end of the treatment, rats were sacrificed and kidneys were excised for histological analysis. Results: After 5 weeks of treatment, DAPA-treated Cy/+ and +/+ rats exhibited significantly higher glucosuria, water intake and urine output than VEH-treated rats. DAPA-treated Cy/+ rats also exhibited significantly higher clearances for creatinine and BUN and less albuminuria than VEH-treated Cy/+ rats. DAPA treatment for 5 weeks resulted in a significant increase of the kidney weight in Cy/+ rats but no change in cyst growth. The degree of tubular epithelial cell proliferation, macrophage infiltration and interstitial fibrosis was also similar in DAPA-and VEH-treated Cy/+ rats. Conclusion: The induction of glucosuria with the SGLT2-specific inhibitor DAPA was associated with improved renal function and decreased albuminuria, but had no effect on cyst growth in Cy/+ rats. Overall the beneficial effects of DAPA in this PKD model were weaker than the previously described effects of the combined SGLT1/2 inhibitor phlorizin.

  3. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease.

    Science.gov (United States)

    Fernandes, Sheila Marques; Martins, Daniel Malisani; da Fonseca, Cassiane Dezoti; Watanabe, Mirian; Vattimo, Maria de Fátima Fernandes

    2016-01-01

    Iodinated contrast (IC) is clinically used in diagnostic and interventional procedures, but its use can result in contrast-induced acute kidney injury (CI-AKI). Chronic kidney disease (CKD) and chronic hyperglycemia (CH) are important predisposing factors to CI-AKI. The aim of this study was to investigate the impact of iodinated contrast on the renal function and hemodynamics in rats with chronic hyperglycemia and chronic kidney disease. A total of 30 rats were divided into six groups; Sham: control of chronic renal disease; Citrate: control of chronic hyperglycemia (CH); Nx5/6: rats with 5/6 nephrectomy; Chronic Hyperglycemia: rats receiving Streptozotocin 65 mg/kg; Nx5/6 + IC: rats Nx5/6 received 6 mL/kg of IC; CH + IC: Chronic hyperglycemia rats receiving 6 mL/kg of IC. Renal function (inulin clearance; urinary neutrophil gelatinase-associated lipocalin, NGAL) and hemodynamics (arterial blood pressure; renal blood flow; renal vascular resistance) were evaluated. Iodinated contrast significantly increased urinary NGAL and reduced inulin clearance, while the hemodynamics parameters showed changes in arterial blood pressure, renal blood flow, and renal vascular resistance in both CKD and CH groups. The results suggest that the iodinated contrast in risk factors models has important impact on renal function and hemodynamics. NGAL was confirmed to play a role of highlight in diagnosis of CI-AKI.

  4. Nitraria retusa fruit prevents penconazole-induced kidney injury in adult rats through modulation of oxidative stress and histopathological changes.

    Science.gov (United States)

    Chaâbane, Mariem; Koubaa, Mohamed; Soudani, Nejla; Elwej, Awatef; Grati, Malek; Jamoussi, Kamel; Boudawara, Tahia; Ellouze Chaabouni, Semia; Zeghal, Najiba

    2017-12-01

    Nitraria retusa (Forssk.) Asch. (Nitrariaceae) is a medicinal plant which produces edible fruits whose antioxidant activity has been demonstrated. The current study elucidates the potential protective effect of N. retusa fruit aqueous extract against nephrotoxicity induced by penconazole, a triazole fungicide, in the kidney of adult rats. Adult Wistar rats were exposed either to penconazole (67 mg/kg body weight), or to N. retusa extract (300 mg/kg body weight) or to their combination. Penconazole was administered by intra-peritoneal injection every 2 days from day 7 until day 15, the sacrifice day, while N. retusa extract was administered daily by gavage during 15 days. Oxidative stress parameters, kidney biomarkers and histopathological examination were determined. Nitraria retusa extract administration to penconazole treated rats decreased kidney levels of malondialdehyde (-10%), hydrogen peroxide (-12%), protein carbonyls (PCOs, -11%) and advanced oxidation protein products (AOPP, -16%); antioxidant enzyme activities: catalase (-13%), superoxide dismutase (-8%) and glutathione peroxidase (GPx, -14%), and the levels of non-enzymatic antioxidants: non-protein thiols (-9%), glutathione (-7%) and metallothionein (-12%). Furthermore, this plant extract prevented kidney biomarker changes by reducing plasma levels of creatinine, urea, uric acid and LDH and increasing those of ALP and GGT. Histopathological alterations induced by penconazole (glomeruli fragmentation, Bowman's space enlargement, tubular epithelial cells necrosis and infiltration of inflammatory leucocytes) were attenuated following N. retusa administration. Our results indicated that N. retusa fruit extract had protective effects against penconazole-induced kidney injury, which could be attributed to its phenolic compounds.

  5. Improvement of Kidney Apelin and Apelin Receptor in Nitro-L-Arginine-Methyl Ester Induced Rats

    Directory of Open Access Journals (Sweden)

    S. Ali Akbar Mahmoody

    2015-02-01

    Full Text Available Background: We have investigated the effect of 8 weeks aerobic training (AT and Ferula gummosis supplement (FG on apelin and apelin receptor (APJ, nitric oxide (NO and angiotensin converting enzyme (ACE of hypertensive rats. Materials and Methods: In a experimental study, 50 adult male wistar rats were classified into five groups; 1- AT, 2- FG, 3- combination of aerobic training + Ferula Gummosa supplement (TFG, 4- nitro-L-arginine-methyl ester (L-NAME, 5- shame (control groups (SH. The rats in the 1 to 4 groups received L-NAME (10 mg/kg, 6 times a week for 8 weeks. Also, the 1 and 3 groups experienced the training of 15 to 22 m/min for 25 to 64 minutes, 5 times a week for 8 weeks, whereas, the 2 and 3 groups received Ferula gummosis supplement (90 mg/kg, 6 times a week for 8 weeks. However, rats in 5 groups received NaCl solution. Results: At protocols resulted in a significant increase in apelin and APJ as compared to control and L-NAME groups. The TFG protocols resulted in a markedly increase in apelin, APJ and significantly decrease of ACE levels as compared to L-NAME group. Chronically administration of L-NAME resulted increased, ACE, and reduced the levels of apelin, APJ and NO, as compared to control group. Conclusion: The results in this study show that physical regular activity with and without herbal treatment induce amplification in apelin/APJ system and down-regulation blood pressure in L-NAME induced hypertension in the rat kidney tissue.

  6. NO synthase uncoupling in the kidney of Dahl S rats: role of dihydrobiopterin.

    Science.gov (United States)

    Taylor, Norman E; Maier, Kristopher G; Roman, Richard J; Cowley, Allen W

    2006-12-01

    NO synthase (NOS) can paradoxically contribute to the production of reactive oxygen species when l-arginine or the cofactor R-tetrahydrobiopterin (BH(4)) becomes limited. The present study examined whether NOS contributes to superoxide production in kidneys of hypertensive Dahl salt-sensitive (SS) rats compared with an inbred consomic control strain (SS-13(BN)) and tested the hypothesis that elevated dihydrobiopterin (BH(2)) levels are importantly involved in this process. This was assessed by determining the effects of l-nitroarginine methyl ester (l-NAME) inhibition of NOS on superoxide production and by comparing tissue concentrations of BH(4) and BH(2). A reverse-phase high-performance liquid chromatography method was applied for direct measurements of BH(4) and BH(2) using (S)-tetrahydrobiopterin as an internal standard. Superoxide concentrations were measured in vivo from medullary microdialysis fluid using dihydroethidine and in vitro using lucigenin. The results indicate the following: (1) that superoxide levels were elevated in the outer medulla of SS rats fed a 4% salt diet and could be inhibited by l-NAME. In contrast, l-NAME resulted in elevated superoxide production in consomic SS-13(BN) rats because of higher NOS activity; (2) SS rats showed a reduced ratio of BH(4)/BH(2) in the outer medulla that was driven by increased concentrations of BH(2); and (3) lower superoxide dismutase and catalase activities contributed to elevated reactive oxygen species in SS samples. Based on the shift of BH(4) to BH(2) and the observation of l-NAME inhibitable superoxide production, we conclude that NOS uncoupling occurs in the renal medulla of hypertensive SS rats fed a high-salt diet.

  7. Antihypertensive properties of Allium sativum (garlic) on normotensive and two kidney one clip hypertensive rats.

    Science.gov (United States)

    Nwokocha, C R; Ozolua, R I; Owu, D U; Nwokocha, M I; Ugwu, A C

    2011-12-20

    Allium sativum (garlic) is reported to act as an antihypertensive amidst an inconsistency of evidence. In this study, we investigated the cardiovascular effects of aqueous garlic extracts (AGE) on normotensive and hypertensive rats using the two-kidney one-clip (2K1C) model. Mean arterial blood pressure (MAP) and heart rate (HR) were measured in normotensive and 2K1C rat models anesthetized with thiopentone sodium (50 mg/kg body weight i.p.) through the left common carotid artery connected to a recording apparatus. The jugular vein was cannulated for administration of drugs. Intravenous injection of AGE (5-20 mg/kg) caused a significant (p<0.05) decrease in both MAP and HR in a dose-dependent manner in both the normotensive and 2K1C models, with more effects on normotensive than 2K1C rat model. The dose of 20mg/kg of AGE significantly (p<0.05) reduced systolic (16.7 ± 2.0%), diastolic (26.7 ± 5.2%), MAP (23.1 ± 3.6%) and HR (38.4 ± 4.3%) in normotensive rats. In 2K1C group, it significantly reduced systolic (22.2 ± 2.1 %), diastolic (30.6 ± 3.2%), MAP (28.2 ± 3.1%) and HR (45.2 ± 3.5%) from basal levels. Pulse pressure was significantly elevated (33.3 ±5.1%) in the 2K1C group. Pretreatment of the animals with muscarinic receptor antagonist, atropine (2 mg/kg, i.v.), did not affect the hypotensive and the negative chronotropic activities of the extract. AGE caused a decrease in blood pressure and bradycardia by direct mechanism not involving the cholinergic pathway in both normotensive and 2K1C rats, suggesting a likely involvement of peripheral mechanism for hypotension.

  8. USE OF qRTPCR TO IDENTIFY POTENTIAL BIOMARKERS OF BROMATE EXPOSURE IN F344 MALE RAT KIDNEYS

    Science.gov (United States)

    Potassium bromate (KBrO3) is a drinking water disinfection by-product that is nephrotoxic and carcinogenic. To identify potential biomarkers of carcinogenicity, male F344 rats were chronically exposed to a carcinogenic dose (400mg/l) of KBrO3 in their drinking water. Kidneys were...

  9. Effects of 1 alpha,25-Dihydroxyvitamin D-3 on Transporters and Enzymes of the Rat Intestine and Kidney In Vivo

    NARCIS (Netherlands)

    Chow, Edwin C. Y.; Sun, Huadong; Khan, Ansar A.; Groothuis, Geny M. M.; Pang, K. Sandy

    1 alpha,25-Dihydroxyvitamin D-3 (1,25(OH)(2)D-3), the natural ligand of the vitamin D receptor (VDR), was found to regulate bile acid related transporters and enzymes directly and indirectly in the rat intestine and liver in vivo. The kidney is another VDR-rich target organ in which VDR regulation

  10. Dietary flax oil during pregnancy and lactation retards disease progression in rat offspring with inherited kidney disease.

    Science.gov (United States)

    Sankaran, Deepa; Bankovic-Calic, Neda; Peng, Claudia Yu-Chen; Ogborn, Malcolm R; Aukema, Harold M

    2006-12-01

    Dietary flax oil (FO) retards disease progression in growing or adult animal models of kidney disease. To determine whether dietary flax oil during the perinatal period would alter renal disease progression in offspring, Han-SPRD-cy rats with inherited cystic kidney disease were given diets with either 7% FO or corn oil (CO), throughout pregnancy and lactation. At 3 wk of age, offspring were then given either the same or the alternate diet for 7 wk. Rats given FO during the maternal period had 15% less renal cyst growth compared with rats given FO only in the postweaning period. Dietary FO, compared with CO, in the maternal period also resulted in 12% lower cell proliferation and 15% less oxidant injury in diseased kidneys of offspring. Including FO in both the maternal and postweaning period resulted in 29-34% less renal interstitial fibrosis and 22-23% lower glomerular hypertrophy. Along with improved histology, these rats exhibited 13% less proteinuria and 30% lower creatinine clearance when dietary FO was given in the maternal period. The potential for dietary FO during pregnancy and lactation to positively modulate adult renal disease has significant implications for the 1 in 1000 individuals with congenital cystic kidney disease.

  11. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  12. Expression and function of Oat1 and Oat3 in rat kidney exposed to mercuric chloride

    Energy Technology Data Exchange (ETDEWEB)

    Di Giusto, Gisela; Torres, Adriana M. [Universidad Nacional de Rosario, CONICET, Area Farmacologia, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina); Anzai, Naohiko; Endou, Hitoshi [Kyorin University School of Medicine, Department of Pharmacology and Toxicology, Tokyo (Japan); Ruiz, Maria L. [Universidad Nacional de Rosario, CONICET, Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, Rosario (Argentina)

    2009-10-15

    This study was designed to evaluate the expression and function of the organic anion transporters, Oat1 and Oat3, in rats exposed to a nephrotoxic dose of HgCl{sub 2}. Oat1 protein expression increased in renal homogenates and decreased in renal basolateral membranes from HgCl{sub 2} rats, while Oat3 protein abundance decreased in both kidney homogenates and basolateral membranes. The lower protein levels of Oat1 and Oat3 in basolateral membranes explain the lower uptake capacity for p-aminohippurate (in vitro assays) and the diminution of the systemic clearance of this organic anion (in vivo studies) observed in treated rats. Since both transporters mediate mercury access to the renal cells, their down-regulation in basolateral membranes might be a defensive mechanism developed by the cell to protect itself against mercury injury. The pharmacological modulation of the expression and/or the function of Oat1 and Oat3 might be an effective therapeutic strategy for reducing the nephrotoxicity of mercury. (orig.)

  13. Reversal of Early Diabetic Nephropathy by Islet Transplantation under the Kidney Capsule in a Rat Model

    Directory of Open Access Journals (Sweden)

    Yunqiang He

    2016-01-01

    Full Text Available Objective. Diabetic nephropathy (DN is a common microvascular complication of diabetes mellitus, and insulin therapy has many side effects in the treatment of DN. Islet transplantation has emerged as a promising therapy for diabetic patients. This study was established to investigate its advantageous effects in a rat model of early DN. Methods. Streptozotocin was administered to the rats to induce diabetes. Twelve weeks later, the diabetic rats were divided into 3 groups: the islet-transplanted group (IT group, the insulin-treated group (IN group, and the untreated group (DN group. Renal injury and kidney structure were assessed by urinalysis and transmission electron microscopy (TEM detection. Immunohistochemical staining and western blotting were performed to assess renal fibrosis levels. Results. The early DN features were reversed and the glomerular filtration barrier and basement membrane structures were improved at 4 weeks after islet transplantation. The urine microalbumin-to-creatinine ratio (ACR, protein-to-creatinine ratio, and mean thickness of the glomerular basement membrane (GBM were significantly decreased in the IT group. The expression of renal fibrotic factors was also significantly decreased. Conclusions. These data suggest that early DN can be reversed after islet transplantation, and they may facilitate the development of a clinical therapeutic strategy for human diabetes mellitus.

  14. Fetal Kidney Cells Can Ameliorate Ischemic Acute Renal Failure in Rats through Their Anti-Inflammatory, Anti-Apoptotic and Anti-Oxidative Effects.

    Science.gov (United States)

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya

    2015-01-01

    Fetal kidney cells may contain multiple populations of kidney stem cells and thus appear to be a suitable cellular therapy for the treatment of acute renal failure (ARF) but their biological characteristics and therapeutic potential have not been adequately explored. We have culture expanded fetal kidney cells derived from rat fetal kidneys, characterized them and evaluated their therapeutic effect in an ischemia reperfusion (IR) induced rat model of ARF. The fetal kidney cells grew in culture as adherent spindle shaped/polygonal cells and expressed CD29, CD44, CD73, CD90, CD105, CD24 and CD133 markers. Administration of PKH26 labeled fetal kidney cells in ARF rats resulted in a significant decrease in the levels of blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin and decreased tubular necrosis in the kidney tissues (pkidney cells were observed to engraft around injured tubular cells, and there was increased proliferation and decreased apoptosis of tubular cells in the kidneys (pkidney tissues of ARF rats treated with fetal kidney cells had a higher gene expression of renotropic growth factors (VEGF-A, IGF-1, BMP-7 and bFGF) and anti-inflammatory cytokine (IL10); up regulation of anti-oxidative markers (HO-1 and NQO-1); and a lower Bax/Bcl2 ratio as compared to saline treated rats (pkidney cells express mesenchymal and renal progenitor markers, and ameliorate ischemic ARF predominantly by their anti-apoptotic, anti-inflammatory and anti-oxidative effects.

  15. Ingestion of dug well water from an area with high prevalence of chronic kidney disease of unknown etiology (CKDu) and development of kidney and liver lesions in rats

    Science.gov (United States)

    Thammitiyagodage, M G; Gunatillaka, M M; Ekanayaka, N; Rathnayake, C; Horadagoda, N U; Jayathissa, R; Gunaratne, U K; Kumara, W G; Abeynayake, P

    2017-03-31

    Chronic kidney disease of unknown aetiology (CKDu) is prevalent in the North Central Province (NCP) of Sri Lanka and ingestion of dug well water is considered a potential causative factor. Three CKDu prevalent villages were selected from the NCP based on the number of CKDu patients in the locality. Forty Wistar rats were divided into four groups with 10 rats each. Group No 1, 2 and 3 were given water from selected dug wells. Control group was given tap water from Colombo. Water samples were analysed for fluoride, iron, arsenic, cadmium and calcium. Histopathological examination of liver and kidney tissues were performed. Significant reduction of glomerular filtration rate (GFR) was observed in two test groups compared to the control group (p0.05). In one group hepatocellular carcinoma with elevated serum liver enzymes was observed whilst hepatitis was observed in another test group (p<0.05). But mixed lesions were common in all affected rats. Significantly high renal tubular lesion index was observed in all three experimental groups (p<0.05) and high glomerular lesion index (p=0.017) was observed in one test group. Cadmium, arsenic and iron contents were below detectable levels in the NCP water sources and tap water from Colombo. Different wells may have different concentrations of environmental toxins and depending on the severity of the toxin contents GFR and grade and type of liver and kidney lesions may vary. High fluoride and other undetected toxins in shallow dug wells may be the causative factors for renal and liver lesions in these Wistar rats.

  16. Expressions of NF-κB and downstream inflammatory factors in the kidney of insulin resistance rat

    Directory of Open Access Journals (Sweden)

    Shuang-tong YAN

    2014-10-01

    Full Text Available Objective To investigate the variation and significance of the expressions of NF-κB, inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 in the renal tissue of insulin-resistant rat. Methods Thirty healthy male Wistar rats were bred since 2 months old, and they were randomly divided into normal control (NC group (n=15 and insulin-resistant (IR group (n=15. Insulin resistance rat model was reproduced by feeding with high fat and sucrose diet. Hyperinsulinemic-euglycemic clamp test was used to verify the reproduction of the model. The kidneys of the rats were obtained after the successful reproduction of the model. The change in renal histology was observed by HE staining, and the expressions of iNOS and COX-2 in the kidneys were detected by immunohistochemistry staining. The mRNA expressions of NF-κB, iNOS and COX-2 in the kidneys were assessed with RT-PCR. DNA binding activity of NF-κB in the rat's kidney was assessed with electrophoretic mobility shift assay (EMSA. Results HE staining showed that, compared with NC group, the early lesions of the renal tissue, such as glomerular enlargement and mesangial region broadening, could be seen in IR group. Immunohistochemical staining showed that the positive expressions of iNOS and COX-2 were up-regulated significantly in IR group than in NC group (P<0.05. RT-PCR revealed that the expressions of NF-κB mRNA, iNOS mRNA and COX-2 mRNA in renal tissue were significantly higher in IR group than in NC group (P<0.05. EMSA showed that the binding activity of NF-κB in renal tissue increased significantly in IR group than in NC group (P<0.05. Conclusion NF-κB activation is present in the kidney tissue in the insulin resistance rat, which may upregulate the expression of downstream target gene iNOS and COX-2, resulting in damage to kidney tissue. The activation of NF-κB may be one of the initiative factors that lead to the kidney lesion of the insulin resistance rat. DOI: 10.11855/j

  17. [Effects of polyunsaturated fatty acids on Krebs cycle in the rat kidney in chronic phosphorus intoxication].

    Science.gov (United States)

    Kulkybaev, G A; Merkusheva, N V

    1992-01-01

    The investigation of Krebs cycle state in kidney homogenates of August rats subjected to oral intoxication with oil solution of yellow phosphorus in a dose of 0.3 mg/kg, has shown that under conditions of balanced nutrition the activity of NAD-dependent isocitrate dehydrogenase, succinate dehydrogenase and accumulation of the substrate fund of the cycle decreased 3.5-fold as compared to the control. The addition of polyunsaturated fatty acids to the ration produced a positive effect on Krebs cycle state: dehydrogenase activity was not significantly changed, accumulation of Krebs cycle substrate was two-fold lower. However, this ration did not completely abolish the toxic action of yellow phosphorus on Krebs cycle.

  18. [The interaction of the converting-enzyme inhibitor captopril with cardiac glycosides in the rat kidney].

    Science.gov (United States)

    Kuz'min, O B; Tarasov, S V

    1995-01-01

    Strophanthin (0.1 mg.kg, i.v.) and digoxin (0.1 mg/kg, i.v.) moderately increase blood supply of the renal cortical and medullary layers in unconscious rats and enhance renal excretion of sodium and water. Preadministration of the converting enzyme inhibitor captopril (10 mg/kg/day, per os, for 6 days) promoted vascular dilatation in the inner and outer areas of the medulla, which occurred under the action of these agents and substantially increased their natriuretic and diuretic effects. It is concluded that the renin-angiotension system is directly involved into the mechanism of action of cardiac glycosides in the kidneys, acting as a modulator that prevents their vasodilating and tubular effects.

  19. Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure.

    Science.gov (United States)

    Chargui, Abderrahman; Zekri, Sami; Jacquillet, Gregory; Rubera, Isabelle; Ilie, Marius; Belaid, Amine; Duranton, Christophe; Tauc, Michel; Hofman, Paul; Poujeol, Philippe; El May, Michèle V; Mograbi, Baharia

    2011-05-01

    Environmental exposures to cadmium (Cd) are a major cause of human toxicity. The kidney is the most sensitive organ; however, the natures of injuries and of adaptive responses have not been adequately investigated, particularly in response to environmental relevant Cd concentrations. In this study, rats received a daily ip injection of low CdCl₂ dose (0.3 mg Cd/kg body mass) and killed at 1, 3, and 5 days of intoxication. Functional, ultrastructural, and biochemical observations were used to evaluate Cd effects. We show that Cd at such subtoxic doses does not affect the tubular functions nor does it induce apoptosis. Meanwhile, Cd accumulates within lysosomes of proximal convoluted tubule (PCT) cells where it triggers cell proliferation and autophagy. By developing an immunohistochemical assay, a punctate staining of light chain 3-II is prominent in Cd-intoxicated kidneys, as compared with control. We provide the evidence of a direct upregulation of autophagy by Cd using a PCT cell line. Compared with the other heavy metals, Cd is the most powerful inducer of endoplasmic reticulum stress and autophagy in PCT cells, in relation to the hypersensitivity of PCT cells. Altogether, these findings suggest that kidney cortex adapts to subtoxic Cd dose by activating autophagy, a housekeeping process that ensures the degradation of damaged proteins. Given that Cd is persistent within cytosol, it might damage proteins continuously and impair at long-term autophagy efficiency. We therefore propose the autophagy pathway as a new sensitive biomarker for renal injury even after exposure to subtoxic Cd doses.

  20. Effect of Amlodipine in Comparison to Nifedipine on Vascular Perfusion Pressure of Isolated Rat Kidney

    Directory of Open Access Journals (Sweden)

    Lili Sepehr-Ara

    2010-01-01

    Full Text Available This study aimed to investigate and to compare the effects of nifedipine and amlodipine, dihydropyridine (DHP calcium channel blockers (CCBs on perfusion pressure of isolated perfused rat kidney.Materials and MethodsFollowing the establishment of renal perfusion with a constant baseline pressure of 85-95 mmHg, the renal vasculature was constricted by phenylephrine (PE injection. Changes in the baseline perfusion pressure were recorded. Then nifedipine and amlodipine prepared in perfusion medium was fed to the kidney for 30 min. Finally alterations in the baseline pressure arising from PE administrations in the presence of CCBs were recorded and data analyses were done.ResultsPE-induced increases in perfusion pressure attenuated significantly in the presence of 5 and 10 μM of nifedipine and 1, 5, and 10 μM of amlodipine. Increases in perfusion pressure arising from PE (100 and 200 μM in the presence of amlodipine (1, 5, and 10 μM was significantly less than that in the presence of nifedipine (1, 5, and 10 μM. Calculated EC50 value of amlodipine for inhibition was significantly lower than that of nifedipine. Based on the EC50 values, the potency of amlodipine in inhibiting PE-induced responses is significantly higher compared to nifedipine.ConclusionThe potency of amlodipine in inhibiting PE-induced increments in renal perfusion pressure is significantly higher compared to nifedipine.

  1. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  2. Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cell cytotoxicity.

    Science.gov (United States)

    Carrière, M; Avoscan, L; Collins, R; Carrot, F; Khodja, H; Ansoborlo, E; Gouget, B

    2004-03-01

    Uranium is a naturally occurring heavy metal. Its extensive use in the nuclear cycle and for military applications has focused attention on its potential health effects. Acute exposures to uranium are toxic to the kidneys where they mainly cause damage to proximal tubular epithelium. The purpose of this study was to investigate the biological consequences of acute in vitro uranyl exposure and the influence of uranyl speciation on its cytotoxicity. NRK-52E cells, representative of rat kidney proximal epithelium, were exposed to uranyl-carbonate and -citrate complexes, which are the major complexes transiting through renal tubules after acute in vivo contamination. Before NRK-52E cell exposure, these complexes were diluted in classical or modified cell culture media, which can possibly modify uranyl speciation. In these conditions, uranium cytotoxicity appears after 16 h of exposure. The CI50 cytotoxicity index, the uranium concentration leading to 50% dead cells after 24 h of exposure, is 500 microM (+/-100 microM) and strongly depends on uranyl counterion and cell culture medium composition. Computer modeling of uranyl speciation is reported, enabling one to draw a parallel between uranyl speciation and its cytotoxicity.

  3. Interactions between ADH and prostaglandins in isolated erythrocyte-perfused rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Lieberthal, W.; Vasilevsky, M.L.; Valeri, C.R.; Levinsky, N.G.

    1987-02-01

    Interactions between antidiuretic hormone (ADH) and renal prostaglandins in the regulation of sodium reabsorption and urinary concentrating ability were studied in isolated erythrocyte-perfused rat kidneys (IEPK). In this model, hemodynamic characteristics are comparable to those found in vivo, and tubular morphology is preserved throughout the period of perfusion. (Deamino)-D-arginine vasopressin (dDAVP) markedly reduced fractional sodium excretion (FE/sub Na/) in the IEPK. After indomethacin, FE/sub Na/ fell still further. In the absence of dDAVP indomethacin had no effect on sodium excretion. dDAVP increased urine osmolality in the IEPK. When prostaglandin synthesis was blocked with indomethacin, urinary osmolality increased further. In isolated kidneys perfused without erythrocytes (IPK), dDAVP decreased FE/sub Na/ from 14.5 +/- 1.8% to 9.6 +/- 1.2%. dDAVP increased urine osmolality only modestly in the IPK and indomethacin did not increase concentrating ability further. Thus the IEPK (unlike the IPK) can excrete markedly hypertonic urine in response to ADH. ADH also enhances tubular reabsorption of sodium in the IEPK. Prostaglandins inhibit both these actions of ADH but do not directly affect sodium excretion in the absence of the hormone. Prostaglandius were measured by radioimmunoassay.

  4. Melatonin protects kidney against apoptosis induced by acute unilateral ureteral obstruction in rats

    Science.gov (United States)

    Badem, Hüseyin; Cakmak, Muzaffer; Yilmaz, Hakki; Kosem, Bahadir; Karatas, Omer Faruk; Bayrak, Reyhan; Cimentepe, Ersin

    2016-01-01

    Introduction To investigate whether there was a protective effect of melatonin on apoptotic mechanisms after an acute unilateral obstruction of the kidney. Material and methods A total of 25 rats consisting of five groups were used in the study, designated as follows: Group 1: control, Group 2: sham, Group 3: unilateral ureteral obstruction treated with only saline, Group 4: unilateral ureteral obstruction treated with melatonin immediately, and Group 5: unilateral obstruction treated with melatonin one day after obstruction. Melatonin was administered as a 10 mg/kg dose intraperitoneally. The kidneys were evaluated according to the apoptotic index and Ki-67 scores. Results Comparison of all obstruction groups (Group 3, 4, and 5), revealed that the apoptotic index was significantly higher in Groups 1 and 2. Despite melatonin reduced apoptotic mechanisms in Groups 4 and 5, there was no significant difference between Groups 4 and 5 in terms of the reduction of apoptosis. However, the reduction of apoptosis in the melatonin treated group did not decrease to the level of Groups 1 and 2. Conclusions Despite melatonin administration, which significantly reduces the apoptotic index occurring after acute unilateral ureteral obstruction, the present study did not observe a return to normal renal histology in the obstruction groups. PMID:27551563

  5. Mass Spectrometry Imaging of Kidney Tissue Sections of Rat Subjected to Unilateral Ureteral Obstruction

    Science.gov (United States)

    Liu, Huihui; Li, Wan; He, Qing; Xue, Jinjuan; Wang, Jiyun; Xiong, Caiqiao; Pu, Xiaoping; Nie, Zongxiu

    2017-01-01

    Chronic kidney disease (CKD) poses a serious threat to the quality of human life and health with an increasing incidence worldwide. Renal fibrosis is closely related to CKD and regarded as the final common pathophysiological pathway in most cases of end-stage renal diseases. Elucidating the mechanisms underlying renal fibrosis and developing novel therapeutic strategies are of great importance. Herein, matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) based on 1, 5-diaminonaphthalene hydrochloride was applied to the rat model of unilateral ureteral obstruction (UUO) to investigate metabolic changes during renal fibrosis. Among identified endogenous compounds, twenty-one metabolites involved in metabolic networks such as glycolysis, tricarboxylic acid (TCA) cycle, ATP metabolism, fatty acids metabolism, antioxidants, and metal ions underwent relatively obvious changes after 1 and 3 weeks of UUO. Unique distribution of the metabolites was obtained, and metabolic changes of kidneys during renal fibrosis were investigated simultaneously for the first time. These findings once again highlighted the promising potential of the organic salt matrix for application in small molecule in situ MSI and in the field of biomedical research. PMID:28157191

  6. Does swimming exercise affect experimental chronic kidney disease in rats treated with gum acacia?

    Directory of Open Access Journals (Sweden)

    Badreldin H Ali

    Full Text Available Different modes of exercise are reported to be beneficial in subjects with chronic kidney disease (CKD. Similar benefits have also been ascribed to the dietary supplement gum acacia (GA. Using several physiological, biochemical, immunological, and histopathological measurements, we assessed the effect of swimming exercise (SE on adenine-induced CKD, and tested whether SE would influence the salutary action of GA in rats with CKD. Eight groups of rats were used, the first four of which were fed normal chow for 5 weeks, feed mixed with adenine (0.25% w/w to induce CKD, GA in the drinking water (15% w/v, or were given adenine plus GA, as above. Another four groups were similarly treated, but were subjected to SE during the experimental period, while the first four groups remained sedentary. The pre-SE program lasted for four days (before the start of the experimental treatments, during which the rats were made to swim for 5 to 10 min, and then gradually extended to 20 min per day. Thereafter, the rats in the 5th, 6th, 7th, and 8th groups started to receive their respective treatments, and were subjected to SE three days a week for 45 min each. Adenine induced the typical signs of CKD as confirmed by histopathology, and the other measurements, and GA significantly ameliorated all these signs. SE did not affect the salutary action of GA on renal histology, but it partially improved some of the above biochemical and physiological analytes, suggesting that addition of this mode of exercise to GA supplementation may improve further the benefits of GA supplementation.

  7. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    Directory of Open Access Journals (Sweden)

    J.B. Graceli

    2013-07-01

    Full Text Available The maintenance of extracellular Na+ and Cl- concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na+ and Cl- reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg-1·day-1, sc and progesterone (OVP, 1.7 mg·kg-1·day-1, sc. We assessed Na+ and Cl- fractional excretion (FENa+ and FECl- , respectively and renal and plasma catecholamine release concentrations. FENa+ , FECl- , water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FENa+ , FECl- , water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g. Furthermore, combining OVX + D (OD: 111.9±25.4 decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen, and progesterone in the modulation of renal function.

  8. Beneficial Effect of Moderate Exercise in Kidney of Rat after Chronic Consumption of Cola Drinks.

    Directory of Open Access Journals (Sweden)

    Gabriel Cao

    Full Text Available The purpose of this study was to investigate the effect of moderate intensity exercise on kidney in an animal model of high consumption of cola soft drinks.Forty-eight Wistar Kyoto rats (age: 16 weeks; weight: 350-400 g were assigned to the following groups: WR (water runners drank water and submitted to aerobic exercise; CR (cola runners drank cola and submitted to aerobic exercise; WS (water sedentary and CS (cola sedentary, not exercised groups. The aerobic exercise was performed for 5 days per week throughout the study (24 weeks and the exercise intensity was gradually increased during the first 8 weeks until it reached 20 meters / minute for 30 minutes. Body weight, lipid profile, glycemia, plasma creatinine levels, atherogenic index of plasma (AIP and systolic blood pressure (SBP were determined. After 6 months all rats were sacrificed. A kidney histopathological score was obtained using a semiquantitative scale. Glomerular size and glomerulosclerosis were estimated by point-counting. The oxidative stress and pro-inflammatory status were explored by immunohistochemistry. A one way analysis of variance (ANOVA with Tukey-Kramer post-hoc test or the Kruskal-Wallis test with Dunn's post-hoc test was used for statistics. A value of p < 0.05 was considered significant.At 6 months, an increased consumption of cola soft drink was shown in CS and CR compared with water consumers (p<0.0001. Chronic cola consumption was associated with increased plasma triglycerides, AIP, heart rate, histopathological score, glomerulosclerosis, oxidative stress and pro-inflammatory status. On the other hand, moderate exercise prevented these findings. No difference was observed in the body weight, SBP, glycemia, cholesterol and plasma creatinine levels across experimental groups.This study warns about the consequences of chronic consumption of cola drinks on lipid metabolism, especially regarding renal health. Additionally, these findings emphasize the protective

  9. [Effects of TiO₂ nanoparticles on antioxidant function and element content of liver and kidney tissues in young and adult rats].

    Science.gov (United States)

    Wang, Yun; Chen, Zhang-jian; Ba, Te; Pu, Ji; Cui, Xiao-xing; Jia, Guang

    2014-06-18

    To compare the effect of TiO₂ nanoparticles on antioxidant function and element content of liver and kidney tissues in young and adult rats. Forty-eight SD male rats, half in 4-week (youth) old and half in 9-week (adult) old rats, were randomly divided into 8 groups, which were exposed to TiO₂ nanoparticles [(75 ± 15) nm, anatase] through intragastric administration at 0, 10, 50 and 200 mg/kg body weight every day for 30 days. The liver and kidney tissues were collected for antioxidant function and element content analysis. 200 mg/kg TiO₂ nanoparticles exposure significantly increased the liver total superoxide dismutase (T-SOD) activity and the kidney reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios in young rats, and significantly decreased the liver Mo, Co, Mn and P contents and the kidney Rb and Na contents in young rats. 200 mg/kg TiO₂ nanoparticles exposure significantly increased GSH/GSSG ratios and Rb contents and decreased Na contents in the liver of adult rats. No significantly difference was found in antioxidant indexes and elements content in the kidney of adult rats between three experimental groups and control group. TiO₂ nanoparticles can enhance the antioxidant capacity and decrease the elements content in rat liver and kidney tissues. The liver is the more sensitive target organ and the young animals are more susceptible to TiO₂ nanoparticles toxicity by the oral routes.

  10. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    Science.gov (United States)

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  11. Withania coagulans fruit extract reduces oxidative stress and inflammation in kidneys of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Ojha, Shreesh; Alkaabi, Juma; Amir, Naheed; Sheikh, Azimullah; Agil, Ahmad; Fahim, Mohamed Abdelmonem; Adem, Abdu

    2014-01-01

    The present study was carried out to investigate the changes in oxidative and inflammatory status in streptozotocin-induced diabetic rat's kidneys and serum following treatment with Withania coagulans, a popular herb of ethnomedicinal significance. The key markers of oxidative stress and inflammation such as inflammatory cytokines (IL-1β, IL-6, and TNF-α) and immunoregulatory cytokines (IL-4 and IFN-γ) were increased in kidneys along with significant hyperglycemia. However, treatment of four-month diabetic rats with Withania coagulans (10 mg/kg) for 3 weeks significantly attenuated hyperglycemia and reduced the levels of proinflammatory cytokines in kidneys. In addition, Withania coagulans treatment restored the glutathione levels and inhibited lipid peroxidation along with marked reduction in kidney hypertrophy. The present study demonstrates that Withania coagulans corrects hyperglycemia and maintained antioxidant status and reduced the proinflammatory markers in kidneys, which may subsequently reduce the development and progression of renal injury in diabetes. The results of the present study are encouraging for its potential use to delay the onset and progression of diabetic renal complications. However, the translation of therapeutic efficacy in humans requires further studies.

  12. Influence of tonifying kidney recipe on advanced glycation endproducts and lipid peroxidation in ova riectomized rats

    Institute of Scientific and Technical Information of China (English)

    Yuefen Wang; Chang'an Zhao; Li Guo; En Li

    2008-01-01

    BACKGROUND:Previous studies have demonstrated that reduced estrogen levels may accelerate the formation of advanced glycation endproducts(AGE)in brain tissue,raise the concentration of lipid peroxidation products in vivo,and speed up deterioration of learning and memory.A tonifying kidney recipe is hypothesized to improve the ability of learning and memory in ovariectomized rats by downregulating AGE and lipid peroxidation products.OBJECTIVE:To simulate a postmenopausal state,bilateral ovariectomy (OVX)was performed in rats,and the effects of tonifying kidney recipe(TKR)on AGE and lipid peroxidation in the rat cerebral cortex,hippocampus,and blood serum levels was measured.In addition,the effects on learning and memory were evaluated,and the effect of AGE-specific inhibitor aminoguanidine(AG)was compared with TKR.DESIGN,TIME AND SETTING:A randomized,in vivo,control experiment was performed at the scientific research center(Provincial Key Laboratory)in the Fourth Hospital of Hebei Medical University (Shjiiazhuang,Hebei Province,China)from May 2005 to January 2007.MATERIALS:Forty healthy,adult,female,Sprague Dawley rats were used for this study.TKR was composed of prepared rehmannia rhizome,epimedium herb,desert-living cistanche,and Szechwan lovage rhizome,which were provided by Shijiazhuang Medical Materials Company(China).A TKR extraction was prepared for further use.AG was provided by Sigma (USA).Forty rats were randomly divided into four groups:sham,OVX,AG and TKR,with 10 rats in each group.METHODS:The rat ovaries were resected in the OVX,AG and TKR groups,whereas the same volume of fat was resected in the sham group.At four weeks after OVX,the AG group received 1% AG water solution by lavage;the TKR group was administrated by lavage once per day at a dose of 6.3 g (crude drug)/kg;OVX and sham groups received equal volumes of tap water.MAIN OUTCOME MEASURES:Learning and memory behavior of rats was tested in a Y-electric maze 16 weeks after the OVX procedure

  13. Phylogeny of kangaroo apples (Solanum subg. Archaesolanum, Solanaceae).

    Science.gov (United States)

    Poczai, Péter; Hyvönen, Jaakko; Symon, David E

    2011-11-01

    Kangaroo apples, subgenus Archaesolanum, are a unique and still poorly known group within the genus Solanum. Here we aimed to reveal phylogeny, historical biogeography and age of diversification of Archaesolanum. We sampled all recognized species of the group and sequenced three chloroplast regions, the trnT-trnL spacer, trnL intron and trnL-trnF spacer to calibrate a molecular clock to estimate the age of the group. Distributional data were combined with the results of phylogenetic analysis to track the historical processes responsible for the current range of the group. Our analysis supported the monophyly of the kangaroo apples and the biogeographical disjunction between the two subclades within the group. Based on the divergence time estimates the most recent common ancestor of kangaroo apples is from the late Miocene age (~9 MYA). Based on the age estimate the common ancestors of the kangaroo apples are presumed to have arrived in Australia by long-distance dispersal. The two distinct lineages within the group have separated during the aridification of the continent and further speciated in the brief resurgence of rainforests during the Pliocene.

  14. What is kangaroo mother care? Systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Grace J Chan

    2016-06-01

    Full Text Available Kangaroo mother care (KMC, often defined as skin–to–skin contact between a mother and her newborn, frequent or exclusive breastfeeding, and early discharge from the hospital has been effective in reducing the risk of mortality among preterm and low birth weight infants. Research studies and program implementation of KMC have used various definitions.

  15. Protective effects of Carissa opaca fruits against CCl4-induced oxidative kidney lipid peroxidation and trauma in rat

    Directory of Open Access Journals (Sweden)

    Sumaira Sahreen

    2015-09-01

    Full Text Available Background: Carbon tetrachloride (CCl4 is a potent nephrotoxin, as it causes acute as well as chronic toxicity in kidneys. Therefore, this study was carried out to assess the pharmacological potential of different fractions of Carissa opaca fruits on CCl4-induced oxidative trauma in the kidney. Methods: The parameters studied in this respect were the kidney function tests viz, serum profile, urine profile, genotoxicity, characteristic morphological findings, and antioxidant enzymatic level of kidneys. Result: The protective effects of various fractions of C. opaca fruits against CCl4 administration were reviewed by rat renal function alterations. Chronic toxicity caused by 8-week treatment of CCl4 to the rats significantly decreased the pH level, activities of antioxidant enzymes, and glutathione contents, whereas a significant increase was found in the case of specific gravity, red blood cells, white blood cells, level of urea, and lipid peroxidation in comparison to control group. Administration of various fractions of C. opaca fruit with CCl4 showed protective ability against CCl4 intoxication by restoring the urine profile, activities of antioxidant enzymes, and lipid peroxidation in rat. CCl4 induction in rats also caused DNA fragmentation and glomerular atrophy by means of dilation, disappearance of Bowmen's space, congestion in the capillary loops, dilation in renal tubules, and foamy look of epithelial cells of tubular region, which were restored by co-admiration of various fractions of C. opaca. Conclusion: Results revealed that the methanolic fractions of C. opaca are the most potent and helpful in kidney trauma.

  16. Amelioration of anti-tuberculosis drug induced oxidative stress in kidneys by Spirulina fusiformis in a rat model.

    Science.gov (United States)

    Martin, Sherry Joseph; Sabina, Evan Prince

    2016-08-01

    Nephrotoxicity is a rare complication caused by anti-tuberculosis therapy-induced oxidative stress. The Cyanobacterium Spirulina fusiformis Voronikhin belonging to Oscillatoriaceae family is used traditionally as a source of antioxidants against oxidative stress. We aimed to investigate the efficacy of S. fusiformis in modifying isoniazid (INH) and rifampicin (RIF)-induced changes in Wistar rat kidneys. Animals were divided into six groups: normal control rats; toxic control (INH & RIF-50 mg/kg b.w./d each; p.o.); INH & RIF + S. fusiformis (400 mg/kg b.w./d); INH & RIF + S. fusiformis (800 mg/kg b.w./d); S. fusiformis (800 mg/kg b.w./d) alone-treated rats; INH & RIF + silymarin (25 mg/kg b.w./d). Study duration was 28 d after which blood and kidneys were analyzed. We also studied the binding and interactions of the transcription factors Liver X Receptor (LXR) and Farnesoid X Receptor (FXR) with INH, RIF, and representative active compounds of S. fusiformis by in silico methods. INH & RIF treatment caused significant (p< 0.05) decrease in antioxidant levels and significant (p< 0.05) increase in the levels of creatinine, urea, and uric acid showing impaired kidney function. Spirulina fusiformis ameliorated these effects in a dose dependent manner. Histological examination of kidneys supported these findings. Results of the in silico analyses showed that selected active components of S. fusiformis interact with LXR and FXR and could be a possible mechanism of action. S. fusiformis rendered protection against anti-tuberculosis drugs-induced oxidative stress in kidney tissues of rats.

  17. Insufficient insulin administration to diabetic rats increases substrate utilization and maintains lactate production in the kidney.

    Science.gov (United States)

    Laustsen, Christoffer; Lipsø, Kasper; Ostergaard, Jakob Appel; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Palm, Fredrik; Ardenkjær-Larsen, Jan Henrik

    2014-12-01

    Good glycemic control is crucial to prevent the onset and progression of late diabetic complications, but insulin treatment often fails to achieve normalization of glycemic control to the level seen in healthy controls. In fact, recent experimental studies indicate that insufficient treatment with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which did not restore glycemic control, to streptozotocin (STZ)-diabetic rats using noninvasive hyperpolarized (13)C-pyruvate magnetic resonance imaging (MRI) and blood oxygenation level-dependent (BOLD) (1)H-MRI to determine renal metabolic flux and oxygen availability, respectively. Suboptimal insulin administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates. The results demonstrate the importance of tight glycemic control in insulinopenic diabetes, and that insulin, when administered insufficiently, adds an additional burden on top of poor glycemic control.

  18. EFFECTS OF DIFFERENT AMOUNTS OF PROTEIN DIETS ON KIDNEY IN DIABETIC RATS

    Institute of Scientific and Technical Information of China (English)

    左静南; 侯积寿; 王根荣; 蒋更如; 熊祖应

    1992-01-01

    Sixty-three streptozotocin-induced diabetic rats were divided into 3 groups fed with different amounts of protein diets 7%, 20% and 40% protein in Group 1, 2 and 3 respectively for 2 months. The ratio of right kidney weight/body weight (RKW/BW), 24h urinary protein excretion (UPE), creatinine clearance (Ccr), mean glomerular diameter (MGD), and colloidal iron staining (CTS) on surface of processes of glomerular podocyte were obsrerved by the end of the experiment. The results showed that RKW/BW and UPE in Group Ⅰreduced as compared with those in Group 2 and 3. The MGD in Group 3 in creased as compared with those in Group 2 and 1. But Ccr in diabetic rats fed with different diets showed no significant difference. Finally, it was found that fusion of the glomerular epithelial cell foot processes and decreased CIS were intensified by increased dietary protein content. The present findings suggest that restriction of protein intake may be able to retard the progression of diabetic nephropathy.

  19. The membrane fraction of homogenized rat kidney contains an enzyme that releases epidermal growth factor from the kidney membranes

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1991-01-01

    High levels of epidermal growth factor (EGF) are excreted in the urine and high levels of mRNA for the EGF-precursor have been demonstrated in the kidney. The EGF-precursor is a membrane bound peptide in the kidney, but little is known about the renal processing of the precursor. The present stud....... The EGF releasing enzyme is inhibited by the serine proteinase inhibitor aprotinin and by low temperatures (4 degrees C). The pH optimum of the reaction is pH 7.5-8.0....

  20. Investigation of biochemical and histopathological effects of Mentha piperita L. and Mentha spicata L. on kidney tissue in rats.

    Science.gov (United States)

    Akdogan, Mehmet; Kilinç, Ibrahim; Oncu, Meral; Karaoz, Erdal; Delibas, Namik

    2003-04-01

    Peppermint plants have been used as a herbal medicine for many conditions, including loss of appetite, common cold, bronchitis, sinusitis, fever, nausea, vomiting and indigestion. This study is aimed at investigating the biochemical and histological effects of Mentha piperita L., growing in the Yenisar Bademli town of Isparta City, and Mentha spicata L., growing on the Anamas high plateau of Isparta City, on rat kidney tissue. Forty-eight male Wistar albino rats weighing 200-250 g were used for this study. Animals were divided into four experimental groups, each with 12 rats, as follows: control group (group I); 20 g/L M. piperita tea (group II); 20 g/L M. spicata tea (group III); 40 g/L M. spicata tea (group IV). The control group rats were given commercial drinking water (Hayat DANONESA water). The tea for the other groups was prepared daily and provided at all times to the rats during 30 days as drinking water. Plasma urea and creatinine levels were determined, and the levels of thiobarbituric acid reactive substance (TBARS) and the activities of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were studied in the homogenates of kidney tissue. The levels of plasma urea and creatinine were increased significantly (P spicata presents markedly nephrotoxic changes in rats.

  1. Acute ischemia/reperfusion injury after isogeneic kidney transplantation is mitigated in a rat model of chronic renal failure.

    Science.gov (United States)

    Vercauteren, Sven R; Ysebaert, Dirk K; Van Rompay, An R; De Greef, Kathleen E; De Broe, Marc E

    2003-05-01

    The influence of chronic renal failure on renal susceptibility to an acute ischemic insult was evaluated. Recipient Lewis rats were randomly assigned to undergo 5/6 nephrectomy (chronic renal failure, CRF) or sham operation (normal renal function, NRF). After 11 weeks, normal kidneys of Lewis donor rats were transplanted in the recipients. The outcome of the isografts was assessed. Filtration capacity of the isografts in the CRF rats was preserved to approximately one-quarter of its normal capacity on the 1st day post-transplantation, whereas it fell to 0 in the NRF rats. This was reflected by a significantly higher increase in serum creatinine in the latter group. The isografts in the CRF rats had a significantly lower degree of acute tubular necrosis and no increase in the number of macrophages and T lymphocytes in the first 24 h in contrast to the NRF rats. Epithelial regeneration and repair started earlier in the CRF group. In conclusion, the present study indicated that CRF blunted ischemia/reperfusion injury of a transplanted kidney, and that its regeneration capacity was certainly not hampered by the presence of chronic uremia. These results will be the basis for studies on modulation of early leukocyte-endothelial interactions resulting from immunological disturbances inherent to the uremic environment.

  2. Effects of PEG-PLA-nano artificial cells containing hemoglobin on kidney function and renal histology in rats.

    Science.gov (United States)

    Liu, Zun Chang; Chang, Thomas M S

    2008-01-01

    This study is to investigate the long-term effects of PEG-PLA nano artificial cells containing hemoglobin (NanoRBC) on renal function and renal histology after 1/3 blood volume top loading in rats. The experimental rats received one of the following infusions: NanoRBC in Ringer lactate, Ringer lactate, stroma-free hemoglobin (SFHB), polyhemoglobin (PolyHb), autologous rat whole blood (rat RBC). Blood samples were taken before infusions and on days 1, 7 and 21 after infusions for biochemistry analysis. Rats were sacrificed on day 21 after infusions and kidneys were excised for histology examination. Infusion of SFHB induced significant decrease in renal function damage evidenced by elevated serum urea, creatinine and uric acid throughout the 21 days. Kidney histology in SFHb infusion group revealed focal tubular necrosis and intraluminal cellular debris in the proximal tubules, whereas the glomeruli were not observed damaged. In all the other groups, NanoRBC, PolyHb, Ringer lactate and rat RBC, there were no abnormalities in renal biochemistry or histology. In conclusion, injection of NanoRBC did not have adverse effects on renal function nor renal histology.

  3. The adverse effects of long-term l-carnitine supplementation on liver and kidney function in rats.

    Science.gov (United States)

    Liu, L; Zhang, D-M; Wang, M-X; Fan, C-Y; Zhou, F; Wang, S-J; Kong, L-D

    2015-11-01

    Levo-Carnitine (l-carnitine) is widely used in health and food. This study was to focus on the adverse effects of 8-week oral supplementation of l-carnitine (0.3 and 0.6 g/kg) in female and male Sprague Dawley rats. l-carnitine reduced body and fat weights, as well as serum, liver, and kidney lipid levels in rats. Simultaneously, hepatic fatty acid β-oxidation and lipid synthesis were disturbed in l-carnitine-fed rats. Moreover, l-carnitine accelerated reactive oxygen species production in serum and liver, thereby triggering hepatic NOD-like receptor 3 (NLRP3) inflammasome activation to elevate serum interleukin (IL)-1β and IL-18 levels in rats. Alteration of serum alkaline phosphatase levels further confirmed liver dysfunction in l-carnitine-fed rats. Additionally, l-carnitine may potentially disturb kidney function by altering renal protein levels of rat organic ion transporters. These observations may provide the caution information for the safety of long-term l-carnitine supplementation.

  4. Mitochondrial Respiration Is Decreased in Rat Kidney Following Fetal Exposure to a Maternal Low-Protein Diet

    Directory of Open Access Journals (Sweden)

    Sarah Engeham

    2012-01-01

    Full Text Available Maternal protein restriction in rat pregnancy is associated with impaired renal development and age-related loss of renal function in the resulting offspring. Pregnant rats were fed either control or low-protein (LP diets, and kidneys from their male offspring were collected at 4, 13, or 16 weeks of age. Mitochondrial state 3 and state 4 respiratory rates were decreased by a third in the LP exposed adults. The reduction in mitochondrial function was not explained by complex IV deficiency or altered expression of the complex I subunits that are typically associated with mitochondrial dysfunction. Similarly, there was no evidence that LP-exposure resulted in greater oxidative damage to the kidney, differential expression of ATP synthetase β-subunit, and ATP-ADP translocase 1. mRNA expression of uncoupling protein 2 was increased in adult rats exposed to LP in utero, but there was no evidence of differential expression at the protein level. Exposure to maternal undernutrition is associated with a decrease in mitochondrial respiration in kidneys of adult rats. In the absence of gross disturbances in respiratory chain protein expression, programming of coupling efficiency may explain the long-term impact of the maternal diet.

  5. Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential.

    Directory of Open Access Journals (Sweden)

    Barbara Mara Klinkhammer

    Full Text Available Mesenchymal stem cell (MSC transplantation has the potential for organ repair. Nevertheless, some factors might lessen the regenerative potential of MSCs, e.g. donor age or systemic disease. It is thus important to carefully assess the patient's suitability for autologous MSC transplantation. Here we investigated the effects of chronic kidney disease (CKD on MSC function. We isolated bone marrow MSCs from remnant kidney rats (RK with CKD (CKD-RK-MSC and found signs of premature senescence: spontaneous adipogenesis, reduced proliferation capacity, active senescence-associated-β-galactosidase, accumulation of actin and a modulated secretion profile. The functionality of CKD-RK-MSCs in vivo was tested in rats with acute anti-Thy1.1-nephritis, where healthy MSCs have been shown to be beneficial. Rats received healthy MSCs, CKD-RK-MSC or medium by injection into the left renal artery. Kidneys receiving healthy MSCs exhibited accelerated healing of glomerular lesions, whereas CKD-RK-MSC or medium exerted no benefit. The negative influence of advanced CKD/uremia on MSCs was confirmed in a second model of CKD, adenine nephropathy (AD. MSCs from rats with adenine nephropathy (CKD-AD-MSC also exhibited cellular modifications and functional deficits in vivo. We conclude that CKD leads to a sustained loss of in vitro and in vivo functionality in MSCs, possibly due to premature cellular senescence. Considering autologous MSC therapy in human renal disease, studies identifying uremia-associated mechanisms that account for altered MSC function are urgently needed.

  6. Kangaroo Care: Experiences and Needs of Parents in Neonatal Intensive Care: A Systematic Review ‘Parents’ Experience of Kangaroo Care’

    NARCIS (Netherlands)

    Gabriels, karlijn; Brouwer, AJ; maat, Jessica; van den Hoogen, Agnes

    2015-01-01

    Abstract This review is focusing on the experiences and needs of parents with infants within NICU regarding Kangaroo Care. Ten studies with qualitative designs were included. Kangaroo Care was overall experienced as positive; giving parents the opportunity to get to know their babies and (re-) const

  7. Safety Profile of Meswak Root Extract on Liver, Kidney, Sexual Hormones and Hematological Parameters of Rats

    Directory of Open Access Journals (Sweden)

    Abeer Y. IBRAHIM

    2012-02-01

    Full Text Available This study was conducted to investigate the safety profile of Salvadora persica (Salvadoraceae aqueous alcoholic root extract by carrying out acute and sub-chronic toxicity assessment in order to find out any side effect of the traditionally using of these root sticks. Regarding to acute toxicity test, mice were administered the extract up to 5 g kg-1, intraperitoneally. Animals were then observed for behavioural changes; signs of toxicity, and mortality within 24 h. Surviving mice were monitored for 7 days for signs of delayed toxicity. In the sub-chronic toxicity test, rats were daily treated with the extract at a dose of 400 mg kg-1 intraperitoneally, for 30 days. At the end of the test period, hematological and biochemical parameters were determined in blood and serum samples with determination of vital organs weights. In the acute toxicity test, the extract was practically non-toxic showing no mortality and visible signs of delayed toxicity. The LD50, given intraperitoneally, was estimated to be 4 g kg-1. Administration of extract (at a dose of 400 mg Kg-1 b.wt. to male and female rats for 30 days did not produce any significant (P < 0.05 effect on hematological and most biochemical parameters also vital organs weights. The root extract showed adverse effects on sexual hormones, by increasing estrogen secretion and reducing testosterone level in male rats. At the same time, the extract reduces progesterone level in female satellite group. Overall, Meswak aqueous extract is safe concerning liver and kidney functions and hematological assessments; however, it induces reversal effect on sexual hormones levels determined in sera.

  8. Effects of unfractionated heparin on renal osteodystrophy and vascular calcification in chronic kidney disease rats.

    Science.gov (United States)

    Meng, Yan; Zhang, Hao; Li, Yingbin; Li, Qingnan; Zuo, Li

    2014-01-01

    Unfractionated heparin (UFH) is the most widely used anticoagulant in hemodialysis for chronic kidney disease (CKD) patients. Many studies have verified that UFH can induce bone loss in subjects with normal bone, but few have focused on its effect on renal osteodystrophy. We therefore investigated this issue in adenine-induced CKD rats. As CKD also impairs mineral metabolism systemically, we also studied the impacts of UFH on serum markers of CKD-mineral and bone disorder (CKD-MBD) and vascular calcification. We administered low and high doses of UFH (1U/g and 2U/g body weight, respectively) to CKD rats and compared them with CKD controls. At sacrifice, the serum markers of CKD-MBD did not significantly differ among the two UFH CKD groups and the CKD control group. The mean bone mineral densities (BMDs) of the total femur and a region of interest (ROI) constituted of trabecular and cortical bone were lower in the high-dose UFH (H-UFH) CKD group than in the CKD control group (P<0.05 and P<0.01, respectively). The BMD of the femoral ROI constituted of cortical bone did not differ between the H-UFH CKD group and the CKD control group. Histomorphometrical changes in the CKD rats indicated secondary hyperparathyroidism, and the femoral trabecular bone volume, but not cortical bone volume, significantly decreased with increasing UFH dose. The same decreasing trend was found in osteoblast parameters, and an increasing trend was found in osteoclast parameters; however, most differences were not significant. Moreover, no distinct statistical differences were found in the comparison of vascular calcium or phosphorus content among the CKD control group and the two UFH CKD groups. Therefore, we concluded that UFH could induce bone loss in CKD rats with secondary hyperparathyroidism, mainly by reducing the trabecular volume and had little effect on cortical bone volume. The underlying mechanism might involve inhibition of osteoblast activity and promotion of osteoclast activity

  9. Iron-hepcidin dysmetabolism, anemia and renal hypoxia, inflammation and fibrosis in the remnant kidney rat model.

    Directory of Open Access Journals (Sweden)

    Patrícia Garrido

    Full Text Available Anemia is a common complication of chronic kidney disease (CKD that develops early and its severity increases as renal function declines. It is mainly due to a reduced production of erythropoietin (EPO by the kidneys; however, there are evidences that iron metabolism disturbances increase as CKD progresses. Our aim was to study the mechanisms underlying the development of anemia of CKD, as well as renal damage, in the remnant kidney rat model of CKD induced by 5/6 nephrectomy. This model of CKD presented a sustained degree of renal dysfunction, with mild and advanced glomerular and tubulointerstitial lesions. Anemia developed 3 weeks after nephrectomy and persisted throughout the protocol. The remnant kidney was still able to produce EPO and the liver showed an increased EPO gene expression. In spite of the increased EPO blood levels, anemia persisted and was linked to low serum iron and transferrin levels, while serum interleukin (IL-6 and high sensitivity C-reactive protein (hs-CRP levels showed the absence of systemic inflammation. The increased expression of duodenal ferroportin favours iron absorption; however, serum iron is reduced which might be due to iron leakage through advanced kidney lesions, as showed by tubular iron accumulation. Our data suggest that the persistence of anemia may result from disturbances in iron metabolism and by an altered activity/function of EPO as a result of kidney cell damage and a local inflammatory milieu, as showed by the increased gene expression of different inflammatory proteins in the remnant kidney. In addition, this anemia and the associated kidney hypoxia favour the development of fibrosis, angiogenesis and inflammation that may underlie a resistance to EPO stimuli and reduced iron availability. These findings might contribute to open new windows to identify putative therapeutic targets for this condition, as well as for recombinant human EPO (rHuEPO resistance, which occurs in a considerable

  10. Camel's Milk Protects against Aluminum Chloride-Induced Toxicity in the Liver and Kidney of White Albino Rats

    Directory of Open Access Journals (Sweden)

    Fahaid Al-Hashem

    2009-01-01

    Full Text Available Problem statement: Aluminum chloride (AlCl3 is commonly used in daily life but it can be potentially toxic. Therefore, the present study was carried out to investigate the protective effects of camel' milk against aluminum-induced biochemical alterations and oxidative stress in the liver and kidney of white albino rats. Approach: White albino male rats (230-250 g were divided into three groups of 10 rats: a control group treated with normal saline, the AlCl3-treated group and the camel's milk-AlCl3-treated group. The AlCl3 treated group received 0.5 mg kg-1 of AlCl3 orally. The camel's milk-AlCl3-treated group was fed 1 mL of fresh camel's milk 10 minutes prior to the administration of oral AlCl3. All rats were treated every day for 30 days. Liver and kidney biochemical serum parameters were analyzed. Lipid peroxidation, as determined by the tissue concentrations of thiobarbituric acid reactive substances (TBARS and hydrogen peroxide (HP, and the oxidative stress status, as measured by glutathione (GSH, superoxide dismutase (SOD and catalase (CAT activity, were evaluated in the kidney and liver of treated rats. Results: Data showed that the oral administration of AlCl3 resulted in statistically significant increases in the serum levels of urea, creatinine, bilirubin, aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (ALP, lactate dehydrogenase (LDH, cholesterol and triglycerides; the total amount of protein and albumin were also significantly decreased. However, these parameters were within normal levels in the rats given camel's milk prior to AlCl3. Additionally, oral administration of AlCl3 induced lipid peroxidation in the liver and kidney, which was indicated by a significant increase in lipid peroxidation biomarkers (TBARS and HP and a significant decrease in the activities of GSH, SOD and CAT. In all rats treated with camel's milk before being given AlCl3, lipid peroxidation and oxidative stress

  11. THE EFFECT OF TARGETED KNOCKOUT MUTATION ON THE TRANSCRIPTIONAL PROFILE OF THE KIDNEY IN TSC2 MUTANT LONG-EVANS (EKER) RATS.

    Science.gov (United States)

    The effect of a targeted knockout mutation on the transcriptional profile of the kidney inTsc2 mutant Long-Evans (Eker) rats. Renal cell carcinoma (RCC) is the most common tumor of the adult kidney, accounting for up to 80% of malignant renal neoplasms. Hereditary...

  12. Characterization of metabolites of meisoindigo in male and female rat kidney microsomes by high-performance liquid chromatography coupled with positive electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Huang, Meng; Choo, Lip-Wee; Ho, Paul C

    2008-12-01

    Meisoindigo has been effectively applied for the treatment of chronic myelogenous leukemia (CML). Although the metabolic profile of meisoindigo has been studied in liver, information relevant to extrahepatic metabolism of meisoindigo is absent in kidney so far. In this study, the metabolism of meisoindigo in rat kidney microsomes was qualitatively and quantitatively investigated by liquid chromatography/tandem mass spectrometry (LC/MS/MS), in terms of metabolite identification, metabolic stability, metabolite formation and gender effect. The metabolic profiling was accomplished by integration of multiple reaction monitoring (MRM) with conventional full MS scan followed by MS/MS methodology. The major in vitro metabolites of meisoindigo in rat kidney microsomes were identified as stereoselective 3,3' double-bond reduced meisoindigo, whereas the minor metabolites were regioselective phenyl monohydroxylmeisoindigo. An LC/MS/MS method for quantification of meisoindigo in rat kidney microsomes was also developed and validated. The calculated in vitro half-life (t(1/2)) values of meisoindigo in male and female rat kidney microsomes were 107.8 +/- 17.0 min and 130.0 +/- 12.9 min, respectively. There were no statistically significant differences between different genders in the metabolic stability profiles of meisoindigo. The reductive metabolite-formation profiles of meisoindigo in male and female rat kidney microsomes were plotted semi-quantitatively as well. The information regarding in vitro renal metabolism of meisoindigo provided a better understanding of the role of the kidney in the disposition of meisoindigo.

  13. Effect of Oral Administration of Tungsten Trioxide (WO3) Particles on Hispathological Feature of liver and kidney in Rat

    Science.gov (United States)

    Munawaroh, H. S. H.; Nandiyanto, A. B. D.; Gumilar, G. G.; Widi, A.; Subangkit, M.

    2017-03-01

    This study aims to investigate the toxicity and histopathology of tungsten trioxide (WO3) administration on rat’s liver and kidney. The LD50 of WO3 was determined and the sub acute toxicity was evaluated by orally administration of 5000 mg kg-1 of WO3 to rat for 14 consecutive days. Parameter of blood cells, ALT, creatinine, and BUN were experimentally measured. The toxicological evaluation showed that WO3 is a non toxic compound with the LD50 higher that 5000 mg kg-1. No biochemical change was observed for creatinine and Blood Urea Nitrogen parameter. In contrast, ALT parameter shows higher value in the experiment than that in the control group. Histopathological changes on rat’s liver and kidney were also studied. Small defects in rat’s liver and kidney were found, which may interfere the functional of related enzymes.

  14. RIPK3-Mediated Necroptosis and Apoptosis Contributes to Renal Tubular Cell Progressive Loss and Chronic Kidney Disease Progression in Rats.

    Science.gov (United States)

    Zhu, Yongjun; Cui, Hongwang; Xia, Yunfeng; Gan, Hua

    2016-01-01

    Tubulointerstitial fibrosis (TIF) is caused by the progressive loss of renal tubular cells and the consequent replacement of the extracellular matrix. The progressive depletion of renal tubular cells results from apoptosis and necroptosis; however, the relative significance of each of these cell death mechanisms at different stages during the progression of chronic kidney disease (CKD) remains unclear. We sought to explore the mechanisms of renal tubular cell death during the early and intermediate stages of chronic renal damage of subtotal nephrectomied (SNx) rats. The results of tissue histological assays indicated that the numbers of necrotic dying cells and apoptotic cells were significantly higher in kidney tissues derived from a rat model of CKD. In addition, there was a significant increase in necroptosis observed by transmission electron microscopy (TEM) and an increase in the proportion of TUNEL-positive cells in kidney tissues from SNx rats compared with control rats, and necrostatin-1 (Nec-1) could inhibit necroptosis and reduce the proportion of TUNEL-positive cells. More importantly, we observed a significant increase in the incidence of necroptosis compared with apoptosis by TEM in vivo and in vitro and a significant increase in the proportion of TUNEL-positive tubular epithelial cells that did not express caspase-3 compared with those expressing cleaved caspase-3 in vitro. Furthermore, treatment with Nec-1 and zVAD strongly reduced necroptosis- and apoptosis-mediated renal tubular cell death and decreased the levels of blood urea nitrogen and serum creatinine and tubular damage scores of SNx rats. These results suggest that necroptotic cell death plays a more significant role than apoptosis in mediating the loss of renal tubular cells in SNx rats and that effectively blocking both necroptosis and apoptosis improves renal function and tubular damage at early and intermediate stages of CKD.

  15. Kidney Dysplasia

    Science.gov (United States)

    ... Disease Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Kidney Dysplasia What is kidney dysplasia? Kidney dysplasia is a condition in which ... Kidney dysplasia in one kidney What are the kidneys and what do they do? The kidneys are ...

  16. Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52(E)) proximal cells

    Energy Technology Data Exchange (ETDEWEB)

    Thiebault, C.; Carriere, M.; Milgram, S.; Simon, A.; Avoscan, L.; Gouget, B. [CEA Saclay, CNRS, UMR 9956, Lab Pierre Sue, F-91191 Gif Sur Yvette, (France)

    2007-07-01

    Uranium (U) is a heavy metal used in the nuclear industry and for military applications. U compounds are toxic. Their toxicity is mediated either by their radioactivity or their chemical properties. Mammalian kidneys and bones are the main organs affected by U toxicity. Although the most characteristic response to U exposure is renal dysfunction, little information is available on the mechanisms of its toxicity at the molecular level. This report studied the genotoxicity of U. Apoptosis induction in normal rat kidney (NRK-52(E)) proximal cells was investigated as a function of exposure time or concentrations (0-800 {mu}M). In parallel, DNA damage was evaluated by several methods. In order to distinguish between the intrinsic and the extrinsic pathways of apoptosis, caspases-8, -9, -10 assays were conducted and the mitochondrial membrane potential was measured. Three methods were selected for their complementarities in the detection of genetic lesions. The comet assay was used for the detection of primary lesions of DNA. {gamma}-H2AX immunostaining was achieved to detect DNA double-strand breaks. The micronucleus assay was used to detect chromosomic breaks or losses. DNA damage and apoptosis were observed in a concentration-dependent manner. This study demonstrated that U is genotoxic from 300 {mu}M and induces caspase dependent apoptosis cell death from 200 {mu}M mainly through the intrinsic pathway in NRK-52(E) cells. These results suggest that the DNA damage caused by U is reversible at low concentration (200-400 {mu}M) but becomes irreversible and leads to cell death for higher concentrations (500-800 {mu}M). (authors)

  17. The Effects of Hydro-Alcoholic Extract of Zingiber Officinale on Prevention from Plumbism in Kidney Tissue of Neonatal Rats

    Directory of Open Access Journals (Sweden)

    Habiballah Johari

    2013-08-01

    Full Text Available Background: In the present research, the effects of hydro-alcoholic extract of Zingiber officinale (ginger on treating lead-poisoned kidney of neonatal rats was studied.Materials and Methods: This research was conducted as a laboratory work. The neonatal rats were divided into 7 groups of 10 samples. The first control group received no treatment. The second control group received 0.1 mg of distilled water. As an experimental group, the one received an amount of 0.6 g/l lead. The fourth group received only 2 g/kg body weight of hydro-alcoholic extract of ginger. Groups 5 to 7 each initially received 0.6 g/l lead and then amounts of 0.5, 1 and 2 g/kg hydro-alcoholic extract of ginger. The injections were administered via oral gavage during 10 consecutive days.Results: According to the obtained results, the body and kidney weights showed a significant reduction in experimental groups that had received amounts of 1 and 2 g/kg in comparison with the group that had received lead. The kidney weight of the group that had received only extract showed no significant difference in comparison with the control group. As for the body weights, however, it showed a significant increase. Moreover, the body and kidney weights of the lead-injected group showed a significant increase in comparison with the control group.Conclusion: Lead can cause damage to kidney tissues. Due to its antioxidant and protective effect, ginger can be a medication to nephrotoxicity of lead and prevent kidney tissues from destruction.

  18. Comparison of Effects of Different Statins on Contrast-Induced Acute Kidney Injury in Rats: Histopathological and Biochemical Findings

    OpenAIRE

    Xiao-lei Wang; Tuo Zhang; Liu-hua Hu; Shi-qun Sun; Wei-feng Zhang; Zhe Sun; Ling-hong Shen; Ben He

    2017-01-01

    Statins are a promising new strategy to prevent contrast-induced acute kidney injury (CI-AKI). In this study we compared the ameliorative effect of different statins in a rat model of CI-AKI. Sprague-Dawley rats were divided into five groups: control group; CI-AKI group; CI-AKI + rosuvastatin group (10 mg/kg/day); CI-AKI + simvastatin group (80 mg/kg/day); and CI-AKI + atorvastatin group (20 mg/kg/day). CI-AKI was induced by dehydration for 72 hours, followed by furosemide intramuscular injec...

  19. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  20. Effects of estradiol, calcitriol and both treatments combined on bone histomorphometry in rats with chronic kidney disease and ovariectomy.

    Science.gov (United States)

    Naves Díaz, M; Rodríguez Rodríguez, A; Fernández Martín, J L; Serrano Arias, M; Menéndez Rodríguez, P; Cannata Andía, J B

    2007-10-01

    The aim of this experimental study was to analyze the histomorphometric changes observed when using different doses of estradiol, calcitriol and both treatments combined, in rats with both chronic kidney disease (CKD) and ovariectomy (OVX). Six groups of rats with CKD+OVX were treated for 8 weeks with placebo, with different doses of 17beta-estradiol (E2), with calcitriol or with both treatments combined (E2+calcitriol). Histomorphometric studies were carried out at the proximal tibia segment. All groups that received active treatments showed a trabecular bone volume similar to those of rats with normal ovarian function. Treatment with E2 was effective, E2-10 diminished osteoid and eroded surfaces, and E2-30 was able to achieve a bone remodeling similar to that of the normal group. Calcitriol proved to have a positive effect on bone microarchitecture, achieving normal trabecular connectivity. The combined treatment with E2-30+calcitriol was the most effective treatment as it was not only capable of achieving normal trabecular remodeling and connectivity, but also normal trabecular bone volume. E2 and calcitriol seem to have independent effects on cancellous bone turnover in rats with CKD+OVX. In rats with chronic kidney disease and ovariectomy, these two agents are able to produce additive effects on bone and offer additional advantages as opposed to the use of both drugs independently.

  1. XAS and XFM studies of selenium and copper speciation and distribution in the kidneys of selenite-supplemented rats.

    Science.gov (United States)

    Weekley, Claire M; Shanu, Anu; Aitken, Jade B; Vogt, Stefan; Witting, Paul K; Harris, Hugh H

    2014-09-01

    Dietary selenium has been implicated in the prevention of cancer and other diseases, but its safety and efficacy is dependent on the supplemented form and its metabolites. In this study, X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM) have been used to investigate the speciation and distribution of Se and Cu in vivo. In kidneys isolated from rats fed a diet containing 5 ppm Se as selenite for 3 weeks, Se levels increased 5-fold. XFM revealed a strong correlation between the distribution of Se and the distribution of Cu in the kidney, a phenomenon that has previously been observed in cell culture (Weekley et al., JBIC, J. Biol. Inorg. Chem., 2014, DOI: 10.1007/s00775-014-1113-x). However, X-ray absorption spectra suggest that most of the Se in the kidney is found as Se-Se species, rather than Cu-bound, and that most of the Cu is bound to S and N, presumably to amino acid residues in proteins. Furthermore, SOD1 expression did not change in response to the high Se diet. We cannot rule out the possibility of some Cu-Se bonding in the tissues, but our results suggest mechanisms other than the formation of Cu-Se species and SOD1 upregulation are responsible for the highly correlated distributions of Se and Cu in the kidneys of rats fed high selenite diets.

  2. Roles of estrogen and progesterone in modulating renal nerve function in the rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Graceli, J.B. [Departamento de Morfologia, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil); Cicilini, M.A.; Bissoli, N.S.; Abreu, G.R.; Moysés, M.R. [Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, ES (Brazil)

    2013-07-02

    The maintenance of extracellular Na{sup +} and Cl{sup -} concentrations in mammals depends, at least in part, on renal function. It has been shown that neural and endocrine mechanisms regulate extracellular fluid volume and transport of electrolytes along nephrons. Studies of sex hormones and renal nerves suggested that sex hormones modulate renal function, although this relationship is not well understood in the kidney. To better understand the role of these hormones on the effects that renal nerves have on Na{sup +} and Cl{sup -} reabsorption, we studied the effects of renal denervation and oophorectomy in female rats. Oophorectomized (OVX) rats received 17β-estradiol benzoate (OVE, 2.0 mg·kg{sup -1}·day{sup -1}, sc) and progesterone (OVP, 1.7 mg·kg{sup -1}·day{sup -1}, sc). We assessed Na{sup +} and Cl{sup -} fractional excretion (FE{sub Na{sup {sub +}}} and FE{sub Cl{sup {sub -}}}, respectively) and renal and plasma catecholamine release concentrations. FE{sub Na{sup {sub +}}}, FE{sub Cl{sup {sub -}}}, water intake, urinary flow, and renal and plasma catecholamine release levels increased in OVX vs control rats. These effects were reversed by 17β-estradiol benzoate but not by progesterone. Renal denervation did not alter FE{sub Na{sup {sub +}}}, FE{sub Cl{sup {sub -}}}, water intake, or urinary flow values vs controls. However, the renal catecholamine release level was decreased in the OVP (236.6±36.1 ng/g) and denervated rat groups (D: 102.1±15.7; ODE: 108.7±23.2; ODP: 101.1±22.1 ng/g). Furthermore, combining OVX + D (OD: 111.9±25.4) decreased renal catecholamine release levels compared to either treatment alone. OVE normalized and OVP reduced renal catecholamine release levels, and the effects on plasma catecholamine release levels were reversed by ODE and ODP replacement in OD. These data suggest that progesterone may influence catecholamine release levels by renal innervation and that there are complex interactions among renal nerves, estrogen

  3. All-trans retinoic acid potentiates cisplatin-induced kidney injury in rats: impact of retinoic acid signaling pathway.

    Science.gov (United States)

    Elsayed, Abdelrahman M; Abdelghany, Tamer M; Akool, El-Sayed; Abdel-Aziz, Abdel-Aziz H; Abdel-Bakky, Mohamed S

    2016-03-01

    Cisplatin (cis-diammine dichloroplatinum (II), CDDP) is a widely used drug for treatment of various types of cancers. However, CDDP-induced nephrotoxicity remains the main dose-limiting side effect. Retinoids are a group of vitamin A-related compounds that exert their effects through retinoid receptors activation. In this study, we investigated the effect of CDDP treatment on retinoic acid receptor-α (RAR-α) and retinoid X receptor-α (RXR-α) expression. In addition, we investigated the possible modulatory effects of RAR agonist, all-trans retinoic acid (ATRA), on CDDP-induced nephrotoxicity. Rats were treated with saline, DMSO, CDDP, ATRA, or CDDP/ATRA. Twenty-four hours after the last ATRA injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CDDP treatment significantly increased serum levels of creatinine and urea, with concomitant decrease in serum albumin. Moreover, reduced glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities were significantly reduced with concurrent increase in kidney malondialdehyde (MDA) content following CDDP treatment. Furthermore, CDDP markedly upregulated tubular RAR-α, RXR-α, fibrin, and inducible nitric oxide synthase (iNOS) protein expression. Although administration of ATRA to control rats did not produce marked alterations in kidney function parameters, administration of ATRA to CDDP-treated rats significantly exacerbated CDDP-induced nephrotoxicity. In addition, CDDP/ATRA co-treatment significantly increased RAR-α, RXR-α, fibrin, and iNOS protein expression compared to CDDP alone. In conclusion, we report, for the first time, the crucial role of retinoid receptors in CDDP-induced nephrotoxicity. Moreover, our findings indicate that co-administration of ATRA with CDDP, although beneficial on the therapeutic effects, their deleterious effects on

  4. Influence of remote ischemic conditioning and tramadol hydrochloride on oxidative stress in kidney ischemia/reperfusion injury in rats

    OpenAIRE

    Oliveira,Rita de Cássia Silva de; BRITO, Marcus Vinicius Henriques; Ribeiro Júnior,Rubens Fernando Gonçalves; Oliveira,Leonam Oliver Durval; Monteiro,Andrew Moraes; Brandão,Fernando Mateus Viegas; Cavalcante,Lainy Carollyne da Costa; Gouveia,Eduardo Henrique Herbster; Henriques,Higor Yuri Bezerra

    2017-01-01

    Abstract Purpose: To evaluate the effects of tramadol hydrochloride associated to remote ischemic perconditioning on oxidative stress. Methods: Twenty five male rats (Wistar) underwent right nephrectomy and were distributed into five groups: Sham group (S); Ischemia/Reperfusion group (I/R) with 30 minutes of renal ischemia; Remote ischemic perconditioning group (Per) with three cycles of 10 minutes of I/R performed during kidney ischemia; Tramadol group (T) treated with tramadol hydrochlori...

  5. Effect of Ethanolic Extract of Emblica officinalis on Histopathology of Kidney and on Biochemical Parameters in Hyperlipidemic Albino Rats

    Directory of Open Access Journals (Sweden)

    Bheemshetty S. Patil

    2015-01-01

    Full Text Available Background: It has been reported that hyperlipidemia plays a central role in the development of atherosclerosis and oxidative stress. Embilica officinalis also known as Amla or Indian Gooseberry acts as antihyperlipidemic and antioxidant. Its active ingredients contains tannins, gallic acid and flavonoids. Aim & Objectives: It was aimed to evaluate the effect of ethanolic extract of Emblica officinalis on histopathology of kidney and on biochemical parameters in hyperlipidemic albino Wistar rats. Material and Methods: Extraction of dried fruits of Emblica officinalis was done by Soxhlet apparatus 0 using 99% ethanol at 60 C for 24 hours and also phytochemical analysis was done. Group I served as normal control. Group II was fed with isocaloric diet. Group III was fed with hyperlipidemic diet. Group IV was fed with isocaloric diet for 21 days + Embilica officinalis for 21 days. Group V was fed with hyperlipidemic diet for 21 days+ Embilica officinalis for 21 days. The dose of ethanolic extract of Emblica officinalis was taken as 100mg/kg body weight daily. Results: Percent body weight gain, kidney weight and nephro-somatic index significantly improved in hyperlipidemic rats treated with Emblica officinalis. There was a significant improvement in serum electrolyte and kidney markers. It was found that there were focal glomerular lesions with thickening of glomerulus in the kidneys of rats on hyperlipidemic diet and normal renal histology of rats on hyperlipidemic diet treated with Emblica officinalis. Conclusion: It can be concluded that Emblica officinalis may be a good, natural therapeutic agent against hyperlipidemic diet induced oxidative damage and nephrotoxicity.

  6. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  7. ABHRAK BHASMA MEDIATED ALTERATIONS IN LIVER AND KIDNEY FUNCTIONS IN MALE ALBINO RATS DURING CARBON TETRACHLORIDE INDUCED TOXICITY

    Directory of Open Access Journals (Sweden)

    Teli Parashuram

    2013-10-01

    Full Text Available Abhrak bhasma, an Ayurvedic drug used against many diseases including hepatitis. In present study various doses of abhrak bhasma (10, 20, 30 and 40 mg/kg body wt were tested for hepatoprotective efficacy against carbon tetrachloride (CCl4 intoxicated liver and kidney functions in male albino rat. Administration of CCl4 to the normal rat increased serum levels of AST, ALT, ALP and bilirubin indicated acute damage. Abhrak bhasma treatment counteracted the action of CCl4 on liver and kidney functions. With the administration of increasing doses of abhrak bhasma all activities were dropped progressively and significantly at 40 mg dose as compared with silicate control. Conjugation metabolism and excretion of bilirubin were improved with increasing doses of abhrak bhasma suggesting dose dependent protection of all metabolic steps in bilirubin metabolism. Also CCl4 induced acute toxicity increased serum urea and creatinine content, which was progressively controlled by increasing abhrak bhasma doses. The findings of this study indicated that abhrak bhasma exert dose dependent protective effects in liver and kidneys functions against CCl4 induced toxicity in albino rat.

  8. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney

    Energy Technology Data Exchange (ETDEWEB)

    Forte, L.R.; Krause, W.J.; Freeman, R.H. (Univ. of Missouri, Columbia (USA) Harry S. Truman Memorial Veterans Medical Center, Columbia, MO (USA))

    1988-11-01

    Receptors for the heat-stable enterotoxin produced by Escherichia coli were found in the kidney and intestine of the North American opossum and in cultured renal cell lines. The enterotoxin markedly increased guanosine 3{prime},5{prime}-cyclic monophosphate (cGMP) production in slices of kidney cortex and medulla, in suspensions of intestinal mucosa, and in the opossum kidney (OK) and rat kangaroo kidney (PtK-2) cell lines. In contrast, atrial natriuretic factor elicited much smaller increases in cGMP levels of kidney, intestine, or cultured kidney cell lines. The enterotoxin receptors in OK cells had a molecular mass of approximately 120 kDa when measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of receptors crosslinked with {sup 125}I-enterotoxin. The occurrence of receptors for the E. coli peptide in OK implies that these receptors may be involved in the regulation of renal tubular function in the opossum. E. coli enterotoxin caused a much larger increase in urine cGMP excretion than did atrial natriuretic factor when these peptides were injected intravenously into opossums. However, atrial natriuretic factor elicited a marked diuresis, natriuresis, and increased urinary excretion of calcium, phosphate, potassium, and magnesium. In contrast, the enterotoxin did not acutely influence OK fluid and electrolyte excretion. Thus the substantial increase in cGMP synthesis produced by the bacterial peptide in OK cortex and medulla in vitro and the increased renal excretion of cGMP in vivo were not associated with changes in electrolyte or water excretion. Whether cGMP represents a second messenger molecule in the kidney is an interesting question that was raised but not answered in this series of experiments.

  9. The anabolic androgenic steroid nandrolone decanoate disrupts redox homeostasis in liver, heart and kidney of male Wistar rats.

    Directory of Open Access Journals (Sweden)

    Stephan P Frankenfeld

    Full Text Available The abuse of anabolic androgenic steroids (AAS may cause side effects in several tissues. Oxidative stress is linked to the pathophysiology of most of these alterations, being involved in fibrosis, cellular proliferation, tumorigenesis, amongst others. Thus, the aim of this study was to determine the impact of supraphysiological doses of nandrolone decanoate (DECA on the redox balance of liver, heart and kidney. Wistar male rats were treated with intramuscular injections of vehicle or DECA (1 mg.100 g(-1 body weight once a week for 8 weeks. The activity and mRNA levels of NADPH Oxidase (NOX, and the activity of catalase, glutathione peroxidase (GPx and total superoxide dismutase (SOD, as well as the reduced thiol and carbonyl residue proteins, were measured in liver, heart and kidney. DECA treatment increased NOX activity in heart and liver, but NOX2 mRNA levels were only increased in heart. Liver catalase and SOD activities were decreased in the DECA-treated group, but only catalase activity was decreased in the kidney. No differences were detected in GPx activity. Thiol residues were decreased in the liver and kidney of treated animals in comparison to the control group, while carbonyl residues were increased in the kidney after the treatment. Taken together, our results show that chronically administered DECA is able to disrupt the cellular redox balance, leading to an oxidative stress state.

  10. Development of a Physiologically Based Computational Kidney Model to Describe the Renal Excretion of Hydrophilic Agents in Rats

    Science.gov (United States)

    Niederalt, Christoph; Wendl, Thomas; Kuepfer, Lars; Claassen, Karina; Loosen, Roland; Willmann, Stefan; Lippert, Joerg; Schultze-Mosgau, Marcus; Winkler, Julia; Burghaus, Rolf; Bräutigam, Matthias; Pietsch, Hubertus; Lengsfeld, Philipp

    2013-01-01

    A physiologically based kidney model was developed to analyze the renal excretion and kidney exposure of hydrophilic agents, in particular contrast media, in rats. In order to study the influence of osmolality and viscosity changes, the model mechanistically represents urine concentration by water reabsorption in different segments of kidney tubules and viscosity dependent tubular fluid flow. The model was established using experimental data on the physiological steady state without administration of any contrast media or drugs. These data included the sodium and urea concentration gradient along the cortico-medullary axis, water reabsorption, urine flow, and sodium as well as urea urine concentrations for a normal hydration state. The model was evaluated by predicting the effects of mannitol and contrast media administration and comparing to experimental data on cortico-medullary concentration gradients, urine flow, urine viscosity, hydrostatic tubular pressures and single nephron glomerular filtration rate. Finally the model was used to analyze and compare typical examples of ionic and non-ionic monomeric as well as non-ionic dimeric contrast media with respect to their osmolality and viscosity. With the computational kidney model, urine flow depended mainly on osmolality, while osmolality and viscosity were important determinants for tubular hydrostatic pressure and kidney exposure. The low diuretic effect of dimeric contrast media in combination with their high intrinsic viscosity resulted in a high viscosity within the tubular fluid. In comparison to monomeric contrast media, this led to a higher increase in tubular pressure, to a reduction in glomerular filtration rate and tubular flow and to an increase in kidney exposure. The presented kidney model can be implemented into whole body physiologically based pharmacokinetic models and extended in order to simulate the renal excretion of lipophilic drugs which may also undergo active secretion and reabsorption

  11. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences.

    Science.gov (United States)

    Brzica, Hrvoje; Breljak, Davorka; Krick, Wolfgang; Lovrić, Mila; Burckhardt, Gerhard; Burckhardt, Birgitta C; Sabolić, Ivan

    2009-04-01

    The sulfate anion transporter (sat-1, Slc26a1) has been cloned from rat liver, functionally characterized, and localized to the sinusoidal membrane in hepatocytes and basolateral membrane (BLM) in proximal tubules (PT). Here, we confirm previously described localization of sat-1 protein in rat liver and kidneys and report on gender differences (GD) in its expression by immunochemical, transport, and excretion studies in rats. The approximately 85-kDa sat-1 protein was localized to the sinusoidal membrane in hepatocytes and BLM in renal cortical PT, with the male-dominant expression. However, the real-time reverse-transcription polymerase chain reaction data indicated no GD at the level of sat-1 mRNA. In agreement with the protein data, isolated membranes from both organs exhibited the male-dominant exchange of radiolabeled sulfate for oxalate, whereas higher oxalate in plasma and 24-h urine indicated higher oxalate production and excretion in male rats. Furthermore, the expression of liver, but not renal, sat-1 protein was: unaffected by castration, upregulated by ovariectomy, and downregulated by estrogen or progesterone treatment in males. Therefore, GD (males > females) in the expression of sat-1 protein in rat liver (and, possibly, kidneys) are caused by the female sex-hormone-driven inhibition at the posttranscriptional level. The male-dominant abundance of sat-1 protein in liver may conform to elevated uptake of sulfate and extrusion of oxalate, causing higher plasma oxalate in males. Oxalate is then excreted by the kidneys via the basolateral sat-1 (males > females) and the apical CFEX (Slc26a6; GD unknown) in PT and eliminated in the urine (males > females), where it may contribute to the male-prevailing development of oxalate urolithiasis.

  12. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats.

    Science.gov (United States)

    Lee, Cheng-Tse; Chang, Li-Ching; Liu, Ching-Wen; Wu, Pei-Fung

    2017-10-01

    This study established a hyperuricemic rat model to elucidate the effect of resveratrol on the transport of UA in the kidney. Hyperuricemia was induced in rats through daily oral gavage of a potassium oxonate and UA mixture over 3 weeks. Our results revealed that resveratrol significantly reduced the serum UA levels but not creatinine, c-creative protein, alanine aminotransferase, or aspartate aminotransferase levels in these rats. Furthermore, renal URAT1 and OAT1 mRNA expression were significantly higher in the rats treated with allopurinol than in those with no treatment. Therefore, allopurinol not only inhibited UA production but also mediated renal URAT1 and OAT1 expression. The correlation analysis revealed that UA levels correlated negatively with renal IL-6 mRNA expression in rats treated with allopurinol. Moreover, URAT1 showed strong immunoreactivity in the distal convoluted tubule of rats treated with allopurinol or resveratrol and in hyperuricemic treated with allopurinol. Finally, in the rats treated with resveratrol, UA levels correlated negatively with renal URAT1 mRNA expression; thus, resveratrol reduced URAT1 mRNA expression under high UA levels, thereby reducing UA reabsorption in renal cells. Resveratrol contributes to URAT1 expression, which is potentially useful in therapeutic strategies aimed at treating hyperuricemia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Renal vascular effects of leukotriene C4 in the isolated perfused kidney of the rat.

    Science.gov (United States)

    Frölich, J. C.; Yoshizawa, M.

    1987-01-01

    1 The vascular effects of leukotriene C4 (LTC4) were investigated in the isolated perfused kidney of the rat. 2 LTC4 (6.4 X 10(-10) to 3.2 X 10(-8) mol kg-1 min-1 given over 5 min) resulted in a prompt, dose-dependent increase in renal vascular resistance in a recirculating system, which lasted for more than 60 min. 3 LTC4 was 10 to 20 fold and 1000 to 2000 fold, respectively, less active on a molar basis than noradrenaline and angiotensin II in eliciting renal vasoconstriction. 4 The vascular response to LTC4 was blocked dose-dependently by FPL 55712, an antagonist of slow reacting substance of anaphylaxis. OKY 1581, a specific thromboxane synthetase inhibitor, and indomethacin, a cyclo-oxygenase inhibitor, did not influence the LTC4 response. 5 LTC4 given in a single-pass perfusion system resulted in a short lasting response with baseline values for renal vascular resistance reached after 4 min. 6 These results show that LTC4 is a short acting renal vasoconstrictor with less potency than noradrenaline and angiotensin II. Its pressor effects seem to be mediated by specific leukotriene receptors and independent of cyclo-oxygenase products. The long-lasting effect in the recirculating arrangement, in contrast to the single pass system, is compatible with formation of active metabolite(s). PMID:3676595

  14. Calcium ion transport across plasma membranes isolated from rat kidney cortex.

    Science.gov (United States)

    Gmaj, P; Murer, H; Kinne, R

    1979-03-15

    Basal-lateral-plasma-membrane vesicles and brush-border-membrane vesicles were isolated from rat kidney cortex by differential centrifugation followed by free-flow-electrophoresis. Ca2+ uptake into these vesicles was investigated by a rapid filtration method. Both membranes show a considerable binding of Ca2+ to the vesicle interior, making the analysis of passive fluxes in uptake experiments difficult. Only the basal-lateral-plasma-membrane vesicles exhibit an ATP-dependent pump activity which can be distinguished from the activity in mitochondrial and endoplasmic reticulum by virtue of the different distribution during free-flow electrophoresis and its lack of sensitivity to oligomycin. The basal-lateral plasma membranes contain in addition a Na+/Ca2+-exchange system which mediates a probably rheogenic counter-transport of Ca2+ and Na+ across the basal cell border. The latter system is probably involved in the secondary active Na+-dependent and ouabain-inhibitable Ca2+ reabsorption in the proximal tubule, the ATP-driven system is probably more important for the maintenance of a low concentration of intracellular Ca2+.

  15. Transcriptome Analysis in Rat Kidneys: Importance of Genes Involved in Programmed Hypertension

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2015-03-01

    Full Text Available Suboptimal conditions in pregnancy can elicit long-term effects on the health of offspring. The most common outcome is programmed hypertension. We examined whether there are common genes and pathways in the kidney are responsible for generating programmed hypertension among three different models using next generation RNA sequencing (RNA-Seq technology. Pregnant Sprague-Dawley rats received dexamethasone (DEX, 0.1 mg/kg from gestational day 16 to 22, 60% high-fructose (HF diet, or NG-nitro-l-arginine-methyester (l-NAME, 60 mg/kg/day to conduct DEX, HF, or l-NAME model respectively. All three models elicited programmed hypertension in adult male offspring. We observed five shared genes (Bcl6, Dmrtc1c, Egr1, Inmt, and Olr1668 among three different models. The identified differential genes (DEGs that are related to regulation of blood pressure included Aqp2, Ptgs1, Eph2x, Hba-a2, Apln, Guca2b, Hmox1, and Npy. RNA-Seq identified genes in arachidonic acid metabolism are potentially gatekeeper genes contributing to programmed hypertension. In addition, HF and DEX increased expression and activity of soluble epoxide hydrolase (Ephx2 gene encoding protein. Conclusively, the DEGs in arachidonic acid metabolism are potentially gatekeeper genes in programmed hypertension. The roles of DEGs identified by the RNA-Seq in this study deserve further clarification, to develop the potential interventions in the prevention of programmed hypertension.

  16. Rosiglitazone Did Not Induce Acute Kidney Injury in Normocholesterolemic Rats Despite Reduction in Glomerular Filtration Rate

    Directory of Open Access Journals (Sweden)

    Cristiano Dias

    2014-04-01

    Full Text Available Background/Aims: Rosiglitazone (RGL has been used to ameliorate lipids homeostasis and also to treat inflammatory diseases. However, RGL may reduce renal blood flow and glomerular filtration rate (GFR predisposing to acute kidney injury (AKI. We investigated whether the treatment with RGL induces AKI in normocholesterolemic (NC and hypercholesterolemic (HC rats. Methods: We measured GFR by inulin clearance technique and we quantified urinary neutrophil gelatinase-associated lipocalin (uNGAL in all groups at baseline and during Ang II-stimulated vasoconstriction. Moreover, we evaluated the presence of renal damaged by histologic examination. Results: At baseline, NC and HC had normal and similar GFR. RGL treatment reduced GFR only in NC+RGL. Unexpectedly, HC+RGL showed high levels of uNGAL although GFR was at normal range. During Ang II-stimulated vasoconstriction, all groups showed reduction in GFR to the same range and we found high levels of uNGAL and high score of renal damage in HC and HC+RGL. Conclusion: RGL acts distinctly in normocholesterolemia and in hypercholesterolemia. Reduction in GFR provoked by RGL treatment did not allow the diagnosis of AKI in NC even in the presence of ANG II-stimulated vasoconstriction. However, AKI was diagnosed in HC+RGL at baseline although GFR was within normal range.

  17. Reproductive strategies of the kangaroo leech, Marsupiobdella africana (Glossiphoniidae

    Directory of Open Access Journals (Sweden)

    Natasha Kruger

    2015-04-01

    Full Text Available The Kangaroo Leech, Marsupiobdella africana, is a hermaphroditic organism, with insemination taking place by the planting of a spermatophore on another leech. Spermatophores are mostly planted on the anterior of the recipient leech, but not always. Several spermatophores may be planted by different leeches on a single recipient. The spermatophore consists of two side by side lobes. Within minutes from planting of the spermatophore, the contents are squeezed out and into the body of the recipient. Sperm are believed to find the way to the ova by following chemical cues. Kangaroo Leeches display advanced parental care by transferring fertilized eggs from the reproductive opening to a brood pouch on the ventral side. Fully developed leeches may copulate after detaching from the amphibian host Xenopus laevis, or from the Cape River Crab Potamonautes perlatus with which it maintains a phoretic association.

  18. Peters anomaly in a red kangaroo (Macropus rufus).

    Science.gov (United States)

    Suedmeyer, Wm Kirk; Pearce, Jacqueline; Persky, Meredith; Houck, Marlys L

    2014-09-01

    A 10-mo-old female red kangaroo (Macropus rufus) presented with a unilateral congenital corneal opacity OD. Complete ophthalmic examination revealed a shallow anterior chamber and a focal area of corneal edema with multiple persistent pupillary membranes extending from the iris colarette to the corneal endothelium adjacent to the edematous area of cornea. High-resolution B-scan ultrasound of the anterior segment showed an area consistent with thinning of Descemet's membrane in the area of corneal edema. Ophthalmic examination and ultrasound findings are consistent with a diagnosis of Peters anomaly, a form of anterior segment dysgenesis. An electroretinogram performed on the affected animal did not reveal any specific abnormalities. Karyotype analyses revealed a normal diploid number (2n = 20, -XX), with an abnormal pericentric inversion in the second largest chromosomal pair. The kangaroo exhibits mild compensated vision deficits in the affected eye. The maternal and paternal adult pairing has been discontinued in an effort to prevent future offspring anomalies.

  19. Kangaroo Mother Method: Mothers' Experiences and Contributions to Nursing

    OpenAIRE

    João Carlos Arivabene; Maria Antonieta Rubio Tyrrell

    2010-01-01

    This research aimed to describe mothers' experiences, analyzing them in the light of the principles of the Kangaroo Mother Method (KMM), and discuss the mothers' contributions based on the meanings of these experiences for nursing actions. In data collection, a questionnaire was used that characterized the mothers' socioeconomic profile and, through focus groups, stories were obtained about the benefits of these experiences, which supported the construction of the following categories: surviv...

  20. Regulation of podocalyxin expression in the kidney of streptozotocin-induced diabetic rats with Chinese herbs (Yishen capsule).

    Science.gov (United States)

    Fang, Jingai; Wei, Hongkun; Sun, Yanyan; Zhang, Xiaodong; Liu, Wenyuan; Chang, Qintao; Wang, Ruihua; Gong, Yuewen

    2013-04-05

    Diabetic nephropathy is an emergent issue in China with increase in patients with type II diabetes. There are several successful Chinese herbal products for the treatment of patients with diabetic nephropathy in China. However, the mechanisms mediating the biological activity of these products are still unclear. Podocalyxin is a sialoprotein critical to maintaining integrity of filtration function of glomerulus. By employing streptozotocin-induced diabetic rats and a Chinese herb formulation (Yishen capsule), we examined the regulation of podocalyxin expression in the kidney by Yishen capsule through immunofluorescent staining and reverse transcriptase polymerase chain reaction. After injection of STZ, there were significant increase in both blood glucose and urinary protein. Serum creatinine and BUN were also increased in rats with injection of STZ. Moreover, expression of podocalyxin in the glomerulus was gradually reduced after injection of STZ. There was also a loss of podocyte foot processes in the glomerular basement membrane. However, Yishen capsule or benazepril was able to restore the expression of podocalyxin and podocyte foot processes in the kidney. Although Yishen capsule could reduce urinary protein level, it has little effect on blood glucose level in the rats injected with STZ. Yishen capsule could attenuate the loss of podocalyxin in the glomerulus of rats injected with STZ.

  1. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  2. 1H NMR-based metabolite profiling of plasma in a rat model of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Ju-Ae Kim

    Full Text Available Chronic kidney disease (CKD is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. (1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx, particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx compared to sham-operated rats. Principle components analysis (PCA, partial least squares-discriminant analysis (PLS-DA and orthogonal partial least squares-discriminant analysis (OPLS-DA score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids.

  3. Ectopic Kidney

    Science.gov (United States)

    ... Ectopic Kidney Medullary Sponge Kidney Kidney Dysplasia Ectopic Kidney What is an ectopic kidney? An ectopic kidney is a birth defect in ... has an ectopic kidney. 1 What are the kidneys and what do they do? The kidneys are ...

  4. Influence of electromagnetic field (1800 MHz on lipid peroxidation in brain, blood, liver and kidney in rats

    Directory of Open Access Journals (Sweden)

    Paweł Bodera

    2015-08-01

    Full Text Available Objectives: The aim of this study is the evaluation of the influence of repeated (5 times for 15 min exposure to electromagnetic field (EMF of 1800 MHz frequency on tissue lipid peroxidation (LPO both in normal and inflammatory state, combined with analgesic treatment. Material and Methods: The concentration of malondialdehyde (MDA as the end-product of the lipid peroxidation (LPO was estimated in blood, liver, kidneys, and brain of Wistar rats, both healthy and those with complete Freund’s adjuvant (CFA-induced persistent paw inflammation. Results: The slightly elevated levels of the MDA in blood, kidney, and brain were observed among healthy rats in electromagnetic field (EMF-exposed groups, treated with tramadol (TRAM/EMF and exposed to the EMF. The malondialdehyde remained at the same level in the liver in all investigated groups: the control group (CON, the exposed group (EMF, treated with tramadol (TRAM as well as exposed to and treated with tramadol (TRAM/EMF. In the group of animals treated with the complete Freund’s adjuvant (CFA we also observed slightly increased values of the MDA in the case of the control group (CON and the exposed groups (EMF and TRAM/EMF. The MDA values concerning kidneys remained at the same levels in the control, exposed, and not-exposed group treated with tramadol. Results for healthy rats and animals with inflammation did not differ significantly. Conclusions: The electromagnetic field exposure (EMF, applied in the repeated manner together with opioid drug tramadol (TRAM, slightly enhanced lipid peroxidation level in brain, blood, and kidneys.

  5. Quantitative arterial spin labelling perfusion measurements in rat models of renal transplantation and acute kidney injury at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, Fabian; Schad, Lothar R.; Zoellner, Frank G. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine; Klotz, Sarah; Hoeger, Simone; Yard, Benito A.; Kraemer, Bernhard K. [Heidelberg Univ., Mannheim (Germany). Dept. of Medicine V

    2017-05-01

    To employ ASL for the measurement of renal cortical perfusion in particular renal disorders typically associated with graft loss and to investigate its potential to detect and differentiate the related functional deterioration i.e., in a setting of acute kidney injury (AKI) as well as in renal grafts showing acute and chronic transplant rejection. 14 Lewis rats with unilateral ischaemic AKI and 43 Lewis rats with renal grafts showing acute or chronic rejections were used. All ASL measurements in this study were performed on a 3 T MR scanner using a FAIR True-FISP approach to assess renal blood flow (RBF). Perfusion maps were calculated and the cortical blood flow was determined using a region-of-interest based analysis. RBF of healthy and AKI kidneys as well as of both rejection models, were compared. In a subsample of 20 rats, creatinine clearance was measured and correlated with cortical perfusion. RBF differs significantly between healthy and AKI kidneys (P < 0.001) with a mean difference of 213 ± 80 ml/100 g/min. Renal grafts with chronic rejections show a significantly higher (P < 0.001) mean cortical perfusion (346 ± 112 ml/100 g/min) than grafts with acute rejection (240 ± 66 ml/100 g/min). Both transplantation models have a significantly (P < 0.001) lower perfusion than healthy kidneys. Renal creatinine clearance is significantly correlated (R = 0.85, P < 0.001) with cortical blood flow. Perfusion measurements with ASL have the potential to become a valuable diagnostic tool, regarding the detection of renal impairment and the differentiation of disorders that lead to a loss of renal function and that are typically associated with graft loss.

  6. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    Full Text Available Arachidonic acid (ARA metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney.

  7. Effect of dietary mineral sources and oil content on calcium utilization and kidney calcification in female Fischer rats fed low-protein diets.

    Science.gov (United States)

    Ohtsuka, Shizuko; Aoyama, Yoshiko; Watanabe, Nobuhiro; Kajiwara, Tomoko; Azami, Shoji; Kitano, Takao

    2013-01-01

    We studied the effects of dietary mineral source and oil intake on kidney calcification in 4-wk-old female Fischer rats after consuming the AIN-76 purified diet (AIN-76). A modified AIN-76 mineral mixture was used, although the original calcium (Ca)/phosphorus (P) molar ratio remained unchanged. Rats were fed the modified diets for a period of 40 d before their kidneys were removed on the last day. Ca balance tests were performed on days 31 to 36 and biochemical analysis of urine was also studied. Kidney Ca, P, and magnesium (Mg) in the standard diet group (20% protein and 5% oil) were not affected by the mineral source. Kidney Ca, P, and Mg in the low-protein (10% protein) diet group, were found to be influenced by the dietary oil content and mineral source. In particular, the different mineral sources differentially increased kidney mineral accumulation. Pathological examination of the kidney showed that the degree of kidney calcification was proportional to the dietary oil content in the 10% dietary protein group, reflecting the calcium content of the kidney. The information gathered on mineral sources in this study will help future researchers studying the influence of dietary Ca/P molar ratios, and histological changes in the kidney.

  8. Kangaroo – A pattern-matching program for biological sequences

    Directory of Open Access Journals (Sweden)

    Betel Doron

    2002-07-01

    Full Text Available Abstract Background Biologists are often interested in performing a simple database search to identify proteins or genes that contain a well-defined sequence pattern. Many databases do not provide straightforward or readily available query tools to perform simple searches, such as identifying transcription binding sites, protein motifs, or repetitive DNA sequences. However, in many cases simple pattern-matching searches can reveal a wealth of information. We present in this paper a regular expression pattern-matching tool that was used to identify short repetitive DNA sequences in human coding regions for the purpose of identifying potential mutation sites in mismatch repair deficient cells. Results Kangaroo is a web-based regular expression pattern-matching program that can search for patterns in DNA, protein, or coding region sequences in ten different organisms. The program is implemented to facilitate a wide range of queries with no restriction on the length or complexity of the query expression. The program is accessible on the web at http://bioinfo.mshri.on.ca/kangaroo/ and the source code is freely distributed at http://sourceforge.net/projects/slritools/. Conclusion A low-level simple pattern-matching application can prove to be a useful tool in many research settings. For example, Kangaroo was used to identify potential genetic targets in a human colorectal cancer variant that is characterized by a high frequency of mutations in coding regions containing mononucleotide repeats.

  9. Effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated rats.

    Science.gov (United States)

    Ozturk, Hayrettin; Eken, Halil; Ozturk, Hulya; Buyukbayram, Huseyin

    2006-09-01

    Oxidative stress plays an important role in the pathogenesis of toxic liver diseases and other hepatic alterations including obstruction of bile flow. It has been shown that the gastrointestinal tract and renal tissue is particularly affected during obstruction of bile flow. In this study, we aimed to evaluate the effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated (BDL) rats. A total of 40 male Sprague-Dawley rats weighing 200-240 g were used in this study. Group 1 (Sham-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. Group 2 (Dexa-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. The rats received daily dexamethasone. Group 3 (BDL/Untreated, n = 10) rats were subjected to bile duct ligation and no drug was applied. Group 4 (BDL/Dexa, n = 10) rats received daily dexamethasone by orogastric tube for 14 days after BDL. At the end of the 2-week period, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were measured and biochemical and histological evaluation were processed. The mean serum bilirubin, liver enzymes, MDA level, and histopathological score significantly decreased and SOD, CAT, and GSH-Px values were significantly increased in group 4 when compared to group 3. Group 3 presented a significant increase in caecal count of E. coli and in aerobe/anaerobe ratio. In group 4, liver was moderately damaged. Ileal biopsies from group 4 demonstrated a significant increase in villus height, total mucosal thickness, and villus density when compared to group 3. Glomerular injury scores (GIS) and arterial injury scores (AIS) in group 3 rats were increased in the juxtamedullary region. In contrast to group 4, tubulo-interstitial lesions were diffuse in group 3 animals. Dexamethasone reduced small bowel and kidney oxidative stress and histological

  10. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis

    Science.gov (United States)

    Liu, Xia; Zhong, Fang; Tang, Xu-long; Lian, Fu-lin; Zhou, Qiao; Guo, Shan-mai; Liu, Jia-fu; Sun, Peng; Hao, Xu; Lu, Ying; Wang, Wei-ming; Chen, Nan; Zhang, Nai-xia

    2014-01-01

    Aim: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. Methods: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to 1H-NMR-based metabolomic analysis. Results: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. Conclusion: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The 1H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines. PMID:24632844

  11. Effect of the aqueous extract of Foeniculum vulgare (fennel on the kidney in experimental PCOS female rats

    Directory of Open Access Journals (Sweden)

    Somayyeh Sadrefozalayi

    2014-02-01

    Full Text Available Objective: Foeniculum vulgare seed (F. vulgare is a herbal plant which is used with phytoestrogene compounds for polycystic ovary syndrome (PCOS treatment. In this research, renoprotective effect of the aqueous extract of Foeniculum vulgare (AEF in experimental PCOS female rats is studied. Materials and Methods: Forty female rats were randomly divided into five groups. The first group served as control,was injected with an equivalent volume (0.2 ml of normal saline, and received normal diet. Animals in the second group were non poly cystic ovary syndrome (PCOS rats which were treated with intragastric administration of aqueous extract of F. vulgare (150 mg/kg b.w.. In the third group, the rats were treated with intraperitoneal injection of estradiolvalerate (EV (4 mg in 0.2 ml of sesame oil. The fourth groups were treated with EV and AEF (150mg/kg bw with the same route.  The fifth groups were treated with EV and AEF (100mg/kg bw. After 4 weeks of study, all of the rats were sacrificed, their kidneys tissues were processed for light microscopy, and some biochemical parameters of serum were measured. Results: The mean values of blood urea nitrogen in PCOS rats treated with low dose of AEF and EV and non-treated, was significantly (p

  12. Effects of dextran sulfate sodium induced experimental colitis on cytochrome P450 activities in rat liver, kidney and intestine.

    Science.gov (United States)

    Hu, Nan; Huang, Yanjuan; Gao, Xuejiao; Li, Sai; Yan, Zhixiang; Wei, Bin; Yan, Ru

    2017-06-01

    Dextran sulfate sodium (DSS) induced experimental colitis presents a histologic resemblance to human ulcerative colitis (UC). Altered cytochrome P450s (CYPs) have been reported in this model and patients with UC. In this study, six CYPs activities were quantitatively determined in microsomes of liver (RLMs), kidney (RRMs) and intestine (RIMs) from rats with colitis at acute (5% DSS for 7 days, UCA) and remission (7-day DSS treatment followed by 7-day cessation, UCR) phases and compared with normal rats. Generally, CYPs activities varied with isoform, organ, and disease status. Hepatic CYP1A2, 2B1, 2C6/11, 2E1 and 3A1/2 activities were reduced by acute colitis and completely or partially restored after DSS was halted. Although DSS treatment decreased the Vmax of renal CYP2C6/11 and increased that of CYP2D2, their CLint, in vitro were comparable among normal, acute and remission stages. DSS treatment changed the kinetics of CYP3A1/2-mediated nifedipine metabolism in RRMs from biphasic to classical kinetics. Notably, CYP2D2 activity was elevated in liver and kidney in acute UC, while enhanced in liver and decreased in kidney in remission. In intestine, CYP3A1/2 activity was increased in UCA and further enhanced after DSS withdrawal. These findings highlight the necessity of quantifying enzyme activity for precision drug therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Decreased Tissue COX5B Expression and Mitochondrial Dysfunction during Sepsis-Induced Kidney Injury in Rats

    Science.gov (United States)

    Böhm, Lennert; Braunecker, Stefan; Adler, Christoph; De Robertis, Edoardo; Cirillo, Fabrizio

    2017-01-01

    Background. Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host response to infection. Sepsis is the dominant cause of acute kidney injury (AKI), accounting for nearly 50% of episodes of acute renal failure. Signaling cascades and pathways within the kidney are largely unknown and analysis of these molecular mechanisms may enhance knowledge on pathophysiology and possible therapeutic options. Material and Methods. 26 male Wistar rats were assigned to either a sham group (control, N = 6) or sepsis group (N = 20; cecal ligature and puncture model, 24 and 48 hours after CLP). Surviving rats (n = 12) were decapitated at 24 hours (early phase; n = 6) or 48 hours (late phase; n = 6) after CLP and kidneys removed for proteomic analysis. 2D-DIGE and DeCyder 2D software (t-test, P cytochrome c oxidase subunit B (COX5b), myosin-6 (MYH6), and myosin-7 (MYH7). A significant correlation with the proteins was found for mitochondrial energy production and electron transport. Conclusions. COX5B could be a promising biomarker candidate since a significant association was found during experimental sepsis in the present study. For future research, COX5B should be evaluated as a biomarker in both human urine and serum to identify sepsis. PMID:28246552

  14. Lipid peroxidation in the kidney of rats treated with V and/or Mg in drinking water.

    Science.gov (United States)

    Scibior, Agnieszka; Zaporowska, Halina; Niedźwiecka, Irmina

    2010-07-01

    Spontaneous and stimulated lipid peroxidation (LPO) after vanadate and magnesium treatment was studied in kidney supernatants obtained from outbred 5-month-old, albino male Wistar rats. The 2-month-old animals daily received: group I (control), deionized water to drink; group II, water solution of sodium metavanadate, NaVO(3) (SMV, 0.125 mg V ml(-1)); group III, water solution of magnesium sulfate, MgSO(4) (MS, 0.06 mg Mg ml(-1)); and group IV, water solution of SMV-MS at the same concentrations as in groups II and III for V and Mg, respectively, over a 12-week period. FeSO(4), NaVO(3) and MgSO(4) were selected as agents that may modify LPO process in in vitro conditions. Spontaneous malondialdehyde (MDA) levels in kidney supernatants increased significantly in the rats in groups II and IV, compared with groups I and III; and they were also significantly higher in all the groups of rats compared with the liver supernatants. The total antioxidant status (TAS) in groups II and IV tended to be higher too. Vanadium concentration in the kidney of the rats in groups II and IV increased, whereas the kidney Mg content in groups II, III and IV decreased, compared with levels in the liver. As the two-way ANOVA indicated, the changes in the basal MDA level, TAS and Mg concentration in the liver of rats at combined V and Mg application only resulted from independent action of V. As far as the in vitro results are concerned, in the supernatants obtained from the rats in groups II and IV, a significant increase in MDA level was demonstrated in the presence of 30 microm of exogenous FeSO(4) as well as 30, 100, 200 and 400 microm NaVO(3) and 100, 200, 400, 600, 800 and 1000 microm MgSO(4), compared with groups I and III. The 600, 800 and 1000 microm of exogenous MgSO(4) also significantly elevated MDA production in the supernatants obtained from the rats in group III, compared with spontaneously formed MDA in the same supernatants. The three-way ANOVA showed that the changes in

  15. Magnetic resonance imaging findings in a red kangaroo (Macropus rufus) with otitis.

    Science.gov (United States)

    Okeson, Danelle M; Coke, Rob L; Kochunov, Peter; Davis, M Duff

    2008-12-01

    Magnetic resonance imaging (MRI) was performed on an adult, male Red kangaroo (Macropus rufus) with a history of nonspecific neurologic signs and acute discharge from the left ear. MRI revealed findings consistent with otitis and possible osteomyelitis of the temporal and mastoid bones. To the authors' knowledge, this is the first report of otitis and MRI findings in a kangaroo.

  16. Biochemical and histopathological studies of the PTU-induced hypothyroid rat kidney with reference to the ameliorating role of folic acid.

    Science.gov (United States)

    Salama, Afrah F; Tousson, Ehab; Ibrahim, Wafaa; Hussein, Wesam M

    2013-08-01

    Thyroid hormones (THs) are essential for growth and development of the kidney. Also TH influences glomerular filtration and tubular functions. Hypothyroidism negative influences kidney function indirectly by affecting the cardiovascular system and the renal blood flow, and directly by affecting glomerular filtration, tubular functions and the structure of the kidney. The purpose of this study was to evaluate changes in biochemical markers, oxidative stress parameter and histological changes in kidney of hypothyroid rats before and after treatment with folic acid. Hypothyroidism was induced for 6 weeks by the administration of propylthiouracil in drinking water. Urea and creatinine were measured to evaluate the changes in kidney function. Also malondialdehyde, nitrite, nitrate and other oxidative stress parameter were measured in serum and kidney tissue as indicators of oxidative damage. Kidney function and oxidative stress parameters in hypothyroid rats were significantly changed compared to those in control rats. Treatment with folic acid helps in improving the adverse effect of hypothyroidism; the histological study also confirms this finding.

  17. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats.

    Science.gov (United States)

    Han, B; Zhao, Z G; Zhang, L M; Li, S G; Niu, C Y

    2015-07-01

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  18. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Directory of Open Access Journals (Sweden)

    B. Han

    2015-07-01

    Full Text Available Posthemorrhagic shock mesenteric lymph (PHSML is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H2S in PHSML drainage in alleviating acute kidney injury (AKI by administering D,L-propargylglycine (PPG and sodium hydrosulfide hydrate (NaHS to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage, and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage. Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H2S, cystathionine-γ-lyase (CSE, Toll-like receptor 4 (TLR4, interleukin (IL-10, IL-12, and tumor necrosis factor (TNF-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H2S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H2S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H2S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H2S and H2S-mediated inflammation.

  19. The soluble 'low-Km' 5'-nucleotidase of rat kidney represents solubilized ecto-5'-nucleotidase.

    Science.gov (United States)

    Piec, G; Le Hir, M

    1991-01-15

    A soluble 'low-Km' 5'-nucleotidase has been described previously in several organs. It has been presumed to be of cytosolic origin and thus to play a role in the intracellular production of adenosine. Its catalytic properties are similar to those of the ecto-5'-nucleotidase of cell membranes. In the present study we compared molecular properties of the two enzymes in the kidney of the rat. The Mr of the main peak of soluble 'low-Km' 5'-nucleotidase in gel-filtration chromatography was similar to that of the ecto-5'-nucleotidase solubilized by a phosphatidylinositol-specific phospholipase C from renal brush-border membranes. In phase-partition experiments using Triton X-114, the soluble enzyme appeared to be hydrophobic. Its hydrophobicity was decreased on treatment with a phosphatidylinositol-specific phospholipase C, suggesting that the soluble 'low-Km' 5'-nucleotidase contains the phosphatidylinositol anchor which is characteristic for the ecto-enzyme. An anti-ecto-5'-nucleotidase antiserum provoked an almost complete inhibition of the soluble enzyme. Immunoblotting using anti-ecto-5'-nucleotidase antiserum revealed in the high-speed supernatants a polypeptide with a similar Mr to the subunit of the ecto-5'-nucleotidase. The soluble 'low-Km' 5'-nucleotidase, like the ecto-5'-nucleotidase, bound specifically to concanavalin A. We conclude that the soluble 'low-Km' 5'-nucleotidase is not a cytosolic enzyme, but that it most probably originates from the solubilization of the ecto-5'-nucleotidase, and that it therefore cannot participate in the intracellular production of adenosine.

  20. Regulation of valine and. alpha. -ketoisocaproate metabolism in rat kidney mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Harper, A.E. (Univ. of Wisconsin, Madison (USA))

    1988-10-01

    Activities of branched-chain amino acid (BCAA) aminotransferase (BCAT) and {alpha}-keto acid dehydrogenase (BCKD) were assayed in mitochondria isolated from kidneys of rats. Rates of transamination of valine and oxidation of keto acids {alpha}-ketoisocaproate (KIC) or {alpha}-ketoisovalerate (KIV) were estimated using radioactive tracers of the appropriate substrate from amounts of {sup 14}C-labeled products formed. Because of the high mitochondrial BCAT activity, an amino acceptor for BCAT, {alpha}-ketoglutarate ({alpha}-KG) or KIC, was added to the assay medium when valine was the substrate. Rates of valine transamination and subsequent oxidation of the KIV formed were determined with 0.5 mM {alpha}-KG as the amino acceptor; these rates were 5- to 50-fold those without added {alpha}-KG. Rates of CO{sub 2} evolution from valine also increased when KIC was present; however, with KIC concentrations above 0.2 mM, rates of CO{sub 2} evolution from valine declined although rates of transamination continued to rise. When 0.05 mM KIC was added to the assay medium, oxidation of KIC was suppressed by inclusion of valine or glutamate in the medium. When valine was present KIC was not oxidized preferentially, presumably because it was also serving as an amino acceptor for BCAT. These results indicate that as the supply of amino acceptor, {alpha}-KG or KIC, is increased in mitochondria not only is the rate of valine transamination stimulated but also the rate of oxidation of the KIV formed from valine. Thus the rate of oxidation of BCAA can be controlled by factors that influence the rate and direction of BCAA transamination and, thereby, the supply of substrate for BCKD.

  1. Increased Blood Pressure Variability Prior to Chronic Kidney Disease Exacerbates Renal Dysfunction in Rats

    Directory of Open Access Journals (Sweden)

    Frederico Felipe Costa Tebas Freitas

    2016-09-01

    Full Text Available Increased blood pressure variability (BPV, which can be experimentally induced by sinoaortic denervation (SAD, has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD. SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases.

  2. Increased Blood Pressure Variability Prior to Chronic Kidney Disease Exacerbates Renal Dysfunction in Rats

    Science.gov (United States)

    Freitas, Frederico F. C. T.; Araujo, Gilberto; Porto, Marcella L.; Freitas, Flavia P. S.; Graceli, Jones B.; Balarini, Camille M.; Vasquez, Elisardo C.; Meyrelles, Silvana S.; Gava, Agata L.

    2016-01-01

    Increased blood pressure variability (BPV), which can be experimentally induced by sinoaortic denervation (SAD), has emerged as a new marker of the prognosis of cardiovascular and renal outcomes. Considering that increased BPV can lead to organ-damage, the goal of the present study was to evaluate the effects of SAD on renal function in an experimental model of chronic kidney disease (CKD). SAD was performed in male Wistar rats 2 weeks before 5/6 nephrectomy and the animals were evaluated 4 weeks after the induction of CKD. Our data demonstrated that BPV was increased in SAD and CKD animals and that the combination of both conditions (SAD+CKD) exacerbated BPV. The baroreflex sensitivity index was diminished in the SAD and CKD groups; this reduction was more pronounced when SAD and CKD were performed together. 5/6 nephrectomy led to hypertension, which was higher in SAD+CKD animals. Regarding renal function, the combination of SAD and CKD resulted in reduced renal plasma and blood flow, increased renal vascular resistance and augmented uraemia when compared to CKD animals. Glomerular filtration rate and BPV were negatively correlated in SAD, CKD, and SAD+CKD animals. Moreover, SAD+CKD animals presented a higher level of glomerulosclerosis when compared to all other groups. Cardiac and renal hypertrophy, as well as oxidative stress, was also further increased when SAD and CKD were combined. These results show that SAD prior to 5/6 nephrectomy exacerbates renal dysfunction, suggesting that previous augmented BPV should be considered as an important factor to the progression of renal diseases. PMID:27721797

  3. Hydrogen sulfide in posthemorrhagic shock mesenteric lymph drainage alleviates kidney injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Han, B.; Zhao, Z.G.; Zhang, L.M.; Li, S.G.; Niu, C.Y. [Institute of Microcirculation, Hebei North University, Hebei Zhangjiakou (China)

    2015-04-28

    Posthemorrhagic shock mesenteric lymph (PHSML) is a key factor in multiple organ injury following hemorrhagic shock. We investigated the role of hydrogen sulfide (H{sub 2}S) in PHSML drainage in alleviating acute kidney injury (AKI) by administering D,L-propargylglycine (PPG) and sodium hydrosulfide hydrate (NaHS) to 12 specific pathogen-free male Wistar rats with PHSML drainage. A hemorrhagic shock model was established in 4 experimental groups: shock, shock+drainage, shock+drainage+PPG (45 mg/kg, 0.5 h prehemorrhage), and shock+drainage+NaHS (28 µmol/kg, 0.5 h prehemorrhage). Fluid resuscitation was performed after 1 h of hypotension, and PHMSL was drained in the last three groups for 3 h after resuscitation. Renal function and histomorphology were assessed along with levels of H{sub 2}S, cystathionine-γ-lyase (CSE), Toll-like receptor 4 (TLR4), interleukin (IL)-10, IL-12, and tumor necrosis factor (TNF)-α in renal tissue. Hemorrhagic shock induced AKI with increased urea and creatinine levels in plasma and higher H{sub 2}S, CSE, TLR4, IL-10, IL-12, and TNF-α levels in renal tissue. PHSML drainage significantly reduced urea, creatinine, H{sub 2}S, CSE, and TNF-α but not TLR4, IL-10, or IL-12. PPG decreased creatinine, H{sub 2}S, IL-10, and TNF-α levels, but this effect was reversed by NaHS administration. In conclusion, PHSML drainage alleviated AKI following hemorrhagic shock by preventing increases in H{sub 2}S and H{sub 2}S-mediated inflammation.

  4. cAMP-binding proteins in medullary tubules from rat kidney: effect of ADH

    Energy Technology Data Exchange (ETDEWEB)

    Gapstur, S.M.; Homma, S.; Dousa, T.P.

    1988-08-01

    Little is known of the regulatory steps in the cellular action of vasopressin (AVP) on the renal epithelium, subsequent to the cAMP generation. We studied cAMP-binding proteins in the medullary collecting tubule (MCT) and the thick ascending limb of Henle's loop (MTAL) microdissected from the rat kidney by use of photoaffinity labeling. Microdissected tubules were homogenized and photoaffinity labeled by incubation with 1 microM 32P-labeled 8-azido-adenosine 3',5'-cyclic monophosphate (N3-8-(32P)-cAMP); the incorporated 32P was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Both in MCT and MTAL preparations, the analyses showed incorporation of N3-8-(32P)cAMP into two bands (Mr = 49,000 and Mr = 55,000) that comigrated with standards of the cAMP-dependent protein kinase regulatory subunits RI and RII. In MCT, most of the 32P (80%) was incorporated into RI, whereas in MTAL the 32P incorporated into RI and RII was equivalent. When freshly dissected MCT segments were incubated with 10(-12)-10(-6) M AVP, the subsequent photoaffinity labeling of RI with N3-8-(32P)cAMP was markedly diminished in a dose-dependent manner compared with controls. Our results suggest that cAMP binds in MCT and MTAL to regulatory subunits RI and RII of cAMP-dependent protein kinase. However, in MCT the dominant type of cAMP-dependent protein kinase appears to be type I. The outlined procedure is suitable to indirectly measure the occupancy of RI by endogenous cAMP generated in MCT cells in response to physiological levels (10(-12) M) of AVP.

  5. Subcellular localization and displacement by diuretics of the peripheral benzodiazepine binding site (PBS) from rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Lukeman, S.; Fanestil, D.

    1986-03-05

    Although the PBS has been identified in many organs, its function and cellular location are speculative. Using rapid filtration, binding of (/sup 3/H)RO 5-4864 (*RO) (.75 nM) was assessed in four subcellular fractions (.3 mg/ml) derived from depapillated rat kidney by differential centrifugation: N (450g x 2 min), O (13,000 x 10), P (105,000 x 30), and S. The binding distribution was: N-18%, O-74%, P-6%, and S-2%. Marker enzyme analysis revealed that O was enriched in mitochondria (M), lysosomes (L), peroxisomes (P), and endoplasmic reticulum (ER), but not plasma membrane, and that N contained small amounts (10-15%) of markers for the above. Repeated washing of O removed ER enzymes but preserved *RO binding. O was further fractionated with centrifugation (57,000g x 4 hr) on a linear sucrose gradient (18-65%); *RO binding then comigrated with M but not P and L markers. Centrifugation of isolated M (5500 x 10 min) on another linear sucrose gradient (37-65%) gave low and high density bands, which contained 65% and 35% of *RO binding activity, resp. *RO binding in O was specific, saturable, reversible, and inhibited by diuretics. Inhibitors with the highest potency were indacrinone (K/sub d/ = 35 ..mu..M), hydrochlorothiazide (100 ..mu..M), and ethacrynic acid (325 ..mu..M). Low potency inhibitors (K/sub d/ greater than or equal to 1 mM) included amiloride, triamterene, furosemide, bumetanide, and ozolinone.

  6. Binding of 125I-insulin to the isolated glomeruli of rat kidney.

    Science.gov (United States)

    Kurokawa, K; Silverblatt, F J; Klein, K L; Wang, M S; Lerner, R L

    1979-11-01

    To investigate a possible action of insulin on the glomerulus, the binding 125I-insulin to the isolated glomeruli prepared from rat kidney was examined. When incubated at 22 degrees C, 125I-insulin binding proceeded with time and reached a steady state at 45 min at which time nonspecific binding was less than 25% of total binding. A small fraction of 125I-insulin was degraded during incubation. This binding was specific to insulin in that it was inhibited by unlabeled porcine and beef insulins and to a lesser extent by porcine proinsulin and desalanine-desasparagine insulin, but not by glucagon, parathyroid hormone, vasopressin, calcitonin, and angiotensin II. Increasing concentrations of nonlabeled insulin displaced 125I-insulin binding in a dose-dependent fashion. Scatchard plot of the data was curvilinear consistent with either two classes of receptors with different affinities or a single class of receptors that demonstrate negative cooperativity. The addition of excess nonlabeled insulin to the glomeruli preincubated with 125I-insulin resulted in a rapid dissociation of approximately or equal to 70% of bound 125I-insulin. Insulin decreased the increments in glomerular cyclic AMP levels by epinephrine and by prostaglandin E2, but not those by histamine. These data showed the presence of specific insulin receptors in the glomeruli, and that insulin action may be, at least in part, through modulation of glomerular cyclic AMP concentrations. Such action of insulin may underlie the alteration in glomerular ultrafiltration and the glomerular ultrafiltration and the development of glomerular lesions in diabetes mellitus, a disease in which insulin deficiency or the tissue resistance to insulin exists.

  7. Cobalt-chromium-molybdenum alloy causes metal accumulation and metallothionein up-regulation in rat liver and kidney

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Danscher, Gorm; Stoltenberg, Meredin;

    2007-01-01

    Cobalt-chromium-molybdenum (CoCrMo) metal-on-metal hip prosthesis has had a revival due to their excellent wear properties. However, particulate wear debris and metal ions liberated from the CoCrMo alloys might cause carcinogenicity, hypersensitivity, local and general tissue toxicity, genotoxicity...... and inflammation-generating qualities. Nine months after implanting small pieces of CoCrMo alloy intramuscularly and intraperitoneally in rats, we analysed the accumulation of metals with a multi-element analysis, and the levels of metallothionein I/II with real-time reverse transcriptase-polymerase chain reaction...... in liver and kidney. We found that metal ions are liberated from CoCrMo alloys and suggest that they are released by dissolucytosis, a process where macrophages causes the metallic surface to release metal ions. Animals with intramuscular implants accumulated metal in liver and kidney and metallohionein I...

  8. Monitoring hemodynamics and oxygenation of the kidney in rats by a combined near-infrared spectroscopy and invasive probe approach

    Science.gov (United States)

    Grosenick, Dirk; Cantow, Kathleen; Arakelyan, Karen; Wabnitz, Heidrun; Flemming, Bert; Skalweit, Angela; Ladwig, Mechthild; Macdonald, Rainer; Niendorf, Thoralf; Seeliger, Erdmann

    2015-07-01

    We have developed a hybrid approach to investigate the dynamics of perfusion and oxygenation in the kidney of rats under pathophysiologically relevant conditions. Our approach combines near-infrared spectroscopy to quantify hemoglobin concentration and oxygen saturation in the renal cortex, and an invasive probe method for measuring total renal blood flow by an ultrasonic probe, perfusion by laser-Doppler fluxmetry, and tissue oxygen tension via fluorescence quenching. Hemoglobin concentration and oxygen saturation were determined from experimental data by a Monte Carlo model. The hybrid approach was applied to investigate and compare temporal changes during several types of interventions such as arterial and venous occlusions, as well as hyperoxia, hypoxia and hypercapnia induced by different mixtures of the inspired gas. The approach was also applied to study the effects of the x-ray contrast medium iodixanol on the kidney.

  9. Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney

    Directory of Open Access Journals (Sweden)

    Tadeusz Sulikowski

    2012-01-01

    Full Text Available Matrix metalloproteinases and tissue inhibitor of metalloproteinases play an important role in the regulation of mesangial cell proliferation and may be involved in ischemia-reperfusion injuries. Preservation solutions are thought to diminish the ischemic injury and appropriate choice of the solution should guarantee a better graft function and good prognosis for graft survival. The aim of the study was to examine the effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney.The study was carried out on Wistar rat kidneys divided into 3 groups: kidneys perfused with 0.9�0NaCl (control group, with UW, and with EC preservation solution.The results show an enhancement of MMP-2 and TIMP-2 gene expression after 12 min of cold ischemia. This increase was more expressed in kidneys preserved with UW solution in comparison with kidneys perfused with EC solution and 0.9�0NaCl. After 24 h of cold ischemia the expression of MMP-2 and TIMP-2 genes in kidney perfused with UW solution decreased, while in kidneys perfused with EC it was increased. After warm ischemia the MMP-2 and TIMP-2 gene expression increased, whereas it was significantly lower in kidneys perfused with EC solution.

  10. Optical cryoimaging of rat kidney and the effective role of chromosome 13 in salt-induced hypertension

    Science.gov (United States)

    Salehpour, F.; Yang, C.; Kurth, T.; Cowley, A. W.; Ranji, M.

    2015-03-01

    The objective of this work is to assess oxidative stress levels in salt-sensitive hypertension animal model using 3D optical cryoimager to image mitochondrial redox ratio. We studied Dahl salt-induced (SS) rats, and compared the results with a consomic SS rat strain (SSBN13). The SSBN13 strain was developed by the introgression of chromosome from the Brown Norway (BN) rat into the salt-sensitive (SS) genetic background and exhibits significant protection from salt induced hypertension1 . These two groups were fed on a high salt diet of 8.0% NaCl for one week. Mitochondrial redox ratio (NADH/FAD=NADH RR), was used as a quantitative marker of the oxidative stress in kidney tissue. Maximum intensity projected images and their corresponding histograms in each group were acquired from each kidney group. The result showed a 49% decrease in mitochondrial redox ratio of SS compared to SSBN13 translated to an increase in the level of oxidative stress of the tissue. Therefore, the results quantify oxidative stress levels and its effect on mitochondrial redox in salt sensitive hypertension.

  11. Effects of salt intake and potassium supplementation on renalase expression in the kidneys of Dahl salt-sensitive rats.

    Science.gov (United States)

    Zheng, Wen-Ling; Wang, Jing; Mu, Jian-Jun; Liu, Fu-Qiang; Yuan, Zu-Yi; Wang, Yang; Wang, Dan; Ren, Ke-Yu; Guo, Tong-Shuai; Xiao, Hong-Yu

    2016-02-01

    Renalase is currently the only known amine oxidase in the blood that can metabolize catecholamines and regulate sympathetic activity. High salt intake is associated with high blood pressure (BP), possibly through the modulation of renalase expression and secretion, whereas potassium can reverse the high salt-mediated increase in blood pressure. However, whether potassium could also modulate BP through renalase is unclear. In this study, we aim to investigate how salt intake and potassium supplementation affect the level of renalase in rats. Eighteen salt-sensitive (SS) and 18 SS-13BN rats were divided into six groups, receiving normal salt (0.3% NaCl), high salt (8% NaCl) and high salt/potassium (8% NaCl and 8% KCl) dietary intervention for four weeks. At the end of experiments, blood and kidneys were collected for analysis. mRNA level of renalase was measured by quantitative real-time PCR and protein level was determined by Western blot. We found that mRNA and protein levels of renalase in the kidneys of SS and SS-13BN rats were significantly decreased (P high salt intervention, whereas dopamine in plasma was increased (P high salt/potassium, compared with that of the high salt SS group. Taken together, the salt-induced increase and potassium-induced decrease in BP could be mediated through renalase. More studies are needed to confirm our findings and understand the underlying mechanisms.

  12. Role of propolis (bee glue) in improving histopathological changes of the kidney of rat treated with aluminum chloride.

    Science.gov (United States)

    El-Kenawy, Ayman El-meghawry; Hussein Osman, Hosam Eldin; Daghestani, Maha Hasan

    2014-09-01

    Humans are frequently exposed to aluminum from various food additives, therapeutic treatments and the environment, and it can be potentially toxic. This study is aimed to elucidate the protective effects of propolis against aluminum chloride (AlCl3 )-induced histopathological and immunohistochemical changes in kidney tissues of rats. Sixty Wistar Albino male rats (average weight 250-300 g) were divided into three equal groups. The first served as a negative control. The second received AlCl₃ (34 mg/kg bw, 1/ 25 LD 50). The third were administered AlCl₃ (34 mg/kg bw, 1/ 25 LD 50) plus propolis (50 mg/kg bw). Doses were given once daily via a gavage for 8 weeks every day. The results showed that shrunken glomeruli, intraglomerular congestion, loss of apical microvilli, degeneration of mitochondria and widened rough endoplasmic reticulum were also observed in the Proximal Convoluted Tubules of these animals. Treatment with propolis ameliorated the harmful effects of AlCl₃ ; this was also proved histopathologically by the noticeable improvement in the renal tissues. There were also significant variations in the expressed of ki-67 and p53 proteins. It can be concluded that propolis may be promising as a natural therapeutic agent in AlCl₃ -induced renal toxicity and oxidative stress in rat kidneys. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  13. Biochemical and histopathological changes in the kidney and adrenal gland of rats following repeated exposure to lambda-cyhalothrin

    Directory of Open Access Journals (Sweden)

    Hassina Khaldoun Oularbi

    2014-04-01

    Full Text Available Lambda-cyhalothrin (LCT is a type II pyrethroid insecticide widely used in pest management. This study was undertaken to evaluate the toxic effects of LCT on the kidneys and adrenal glands of rats after subacute exposure. Twenty-eight 6-week-old male albino Rattus norvegicus rats were randomly assigned to four groups. Group 1 was the control group, which received distilled water. The experimental groups 2, 3 and 4 received 20.4, 30.6 and 61.2 mg/kg body weight, respectively, of LCT, administered orally over 28 days. The effects of the insecticide on various biochemical parameters were evaluated at 14 and 28 days. Histopathological studies were carried out in the kidneys and adrenal glands at the end of the experiment. Lambda-cyhalothrin, as a pyrethroid insecticide, induced significant increases (P≤0.05 in plasma urea, creatinine, uric acid and glucose concentrations, and alanine aminotransferase and aspartate aminotransferase activities after 14 and 28 days. In the rat plasma samples after 28 days, residual concentrations of LCT 1R, cis,

  14. Role of extracellular signal—regulated kinase in free radical—induced injury in kidney of rats treated with cephaloridine

    Institute of Scientific and Technical Information of China (English)

    GembM; HiraJ

    2002-01-01

    We examined the role of a down stream of intracellular signaling pathway,extracellular signal-regulated kinase(ERK),in cephaloridine (CER)-induced nephrotoxicity in rats.The increase in phosphorylated ERK(pERK,activated ERK) was detected in nucleus fraction prepared from rat kidney cortex 24h after injections of antibiotic CER with the increase in BUN level.The slices prepared from rat kidney cortex were incubated in the medium containing PD980-59,a MEK1/2 inhibitor,for the measurement of free radical production and cell injure(LDH leakage).CER caused not only the increases in lipid peroxidation as an index of free radical production and LDH leakage,but also ERK activation in nucleus fraction.MEK1/2 inhibitor ameliorated CER-induced injury and suppressed ERK activation in the slices.These results suggest a possible role of MEK/ERK signaling pathway in free radical-induced CER nephrotoxicity.

  15. Comparison of Effects of Different Statins on Contrast-Induced Acute Kidney Injury in Rats: Histopathological and Biochemical Findings.

    Science.gov (United States)

    Wang, Xiao-Lei; Zhang, Tuo; Hu, Liu-Hua; Sun, Shi-Qun; Zhang, Wei-Feng; Sun, Zhe; Shen, Ling-Hong; He, Ben

    2017-01-01

    Statins are a promising new strategy to prevent contrast-induced acute kidney injury (CI-AKI). In this study we compared the ameliorative effect of different statins in a rat model of CI-AKI. Sprague-Dawley rats were divided into five groups: control group; CI-AKI group; CI-AKI + rosuvastatin group (10 mg/kg/day); CI-AKI + simvastatin group (80 mg/kg/day); and CI-AKI + atorvastatin group (20 mg/kg/day). CI-AKI was induced by dehydration for 72 hours, followed by furosemide intramuscular injection 20 minutes before low-osmolar contrast media (CM) intravenous injection. Statins were administered by oral gavage once daily for 3 consecutive days before CM injection and once 4 hours after CM injection. Rats were sacrificed 24 hours after CM injection, and renal function, kidney histopathology, nitric oxide (NO) metabolites, and markers of oxidative stress, inflammation, and apoptosis were evaluated. The results showed that atorvastatin and rosuvastatin but not simvastatin ameliorated CM-induced serum creatinine elevation and histopathological alterations. Atorvastatin and rosuvastatin showed similar effectiveness against CM-induced oxidative stress, but simvastatin was less effective. Atorvastatin was most effective against NO system dysfunction and cell apoptosis, whereas rosuvastatin was most effective against inflammation. Our findings indicate that statins exhibit differential effects in preventing CI-AKI when given at equivalent lipid-lowering doses.

  16. Comparison of Effects of Different Statins on Contrast-Induced Acute Kidney Injury in Rats: Histopathological and Biochemical Findings

    Directory of Open Access Journals (Sweden)

    Xiao-lei Wang

    2017-01-01

    Full Text Available Statins are a promising new strategy to prevent contrast-induced acute kidney injury (CI-AKI. In this study we compared the ameliorative effect of different statins in a rat model of CI-AKI. Sprague-Dawley rats were divided into five groups: control group; CI-AKI group; CI-AKI + rosuvastatin group (10 mg/kg/day; CI-AKI + simvastatin group (80 mg/kg/day; and CI-AKI + atorvastatin group (20 mg/kg/day. CI-AKI was induced by dehydration for 72 hours, followed by furosemide intramuscular injection 20 minutes before low-osmolar contrast media (CM intravenous injection. Statins were administered by oral gavage once daily for 3 consecutive days before CM injection and once 4 hours after CM injection. Rats were sacrificed 24 hours after CM injection, and renal function, kidney histopathology, nitric oxide (NO metabolites, and markers of oxidative stress, inflammation, and apoptosis were evaluated. The results showed that atorvastatin and rosuvastatin but not simvastatin ameliorated CM-induced serum creatinine elevation and histopathological alterations. Atorvastatin and rosuvastatin showed similar effectiveness against CM-induced oxidative stress, but simvastatin was less effective. Atorvastatin was most effective against NO system dysfunction and cell apoptosis, whereas rosuvastatin was most effective against inflammation. Our findings indicate that statins exhibit differential effects in preventing CI-AKI when given at equivalent lipid-lowering doses.

  17. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I. Biochemical and histopathological studies

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, Malgorzata M.; Moniuszko-Jakoniuk, Janina [Department of Toxicology, Medical University of Bialystok, Mickiewicza 2c str., 15-222, Bialystok (Poland); Kaminski, Marcin; Supernak-Bobko, Dorota [Department of Histology and Embryology, Silesian School of Medicine, Medykow 20, 40-752, Katowice-Ligota (Poland); Zwierz, Krzysztof [Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A, 15-222, Bialystok (Poland)

    2003-06-01

    We have created an experimental model using rats intoxicated with Cd administered in drinking water at the concentration of 5 or 50 mg Cd/l for 6, 12 and 24 weeks. The degree of kidney damage was evaluated biochemically and histopathologically. Sensitive biomarkers of Cd-induced proximal tubular injury such as urinary total N-acetyl-{beta}-d-glucosaminidase (NAG-T) and its isoenzyme B (NAG-B), and alkaline phosphatase (ALP) were used. Cd content in the kidney increased with the level and duration of exposure leading to dose- and time-dependent structural and functional renal failure. In rats exposed to 5 mg Cd/l, first symptoms of injury of the main tubules of long and short nephrons (structural damage to epithelial cells, increased urinary activities of NAG-T and NAG-B) were noted after 12 weeks of the experiment. The damage occurred at a low kidney Cd concentration amounting to 4.08{+-}0.33 {mu}g/g wet weight (mean {+-}SE) and a urinary concentration of 4.31{+-}0.28 {mu}g/g creatinine. On exposure to 50 mg Cd/l, damage to the main tubules (blurred structure of tubular epithelium, atrophy of brush border, partial fragmentation of cells with release of nuclei into tubular lumen as well as increased urinary activities of NAG-T, NAG-B and ALP) was already evident after 6 week s with the kidney Cd concentration of 24.09{+-}1.72 {mu}g/g wet weight. In rats exposed to 50 mg Cd/l, a lack of regular contour of glomeruli was noted after 12 weeks, whereas after 24 weeks thickening of capillary vessels and widening of filtering space were evident. After 24 weeks of exposure to Cd, increased urea concentration in the serum with simultaneous decrease in its level in the urine, indicating decreased clearance of urea, and increased excretion of total protein were observed, but endogenous creatinine clearance remained unaffected. At the lower exposure, symptoms of structural, but not functional, damage to the glomeruli were also evident after 24 weeks of the experiment. Our

  18. Acute kidney injury and inflammatory response of sepsis following cecal ligation and puncture in d-galactose-induced aging rats.

    Science.gov (United States)

    Liu, Chao; Hu, Jie; Mao, Zhi; Kang, Hongjun; Liu, Hui; Fu, Wanlei; Lv, Yangfan; Zhou, Feihu

    2017-01-01

    Recently, the d-galactose (d-gal)-induced mimetic aging rat model has been widely used in studies of age-associated diseases, which have shown that chronic d-gal exposure induces premature aging similar to natural aging in rats. With the increasing rate of sepsis in the geriatric population, an easy-access animal model for preclinical studies of elderly sepsis is urgently needed. This study investigates whether a sepsis model that is established in d-gal-induced aging rats can serve as a suitable model for preclinical studies of elderly patients with sepsis. To investigate the acute kidney injury (AKI) and inflammatory response of sepsis following cecal ligation and puncture (CLP) in d-gal-induced aging rats. Twelve-week-old male Sprague Dawley rats were divided into low-dose d-gal (L d-gal, 125 mg/kg/d), high-dose d-gal (H d-gal, 500 mg/kg/d), and control groups. After daily subcutaneous injection of d-gal for 6 weeks, the CLP method was used to establish a sepsis model. The mortality was 73.3%, 40%, and 33.3% in the H d-gal, L d-gal, and control groups, respectively. Blood urea nitrogen, creatinine, plasma neutrophil gelatinase-associated lipocalin, interleukin-6, interleukin-10, and tumor necrosis factor-α were markedly increased in the H d-gal group after establishment of the sepsis model (H d-gal vs control, Paging rats are more likely to die from sepsis than are young rats, and probably this is associated with increased severity of septic AKI and an increased inflammatory response. Therefore, use of the high-dose- d-gal-induced aging rat model of sepsis for preclinical studies can provide more useful information for the treatment of sepsis in elderly patients.

  19. Effect of paricalcitol and cinacalcet on serum phosphate, FGF-23, and bone in rats with chronic kidney disease

    Science.gov (United States)

    Finch, Jane L.; Tokumoto, Masanori; Nakamura, Hironori; Yao, Wei; Shahnazari, Mohammad; Lane, Nancy

    2010-01-01

    Calcimimetics activate the calcium-sensing receptor (CaR) and reduce parathyroid hormone (PTH) by increasing the sensitivity of the parathyroid CaR to ambient calcium. The calcimimetic, cinacalcet, is effective in treating secondary hyperparathyroidism in dialysis patients [chronic kidney disease (CKD 5)], but little is known about its effects on stage 3–4 CKD patients. We compared cinacalcet and paricalcitol in uremic rats with creatinine clearances “equivalent” to patients with CKD 3–4. Uremia was induced in anesthetized rats using the 5/6th nephrectomy model. Groups were 1) uremic control, 2) uremic + cinacalcet (U+Cin; 15 mg·kg−1·day−1 po for 6 wk), 3) uremic + paricalcitol (U+Par; 0.16 μg/kg, 3 × wk, ip for 6 wk), and 4) normal. Unlike U+Par animals, cinacalcet promoted hypocalcemia and marked hyperphosphatemia. The Ca × P in U+Cin rats was twice that of U+Par rats. Both compounds suppressed PTH. Serum 1,25-(OH)2D3 was decreased in both U+Par and U+Cin rats. Serum FGF-23 was increased in U+Par but not in U+Cin, where it tended to decrease. Analysis of tibiae showed that U+Cin, but not U+Par, rats had reduced bone volume. U+Cin rats had similar bone formation and reduced osteoid surface, but higher bone resorption. Hypocalcemia, hyperphosphatemia, low 1,25-(OH)2D3, and cinacalcet itself may play a role in the detrimental effects on bone seen in U+Cin rats. This requires further investigation. In conclusion, due to its effects on bone and to the hypocalcemia and severe hyperphosphatemia it induces, we believe that cinacalcet should not be used in patients with CKD without further detailed studies. PMID:20200094

  20. Promotion of liver and kidney carcinogenesis by ethyl tertiary-butyl ether (ETBE) in male Wistar rats.

    Science.gov (United States)

    Hagiwara, Akihiro; Doi, Yuko; Imai, Norio; Suguro, Mayuko; Kawabe, Mayumi; Furukawa, Fumio; Tamano, Seiko; Nagano, Kasuke; Fukushima, Shoji

    2015-10-01

    Tumor-promoting effects of ethyl tertiary-butyl ether (ETBE) were investigated in a 2-stage carcinogenesis bioassay with regard to hepatic and renal carcinogenesis in rats. Male 6-week-old Wistar rats were given drinking water containing N-ethyl-N-(2-hydroxyethyl)nitrosamine (EHEN), as an initiator, at a dose of 500 ppm for 2 weeks. Starting one week thereafter, the animals were administered ETBE at dose levels of 0 (control), 100, 300, 500 or 1,000 mg/kg/day by gavage for 19 weeks from week 4 to 22. Necropsy of all rats was performed at week 23, and livers and kidneys were examined histopathologically. Incidences of hepatocellular adenomas, and those of combined hepatocellular adenomas and carcinomas were significantly elevated in rats given 1,000 mg/kg/day ETBE, but not 100‒500 mg/kg/day ETBE, and there was a significant increase in the average numbers of lesions. No significant differences in incidences and average numbers of renal tubule neoplasms were found in rats administered 100‒1,000 mg/kg/day ETBE. However, the average numbers of atypical tubule hyperplasias, considered to be preneoplastic lesions, were significantly increased in rats given ETBE at 1,000 mg/kg/day, but not in rats given 500 mg/kg/day or lower doses. Thus, these results imply that ETBE has hepatic and renal tumor-promoting activities that affect EHEN-induced carcinogenesis in male rats, and the no-observed-effect level is 500 mg/kg/day under the present experimental conditions.

  1. Oleuropein and hydroxytyrosol protect from bisphenol A effects in livers and kidneys of lactating mother rats and their pups'.

    Science.gov (United States)

    Mahmoudi, Asma; Ghorbel, Héla; Bouallegui, Zouhair; Marrekchi, Rim; Isoda, Hiroko; Sayadi, Sami

    2015-01-01

    Bisphenol A (BPA) is a chemical found in hard plastics and the coatings of food and drinks cans which can behave in a similar way to estrogen and other hormones in the human body. This study aimed to evaluate the significance of the treatment with oleuropein and hydroxytyrosol olive leaves rich extracts in reducing functional perturbations and oxidative stress arising from BPA treatment in livers and kidneys of lactating mother rats and their pups'. For this, four groups of lactating mothers were used: controls (group A), treated with bisphenol A (group B), treated with bisphenol A and oleuropein (group C) and with bisphenol A and hydroxytyrosol (group D). As results, we had found, in BPA treated group, either in mothers or in their pups', a significant decrease in morphological parameters, in catalase activity and in total antioxidant capacity associated to an increase in malondialdehyde levels in livers and kidneys. For these rats, the histological aspect showed, also, deep changes. Indeed, we had observed, in livers, hepatocellular necrosis associated to leucocytes infiltration and in kidneys tubular and glomerular necrosis. The co-treatments with BPA and oleuropein (group C) or with BPA and hydroxytyrosol (group D) ameliorate all morphological, biochemical and histological parameters as compared to BPA treated group B. The analysis of BPA and its derivatives with LC-MS/MS showed changes in their localizations between serum, livers or kidneys in all studied groups. In conclusion, the present study demonstrates the hepato-protective and reno-protective effects of oleuropein and hydroxytyrosol olive leaves extracts from BPA and its derivates toxicity.

  2. Evaluation of the gender difference in the protective effects of ischemic postconditioning on ischemia-reperfusion-induced acute kidney injury in rats

    Directory of Open Access Journals (Sweden)

    Atefeh Mahmoudi

    2013-11-01

    Full Text Available Background: Several studies indicate that gender differences exist in tolerance of the kidney to ischemia reperfusion (IR injury. Recently, postconditioning (POC, induction of brief repetitive periods of IR, has been introduced to reduce the extent of the damage to the kidney. This method was shown to attenuate renal IR injury by modifying oxidative stress and reducing lipid peroxidation. Considering the gender effect on the results of several treatment methods, in this study, we investigated the impact of gender on the protective effect of POC on the rat kidney.Methods: In this study, after right nephrectomy, 48 male and female rats were randomly divided into 6 groups of 8 rats: In IR group, with the use of bulldog clamp, 45 minutes of left renal artery ischemia was induced followed by 24 hours of reperfusion. In the sham group, all of the above surgical procedures were applied except that IR was not induced. In the POC group, after the induction of 45 minutes ischemia, 4 cycles of 10 seconds of intermittent ischemia and reperfusion were applied before restoring of blood to the kidney. 24 hours later, serum and renal tissue samples were collected for renal functional monitoring and oxidative stress evaluation.Results: Postconditioning attenuated renal dysfunction considering the significant decrease in plasma creatinine and BUN compared with IR group only in male rats (P<0.05. Also, POC attenuated oxidative stress in male rats’ kidney tissues as demonstrated by a significantly reduced malondialdehyde (MDA level and increased superoxide dismutase (SOD activity (P<0.05. In female rats, there were no changes in functional markers and oxidative stress status in POC group compared to IR group. Conclusion: Considering gender difference, POC had protective effect against IR injury by attenuating functional and oxidative stress markers in male rat kidneys. This protective effect was not seen in female rats.

  3. EFFECTS OF ADMINISTRATION OF ETHANOLIC ROOT EXTRACT OF JATROPHA GOSSYPIFOLIA AND PREDNISOLONE ON THE KIDNEYS OF WISTAR RATS

    Directory of Open Access Journals (Sweden)

    Medubi L.J

    2010-01-01

    Full Text Available The effect of oral administration of ethanolic root extract of Jatropha gossypifolia and prednisolone on the kidney histology and renal function of albino rats was studied to assess the safety and toxicity of the plant as an herbal remedy.The rats were divided into four groups I, II, III and IV. Group I served as control and was given feed and water only. Group II, III, and IV were subdivided into Group IIa, IIb, IIIa, IIIb, IVa and IVb. Groups IIa, IIIa, and IVa received 10 mg, 20 mg and 30 mg/kg b.w of the extract while Group IIb, IIIb and IVb received 10 mg ,20 mg and 30 mg/kg b.w of the extract respectively plus 10 mg/kg b.w of prednisolone per day. The animals were sacrificed on day 7, 10 and 14 and their kidneys harvested and processed for histological studies. Their blood was also collected for serum urea measurement.Photomicrographs of the histological sections of Groups II, III and IV rats revealed changes compared to the control group and serum urea levels were significantly higher in these groups. Histological changes observed are consistent with glomerulonephritis and include increased urinary (Bowman's space, shrinkage and distortion of the glomerular tuft as well as scarring of the glomeruli. Changes appear to be both dosage and time dependent and the administration of prednisolone as an adjunct did not exert any ameliorative effect.We conclude that ethanolic root extract of Jatropha gossypifolia is toxic to the kidney and causes increased urea retention in the blood.

  4. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. II. histoenzymatic studies

    Energy Technology Data Exchange (ETDEWEB)

    Brzoska, M.M.; Moniuszko-Jakoniuk, J. [Dept. of Toxicology, Medical Univ. of Bialystok, Bialystok (Poland); Kaminski, M.; Dziki, M. [Dept. of Histology and Embryology, Silesian School of Medicine, Katowice-Ligota (Poland)

    2004-04-01

    Early effects of cadmium (Cd) on the structure and function of the kidney were studied in an experimental model using rats intoxicated with Cd at the levels of 5 and 50 mg Cd/1 drinking water. The effect of Cd was evaluated histopathologically and biochemically. Damage to the cellular structures was assessed on the basis of histoenzymatic analyses of the activity and localization of indicator enzymes (succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphatase, Mg{sup 2+}-dependent adenosine triphosphatase and acid phosphatase). The histochemical observations indicate that Cd causes damage to the organization and function of the nephron. Several structures, i.e. endoplasmic reticulum, mitochondrion, lysosome, cellular and intracellular membrane, as well as their biological functions, i.e. aerobic and anaerobic respiration, transport functions and biochemical processes taking place in the endoplasmic reticulum, were affected. The cytotoxic action of Cd occurs mainly in the tubules and partially also in the glomeruli. The results clearly indicate that Cd damages kidney structurally and functionally even at a relatively low level (5 mg/l) corresponding to human environmental exposure, and they confirm our previous hypothesis that the threshold for the kidney effects of Cd is less than 4.08 {+-} 0.33 {mu}g/g kidney wet weight and higher than 2.40 {+-} 0.15 {mu}g/g. The target for Cd action in the kidney is the tubules (proximal convoluted tubules and straight tubules), and disturbance in their function is the main toxic effect of Cd. Renal glomeruli are also injured, but only partially, whereas in other parts of the nephron the damage is slight. The results, together with observations reported in the first paper of the study, incline us to conclude that humans environmentally exposed to Cd are at risk of tubular damage. (orig.)

  5. Tissue injury after lithium treatment in human and rat postnatal kidney involves glycogen synthase kinase 3β-positive epithelium

    DEFF Research Database (Denmark)

    Kjaersgaard, Gitte; Madsen, Kirsten; Marcussen, Niels

    2012-01-01

    concentration capacity and diminished outer medullary volume. Histological sections of nephrectomy samples and a biopsy from 3 long-term lithium-treated patients showed multiple cortical microcysts that originated from normally appearing tubules. Microcysts were lined by a cuboidal PCNA-, GSK-3β- and pGSK-3β...... plasma lithium concentration of 1.0 mmol/L. Kidneys from lithium-treated rat pups exhibited dilated distal nephron segments with microcysts. Stereological analysis showed reduced cortex and outer medullary volumes. Lithium increased pGSK-3β and the proliferation marker PCNA protein abundances in cortex...

  6. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-liang; ZHAO Yan-li; LIU Xiao-ming; CHEN Jing; ZHANG Dong

    2011-01-01

    Background Previous studies suggested that mechanical intervention during early reperfusion, or ischemia postconditioning (Ipo), could protect kidneys against renal ischemia reperfusion injury (RIRI). However, the mechanisms responsible for this protection remain unclear. This study therefore investigated the protection afforded by Ipo in rat kidneys in vivo, and the roles of mitochondrial KATP channels (mitOKATP) and mitochondrial permeability transition pores (MPTPs), by inhibiting mitOKATP with 5-hydroxydecanoate (5-HD), and by directly detecting open MPTPs using calcein-AM and CoCl2.Methods Thirty-five male Sprague-Dawley rats were randomly assigned to sham-operation (S), ischemia-reperfusion (I/R),Ipo, ischemia reperfusion with 5-HD (I/R+5-HD), or Ipo with 5-HD (Ipo +5-HD) groups. Rats in each group were sacrificed after 6 hours of reperfusion by heart exsanguination or cervical dislocation under anesthesia. RIRI was assessed by determination of creatinine and blood urea nitrogen (BUN), and by examination of histologic sections. The roles of mitoKATP and MPTP were investigated by analyzing fluorescence intensities of mitochondria, mitochondrial membrane potential,intracellular reactive oxygen species (ROS) and intracellular calcium, using appropriate fluorescent markers. The relationship between apoptosis and RIRI was assessed by determining the apoptotic index (Al) of kidney tubular epithelial cells.Results The RIRI model was shown to be successful. Significantly higher levels of creatinine and BUN, and abnormal pathology of histologic sections, were observed in group I/R, compared with group S. 5-HD eliminated the renoprotective effects of Ipo. Mitochondrial and mitochondrial membrane potential fluorescence intensities increased, and intracellular calcium, ROS fluorescence intensities and AI decreased in group Ipo, compared with group I/R. However, mitochondrial and mitochondrial membrane potential fluorescence intensities decreased, and intracellular

  7. Partial purification and characterization of an enzyme involved in the formation of beta-aspartyl dipeptides in rat kidney.

    Science.gov (United States)

    Tanaka, T; Hirai, M; Nakajima, T

    1978-11-01

    The formation of beta-aspartyl-glycine from asparagine and glycine was demonstrated in the supernatant of rat kidney. The enzyme involved in this process was partially purified. Based on the properties of the enzyme reaction and the coincidence of purification rates of this activity and asparaginase, it can be speculated that the enzyme is a kind of asparaginase. Examination of the preference for beta-aspartyl donors and acceptors showed that asparagine and glycine were the preferred donor and acceptor, respectively. beta-Aspartyl dipeptides also transferred their aspartyl residues to amino acids. Amino acids other than glycine also accepted the aspartyl moiety from the donors.

  8. Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats.

    Science.gov (United States)

    Wu, Shengzheng; Li, Lu; Wang, Gong; Shen, Weiwei; Xu, Yali; Liu, Zheng; Zhuo, Zhongxiong; Xia, Hongmei; Gao, Yunhua; Tan, Kaibin

    2014-01-01

    Mesenchymal stem cell (MSC) therapy has been considered a promising strategy to cure diabetic nephropathy (DN). However, insufficient MSCs can settle in injured kidneys, which constitute one of the major barriers to the effective implementation of MSC therapy. Stromal cell-derived factor-1 (SDF-1) plays a vital role in MSC migration and involves activation, mobilization, homing, and retention, which are presumably related to the poor homing in DN therapy. Ultrasound-targeted microbubble destruction has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve MSC homing to DN kidneys, we present a strategy to increase SDF-1 via ultrasound-targeted microbubble destruction. In this study, we developed SDF-1-loaded microbubbles (MB(SDF-1)) via covalent conjugation. The characterization and bioactivity of MB(SDF-1) were assessed in vitro. Target release in the targeted kidneys was triggered with diagnostic ultrasound in combination with MB(SDF-1). The related bioeffects were also elucidated. Early DN was induced in rats with streptozotocin. Green fluorescent protein-labeled MSCs were transplanted intravenously following the target release of SDF-1 in the kidneys of normal and DN rats. The homing efficacy was assessed by detecting the implanted exogenous MSCs at 24 hours. The in vitro results showed an impressive SDF-1 loading efficacy of 79% and a loading content of 15.8 μg/mL. MB(SDF-1) remained bioactive as a chemoattractant. In the in vivo study, SDF-1 was successfully released in the targeted kidneys. The homing efficacy of MSCs to DN kidneys after the target release of SDF-1 was remarkably ameliorated at 24 hours compared with control treatments in normal rats and DN rats. In conclusion, ultrasound-targeted MB(SDF-1) destruction could promote the homing of MSCs to early DN kidneys and provide a novel potential therapeutic approach for DN kidney repair.

  9. Nutritional quality of extruded kidney bean (Phaseolus vulgaris L. var. Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats.

    Science.gov (United States)

    Marzo, F; Alonso, R; Urdaneta, E; Arricibita, F J; Ibáñez, F

    2002-04-01

    The influence of extrusion cooking on the protein content, amino acid profile, and concentration of antinutritive compounds (phytic acid, condensed tannins, polyphenols, trypsin, chymotrypsin, alpha-amylase inhibitors, and hemagglutinating activity) in kidney bean seeds (Phaseolus vulgaris L. var. Pinto) was investigated. Growing male rats were fed diets based on casein containing raw or extruded kidney beans with or without methionine supplementation for 8 or 15 d. Rates of growth, food intake, and protein efficiency ratio were measured and the weight of the gastrocnemius muscle and the composition of its nitrogenous fraction was determined. Extrusion cooking reduced (P cooking improved food intake and utilization by the rats and they gained BW. Supplementation of extruded kidney bean with methionine further enhanced (P food conversion efficiency and growth. However, BW gains and muscle composition still differed (P < 0.01) from those of rats fed a high-quality protein.

  10. Metoprolol decreases the plasma exposure of metformin via the induction of liver, kidney and muscle uptake in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Shi, A-Xi; Qin, Hong-Yan; Zhang, Tiffany; Wu, Yan-Fang; Zhang, Guo-Qiang; Wu, Xin-An

    2016-12-01

    Drug interactions are one of the commonest causes of side effects, particularly in long-term therapy. The aim of the current study was to investigate the possible effects of metoprolol on the pharmacokinetics of metformin in rats and to clarify the mechanism of drug interaction. In this study, rats were treated with metformin alone or in combination with metoprolol. Plasma, urine and tissue concentrations of metformin were determined by HPLC. Western blotting and real-time qPCR were used to evaluate the expression of rOCTs and rMATE1. The results showed that, after single or 7-day repeated administration, the plasma concentrations of metformin in the co-administration group were significantly decreased compared with that in the metformin group. However, the parameter V/F of metformin in the co-administration group was markedly increased compared with that in the metformin group. The hepatic, renal and muscular Kp of metformin were markedly elevated after co-administration with metoprolol. Consistently, metformin uptake in rat kidney slices was significantly induced by metoprolol. In addition, multiple administrations of metoprolol significantly reduced the expression of rMATE1 in rat kidney as well as the urinary excretion of metformin. Importantly, after long-term administration, lactic acid and uric acid levels in the co-administration group were increased by 25% and 26%, respectively, compared with that in the metformin group. These results indicate that metoprolol can decrease the plasma concentration of metformin via the induction of hepatic, renal and muscular uptake, and long-term co-administration of metformin and metoprolol can cause elevated lactic acid and uric acid levels. Copyright © 2016 John Wiley & Sons, Ltd.

  11. The physics of articulated toys - a jumping and rotating kangaroo

    CERN Document Server

    Güémez, J

    2014-01-01

    We describe the physics of an articulated toy with an internal source of energy provided by a spiral spring. The toy is a funny low cost kangaroo which jumps and rotates. The study consists of a mechanical and a thermodynamical analysis which makes use of the Newton and center of mass equations, the rotational equations and the first law of thermodynamics. This amazing toy provides a nice demonstrative example how new physics insights can be brought about when links with thermodynamics are established in the study of mechanical systems.

  12. Effects of Crotalus durissus collilineatus venom in the isolated rat kidney.

    Science.gov (United States)

    Amora, Daniela N; Sousa, Ticiana M; Martins, Alice M C; Barbosa, Paulo S F; Magalhães, Marta R; Toyama, Marcus H; Fonteles, Manassés C; de Menezes, Dalgimar B; Monteiro, Helena S A

    2006-03-01

    Ophidian accidents caused by the subspecies Crotalus durissus are responsible for high morbity and mortality rates. Acute renal failure is a common complication observed in these accidents. The aim of the present study was to investigate the renal effects promoted by the venom of C. d. collilineatus and its fractions, crotoxin and phospholipase A2. C. d. collilineatus (Cdc; 30 microg mL(-1)), crotoxin (CTX; 10 microg mL(-1)) and phospholipase A2 (PLA2; 10 microg mL(-1)) were tested in isolated rat kidney. The first 30 min of each experiment were used as an internal control and Cdc or its fractions, CTX and PLA2 were added to the system after this period. All experiments lasted 120 min. The venom of Cdc decreased perfusion pressure (PP; control120 = 110.3 +/- 3.69 mmHg; Cdc120 = 96.7+/-8.1 mmHg), renal vascular resistance (RVR; control120 = 6.42+/-0.78 mmHg mL g(-1) min(-1); Cdc120 = 4.8+/-0.56 mmHg/mL g(-1) min(-1)), urinary flow (UF; control120 = 0.19+/-0.03 mL g(-1) min(-1); Cdc120 = 0.12 +/- 0.01 mL g(-1) min(-1)), and glomerular filtration rate (GFR; control120 = 0.79 +/- 0.07 mL g(-1) min(-1); Cdc120 = 0.53 +/- 0.09 mL g(-1) min(-1)), but had no effect on the percent of sodium tubular transport (%TNa+), percent of chloride tubular transport (%TK+) and percent of potassium tubular transport (%TCl-). CTX and PLA2 reduced the GFR, while UF, PP and RVR remained stable during the full 120 min of perfusion. Crotoxin administration also diminished the %TK+ (control120 = 69.94 +/- 6.49; CTX120 = 33.28 +/- 4.78) and %TCl- (control120 = 79.53 +/- 2.67; CTX120 = 64.62 +/- 6.93). PLA2 reduced the %TK+, but exerted no effect on the %TNa+ or on that of TCl-. In conclusion, the C. d. collilineatus venom altered the renal functional parameters evaluated. We suggest that crotoxin and phospholipase A2 were involved in this process, since the renal effects observed would be due to the synergistic action of the components of the venom.

  13. Association of brominated proteins and changes in protein expression in the rat kidney with subcarcinogenic to carcinogenic doses of bromate

    Energy Technology Data Exchange (ETDEWEB)

    Kolisetty, Narendrababu [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States); Bull, Richard J. [MoBull Consulting, Richland, WA 99352 (United States); Muralidhara, Srinivasa; Costyn, Leah J. [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States); Delker, Don A. [School of Medicine, University of Utah, Salt Lake City, UT 84132 (United States); Guo, Zhongxian [Water Quality Office, Public Utilities Board, 608576 (Singapore); Cotruvo, Joseph A. [Joseph Cotruvo and Associates, LLC, Washington, DC 20016 (United States); Fisher, Jeffrey W. [National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States); Cummings, Brian S., E-mail: bsc@rx.uga.edu [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States)

    2013-10-15

    The water disinfection byproduct bromate (BrO{sub 3}{sup −}) produces cytotoxic and carcinogenic effects in rat kidneys. Our previous studies demonstrated that BrO{sub 3}{sup −} caused sex-dependent differences in renal gene and protein expression in rats and the elimination of brominated organic carbon in their urine. The present study examined changes in renal cell apoptosis and protein expression in male and female F344 rats treated with BrO{sub 3}{sup −} and associated these changes with accumulation of 3-bromotyrosine (3-BT)-modified proteins. Rats were treated with 0, 11.5, 46 and 308 mg/L BrO{sub 3}{sup −} in drinking water for 28 days and renal sections were prepared and examined for apoptosis (TUNEL-staining), 8-oxo-deoxyguanosine (8-oxoG), 3-BT, osteopontin, Kim-1, clusterin, and p-21 expression. TUNEL-staining in renal proximal tubules increased in a dose-related manner beginning at 11.5 mg BrO{sub 3}{sup −}/L in female rats and 46 mg/L in males. Increased 8-oxoG staining was observed at doses as low as 46 mg/L. Osteopontin expression also increased in a dose-related manner after treatment with 46 mg/L, in males only. In contrast, Kim-1 expression increased in a dose-related manner in both sexes, although to a greater extent in females at the highest dose. Clusterin and p21 expression also increased in a dose-related manner in both sexes. The expression of 3-BT-modified proteins only increased in male rats, following a pattern previously reported for accumulation of α-2{sub u}-globulin. Increases in apoptosis in renal proximal tubules of male and female rats at the lowest doses suggest a common mode of action for renal carcinogenesis for the two sexes that is independent of α-2{sub u}-globulin nephropathy. - Highlights: • Bromate induced nephrotoxicity in both male and female rats by similar mechanisms. • Apoptosis was seen in both male and female rats at the lowest doses tested. • Bromate-induced apoptosis correlated to 8-oxo

  14. Renin system of the kidney in ISIAH rats with inherited stress-induced arterial hypertension.

    Science.gov (United States)

    Fedoseeva, L A; Dymshits, G M; Markel, A L; Jakobson, G S

    2009-02-01

    The renal renin system was studied in ISIAH rats with inherited stress-induced arterial hypertension. The expression of genes for renin (Ren1) and cyclooxygenase (Cox-2) was evaluated in renal tissue of ISIAH and WAG rats (normotensive control). Basal gene expression for Ren1 and Cox-2 in ISIAH rats was much lower than in WAG rats. Water deprivation for 11 h was followed by a 4-fold increase in Cox-2 gene expression in ISIAH rats. The increase in gene expression was insignificant in WAG rats (by 30%). Renin gene expression in renal tissue of ISIAH and WAG rats remained practically unchanged after water deprivation. We conclude that a change in Cox-2 gene expression after short-term water deprivation serves as a reliable criterion for functional strain of the renal renin system in hypertensive ISIAH rats.

  15. 6-Gingerol-Rich Fraction from Zingiber officinale Prevents Hematotoxicity and Oxidative Damage in Kidney and Liver of Rats Exposed to Carbendazim.

    Science.gov (United States)

    Salihu, Mariama; Ajayi, Babajide O; Adedara, Isaac A; Farombi, Ebenezer O

    2016-01-01

    Ginger (Zingiber officinale) is a globally marketed flavoring agent and cooking spice with a long history of human health benefits. The fungicide carbendazim (CBZ) is often detected in fruits and vegetables for human nutrition and has been reported to elicit toxic effects in different experimental animal models. The present study investigated the protective effects of 6-Gingerol-rich fraction (6-GRF) from ginger on hematotoxicity and hepatorenal damage in rats exposed to CBZ. CBZ was administered at a dose of 50 mg/kg alone or simultaneously administered with 6-GRF at 50, 100, and 200 mg/kg, whereas control rats received corn oil alone at 2 mL/kg for 14 days. Hematological examination showed that CBZ-mediated toxicity to the total white blood cell (WBC), neutrophils, lymphocytes, and platelets counts were normalized to the control values in rats cotreated with 6-GRF. Moreover, administration of CBZ significantly decreased the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase as well as glutathione level in the livers and kidneys of rats compared with control. However, the levels of hydrogen peroxide (H2O2) and malondialdehyde were markedly elevated in kidneys and livers of CBZ-treated rats compared with control. The significant elevation in the plasma indices of renal and hepatic dysfunction in CBZ-treated rats was confirmed by light microscopy. Coadministration of 6-GRF exhibited chemoprotection against CBZ-mediated hematotoxicity, augmented antioxidant status, and prevented oxidative damage in the kidney and liver of rats.

  16. Microsurgical technique of simultaneous pancreas/kidney transplantation in the rat: clinical experience and review of the literature.

    Science.gov (United States)

    Matevossian, E; Doll, D; Sinicina, I; Kern, H; Bald, C; Nährig, J; Stangl, M; Thorban, S; Hüser, N

    2009-01-01

    For experimental basic research, standardized transplantation models reflecting technical and immunologic aspects are necessary. This article describes an experimental model of combined pancreas/kidney transplantation (PKTx) in detail. Donor rats underwent en bloc pancreatectomy and nephrectomy. Revascularization was performed using the aorta with the superior mesenteric artery and the inferior vena cava with the portal vein. Exocrine drainage of the pancreas took place over a segment of the duodenum which was transplanted side-to-side to the jejunum. The kidney vessels were transplanted end-to-side. The ureter was anastomosed by patch technique. Postoperatively, serum parameters were monitored daily. Biopsies for histopathology were taken on days 5, 8 and 12. All 12 recipients survived the combined PKTx without serious surgical complications. One thrombosis of the portal vein led to organ failure. Blood glucose levels were normal by the 3rd postoperative day. The transplanted duodenal segment showed slight villous atrophy, and the kidneys were well perfused without vascular complications. The anastomosis between ureter and bladder was leakproof. Excellent graft function and survival rates can be achieved due to simplified operation technique and short operation time. It may thus have high clinical relevance to immunologic issues within the scope of basic research. Copyright 2009 S. Karger AG, Basel.

  17. Chronic interstitial fibrosis in the rat kidney induced by long-term (6-mo) exposure to lithium.

    Science.gov (United States)

    Walker, Robert J; Leader, John P; Bedford, Jennifer J; Gobe, Glenda; Davis, Gerard; Vos, Frederiek E; deJong, Sylvia; Schollum, John B W

    2013-02-01

    There is a lack of suitable animal models that replicate the slowly progressive chronic interstitial fibrosis that is characteristic of many human chronic nephropathies. We describe a chronic long-term (6-mo) model of lithium-induced renal fibrosis, with minimal active inflammation, which mimics chronic kidney interstitial fibrosis seen in the human kidney. Rats received lithium via their chow (60 mmol lithium/kg food) daily for 6 mo. No animals died during the exposure. Nephrogenic diabetes insipidus was established by 3 wk and persisted for the 6 mo. Following metabolic studies, the animals were killed at 1, 3, and 6 mo and the kidneys were processed for histological and immunohistochemical studies. Progressive interstitial fibrosis, characterized by increasing numbers of myofibroblasts, enhanced transforming growth factor-β(1) expression and interstitial collagen deposition, and a minimal inflammatory cellular response was evident. Elucidation of the underlying mechanisms of injury in this model will provide a greater understanding of chronic interstitial fibrosis and allow the development of intervention strategies to prevent injury.

  18. sup 31 P spin-lattice relaxation time measurements in biological systems; Heart, liver, kidney and erythrocytes of rat

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Eiji; Maeda, Munehiro; Kuki, Satoru; Tsukamoto, Kenji; Kawakami, Tsuyoshi; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi (National Inst. for Physiological Sciences, Okazaki, Aichi (Japan))

    1989-08-01

    Spin-lattice relaxation time (T{sub 1}) of phosphorus compounds in the perfused heart, liver, kidney and erythrocytes of rats were measured by the DESPOT (Driven-equilibrium single-pulse observation of T{sub 1}) method at 8.45 T. This method is a rapid and accurate technique for the measurement of T{sub 1} values. T{sub 1} values of phosphomonoesters (PME), 2, 3-diphosphoglycerate (DPG), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and three phosphates of ATP were ranged from 0.15 {plus minus} 0.02 sec (beta-ATP in the liver) to 8.5 {plus minus} 1.6 sec (PDE in the kidney). T{sub 1} value of beta-ATP in the liver was 1/4-1/5 of those in the mandibular gland, heart, erythrocytes and kidney. T{sub 1} values obtained from biological materials are useful for selecting the optimal pulse repetition times and pulse angles to maximize the signal-to-noise ratio of {sup 13}P spectra, and for correcting distortions of signal intensities in the spectra. (author).

  19. Protective effect of Silybum marianum and Taraxacum officinale extracts against oxidative kidney injuries induced by carbon tetrachloride in rats.

    Science.gov (United States)

    Karakuş, Ali; Değer, Yeter; Yıldırım, Serkan

    2017-11-01

    The protective effect of the extracts of the plants Silybum marianum and Taraxacum officinale by carbon tetrachloride (CCl4) was researched. Sixty-six female Wistar albino rats were divided into six groups: Control, Silybum marianum, Taraxacum officinale, CCl4, Silybum marianum+ CCl4, Taraxacum officinale+CCl4. The Silybum marianum and Taraxacum officinale extracts were administered as 100 mg/kg/day by gavage. The CCl4 was administered as 1.5 mL/kg (i.p.). At the end of the trial period, in the serums obtained from the animals, in the CCl4 group it was found that the MDA level increased in the kidney tissue samples as well as in the ALP and GGT enzyme activities. It was also found that the GSH level and the GST enzyme activities decreased (pTaraxacum officinale extracts were applied together, it was found that the serum ALP and GGT enzyme activities decreased and that the MDA level decreased in the kidney tissue, and that the GSH level and GST enzyme activities increased. It was observed that the histopathological changes caused by the CCl4 toxicity were corrected by applying the extracts. Eventually, it was determined that the Silybum marianum was more effective. Silybum marianum and Taraxacum officinale extracts which were used against histopathological changes in the kidney caused by toxication showed a corrective effect, which were supported by biochemical parameters.

  20. A retrospective study of Babesia macropus associated with morbidity and mortality in eastern grey kangaroos (Macropus giganteus and agile wallabies (Macropus agilis

    Directory of Open Access Journals (Sweden)

    Shannon L. Donahoe

    2015-08-01

    Full Text Available This is a retrospective study of 38 cases of infection by Babesia macropus, associated with a syndrome of anaemia and debility in hand-reared or free-ranging juvenile eastern grey kangaroos (Macropus giganteus from coastal New South Wales and south-eastern Queensland between 1995 and 2013. Infection with B. macropus is recorded for the first time in agile wallabies (Macropus agilis from far north Queensland. Animals in which B. macropus infection was considered to be the primary cause of morbidity had marked anaemia, lethargy and neurological signs, and often died. In these cases, parasitised erythrocytes were few or undetectable in peripheral blood samples but were sequestered in large numbers within small vessels of visceral organs, particularly in the kidney and brain, associated with distinctive clusters of extraerythrocytic organisms. Initial identification of this piroplasm in peripheral blood smears and in tissue impression smears and histological sections was confirmed using transmission electron microscopy and molecular analysis. Samples of kidney, brain or blood were tested using PCR and DNA sequencing of the 18S ribosomal RNA and heat shock protein 70 gene using primers specific for piroplasms. The piroplasm detected in these samples had 100% sequence identity in the 18S rRNA region with the recently described Babesia macropus in two eastern grey kangaroos from New South Wales and Queensland, and a high degree of similarity to an unnamed Babesia sp. recently detected in three woylies (Bettongia penicillata ogilbyi in Western Australia.

  1. Cardiac remodeling associated with protein increase and lipid accumulation in early-stage chronic kidney disease in rats.

    Science.gov (United States)

    Kuwahara, Mieko; Bannai, Kenji; Segawa, Hiroko; Miyamoto, Ken-ichi; Yamato, Hideyuki

    2014-09-01

    Chronic kidney disease (CKD) is associated with increased risks of cardiovascular morbidity and mortality. Cardiac remodeling including myocardial fibrosis and hypertrophy is frequently observed in CKD patients. In this study, we investigate the mechanism involved in cardiac hypertrophy associated with CKD using a rat model, by morphological and chemical component changes of the hypertrophic and non-hypertrophic hearts. Sprague-Dawley rats were 4/5 nephrectomized (Nx) at 11 weeks of age and assigned to no treatment and treatment with AST-120, which was reported to affect the cardiac damage, at 18 weeks of age. At 26 weeks of age, the rats were euthanized under anesthesia, and biochemical tests as well as analysis of cardiac condition were performed by histological and spectrophotometric methods. Cardiac hypertrophy and CKD were observed in 4/5 Nx rats even though vascular calcification and myocardial fibrosis were not detected. The increasing myocardial protein was confirmed in hypertrophic hearts by infrared spectroscopy. The absorption of amide I and other protein bands in hypertrophic hearts increased at the same position as in normal cardiac absorption. Infrared spectra also showed that lipid accumulation was also detected in hypertrophic heart. Conversely, the absorptions of protein were obviously reduced in the myocardium of non-hypertrophic heart with CKD compared to that of hypertrophic heart. The lipid associated absorption was also decreased in non-hypertrophic heart. Our results suggest that cardiac remodeling associated with relatively early-stage CKD may be suppressed by reducing increased myocardial protein and ameliorating cardiac lipid load.

  2. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  3. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2015-08-01

    Full Text Available Carbon monoxide (CO has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3 inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2 was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr and blood urea nitrogen (BUN, kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.

  4. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    Science.gov (United States)

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  5. Exogenous Carbon Monoxide Decreases Sepsis-Induced Acute Kidney Injury and Inhibits NLRP3 Inflammasome Activation in Rats.

    Science.gov (United States)

    Wang, Peng; Huang, Jian; Li, Yi; Chang, Ruiming; Wu, Haidong; Lin, Jiali; Huang, Zitong

    2015-08-31

    Carbon monoxide (CO) has shown various physiological effects including anti-inflammatory activity in several diseases, whereas the therapeutic efficacy of CO on sepsis-induced acute kidney injury (AKI) has not been reported as of yet. The purpose of the present study was to explore the effects of exogenous CO on sepsis-induced AKI and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in rats. Male rats were subjected to cecal ligation and puncture (CLP) to induce sepsis and AKI. Exogenous CO delivered from CO-releasing molecule 2 (CORM-2) was used intraperitoneally as intervention after CLP surgery. Therapeutic effects of CORM-2 on sepsis-induced AKI were assessed by measuring serum creatinine (Scr) and blood urea nitrogen (BUN), kidney histology scores, apoptotic cell scores, oxidative stress, levels of cytokines TNF-α and IL-1β, and NLRP3 inflammasome expression. CORM-2 treatment protected against the sepsis-induced AKI as evidenced by reducing serum Scr/BUN levels, apoptotic cells scores, increasing survival rates, and decreasing renal histology scores. Furthermore, treatment with CORM-2 significantly reduced TNF-α and IL-1β levels and oxidative stress. Moreover, CORM-2 treatment significantly decreased NLRP3 inflammasome protein expressions. Our study provided evidence that CORM-2 treatment protected against sepsis-induced AKI and inhibited NLRP3 inflammasome activation, and suggested that CORM-2 could be a potential therapeutic candidate for treating sepsis-induced AKI.

  6. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histopathological changes in the liver and kidney of male albino rats

    Directory of Open Access Journals (Sweden)

    Abdel-Tawab H. Mossa

    2015-01-01

    Full Text Available Fipronil (FPN is a broad-spectrum N-phenylpyrazole insecticide and has been used in agriculture and public health since the mid-1990s. The present study was designed to investigate the adverse effects of sub-chronic exposure to the FPN on the liver and kidney of male rats at three concentrations 0.1, 1 and 10 mg/L in drinking water for 45 days. Serum aspartate aminotransferases (AST, alanine aminotransferases (ALT, alkaline phosphatase (ALP, and lactate dehydrogenase (LDH activity and levels of uric acid, creatinine and total protein were significantly increased in FPN-treated rats. Oxidative stress biomarkers such as superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPx, glutathione-S-transferase (GST and glutathione reduced (GSH were significantly decreased, while lipid peroxidation (LPO was significantly increased in treating rats in a concentration dependent manner. FPN caused histopathological alterations in liver and kidney of male rats. From our results, it can be concluded that FPN induced lipid peroxidation, oxidative stress, liver, and kidney injury in rats. These pathophysiological changes in liver and kidney tissues could be due to the toxic effect of FPN that associated with a generation of free radicals.

  7. Effect of White Kidney Beans (Phaseolus vulgaris L. var. Beldia) on Small Intestine Morphology and Function in Wistar Rats.

    Science.gov (United States)

    Nciri, Nader; Cho, Namjun; Bergaoui, Nacef; El Mhamdi, Faiçal; Ben Ammar, Aouatef; Trabelsi, Najoua; Zekri, Sami; Guémira, Fathi; Ben Mansour, Abderraouf; Sassi, Fayçal Haj; Ben Aissa-Fennira, Fatma

    2015-12-01

    The chronic ingestion of raw or undercooked kidney beans (Phaseolus vulgaris L.) causes functional and morphological derangement in various tissues. The major objectives of this study were to investigate the gavage effects of a raw Beldia bean variety that is widely consumed in Tunisia, on the small intestine morphology and jejunal absorption of water, electrolytes, and glucose in Wistar rats. Twenty young male rats were randomly divided into two groups of 10 rats. The first group served as the control and was gavaged with 300 mg of a rodent pellet flour suspension (RPFS), whereas the second experimental group was challenged with 300 mg of a Beldia bean flour suspension (BBFS) for 10 days. Histological studies were performed using light and electron microcopy. The intestinal transport of water, sodium, potassium, and glucose was studied by perfusing the jejunal loops of the small bowels in vivo. The feeding experiments indicated that BBFS did not affect weight gain. Histomorphometric analyses showed that the villus heights, crypt depths, and crypt/villus ratios in the jejunum and ileum were greater in the BBFS-fed rats than controls. Electron microscopy studies demonstrated that the rats exposed to RPFS exhibited intact intestinal tracts; however, the BBFS-treated rats demonstrated intestinal alterations characterized by abnormal microvillus architectures, with short and dense or long and slender features, in addition to the sparse presence of vesicles near the brush border membrane. BBFS administration did not significantly affect glucose absorption. However, significant decreases were observed in water and electrolyte absorption compared with the uptake of the controls. In conclusion, raw Beldia beans distorted jejunum morphology and disturbed hydroelectrolytic flux.

  8. The Role of Endothelin System in Renal Structure and Function during the Postnatal Development of the Rat Kidney.

    Directory of Open Access Journals (Sweden)

    María F Albertoni Borghese

    Full Text Available Renal development in rodents, unlike in humans, continues during early postnatal period. We aimed to evaluate whether the pharmacological inhibition of Endothelin system during this period affects renal development, both at structural and functional level in male and female rats. Newborn rats were treated orally from postnatal day 1 to 20 with vehicle or bosentan (Actelion, 20 mg/kg/day, a dual endothelin receptor antagonist (ERA. The animals were divided in 4 groups: control males, control females, ERA males and ERA females. At day 21, we evaluated renal function, determined the glomerular number by a maceration method and by morphometric analysis and evaluated possible structural renal alterations by three methods: 〈alpha〉-Smooth muscle actin (α-SMA immunohistochemistry, Masson's trichrome and Sirius red staining. The pharmacological inhibition of Endothelin system with a dual ERA during the early postnatal period of the rat did not leads to renal damage in the kidneys of male and female rats. However, ERA administration decreased the number of glomeruli, the juxtamedullary filtration surface area and the glomerular filtration rate and increased the proteinuria. These effects could predispose to hypertension or renal diseases in the adulthood. On the other hand, these effects were more pronounced in male rats, suggesting that there are sex differences that could be greater later in life. These results provide evidence that Endothelin has an important role in rat renal postnatal development. However these results do not imply that the same could happen in humans, since human renal development is complete at birth.

  9. Excessive zinc intake increases systemic blood pressure and reduces renal blood flow via kidney angiotensin II in rats.

    Science.gov (United States)

    Kasai, Miyoko; Miyazaki, Takashi; Takenaka, Tsuneo; Yanagisawa, Hiroyuki; Suzuki, Hiromichi

    2012-12-01

    This study investigated the effects of excess zinc intake on the mean arterial pressure (MAP), renal blood flow (RBF), inulin clearance (IC), serum zinc level, serum angiotensin-converting enzyme (ACE) activity, and kidney angiotensin II (AT II) levels in rats. Experiments were performed on male Sprague-Dawley rats maintained for 4 weeks on a diet containing either 5 mg/100 g (control group), 50 mg/100 g (Zn50 group), or 200 mg/100 g (Zn200 group) zinc carbonate. Serum zinc levels significantly increased to 126.5 % in the Zn50 group and 198.1 % in the Zn200 group compared with controls. MAP significantly increased to 107.8 % in the Zn50 group and 114.5 % in the Zn200 group again compared with controls. Although the difference in serum ACE activity was independent of the serum zinc levels, the kidney AT II levels increased significantly to 137.2 % in the Zn50 group and 174.4 % in the Zn200 group compared with the controls. RBF was decreased significantly to 74.4 % in the Zn50 group and 69.7 % in the Zn200 group compared with the controls. IC values were significantly decreased to 69.6 % in the Zn50 group and 52.7 % in the Zn200 group as compared with control levels. Combined together, these results show that excessive Zn intake reduced IC and RBF and increased MAP and kidney AT II levels, suggesting that excessive Zn intake reduces renal function.

  10. Long-term effects of a novel phosphorothionate (RPR-II) on detoxifying enzymes in brain, lung, and kidney rats.

    Science.gov (United States)

    Mahboob, M; Siddiqui, M K J

    2002-11-01

    The effects of a phosphorothionate, 2-butenoic acid-3-(diethoxyphosphinothioyl) methyl ester (RPR-II), on the activities of glutathione S-transferase (GST) and UDP-glucuronyltransferase (UDPGT) and the level of glutathione (GSH) were evaluated in rats after administration of RPR-II at 0.014 (low), 0.028 (medium), and 0.042 (high) mgkg(-1)day(-1) for 90 days and also at 28 days (withdrawal) after stopping treatment. Brain GST activity and GSH level decreased significantly at the high dose on the 45th and 90th days of treatment. Dose- and time-dependent decreases in GST activity and GSH was level were observed in lung at medium and high doses and in kidneys at all three doses on both the 45th and 90th days. UDPGT activity increased significantly in kidneys at the medium and high doses at 45 and 90 days. Brain and lung did not display any significant variations in UDPGT activity when compared with the control. Interestingly, the withdrawal study revealed that the effect was reversible within 28 days of cessation of treatment, when enzyme activity reverted to levels close to those of controls. The study revealed that RPR-II affected the GSH- and GST-dependent detoxification system of the treated tissues of rat and its potential to modulate the enzymes is in the order kidneys>lung>brain. The present subacute study suggests that RPR-II may bring about physiological upsets by altering GSH- and GST-dependent events in different tissues of exposed organisms.

  11. Enhancing effect of ultrasound-mediated microbubble destruction on gene delivery into rat kidney via different administration routes

    Institute of Scientific and Technical Information of China (English)

    Jun-Xiang Chen; Qiang Ma; Hong Wu; An Zhou; Xing Chen; You-Ming Peng; Fu-You Liu; Mei-Chu Cheng

    2012-01-01

    ABSTRACT Objective:To investigate the efficiency of -galactosidase gene transfer into rat kidney with ultrasound-mediated microbubble destruction via different injection routes.Methods:A total of25 Wistar rats were randomly divided into5 groups. Four groups received a mixture of optison microbubbles (0.2 mL) and lacz plasmids (25 g) injection via renal artery, tail vein, anterior tibial muscle and renal parenchyma, respectively. The control group received a mixture ofPBS (xx mL) and lacz plasmids (25 g) via renal artery. Three days after the gene transfer, ultrasound with fixed frequency and power (1 MHz, xxW) was delivered to the kidneys for3 min. The efficiency of the gene transfer and expression was evaluated on the basis of β-galactosidase expression. The side effects of this method were evaluated by immunohistological method. Results:β-galactosidase expression could be observed only in tubules but not in glomeruli and interstitial area. The efficiency of renal artery group was higher than that of tail vein, anterior tibial muscle and renal parenchyma group (P<0.05). Immunohistochemical analysis revealed co-expression of -galactosidase with a roximal tubule marker, megalin, which suggested that ultrasound enhanced gene transfer into the proximal tubular epithelial cells. No -galactosidase expression was observed in the extrarenal organs. There were no evident pathological and biochemical changes after gene transfer.Conclusions:Ultrasound-mediated microbubble destruction can transfer gene into kidney via renal artery, tail vein, anterior tibial muscle and renal parenchyma. Compared with renal artery, administrating microbubbles via tail vein and anterior tibial muscle are more convenient and less vulnerarious.

  12. Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sivakumar, Selvaraj; Palsamy, Periyasamy; Subramanian, Sorimuthu Pillai

    2010-10-06

    Oxidative stress plays a crucial role in the progression and development of diabetes and its complications due to chronic hyperglycemia. The present study was aimed to investigate the kidney tissue protective nature of d-pinitol, a cyclitol present in soybean, by assessing the key markers of hyperglycemia-mediated oxidative stress, proinflammatory cytokines and ultrastructural alterations in streptozotocin-induced diabetic rats. Oral administration of d-pinitol (50mg/kg body weight/day) for 30 days to diabetic group of rats showed a significant elevation in the level of total protein and significant decline in the levels of blood urea, serum uric acid, creatinine and advanced glycation endproducts (AGEs) and kidney proinflammatory cytokines such as TNF-alpha, IL-1beta, IL-6, NF-kappaB p65 subunit and nitrite. Further, d-pinitol administration elicited a significant attenuation in the activities of kidney enzymatic antioxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and the levels of kidney non-enzymatic antioxidants such as vitamin E, vitamin C and reduced glutathione (GSH) in the diabetic group of rats, with a concomitant decline in the levels of kidney lipid peroxides, hydroperoxides and protein carbonyls. The histological and ultrastructural observations on the kidney tissues also confirmed the renoprotective nature of d-pinitol. Thus the present study demonstrated the renoprotective nature of d-pinitol by attenuating the hyperglycemia-mediated proinflammatory cytokines and antioxidant competence in kidney tissues of streptozotocin-induced diabetic rats.

  13. Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: its effects on the antioxidant status in liver, kidney and heart tissues.

    Science.gov (United States)

    Youdim, K A; Deans, S G

    1999-09-08

    This study aimed not only to identify age-related changes in certain antioxidant systems, but to assess whether dietary supplementation of thyme oil could address the unfavourable antioxidant-pro-oxidant balance that occurs with age. The present study has shown that there were significant declines in the superoxide dismutase activities in the liver and heart of old rats, although kidney showed no decline. Liver glutathione peroxidase (GSHPx) activity was found to have increased significantly in old rats, while a significant decrease was observed in kidney. Heart GSHPX activity was not found to differ significantly between young and old rats. There were also significant declines in the total antioxidant status in each tissue examined. A general feature of these various antioxidant parameters measured was that their activities remained higher in rats whose diets were supplemented with thyme oil, suggesting that they retained a more favourable antioxidant capacity during their life span.

  14. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Directory of Open Access Journals (Sweden)

    Danuta Kowalczyk-Pachel

    Full Text Available The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days cocaine (10 mg/kg i.p. administration on the total cysteine (Cys metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS and malondialdehyde (MDA as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH, ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked

  15. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    Science.gov (United States)

    Kowalczyk-Pachel, Danuta; Iciek, Małgorzata; Wydra, Karolina; Nowak, Ewa; Górny, Magdalena; Filip, Małgorzata; Włodek, Lidia; Lorenc-Koci, Elżbieta

    2016-01-01

    The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase

  16. Serum and urinary neutrophil gelatinase-associated lipocalin as a predictor of rat kidney histopathology in an early ischemia-reperfusion model

    Directory of Open Access Journals (Sweden)

    Sahala Panggabean

    2012-11-01

    Full Text Available Background: The severity of ischemia-reperfusion (I/R kidney injury is highly correlated with mortality and morbidity rate. Research on human and animal prove that NGAL predicts kidney injury at early phase. The objective of this study is to prove that the increase in serum and urinary NGAL are correlated with kidney tubular epithelial damage, and this increase has occurred in initiation phase, indicated by rat kidney histopathology in an early I/R model.Methods: Twenty eight male Sprague-Dawley rats were divided into 4 groups: 4 hour sham (Sham 4, 8 hour sham (Sham 8, 10 minute ischemia 4 hour reperfusion (I/R 4 and 10 minute ischemia 8 hour reperfusion (I/R 8. Blood, urine and kidney samples were collected. Serum creatinine level was analyzed with Jaffe method, while serum and urinary NGAL level were analyzed with direct sandwich ELISA method. Evaluation of kidney damage were measured semi quantitatively in tissue stained with HE. Further evaluation to confirm cellular changes on kidney was performed by electron microscope and immunohistochemistry.Results: Serum NGAL was found significantly correlated with degree of kidney tissue damage (ρSpearman NGAL serum = 0.701, p < 0.001, also urinary NGAL (ρSpearman = 0.689, p < 0.001. NGAL expression differs significantly between I/R group and sham (t-test, t = -26635.056, p < 0.001, also kidney damage (t-test, t = -5.028, p < 0.001, and serum and urinary NGAL levels (Mann-Whitney, U = 0, p < 0.001. With cutoff points of 136.95 ng/mL and 58.69 ng/mL subsequently for serum and urinary NGAL , it is found that sensitivity = 1, specificity = 1.Conclusion: Elevation of serum and urinary NGAL are significantly correlated with epithelial tubular kidney damage on rat undergoing early ischaemia reperfusion. (Med J Indones. 2012;21:208-13Keywords: Early I/R kidney injury, kidney histopathology, NGAL

  17. Aldose reductase inhibition counteracts nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells

    OpenAIRE

    Drel, Viktor R.; Pacher, Pal; Stevens, Martin J; Obrosova, Irina G.

    2006-01-01

    Both increased aldose reductase (AR) activity and oxidative/nitrosative stress have been implicated in the pathogenesis of diabetic nephropathy, but the relation between the two factors remains a subject of debate. This study evaluated the effects of AR inhibition on nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. In animal experiments, control (C) and streptozotocin-diabetic (D) rats were treated with...

  18. Histological changes in kidney and liver of rats due to gold (III compound [Au(enCl(2]Cl.

    Directory of Open Access Journals (Sweden)

    Ayesha Ahmed

    Full Text Available INTRODUCTION: Development of novel metallodrugs with enhanced anti-proliferative potential and reduced toxicity has become the prime focus of the evolving medicinal chemistry. In this regards, gold (III complexes with various ligands are being extensively investigated. In the current study renal and hepatic toxicity of a newly developed gold (III compound [Au(enCl(2]Cl was assessed by histopathological evaluation of liver and kidney specimens of rats exposed to the compound. METHODS: Male rats (n = 42 weighing 200-250 gram were injected single, varying doses of gold (III compound [(dichlorido(ethylenediamineaurate((III]chloride [Au(enCl(2]Cl in the acute toxicity component of the study. In the sub-acute toxicity part, a dose of 32.2 mg/kg (equivalent to 1/10 of LD50 was administered intraperitoneally for 14 consecutive days before sacrificing the animals. After autopsy, the renal and hepatic tissues were preserved in buffered formalin. Processing of the samples was followed by histopathological evaluation. The results were compared with the normal controls (n = 11. RESULTS: A dose of 32.2 mg/kg (1/10 of LD(50 revealed no renal tubular necrosis. The predominant histopathological finding was mild pyelitis, a prominence of eosinophils and mild congestion. The hepatic lesions comprised varying extents of ballooning degeneration with accompanying congestion and focal portal inflammation. CONCLUSION: Gold (III compound [Au(enCl(2]Cl causes minimal histological changes in kidney and liver of rats, reflecting its relative safety as compared to other clinically established antineoplastic drugs.

  19. Pioglitazone Improves Mitochondrial Function in the Remnant Kidney and Protects against Renal Fibrosis in 5/6 Nephrectomized Rats

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-08-01

    Full Text Available Pioglitazone is a type of peroxisome proliferator-activated receptor γ (PPARγ agonist and has been demonstrated to be effective in chronic kidney diseases (CKD treatment. However, the underlying mechanism involved in the renoprotection of pioglitazone has not been fully revealed. In the present study, the renoprotective mechanism of pioglitazone was investigated in 5/6 nephrectomized (Nx rats and TGF-β1-exposed HK-2 cells. Pioglitazone attenuated renal injury and improved renal function, as examined by 24 h urinary protein, blood urea nitrogen and plasma creatinine in Nx rats. Renal fibrosis and enhanced expressions of profibrotic proteins TGF-β1, fibronectin and collagen I caused by Nx were significantly alleviated by pioglitazone. In addition, pioglitazone protected mitochondrial functions by stabilizing the mitochondrial membrane potential, inhibiting ROS generation, maintaining ATP production and the activities of complexes I and III, and preventing cytochrome C leakage from mitochondria. Pioglitazone also upregulated the expression levels of ATP synthase β, COX I and NDUFB8, which were downregulated in the kidney of Nx rats and TGF-β1-exposed HK-2 cells. Furthermore, pioglitazone increased fusion proteins Opa-1 and Mfn2 expressions and decreased fission protein Drp1 expression. The results imply that pioglitazone may exert the renoprotective effects through modulating mitochondrial electron transport chain and mitochondrial dynamics in CKD. Finally, these recoveries were completely or partly inhibited by GW9662, which suggests that these effects at least partly PPARγ dependent. This study provides evidence for the pharmacological mechanism of pioglitazone in the treatment of CKD.

  20. Impaired expression of key molecules of ammoniagenesis underlies renal acidosis in a rat model of chronic kidney disease.

    Science.gov (United States)

    Bürki, Remy; Mohebbi, Nilufar; Bettoni, Carla; Wang, Xueqi; Serra, Andreas L; Wagner, Carsten A

    2015-05-01

    Advanced chronic kidney disease (CKD) is associated with the development of renal metabolic acidosis. Metabolic acidosis per se may represent a trigger for progression of CKD. Renal acidosis of CKD is characterized by low urinary ammonium excretion with preserved urinary acidification indicating a defect in renal ammoniagenesis, ammonia excretion or both. The underlying molecular mechanisms, however, have not been addressed to date. We examined the Han:SPRD rat model and used a combination of metabolic studies, mRNA and protein analysis of renal molecules involved in acid-base handling. We demonstrate that rats with reduced kidney function as evident from lower creatinine clearance, lower haematocrit, higher plasma blood urea nitrogen, creatinine, phosphate and potassium had metabolic acidosis that could be aggravated by HCl acid loading. Urinary ammonium excretion was highly reduced whereas urinary pH was more acidic in CKD compared with control animals. The abundance of key enzymes and transporters of proximal tubular ammoniagenesis (phosphate-dependent glutaminase, PEPCK and SNAT3) and bicarbonate transport (NBCe1) was reduced in CKD compared with control animals. In the collecting duct, normal expression of the B1 H(+)-ATPase subunit is in agreement with low urinary pH. In contrast, the RhCG ammonia transporter, critical for the final secretion of ammonia into urine was strongly down-regulated in CKD animals. In the Han:SPRD rat model for CKD, key molecules required for renal ammoniagenesis and ammonia excretion are highly down-regulated providing a possible molecular explanation for the development and maintenance of renal acidosis in CKD patients. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. Metformin Protects Kidney Cells From Insulin-Mediated Genotoxicity In Vitro and in Male Zucker Diabetic Fatty Rats.

    Science.gov (United States)

    Othman, Eman Maher; Oli, R G; Arias-Loza, Paula-Anahi; Kreissl, Michael C; Stopper, Helga

    2016-02-01

    Hyperinsulinemia is thought to enhance cancer risk. A possible mechanism is induction of oxidative stress and DNA damage by insulin, Here, the effect of a combination of metformin with insulin was investigated in vitro and in vivo. The rationales for this were the reported antioxidative properties of metformin and the aim to gain further insights into the mechanisms responsible for protecting the genome from insulin-mediated oxidative stress and damage. The comet assay, a micronucleus frequency test, and a mammalian gene mutation assay were used to evaluate the DNA damage produced by insulin alone or in combination with metformin. For analysis of antioxidant activity, oxidative stress, and mitochondrial disturbances, the cell-free ferric reducing antioxidant power assay, the superoxide-sensitive dye dihydroethidium, and the mitochondrial membrane potential-sensitive dye 5,5',6,6'tetrachloro-1,1',3,3'-tetraethylbenzimidazol-carbocyanine iodide were applied. Accumulation of p53 and pAKT were analyzed. As an in vivo model, hyperinsulinemic Zucker diabetic fatty rats, additionally exposed to insulin during a hyperinsulinemic-euglycemic clamp, were treated with metformin. In the rat kidney samples, dihydroethidium staining, p53 and pAKT analysis, and quantification of the oxidized DNA base 8-oxo-7,8-dihydro-2'-deoxyguanosine were performed. Metformin did not show intrinsic antioxidant activity in the cell-free assay, but protected cultured cells from insulin-mediated oxidative stress, DNA damage, and mutation. Treatment of the rats with metformin protected their kidneys from oxidative stress and genomic damage induced by hyperinsulinemia. Metformin may protect patients from genomic damage induced by elevated insulin levels. This may support efforts to reduce the elevated cancer risk that is associated with hyperinsulinemia.

  2. Prednisolone has a positive effect on the kidney but not on the liver of brain dead rats: a potencial role in complement activation.

    Science.gov (United States)

    Rebolledo, Rolando; Liu, Bo; Akhtar, Mohammed Z; Ottens, Petra J; Zhang, Jian-ning; Ploeg, Rutger J; Leuvenink, Henri G D

    2014-05-02

    Contradictory evidence has been published on the effects of steroid treatments on the outcomes of kidney and liver transplantation from brain dead (BD) donors. Our study aimed to evaluate this disparity by investigating the effect of prednisolone administration on BD rats. BD induction was performed in ventilated rats by inflating a Fogarty catheter placed in the epidural space. Prednisolone (22.5 mg/kg) was administered 30 min prior to BD induction. After four hours of determination of BD: serum, kidney and liver tissues samples were collected and stored. RT-qPCR, routine biochemistry and immunohistochemistry were performed. Prednisolone treatment reduced circulating IL-6 and creatinine plasma levels but not serum AST, ALT or LDH. Polymorphonuclear influx assessed by histology, and inflammatory gene expression were reduced in the kidney and liver. However, complement component 3 (C3) expression was decreased in kidney but not in liver. Gene expression of HSP-70, a cytoprotective protein, was down-regulated in the liver after treatment. This study shows that prednisolone decreases inflammation and improves renal function, whilst not reducing liver injury. The persistence of complement activation and the negative effect on protective cellular mechanisms in the liver may explain the disparity between the effects of prednisolone on the kidney and liver of BD rats. The difference in the molecular and cellular responses to prednisolone administration may explain the contradictory evidence of the effects of prednisolone on different organ types from brain dead organ donors.

  3. d-Phenothrin-induced oxidative DNA damage in rat liver and kidney determined by HPLC-ECD/DAD.

    Science.gov (United States)

    Atmaca, Enes; Aksoy, Abdurrahman

    2015-05-01

    The objective of this study was to assess the risk of genotoxicity of d-phenothrin by measuring the oxidative stress it causes in rat liver and kidney. The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)/10(6) 2'-deoxyguanosine (dG) was measured by using high performance liquid chromatography (HPLC) with a diode array (DAD) and an electrochemical detector (ECD). Sixty male Wistar albino rats were randomly divided into five experimental groups and one control group of 10 rats/group. d-phenothrin was administered intraperitoneally (IP) to the five experimental groups at 25 mg/kg (Group I), 50 mg/kg (Group II), 66.7 mg/kg (Group III), 100 mg/kg (Group IV), and 200 mg/kg (Group V) for 14 consecutive days, and the control group received only the vehicle, dimethyl sulfoxide (DMSO). DNA from samples frozen in liquid nitrogen was isolated with a DNA isolation kit. Following digestion with nuclease P1 and alkaline phosphatase (ALP), hydrolyzed DNA was subjected to HPLC. The dG and 8-oxodG levels were analyzed with a DAD and ECD, respectively. In the experimental groups, the mean 8-oxodG/10(6) dG levels were 48.15 ± 7.43, 68.92 ± 20.66, 82.07 ± 14.15, 85.08 ± 28.50, and 89.14 ± 21.73 in livers and 39.06 ± 7.63, 59.69 ± 14.22, 61.13 ± 17.46, 65.13 ± 23.40, and 72.66 ± 19.04 in kidneys of Groups I, II, III, IV, and V, respectively. The mean 8-oxodG/10(6) dG levels in the control groups were 44.96 ± 12.66 for the liver and 39.07 ± 4.80 for the kidney. A statistically significant (p < 0.05), dose-dependent increase in oxidative DNA damage was observed in both organs of animals exposed to d-phenothrin when compared to controls. Furthermore, the liver showed a significantly higher level of oxidative DNA damage than the kidney (p < 0.01). In conclusion, d-phenothrin administered to rats intraperitoneally for 14 consecutive days generated free radical species in a dose-dependent manner and caused oxidative

  4. Bixalomer, a novel phosphate binder with a small swelling index, improves hyperphosphatemia in chronic kidney disease rat.

    Science.gov (United States)

    Taniguchi, Keiichi; Kakuta, Hirotoshi

    2015-11-01

    In the present study, we evaluated the in vitro characteristics of bixalomer for phosphate binding and swelling and assessed the urinary phosphorus excretion and plasma phosphorus level-lowering effect of bixalomer. The maximum phosphate binding capacity was 6.49 mmol/g and was maximized at pH 6.09. In rats, consuming a high-phosphorus diet resulted in elevated urinary phosphorus excretion, while consuming a diet of bixalomer (0.3-9%) or sevelamer hydrochloride (sevelamer HCl; 3-9%) mixed with a high-phosphorus diet resulted in a dose-dependent reduction in urinary phosphorus excretion. Rats with adenine sulfate-induced chronic kidney disease (CKD) had plasma phosphorus levels of 14.9-18.8 mg/dl, while CKD rats administered a 3% bixalomer or 3% sevelamer HCl diet for 4 weeks had relatively decreased plasma phosphorus levels (6.86 ± 1.42 or 5.32 ± 0.27 mg/dl, respectively). Bixalomer elevated the lowered blood pH in acidemic CKD rats, while sevelamer HCl administration only exacerbated the acidemia. The swelling index, which represents water adsorption capacity, of bixalomer was measured by subtracting the dry weight from the hydrated wet weight of the polymer. The swelling index of bixalomer was four times lower than that of sevelamer HCl. Bixalomer was found to reduce the plasma phosphorus level in CKD rats by binding phosphate in the small intestine and reducing phosphate absorption. Bixalomer showed favorable characteristics of a smaller swelling index than sevelamer HCl and amelioration of metabolic acidosis. These findings suggest that bixalomer may be useful in treating hyperphosphatemia, with fewer gastrointestinal side effects and amelioration of metabolic acidosis than sevelamer HCl.

  5. Effects of dietary phosphate on adynamic bone disease in rats with chronic kidney disease--role of sclerostin?

    Directory of Open Access Journals (Sweden)

    Juliana C Ferreira

    Full Text Available High phosphate intake is known to aggravate renal osteodystrophy along various pathogenetic pathways. Recent studies have raised the possibility that dysregulation of the osteocyte Wnt/β-catenin signaling pathway is also involved in chronic kidney disease (CKD-related bone disease. We investigated the role of dietary phosphate and its possible interaction with this pathway in an experimental model of adynamic bone disease (ABD in association with CKD and hypoparathyroidism. Partial nephrectomy (Nx and total parathyroidectomy (PTx were performed in male Wistar rats. Control rats with normal kidney and parathyroid function underwent sham operations. Rats were divided into three groups and underwent pair-feeding for 8 weeks with diets containing either 0.6% or 1.2% phosphate: sham 0.6%, Nx+PTx 0.6%, and Nx+PTx 1.2%. In the two Nx+PTx groups, serum creatinine increased and blood ionized calcium decreased compared with sham control group. They also presented hyperphosphatemia and reduced serum parathyroid hormone (PTH and fibroblast growth factor 23 (FGF23 levels. Fractional urinary excretion of phosphate increased in Nx+PTx 1.2% rats despite lower PTH and FGF23 levels than in sham group. These biochemical changes were accompanied by a decrease in bone formation rates. The Nx+PTx 1.2% group had lower bone volume (BV/TV, higher osteoblast and osteocyte apoptosis, and higher SOST and Dickkopf-1 gene expression than the Nx+PTx 0.6% group. Nx+PTx 0.6% rat had very low serum sclerostin levels, and Nx+PTx 1.2% had intermediate sclerostin levels compared with sham group. Finally, there was a negative correlation between BV/TV and serum sclerostin. These results suggest that high dietary phosphate intake decreases bone volume in an experimental model of CKD-ABD, possibly via changes in SOST expression through a PTH-independent mechanism. These findings could have relevance for the clinical setting of CKD-ABD in patients who low turnover bone disease might

  6. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Noeman Saad A

    2011-08-01

    Full Text Available Abstract Background Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases. Aim To induce rat obesity using high fat diet (HFD and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs. Materials and methods Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group: received only normal diet (rat chow for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA, protein carbonyl (PCO, reduced glutathione (GSH levels, and the activities of glutathione S- transferase (GST glutathione peroxidase (GPx, catalase (CAT and paraoxonase1 (PON1 enzymes. Results Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues. Conclusion High fat

  7. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet.

    Science.gov (United States)

    Terakado, Shouko; Ueno, Mai; Tamura, Yuki; Toda, Natsuko; Yoshinaga, Mariko; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Murota, Itsuki; Sato, Nobuyuki; Uehara, Yoshio

    2012-01-01

    In this article, the antihypertensive effects of sodium alginate oligosaccharides, enzymatic products of high molecular natural alginate from sea weeds, in Dahl salt-sensitive (Dahl S) rats were investigated. Dahl S rats fed a high-salt (4% NaCl) diet were treated with sodium alginate oligosaccharides (4% or 8% w/w) for 7 weeks. Systolic blood pressure (SBP) was measured by the tail-cuff method, and hypertensive cardiovascular benefits and kidney damage were assessed. Glomerular function and morphological sclerosis were determined. SBP increased in an age-dependent manner in the untreated Dahl S rats. Sodium alginate oligosaccharide treatment attenuated the increase in SBP in a dose-dependent manner. The heart and aortic walls weighed less in the rats treated with sodium alginate oligosaccharides than in the untreated rats. The SBP reduction was associated with a decrease in urinary protein excretion and an increase in the creatinine clearance rate. Sodium alginate oligosaccharides significantly attenuated hypertensive glomerular sclerosis and arterial injury in the kidney. Fractional excretion of sodium (FENa) decreased in low-salt Dahl S rats and increased with a salt challenge. The alginate oligosaccharides decreased FENa in high-salt Dahl S rats. The results of this study suggest that sodium alginate oligosaccharides attenuate salt-induced hypertension in Dahl S rats. This reduction is associated with decreases in cardiovascular and renal damage.

  8. Peroxiredoxin 5 Protects TGF-β Induced Fibrosis by Inhibiting Stat3 Activation in Rat Kidney Interstitial Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Hoon-In Choi

    Full Text Available Renal fibrosis is a common final pathway of end-stage kidney disease which is induced by aberrant accumulation of myofibroblasts. This process is triggered by reactive oxygen species (ROS and proinflammatory cytokines generated by various source of injured kidney cells. Peroxiredoxin 5 (Prdx5 is a thiol-dependent peroxidase that reduces oxidative stress by catalyzing intramolecular disulfide bonds. Along with its antioxidant effects, expression level of Prdx5 also was involved in inflammatory regulation by immune stimuli. However, the physiological effects and the underlying mechanisms of Prdx5 in renal fibrosis have not been fully characterized. Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO for 1 or 7 days. For the in vitro model, NRK49F cells, a rat kidney interstitial fibroblast cell lines, were treated with transforming growth factor β (TGF-β for 0, 1, 3, or 5 days. To access the involvement of its peroxidase activity in TGF-β induced renal fibrosis, wild type Prdx5 (WT and double mutant Prdx5 (DM, converted two active site cysteines at Cys 48 and Cys 152 residue to serine, were transiently expressed in NRK49F cells. The protein expression of Prdx5 was reduced in UUO kidneys. Upregulation of fibrotic markers, such as fibronectin and alpha-smooth muscle actin (α-SMA, declined at 5 days in time point of higher Prdx5 expression in TGF-β treated NRK49F cells. The overexpression of wild type Prdx5 by transient transfection in NRK49F cells attenuated the TGF-β induced upregulation of fibronectin and α-SMA. On the other hand, the transient transfection of double mutant Prdx5 did not prevent the activation of fibrotic markers. Overexpression of Prdx5 also suppressed the TGF-β induced upregulation of Stat3 phosphorylation, while phosphorylation of Smad 2/3 was unchanged. In conclusion, Prdx5 protects TGF-β induced fibrosis in NRK49F cells by modulating Stat3 activation in a peroxidase activity dependent manner.

  9. impact of partial kangaroo mother care on growth rates and duration ...

    African Journals Online (AJOL)

    2012-02-02

    Feb 2, 2012 ... rates and duration of hospital stay of Low Birth Weight (LBW) infants. Design: ... Intervention: Kangaroo mother care was practised over an eight hour period per day ... settings, as well as its benefits and limitations. These.

  10. Efficacy and safety of osteoporosis medications in a rat model of late-stage chronic kidney disease accompanied by secondary hyperparathyroidism and hyperphosphatemia.

    Science.gov (United States)

    Ota, M; Takahata, M; Shimizu, T; Kanehira, Y; Kimura-Suda, H; Kameda, Y; Hamano, H; Hiratsuka, S; Sato, D; Iwasaki, N

    2017-04-01

    This study showed that bisphosphonate was safe and effective for the treatment of bone disorders in stage 4 chronic kidney disease (CKD) rats. Intermittent teriparatide therapy showed an anabolic action on bone even under secondary hyperparathyroidism conditions without having an adverse effect on mineral metabolism in late-stage CKD.

  11. Transcriptomics analysis of interactive effects of benzene, trichloroethylene and methyl mercury within binary and ternary mixtures on the liver and kidney following subchronic exposure in the rat

    NARCIS (Netherlands)

    Hendriksen, P.J.M.; Freidig, A.P.; Jonker, D.; Thissen, U.; Bogaards, J.J.P.; Mumtaz, M.M.; Groten, J.P.; Stierum, R.H.

    2007-01-01

    The present research aimed to study the interaction of three chemicals, methyl mercury, benzene and trichloroethylene, on mRNA expression alterations in rat liver and kidney measured by microarray analysis. These compounds were selected based on presumed different modes of action. The chemicals were

  12. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    Science.gov (United States)

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  13. Prednisolone has a positive effect on the kidney but not on the liver of brain dead rats : a potencial role in complement activation

    NARCIS (Netherlands)

    Rebolledo Acevedo, Rolando; Liu, Bo; Akhtar, Mohammed Z.; Ottens, Petra J.; Zhang, Jian-ning; Ploeg, Rutger J.; Leuvenink, Henri G. D.

    2014-01-01

    Background: Contradictory evidence has been published on the effects of steroid treatments on the outcomes of kidney and liver transplantation from brain dead (BD) donors. Our study aimed to evaluate this disparity by investigating the effect of prednisolone administration on BD rats. Methods: BD in

  14. 1α,25-dihydroxyvitamin D3 triggered vitamin D receptor and Farnesoid X Receptor-like effects in rat intestine, liver, and kidney in vivo

    NARCIS (Netherlands)

    Chow, Edwin C. Y.; Maeng, Han-Joo; Khan, Ansar; Groothuis, Genoveva; Pang, K. Sandy

    2009-01-01

    1α,25-Dihydroxyvitamin D3 Triggered Vitamin D Receptor and Farnesoid X Receptor-like Effects in Rat Intestine, Liver, and Kidney In Vivo E. C. Chow 1, H-J. Maeng 1, A. A. Khan 2, G. M. Groothuis 2, K. S. Pang 1 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of To

  15. Prednisolone has a positive effect on the kidney but not on the liver of brain dead rats : a potencial role in complement activation

    NARCIS (Netherlands)

    Rebolledo Acevedo, Rolando; Liu, Bo; Akhtar, Mohammed Z.; Ottens, Petra J.; Zhang, Jian-ning; Ploeg, Rutger J.; Leuvenink, Henri G. D.

    2014-01-01

    Background: Contradictory evidence has been published on the effects of steroid treatments on the outcomes of kidney and liver transplantation from brain dead (BD) donors. Our study aimed to evaluate this disparity by investigating the effect of prednisolone administration on BD rats. Methods: BD in

  16. Protective Effect of Ceratonia siliqua L. Against a Dextran Sulfate Sodium-Induced Alterations in Liver and Kidney in Rat.

    Science.gov (United States)

    Rtibi, Kaïs; Selmi, Slimen; Jabri, Mohammed-Amine; El-Benna, Jamel; Amri, Mohamed; Marzouki, Lamjed; Sebai, Hichem

    2016-09-01

    The aim of the present study is to investigate the potential protective role of Ceratonia siliqua L. against dextran sodium sulfate (DSS)-induced oxidative damage and inflammation in liver and kidney of rats. The hepatotoxicity and nephrotoxicity were induced in rats by oral administration of synthetic DSS (5%) in the drinking water for over 7 days. However, carob pods aqueous extract (CPAE; 50 and 100 mg/kg body weight) was given by oral administration for 21 days. Myeloperoxidase (MPO) activity, malondialdehyde, H2O2 content, as well as the levels of antioxidant enzymes in organs were measured to observe the possible mechanisms. As a result, the CPAE counteracted DSS-induced increase of MPO activity, lipoperoxidation, and the activity of antioxidant enzymes, such as superoxide dismutase and catalase (CAT). DSS administration increased also in the organs hydrogen peroxide (H2O2) and free iron levels, whereas the CPAE pretreatment reversed all intracellular mediator perturbations. It was concluded that the CPAE exerted a potential protective effect against DSS-induced inflammation and oxidative stress in the rat organs. Consequently, it is essential that adequate care is taken when we use carob pods for patients with hepatotoxicity and nephrotoxicity.

  17. Identification and Characterization of Phytohemagglutinins from White Kidney Beans (Phaseolus vulgaris L., var. Beldia) in the Rat Small Intestine.

    Science.gov (United States)

    Nciri, Nader; Cho, Namjun; El Mhamdi, Faiçal; Ben Mansour, Abderraouf; Haj Sassi, Fayçal; Ben Aissa-Fennira, Fatma

    2016-01-01

    Although kidney bean (Phaseolus vulgaris L.) lectin toxicity is widely known, its effects in the gastrointestinal tract require further study. This investigation aimed to identify and characterize phytohemagglutinins (PHAs) in the small intestine and sera of rats following oral challenge with ground white beans. Twenty young, adult male rats were divided randomly into two groups of 10 animals each. The control group underwent gavage with a suspension of 300 mg of rodent pellet flour. The experimental group was administered a 300 mg Beldia bean flour suspension (BBFS). After 10 days of daily treatment, jejunal rinse liquid (JRL) and ileum rinse liquid and secretions, as well as sera, were collected. All biological fluids were screened for lectin reactivity using competitive inhibition ELISA, Ouchterlony double immunodiffusion, and immunoelectrophoresis techniques. The results revealed the presence of immunogenic intraluminal PHAs 3-4 h after the oral intake of the BBFS in the JRLs as well as in the jejunal and ileal secretions; however, no PHA was detectable in the rat sera. Ingestion of raw Beldia beans may lead to interaction between PHAs and the mucosa of the small intestine, potentially resulting in an inflammatory response.

  18. Effects of dietary salt on adrenomedullin and its receptor mRNAs in rat kidney

    DEFF Research Database (Denmark)

    Jensen, B L; Gambaryan, S; Schmaus, E

    1998-01-01

    There is accumulating evidence that adrenomedullin (ADM) is involved in the control of salt and water homeostasis. ADM is considered to act primarily in a paracrine fashion, and since the kidneys are target organs for ADM, we investigated the localization and regulation of ADM and ADM receptor (A...... and a preferential action of ADM in the papilla. Ten days of feeding a low-salt (0.02%) or a high-salt diet (4%) did not change ADM mRNA or ADM-R mRNA in any kidney zone....

  19. Sodium-pump gene-expression, protein abundance and enzyme activity in isolated nephron segments of the aging rat kidney

    Science.gov (United States)

    Scherzer, Pnina; Gal-Moscovici, Anca; Sheikh-Hamad, David; Popovtzer, Mordecai M

    2015-01-01

    Aging is associated with alteration in renal tubular functions, including sodium handling and concentrating ability. Na-K-ATPase plays a key role in driving tubular transport, and we hypothesized that decreased concentrating ability of the aging kidney is due in part to downregulation of Na-K-ATPase. In this study, we evaluated Na and K balance, aldosterone levels, and Na-K-ATPase gene expression, protein abundance, and activity in aging rat kidney. Na-K-ATPase activity (assayed microfluorometrically), mRNA (RT-PCR), and protein abundance (immunoblotting) were quantitated in the following isolated nephron segments: PCT, PST, MTAL, DCT, and CCD from 2, 8, 15, and 24 month-old-rats. In the course of aging, creatinine clearance decreased from 0.48 ± 0.02 mL/min/100 g BW to 0.28 ± 0.06 (P < 0.001) and aldosterone decreased from 23.6 ± 0.8 ng/dL to 13.2 ± 0.6 (P < 0.001). Serum Na+ and K+ increased by 4.0% and 22.5%, respectively. Na-K-ATPase activity, mRNA, and protein abundance of the α1 subunit displayed similar trends in all assayed segments; increasing in PCT and PST; decreasing in MTAL and DCT; increasing in CCD: in PCT they increased by 40%, 75%, and 250%, respectively; while in PST they increased by 80%, 50%, and 100%, respectively (P < 0.001). In MTAL they declined by 36%, 24%, and 34%, respectively, and in DCT by 38%, 59%, and 60%, respectively (P < 0.001). They were higher in CCD by 110%, 115%, and 246%, respectively (P < 0.001). Rats maintained Na/K balance; however with a steady state elevated serum K+. These results reveal quantitative changes in axial distribution of Na-K-ATPase at the level of gene expression, protein abundance, and activity in the nephrons of aging animals and may explain, in part, the pathophysiology of the senescent kidney. PMID:26056060

  20. Enhancement of protein kinase C activity and chemiluminescence intensity in mitochondria isolated from the kidney cortex of rats treated with cephaloridine.

    Science.gov (United States)

    Kohda, Yuka; Gemba, Munekazu

    2002-08-01

    The development of nephrotoxicity induced by cephaloridine (CER) has been reported to be due to reactive oxygen species (ROS). Protein kinase C (PKC) has been suggested to modulate the generation of ROS. We investigated the possible participation of ROS generation assessed by chemiluminescence (CL) and PKC activity in rat kidney cortical mitochondria in the development of CER-induced nephrotoxicity. We first evaluated the magnitude of the nephrotoxic damage caused by CER in rats. The plasma parameters and ultrastructural morphology changes were increased markedly 24hr after the treatment of rats with CER. We demonstrated that the treatment of rats with CER clearly evoked not only enhancement of Cypridina luciferin analog (CLA)-dependent CL intensity, but also the activation of PKC in mitochondria isolated from the kidney cortex of rats 1.5 and 3.5 hr after injection of the drug. These changes were detected in advance of those observed in plasma and by electron microscopy. The increase in CLA-dependent CL intensity detected in the kidney cortical mitochondria 1.5 and 3.5 hr after injection of CER was inhibited completely by the addition of superoxide dismutase, suggesting the generation of superoxide anion in these mitochondria during the early stages of CER-induced nephrotoxicity. These results suggest that the activation of PKC and the enhancement of superoxide anion generation in kidney cortical mitochondria precede the increases in plasma parameters and the electron micrographic changes indicative of renal dysfunction in rats treated with CER. Additionally, they suggest a possible relationship between PKC activation in mitochondria and free radical-induced CER nephrotoxicity in rats.

  1. Acute kidney injury and inflammatory response of sepsis following cecal ligation and puncture in D-galactose-induced aging rats

    Directory of Open Access Journals (Sweden)

    Liu C

    2017-03-01

    Full Text Available Chao Liu,1,* Jie Hu,1,* Zhi Mao,1,* Hongjun Kang,1 Hui Liu,1 Wanlei Fu,2 Yangfan Lv,2 Feihu Zhou1 1Department of Critical Care Medicine, Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China; 2Department of Pathology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China *These authors contributed equally to this work Background: Recently, the D-galactose (D-gal-induced mimetic aging rat model has been widely used in studies of age-associated diseases, which have shown that chronic D-gal exposure induces premature aging similar to natural aging in rats. With the increasing rate of sepsis in the geriatric population, an easy-access animal model for preclinical studies of elderly sepsis is urgently needed. This study investigates whether a sepsis model that is established in D-gal-induced aging rats can serve as a suitable model for preclinical studies of elderly patients with sepsis.Objective: To investigate the acute kidney injury (AKI and inflammatory response of sepsis following cecal ligation and puncture (CLP in D-gal-induced aging rats.Methods: Twelve-week-old male Sprague Dawley rats were divided into low-dose D-gal (L D-gal, 125 mg/kg/d, high-dose D-gal (H D-gal, 500 mg/kg/d, and control groups. After daily subcutaneous injection of D-gal for 6 weeks, the CLP method was used to establish a sepsis model.Results: The mortality was 73.3%, 40%, and 33.3% in the H D-gal, L D-gal, and control groups, respectively. Blood urea nitrogen, creatinine, plasma neutrophil gelatinase-associated lipocalin, interleukin-6, interleukin-10, and tumor necrosis factor-α were markedly increased in the H D-gal group after establishment of the sepsis model (H D-gal vs control, P<0.05 at 12 h and 24 h post-CLP. The rate of severe AKI (RIFLE-F at 24 h post-CLP was 43% for both the control and L D-gal groups and 80% for the H D-gal group.Conclusion: High-dose-D-gal-induced aging rats are

  2. The effects of chronic administration of epidermal growth factor (EGF) to rats on the levels of endogenous EGF in the submandibular glands and kidneys

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Jøgensen, P E; Poulsen, Steen Seier;

    1996-01-01

    Epidermal growth factor (EGF) is mainly produced in the submandibular glands (SMG) and in the kidneys. It has recently been reported that EGF-related ligands may induce their own biosynthesis (autoinduction) in vitro. In the present paper, we investigated whether chronic systemic treatment with EGF...... influenced the amount of endogenous EGF in the SMG and kidneys. Eight-week-old female Wistar rats were treated with subcutaneous injections of placebo (n = 16) or human recombinant EGF (150 micrograms/kg per day, n = 8) for 4 weeks. Urine was sampled the last 24 h of the study period. At the time of killing......, the SMG and the kidneys were removed. The SMG was larger in the EGF-treated animals, 229.8 +/- 35.5 (mean +/- SD) mg than in the control animals, 181.7 +/- 18.1 mg (P kidneys were larger in the EGF...

  3. Cyclooxygenase product inhibition with acetylsalicylic acid slows disease progression in the Han:SPRD-Cy rat model of polycystic kidney disease.

    Science.gov (United States)

    Ibrahim, Naser H M; Gregoire, Melanie; Devassy, Jessay G; Wu, Yinhong; Yoshihara, Daisuke; Yamaguchi, Tamio; Nagao, Shizuko; Aukema, Harold M

    2015-01-01

    Renal cyclooxygenase (COX) derived eicosanoids are elevated and lipoxygenase (LOX) products are reduced in the Han:SPRD-Cy rat model of polycystic kidney disease (PKD). Selective COX2 inhibition reduces kidney disease progression, but COX1 levels also are elevated in this model. Since the effect of reducing the products of both COX isoforms and the role of LOX products is not known, weanling normal and diseased Han:SPRD-cy littermates were given either low dose acetylsalicylic acid (ASA), nordihydroguaiaretic (NDGA) or no treatment for eight weeks. Renal eicosanoids were altered in the diseased compared to normal cortex, with COX products being higher and LOX products being lower. ASA reduced COX products, cyst growth and kidney water content, while NDGA reduced LOX products without altering disease progression or kidney function. Hence, a human equivalent ASA dose equal to less than one regular strength aspirin per day slowed disease progression, while further reduction of LOX products did not worsen disease progression.

  4. RNA-Seq analysis of glycosylation related gene expression in STZ-induced diabetic rat kidney inner medulla

    Directory of Open Access Journals (Sweden)

    Xiaoqian eQian

    2015-10-01

    Full Text Available The UT-A1 urea transporter is crucial to the kidney’s ability to generate concentrated urine. Native UT-A1 from kidney inner medulla (IM is a heavily glycosylated protein with two glycosylation forms of 97 and 117 kDa. In diabetes, UT-A1 protein abundance, particularly the 117 kD isoform, is significantly increased corresponding to an increased urea permeability in perfused IM collecting ducts, which plays an important role in preventing the osmotic diuresis caused by glucosuria. However, how the glycan carbohydrate structure change and the glycan related enzymes regulate kidney