WorldWideScience

Sample records for kanawha river valley

  1. COHORT OF WOMEN LIVING IN OR NEAR A HIGHLY INDUSTRIALIZED AREA OF KANAWHA RIVER VALLEY IN WEST VIRGINIA: ENDOMETRIOSIS AND BLOOD LEVELS OF DIOXIN AND DIOXIN-LIKE CHEMICALS

    Science.gov (United States)

    Introduction Historical releases of dioxin and dioxin-like chemicals with subsequent impacts to environmental media in the Kanawha River Valley (KRV) of West Virginia have been well documented.' The bulk of dioxin found in this area appears to be derived from the production of 2,...

  2. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    Science.gov (United States)

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  3. COHORT OF WOMEN LIVING IN OR NEAR A HIGHLY INDUSTRIALIZED AREA OF KANAWHA RIVER VALLEY IN WEST VIRGINIA: ENDOMETRIOSIS AND BLOOD LEVELS OF DIOXIN AND DIOXIN-LIKE CHEMICALS

    Science.gov (United States)

    Introduction Historical releases of dioxin and dioxin-like chemicals with subsequent impacts to environmental media in the Kanawha River Valley (KRV) of West Virginia have been well documented.' The bulk of dioxin found in this area appears to be derived from the production of 2,...

  4. ENDOMETRIOSIS IN A COHORT OF WOMEN LIVING IN THE KANAWHA RIVER VALLEY IN WEST VIRGINIA: BLOOD LEVELS OF NON-DIOXIN-LIKE PCBs AND RELATIONSHIP WITH BMI AND AGE

    Science.gov (United States)

    Industrial activities, specifically from petroleum and chemical manufacturing facilities, in the Kanawha River Valley (KRV) of West Virginia have resulted in releases of dioxin and dioxin-like chemicals (DLCs). I Most of the dioxin found in this region has resulted from the produ...

  5. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    Science.gov (United States)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  6. 27 CFR 9.111 - Kanawha River Valley.

    Science.gov (United States)

    2010-04-01

    ...., dated 1958; (12) Sissonville, W. Va., dated 1958; (13) Romance, W. Va.,—Ky., dated 1957; (14) Kentuck, W... Johns Branch and Sugar Creek in the town of Romance, in Jackson County, WV. (Romance quadrangle) (8) The...

  7. Synthetic River Valleys

    Science.gov (United States)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D

  8. Mississippi River Valley alluvial aquifer

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set represents the extent of the Mississippi River Valley alluvial aquifer in the states of Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and...

  9. Valley evolution by meandering rivers

    Science.gov (United States)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  10. Red (Planet) River Valleys

    Institute of Scientific and Technical Information of China (English)

    陈淑娴

    1995-01-01

    Mars today is a frozen desert,but the photos sent back by the Mariner and Viking probes in the 1970s indicate its past was less bleak and more Earth-like. The images showed sinuous channels and valleys that were al-

  11. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE... Areas § 9.57 Green Valley of Russian River Valley. (a) Name. The name of the viticultural area...

  12. Kanawha River Basin Sediment Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains sediment size data collected at research sites using a Wolman Pebble Count method. This dataset is associated with the following publication:...

  13. Analysis of Hydrodynamic Interaction Between HMCS FREDERICTON and USNS KANAWHA

    Science.gov (United States)

    HMCS FREDERICTON collided with USNS KANAWHA on 18 November 2010 while FREDERICTON was approaching KANAWHA for replenishment at sea. The ships were in...in causing a collision between FREDERICTON and KANAWHA. In the present report, the non-dimensional lateral separation is defined as the lateral...separation distance divided by the beam of the larger ship. FREDERICTON and KANAWHA had a non-dimensional lateral separation of 3.0 when FREDERICTON

  14. Fire Management Plan Rappahannock River Valley National Wildlife Refuge 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan for the Rappahannock River Valley National Wildlife Refuge will provide guidance on a wide range of fire management activities including preparedness,...

  15. Rappahannock River Valley National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Rappahannock River Valley NWR for the next 15 years. This plan outlines the Refuge...

  16. Fire Management Plan Rappahannock River Valley National Wildlife Refuge 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan for Rappahannock River Valley National Wildlife Refuge will provide guidance on a wide range of fire management activities including preparedness,...

  17. The Trail Inventory of Rappahannock River Valley NWR [Cycle 2

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Rappahannock River Valley National Wildlife Refuge. Trails in this...

  18. Rappahannock River Valley National Wildlife Refuge [Land Status Map

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map was produced by the Division of Realty to depict landownership at Rappahannock River Valley National Wildlife Refuge. It was generated from rectified...

  19. Biological Profile for Rappahannock River Valley National Wildlife Refuge 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of the Rappahannock River Valley National Wildlife Refuge are: to preserve and enhance the refuge's lands and water in a manner that will conserve the...

  20. Groundwater quality in the Santa Clara River Valley, California

    Science.gov (United States)

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  1. Contrasts of Atmospheric Circulation and Associated Tropical Convection between Huaihe River Valley and Yangtze River Valley Mei-yu Flooding

    Institute of Scientific and Technical Information of China (English)

    HONG Jieli; LIU Yimin

    2012-01-01

    The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu (i.e.,the East Asian rainy season in June) and the related tropical convection were investigated.During the both flooding cases,although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere,the phase of the Rossby wave train is different over Eurasian continent.During flooding in the Huaihe River valley,only one single blocking anticyclone is located over Baikal Lake.In contrast,during flooding in the Yangtze River valley,there are two blocking anticyclones.One is over the Ural Mountains and the other is over Northeast Asia.In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific (SAWP) in both flooding cases,but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding.Furthermore,abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula.However,the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific.Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation; and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation.While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south,along with abundant rainfall.

  2. Rivers and valleys of Pennsylvania, revisited

    Science.gov (United States)

    Morisawa, Marie

    1989-09-01

    The 1889 paper by William Morris Davis on the "Rivers and Valleys of Pennsylvania" is a landmark in the history of geomorphology. It was in this manuscript that he set forth what came to be known as the Davisian system of landscape. It is important to understand that Davis' interpretation of landforms was restricted by the geologic paradigms of his day. Uniformitarianism was strongly entrenched and Darwin's theory of evolution had become popularly accepted. The concept of the landmass Appalachia and then current theories on mountain building affected the approach that Davis took in hypothesizing the origin and development of the Folded Appalachian drainage. All of these geologic precepts influenced the formulation and explanation of his theories. In his exposition he adapted, synthesized and embellished on ideas he derived from fellow geologists such as Gilbert, Dutton, Powell, and McGee. A number of the concepts he proposed in the 1889 paper quickly became the bases for geomorphic studies by others: the cycles of river erosion and landscape evolution and the peneplain (here called base level erosion). The cycle of erosion became the model for subsequent geomorphic analyses, and peneplain hunting became a popular sport for geomorphologists. Davis' hypothesis of the origin and development of Pennsylvanian drainage stimulated subsequent discussion and further hypotheses by others. In fact, many of the later theories were refinements and/or elaborations of ideas mentioned in this paper of Davis. He proposed the origin of the drainage as consequent streams, then antecedence, superposition, headward extension of divides by piracy, erosion along lines of weaknesses (faults, easily erodible beds) through resistant ridges and normal fluvial erosion. Thus, the hypotheses of regional superposition (Johnson), extended consequents (Ruedemann), consequents and local superposition (Meyerhoff and Olmstead), the utilization of structural weaknesses in development of transverse

  3. Systematization of river valleys in different morphostructural areas

    Science.gov (United States)

    Opekunova, Marina

    2014-05-01

    The aim of our research was to identify the features of development of river valleys within the south of Eastern Siberia. One of the objectives to achieve this aim was the typing of river valleys, which was based on the principle of the location of a river valley or its part within different morphostructural areas, determining the morphology and individual (general or specific) development features that make it possible to specify the pattern of development of river valleys at different topological levels. Within the study area the following major morphostructures are distinguished: Altai-Sayan and Baikal mountain-folded regions, the Baikal rift zone, and the Siberian platform, within which morphostructures of the lower order are identified. Thus, a large variability in types of interaction and interpenetration of different areas provides for the development of various types of river valleys, depending on their location in the morphostructural areas. This approach was the basis for the typing of river valleys, i.e. idenifying their typological characteristics, depending on their location within a particular morphostructural area, geological and geomorphological conditions, and the history of development. The basic principles for the typing of river valleys are: 1) their location with respect to morphostructural areas, and 2) a set of characteristics of valleys of different morphostructural areas. Based on the above mentioned approach, and using GIS (MapInfo software), a map of river valleys typing was compiled, which included the database of the hydrographic network with space-time characteristics, tabulated for each streamflow. The procedure for determining the types of river valleys within each morphostructure was as follows. Boundaries of morphostructures of different orders were identified according to cartographic and literature data and allocated in the GIS space (MapInfo software). In the database, each distinguished morphostructure has the following

  4. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  5. Segetal flora of the Middle Vistula River Valley

    Directory of Open Access Journals (Sweden)

    Maria Ługowska

    2014-12-01

    Full Text Available The objective of the study was to describe the segetal flora of the Middle Vistula River Valley. A total of 367 species were recorded in spring and winter cereals, tuber crops, and stubble fields. Such floristic abundance may be due to the fact that the study area is located in the proximity of a river where semi-natural communities interact directly with communities inhabiting cultivated fields and that fields are fragmented and characterised by different habitats. There were more apophytes (62% than anthropophytes (38% in the flora studied. Meadow apophytes were the dominant native species (35% and archeophytes were the dominant anthropophytes (69%. The analysis of the life spectrum revealed that there were more therophytes (50% than hemicryptophytes (39%. What is more, non-perennial species constituted 56% and perennials 44% of the segetal flora established in the Middle Vistula River Valley. The large proportion of archeophytes (26% may indicate that traditional farming predominated in the study area.

  6. Landscape pattern change in the upper valley of Min River

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yong-hua; HE Xing-yuan; HU Yuan-man; CHANG Yu

    2005-01-01

    The upper valley of Min River (102° 59′ -104° 14′ E, 31° 26′ - 33° 16′ N), which is consisted of the counties Wenchuan, Maoxian, Lixian, Heishui, and Songpan, refers to the part up to Dujiangyan City, and locates on the transition zone from the Tibetan Plateau to the Sichuan Basin. It is one of the most important forest areas in China, especially in Sichuan Province. Over past two decades, the landscape changed remarkably in the region. The 3S techniques (Remote Sensing (RS), Geographic Information System (GIS) and Global Position System (GPS)) were used to classify the images and analyze the landscape change. The remotely sensed data of Landsat TM 1986 and Landsat ETM+ 2000 were used to analyze the landscape change of the region. The landscape were classified into 10 types of cropland, forest, shrub land, economic forest, grassland, build up land, river, lake, swamp, and unused land. The results showed that: 1) the woodland and grassland were dominating landscape types in the upper valley of Min River, which is more than 91% of the study area; 2) the alteration of the landscape was mainly happened among forest, shrub land, grassland, economic forest, cropland, and build up land, where forest decreased from 51.17% to 47.56%; 3) the landscape fragmentation in the upper valley of Min River was aggravated from 1986 to 2000.

  7. Geomorphology of outflow part Batova river valley

    Science.gov (United States)

    Vulcheva-Georgieva, Ivalena; Stankova, Svetla

    2017-03-01

    Firths are geomoiphological and hydrological sites typical for flat, neutral coast of no tidal sea basins. There in the greatest extend is preserved the geological column of the correlative Pleistocene- Holocene sediments. They make possible to reveal the Quaternary evolution of the contact zone "land-sea". Firths are one of the most reliable indicators for the Quaternary Earth crust movements. Along the Black Sea coast most widely are developed the firths in the north - west and the west periphery, where they form a classic firth type coast. This report examines the results of complex studies of Batova river firth, located (developed) on the North Bulgarian Black Sea coast.

  8. River conferences under temperate valley glaciers

    Science.gov (United States)

    Lane, Stuart; Egli, Pascal; Irving, James

    2017-04-01

    Both geophysical measurements (ground penetrating radar) and hydrological inference has shown that subglacial drainage networks are dendritic and that means that they must have confluences. In general, there are very few studies of rivers under glaciers and almost no consideration at all of confluences, despite the fact that they could be a critical parameter in understanding coupling at the ice-sediment bed interface. Subglacial channels, normally known as conduits, are typically associated with the combined effect of hydraulic pressure driven ice melt (which opens them) and ice overburden pressure (which closes them). Inferences from dye break out curves shows that has the efficiency of ice melt increases progressively during the summer ablation season, melt rates closure rates and a channelized system becomes progressively more effective. Most recently, measurements at the Upper Arolla Glacier show that the effects of this growing efficiency is an evolution in the subglacial hydrological system towards higher peak flows and lower base flows later in the melt season. This increases the probability that late in the melt season, sediment transport becomes discontinuous, with overnight deposition and daytime erosion. This would in turn produce the rapid reductions in sediment transport capacity overnight needed to deposit sediment and to block conduits, increase basal water pressure and explain the hydraulic jacking observed in snout marginal zones at a time when it should not be expected. The question that follows is what effects do confluences have on this process? The geometry of subglacial channels is such that when they join they lead to rapid changes in hydraulic geometry. Crucially, these are likely to have a non-linear impact upon sediment transport capacity, which should reduce disproportionally in the conduits downstream of the junction. Thus, it is possible that confluence zones under glaciers become sites of very rapid sediment accumulation and blockage

  9. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  10. Control of medfly by SIT in the Nereva river valley

    Energy Technology Data Exchange (ETDEWEB)

    Bjelis, Mario, E-mail: mario.bjelis@zzb.h [Institut for Plant Protection in Agriculture and Foresty of Republic of Croatia, Zagreb, Zvonimirova (Croatia); Ljubetic, Visnja [Ministry of Agriculture, Forestry and Watter Managment of Republic of Croatia, Zagreb (Croatia); Novosel, Nevenka [State Office for Nuclear Safety, Zagreb (Croatia)

    2006-07-01

    A feasibility study of medfly suppression by means of sterile males released program in the Neretva Vallley, Croatia, is presented. The increase of medfly infestation is considered, as almost all cultures of the region represent host plants for the insect. Environmental friendly methods such well developed SIT technique associated with other organic methods are mentioned as an option of no disruption of the present natural balance. Area study and strategy planning is briefly presented. Population dynamics of Ceratitis capitata in the different parts of the delta Neretva valley, during period 2002 - 2004 Year is reported. Medfly capture on selected locations with different host availability in Neretva river is studied. (MAC)

  11. 75 FR 17756 - Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting

    Science.gov (United States)

    2010-04-07

    ... Office of the Secretary Blackstone River Valley National Heritage Corridor Commission: Notice of Meeting... the John H. Chafee Blackstone River Valley National Heritage Corridor Commission will be held on... integrated resource management plan for those lands and waters within the Corridor. The meeting will...

  12. Emergy Analysis of Sustainability of Eco-economic System in Sichuan’s Baisha River Valley

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Using emergy analysis method,I conduct quantitative analysis of social,economic and natural systems in Sichuan’s Baisha River valley during the period 2002-2006,through the establishment of indicators.I compare the emergy of Baisha River valley,with that of Xinjiang’s Manas River valley and Sichuan Province,and evaluate the sustainable development conditions in Baisha River valley,in order to provide corresponding reference for the development and utilization of Baisha River valley in the future.The results show that from the perspective of emergy input of economic system,Baisha River valley is a typical ecological and economic zone with rich resources to be developed;in terms of the development of natural conditions and utilization of ecological resources,the resource utilization intensity of Baisha River valley is weak and the environmental loading ratio there is low,thus the level of emergy yield needs to be improved;the system of Baisha River valley has enormous capacity for sustainable development and good potential for development.

  13. D GIS for Flood Modelling in River Valleys

    Science.gov (United States)

    Tymkow, P.; Karpina, M.; Borkowski, A.

    2016-06-01

    The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  14. 3D GIS FOR FLOOD MODELLING IN RIVER VALLEYS

    Directory of Open Access Journals (Sweden)

    P. Tymkow

    2016-06-01

    Full Text Available The objective of this study is implementation of system architecture for collecting and analysing data as well as visualizing results for hydrodynamic modelling of flood flows in river valleys using remote sensing methods, tree-dimensional geometry of spatial objects and GPU multithread processing. The proposed solution includes: spatial data acquisition segment, data processing and transformation, mathematical modelling of flow phenomena and results visualization. Data acquisition segment was based on aerial laser scanning supplemented by images in visible range. Vector data creation was based on automatic and semiautomatic algorithms of DTM and 3D spatial features modelling. Algorithms for buildings and vegetation geometry modelling were proposed or adopted from literature. The implementation of the framework was designed as modular software using open specifications and partially reusing open source projects. The database structure for gathering and sharing vector data, including flood modelling results, was created using PostgreSQL. For the internal structure of feature classes of spatial objects in a database, the CityGML standard was used. For the hydrodynamic modelling the solutions of Navier-Stokes equations in two-dimensional version was implemented. Visualization of geospatial data and flow model results was transferred to the client side application. This gave the independence from server hardware platform. A real-world case in Poland, which is a part of Widawa River valley near Wroclaw city, was selected to demonstrate the applicability of proposed system.

  15. Long Valley Caldera Lake and reincision of Owens River Gorge

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2016-12-16

    Owens River Gorge, today rimmed exclusively in 767-ka Bishop Tuff, was first cut during the Neogene through a ridge of Triassic granodiorite to a depth as great as its present-day floor and was then filled to its rim by a small basaltic shield at 3.3 Ma. The gorge-filling basalt, 200 m thick, blocked a 5-km-long reach of the upper gorge, diverting the Owens River southward around the shield into Rock Creek where another 200-m-deep gorge was cut through the same basement ridge. Much later, during Marine Isotope Stage (MIS) 22 (~900–866 ka), a piedmont glacier buried the diversion and deposited a thick sheet of Sherwin Till atop the basalt on both sides of the original gorge, showing that the basalt-filled reach had not, by then, been reexcavated. At 767 ka, eruption of the Bishop Tuff blanketed the landscape with welded ignimbrite, deeply covering the till, basalt, and granodiorite and completely filling all additional reaches of both Rock Creek canyon and Owens River Gorge. The ignimbrite rests directly on the basalt and till along the walls of Owens Gorge, but nowhere was it inset against either, showing that the basalt-blocked reach had still not been reexcavated. Subsidence of Long Valley Caldera at 767 ka produced a steep-walled depression at least 700 m deeper than the precaldera floor of Owens Gorge, which was beheaded at the caldera’s southeast rim. Caldera collapse reoriented proximal drainages that had formerly joined east-flowing Owens River, abruptly reversing flow westward into the caldera. It took 600,000 years of sedimentation in the 26-km-long, usually shallow, caldera lake to fill the deep basin and raise lake level to its threshold for overflow. Not until then did reestablishment of Owens River Gorge begin, by incision of the gorge-filling ignimbrite.

  16. Barite from the Upper Idrijca River valley (W Slovenia

    Directory of Open Access Journals (Sweden)

    Jože Čar

    2002-06-01

    Full Text Available The Carnian – Julian beds exposed at the Tratnik landslide location in the Upper Idrijca River valley are of various lithology. Mudstones, shales and fine-grained sandtones prevail, containing lenses of micritic limestone and quartz conglomerate. Red coloured barite-quartz concretions, some of them septarias, and barite veins filled with light gray fibrous barite crystals were found in the fine-grained clastic rocks. Concretions with radial arrangementof barite crystals are of early diagenetic origin. Antitaxial barite veins found only in apical parts of folds near the thrust fault were formed in late diagenesis. Barite is replaced to great extent by younger, late diagenetic quartz, especially in the barite concretions.

  17. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  18. Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.

    Science.gov (United States)

    Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F

    2016-07-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  19. Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO

    Science.gov (United States)

    Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.

    2016-01-01

    Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.

  20. Potential Vorticity Structure and Inversion of the Cyclogenesis Over the Yangtze River and Huaihe River Valleys

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihc River valleys during 21-23 June 2003 are investigated with a potential vorticity (PV) framework.The cyclogenesis is manifested by a lower-tropospheric PV anomaly over the Yangtze River and Huaihe River valleys at early stages mainly due to latent heat release, which greatly affects the evolution of the associated lower-tropospheric geopotential height and wind fields as demonstrated by piecewise PV inversion. At later stages, an upper-tropospheric PV anomaly develops, resulting in the growth of ridges over the cyclone in both the upstream and downstream, which provide a favorable background field for the low-level cyclone development. But the effect of a surface thermal anomaly always impedes the development of the cyclone to different extents during this cyclogenesis. It is further demonstrated that the position and the strength of the PV anomaly are closely related to the low-level cyclone development, and the lower-tropospheric PV anomaly seems to constitute the most significant feature, for instance, contributing about 60% to the low-level jet (LLJ).

  1. Appraisal of the surficial aquifers in the Pomme de Terre and Chippewa River Valleys, western Minnesota

    Science.gov (United States)

    Soukup, W.G.; Gillies, D.C.; Myette, C.F.

    1984-01-01

    The surf icial sands in the Pomme de Terre and Chippewa River valleys in Grant, Pope, Stevens, and Swift Counties have been studied to determine the occurrence, availability, and quality of ground water in these aquifers.

  2. Evapotranspiration by woody phreatophytes in the Humboldt River Valley near Winnemucca, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report presents the results of cooperative studies ofevapotranspiration by phreatophytes in the Winnemucca reachof the Humboldt River valley. Water that is...

  3. State of the Refuge Habitat Report: Rappahannock River Valley National Wildlife Refuge 2011

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan outlines management strategies for every tract at the Rappahannock River Valley National Wildlife Refuge for 2011. This includes action priorities for...

  4. Regional economic analysis of current and proposed management alternatives for Rappahannock River Valley National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to assess the regional economic implications associated with draft CCP management strategies for Rappahannock River Valley NWR. This...

  5. Fisheries and Aquatic Resources Managment Plan Rappahannock River Valley National Wildlife Refuge 2007

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In June of 2007 there was an electro-fishing survey done within a small lake at the Laurel Grove Tract of the Rappahannock River Valley National Wildlife Refuge....

  6. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  7. Fire Management Plan for Rappahannock River Valley National Wildlife Refuge 2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Rappahannock River Valley National Wildlife Refuge is a relatively new refuge, and does not yet have a Master Plan, or a Comprehensive Conservation Plan....

  8. Community survey results for Rappahannock River Valley National Wildlife Refuge : Completion report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides a summary of results for the survey of residents of communities adjacent to Rappahannock River Valley NWR conducted from the spring through the...

  9. Contaminant exposure and reproductive health of sandhill cranes in the Central Platte River Valley, Nebraska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The central Platte River Valley provides crucial staging habitat for the endangered whooping crane (Grus americana) and the mid-continent population of sandhill...

  10. Aquifer Boundary of the Wood River Valley Aquifer System, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains the boundary of the Wood River Valley aquifer system as modified and expanded from that defined by Skinner and others (2007): It has been...

  11. Mississippi River Valley Alluvial Aquifer, Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, Tennessee; 2006-2008

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Outcrop and subcrop extent of the Mississippi River Valley Alluvial Aquifer in Alabama, Arkansas, Illinois, Kentucky, Louisiana, Mississippi, and Tennessee.

  12. Estimated Thickness of Quaternary Sediment in the Wood River Valley aquifer system, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the estimated thickness of Quaternary sediment of the Wood River Valley aquifer system. This isopach map was constructed by subtracting the estimated...

  13. Sport Fishing Management Plan Rappahannock River Valley National Wildlife Refuge 2009

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Rappahannock River Valley National Wildlife Refuge was first opened for recreational fishing in 2003. Wilna Pond was the only site suitable for this activity at...

  14. A Natural Heritage Inventory of the Rappahannock River Valley National Wildlife Refuge Potential Acquisition Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report documents the results of a project undertaken through this cooperative agreement to inventory the Rappahannock River Valley National Wildlife Refuge...

  15. Study area boundary for unconfined aquifer analysis, Wood River Valley, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  16. 77 FR 73976 - Nez Perce-Clearwater National Forests; Idaho; Crooked River Valley Rehabilitation Project

    Science.gov (United States)

    2012-12-12

    ... by dredge mining, leaving behind large tailing piles and deep ponds throughout the valley bottom. Gold and silver mining affected most of the valley bottom along the mainstem of Crooked River. Physical... information about this project is also available by visiting our project Web site:...

  17. [Ethnic dimension to migration in the Senegal river valley].

    Science.gov (United States)

    Traore, S

    1993-08-01

    Studies of the factors determining migratory patterns in the Senegal River Valley usually stress the importance of economic factors related to colonial domination. But when cultural factors and the social relations governing them are examined in a comparative study of ethnic groups, distinct population subgroups may be revealed to have differential migratory patterns. The Soninka and the Poular, two groups highly affected by migration, were chosen for an analysis of the impact of specific historical experiences on migratory behavior. A historical analysis of colonial archives and anthropological and historical monographs and the 1982-83 "Survey of Migration in the Valley of the Senegal River" provided data. The survey indicated that Soninka and Poular migratory patterns differed from each other, but that both differed from the migratory patterns of all other ethnic groups in the region. Soninka migration is international and oriented primarily toward Europe. It has recently become more intense than that of the poular. The determinants of migration in the two groups appear related more to the structure of households than to lack of educational and health facilities or even of food at the village level. Pastoral life and its associated beliefs and religious ideology appear to have been the principal determinants of precolonial movement among the Poular, while Soninka migration responded more to competition over control of manpower. Itinerant commercial activity was coupled with use of slave labor to ensure food production. But the suppression of slavery and crises of subsistence aggravated by colonial policy provoked ever more distant migration, which found a focus in the French demand for labor after World War II. Migration as an alternative does not appear to have been as significant for the Poular until more recently, when subsistence agriculture and the sale of animals were no longer sufficient to cover monetary needs. Male migration among the Soninka is a

  18. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    Science.gov (United States)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  19. Concentrations of polonium-210 and lead-210 in soil of the Shu river valley

    Directory of Open Access Journals (Sweden)

    Ilona Matveyeva

    2012-03-01

    Full Text Available Radioecological inspection of the Shu river valley is spent. Concentration of polonium-210 in soil makes no more than 33 Bk/kg and lead-210 - no more than 41 Bk/kg. By a method of mathematical modelling it is shown, activity investigated radionuclides in Shu river water during 50 years after pollution does not exceed maximum permissible level.

  20. 76 FR 70866 - Expansions of the Russian River Valley and Northern Sonoma Viticultural Areas

    Science.gov (United States)

    2011-11-16

    ... adequate information as to the identity and quality of the product. The Alcohol and Tobacco Tax and Trade... of the Russian River watershed. Finally, the petitioner included a Russian River Valley area tourism... and climate for Pinot Noir and Chardonnay. (``Diverse Geology/Soils Impact Wine Quality,'' by Terry...

  1. Geological and Geothermal Investigation of the Lower Wind River Valley, Southwestern Washington Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Berri, Dulcy A.; Korosec, Michael A.

    1983-01-01

    The Wind River Valley, on the west slope of the Cascade Range, is a northwest-trending drainage that joins the Columbia River near Carson, Washington. The region has been heavily dissected by fluvial and glacial erosion. Ridges have sharp crests and deep subsidiary valleys typical of a mature topography, with a total relief of as much as 900 m. The region is vegetated by fir and hemlock, as well as dense, brushy ground-cover and undergrowth. The lower 8 km of the valley is privately owned and moderately populated. The upper reaches lies within the Gifford Pinchot National Forest, and include several campgrounds and day parks, the Carson National Fish Hatchery, and the Wind River Ranger Station and Wind River Nursery of the US Forest Service. Logging activity is light due to the rugged terrain, and consequently, most valley slopes are not accessible by vehicle. The realization that a potential for significant geothermal resources exists in the Wind River area was brought about by earlier exploration activities. Geologic mapping and interpretation was needed to facilitate further exploration of the resource by providing a knowledge of possible geologic controls on the geothermal system. This report presents the detailed geology of the lower Wind River valley with emphasis on those factors that bear significantly on development of a geothermal resource.

  2. Geological and geothermal investigation of the lower Wind River valley, southwestern Washington Cascade Range

    Energy Technology Data Exchange (ETDEWEB)

    Berri, D.A.; Korosec, M.A.

    1983-01-01

    The detailed geology of the lower Wind River valley is presented with emphasis on those factors that bear significantly on development of a geothermal resource. The lower Wind River drainage consists primarily of the Ohanapecosh Formation, an Oligocene unit that is recognized across the entire southern Washington Cascade Range. The formation is at least 300 m thick in the Wind River valley area. It consists largely of volcaniclastic sediments, with minor massive pyroclastic flows, volcanic breccias and lava flows. Low grade zeolite facies metamorphism during the Miocene led to formation of hydrothermal minerals in Ohanapecosh strata. Metamorphism probably occurred at less than 180{sup 0}C.

  3. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    Science.gov (United States)

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  4. Formation mechanism and development pattern of aeolian sand landform in Yarlung Zangbo River valley

    Institute of Scientific and Technical Information of China (English)

    李森; 董光荣; 申建友; 杨萍; 刘贤万; 王跃; 靳鹤龄; 王强

    1999-01-01

    Aeolian sand landforms in the Yarlung Zangbo River valley can be divided into 4 classes and 21 types. The river valley has favourable environment conditions for the development of aeolian sand landforms. Simulation of MM4 mid-scale climate model showed that the near-surface flow field and wind vector field during the winter half year in the fiver valley are generally favourable for the aeolian sand deposition and as a whole they also affect the distribution zones and sites of aeolian sand landforms. Sand dunes and sand dune groups in the fiver valley developed mainly in three ways, namely windward retarding deposition, leeward back flow deposition and bend circumfluence deposition. Through alternating positive-reverse processes of sand dune formation under wind actions and sand dune vanishing under water actions, sand dunes developed from primary zone through main-body zone then to vanishing zone where climbing dunes and falling dunes are declining and are even disappearing.

  5. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    Science.gov (United States)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  6. Long-term measurements of agronomic crop irrigation in the Mississippi Delta portion of the Lower Mississippi River Valley

    Science.gov (United States)

    With over 4 million ha irrigated cropland, the Lower Mississippi River Valley (LMRV) is a highly productive agricultural region where irrigation practices are similar and the Mississippi River Valley alluvial aquifer (MRVA) is a primary source of on-demand irrigation. Owing to agricultural exports, ...

  7. A History of the Kanawha County Textbook Controversy, April 1974-April 1975.

    Science.gov (United States)

    Candor, Catherine Ann

    The background of the Kanawha County, language arts textbook controversy is described, and several factors are examined as possible precipitating elements in the controversy. The major actions, reactions, and occurrences in Kanawha County from April 1974 to April 1975 are reported, and various sources are used to document positions taken by…

  8. Stochastic analysis of particle trajectories through river valleys

    Science.gov (United States)

    Malmon, D. V.; Dunne, T.; Reneau, S. L.

    2008-12-01

    The movement of sediment through fluvial systems includes short episodes of transport separated by long periods of particle storage in fluvial sediment storage reservoirs such as floodplains. The trajectory of a particle through a valley floor containing sediment storage reservoirs can be modeled as a random process, consisting of a series of mobilization, transport, and deposition events. The probabilities of these events are determined by the rates of sediment transport and exchange in the valley floor, and by the masses of well- mixed storage reservoirs (i.e., the sediment budget). We developed and formalized a probabilistic theory of particle trajectories through alluvial valley floors by casting the movement of a particle as a finite Markov chain, a stochastic process in which the movement from one state to the next is determined by the transition probabilities among storage states. Transition probabilities for a valley floor in steady state with respect to sediment storage can be directly computed from the sediment budget using a simple set of equations. The transition probability matrix can be used to compute probability distributions of sediment residence times within valley floor storage elements, and to predict the fate of sediment-bound constituents such as pollutants, nutrients, and tracers. The theory was tested by modeling the redistribution and radioactive decay of particle-bound 137Cs in a small alluvial valley downstream of Los Alamos, New Mexico, and comparing the modeled distribution in 1997 with an independent map of 137Cs storage in that year. The study area is a sand-dominated valley with an ephemeral channel and a narrow floodplain, which is approximately in steady-state with respect to sediment storage over several decades. The results show that this approach can be used to route particle-bound tracers through alluvial valleys with temporary sediment storage reservoirs, analyze the impacts of upstream mitigation on downstream sediment and

  9. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    Science.gov (United States)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  10. SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER

    Institute of Scientific and Technical Information of China (English)

    XIONG Dong-hong; ZHOU Hong-yi; YANG Zhong; ZHANG Xin-bao

    2005-01-01

    The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus ofrevegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years' research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.

  11. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    Science.gov (United States)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  12. First record of Diatraea tabernella in the Cauca River Valley of Colombia

    Science.gov (United States)

    Diatraea tabernella (Dyar) is first recorded in the Cauca River Valley of Colombia. Even though information on its status has been unknown for almost a century in Colombia, its recent register creates concern about its potential economic importance in virtue of its abundance and distribution in the ...

  13. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  14. 27 CFR 9.66 - Russian River Valley.

    Science.gov (United States)

    2010-04-01

    ... medium-duty road (known locally as Bodega Road, section 12, T6N, R10W, on the Valley Ford map). (9) Proceed 0.9 mile northeast on Bodega Road to its intersection, at BM 486, with Jonvive Road to the...

  15. MX Siting Investigation. Gravity Survey - Southern White River Valley, Nevada.

    Science.gov (United States)

    1980-05-22

    included gravity surveys in ten valleys in Arizona (five), Nevada (two), New Mexico (two), and California (one). The gravity data were obtained for...Verification Sites, Nevada-Utah Siting Region, FN-TR-36. , 1980, Active Faults and Eartquake Hazards in the FY 79 Verification sites, Nevada-Utah Siting

  16. Hydrogeology of the western part of the Salt River Valley area, Maricopa County, Arizona

    Science.gov (United States)

    Brown, James G.; Pool, D.R.

    1989-01-01

    The Salt River Valley is a major population and agricultural center of more than 3,000 mi2 in central Arizona (fig. 1). The western part of the Salt River Valley area (area of this report) covers about 1,500 mi2. The Phoenix metropolitan area with a population of more than 1.6 million in 1985 (Valley National Bank, 1987) is located within the valley. The watersheds of the Salt, Verde, and Agua Fria Rivers provide the valley with a reliable but limited surface-water supply that must be augmented with ground water even in years of plentiful rainfall. Large-scale ground-water withdrawals began in the Salt River Valley in the early part of the 20th century; between 1915 and 1983, the total estimated ground-water pumpage was 81 million acre-ft (U.S. Geological Survey, 1984). Because of the low average annual rainfall and high potential evapotranspiration, the principal sources of ground-water recharge are urban runoff, excess irrigation, canal seepage and surface-water flows during years of higher-than-normal rainfall. Withdrawals greatly exceed recharge and, in some area, ground-water levels have declines as much as 350 ft (Laney and other, 1978; Ross, 1978). In the study area, ground-water declines of more than 300 ft have occurred in Deer Valley and from Luke Air Force Base north to Beardsley. As a result, a large depression of the water table has developed west of Luke Air Force Base (fig. 2). Ground-water use has decreased in recent years because precipitation and surface-water supplies have been greater than normal. Increased precipitation also caused large quantities of runoff to be released into the normally dry Salt and Gila River channels. From February 1978 to June 1980, streamflow losses of at least 90,000 acre-ft occurred between Jointhead Dam near the east boundary of the study area and Gillespie Dam several miles southwest of the west edge of the study area (Mann and Rhone, 1983). Consequently, ground-water declines in a large part of the basin have

  17. Polyfluoroalkyl substance exposure in the Mid-Ohio River Valley, 1991-2012.

    Science.gov (United States)

    Herrick, Robert L; Buckholz, Jeanette; Biro, Frank M; Calafat, Antonia M; Ye, Xiaoyun; Xie, Changchun; Pinney, Susan M

    2017-09-01

    Industrial discharges of perfluorooctanoic acid (PFOA) to the Ohio River, contaminating water systems near Parkersburg, WV, were previously associated with nearby residents' serum PFOA concentrations above US general population medians. Ohio River PFOA concentrations downstream are elevated, suggesting Mid-Ohio River Valley residents are exposed through drinking water. Quantify PFOA and 10 other per- and polyfluoroalkyl substances (PFAS) in Mid-Ohio River Valley resident sera collected between 1991 and 2013 and determine whether the Ohio River and Ohio River Aquifer are exposure sources. We measured eleven PFAS in 1608 sera from 931 participants. Serum PFOA concentration and water source associations were assessed using linear mixed-effects models. We estimated between-sample serum PFOA using one-compartment pharmacokinetics for participants with multiple samples. In serum samples collected as early as 1991, PFOA (median = 7.6 ng/mL) was detected in 99.9% of sera; 47% had concentrations greater than US population 95th percentiles. Five other PFAS were detected in greater than 82% of samples; median other PFAS concentrations were similar to the US general population. Serum PFOA was significantly associated with water source, sampling year, age at sampling, tap water consumption, pregnancy, gravidity and breastfeeding. Serum PFOA was 40-60% lower with granular activated carbon (GAC) use. Repeated measurements and pharmacokinetics suggest serum PFOA peaked 2000-2006 for participants using water without GAC treatment; where GAC was used, serum PFOA concentrations decreased from 1991 to 2012. Mid-Ohio River Valley residents appear to have PFOA, but not other PFAS, serum concentrations above US population levels. Drinking water from the Ohio River and Ohio River Aquifer, primarily contaminated by industrial discharges 209-666 km upstream, is likely the primary exposure source. GAC treatment of drinking water mitigates, but does not eliminate, PFOA exposure. Copyright

  18. Arbuscular mycorrhizal fungi associations of vascular plants confined to river valleys: towards understanding the river corridor plant distribution.

    Science.gov (United States)

    Nobis, Agnieszka; Błaszkowski, Janusz; Zubek, Szymon

    2015-01-01

    The group of river corridor plants (RCP) includes vascular plant species which grow mainly or exclusively in the valleys of large rivers. Despite the long recognized fact that some plant species display a corridor-like distribution pattern in Central Europe, there is still no exhaustive explanation of the mechanisms generating this peculiar distribution. The main goal of this study was therefore to investigate whether arbuscular mycorrhizal fungi (AMF) and fungal root endophytes influence the RCP distribution. Arbuscular mycorrhizae (AM) were observed in 19 out of 33 studied RCP. Dark septate endophytes (DSE) and Olpidium spp. were recorded with low abundance in 15 and 10 plant species, respectively. The spores of AMF were found only in 32% of trap cultures established from the soils collected in the river corridor habitats. In total, six widespread AMF species were identified. Because the percentage of non-mycorrhizal species in the group of RCP is significant and the sites in river corridors are characterized by low AMF species diversity, RCP can be outcompeted outside river valleys by the widespread species that are able to benefit from AM associations in more stable plant-AMF communities in non-river habitats.

  19. Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

    Science.gov (United States)

    Mast, M. Alisa

    2017-07-13

    Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

  20. Umpqua River Oregon Garden Valley PhotoMosaic 1939

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  1. Umpqua River Oregon Garden Valley PhotoMosaic 1967

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Umpqua River drains 12,103 square kilometers (4,673 square miles) in southwest Oregon before flowing into the Pacific Ocean at Winchester Bay near the city of...

  2. The Brahmaputra River: a stratigraphic analysis of Holocene avulsion and fluvial valley reoccupation history

    Science.gov (United States)

    Hartzog, T. R.; Goodbred, S. L.

    2011-12-01

    The Brahmaputra River, one of the world's largest braided streams, is a major component of commerce, agriculture, and transportation in India and Bangladesh. Hence any significant change in course, morphology, or behavior would be likely to influence the regional culture and economy that relies on this major river system. The history of such changes is recorded in the stratigraphy deposited by the Brahmaputra River during the Holocene. Here we present stratigraphic analysis of sediment samples from the boring of 41 tube wells over a 120 km transect in the upper Bengal Basin of northern Bangladesh. The transect crosses both the modern fluvial valley and an abandoned fluvial valley about 60 km downstream of a major avulsion node. Although the modern Brahmaputra does not transport gravel, gravel strata are common below 20 m with fluvial sand deposits dominating most of the stratigraphy. Furthermore, the stratigraphy preserves very few floodplain mud strata below the modern floodplain mud cap. These preliminary findings will be assessed to determine their importance in defining past channel migration, avulsion frequency, and the reoccupation of abandoned fluvial valleys. Understanding the avulsion and valley reoccupation history of the Brahmaputra River is important to assess the risk involved with developing agriculture, business, and infrastructure on the banks of modern and abandoned channels. Based on the correlation of stratigraphy and digital surface elevation data, we hypothesize that the towns of Jamalpur and Sherpur in northern Bangladesh were once major ports on the Brahmaputra River even though they now lie on the banks of small underfit stream channels. If Jamalpur and Sherpur represent the outer extent of the Brahmaputra River braid-belt before the last major avulsion, these cities and any communities developed in the abandoned braid-belt assume a high risk of devastation if the next major avulsion reoccupies this fluvial valley. It is important to

  3. Composition Patterns of Waterbirds from La Vieja River, Geographic Valley of Cauca River, Colombia

    Directory of Open Access Journals (Sweden)

    Laura Milena Ramírez-Urrea

    2014-02-01

    Full Text Available We compiled and analyzed data gathered from observations during the period 2001-2013 in three sectors along La Vieja river, located in the Cauca river valley, Colombia. We describe spatial and temporal aspects of such dataset, focusing in indentify patterns of species’ composition and abundance. We recorded 28 waterbird species in 33 transects, being 22 species observed in more than 50 % of these transects. The species richness among transects did not shows significant differences. However, two cluster analyses, considering both presence/absence and abundance data, showed that there is spatial structure in the species composition along the river. In contrast, although observations were conducted during more than ten years there is no evidence of temporal changes in species composition. Still, some species showed increase ordecrease trends in their frequency. We present a new record for one species (Chloroceryle aenea for the region. Despite that the landscape surrounding La Vieja river have faced a high anthropogenic impact, the river still presents a significant diversity of waterbirds, which could add value to the conservation plans in the zone. PATRONES DE LA COMPOSICIÓN DE AVES ACUÁTICAS EN ELRÍO LA VIEJA, VALLE GEOGRÁFICO DEL RÍO CAUCA, COLOMBIARESUMENCompilamos y analizamos los datos de observaciones realizadas entre los años 2001 y 2013 en tres sectores a lo largo del cauce del río La Vieja, ubicado en el valle geográfico del río Cauca, Colombia. Describimos los datos espacial y temporalmente, enfocándonos en identificar patrones de composición y abundancia de especies. Registramos 28 especies de aves acuáticas en 33 transectos, siendo 22 especies observadas en más del 50 % de los transectos. Las diferencias en el número de especies por transecto no fueron significativas entre los tres sectores del río. Sin embargo, dos análisis de agrupamiento, considerando tanto los datos de presencia/ausencia como de

  4. COMPLEX LANDSLIDE IN THE RJEČINA RIVER VALLEY

    Directory of Open Access Journals (Sweden)

    Čedomir Benac

    1999-12-01

    Full Text Available This paper presents the first phase investigation results of the complex landslide situated on north-eastern slope of the Rječina valley, between Valići damm and the village of Pašac. The valley slopes were formed in Paleogene flysch and Quaternary formations. The limestone rocks are present on the top sites, forming the scarps there. The complex landslide formation has been preconditioned by the geological structure and morphogenesis of the Rječina valley. This is the type of complex retrogressive landslide, starting with its development from toe to head. Thirteen individual landslide bodies were discovered on the slope. The material of slope formation and a part of weathering zone is caught by the landsliding. The larger part of landslide body is saturated by underground water penetrating through the covering zone in contact with flysch bedrock. The landsliding is relatively shallow, because there is no visible damage affected by sliding in the hydrotechnical tunnel, situated below the landslide toe. The mega-blocks of the limestone rock have also been moved and, most probably, are sliding down the flysch bedrock. This is a special phenomenon, atypical of the flysch slope landslide type in the area of Rijeka. The limestone rock on a scarp is extremely disintegrated, with new visible fractures in it. The site investigations comprised the surveying, seismic and engineering geological explorations. The surveying was performed by the method of terrestrial photogrammetry. The results are compared with aerial photos from 1981. In this respect, it was possible to discover the changes of slope morphology during the period 1981 — 1997. The photos were also used for the engineering geological mapping supplementation. The seismic surveying was performed by the surface seismic refraction method (the paper is published in Croatian.

  5. Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    LIU YunYun; DING YiHui

    2008-01-01

    Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data,the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM,the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the teleconnection mode which is from the northwest of India via the Tibetan Plateau to northern China. The former mode is defined as the "south" teleconnection of the Asian summer monsoon,forming in the period of ISM onset; while the latter mode is called the "north" teleconnection,mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection's formation,the Asian monsoon circulation has experienced a series of important changes: ISM onset,the northward movement of the south Asia high (SAH),the onset vortex occurrence,the eastward extension of the stronger tropical westerly belt,and the northeastward jump of the western Pacific subtropical high(WPSH),etc. Consequently,since ISM sets up over Kerala,the whole Asian continent is covered by the upper SAH after about two weeks,while in the mid- and lower troposphere,a strong wind belt forms from the Arabian Sea via the southern India,BOB and the South China Sea (SCS),then along the western flank of WPSH,to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams,the upper westerly jet stream and the low level jet have been coupled vertically over east Asia,while the Yangtze River Valley happens to locate in the ascending motion area between the upper jet

  6. Teleconnection between the Indian summer monsoon onset and the Meiyu over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the Indian and Chinese precipitation data and the NCEP-NCAR reanalysis circulation data, the relationship between the Indian summer monsoon (ISM) onset and the Meiyu over the Yangtze River Valley has been discussed by the methods of correlation analysis and composite analysis. The results show that the date of ISM onset over Kerala in the southwestern coast of the Indian Peninsula is about two weeks earlier than the beginning of the Meiyu over the Yangtze River Valley. After the outbreak of ISM, the teleconnection mode sets up from the western coast of India via the Bay of Bengal (BOB) to the Yangtze River Valley and southern Japan. It is different both in time and space from the telecon- nection mode which is from the northwest of India via the Tibetan Plateau to northern China. The for- mer mode is defined as the "south" teleconnection of the Asian summer monsoon, forming in the pe- riod of ISM onset; while the latter mode is called the "north" teleconnection, mainly occurring in the Asian monsoon culminant period. During the process of the "south" teleconnection’s formation, the Asian monsoon circulation has experienced a series of important changes: ISM onset, the northward movement of the south Asia high (SAH), the onset vortex occurrence, the eastward extension of the stronger tropical westerly belt, and the northeastward jump of the western Pacific subtropical high (WPSH), etc. Consequently, since ISM sets up over Kerala, the whole Asian continent is covered by the upper SAH after about two weeks, while in the mid- and lower troposphere, a strong wind belt forms from the Arabian Sea via the southern India, BOB and the South China Sea (SCS), then along the western flank of WPSH, to the Yangtze River Valley and southern Japan. With the northward moving of the subtropical jet streams, the upper westerly jet stream and the low level jet have been coupled ver- tically over east Asia, while the Yangtze River Valley happens to locate in the ascending

  7. Impact of a large flood on mountain river habitats, channel morphology, and valley infrastructure

    Science.gov (United States)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-11-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  8. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    Science.gov (United States)

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake

  9. System metabolism in the Kanawha River basin: comparing two models

    Science.gov (United States)

    Resource managers and regulatory agencies typically monitor aquatic ecosystem condition using a combination of measures that describe stream structure (e.g. physical habitat variables, species richness metrics) and physiochemical properties (e.g., pH, DO, turbidity). Recently, me...

  10. 76 FR 28312 - Safety Zones; Fireworks Display Kanawha River, WV

    Science.gov (United States)

    2011-05-17

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... West Virginia Special Olympics Fireworks Display, is located between mile 57.9 and 58.9 in Charleston... of Energy Effects under Executive Order 13211. Technical Standards The National Technology...

  11. Marmet Locks and Dam, Kanawha River, West Virginia

    Science.gov (United States)

    2015-07-01

    than 16.4 million tons of commerce locked through Marmet, including 15.4 million tons of coal , which is used mostly for power generation. The...acwc.sdp.sirsi.net/client/search/ asset /1000592 Headquarters, U.S. Army Corps of Engineers (HQUSACE). 1997. Engineering and design; Monitoring Completed...Vicksburg, MS: U.S. Army Engineer Research and Development Center. http://acwc.sdp.sirsi.net/client/search/ asset /1042406 Patev, R. C. 2000. Probabilistic

  12. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative...

  13. MODFLOW-USG model of groundwater flow in the Wood River Valley aquifer system in Blaine County, Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A three-dimensional numerical groundwater flow model (MODFLOW-USG) was developed for the Wood River Valley (WRV) aquifer system, south-central Idaho, to evaluate...

  14. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds; Annual Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Major efforts have been initiated in the Lower Mississippi River Alluvial Valley (LMA V. Fig. I) from within both the U.S. Departments of Interior and Agriculture to...

  15. Report on counts of migrating raptors along the Mississippi River Valley conducted during the fall of 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Counts of migrating raptors were conducted along the Mississippi River Valley during the fall of 1992 for 211.3 hours (34 days) at Effigy Mounds National Monument....

  16. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds: 2002 Annual Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The annual report outlines the importance of conserving and restoring lands for migratory birds in the Lower Mississippi River Alluvial Valley.

  17. The Importance of Lower Mississippi River Alluvial Valley Reforestation and Wetland Restoration Sites to Wintering Migratory Birds: 2000 Annual Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The annual report outlines the importance of conserving and restoring lands for migratory birds in the Lower Mississippi River Alluvial Valley.

  18. Recycling of Pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River

    Science.gov (United States)

    Munack, H.; Blöthe, J. H.; Fülöp, R. H.; Codilean, A. T.; Fink, D.; Korup, O.

    2016-10-01

    Rivers draining the semiarid Transhimalayan Ranges at the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The effects of these cut-and-fill cycles on millennial sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, a tributary to the Indus, which taps the >250-m thick More Plains valley fill that currently plugs the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses show that a phase of valley infill gave way to net dissection and the NW Himalaya's first directly dated stream capture in late Marine Isotope Stage (MIS) 6, ∼135 ka ago. Headwaters of the Indus are currently capturing headwaters of the Sutlej, and rivers have eroded >14.7 km3 of sediment from the Zanskar headwaters since, mobilising an equivalent of ∼8% of the Indus' contemporary sediment storage volume from only 0.3% of its catchment area. The resulting specific sediment yields are among the rarely available rates averaged over the 105-yr timescale, and surpass 10Be-derived denudation rates from neighbouring catchments three- to tenfold. We conclude that recycling of Pleistocene valley fills has fed Transhimalayan headwaters with more sediment than liberated by catchment denudation, at least since the last glacial cycle began. This protracted release of sediment from thick Pleistocene valley fills might bias estimates of current sediment loads and long-term catchment denudation.

  19. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa*1

    Science.gov (United States)

    Bettis, E. Arthur; Baker, Richard G.; Nations, Brenda K.; Benn, David W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ± 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan.

  20. Early Holocene pecan, Carya illinoensis, in the Mississippi River Valley near Muscatine, Iowa

    Science.gov (United States)

    Bettis, E. Arthur; Baker, R.G.; Nations, B.K.; Benn, D.W.

    1990-01-01

    A fossil pecan, Carya illinoensis (Wang.) K. Koch, from floodplain sediments of the Mississippi River near Muscatine, Iowa, was accelerator-dated at 7280 ?? 120 yr B.P. This discovery indicates that pecan was at or near its present northern limit by that time. Carya pollen profiles from the Mississippi River Trench indicate that hickory pollen percentages were much higher in the valley than at upland locations during the early Holocene. Pecan, the hickory with the most restricted riparian habitat, is the likely candidate for producing these peaks in Carya pollen percentages. Therefore, pecan may have reached its northern limit as early as 10,300 yr B.P. Its abundance in Early Archaic archaeological sites and the co-occurrence of early Holocene Carya pollen peaks with the arrival of the Dalton artifact complex in the Upper Mississippi Valley suggest that humans may have played a role in the early dispersal of pecan. ?? 1990.

  1. RESOURCES OF SOLAR ENERGY IN THE VALLEY OF the WIDAWA RIVER

    Directory of Open Access Journals (Sweden)

    Krystyna Bryś

    2015-10-01

    Full Text Available The paper analyzed solar radiation resources in the valley of Widawa river on the basis of 64-year (1961–2014 measurement series of global radiation and sunshine duration in the Wrocław-Swojec Observatory (SW Poland. The issues have been presented in comparative and dynamical aspects. They have been compared yearly and monthly radiation sums (of global radiation or sunshine duration and their extreme and average values with the radiation data from other regions of Poland. The dynamics of variations between the following months, seasons and from year to year were taken into account. Such an analysis is not only calculation of basic actinometrical features of the Wrocław-Swojec area, but also a reliable presentation of average values and variability of solar radiation resources in the valley of Widawa river.

  2. Soil Stratigraphy from Three Pleistocene Archaeological Sites of the Middle Ter River Valley, Catalonia, Spain

    Directory of Open Access Journals (Sweden)

    Sayantani NEOGI

    2010-01-01

    Full Text Available This dissertation summarizes the stratigraphic description of three Pleistocene archaeological sites inthe middle Ter river valley. A long history of archaeological research in this region suggests thepossibility of developing contextual studies. This work is basically an investigation of two soilformation processes from the deep soil horizons of the Mediterranean region: clay illuviation andcarbonatation. This approach has been developed by soil micromorphology, a technique well suitedfor this type of record, supplemented by fundamental field descriptions and basic cartography of the geomorphological terraces of the middle Ter river valley. The soil stratigraphy of archaeological sites and Pleistocene landscapes opens the opportunity to investigate a complex subject of study. The soils and paleosols are a source of information for palaeoecology and human occupations. It has been attempted here only to lay the groundwork for the interpretation of genetic factors pointing to the classification of soils.

  3. Risk factors for vampire bat bites in the Apurimac river valley

    OpenAIRE

    Ormaeche M, Melvy; Dirección General de Epidemiología, Ministerio de Salud. Lima, Perú. Enfermera Epidemiologa.; Gómez-Benavides, Jorge; Dirección General de Epidemiología, Ministerio de Salud, Lima, Perú. Médico epidemiólogo.

    2007-01-01

    Wild rabies in Peru is related in most of cases to (Desmodus rotundus) vampire bats bite. The zone of Apurimac river valley it has notified in frequent form attacks of vampires as much to the cattle as to the settlers. A matched case-control study was carried to determine the risk factors associated with the vampire bite in three communities bordering to the river. Were included 39 cases and 67 controls, 70% were women, 14% recognized the rabies as a mortal disease and 36% identified to t...

  4. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy)

    OpenAIRE

    Giannecchini, R.; Y. Galanti; G. D'Amato Avanzi

    2012-01-01

    The Serchio River Valley, in north-western Tuscany, is a well-known tourism area between the Apuan Alps and the Apennines. This area is frequently hit by heavy rainfall, which often triggers shallow landslides, debris flows and debris torrents, sometimes causing damage and death. The assessment of the rainfall thresholds for the initiation of shallow landslides is very important in order to improve forecasting and to arrange efficient alarm systems.

    With the aim of defini...

  5. Applied analysis of ventilation technology in residential buildings in Changjiang river valley

    Institute of Scientific and Technical Information of China (English)

    杨露露; 卢军; 王曦; 甘灵丽

    2009-01-01

    Making the use of ventilation technology may decrease building energy consumption,improve indoor thermal environment,and ameliorate indoor air quality. Combining with the meteorological characteristics in the Changjiang river valley and focusing on Chongqing,this work makes an applied analysis of the feasibility of intermittent mechanical ventilation. By comparison of various ventilation modes,it gives a summary of the suitable ventilation ways for different weather conditions with the combination of testing data and experimental data.

  6. Responses of Bats to Forest Fragmentation in the Mississippi River Alluvial Valley, Arkansas, USA

    OpenAIRE

    Risch, Thomas S.; Karen F. Gaines; Connior, Matthew B.; Rex E. Medlin

    2010-01-01

    Intense conversion of bottomland hardwood forests to rice and soybeans in the Mississippi River Valley of Arkansas has restricted the remaining forest to isolated fragments. Habitat fragmentation has proven to be detrimental to population sustainability of several species, and is the subject of intense study with often species and latitude specific responses. We compared both coarse land area classes and landscape fragmentation metrics from six 30 km × 30 km subsets centered on publicly owned...

  7. Coupled flow and salinity transport modelling in semi-arid environments: The Shashe River Valley, Botswana

    Science.gov (United States)

    Bauer, Peter; Held, Rudolf J.; Zimmermann, Stephanie; Linn, Flenner; Kinzelbach, Wolfgang

    2006-01-01

    Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A freshwater aquifer located around an ephemeral stream is depleted by the combined effect of transpiration and pumping. Quantitative system analysis reveals that the amount of water taken by transpiration is far more than the quantities pumped for water supply. Furthermore, the salinity distribution in and around Shashe River Valley as well as its temporal dynamics can be satisfactorily reproduced if the transpiration is modelled as a function of groundwater salinity. The location and dynamics of the saltwater-freshwater interface are highly sensitive to the parameterization of evaporative and transpirative salt enrichment. An existing numerical code for coupled flow/transport simulations (SEAWAT) was adapted to this situation. Model results were checked against a large set of field data including water levels, water chemistry, isotope data and ground and airborne geophysical data. The resulting groundwater model was able to reproduce the long-term development of the freshwater lens located in Shashe River Valley as well as the decline in piezometric heads observed over the last decade. Furthermore, the old age of the saline water surrounding the central freshwater lens could be explained.

  8. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  9. A climatology of airborne dust for the Red River Valley of North Dakota

    Science.gov (United States)

    Godon, Nancy A.; Todhunter, Paul E.

    The Red River Valley of North Dakota has been identified as one of the highest potential dust production regions in the United States. This paper provides a climatological summary of the airborne dust environment in the region using historical meteorological data for Fargo, North Dakota. Data for the period 1948-1994 were extracted for all 3-hourly weather observations which recorded an obstruction to vision due to dust, blowing dust or dust storms. Data were compiled on the year, month, day and hour of each observation, as well as the horizontal visibility, wind speed, wind direction, and other present weather occurring at the time of each event. Airborne dust events in the Red River Valley of the North normally involve local entrainment of dust, and show a strong peak in the frequency of occurrence during the afternoon and spring seasons, although a secondary winter peak is also present. Dust events have decreased in frequency over the study period, apparently in response to improved farm management practices. Most events fall into two basic categories: winter events generated by passing cold fronts or strong regional pressure gradients, and often accompanied by blowing snow and light snow showers, and spring events triggered by the passage of cyclones and fronts, and normally not accompanied by other prevailing weather at the time of the observation. Results are discussed in relation to the unique soil, meteorological and surface cover conditions of the Red River Valley of North Dakota.

  10. SIR2012-5282 Surficial Geology: Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and...

  11. One hour of catastrophic landscape change in the upper Rhine River valley 9400 years ago

    Science.gov (United States)

    Clague, John; von Poschinger, Andreas; Calhoun, Nancy

    2017-04-01

    The Flims rockslide, which happened about 9400 years ago in the eastern Swiss Alps, is the largest postglacial terrestrial landslide in Europe. The landslide and the huge secondary mass flow it induced completely changed the floor and lower slopes of the Vorderrhein valley over a distance of several tens of kilometres, probably in one hour or less. The landslide began with the sudden detachment of 10-12 km3 of Jurassic and Cretaceous limestone from the north wall of the Vorderrhein valley. The detached rock mass rapidly fragmented as it accelerated and then struck the Rhein valley floor and the opposing valley wall. Tongues of debris traveled up and down the Vorderrhein. The impact liquefied approximately 1 km3 of valley-fill sediments, mainly fluvial and deltaic gravel and sand. The liquefied sediment moved as a slurry - the Bonaduz gravel - tens of kilometres downvalley from the impact site, carrying huge fragments of rockslide debris that became stranded on the valley floor, forming hills termed 'tumas'. Part of the flow was deflected by a cross-valley barrier and flowed 16 km up the Hinterrhein valley (the main tributary of the Vorderrhein), carrying tumas with it. Bonaduz gravel is >65 m thick and fines upward from massive sandy cobble gravel at its base to silty sand at its top. Sedimentologic and geomorphic evidence indicates that the liquefied sediment was transported as a hyperconcentated flow, possibly above a basal carpet of coarse diamictic sediment that behaved as a debris flow. The large amount of water involved in the Bonaduz flow indicates that at least part of the Flims rockslide entered a former lake in Vorderrhein valley. The rockslide debris impounded the Vorderrhein and formed Lake Ilanz, which persisted for decades or longer before the dam was breached in series of outburst floods. These floods further changed the valley floor below the downstream limit of the landslide. Today, Vorderrhein flows in a spectacular 8-km-long gorge incised up to

  12. A view of late glacial runoff from the lower Mississippi River valley

    Energy Technology Data Exchange (ETDEWEB)

    Saucier, R.T. (Army Engineer Waterways Experiment, Vicksburg, MS (United States))

    1992-01-01

    Thousands of cubic kilometers of massive coarse-grained Late Wisconsin glacial outwash underline the Mississippi alluvial plain, however, the deposits are exposed at the surface primarily only in the Eastern Lowlands. There the valley train deposits form a series of low, flat terraces characterized by a distinctive pattern of relict braided channels. The terrace levels reflect episodes of meltwater release and possibly catastrophic flood events, but precise correlations to Midwest events have not been possible. The detailed chronology of late glacial runoff in the valley is not resolved, but certain key events have been temporally defined. Diversion of the Mississippi River from the Western to the eastern Lowlands began about 16,000 B.P. The high and intermediate terrace levels formed between 14,500 and 11,000 B.P. during the peak of late glacial runoff: the intermediate level was abandoned and had wide-spread human habitation by 10,000 B.P. Following a lull in runoff after 11,000 B.P., a diversion of the river through Thebes Gap and the formation of the well-defined Charleston Fan in southeast Missouri was possibly triggered by a sudden and brief meltwater release event. Sedimentological and archeological evidence suggest this occurred between 10,500 and 10,000 B.P. By about 9,800 B.P., the river had ceased carrying meltwater and was flowing in a meandering regime. Because most outwash in the valley is buried, opportunities for direct investigation will always be limited. However, indirect study of outwash via impacts on sedimentation in tributary valleys, banding in loess deposits, and distribution of ice-rafted erratics should yield new chronostratigraphic evidence.

  13. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    Science.gov (United States)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  14. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  15. A Study of Earlier Neolithic Tombs in the Yellow River Valley%黄河流域前期新石器时代墓葬的研究

    Institute of Scientific and Technical Information of China (English)

    白云翔; 张建锋

    2001-01-01

    Archaeologists have found some 800 early Neolithic burials dating to before 5000 BC in the Yellow River valley, which belong to the Dadiwan, Peiligang, Houli, and Beixin cultures. These burials shared remarkable similarities, since they situated in the same social developmental stage with similar cultural tradition, geographical environment, and subsistent economy. Although some similarities also shared by the burials of the Yellow River valley and those of the Yangzi River valley, the differences between the two regions were obvious.

  16. Watermills – a Forgotten River Valley Heritage – selected examples from the Silesian voivodeship, Poland

    Directory of Open Access Journals (Sweden)

    Fajer Maria

    2014-06-01

    Full Text Available This study is an attempt to describe the current condition of the watermills situated in the river valleys of the Silesian voivodeship. Changes in the number and distribution of mills from the late 18th century until the 20th century have been presented (as exemplified by the Liswarta River basin in the northern part of the voivodeship. Watermills have been discussed both as industrial monuments that document the history of the milling industry and as tourist attractions. Currently, working mills that serve the local population in rural areas are a rarity, and working watermills are unique sites that should be protected as industrial monuments that constitute an important part of our cultural heritage. They are among those industrial monuments that are particularly vulnerable to destruction. Such mills increasingly attract the interest of industrial tourism promoters. Activities aimed at promoting watermills as cultural heritage sites and leading to their protection and preservation as part of the river valley landscape have also been discussed. In the Silesian voivodeship, there are many watermills that deserve attention; some of these are listed in the register of monuments maintained by the National Heritage Board of Poland. Unfortunately, most disused mills are falling into disrepair and are slowly disappearing; only a few have been preserved in good condition. Many of these have long histories and they are also situated in areas attractive for tourists. There is no doubt that watermills should be preserved. Their inclusion in open-air museums is not the only solution – any form of protection in situ by putting them to different uses is also valuable. Changing the function of a mill to serve as a hotel, restaurant, cultural centre, etc. makes it possible to maintain these sites as parts of river valley landscapes.

  17. Don't Fence Me In: Free Meanders in a Confined River Valley

    Science.gov (United States)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  18. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  19. Groundwater-flow model for the Wood River Valley aquifer system, south-central Idaho

    Science.gov (United States)

    Fisher, Jason C.; Bartolino, James R.; Wylie, Allan H.; Sukow, Jennifer; McVay, Michael

    2016-06-27

    A three-dimensional numerical model of groundwater flow was developed for the Wood River Valley (WRV) aquifer system, Idaho, to evaluate groundwater and surface-water availability at the regional scale. This mountain valley is located in Blaine County and has a drainage area of about 2,300 square kilometers (888 square miles). The model described in this report can serve as a tool for water-rights administration and water-resource management and planning. The model was completed with support from the Idaho Department of Water Resources, and is part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the WRV. A highly reproducible approach was taken for constructing the WRV groundwater-flow model. The collection of datasets, source code, and processing instructions used to construct and analyze the model was distributed as an R statistical-computing and graphics package.

  20. Grain-size cycles in Salawusu River valley since 150 ka BP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The palaeo-mobile dune sands and fluvio-lacustrine facies with palaeosols in Milanggouwan stratigraphic section of the Salawusu River valley situated at the southeast of the Mu Us Desert experienced abundant remarkable alternative changes of coarse and fine rhythms in grainsize since 150 ka BP, and the grain-size parameters - Mz, σ, Sk, Kg and SC/I also respond to the situation of multi-fluctuational alternations between peak and valley values. Simultaneity the grainsize eigenvalues - Ф5, Ф16, P25, Ф50, Ф75, Ф84 and Ф95 are respondingly manifested as greatly cadent jumpiness. Hereby, the Milanggouwan section can be divided into 27 grain-size coarse and fine sedimentary cycles, which can be regarded as a real and integreted record of climate-geological process of desert vicissitude resulted from the alternative evolvement of the ancient winter and summer monsoons of East Asia since 150 ka BP.

  1. A study of temperature's spatial distribution in Neuquen River valley through satellite imaging

    Directory of Open Access Journals (Sweden)

    Marisa Gloria Cogliati

    2010-01-01

    Full Text Available This paper looks into the spatial distribution of brightness and surface temperature through the use of LAND SAT7 ETM+ and NO AA-AVHRR satellite imagery in the cultivated valley of the Neuquén river. Studying the spatial distribution of temperatures in an area with a somewhat complex terrain requires the use of a great density of meteorological measurements. It is often impossible to obtain the right density of the argometeorological network due to the high installation and maintenance costs. Remote sensors provide a large flow of information in various resolutions, at considerably lower costs. Determining the valley's warm and cold zones would allow for more efficient irrigation and frost-protection methods, and it would provide tools to improve the area's productive planning.

  2. Examining the spatial and temporal variation of groundwater inflows to a valley-to-floodplain river using 222Rn, geochemistry and river discharge: the Ovens River, southeast Australia

    Directory of Open Access Journals (Sweden)

    M. C. L. Yu

    2013-04-01

    Full Text Available Radon (222Rn and major ion geochemistry were used to define and quantify the catchment-scale river-aquifer interactions along the Ovens River in the southeast Murray-Darling Basin, Victoria, Australia, between September 2009 and October 2011. The Ovens River is characterized by the transition from a single channel river residing within a mountain valley in the upper catchment to a multi-channel meandering river on flat alluvial plains in the lower catchment. Overall, the river is dominated by gaining reaches, receiving groundwater from both alluvial and basement aquifers. The distribution of gaining and losing reaches is governed by catchment morphology and lithology. In the upper catchment, rapid groundwater recharge through sediments that have high hydraulic conductivities in a narrow valley produces higher baseflow to the river during wet (high flow periods as a result of hydraulic loading. In the lower catchment, the open and flat alluvial plains, lower rainfall and finer-gained sediments reduce the magnitude and variability of hydraulic gradient between the aquifer and the river, producing lower and constant groundwater inflow. With a small difference between the water table and the river height, small changes in river height or in groundwater level can result fluctuating gaining and losing behaviour along the river. The middle catchment represents a transition in river-aquifer interactions from upper to lower catchment. High baseflow in some parts of the middle and lower catchments is caused by groundwater flow over basement highs. Mass balance calculations based on 222Rn activities indicate that groundwater inflow is 4–22% of total flow with higher baseflow occurring in high flow periods. Uncertainties in gas exchange coefficient and 222Rn activities of groundwater alter the calculated groundwater inflow to 3–35%. Ignoring hyporheic exchange appears not to have a significant impact on the total groundwater estimates. In comparison to

  3. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    Science.gov (United States)

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  4. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    Science.gov (United States)

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  5. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    Science.gov (United States)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  6. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    Science.gov (United States)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  7. Statistical analysis of nitrate in ground water, West Salt River Valley, Arizona

    Science.gov (United States)

    Long, Andy E.; Brown, James G.; Gellenbeck, Dorinda J.

    1997-01-01

    Accurate estimates of the nitrate concentrations in ground water in west Salt River Valley are needed to better manage ground water affected by nitrate. Statistical analyses were done to establish the best statistical method to produce these estimates. Three sets of ground-water data for different time periods --1975-77, 1980-85, and 1986-90--were used to analyze spatial and temporal variations in concentrations of nitrate in ground water. The use of inverse-distance squared weighting, radial-basis function, kriging, and cokriging were evaluated for estimating nitrate concentrations in ground water. From an analysis of the cross-validation results, cokriging maps resulted in the best estimates, and they were accepted as being the most reliable. Cross-validation results also indicated that nitrate cokriged best with magnesium for 1975-77 and 1986-90 and with calcium for 1980-85. Kriging results consistently were almost as reliable as any of the cokriging results. Because of the difficulties inherent in the cokriging process, kriging, although not optimal, was the fastest way to obtain reasonably good results. In 1980-85, cokriged nitrate concentrations exceeded 20 milligrams per liter in a 12-square-kilometer area in Phoenix and Glendale and exceeded 10 milligrams per liter in a 280-square-kilometer area that extended to the Salt River. In 1986-90, nitrate concentrations along the entire reach of the Salt River in west Salt River Valley were less than 10 milligrams per liter and were smaller probably as a result of recharge from the Salt and Gila Rivers in 1982. Farther north in Phoenix and Glendale, the area in which nitrate concentrations exceeded 10 milligrams per liter expanded to 490 square kilometers for 1986-90. In Buckeye Valley, nitrate concentrations exceeded 10 milligrams per liter in an area of 300 square milometers for 1980-85 from the Gila River in the early 1980's but possibly could be an artifact of the different data distributions associated with

  8. DEBRIS FLOW EVENT OF 2014 AND ITS IMPACT ON THE ACCUMULATION OF THE SOLID FRACTION IN THE KYNGARGA RIVER CHANNEL, TUNKA VALLEY, SOUTHWESTERN CISBAIKALIA, RUSSIA

    OpenAIRE

    KADETOVA ARTEM A.; RYBCHENKO ELENA A.; KOZYREVA ELENA A.; YONGBO TIE; HUAYONG NI

    2016-01-01

    On 28 June 2014, debris flows brought large volumes of loose material into the Kyngarga river valley. The material was sourced from rock collapse and rock sliding on the valley slopes and delivered mainly to the river by debris flows from the side valleys of the river basin. Our field studies and analysis of the satellite images revealed that the potential debris volume received by the river amounted to about 1x106 m3. The morphometric parameters of the Kyngarga river basin are favorable for ...

  9. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  10. Upper Pennsylvanian coals and associated rocks - depositional environments, sedimentation, paleontology and paleobotany, upper Ohio River valley

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A.T.

    1988-03-01

    A number of geologically interesting sites in the upper Ohio River valley will be visited during the North-Central Section of the Geological Society of America's meeting in Akron, OH in April 1988. Sixteen scheduled sites (and three substitutes) have been chosen. They represent the following features: field examples of various types of stratigraphic problems; sedimentologic characteristics of diverse environments; controlling structural or physiographic anomalies of pre-coal-forming peat accumulation surfaces; typical or unusual faunas and floras of terrestrial, brackish or marine origin; and various economic coals demonstrating geologic problems related to their origin, constitution and extraction.

  11. The resilience of river valleys to deformation in experiments: competition between tectonic advection and channel dynamics

    Science.gov (United States)

    Guerit, Laure; Dominguez, Stéphane; Castelltort, Sébastien; Malavielle, Jacques

    2015-04-01

    In oblique collision settings, parallel and perpendicular components of the relative plate motion can be partitioned into different structures of deformation and may be localized close to the plate boundary, or distributed on a wider region. In the Southern Alps of New Zealand, it has been proposed that two-third of the regional convergence was accommodated by the Alpine Fault, while the remaining motion was distributed in a broad area along the Southern Alps orogenic wedge. To better document and understand the regional dynamics of such systems, reliable markers of the horizontal tectonic motion over geological time scales are needed. In numerical models, it has been shown that river networks are able to record a large amount of distributed strain, and that they can thus be used to reconstruct the mode and rate of distribution away from major active structures (Castelltort et al, NGeo, 2012). In order to explore the controls on river resilience to deformation in a less constrained system, we developed an experimental model to investigate river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a rain-fall system to activate erosion, sediment transport and river development on the model surface. The evolution of the wedge is fully recorded through space and time so we are able to follow the drainage geometry deformation. These experiments confirm that rivers record the distribution of motion along the wedge. Image analysis of channel time-space evolution shows how the fault-parallel and fault-perpendicular components of motion decrease toward the fault and impose rotation to the main trunk valleys. However, the capacity of rivers to act as passive markers of deformation competes with the natural lateral channel dynamics and hillslope-channel couplings which both modify the valleys boundaries. In this sense rivers are dynamic markers, which write both a story of passive rotation imposed by the tectonic velocity

  12. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    Science.gov (United States)

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.

    2008-01-01

    During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western

  13. NUMERICAL SIMULATION OF GROUNDWATER DYNAMICS FOR SONGHUAJIANG RIVER VALLEY IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ADIL Elkrail; SHU Long-cang; HAO Zhen-chun

    2004-01-01

    The study area was designed and constructed, based on the simplification of a conceptual model, to develop a three-dimensional groundwater flow model for simulation of two-layers system. Finite difference groundwater flow model was constructed for the Central Songhuajiang River alluvial plain in Northeast China, with the coverage of 786.6km2.The grid networks with a spacing of 474.4m by 509.5m were used to cover the model area. The trial-and-error technique was used to calibrate the model. The sensitivity of the simulations to the model parameters was studied and the most sensitive parameters that controlling the residual heads distribution in the Songhuajiang River valley were defined.

  14. A MACRO-SCALE SEMI-DISTRIBUTED HYDROLOGICAL MODEL AND APPLICATION TO THE DATONG RIVER VALLEY

    Institute of Scientific and Technical Information of China (English)

    YANG Zhi-feng; LIU Lu-liu; SHEN Zhen-yao; GORDON G. Huang

    2005-01-01

    A daily distributed hydrological model was developed using routine hydro-meteorological data on the basis of the raster DEM and land cover data.Then the model was used to model daily runoff of the Datong River Valley located in the upper catchment of the Yellow River Basin.The runoff comprises surface flow, subsurface flow and ground water flow.Evapotranspiration comprises canopy evaporation, snow sublimation and soil evapotranspiration.The infiltration to the soil was estimated with improved Green-Ampt model, and the potential evapotranspiration is estimated with Morton CRAE method, which only needs the routine meteorological data.Simulation results and the comparison with semi-distributed SLURP hydrological model show that the structure of the model presented herein is reasonable.

  15. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  16. Late Quaternary tectonic landforms and fluvial aggradation in the Saryu River valley: Central Kumaun Himalaya

    Science.gov (United States)

    Kothyari, Girish Ch.; Luirei, Khayingshing

    2016-09-01

    The present study has been carried out with special emphasis on the aggradational landforms to explain the spatial and temporal variability in phases of aggradation/incision in response to tectonic activity during the late Quaternary in the Saryu River valley in central Kumaun Himalaya. The valley has preserved cut-and-fill terraces with thick alluvial cover, debris flow terraces, and bedrock strath terraces that provide signatures of tectonic activity and climate. Morphostratigraphy of the terraces reveals that the oldest landforms preserved south of the Main Central Thrust, the fluvial modified debris flow terraces, were developed between 30 and 45 ka. The major phase of valley fill is dated between 14 and 22 ka. The youngest phase of aggradation is dated at early and mid-Holocene (9-3 ka). Following this, several phases of accelerated incision/erosion owing to an increase in uplift rate occurred, as evident from the strath terraces. Seven major phases of bedrock incision/uplift have been estimated during 44 ka (3.34 mm/year), 35 ka (1.84 mm/year), 15 ka (0.91 mm/year), 14 ka (0.83 mm/year), 9 ka (1.75 mm/year), 7 ka (5.38 mm/year), and around 3 ka (4.4 mm/year) from the strath terraces near major thrusts. We postulate that between 9 and 3 ka the terrain witnessed relatively enhanced surface uplift (2-5 mm/year).

  17. Sedimentary cycles of trace elements in Salawusu River Valley since 150 ka BP

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper makes some analyses on 11 trace elements in the Milanggouwan stratigraphical section in the Salawusu River valley, which is regarded as a prototype geology-palaeoclimate record since 150 ka BP. The results show that the content and variation of trace elements has experienced remarkably regular changes in the pace with coarse and fine sedimentary cycles of palaeo-aeolian sands to its overlying fluvio-lacustrine facies or/and palaeosols. The trace elements with chemical properties of relatively active (V, Sr, Cu, Ni, As) and relatively stable (P, Pb, Rb, Mn, Nb, Zr) are a manifestation of the corresponding 27 changeable cycles between peak and valley values, appearing a multi-fluctuational process line of relative gathering and migration since then. The low numerical value distribution of these two types of trace elements in the aeolian sand facies represents erosion and accumulation under wind force during the cold-dry climate. Whereas their enrichments in both fluvio-lacustrine facies and palaeosols are related to the valley's special low-lying physiognomic position between the Ordos Plateau and the Loess Plateau under the warm and humid climate conditions. The above relatively migrated and gathered change of the trace elements is the result of 27 climatic cycles of cold-dry and warm-humid, which is probably caused by repeated alternations of winter monsoon and summer monsoon in the Mu Us Sandy Land influenced by the climate vicissitudes in northern hemisphere during glacial and interglacial periods since 150 ka BP.

  18. Geology and geophysics of the southern Raft River Valley geothermal area, Idaho, USA

    Science.gov (United States)

    Williams, Paul L.; Mabey, Don R.; Zohdy, Adel A.R.; Hans, Ackerman; Hoover, Donald B.; Pierce, Kenneth L.; Oriel, Steven S.

    1976-01-01

    The Raft River valley, near the boundary of the Snake River plain with the Basin and Range province, is a north-trending late Cenozoic downwarp bounded by faults on the west, south, and east. Pleistocene alluvium and Miocene-Pliocene tuffaceous sediments, conglomerate, and felsic volcanic rocks aggregate 2 km in thickness. Large gravity, magnetic, and total field resistivity highs probably indicate a buried igneous mass that is too old to serve as a heat source. Differing seismic velocities relate to known or inferred structures and to a suspected shallow zone of warm water. Resistivity anomalies reflect differences of both composition and degree of alteration of Cenozoic rocks. Resistivity soundings show a 2 to 5 ohm·m unit with a thickness of 1 km beneath a large part of the valley, and the unit may indicate partly hot water and partly clayey sediments. Observed self-potential anomalies are believed to indicate zones where warm water rises toward the surface. Boiling wells at Bridge, Idaho are near the intersection of north-northeast normal faults which have moved as recently as the late (?) Pleistocene, and an east-northeast structure, probably a right-lateral fault. Deep circulation of ground water in this region of relatively high heat flow and upwelling along faults is the probable cause of the thermal anomaly.

  19. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy

    Directory of Open Access Journals (Sweden)

    R. Giannecchini

    2012-03-01

    Full Text Available The Serchio River Valley, in north-western Tuscany, is a well-known tourism area between the Apuan Alps and the Apennines. This area is frequently hit by heavy rainfall, which often triggers shallow landslides, debris flows and debris torrents, sometimes causing damage and death. The assessment of the rainfall thresholds for the initiation of shallow landslides is very important in order to improve forecasting and to arrange efficient alarm systems.

    With the aim of defining the critical rainfall thresholds for the Middle Serchio River Valley, a detailed analysis of the main rainstorm events was carried out. The hourly rainfall recorded by three rain gauges in the 1935–2010 interval was analysed and compared with the occurrence of shallow landslides. The rainfall thresholds were defined in terms of mean intensity I, rainfall duration D, and normalized using the mean annual precipitation. Some attempts were also carried out to analyze the role of rainfall prior to the damaging events. Finally, the rainfall threshold curves obtained for the study area were compared with the local, regional and global curves proposed by various authors. The results of this analysis suggest that in the study area landslide activity initiation requires a higher amount of rainfall and greater intensity than elsewhere.

  20. Influence of hydrologic modifications on Fraxinus pennsylvanica in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2015-01-01

    We used tree-ring analysis to examine radial growth response of a common, moderately flood-tolerant species (Fraxinus pennsylvanica Marshall) to hydrologic and climatic variability for > 40 years before and after hydrologic modifications affecting two forest stands in the Mississippi River Alluvial Valley (USA): a stand without levees below dams and a stand within a ring levee. At the stand without levees below dams, spring flood stages decreased and overall growth increased after dam construction, which we attribute to a reduction in flood stress. At the stand within a ring levee, growth responded to the elimination of overbank flooding by shifting from being positively correlated with river stage to not being correlated with river stage. In general, growth in swales was positively correlated with river stage and Palmer Drought Severity Index (an index of soil moisture) for longer periods than flats. Growth decreased after levee construction, but swales were less impacted than flats likely because of differences in elevation and soils provide higher soil moisture. Results of this study indicate that broad-scale hydrologic processes differ in their effects on the flood regime, and the effects on growth of moderately flood-tolerant species such as F. pennsylvanica can be mediated by local-scale factors such as topographic position, which affects soil moisture.

  1. Susceptibility assessment of debris flows using the analytic hierarchy process method-A case study in Subao river valley, China

    Institute of Scientific and Technical Information of China (English)

    Xingzhang Chen; Hui Chen; Yong You; Jinfeng Liu

    2015-01-01

    Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP) method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6%of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are clas-sified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.

  2. Lahar Inundation of the Drift River Valley During the 2009 Eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Waythomas, C. F.; Scott, W. E.; Pierson, T. C.; Major, J. J.

    2009-12-01

    Redoubt Volcano in south-central Alaska began its most recent eruption on March 15 and erupted explosively at least 20 times between then and April 4, 2009. The 3110 m high, snow-and-ice-clad stratovolcano includes a circular, ice-filled summit crater that is breached to the north. The volcano supports about 4 km3 of ice and snow and about 1 km3 of this makes up Drift glacier on the north side of the volcano. Explosive eruptions between March 22 and April 4, which included the destruction of at least two lava domes, triggered two large lahars in the Drift River valley on March 23 and April 4, and several smaller lahars between March 24 and March 31. The heights of mud lines, character of deposits examined in the field, areas of deposition, and estimates of flow width, depth, and velocity revealed that the lahars on March 23 and April 4 were the largest mass flows of the eruption. In the ~1.5-km-wide upper Drift River valley, flow depths averaged about 10 m, flow velocities, although not measured directly, were at least 10-14 m/s, and peak discharges were on the order of 105 m3/s. Depositional areas (about 12.5 km2) and volumes (0.063-0.088 km3) were similar. Despite these similarities, the two lahars had very different compositions and origins. The March 23 lahar was a flowing slurry of snow and ice that entrained tablular blocks of river ice, seasonal snow in the valley, and glacier ice eroded from Drift glacier. Its deposit was up to 5 m thick, and contained roughly 30% sediment, rock debris and water, and 70% or more river and glacier ice. It was frozen soon after it was emplaced and later buried by the April 4 lahar. Juvenile material has not yet been found in the deposit. The lahar of April 4, in contrast, was a hyperconcentrated flow, as interpreted from massive to faintly and horizontally stratified sand to fine gravel deposits up to 4 m thick. Gravel clasts were predominantly juvenile andesite. We infer the March 23 lahar to have been initiated by a rapid

  3. Legacy sediment storage in New England river valleys: anthropogenic processes in a postglacial landscape

    Science.gov (United States)

    Snyder, N. P.; Johnson, K. M.; Waltner, M.; Hopkins, A. J.; Dow, S.; Ames, E.; Merritts, D. J.; Walter, R. C.; Rahnis, M. A.

    2016-12-01

    Walter and Merritts (2008, and subsequent papers) show that legacy sediment associated with deposition in millponds is a common feature in river valleys of the Mid-Atlantic Piedmont region, with 1-5 m of fine sand and silt overlying Holocene soil and Pleistocene periglacial deposits. For this project, we seek to test the hypothesis that these field relationships are seen in New England, a formerly glaciated region with similar history and intensity of forest clearing and milldam construction during the 17-19th centuries. We study three watersheds, using field observations of bank stratigraphy, radiocarbon dating, and mapping of terraces and floodplains using lidar digital elevation models and other GIS datasets. The 68 km2 South River watershed in western Massachusetts exhibits the most extensive evidence for legacy sediment storage. We visited 17 historic dam sites in the watershed and found field evidence for fine sand and silt legacy sediment storage at 14, up to 2.2 m thick. In the 558 km2 Sheepscot River watershed in coastal Maine, we visited 12 historic dam sites, and found likely legacy sediment at six, up to 2.3 m thick. In the 171 km2 upper Charles River watershed in eastern Massachusetts, we investigated 14 dam sites, and found legacy sediment at two, up to 1.8 m thick. Stratigraphically, we identified the base of legacy sediment from a change in grain size to gravel at most sites, or to Pleistocene marine clay at some Sheepscot River sites. In the Sheepscot River, we observed cut timbers underlying historic sediment at several locations, likely associated with sawmill activities. Only at the Charles River were we able to radiocarbon date the underlying gravel (1281-1391 calibrated CE). At no site did we find a buried Holocene soil, in contrast to the field relations commonly observed in the Mid-Atlantic region. This may indicate that the New England sites have eroded to the pre-historic river bed, not floodplain surfaces. We attribute the variation in

  4. Phytophthora species recovered from the Connecticut River Valley in Massachusetts, USA.

    Science.gov (United States)

    Brazee, Nicholas J; Wick, Robert L; Hulvey, Jonathan P

    2016-01-01

    Little is currently known about the assemblage of Phytophthora species in northeastern North America, representing a gap in our understanding of species incidence. Therefore, Phytophthora species were surveyed at 20 sites in Massachusetts, with 16 occurring in the Connecticut River Valley. Many of the sampled waterways were adjacent to active agricultural lands, yet were buffered by mature floodplain forests composed of Acer, Platanus, Populus and Ulmus. Isolates were recovered with three types of baits (rhododendron leaves, pear, green pepper) in 2013 and water filtration in 2014. Overall, 457 isolates of Phytophthora were recovered and based on morphological characters and rDNA internal transcribed spacer (ITS), β-tubulin (β-tub) and cytochrome oxidase c subunit I (cox1) sequences, 18 taxa were identified, including three new species: P. taxon intercalaris, P. taxon caryae and P. taxon pocumtuck. In addition, 49 isolates representing five species of Phytopythium also were identified. Water filtration captured a greater number of taxa (18) compared to leaf and fruit baits (12). Of the three bait types rhododendron leaves yielded the greatest number of isolates and taxa, followed by pear and green pepper, respectively. Despite the proximity to agricultural lands, none of the Phytophthora species baited are considered serious pathogens of vegetable crops in the region. However, many of the recovered species are known woody plant pathogens, including four species in the P. citricola s.l. complex that were identified: P. plurivora, P. citricola III, P. pini and a putative novel species, referred to here as P. taxon caryae. An additional novel species, P. taxon pocumtuck, is a close relative of P. borealis based on cox1 sequences. The results illustrate a high level of Phytophthora species richness in the Connecticut River Valley and that major rivers can serve as a source of inoculum for pathogenic Phytophthora species in the northeast.

  5. The role of the Wetland Reserve Program in conservation efforts in the Mississippi River Alluvial Valley

    Science.gov (United States)

    King, Sammy L.; Twedt, Daniel J.; Wilson, R. Randy

    2006-01-01

    The Mississippi River Alluvial Valley includes the floodplain of the Mississippi River from Cairo, Illinois, USA, to the Gulf of Mexico. Originally this region supported about 10 million ha of bottomland hardwood forests, but only about 2.8 million ha remain today. Furthermore, most of the remaining bottomland forest is highly fragmented with altered hydrologic processes. During the 1990s landscape-scale conservation planning efforts were initiated for migratory birds and the threatened Louisiana black bear (Ursus americanus luteolus). These plans call for large-scale reforestation and restoration efforts in the region, particularly on private lands. In 1990 the Food, Agriculture, Conservation and Trade Act authorized the Wetlands Reserve Program (WRP). The WRP is a voluntary program administered by the United States Department of Agriculture that provides eligible landowners with financial incentives to restore wetlands and retire marginal farmlands from agricultural production. As of 30 September 2005, over 275,700 ha have been enrolled in the program in the Mississippi River Alluvial Valley, with the greatest concentration in Louisiana, Arkansas, and Mississippi, USA. Hydrologic restoration is common on most sites, with open-water wetlands, such as moist-soil units and sloughs, constituting up to 30% of a given tract. Over 33,200 ha of open-water wetlands have been created, potentially providing over 115,000,000 duck-use days. Twenty-three of 87 forest-bird conservation areas have met or exceed core habitat goals for migratory songbirds and another 24 have met minimum area requirements. The WRP played an integral role in the fulfillment of these goals. Although some landscape goals have been attained, the young age of the program and forest stands, and the lack of monitoring, has limited evaluations of the program's impact on wildlife populations.

  6. Fertilisation of the Southern Atlantic: Ephemeral River Valleys as a replenishing source of nutrient-enriched mineral aerosols

    Science.gov (United States)

    Dansie, Andrew; Wiggs, Giles; Thomas, David

    2016-04-01

    Oceanic dust deposition provides biologically important iron and macronutrients (Phosphorus (P) and Nitrogen-based (N) compounds) that contribute to phytoplankton growth, marine productivity and oceanic atmospheric CO2 uptake. Research on dust emission sources to date has largely focused on the northern hemisphere and on ephemeral lakes and pans. Our work considers the ephemeral river valleys of the west coast of Namibia as an important yet overlooked source of ocean-fertilizing dust. Dust plumes are frequently emitted from the river valleys by strong easterly winds during the Southern Hemisphere winter, when the upwelling of the Benguela Current is at its weakest. We present field data from dust emission source areas along the main river channels near the coastal termini of the Huab, Kuiseb and Tsauchab river valleys. Collected data include erodible surface sediment, wind-blown flux, and associated meteorological data. Extensive surface sediment sampling was also undertaken throughout the combined 34,250 km2 extent of each river valley catchment with samples collected from within the main river channels, the main branches of each river system, selected tributaries, and into the upper watersheds. Geochemical data show valley sediment and wind-blown flux material have high concentrations of bioavailable Fe, P and N, exceeding that measured at the major dry lake basin dust sources in southern Africa. The contribution of fertilising deposition material is enhanced by both the spatial proximity of the source areas to the ocean and enrichment of source material by ephemeral fluvial accumulation and desiccation. Results show that geographical factors within each watershed play a key role in the nutrient composition of the emitting fluvial deposits in the river valleys. Analysis explores potential relationships between land use, geology, climate and precipitation in the upper watersheds and their influence on bioavailability of Fe, P and N compounds in wind

  7. Mountains, glaciers, and mines—The geological story of the Blue River valley, Colorado, and its surrounding mountains

    Science.gov (United States)

    Kellogg, Karl; Bryant, Bruce; Shroba, Ralph R.

    2016-02-10

    This report describes, in a nontechnical style, the geologic history and mining activity in the Blue River region of Colorado, which includes all of Summit County. The geologic story begins with the formation of ancient basement rocks, as old as about 1700 million years, and continues with the deposition of sedimentary rocks on a vast erosional surface beginning in the Cambrian Period (about 530 million years ago). This deposition was interrupted by uplift of the Ancestral Rocky Mountains during the late Paleozoic Era (about 300 million years ago). The present Rocky Mountains began to rise at the close of the Mesozoic Era (about 65 million years ago). A few tens of millions years ago, rifting began to form the Blue River valley; a major fault along the east side of the Gore Range dropped the east side down, forming the present valley. The valley once was filled by sediments and volcanic rocks that are now largely eroded. During the last few hundred-thousand years, at least two periods of glaciation sculpted the mountains bordering the valley and glaciers extended down the Blue River valley as far south as present Dillon Reservoir. Discovery of deposits of gold, silver, copper, and zinc in the late 1800s, particularly in the Breckenridge region, brought an influx of early settlers. The world-class molybdenum deposit at Climax, mined since the First World War, reopened in 2012 after a period of closure.

  8. Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys

    Science.gov (United States)

    Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.

    2017-01-01

    The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.

  9. Challenges of flood monitoring in the Senegal river valley using multi-temporal data

    Science.gov (United States)

    Bruckmann, Laurent; Delbart, Nicolas

    2017-04-01

    In Sub-Saharan Africa, floodplains wetlands play an important role for livelihoods and economy, especially for agriculture and fishing. However, tropical rivers flows are increasingly modified by climate change and dam regulation. In the Senegal river valley, the annual flood, from August to November, is an important water resources creating ecosystems services for people. Senegal river basin face to hydrological changes, due to rainfall diminution during the 1970's and building of large dams during 1980's to secure water resources. Water management and development of irrigation have modified the floodplain functioning. Flood recession agriculture, grazing and fishing are now confronted to a high uncertainty about floods level, duration and extension. Thus, spatiotemporal information of flood extension and duration are important for local communities and stakeholders to ensure food security and ecosystems services. Multi-temporal satellite data demonstrates an important applicability for flood mapping. Aims of this work is to present potentiality of using multi-temporal data from MODIS and new satellite Sentinel-2 for flood monitoring in a Sahelian context. It will also discuss the potential of flood mapping for the analysis of the dynamics of riparian vegetation and flood recession agriculture. This study uses two datasets to explore flood monitoring in Senegal river valley. Firstly, MODIS 8-days data (MOD09A) are first used, because of its temporal resolution of 8 days covering the period from 2000 to 2016. However, MODIS data are limited due to a low spatial resolution, that's why we also use Sentinel-2 data, available since summer 2015. The data were processed by constructing NDWI time-series (NDWI threshold is empirically defined) and extracting NDWI values for each inundated pixel during flood. First results demonstrate that using MODIS on a large scale is enough for analyze interannual variability of the flooded surfaces. We present here maps of flood

  10. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana.

    Directory of Open Access Journals (Sweden)

    Araceli Lamelas

    2016-07-01

    Full Text Available In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions.

  11. Spatiotemporal Co-existence of Two Mycobacterium ulcerans Clonal Complexes in the Offin River Valley of Ghana

    Science.gov (United States)

    Aboagye, Samuel; Kerber, Sarah; Danso, Emelia; Asante-Poku, Adwoa; Asare, Prince; Parkhill, Julian; Harris, Simon R.; Pluschke, Gerd; Yeboah-Manu, Dorothy; Röltgen, Katharina

    2016-01-01

    In recent years, comparative genome sequence analysis of African Mycobacterium ulcerans strains isolated from Buruli ulcer (BU) lesion specimen has revealed a very limited genetic diversity of closely related isolates and a striking association between genotype and geographical origin of the patients. Here, we compared whole genome sequences of five M. ulcerans strains isolated in 2004 or 2013 from BU lesions of four residents of the Offin river valley with 48 strains isolated between 2002 and 2005 from BU lesions of individuals residing in the Densu river valley of Ghana. While all M. ulcerans isolates from the Densu river valley belonged to the same clonal complex, members of two distinct clonal complexes were found in the Offin river valley over space and time. The Offin strains were closely related to genotypes from either the Densu region or from the Asante Akim North district of Ghana. These results point towards an occasional involvement of a mobile reservoir in the transmission of M. ulcerans, enabling the spread of bacteria across different regions. PMID:27434064

  12. Potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  13. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  14. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    Science.gov (United States)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  15. Summary of investigations on chemical compounds found in fish tissue taken from Wasilla Lake in the Matanuska Valley and Delta Clearwater River and Lake in the Tanana Valley, 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of investigations on chemical compounds found in fish tissue take from Wasilla Lake in the Matansuka Valley and Delta Clearwater River and...

  16. The Neolithic in Almeria: the valley of Almanzora river in Vera basin

    Directory of Open Access Journals (Sweden)

    María Dolores Cámalich

    2004-12-01

    Full Text Available The valley of Almanzora River and Vera Basin (Almeria shows an intense dynamics of occupation in Prehistory; particulalry between the Early Neolithic and the Late Bronze Age. Several factors, such as recurrent associations betwen diverse productions - including the presence of cardial-impresed in Cabacicos Negros (Vera - and the distinctive characteristics of the type of accupation, indicate that the oldest phase of occupation took place during the andalusian Early Neolithic. The socio-economic pattern is defined both by expoloatation of numerous resources in an area of variable size, and by the temporary occupation of settlements, with seasonal or periodical variations. The constant mobility was aimed at obtaining different subiststence goods, as well as obtaining and/or transforming primary resources for manufacturing crafts and exchanging excess production with communities in the same area or from other regions.

  17. The valley system of the Jihlava river and Mohelno reservoir with enhanced tritium activities.

    Science.gov (United States)

    Simek, P; Kořínková, T; Svetlik, I; Povinec, P P; Fejgl, M; Malátová, I; Tomaskova, L; Stepan, V

    2017-01-01

    The Dukovany nuclear power plant (NPP Dukovany) releases liquid effluents, including HTO, to the Mohelno reservoir, located in a deep valley. Significantly enhanced tritium activities were observed in the form of non-exchangeable organically bound tritium in the surrounding biota which lacks direct contact with the water body. This indicates a tritium uptake by plants from air moisture and haze, which is, besides the uptake by roots from soil, one of the most important mechanisms of tritium transfer from environment to plants. Results of a pilot study based on four sampling campaigns in 2011-2015 are presented and discussed, with the aim to provide new information on tritium transport in the Mohelno reservoir - Jihlava River - plants ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Harmonious Economic Development Model in the Niyang River Valley under Environmental Constraints

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    We select gross national happiness(GNH),per capita GDP,the number of tourists received in rural areas,waste gas emission and other indicators that are closely related to harmonious economic development.Using the indicator data,we establish the multiple linear regression model that is in line with the harmonious economic development model in the Niyang River valley,and conduct empirical analysis.According to the analysis results,the following recommendations are put forward:adhering to laying equal stress on protection and development;improving the quality of the population;protecting environment and curbing environmental pollution;speeding up the construction of ecological environment relying on technology;increasing investment in poverty alleviation to eradicate poverty;extensively mobilizing the public to participate in ecological and environmental protection;coordinating the relationship between the ecological environment and economic development.

  19. Trace element concentrations on fine particles in the Ohio River Valley

    Energy Technology Data Exchange (ETDEWEB)

    Tuncel, S.G.; Gordon, G.E.; Olmez, I.; Parrington, J.R.; Shaw, R.W. Jr.; Paur, R.J.

    1986-04-01

    Trace element compositions of airborne particles are important for determining sources and behavior of regional aerosol, as emissions from major sources are characterized by their elemental composition patterns. The authors investigated airborne trace elements in a complex regional environment through application of receptor models. A subset (200) of fine fraction samples in the Ohio River Valley (ORV) and analyzed by X-ray fluorescence (XRF) were reanalyzed by instrumental neutron activation analysis (INAA). The combined data set, XRF plus INAA, was subjected to receptor-model interpretations, including chemical mass balances (CMBs) and factor analysis (FA). Back trajectories of air masses were calculated for each sampling period and used with XRF data to select samples to be analyzed by INAA.

  20. Evaluation of the water quality in the releases from thirty dams in the Tennessee River Valley

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, S.R.

    1990-09-01

    The Tennessee Valley Authority (TVA) has routinely monitored dissolved oxygen (DO) and temperature from the tailwater releases of its dams since the 1950s. The original objective of this monitoring was to collect baseline information to support reaeration research and determine the relative impact of impoundments on the assimilative capacity of the river system. This monitoring has continued even though the original objective was satisfied. New purposes for this monitoring data have arisen in support of several programs, without new consideration of the monitoring strategy and sampling design. The primary purpose of this report is to compare the historical release data for 30 dams in the Tennessee Valley based on four different objectives: (1) comparison of seasonal patterns, (2) comparison of baseline conditions using descriptive statistics, (3) evaluation of monotonic trends, and (4) discussion of monitoring strategies that might be required to determine compliance with existing and proposed criteria. A secondary purpose of the report is to compile the existing database into tables and figures that would be useful for other investigators. 51 refs., 210 figs., 1 tab.

  1. Groundwater Quality and Nitrogen Use Efficiency in Nebraska's Central Platte River Valley.

    Science.gov (United States)

    Ferguson, Richard B

    2015-03-01

    Groundwater nitrate contamination has been an issue in the Platte River Valley of Nebraska since the 1960s, with groundwater nitrate-N concentrations frequently in excess of 10 mg L. This article summarizes education and regulatory efforts to reduce the environmental impact of irrigated crop production in the Platte River Valley. In 1988, a Groundwater Management Area (GWMA) was implemented in the Central Platte Natural Resources District to encourage adoption of improved management practices. Since 1988, there have been steady declines in average groundwater nitrate-N concentrations of about 0.15 mg NO-N L yr in much of the GWMA (from 19 to 15 mg NO-N L). However, N use efficiency (NUE) (partial factor productivity for N [PFP]) has increased very little from 1988 to 2012 (60-65 kg grain kg N), whereas statewide PFP increased from 49 to 67 kg grain kg N in the same period. Although growers are encouraged to credit N from sources besides fertilizer (e.g., soil residual, legumes, irrigation water, and manure), confidence in and use of credits tended to decrease as credits became larger; there was a tendency toward an average N rate regardless of credit-based recommendations. This information, coupled with data from other studies, suggests that much of the decline in groundwater nitrate can be attributed to improved irrigation management-especially conversion from furrow to sprinkler irrigation-and to a lesser extent to improved timing of N application. The development and adoption of improved N management practices, such as fertigation, controlled-release N formulation, and use of crop canopy sensors for in-season N application may be required for further significant NUE gains in these irrigated systems.

  2. Flood-inundation maps for the Meramec River at Valley Park and at Fenton, Missouri, 2017

    Science.gov (United States)

    Dietsch, Benjamin J.; Sappington, Jacob N.

    2017-09-29

    Two sets of digital flood-inundation map libraries that spanned a combined 16.7-mile reach of the Meramec River that extends upstream from Valley Park, Missouri, to downstream from Fenton, Mo., were created by the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers, St. Louis Metropolitan Sewer District, Missouri Department of Transportation, Missouri American Water, and Federal Emergency Management Agency Region 7. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at https://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the cooperative USGS streamgages on the Meramec River at Valley Park, Mo., (USGS station number 07019130) and the Meramec River at Fenton, Mo. (USGS station number 07019210). Near-real-time stage data at these streamgages may be obtained from the USGS National Water Information System at https://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites (listed as NWS sites vllm7 and fnnm7, respectively).Flood profiles were computed for the stream reaches by means of a calibrated one-dimensional step-backwater hydraulic model. The model was calibrated using a stage-discharge relation at the Meramec River near Eureka streamgage (USGS station number 07019000) and documented high-water marks from the flood of December 2015 through January 2016.The calibrated hydraulic model was used to compute two sets of water-surface profiles: one set for the streamgage at Valley Park, Mo. (USGS station number 07019130), and one set for the USGS streamgage on the Meramec River at Fenton, Mo. (USGS station number 07019210). The water-surface profiles were produced for stages at 1-foot (ft) intervals referenced to the datum from each streamgage and

  3. Invisible geomorphosites. A case study in the Rhone River valley (Switzerland)

    Science.gov (United States)

    Clivaz, Mélanie; Reynard, Emmanuel

    2016-04-01

    During the last two decades, numerous inventories of geosites have been carried out at various scales. As all kinds of inventory, they aim at documenting the state of the geological heritage, which is the basis for management strategies (geoconservation, geoeducation, geotourism, etc.). In very humanized regions, where the original geomorphology has been highly modified by human infrastructures, agriculture, urban sprawling, and various modifications of the landforms, it is interesting to inventory not only the landforms visible today but also former landforms that have been destroyed or hidden by human activities. To address the issue of the inventory of invisible geomorphosites, two approaches have been tested in the Rhone River valley, in Switzerland. For centuries the river was flowing quite freely on the floodplain and alternated - both in time and space - braided and meandering sectors. Tributaries fed by glaciers and snow-melting as well as torrential systems were building alluvial fans at their confluence with the Rhone River, and more or less extensive wetlands were isolated by these alluvial fans and the braided sectors of the main river. Floods were frequent and temporary lakes were formed during the snow-melting season and during intensive rainfall events, especially in autumn. Even sand dunes were visible in several places due to the remobilisation of fine fluvial deposits by wind processes. During the second half of the 19th century, the Rhone River and the majority of its tributaries was channelized, the sand dunes were completely destroyed - partly for filling the depressions -, and most wetlands were drained during the first half of the 20th century and replaced by intensive agricultural crops. The first study consisted to inventory the geomorphosites of the research area. Not only the visible landforms but also the landforms that had completely disappeared were evaluated using the assessment method of Reynard et al. (2015). A total of 28

  4. An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.

    Science.gov (United States)

    Bonnell, Jennifer

    2011-01-01

    Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.

  5. Winter raptor use of the Platte and North Platte River Valleys in south central Nebraska

    Science.gov (United States)

    Lingle, G.R.

    1989-01-01

    Winter distribution and abundance of raptors were monitored within the Platte and North Platte river valleys. Data were collected along 265 km of census routes along the Platte and North Platte rivers during the winters of 1978-1979 and 1979-1980. Observations recorded during the second winter involved less observation time and were at somewhat different periods. There were 1574 sightings of 15 species representing 3 raptor families. Number of raptors observed on 54 days from 15 November to 13 February 1978-1979 was 48.3 per 100 km. In 20 days of observation from 5 December to 6 March 1979-1980, 39.7 raptors were observed per 100 km. Small mammal indices were 21 and 12 captures per 1000 trap nights during November 1978 and 1979, respectively. Raptors were sighted most frequently in riverine habitat and least in pasture and tilled fields. American kestrels (Falco sparverius) (11.1 individuals/100 km), red-tailed hawks (Buteo jamaicensis) (9.9), and bald eagles (Haliaeetus leucocephalus) (9.6) were the most frequently sighted raptors. Northern harrier (Circus cyaneus), rough-legged hawk (B. lagopus), and prairie falcon (P. mexicanus) sightings were 3.4, 3.4, and 1.7, respectively. Nine species were seen at a frequency of less than 1.0 individuals/100 km. Improved foraging conditions throughout the region resulted in fewer raptors sighted in 1979-1980.

  6. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    Science.gov (United States)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated

  7. Large flood on a mountain river subjected to restoration: effects on aquatic habitats, channel morphology and valley infrastructure

    Science.gov (United States)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-04-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  8. Demographics and movements of least terns and piping plovers in the Central Platte River Valley, Nebraska

    Science.gov (United States)

    Roche, Erin A.; Sherfy, Mark H.; Ring, Megan M.; Shaffer, Terry L.; Anteau, Michael J.; Stucker, Jennifer H.

    2016-08-09

    The Central Platte River Valley provides breeding habitat for a variety of migratory birds, including federally endangered interior least terns (Sternula antillarum; least tern) and threatened piping plovers (Charadrius melodus). Since 2009, researchers have collected demographic data on both species that span their lifecycle (that is, from egg laying through survival of adults). Demographic data were used to estimate vital rates (for example, nest survival, chick survival, and so on) for both species and assess how these vital rates were related to type and age of nesting habitat. Nest survival of both species was unrelated to the age of the site a nest was initiated on. Piping plover chick survival to fledging age was not related to the age of the site it was hatched at, however, the probability of a least tern chick surviving to fledging was higher at older sites. In general there were fewer piping plover nests than least tern nests found at sites created through either the physical construction of a new site or new vegetation management regimes, during 2009–14.Mean daily least tern nest survival was 0.9742 (95-percent confidence interval [CI]: 0.9692–0.9783) and cumulative nest survival was 0.59 (95-percent CI: 0.53–0.65). Mean daily least tern chick survival was 0.9602 (95-percent CI: 0.9515–0.9673) and cumulative survival to fledging was 0.54 (95-percent CI = 0.48–0.61). Annual apparent survival rates were estimated at 0.42 (95-percent CI = 0.22–0.64) for adult least terns nesting in the Central Platte River Valley and an apparent survival rate of 0.14 (95-pecent CI = 0.04–0.41) for juvenile least terns. The number of least tern nests present at sites created during 2009–14 was associated with the age of the site; more least tern nests were associated with older sites. During 2009–14, there were four (less than 1 percent of all chicks marked) least tern chicks hatched from the Central Platte River Valley that were subsequently captured on

  9. Difference between the 2006 and partial-development ground-water conditions for the unconfined aquifer in the Wood River Valley, south-central Idaho.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  10. Ground-water level contours for the unconfined aquifer in the Wood River Valley, south-central Idaho, representing conditions during October 2006.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  11. Ground-water level contours for the confined aquifer in the Wood River Valley, south-central Idaho, representing the partial-development conditions.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  12. Estimated Altitude of the Top of the Uppermost Unit of Fine-Grained Sediment within the Wood River Valley aquifer system, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the estimated altitude of the top of the uppermost fine-grained sediment within the Wood River Valley aquifer system. This map was compiled by...

  13. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle...

  14. Difference between the 2006 and partial-development ground-water conditions for the confined aquifer in the Wood River Valley, south-central Idaho.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  15. Estimated Altitude of the Consolidated Rock Surface Underlying Quaternary Sediments of the Wood River Valley aquifer system, South-Central Idaho

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is the estimated altitude of the consolidated rock surface underlying Quaternary sediment of the Wood River Valley aquifer system. This surface is...

  16. Ground-water level contours for the confined aquifer in the Wood River Valley, south-central Idaho, representing conditions during October 2006.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  17. Ground-water level contours for the unconfined aquifer in the Wood River Valley, south-central Idaho, representing partial-development conditions.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The entire population of the Wood River Valley depends on ground water for domestic supply, either from domestic or municipal-supply wells, rapid population growth...

  18. The preservation status of the lichen biota in the designed Special Area of Conservation NATURA 2000 „Middle Łyna River Valley – Smolajny”

    Directory of Open Access Journals (Sweden)

    Dariusz Kubiak

    2014-06-01

    Full Text Available The paper presents the list of 159 taxa, including 151 lichens and 8 saprotrophic or parasitic (lichenicolous fungi, recorded in the designed Special Area of Conservation NATURA 2000 „Middle Łyna River Valley – Smolajny” (the Forest Division of Wichrowo. The analysed area (2953 ha covers mostly forest communities, with natural character, associated with the valley of the Łyna river (hillside lime-oak-hornbeam forests, streamside alder-ash forest, riparian black alder forest.

  19. THE HISTORY OF REGIONAL DEVELOPMENT IN THE SINOS RIVER VALLEY: THE CASE OF SAPIRANGA AND ITS COURSE THROUGH TIME

    Directory of Open Access Journals (Sweden)

    Daniel Luciano Gevehr

    2016-05-01

    Full Text Available The present study aims at analyzing the dynamics of regional development in the Sinos River Valley, located in the metropolitan region of Porto Alegre (RS, considering a specific spatial and temporal frame, which is the city of Sapiranga and its development course since the end of the 19th century. To do so, we have sought to discuss the historicity of such context, by investigating to what extent regional, national and global factors are articulated in the transformation process the city has gone through. Bu considering certain historical conditions, we have attempted to identify the elements that have contributed to the economic, political, social and cultural development of Sapiranga, specifically in as much as its urban area is concerned. We have paid special attention to the aspects pertaining to the local scope, which have enabled us to achieve a better understanding of the changes this community has gone through in the regional context of the Sinos River Valley.

  20. Clustering Analysis on the Climatic Conditions in Hundreds of Kilometers of Celery Belts in Hulu River Valley

    Institute of Scientific and Technical Information of China (English)

    Jun; SUN; Cunlu; SU; Guangyang; WE; Xufeng; QI

    2013-01-01

    By using climate data in national stations in Xiji County,Ningxia during 1981 and 2020,a regression analysis was carried out on weather data in crop growth season in three automatic weather stations in Hulu River Valley. The results showed that celery belts of Hulu River Valley was divided into two groups: early-maturing region of south Xinglong-Xiaohe where is warm and rainy,serotinous region of north Jiqiang-Xinying where is warm and cold and rainless. Four subregions: Xinlong,Xiaohe,Jiqiang,Xinying. Each sub-region was divided into five regions according to climate layer and observation in growth season: temperature accumulating planting period,low temperature seedling period,suitable temperature for external leaf growth stage,high-temperature for celery mulching-sanded plantation in different sowing periods, water and fertilizer,insect prevention,time to market sales.

  1. Experience of the chronological correlation of the Holocene sea coastal landforms in the Tuloma River valley and the Kola Bay

    Directory of Open Access Journals (Sweden)

    Tolstobrov D. S.

    2016-03-01

    Full Text Available The paper is a continuation of studies of the Earth's crust neotectonic movements within the north-western part of the Kola region. New radiocarbon data of the lake bottom sediments in the Tuloma River valley allowed to modify diagram of the relative uplift lines of the Earth surface in the north-western part of the Kola region and to compare them with previously constructed epeirogenic spectra of coastal landforms for the study area. The dynamics and nature of the area uplift have been established and the dating of the ancient shorelines within the Tuloma River valley and the Kola Bay of the Barents Sea during the Holocene has been carried out

  2. Development of fauna of water beetles (Coleoptera in waters bodies of a river valley – habitat factors, landscape and geomorphology

    Directory of Open Access Journals (Sweden)

    Pakulnicka Joanna

    2016-01-01

    Full Text Available The goal of the study was to identify the beetle fauna of a small lowland river valley against its spatial arrangement and the directions of beetle migrations between habitats, as well as to determine which environmental factors affect the characteristics of water beetle populations in a river valley's lentic water bodies. The field studies were carried out in various types of water bodies. 112 species of beetles with various ecological characteristics were identified. It was demonstrated that the diversity of water bodies in the valley is conducive to high local species richness. At the same time, the observed high degree of faunistic individualism may be regarded as a sign of poor symmetry in the directions of fauna propagation, particularly that of stagnobionts. The authors argue that high individualism is the consequence of poor hydrological contact between the water bodies due to topography and rare instances of high tide in the river, which, in turn, is the reason for active overflights remaining the main mean of migration between those water bodies. The factors restricting migration of fauna between the water bodies include certain landscape characteristics of the catchment which form topographical obstacles, mainly numerous and dense forest areas. The character of fauna in the respective types of water bodies is affected also by internal environmental factors, particularly the degree to which they are overgrown with macrophytes, type of bottom, type of mineral and organic matter as well as physical parameters of water, such as saturation, pH, temperature and biological oxygen demand.

  3. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. The boundary of the ERWVFA was developed by combining information from two data sources. The first data source was a 1:250,000-scale geologic map of the Leadville quadrangle developed by Day and others (1999). The location of Quaternary sediments was used as a first approximation of the ERWVFA. The boundary of the ERWVFA was further refined by overlaying the geologic map with Digital Raster Graphic (DRG) scanned images of 1:24,000 topographic maps (U.S. Geological Survey, 2001). Where appropriate, the boundary of the ERWVFA was remapped to correspond with the edge of the valley-fill aquifer marked by an abrupt change in topography at the edge of the valley floor throughout the Eagle River watershed. The boundary of the ERWVFA more closely resembles a hydrogeomorphic region presented by Rupert (2003, p. 8) because it is based upon general geographic extents of geologic materials and not on an actual aquifer location as would be determined through a rigorous hydrogeologic investigation.

  4. A comparative ecological study of selected cancers in Kanawha County, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.; Talbott, E.O.; Marsh, G.M.; Case, B.W. (Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pennsylvania (United States))

    1992-01-01

    This study compares mortality rates for selected causes of death in Kanawha County, West Virginia, to rates reported in a number of geographically defined populations for 1950-1984. Specific conditions selected for study included cancers of the biliary passages and liver, the bladder and other urinary organs, and the central nervous system (CNS), as well as leukemia and aleukemia, lymphosarcoma and reticulosarcoma, Hodgkin's disease, and cancer of all other lymphopoietic tissue. The analysis made use of several techniques for the investigation of ecological data, including the modeling of rates using Poission regression. The primary findings of this study concern two subgroups of cancers of the lymphatic and hematopoietic tissue: (1) leukemia and aleukemia, and (2) lymphosarcoma and reticulosarcoma. For both subgroups of cancers, white male residents of Kanawha County show evidence of significantly elevated mortality rates over the 35-year period of this study.

  5. 77 FR 41048 - Safety Zone; Hudson Valley Triathlon, Ulster Landing, Hudson River, NY

    Science.gov (United States)

    2012-07-12

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; Hudson Valley Triathlon, Ulster Landing... Landing, NY for the 16th Annual Hudson Valley Triathlon swim event. This temporary safety zone is.... Regulatory History and Information The Hudson Valley Triathlon swim is an annual recurring event that has...

  6. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia.

    Science.gov (United States)

    Plummer, Thomas W; Ferraro, Joseph V; Louys, Julien; Hertel, Fritz; Alemseged, Zeresenay; Bobe, René; Bishop, L C

    2015-11-01

    The Shungura Formation in the lower Omo River Valley, southern Ethiopia, has yielded an important paleontological and archeological record from the Pliocene and Pleistocene of eastern Africa. Fossils are common throughout the sequence and provide evidence of paleoenvironments and environmental change through time. This study developed discriminant function ecomorphology models that linked astragalus morphology to broadly defined habitat categories (open, light cover, heavy cover, forest, and wetlands) using modern bovids of known ecology. These models used seven variables suitable for use on fragmentary fossils and had overall classification success rates of >82%. Four hundred and one fossils were analyzed from Shungura Formation members B through G (3.4-1.9 million years ago). Analysis by member documented the full range of ecomorph categories, demonstrating that a wide range of habitats existed along the axis of the paleo-Omo River. Heavy cover ecomorphs, reflecting habitats such as woodland and heavy bushland, were the most common in the fossil sample. The trend of increasing open cover habitats from Members C through F suggested by other paleoenvironmental proxies was documented by the increase in open habitat ecomorphs during this interval. However, finer grained analysis demonstrated considerable variability in ecomorph frequencies over time, suggesting that substantial short-term variability is masked when grouping samples by member. The hominin genera Australopithecus, Homo, and Paranthropus are associated with a range of ecomorphs, indicating that all three genera were living in temporally variable and heterogeneous landscapes. Australopithecus finds were predominantly associated with lower frequencies of open habitat ecomorphs, and high frequencies of heavy cover ecomorphs, perhaps indicating a more woodland focus for this genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Characteristics of Two General Circulation Patterns During Floods over the Changjiang-Huaihe River Valley

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Characteristics of the atmospheric general circulation during the catastrophic floods over the Changjiang-Huaihe River Valley (CHRV) are investigated. There are two precipitation patterns over China in the CHRV flood years: the CHRV flood-whole country-wet (P1) pattern and the CHRV flood-south (north) side-dry (P2) pattern. The circulation analysis results show that there are obvious differences between the NH 500-hPa geopotential height fields of P1 and P2 precipitation patterns. The establishment of East Asia-Atlantic (EAA) correlation chain (the South China Sea (SCS) high-the Meiyu trough-the Okhotsk Sea high over East Asia) is a critical condition for excessive summer precipitation over the CHRV, while the European blocking high plays an important role in determining the precipitation pattern over China in the CHRV flood years. Besides, the relation between the EAA correlation chain and the sea surface temperature anomaly (SSTA) in the North Pacific is also studied.

  8. Diet of the grass lizard Microlophus thoracicus icae in the Ica river valley, Peru

    Directory of Open Access Journals (Sweden)

    José Pérez Z.

    2015-10-01

    Full Text Available The diet of grass lizard, Microlophus thoracicus icae, was evaluated in three localities of the Ica River Valley, Peru. The dietary pattern was characterized by high consumption of vegetable material, mainly Prosopis spp. leaves, and invertebrates as ants and insect larvae. No significant relationships were found between body size, number of prey eaten or volume consumed. The juvenile, male and female M. t. icae not showed significant differences regarding number of ants or insect larvae consumed, neither on the proportion consumed of plant material. However, total volume of plant material was different between males and females, compared to juveniles. Multivariate analysis showed no evident difference in the diets of juveniles, males and females. Trophic niche amplitude for M. t. icae was Bij = 6.97. The consumption of plant material and invertebrates is important for both juvenile and adult iguanas, therefore; no clear age difference in diet was observed in the individuals studied. This species would present great diet plasticity (omnivory influenced by the local variation of food resources. Possible consequences of a varied diet may include particular characteristics of its parasites, foraging strategies and efficiency, thermoregulation, morphology, among others.

  9. Anthropogenic Disturbances Create a New Vegetation Toposequence in the Gatineau River Valley, Quebec

    Directory of Open Access Journals (Sweden)

    Jason Laflamme

    2016-10-01

    Full Text Available This study measured changes in forest composition that have occurred since the preindustrial era along the toposequence of the Gatineau River Valley, Quebec, Canada (5650 km2, based on survey records prior to colonization (1804–1864 and recent forest inventories (1982–2006. Changes in forest cover composition over time were found to be specific to toposequence position. Maple and red oak are now more frequent on upper toposequence positions (+26%, +21%, respectively, whereas yellow birch, eastern hemlock, and American beech declined markedly (−34% to −17%. Poplar is more frequent throughout the landscape, but particularly on mid-toposequence positions (+40%. In contrast, white pine, frequent on all toposequence positions in the preindustrial forest, is now confined to shallow and coarse-textured soils (−20%. The preindustrial forest types of the study area were mostly dominated by maple, yellow birch, and beech, with strong components of white pine, hemlock, and eastern white cedar, either as dominant or codominant species. In a context of ongoing anthropogenic disturbances and environmental changes, it is probably not possible to restore many of these types, except where targeted silvicultural interventions could increase the presence of certain species. The new forest types observed should be managed to ensure continuity of vital ecosystem services and functions as disturbance regimes evolve.

  10. Arsenic distribution along different hydrogeomorphic zones in parts of the Brahmaputra River Valley, Assam (India)

    Science.gov (United States)

    Choudhury, Runti; Mahanta, Chandan; Verma, Swati; Mukherjee, Abhijit

    2017-06-01

    The spatial distribution of arsenic (As) concentrations along three classified hydrogeomorphological zones in the Brahmaputra River Valley in Assam (India) have been investigated: zone I, comprising the piedmont and alluvial fans; zone II, comprising the runoff areas; and zone III, comprising the discharge zones. Groundwater (150 samples) from shallow hand-pumped and public water supply wells (2-60 m in depth) was analysed for chemical composition to examine the geochemical processes controlling As mobilization. As concentrations up to 0.134 mg/L were recorded, with concentrations below the World Health Organization and the Bureau of Indian Standards drinking-water limits of 0.01 mg/L being found mainly in the proximal recharge areas. Eh and other redox indicators (i.e., dissolved oxygen, Fe, Mn and As) indicate that, except for samples taken in the recharge zone, groundwater is reducing and exhibits a systematic decrease in redox conditions along the runoff and discharge zones. Hydrogeochemical evaluation indicated that zone I, located along the proximal recharge areas, is characterized by low As concentration, while zones II and III are areas with high and moderate concentrations, respectively. Systematic changes in As concentrations along the three zones support the view that areas of active recharge with high hydraulic gradient are potential areas hosting low-As aquifers.

  11. Livelihood Capital and Livelihood Diversification for Different Farmers in Yuanjiang Dry- Hot River Valley

    Institute of Scientific and Technical Information of China (English)

    Wenjuan ZHAO; Shilong YANG; Xiao WANG

    2016-01-01

    Under the analytical framework of sustainable livelihoods,we establish the evaluation indicator system for farmers’ livelihood capital,to evaluate the current livelihood capital and livelihood diversification for different farmers in the Dai nationality region of Xinping County in the Yuanjiang dry-hot river valley area,and discuss the relationship between livelihood capital and livelihood diversification. Studies have shown that the mode dominated by agriculture,supplemented by non-agricultural activities,combined with breeding,is the commonly used livelihood strategy for farmers in this region. As farmers change from pure agriculture to non-agriculture,their total livelihood capital and nonagricultural livelihood diversification index will increase,while agricultural livelihood diversification index will decrease. In the meantime,their livelihood activities gradually shift from agricultural to non-agricultural ones,which is mainly reflected in the combination of both agricultural and non-agricultural activities. Regression analysis on livelihood capital and livelihood diversification shows that natural and physical capital is the basis of realizing agricultural livelihood diversification. Farmers with rich natural and physical capital will prefer agricultural livelihood strategies. While financial and human capital is the driving force for farmers’ transition from pure agriculture to non-agriculture.

  12. Groundwater uranium origin and fate control in a river valley aquifer.

    Science.gov (United States)

    Banning, Andre; Demmel, Thomas; Rüde, Thomas R; Wrobel, Michael

    2013-12-17

    Groundwater in a Quaternary gravel aquifer partly exhibits uranium (U) concentrations exceeding the new German drinking water limitation (22% of the samples >10 μg L(-1)). This study assesses relevant U reservoirs and hydrogeochemical processes responsible for U transfer between them. A large data set of solid materials (sediments and soils, 164 samples total) and groundwater (114 samples total) characteristics was created in terms of geo- and hydrochemistry, mineralogy, U microdistribution, and mobilization potential. Results show that U primarily derived from lignitic inclusions in Tertiary sediments is transported to and accumulated (complexation to organic substance and UO2 precipitation) in lowland moor peats of the river valley grown on the aquifer gravels. The alkaline character of the system predefines a hydrogeochemical framework fostering U mobility. Elevated concentrations (up to 96 μg L(-1) U) occur downstream of the moor areas and under Mn/NO3-reducing groundwater conditions. Oxic and stronger reduced settings are rather little affected. Supporting previous laboratory studies, this suggests enhanced U mobility in the presence of nitrate also in the field scale. While no anthropogenic U input was detected in the study area, agricultural usage of the moor areas triggers geogenic U release via nitrate fertilization, surface peat degradation, and erosion.

  13. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas Valley.

    Science.gov (United States)

    Venkatesan, Arjun K; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2011-06-01

    This study evaluates the impact of urban growth in the Las Vegas Valley (LVV), Nevada, USA on salinity of the Colorado River. In the past thirty eight years the LVV population has grown from 273,288 (1970) to 1,986,146 (2008). The wastewater effluents and runoff from the valley are diverted back to the Colorado River through the Las Vegas Wash (LVW). With the growth of the valley, the salinity released from urban areas has increased the level of TDS in the wastewater effluents, ultimately increasing the TDS in the Colorado River. The increased usage of water softeners in residential and commercial locations is a major contributor of TDS in the wastewater effluents. Controlling TDS release to the Colorado River is important because of the 1944 Treaty signed between the USA and Mexico. In addition, the agriculture salinity damage cost for the Colorado River has been estimated to be more than $306 a million per year using 2004 salinity levels. With the expected growth of LVV in coming years the TDS release into Lake Mead will increase over time. For this purpose, it is important to investigate future TDS release into the Colorado in anticipation of potential TDS reducing measures to be adopted. In this research, a dynamic simulation model was developed using system dynamics modeling to carry out water and TDS mass balances over the entire LVV. The dynamic model output agreed with historic data with an average error of 2%. Forecasts revealed that conservation efforts can reduce TDS load by 16% in the year 2035 when compared to the current trend. If total population using water softeners can be limited to 10% in the year 2035, from the current 30% usage, TDS load in the LVW can be reduced by 7%. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Late Quaternary paleoenvironmental records from the Chatanika River valley near Fairbanks (Alaska)

    Science.gov (United States)

    Schirrmeister, Lutz; Meyer, Hanno; Andreev, Andrei; Wetterich, Sebastian; Kienast, Frank; Bobrov, Anatoly; Fuchs, Margret; Sierralta, Melanie; Herzschuh, Ulrike

    2016-09-01

    Perennially-frozen deposits are considered as excellent paleoenvironmental archives similar to lacustrine, deep marine, and glacier records because of the long-term and good preservation of fossil records under stable permafrost conditions. A permafrost tunnel in the Vault Creek Valley (Chatanika River Valley, near Fairbanks) exposes a sequence of frozen deposits and ground ice that provides a comprehensive set of proxies to reconstruct the late Quaternary environmental history of Interior Alaska. The multi-proxy approach includes different dating techniques (radiocarbon-accelerator mass spectrometry [AMS 14C], optically stimulated luminescence [OSL], thorium/uranium radioisotope disequilibria [230Th/U]), as well as methods of sedimentology, paleoecology, hydrochemistry, and stable isotope geochemistry of ground ice. The studied sequence consists of 36-m-thick late Quaternary deposits above schistose bedrock. Main portions of the sequence accumulated during the early and middle Wisconsin periods. The lowermost unit A consists of about 9-m-thick ice-bonded fluvial gravels with sand and peat lenses. A late Sangamon (MIS 5a) age of unit A is assumed. Spruce forest with birch, larch, and some shrubby alder dominated the vegetation. High presence of Sphagnum spores and Cyperaceae pollen points to mires in the Vault Creek Valley. The overlying unit B consists of 10-m-thick alternating fluvial gravels, loess-like silt, and sand layers, penetrated by small ice wedges. OSL dates support a stadial early Wisconsin (MIS 4) age of unit B. Pollen and plant macrofossil data point to spruce forests with some birch interspersed with wetlands around the site. The following unit C is composed of 15-m-thick ice-rich loess-like and organic-rich silt with fossil bones and large ice wedges. Unit C formed during the interstadial mid-Wisconsin (MIS 3) and stadial late Wisconsin (MIS 2) as indicated by radiocarbon ages. Post-depositional slope processes significantly deformed both, ground

  15. Hydrogeological modeling of water exchange between a river valley aquifer and the Colorado River at a riparian corridor of the Colorado River Delta

    Science.gov (United States)

    Perez-Gonzalez, D.; Ramirez-Hernandez, J.; Zamora, F.

    2008-05-01

    The Colorado River Delta has shown a high capacity of regeneration in spite of the drastic reduction of the freshwater flows. This river has an important ecological value for the remaining ecosystems at the regional and continental level. It is not known when this river will present again surpluses of superficial water in the basin, as it happened in the decades of 1980 and 1990. The ecosystems of the Delta depend on the availability of groundwater to survive. The practices of blanket irrigation in the Valley of Mexicali have favored the vertical refill of the aquifer. Part of this water that infiltrates the ground is captured by the Colorado River (CR). As a consequence, even in years in which the CR has not received surpluses of superficial water low flow can be observed in the river, especially in the area of our study that comprises 12 km of the CR between the interception of the railroad with the river and the entrance to Carranza City. This low flow provides water to maintain the riparian vegetation of the zone. For this reason, it is important to know the hydrologic relationship between the river aquifer and the CR. The purpose of this work is to determine the volumes of water supplied by the aquifer to the riparian system and its relationship with the vegetation. Measurements of the fluctuations of the freatic level (FL) in 27 boreholes located in 8 cross sections during more than 2 years have been used for this study. The system was modelled using the program MODFLOW considering diverse water levels in the CR and flow exchange with the aquifer. The hydrogeological properties of the aquifer were found from slug tests and correlations with the textures of 100 soil samples. The modeling results allow to separate the zone of study in three sections. The first one extends 5km from the railroad to the south. In this section the CR receives water from the aquifer producing the observed water in the river bed all the year. The second section, of approximately 2 km

  16. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland.

    Science.gov (United States)

    Golet, Eva M; Alder, Alfredo C; Giger, Walter

    2002-09-01

    The mass flows of fluoroquinolone antibacterial agents (FQs) were investigated in the aqueous compartments of the Glatt Valley Watershed, a densely populated region in Switzerland. The major human-use FQs consumed in Switzerland, ciprofloxacin (CIP) and norfloxacin (NOR), were determined in municipal wastewater effluents and in the receiving surface water, the Glatt River. Individual concentrations in raw sewage and in final wastewater effluents ranged from 255 to 568 ng/L and from 36 to 106 ng/L, respectively. In the Glatt River, the FQs were present at concentrations below 19 ng/L. The removal of FQs from the water stream during wastewater treatment was between 79 and 87%. During the studied summer period, FQs in the dissolved fraction were significantly reduced downstream in the Glatt River (15-20 h residence time) (66% for CIP and 48% for NOR). Thus, after wastewater treatment, transport in rivers causes an additional decrease of residual levels of FQs in the aquatic environment. Refined predicted environmental concentrations for the study area compare favorably with the measured environmental concentrations (MEC) obtained in the monitoring study. Total measured FQ concentrations occurring in the examined aquatic compartments of the Glatt Valley Watershed were related to acute ecotoxicity data from the literature. The risk quotients obtained (MEC/PNEC < 1) following the recommendations of the European guidelines or draft documents suggest a low probability for adverse effects of the occurring FQs, either on microbial activity in WWTPs or on algae, daphnia, and fish in surface waters.

  17. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    of river valleys are the most «hot» points of the permafrost zone. A comprehensive study of them requires organization of several reference aufeis test areas located in different natural-climatic and geocryological zones. In addition to the natural-historical and methodological aspects, the future research program should include consideration of problems related to interaction between engineering structures and aufeis events and aufeis ice-ground complexes. 

  18. The oasis expansion and eco-environment change over the last 50 years in Manas River Valley, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    CHENG; Weiming; ZHOU; Chenghu; LIU; Haijiang; ZHANG; Yang; JIANG; Yan; ZHANG; Yichi; YAO; Yonghui

    2006-01-01

    The oasis expansion and economic development of the Manas River Valley is one of the most successful examples in Xinjiang. In this paper, the oasis spatial distribution pattern and dynamic change were examined using imageries of Landsat MSS, TM and ETM, land use and topographic maps in six different periods (such as 1949, 1962, 1976, 1989, 1999 and 2001) over the last 50 years in the valley. The oasis expansion process could be divided into two stages according to the annual rate of oasis area increase, the fast oasization stage (from 1949 to 1976) when the oasis area expanded from 156.385 km2 in 1949 to 3,639.491 km2 in 1976 because of rapidly increased population and quickly enlarged farmland area; and the urbanization stage (from 1976 to 2001) when the expansion ratio of farmland slowed down, and the urbanization process quickened, the total oasis area reached 5042.440 km2 in 2001. With the continuous expansion of oasis and farmland, a large quantity of river water was drawn into irrigation ditch and plain lakes, so only a small quantity of river water could flow into lakes, as a result, the Manas Lake dried up, salization and basification problems happened in the low-lying oasis region. The natural swamp around the lake was shrunk greatly and biodiversity decreased significantly. The driving force analysis reveals that human activities, such as reclamation and population growth, played a major role in the oasis expansion and ecological deterioration in the Manas River Valley. So further efforts should be made to improve the efficiency of water resource utility and adjust layout of the regional agricultural and animal husbandry to keep the sustainable development of oasis economic belt of the northern slope of Tianshan Mts.

  19. Facies and facies association of the siliciclastic Brak River and carbonate Gemsbok formations in the Lower Ugab River valley, Namibia, W. Africa

    Science.gov (United States)

    Paciullo, F. V. P.; Ribeiro, A.; Trouw, R. A. J.; Passchier, C. W.

    2007-03-01

    The Neoproterozoic Zerrissene Turbidite Complex of central-western Namibia comprises five turbiditic units. From the base to the top they are the Zebrapüts Formation (greywacke and pelite), Brandberg West Formation (marble and pelite), Brak River Formation (greywacke and pelite with dropstones), Gemsbok River Formation (marble and pelite) and Amis River Formation (greywacke and pelites with rare carbonates and quartz-wacke). In the Lower Ugab River valley, five siliciclastic facies were recognised in the Brak River Formation. These are massive and laminated sandstones, classical turbidites (thick- and thin-bedded), mudrock, rare conglomerate and breccia. For the carbonate Gemsbok River Formation four facies were identified including massive non-graded and graded calcarenite, fine grained evenly bedded blue marble and calcareous mudrock. Most of these facies are also present in the other siliciclastic units of the Zerrissene Turbidite Complex as observed in other areas. The vertical facies association of the siliciclastic Brak River Formation is interpreted as representing sheet sand lobe to lobe-fringe palaeoenvironment with the abandonment of siliciclastic deposition at the top of the succession. The vertical facies association of the carbonate Gemsbok Formation is interpreted as the slope apron succession overlain by periplatform facies, suggesting a carbonate slope sedimentation of a prograding depositional shelf margin. If the siliciclastic-carbonate paired succession would represent a lowstand relative sea-level and highstand relative sea-level, respectively, the entire turbidite succession of the Zerrissene Turbidite Complex can be interpreted as three depositional sequences including two paired siliciclastic-carbonate units (Zebrapüts-Brandberg West formations; Brak River-Gemsbok formations) and an incomplete succession without carbonate at the top (Amis River Formation).

  20. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India.

    Science.gov (United States)

    Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod

    2016-06-01

    Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for

  1. [Percentage of uric acid calculus and its metabolic character in Dongjiang River valley].

    Science.gov (United States)

    Chong, Hong-Heng; An, Geng

    2009-02-15

    To study the percentage of uric acid calculus in uroliths and its metabolic character in Dongjiang River valley. To analyze the chemical composition of 290 urinary stones by infrared (IR) spectroscopy and study the ratio changes of uric acid calculus. Uric acid calculus patients and healthy people were studied. Personal characteristics, dietary habits were collected. Conditional logistic regression was used for data analysis and studied the dietary risk factors of uric acid calculus. Patients with uric acid calculus, calcium oxalate and those without urinary calculus were undergone metabolic evaluation analysis. The results of uric acid calculus patients compared to another two groups to analysis the relations between the formation of uric acid calculus and metabolism factors. Uric acid calculi were found in 53 cases (18.3%). The multiple logistic regression analysis suggested that low daily water intake, eating more salted and animal food, less vegetable were very closely associated with uric acid calculus. Comparing to calcium oxalate patients, the urine volume, the value of pH, urine calcium, urine oxalic acid were lower, but uric acid was higher than it. The value of pH, urine oxalic acid and citric acid were lower than them, but uric acid and urine calcium were higher than none urinary calculus peoples. Blood potassium and magnesium were lower than them. The percentage of uric acid stones had obvious advanced. Less daily water intake, eating salted food, eating more animal food, less vegetables and daily orange juice intake, eating sea food are the mainly dietary risk factors to the formation of uric acid calculus. Urine volume, the value of pH, citric acid, urine calcium, urine uric acid and the blood natrium, potassium, magnesium, calcium, uric acid have significant influence to the information of uric acid stones.

  2. Lithology, hydrologic characteristics, and water quality of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Westerman, Drew A.; Hart, Rheannon M.

    2015-01-01

    A study to assess the potential of the Arkansas River Valley alluvial aquifer in the vicinity of Van Buren, Arkansas, as a viable source of public-supply water was conducted by the U.S. Geological Survey in cooperation with the Little Rock, District, U.S. Army Corps of Engineers. An important study component was to identify possible changes in hydrologic conditions following installation of James W. Trimble Lock and Dam 13 (December 1969) on the Arkansas River near the study area. Data were gathered for the study in regard to the lithology, hydrologic characteristics, and water quality of the aquifer. Lithologic information was obtained from drillers’ logs of wells drilled from 1957 through 1959. Water-quality samples were collected from 10 irrigation wells and analyzed for inorganic constituents and pesticides. To evaluate the potential viability of the alluvial aquifer in the Van Buren area, these data were compared to similar stratigraphic, lithologic, and groundwater-quality data from the Arkansas River Valley alluvial aquifer at Dardanelle, Ark., where the aquifer provides a proven, productive, sole-source of public-supply water.

  3. [Beta-hexachlorocyclohexane contamination in dairy farms of the Sacco River Valley, Latium, Italy, 2005. A retrospective cohort study].

    Science.gov (United States)

    Sala, Marcello; Caminiti, Antonino; Rombolà, Pasquale; Volpe, Aldo; Roffi, Cristina; Caperna, Osvaldo; Miceli, Maria; Ubaldi, Alessandro; Battisti, Antonio; Scaramozzino, Paola

    2012-01-01

    in March 2005, the Italian National Monitoring System on Chemical Residuals in Food of Animal Origin detected levels of the pesticide beta-hexachlorocyclohexane (ß-HCH) that were 20 times higher than the legal limit of 0.003 mg/kg in bulk milk from a dairy farm in the Sacco River valley. ß-HCH, a lindane isomer and possible human carcinogen, was subsequently found in milk from several neighboring farms. A study was therefore undertaken to evaluate the extent and risk factors for contamination. all dairy cattle farms in the valley were enrolled in a retrospective cohort study and their bulk milk analyzed for ß-HCH. A questionnaire was administered to farmers to evaluate possible exposure factors. cases: dairy farms with at least one result indicating ß-HCH ≥ 0.002 mg/kg in bulk milk during the period april-june 2005; exposure: feeding animals on fodder cultivated in soils watered with and/or flooded by river water; participants: IZSLT, RMG Local Health Unit, FR Local Health Unit. attack rate, relative risk, attributable proportion among exposed. of 244 farms tested, 34 met the case definition (attack rate 14%). The exposure to fodder cultivated in soils watered with and/or flooded by river water was observed in 33/34 (97%) case-farms and in 23/210 (10.9%) of those with contamination milk (RR 110.8; 95%CI 15.5- 792). Attributable proportion among exposed was more than 99%. fodder cultivated near a contaminated river was the main risk factor for ß-HCH contaminated milk. On the basis of the epidemiologic evidence and laboratory testing, watering local fields with river water and production of fodder in farms with contaminated soil was banned, and all the animals from positive farms were culled.

  4. Mercury Loads in the South River and Simulation of Mercury Total Maximum Daily Loads (TMDLs) for the South River, South Fork Shenandoah River, and Shenandoah River: Shenandoah Valley, Virginia

    Science.gov (United States)

    Eggleston, Jack

    2009-01-01

    Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189

  5. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  6. Contribution of local knowledge to understand socio-hydrological dynamics. Examples from a study in Senegal river valley

    Science.gov (United States)

    Bruckmann, Laurent

    2017-04-01

    In developing countries many watersheds are low monitored. However, rivers and its floodplains provides ecosystem services to societies, especially for agriculture, grazing and fishing. This uses of rivers and floodplains offer to communities an important local knowledge about hydrological dynamics. This knowledge can be useful to researchers studying ecological or hydrological processes. This presentation aims to discuss and present the interest of using qualitative data from surveys and interviews to understand relations between society and hydrology in floodplain from developing countries, but also to understand changes in hydrological dynamics. This communication is based on a PhD thesis held on from 2012 and 2016, that analyzes socio-ecological changes in the floodplain of the Senegal river floodplain following thirty years of transboundary water management. The results of this work along Senegal river valley suggest that the use of social data and qualitative study are beneficial in understanding the hydrological dynamics in two dimensions. First, it established the importance of perception of hydrological dynamics, particularly floods, on local water management and socio-agricultural trajectories. This perception of people is strictly derived from ecosystems services provided by river and its floodplain. Second, surveys have enlightened new questions concerning the hydrology of the river that are often cited by people, like a decrease of flood water fertility. This type of socio-hydrological study, combining hydrological and qualitative data, has great potential for guiding water management policies. Using local knowledge in their analyzes, researchers also legitimize river users, who are for the most part forgotten by water policies.

  7. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Anderson, John F.; Clark, Kerry L.; Durden, Lance A.

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year. PMID:28260991

  8. Geographic information science: Contribution to understanding salt and sodium affected soils in the Senegal River Valley

    Science.gov (United States)

    Ndiaye, Ramatoulaye

    The Senegal River valley and delta (SRVD) are affected by long term climate variability. Indicators of these climatic shifts include a rainfall deficit, warmer temperatures, sea level rise, floods, and drought. These shifts have led to environmental degradation, water deficits, and profound effects on human life and activities in the area. Geographic Information Science (GIScience), including satellite-based remote sensing methods offer several advantages over conventional ground-based methods used to map and monitor salt-affected soil (SAS) features. This study was designed to assess the accuracy of information on soil salinization extracted from Landsat satellite imagery. Would available imagery and GIScience data analysis enable an ability to discriminate natural soil salinization from soil sodication and provide an ability to characterize the SAS trend and pattern over 30 years? A set of Landsat MSS (June 1973 and September 1979), Landsat TM (November 1987, April 1994 and November 1999) and ETM+ (May 2001 and March 2003) images have been used to map and monitor salt impacted soil distribution. Supervised classification, unsupervised classification and post-classification change detection methods were used. Supervised classifications of May 2001 and March 2003 images were made in conjunction field data characterizing soil surface chemical characteristics that included exchange sodium percentage (ESP), cation exchange capacity (CEC) and the electrical conductivity (EC). With this supervised information extraction method, the distribution of three different types of SAS (saline, saline-sodic, and sodic) was mapped with an accuracy of 91.07% for 2001 image and 73.21% for 2003 image. Change detection results confirmed a decreasing trend in non-saline and saline soil and an increase in saline-sodic and sodic soil. All seven Landsat images were subjected to the unsupervised classification method which resulted in maps that separate SAS according to their degree of

  9. Effect of irrigation management on soil salinization in Manas River Valley,Xinjiang,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The irrigated area of Manas River Valley in Northwest China is an example of the successful reclamation of massive land affected by shallow ground water levels and salinization.To determine the effect of irrigation management practices on soil salinization,soil profiles representing various soil types were sampled.The historical records on the characteristics of irrigation management practices,groundwater level and soil salts accumulation in this region at four key periods,namely:flood irrigation without drainage;flood irrigation with drainage but of low efficiency;irrigation in combination with lined irrigation canals and exploitation of groundwater;and irrigation with the application of water-saving irrigation techniques,were analyzed emphatically.In addition,the salinization status of cultivated land in 2010 and 2020 was also predicted by using analogism according to the relationship between soil salinization and irrigation practices.The results revealed that the application of the traditional irrigation methods,such as flood irrigation and ridge irrigation,resulted in a rapid rising of groundwater level and salts accumulation in soil surface layers.However,with the way of well irrigation and well drainage,the groundwater level and the desalinization in soil layers apparently lowered,leading to a substantial increase of crop yield.Currently,the application of drip irrigation under mulch decreased the salts concentration in soil layers and increased the crop yield.With the continuous application of drip irrigation,the average soil desalinization efficiency in soil layers may increase.It is predicted that the percentage of salinized land would be reduced to 35%-40% when irrigation water is utilized reasonably in 2010.With the high efficient utilization of irrigation water after 2020,the salinized land would remain below 30%.It is concluded that with the improvement of irrigation management,an obvious desalinization would appear in the soil surface layers and the

  10. Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA

    Science.gov (United States)

    Gee, Hugo K.W.; King, Sammy L.; Keim, Richard F.

    2014-01-01

    Flooding is a defining disturbance in floodplain forests affecting seed germination, seedling establishment, and tree growth. Globally, flood control, including artificial levees, dams, and channelization has altered flood regimes in floodplains. However, a paucity of data are available in regards to the long-term effects of levees on stand establishment and tree growth in floodplain forests. In this study, we used dendrochronological techniques to reconstruct tree recruitment and tree growth over a 90-year period at three stands within a ring levee in the Mississippi River Alluvial Valley (MAV) and to evaluate whether recruitment patterns and tree growth changed following levee construction. We hypothesized that: (1) sugarberry is increasing in dominance and overcup oak (Quercus lyrata) is becoming less dominant since the levee, and that changes in hydrology are playing a greater role than canopy disturbance in these changes in species dominance; and (2) that overcup oak growth has declined following construction of the levee and cessation of overbank flooding whereas that of sugarberry has increased. Recruitment patterns shifted from flood-tolerant overcup oak to flood-intolerant sugarberry (Celtis laevigata) after levee construction. None of the 122 sugarberry trees cored in this study established prior to the levee, but it was the most common species established after the levee. The mechanisms behind the compositional change are unknown, however, the cosmopolitan distribution of overcup oak during the pre-levee period and sugarberry during the post-levee period, the lack of sugarberry establishment in the pre-levee period, and the confinement of overcup oak regeneration to the lowest areas in each stand after harvest in the post-levee period indicate that species-specific responses to flooding and light availability are forcing recruitment patterns. Overcup oak growth was also affected by levee construction, but in contrast to our hypothesis, growth actually

  11. Mapping the spatial distribution of subsurface saline material in the Darling River valley

    Science.gov (United States)

    Triantafilis, John; Buchanan, Sam Mostyn

    2010-02-01

    In the Australian landscape larg stores of soluble salt are present naturally. In many cases it is attributable to salts entrapped as marine sediment in earlier geological time. At the district level, the need for information on the presence of saline subsurface material is increasing, particularly for its application to salinity hazard assessment and environmental management. This is the case in irrigated areas, where changes in hydrology can result in secondary salinisation. To reduce the expense, environmental studies use a regression relationship to make use of more readily observed measurements (e.g. electromagnetic (EM) data) which are strongly correlated with the variable of interest. In this investigation a methodology is outlined for mapping the spatial distribution of average subsurface (6-12 m) salinity (EC e — mS m - 1 ) using an environmental correlation with EM34 survey data collected across the Bourke Irrigation District (BID) in the Darling River valley. The EM34 is used in the horizontal dipole mode at coil configurations of 10 (EM34-10), 20 (EM34-20), and 40 (EM34-40). A multiple-linear regression (MLR) relationship is established between average subsurface EC e and the three EM34 signal data using a forward modeling stepwise linear modeling approach. The spatial distribution of average subsurface salinity generally reflects the known surface expression of point-source salinisation and provides information for future environmental monitoring and natural resource management. The generation of EM34 data on various contrived grids (i.e. 1, 1.5, 2. 2.5 and 3 km) indicates that in terms of accuracy, the data available on the 0.5 (RMSE = 188) and 1 km (RMSE = 283) grid are best, with the least biased predictions achieved using 1 (ME = - 1) and 2 km (ME = 12) grids. Viewing the spatial distribution of subsurface saline material showed that the 0.5 km spacing is optimal, particularly in order to account for short-range spatial variation between various

  12. Geophysical Characterization for a CO2 Sequestration Potential in the Ohio River Valley Region

    Science.gov (United States)

    Gupta, N.; Jagucki, P.; Meggyesy, D.; Janosy, R.; Sminchak, J.; Ramakrishan, T.; Boyd, A.

    2003-12-01

    A site at the American Electric Power's (AEP) Mountaineer Power Plant, WV in the Ohio River Valley in the Midwestern U.S., a region with the economy heavily dependent on fossil fuels, such as coal, oil, and gas, is being evaluated to determine the potential for geologic sequestration. The project is supported by the U.S. Department of Energy, Battelle, AEP, BP, The Ohio Air Quality Development Office, and Schlumberger. The major objective of the current phase is to characterize the reservoir at the plant site. Future decisions with regard to CO2 injection will be subject to the evaluated reservoir properties. The effort includes acquisition of 2-dimensional seismic data, assessment of regional geology, drilling to PreCambrian rocks and formation analysis and testing in a 2,800 meters deep well, reservoir simulations, risk assessment, and stakeholder outreach. The test well reached total depth in summer 2003. Wireline logging and reservoir testing was performed for each section of the borehole, including extensive tests in the lowermost 885 meters to estimate formation properties and pressure gradients. The logs included gamma-ray, neutron and density, and array resistivity, magnetic resonance relaxation for permeability information, elemental composition via capture spectroscopy, and resistivity based formation image. The seismic survey was conducted over approximately 11 miles along 2 lines: one along strike and one along dip. The results of the geophysical surveys combined with the field observations provide an integrated assessment of the major injection parameters for the two main injection reservoirs of interest, the Rose Run Formation and the Lower Maryville formation. In addition, the properties of the potential caprock formations overlying the candidate injection zones were also determined. The results of this characterization will be presented with emphasis on geophysical testing and seismic survey. These results are also being used to conduct reservoir

  13. A preliminary list of the Herpetofauna from termite mounds of the cerrado in the Upper Tocantins river valley

    Directory of Open Access Journals (Sweden)

    Lorena A. Moreira

    2009-01-01

    Full Text Available Termite mounds are known to offer refuge and microhabitats to a great variety of invertebrates and vertebrates. In the valley of the upper Tocantins River, within areas of influence of hydroelectric power plants 4,000 termite mounds were surveyed to evaluate the diversity of amphibians and reptiles using these environments. Surveys in termite mounds from two other areas (Corumbá River and Araguaia River basins were used for comparative purposes. The results for termitaria in the upper Tocantins river valley revealed nine families, 13 genera, and 25 species of amphibians, and 16 families, 32 genera, and 47 species of squamate reptiles. Compared to a general herpetofaunal list of the region, the data indicate that between 30.6% and 56.8% of the species use termitaria.Termiteiros são conhecidos por oferecer refúgio e micro habitats para uma grande variedade de invertebrados e vertebrados. Aproveitando trabalhos realizados na área de influência de usinas hidrelétricas no vale do rio Tocantins, inspecionamos avaliamos 4.000 termiteiros visando determinar os anfíbios e répteis que se utilizam desses ambientes. Resultados obtidos em duas outras áreas (bacias dos rios Corumbá e Araguaia foram utilizadas como comparação. No vale do alto rio Tocantins nove famílias, 13 gêneros e 25 espécies de anfíbios e 15 famílias, 32 gêneros e 47 espécies de Squamata foram encontrados nos termiteiros. Esses dados indicam que entre 30.6% e 56.8% das espécies da herpetofauna utilizam termiteiros.

  14. Particulate organic matter composition and organic carbon flux in Arctic valley glaciers: examples from the Bayelva River and adjacent Kongsfjorden

    Directory of Open Access Journals (Sweden)

    Z.-Y. Zhu

    2015-09-01

    Full Text Available In the face of ongoing global warming and glacier retreat, the composition and flux of organic matter in glacier–fjord systems are key variables for updating the carbon cycle and budget, whereas the role of Arctic valley glaciers seems unimportant when compared with the huge Greenland Ice Sheet. Our field observations of the glacier-fed Bayelva River, Svalbard, and the adjacent Kongsfjorden allowed us to determine the compositions of particulate organic matter from glacier to fjord and also to estimate the flux of organic carbon, both for the river and for Svalbard in general. Particulate organic carbon (POC and dissolved organic carbon (DOC in the Bayelva River averaged 56 and 73 μM, respectively, in August 2012. Amino acids (AAs and phytoplankton pigments accounted for ~ 10 % of the particulate organic matter (POM in the Bayelva River, while AAs represented > 90 % of particulate nitrogen in fjord surface water, suggesting the strong in situ assimilation of organic matter. Bacteria accounts for 13 and 19 % of the POC in the Bayelva River and the Kongsfjorden, respectively, while values for particulate nitrogen (PN are much higher (i.e., 36 % in Kongsfjorden. The total discharge from the Bayelva River in 2012 was 29 × 106 m3. Furthermore, we calculated the annual POC, DOC, and PN fluxes for the river as 20 ± 1.6, 25 ± 5.6, and 4.7 ± 0.75 t, respectively. Using the POC content and DOC concentration data, we then estimated the annual POC and DOC fluxes for Svalbard glaciers. Although the estimated POC (0.056 ± 0.02 × 106 t yr−1 and DOC (0.02 ± 0.01 × 106 t yr−1 fluxes of Svalbard glaciers are small compared with those of the Greenland Ice Sheet, the area-weighted POC flux of Svalbard glaciers is twice that of the Greenland Ice Sheet, while the flux of DOC can be 4 to 7 times higher. Therefore, we propose that valley glaciers are efficient high-latitude sources of organic carbon.

  15. Hydrogeology of the Susquehanna River valley-fill aquifer system in the Endicott-Vestal area of southwestern Broome County, New York

    Science.gov (United States)

    Randall, Allan D.; Kappel, William M.

    2015-07-29

    The village of Endicott, New York, and the adjacent town of Vestal have historically used groundwater from the Susquehanna River valley-fill aquifer system for municipal water supply, but parts of some aquifers in this urban area suffer from legacy contamination from varied sources. Endicott would like to identify sites distant from known contamination where productive aquifers could supply municipal wells with water that would not require intensive treatment. The distribution or geometry of aquifers within the Susquehanna River valley fill in western Endicott and northwestern Vestal are delineated in this report largely on the basis of abundant borehole data that have been compiled in a table of well records.

  16. Holocene ethnobotanical and paleoecological record of human impact on vegetation in the Little Tennessee River Valley, Tennessee

    Science.gov (United States)

    Delcourt, Paul A.; Delcourt, Hazel R.; Cridlebaugh, Patricia A.; Chapman, Jefferson

    1986-05-01

    Human occupation and utilization of plant resources have affected vegetation in the lower Little Tennessee River Valley of East Tennessee for 10,000 yr. Changes in Indian cultures and land use are documented by radiocarbon chronologies, lithic artifacts, ceramics, settlement patterns, and ethnobotanical remains from 25 stratified archaeological sites within the Holocene alluvial terrace. The ethnobotanical record consists of 31,500 fragments (13.7 kg) of wood charcoal identified to species and 7.7 kg of carbonized fruits, seeds, nutshells, and cultigens from 956 features. Pollen and plant macrofossils from small ponds both in the uplands and on lower stream terraces record local vegetational changes through the last 1500 to 3000 yr. Human impact increased after cultigens, including squash and gourd, were introduced ca. 4000 yr B.P. during the Archaic cultural period. Forest clearance and cultivation disturbed vegetation on both the floodplain and lower terraces after 2800 yr B.P., during the Woodland period. Permanent Indian settlements and maize and bean agriculture extended to higher terraces 1.5 km from the floodplain by the Mississippian period (1000 to 300 yr B.P.). After 300 yr B.P., extensive land clearance and cultivation by Historic Overhill Cherokee and Euro-Americans spread into the uplands beyond the river valley.

  17. Hydrological role of large icings within glacierized Sub-Arctic watershed: case study in Upper Duke River valley, Yukon, Canada.

    Science.gov (United States)

    Chesnokova, Anna; Baraer, Michel

    2017-04-01

    Sub-Arctic glacierized catchments are complex hydrological systems of paramount importance for water resources management as well as for various ecosystem services. Such systems host many climate-sensitive water sources. Among those, icing is an important component as they provide substantial amount of water during the melt season. Moreover, collecting water of different origins during their formation, icings can be seen as an indicator for different water sources and water pathways that remain active during the freezing period. The present study focuses on genesis and dynamics of large icings within both proglacial field and neighboring alpine meadow in Upper Duke River valley, Yukon, in order to i) provide new insights on water sources and pathways within Sub-Arctic glacierized watersheds, and ii) to quantify contribution of icings to the total runoff of those hydrological systems. A multi-approach technique was applied to cope with the high hydrological complexity met in Sub-Arctic mountainous environments. Time series of positions of large river icings within the study area were obtained using Landsat images for the period 1980-2016. Four time-lapse cameras (TLC) were installed in the watershed targeting two proglacial fields and two alpine meadows in order to monitor icing dynamics all year long. Meteorological data was measured by an Automatic Weather Station in the main valley. In addition air temperature and relative humidity were measured at the location of each TLC. Finally, four icings along the Duke River valley, as well as 2 icings in its main tributary were sampled for stable water isotopes, solutes concentrations and total organic carbon. In addition, samples of freezing exclusion precipitates from icing surfaces were taken. Remote sensing data shows the persistence of large icing complexes in the area during last 30 years: icing within proglacial field appear with almost constant position relative to main glacier tongue on the 30 years long period

  18. Morphogenetic evolution of the Têt river valley (eastern Pyrenees) using 10Be/21Ne cosmogenic burial dating

    Science.gov (United States)

    Sartégou, Amandine; Blard, Pierre-Henri; Braucher, Régis; Bourlès, Didier L.; Calvet, Marc; Zimmermann, Laurent; Tibari, Bouchaïb; Hez, Gabriel; Gunnell, Yanni; Aumaitre, Georges; Keddadouche, Karim

    2016-04-01

    The rates and chronologies of valley incision are closely modulated by the tectonic uplift of active mountain ranges and were controlled by repeated climate changes during the Quaternary. The continental collision between the Iberian and Eurasian plates induced a double vergence orogen, the Pyrenees, which has been considered as a mature mountain range in spite of significant seismicity (e.g. Chevrot et al., 2011) and evidence of neotectonics (e.g. Goula et al., 1999). Nevertheless, recent studies indicate that the range may have never reached a steady state (Ford et al., in press). One option for resolving this controversy is to quantify the incision rates since the Miocene by reconstructing the vertical movement of geometric markers such as fluvial terraces. However, the few available ages from the Pyrenean terrace systems do not exceed the middle Pleistocene. Thus, to enlarge the time span of this dataset, we studied alluvium-filled horizontal epiphreatic passages in limestone karstic networks. Such landforms are used as substitutes of fluvial terraces because they represent former valley floors (e.g. Palmer, 2007; Audra et al., 2013). They record the transient position of former local base levels during the process of valley deepening. The Têt river valley (southern Pyrenees) was studied near the Villefranche-de-Conflent limestone gorge where 8 cave levels have been recognized over a vertical height of 600 meters. Given that 26Al/10Be cosmogenic burial dating in this setting was limited to the last ~5 Ma (Calvet et al., 2015), here we used the cosmogenic 10Be/21Ne method in order to restore a more complete chronology of valley incision (e.g. Balco & Shuster, 2009; McPhilipps et al., 2016). Burial age results for alluvial deposits from 12 caves document incision rates since the Langhian (~14 Ma). Preliminary results indicate a history of valley deepening in successive stages. The data show a regular incision rate of 70-80 mm/a from the Langhian to the Messinian

  19. Pre-and post-Missoula flood geomorphology of the Pre-Holocene ancestral Columbia River Valley in the Portland forearc basin, Oregon and Washington, USA

    Science.gov (United States)

    Peterson, Curt D.; Minor, Rick; Peterson, Gary L.; Gates, Edward B.

    2011-06-01

    Geomorphic landscape development in the pre-Holocene ancestral Columbia River Valley (1-5 km width) in the Portland forearc basin (~ 50 km length) is established from depositional sequences, which pre-date and post-date the glacial Lake Missoula floods. The sequences are observed from selected borehole logs (150 in number) and intact terrace soil profiles (56 in number) in backhoe trenches. Four sequences are widespread, including (1) a vertically aggraded Pleistocene alluvial plain, (2) a steep sided valley that is incised (125-150 m) into the Pleistocene gravel plain, (3) Missoula flood terraces (19-13 ka) abandoned on the sides of the ancestral valley, and (4) Holocene flooding surfaces (11-8 ka) buried at 70-30 m depth in the axial Columbia River Valley. Weathering rims and cementation are used for relative dating of incised Pleistocene gravel units. Soil development on the abandoned Missoula flood terraces is directly related to terrace deposit lithology, including thin Bw horizons in gravel, irregular podzols in sand, and multiple Bw horizons in thicker loess-capping layers. Radiocarbon dating of sand and mud alluvium in the submerged axial valley ties Holocene flooding surfaces to a local sea level curve and establishes Holocene sedimentation rates of 1.5 cm year- 1 during 11-9 ka and 0.3 cm year- 1 during 9-0 ka. The sequences of Pleistocene gravel aggradation, river valley incision, cataclysmic Missoula flooding, and Holocene submergence yield complex geomorphic landscapes in the ancestral lower Columbia River Valley.

  20. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  1. Temporal changes of meadow and peatbog vegetation in the landscape of a small-scale river valley in Central Roztocze

    Directory of Open Access Journals (Sweden)

    Bożenna Czarnecka

    2015-07-01

    Full Text Available The Szum is a right-side tributary of the Tanew River crossing the southern escarpment zone of the Central Roztocze region (SE Poland. Downstream of the strict river break in a section between the 10th and 12th km of the river course in the Szum valley, meadow and peatbog complexes have developed, associated with semi-hydrogenic and marshy soils. In an area of approx. 13 ha of the most valuable non-forest habitats, a variety of plant communities have been identified, including habitats of the Natura 2000 network and habitats that are protected under the Regulation of the Minister of the Environment (2001. These are, for instance, meadow associations Lysimachio vulgaris-Filipenduletum, Lythro-Filipenduletum, Filipendulo ulmariae-Menthetum longifoliae, Angelico-Cirsietum oleracei, and Cirsietum rivularis. The moss–sedge and sphagnum bog communities comprise noteworthy associations Caricetum limosae, Rhynchosporetum albae, Caricetum lasiocarpae, Caricetum paniceo-lepidocarpae, Caricetum davallianae, and Sphagnetum magellanici. These communities are composed of ca. 160 vascular plant species and 40 moss and liverwort species. In 1999–2014, the greatest changes occurred within macroforb meadows, i.e. small Angelico-Cirsietum oleracei and Cirsietum rivularis patches have been transformed into Lysimachio vulgaris-Filipenduletum, while some patches of the latter association have been transformed into a Caricetum acutiformis rush. Several patches of bog-spring associations Caricetum paniceo-lepidocarpae and Carici canescentis-Agrostietum caninae have been irretrievably destroyed. Sphagnetum magellanici appears to be the least stable community among the preserved peatbogs. The changes of meadow and peatbog vegetation observed for the last 15 years are a consequence of natural processes that take place in the river valley and to a large extent human activity connected with the so-called small-scale water retention as well as the presence of a beaver

  2. Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho: an initial assessment

    Science.gov (United States)

    Burnham, W.L.; Harder, A.H.; Dion, N.P.

    1969-01-01

    Five areas within the Bear River drainage of southeastern Idaho offer potential for further development of ground water--the valley north of Bear Lake, north of Soda Springs, Gem Valley, Cache Valley in Idaho, and Malad Valley in Idaho. Saturated deposits north of Bear Lake are too fine-textured to yield large quantities to wells; the areas north of Soda Springs and in Gem Valley would provide large yields, but at the expense of current beneficial discharge. Northern Cache Valley has small areas of high yield in the northwestern part, but total annual yield would be only about 20,000 acre-feet and seasonal water-level fluctuation would be large. Malad Valley contains a large aquifer system within valley fill underlying about 75 square miles. The aquifer system is several hundred feet thick, and contains about 1.8 million acre-feet of water in storage in the top 300 feet of saturated thickness. Average annual recharge to the valley-fill aquifer is about 64,000 acre-feet. Lowering of the water level 100 feet uniformly over the valley area would theoretically yield about 300,000 acre-feet from storage and salvage a present-day large nonbeneficial discharge. Sufficient water to irrigate all lands in a planned project near Samaria could be pumped with a maximum 200-foot pumping lift and then delivered by gravity flow. Such pumping would cause water-level lowering of a few feet to a few tens of feet in present artesian areas, and would cause many present-day artesian wells to cease flowing at land surface. Chemical-quality problems in Malad Valley seem not to be sufficient to prohibit development and use of the ground-water resource.

  3. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  4. Late Pleistocene-Holocene earthquake-induced slumps and soft-sediment deformation structures in the Acequion River valley, Central Precordillera, Argentina

    Directory of Open Access Journals (Sweden)

    Perucca Laura P

    2014-07-01

    Full Text Available Evidence of earthquake-induced liquefaction features in the Acequión river valley, central western Argentina, is analysed. Well-preserved soft-sediment deformation structures are present in Late Pleistocene deposits; they include two large slumps and several sand dikes, convolutions, pseudonodules, faults, dish structures and diapirs in the basal part of a shallow-lacustrine succession in the El Acequión River area. The water-saturated state of these sediments favoured deformation.

  5. Building sustainable communities using sense of place indicators in three Hudson River Valley, NY, tourism destinations: An application of the limits of acceptable change process

    Science.gov (United States)

    Laura E. Sullivan; Rudy M. Schuster; Diane M. Kuehn; Cheryl S. Doble; Duarte. Morais

    2010-01-01

    This study explores whether measures of residents' sense of place can act as indicators in the Limits of Acceptable Change (LAC) process to facilitate tourism planning and management. Data on community attributes valued by residents and the associated values and meanings were collected through focus groups with 27 residents in three Hudson River Valley, New York,...

  6. The Politics of Place: Official, Intermediate and Community Discourses in Depopulated Rural Areas of Central Spain. The Case of the Riaza River Valley (Segovia, Spain)

    Science.gov (United States)

    Paniagua, Angel

    2009-01-01

    This paper provides theoretical and methodological arguments to study the politics of space in small marginal and depopulated areas of Spain. The case for research is the Riaza river valley in the province of Segovia. Usually the analysis of rural space (and the geographical space in general) provides opposing presentations: vertical, between…

  7. 甘肃白龙江流域的茶渍属地衣%The lichen genus Lecanora from Bailong river valley of Gansu province, China

    Institute of Scientific and Technical Information of China (English)

    吕蕾; 王辰磊; 任强; 史秀莉; 赵遵田

    2008-01-01

    Fourteen species of the lichen genus Lecanora are reported from Bailong river valley of Gansu province. Four of them, L. albella, L. flowersiana, L. garovaglii and L. symmicta are reported from China for the first time. Anatomy, morphology and chemistry descriptions based on our materials for the new records are given.

  8. Wells measured for water-levels, unconfined and confined aquifers, Wood River Valley aquifer system, south-central Idaho, October 2006 and October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  9. Changes in the water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  10. The significance of the European beaver (Castor fibre activity for the process of renaturalization of river valleys in the era of increasing

    Directory of Open Access Journals (Sweden)

    Kusztal Piotr

    2017-03-01

    Full Text Available Changes in the environment that are caused by the activity of beavers bring numerous advantages. They affect the increase in biodiversity, contribute to improving the condition of cleanliness of watercourses, improve local water relations and restore the natural landscape of river valleys.

  11. Changes in the potentiometric-surface altitude of the confined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2006 to October 2012.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  12. Processes of Terrace Formation on the Piedmont of the Santa Cruz River Valley During Quaternary Time, Green Valley-Tubac Area, Southeastern Arizona

    Science.gov (United States)

    Lindsey, David A.; Van Gosen, Bradley S.

    2010-01-01

    In this report we describe a series of stepped Quaternary terraces on some piedmont tributaries of the Santa Cruz River valley in southeastern Arizona. These terraces began to form in early Pleistocene time, after major basin-and-range faulting ceased, with lateral planation of basin fill and deposition of thin fans of alluvium. At the end of this cycle of erosion and deposition, tributaries of the Santa Cruz River began the process of dissection and terrace formation that continues to the present. Vertical cutting alternated with periods of equilibrium, during which streams cut laterally and left thin deposits of channel fill. The distribution of terraces was mapped and compiled with adjacent mapping to produce a regional picture of piedmont stream history in the middle part of the Santa Cruz River valley. For selected tributaries, the thickness of terrace fill was measured, particle size and lithology of gravel were determined, and sedimentary features were photographed and described. Mapping of terrace stratigraphy revealed that on two tributaries, Madera Canyon Wash and Montosa Canyon Wash, stream piracy has played an important role in piedmont landscape development. On two other tributaries, Cottonwood Canyon Wash and Josephine Canyon Wash, rapid downcutting preempted piracy. Two types of terraces are recognized: erosional and depositional. Gravel in thin erosional terraces has Trask sorting coefficients and sedimentary structures typical of streamflood deposits, replete with bar-and-swale surface topography on young terraces. Erosional-terrace fill represents the channel fill of the stream that cuts the terrace; the thickness of the fill indicates the depth of channel scour. In contrast to erosional terraces, depositional terraces show evidence of repeated deposition and net aggradation, as indicated by their thickness (as much as 20+ m) and weakly bedded structure. Depositional terraces are common below mountain-front canyon mouths where streams drop their

  13. A luminescence dating study of the sediment stratigraphy of the Lajia Ruins in the upper Yellow River valley, China

    Science.gov (United States)

    Zhang, Yuzhu; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Wang, Longsheng; Zhou, Liang; Guo, Yongqiang; Wang, Leibin

    2014-06-01

    Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20-3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.

  14. Quality of groundwater and surface water, Wood River Valley, south-central Idaho, July and August 2012

    Science.gov (United States)

    Hopkins, Candice B.; Bartolino, James R.

    2013-01-01

    Residents and resource managers of the Wood River Valley of south-central Idaho are concerned about the effects that population growth might have on the quality of groundwater and surface water. As part of a multi-phase assessment of the groundwater resources in the study area, the U.S. Geological Survey evaluated the quality of water at 45 groundwater and 5 surface-water sites throughout the Wood River Valley during July and August 2012. Water samples were analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and alkalinity), major ions, boron, iron, manganese, nutrients, and Escherichia coli (E.coli) and total coliform bacteria. This study was conducted to determine baseline water quality throughout the Wood River Valley, with special emphasis on nutrient concentrations. Water quality in most samples collected did not exceed U.S. Environmental Protection Agency standards for drinking water. E. coli bacteria, used as indicators of water quality, were detected in all five surface-water samples and in two groundwater samples collected. Some analytes have aesthetic-based recommended drinking water standards; one groundwater sample exceeded recommended iron concentrations. Nitrate plus nitrite concentrations varied, but tended to be higher near population centers and in agricultural areas than in tributaries and less populated areas. These higher nitrate plus nitrite concentrations were not correlated with boron concentrations or the presence of bacteria, common indicators of sources of nutrients to water. None of the samples collected exceeded drinking-water standards for nitrate or nitrite. The concentration of total dissolved solids varied considerably in the waters sampled; however a calcium-magnesium-bicarbonate water type was dominant (43 out of 50 samples) in both the groundwater and surface water. Three constituents that may be influenced by anthropogenic activity (chloride, boron, and nitrate plus nitrite) deviate from this

  15. Soil development on Late Quaternary river terraces in a high montane valley in Bhutan, Eastern Himalayas

    NARCIS (Netherlands)

    Tshering Dorji,; Caspari, T.; Bäumler, R.; Veldkamp, A.; Jongmans, A.G.; Kado Tshering,; Tsheten Dorji,; Baillie, I.

    2009-01-01

    We examined the geochemistry and micromorphology of the soils on a suite of morphologically well-defined and visually distinct fluvial terraces, up to 40 m elevation above the current riverbed, at Thangbi in the upper Bumthang Valley, Bhutan. The alluvia forming each of the terraces are lithological

  16. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    Science.gov (United States)

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae

  17. Microbiological Water Quality in Relation to Water-Contact Recreation, Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2000 and 2002

    Science.gov (United States)

    Bushon, Rebecca N.; Koltun, G.F.

    2004-01-01

    The microbiological water quality of a 23-mile segment of the Cuyahoga River within the Cuyahoga Valley National Park was examined in this study. This segment of the river receives discharges of contaminated water from stormwater, combined-sewer overflows, and incompletely disinfected wastewater. Frequent exceedances of Ohio microbiological water-quality standards result in a health risk to the public who use the river for water-contact recreation. Water samples were collected during the recreational season of May through October at four sites on the Cuyahoga River in 2000, at three sites on the river in 2002, and from the effluent of the Akron Water Pollution Control Station (WPCS) both years. The samples were collected over a similar range in streamflow in 2000 and 2002. Samples were analyzed for physical and chemical constituents, as well as the following microbiological indicators and pathogenic organisms: Escherichia coli (E. coli), Salmonella, F-specific and somatic coliphage, enterovirus, infectious enterovirus, hepatitis A virus, Clostridium perfringens (C. perfringens), Cryptosporidium, and Giardia. The relations of the microorganisms to each other and to selected water-quality measures were examined. All microorganisms analyzed for, except Cryptosporidium, were detected at least once at each sampling site. Concentrations of E. coli exceeded the Ohio primary-contact recreational standard (298 colonies per 100 milliliters) in approximately 87 percent of the river samples and generally were higher in the river samples than in the effluent samples. C. perfringens concentrations were positively and significantly correlated with E. coli concentrations in the river samples and generally were higher in the effluent samples than in the river samples. Several of the river samples that met the Ohio E. coli secondary-contact recreational standard (576 colonies per 100 milliliters) had detections of enterovirus, infectious enterovirus, hepatitis A virus, and

  18. Sustainability Assessment of Large Irrigation Dams in Senegal: A Cost-Benefit Analysis for the Senegal River Valley

    Directory of Open Access Journals (Sweden)

    Stanislaw eManikowski

    2016-03-01

    Full Text Available Starting in the 1970s, the Senegalese Government invested in the development of irrigated schemes in the Senegalese part of the Senegal River Valley (S-SRV. From that time to 2012, the irrigated schemes increased from 10,000 ha to more than 110,000 ha. In the meantime, the economic viability of these schemes started to be questioned. It also appeared that the environmental health and social costs might outweigh the benefits of irrigation. Using a life cycle assessment approach and project cost-benefits modelling, this study (i quantified the costs and benefits of the S-SRV irrigated rice production, (ii evaluated the costs and benefits of its externalities and (iii discussed the irrigated rice support policy. The net financial revenues from the irrigated schemes were positive, but their economic equivalences. The economic return rate (EER was below the expected 12% and the net present value (NPV over 20 years of the project represented a loss of about US$-19.6 million. However, if we also include the project’s negative externalities, such as the reduced productivity of the valley ecosystems, protection cost of human health, environmental degradation and social impacts, then the NPV would be much worse, approximately US$-572.1 million. Therefore, the results show that to stop the economic loss and alleviate the human suffering, the S-SRV development policy should be revised using an integrated approach and the exploitation technology should aim at environmental sustainability. This paper may offer useful insights for reviewing the current Senegalese policies for the valley, as well as for assessing other similar cases or future projects worldwide, particularly in critical zones of developing countries.

  19. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  20. GEOTOURISM IN THE NIŠAVA RIVER MIDSTREAM VALLEY, SOUTHEASTERN SERBIA – CURRENT STATE AND ISSUES OF FUTURE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Milica Began

    2015-12-01

    Full Text Available The region of East  and Southeast Serbia, has the biggest collection of geoheritage sites in the Republic of Serbia. In the southeastern part of Serbia, following various mineralogical compositions of the rocks, the Nišava river has carved a composite valley. This is an area of extraordinary nature capacity because of large number of natural rarities and phenomena that have great possibilities for geotourism development. Despite exceptional predispositions in terms of the value of geological heritage, geosites of this area are still unknown to a wider audience. Aim of this paper is to analyze current state of geotourism and to highlight the values of geosites in Srednje Ponišavlje using the evaluating model as well to evaluate its quality and give the assessment of geotourism development success. Using GAM model, 7 geosites have been analyzed, the ones with extraordinary geological/geomorphological and hydrological features for geotourism development.

  1. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea;

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  2. LDL (Landscape Digital Library) a Digital Photographic Database of a Case Study Area in the River Po Valley, Northern Italy

    CERN Document Server

    Papotti, D

    2001-01-01

    Landscapes are both a synthesis and an expression of national, regional and local cultural heritages. It is therefore very important to develop techniques aimed at cataloguing and archiving their forms. This paper discusses the LDL (Landscape Digital Library) project, a Web accessible database that can present the landscapes of a territory with documentary evidence in a new format and from a new perspective. The method was tested in a case study area of the river Po valley (Northern Italy). The LDL is based on a collection of photographs taken following a systematic grid of survey points identified through topographic cartography; the camera level is that of the human eye. This methodology leads to an innovative landscape archive that differs from surveys carried out through aerial photographs or campaigns aimed at selecting "relevant" points of interest. Further developments and possible uses of the LDL are also discussed.

  3. Differences between dynamics factors for interannual and decadal variations of rainfall over the Yangtze River valley during flood seasons

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rainfall over the Yangtze River valley during flood seasons (June to July) shows both interannual and decadal variations. The rainfall has been increasing since 1990, showing a decadal signal. The variations of rainfall are influenced by the multi-scale interactions in the atmosphere-ocean coupled climate system. The rainfall, SST, and circulation are analyzed with the Chinese 160 station data, and other observational/reanalysis data, respectively. The separation between the interannual and decadal variations is carried out. The key areas affecting the Yangtze rainfall are the western Pacific warm pool on the interannual time scale and the EINO3 area on the decadal time scale, respectively. The circulation anomaly associated with the interannual variation occurs in the upper troposphere whereas that associated with the decadal variation appears in the lower troposphere.

  4. Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico.

    Science.gov (United States)

    Piperno, Dolores R; Ranere, Anthony J; Holst, Irene; Iriarte, Jose; Dickau, Ruth

    2009-03-31

    Questions that still surround the origin and early dispersals of maize (Zea mays L.) result in large part from the absence of information on its early history from the Balsas River Valley of tropical southwestern Mexico, where its wild ancestor is native. We report starch grain and phytolith data from the Xihuatoxtla shelter, located in the Central Balsas Valley, that indicate that maize was present by 8,700 calendrical years ago (cal. B.P.). Phytolith data also indicate an early preceramic presence of a domesticated species of squash, possibly Cucurbita argyrosperma. The starch and phytolith data also allow an evaluation of current hypotheses about how early maize was used, and provide evidence as to the tempo and timing of human selection pressure on 2 major domestication genes in Zea and Cucurbita. Our data confirm an early Holocene chronology for maize domestication that has been previously indicated by archaeological and paleoecological phytolith, starch grain, and pollen data from south of Mexico, and reshift the focus back to an origin in the seasonal tropical forest rather than in the semiarid highlands.

  5. The Aggradational Successions of the Aniene River Valley in Rome: Age Constraints to Early Neanderthal Presence in Europe

    Science.gov (United States)

    Ceruleo, Piero; Pandolfi, Luca; Petronio, Carmelo; Rolfo, Mario F.; Salari, Leonardo

    2017-01-01

    We revise the chronostratigraphy of several sedimentary successions cropping out along a 5 km-long tract of the Aniene River Valley in Rome (Italy), which yielded six hominin remains previously attributed to proto- or archaic Neanderthal individuals, as well as a large number of lithic artefacts showing intermediate characteristics somewhere between the local Acheulean and Mousterian cultures. Through a method of correlation of aggradational successions with post-glacial sea-level rises, relying on a large set of published 40Ar/39Ar ages of interbedded volcanic deposits, we demonstrate that deposition of the sediments hosting the human remains spans the interval 295–220 ka. This is consistent with other well constrained ages for lithic industries recovered in England, displaying transitional features from Lower to Middle Paleolithic, suggesting the appearance of Mode 3 during the MIS 9-MIS 8 transition. Moreover, the six human bone fragments recovered in the Aniene Valley should be regarded as the most precisely dated and oldest hominin remains ascribable to Neanderthal-type individuals in Europe, discovered to date. The chronostratigraphic study presented here constitutes the groundwork for addressing re-analysis of these remains and of their associated lithic industries, in the light of their well-constrained chronological picture. PMID:28125602

  6. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    Science.gov (United States)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  7. Block and shear-zone architecture of the Minnesota River Valley subprovince: Implications for late Archean accretionary tectonics

    Science.gov (United States)

    Southwick, D.L.; Chandler, V.W.

    1996-01-01

    The Minnesota River Valley subprovince of the Superior Province is an Archean gneiss terrane composed internally of four crustal blocks bounded by three zones of east-northeast-trending linear geophysical anomalies. Two of the block-bounding zones are verified regional-scale shears. The geological nature of the third boundary has not been established. Potential-field geophysical models portray the boundary zones as moderately north-dipping surfaces or thin slabs similar in strike and dip to the Morris fault segment of the Great Lakes tectonic zone at the north margin of the subprovince. The central two blocks of the subprovince (Morton and Montevideo) are predominantly high-grade quartzofeldspathic gneiss, some as old as 3.6 Ga, and late-tectonic granite. The northern and southern blocks (Benson and Jeffers, respectively) are judged to contain less gneiss than the central blocks and a larger diversity of syntectonic and late-tectonic plutons. A belt of moderately metamorphosed mafic and ultramafic rocks having some attributes of a dismembered ophiolite is partly within the boundary zone between the Morton and Montevideo blocks. This and the other block boundaries are interpreted as late Archean structures that were reactivated in the Early Proterozoic. The Minnesota River Valley subprovince is interpreted as a late accretionary addition to the Superior Province. Because it was continental crust, it was not subductible when it impinged on the convergent southern margin of the Superior Craton in late Archean time, and it may have accommodated to convergent-margin stresses by dividing into blocks and shear zones capable of independent movement.

  8. An integrated approach to the Environmental Monitoring Plan of the Pertuso spring (Upper Valley of Aniene River

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2014-06-01

    Full Text Available Quantitative assessment of groundwater and surface water is an important tool for sustainable management and protection of these important resources. This paper deals with the design of a multi-disciplinary monitoring plan related to the catchment project of the Pertuso spring, in the Upper Valley of Aniene River, which is going to be exploited to supply an important water network in the South part of Roma district. According to the Legislative Decree 152/2006, as modified by DM 260/2010, any infrastructure design should take in consideration an Environmental Monitoring Plan for the hydrogeological settings of the study area. Thus, the hydrogeological characterization combined with an Environmental Monitoring Plan provides to evaluate the potential adverse environmental impacts due catchment works. For water resources assessment and management, the quantification of groundwater recharge is a preliminary step. As a matter of fact, it has been included the quantitative characterization of the Pertuso spring, in the aim of to protect catchment area, which is directly affect by the natural hydrogeological balance of this aquifer. Thus, a multi-disciplinary monitoring plan has been set up, including quantitative and hydrogeochemical measurements, both for groundwater and surface water of the Upper Valley of Aniene River. The target of this Environmental Monitoring Plan is to set up the background framework on the hydromorphological, physico-chemical and biological properties of water resources in the water basin influenced aim by any potential environmental impact due to the construction activities. The Environmental Monitoring Plan and main features of the monitoring network will be presented in this study.

  9. Impacts of the 2016 outburst flood on the Bhote Koshi River valley, central Nepal

    Science.gov (United States)

    Cook, Kristen; Andermann, Christoff; Gimbert, Florent; Hovius, Niels; Adhikari, Basanta

    2017-04-01

    The central Nepal Himalaya is a region of rapid erosion where fluvial processes are largely driven by the annual Indian Summer Monsoon, which delivers up to several meters of precipitation each year. However, the rivers in this region are also subject to rare catastrophic floods caused by the sudden failure of landslide or moraine dams. Because these floods happen rarely, it has been difficult to isolate their impact on the rivers and adjacent hillslopes, and their importance for the long-term evolution of Himalayan rivers is poorly constrained. On the 5th of July, 2016, the Bhote Koshi River in central Nepal was hit by a glacial lake outburst flood (GLOF). The flood passed through a seismic and hydrological observatory installed along the river in June 2015, and we have used the resulting data to constrain the timing, duration, and bedload transport properties of the outburst flood. The impact of the flood on the river can be further observed with hourly time-lapse photographs, daily measurements of suspended sediment load, repeat lidar surveys, and satellite imagery. Overall, our observatory data span two monsoon seasons, allowing us to evaluate the impacts of the outburst flood relative to the annual monsoon flood. The outburst flood affected the river on several timescales. In the short term, it transported large amounts of coarse sediment and restructured the river bed during the hours of the flood pulse itself. Over intermediate timescales it resulted in elevated bedload and suspended load transport for several weeks following the flood. Over longer timescales the flood undercut and destabilized the river banks and hillslopes in a number of locations, leading to bank collapses, slumps, and landslides. We map changes in the channel and associated mass wasting using rapidEye imagery from Oct. 2015 and Oct. 2016. We also use repeat terrestrial lidar scans to quantify the magnitude of change in multiple locations along the river channel and to measure bank

  10. Reconstruction palaeoflood hydrology using slackwater flow depth method in the Yanhe River valley, middle Yellow River basin, China

    Science.gov (United States)

    Guo, Yongqiang; Huang, Chun Chang; Pang, Jiangli; Zhou, Yali; Zha, Xiaochun; Mao, Peini

    2017-01-01

    Water depth above the flood deposits should be taken into account in calculations of the palaeoflood peak stages, which can provide more accurately estimate of palaeoflood stage. Here we present a new method, slackwater flow depth, to assess palaeoflood peak stage and to reduce the underestimation of palaeoflood stage. Palaeoflood slackwater deposits (SWDs) were identified by palaeohydrological criteria in cliff riverbank on the Yanhe River, middle Yellow River basin. Palaeoflood events recorded in four layers of SWD were dated by optical stimulated luminescence to 9.5-8.5 ka. The estimation of palaeoflood maximum stage was 778.3 m using the slackwater flow depth method and the palaeoflood peak discharge is 15,000 m3/s using the step-backwater method. Palaeoflood results greatly extend the current flood data series in the Yanhe River basin. The regional flood history including gauged flood, historical and palaeoflood data was compiled and evaluated for the major tributaries of the middle Yellow River. The relationship between palaeoflood peak discharges and drainage areas in this region fit well with the global maximum curves. The results of site-specific and regional palaeoflood evaluations demonstrate that the approach estimates the true palaeoflood peak stage and discharges and improves the flood frequency analysis of extreme and rare floods for a particular basin. Meanwhile, the advantages and uncertainties of this method need ongoing discussion in palaeoflood investigations.

  11. Review of De Young,"Life & Death of a Rural American High School: Farewell Little Kanawha"

    Directory of Open Access Journals (Sweden)

    Craig Howley

    1995-03-01

    Full Text Available lan DeYoung's story of the circumstances surrounding the birth, growth, and death of a high school in rural West Virginia is an intellectual contribution of the first order. And Farewell Little Kanawha is certainly one of the best stories to be told by an educational researcher in recent decades. Its strength derives in large measure from DeYoung's deftness in crossing disciplinary borders. The interplay of economics, sociology, history (both oral and documentary, anthropology, and biography render this story far more compelling than most educational research. DeYoung bases his narrative, in fact, on C. Wright Mills' precept that social science worth doing must interpret the intersection of biography and history. Mills was the wisest and best American sociologist and DeYoung is among a very small contingent of scholars concerned with rural education to embrace his advice.

  12. River-spring connectivity and hydrogeochemical interactions in a shallow fractured rock formation. The case study of Fuensanta river valley (Southern Spain)

    Science.gov (United States)

    Barberá, J. A.; Andreo, B.

    2017-04-01

    In upland catchments, the hydrology and hydrochemistry of streams are largely influenced by groundwater inflows, at both regional and local scale. However, reverse conditions (groundwater dynamics conditioned by surface water interferences), although less described, may also occur. In this research, the local river-spring connectivity and induced hydrogeochemical interactions in intensely folded, fractured and layered Cretaceous marls and marly-limestones (Fuensanta river valley, S Spain) are discussed based on field observations, tracer tests and hydrodynamic and hydrochemical data. The differential flow measurements and tracing experiments performed in the Fuensanta river permitted us to quantify the surface water losses and to verify its direct hydraulic connection with the Fuensanta spring. The numerical simulations of tracer breakthrough curves suggest the existence of a groundwater flow system through well-connected master and tributary fractures, with fast and multi-source flow components. Furthermore, the multivariate statistical analysis conducted using chemical data from the sampled waters, the geochemical study of water-rock interactions and the proposed water mixing approach allowed the spatial characterization of the chemistry of the springs and river/stream waters draining low permeable Cretaceous formations. Results corroborated that the mixing of surface waters, as well as calcite dissolution and CO2 dissolution/exsolution, are the main geochemical processes constraining Fuensanta spring hydrochemistry. The estimated contribution of the tributary surface waters to the spring flow during the research period was approximately 26-53% (Fuensanta river) and 47-74% (Convento stream), being predominant the first component during high flow and the second one during the dry season. The identification of secondary geochemical processes (dolomite and gypsum dissolution and dedolomitization) in Fuensanta spring waters evidences the induced hydrogeochemical

  13. Multi-scale cyclone activity in the Changjiang River-Huaihe River valleys during spring and its relationship with rainfall anomalies

    Science.gov (United States)

    Qin, Yujing; Lu, Chuhan; Li, Liping

    2017-02-01

    Based on the recognition framework of the outermost closed contours of cyclones, an automated identification algorithm capable of identifying the multi-scale cyclones that occur during spring in the Changjiang River-Huaihe River valleys (CHV) were developed. We studied the characteristics of the multi-scale cyclone activity that affects CHV and its relationship with rainfall during spring since 1979. The results indicated that the automated identification algorithm for cyclones proposed in this paper could intuitively identify multi-scale cyclones that affect CHV. The algorithm allows for effectively describing the shape and coverage area of the closed contours around the periphery of cyclones. We found that, compared to the meso- and sub-synoptic scale cyclone activities, the synoptic-scale cyclone activity showed more intimate correlation with the overall activity intensity of multi-scale CHV cyclones during spring. However, the frequency of occurrence of sub-synoptic scale cyclones was the highest, and their effect on changes in CHV cyclone activity could not be ignored. Based on the area of impact and the depth of the cyclones, the sub-synoptic scale, synoptic scale and comprehensive cyclone intensity indices were further defined, which showed a positive correlation with rainfall in CHV during spring. Additionally, the comprehensive cyclone intensity index was a good indicator of strong rainfall events.

  14. Water storage capacity of the natural river valley - how sedge communities influence it. Case study of Upper Biebrza Basin (Poland) based on ALS and TLS data

    Science.gov (United States)

    Brach, Marcin; Chormański, Jarosław

    2014-05-01

    The exact determination of water storage capacity in river valley is an important issue for hydrologists, ecologist and flood modellers. In case of natural river valley, the dense and complexity vegetation of the natural ecosystems can influence the proper identification of the water storage. Methods considered to be sufficient in other cases (urbanized, agricultural) may not produce correct results. Sedge communities in natural river valleys form characteristic tussocks, built from the species roots, other organic material and silt or mud. They are formed due to partial flooding during the inundation, so the plants can survive in hard, anaerobic conditions. They can growth even up to 0.5 meters, which is not so visible due to very dense vegetation in the valleys. These tussocks form a microtopography or a river valley. Currently, the most commonly used technology to register the terrain topography is an Airborne Laser Scanning (ALS), but in the case of the tussocks and the dense vegetation it generates high errors on elevation in the areas of the sedges (Carex appropinquata). This study concerns the Upper Biebrza Valley which is located in the northeastern Poland. For purpose of our work we used Terrestrial Laser Scanner (TLS) technology to determine microtopography of selected fields. Before measurements, the green part of the sedge was cut in selected measurements fields. It make possible to register only tussocks shape. Next, step was collection of the airborne ALS data of the valley with density of 8 points/sq m. The experimental field was divided on two sub-fields: one was cut and scanned using TLS before ALS collection, while the second after. Data collected as ALS and the TLS were then compared. The accuracy of the ALS data depends on the land cover of an area, while TLS accuracy is around 2 millimeters (when georeferenced it depends on the accuracy of reference points - in our case it was made using GPS RTK which gave us accuracy of few centimeters). The

  15. NUMERICAL AND DIGITAL METHODS IN ANALYSIS OF SPACE-TIME CHANGES AND RENEWAL OF VEGETATION COVER RESOURCES IN THE CZARNA RIVER VALLEY

    Directory of Open Access Journals (Sweden)

    Grażyna Łaska

    2015-09-01

    Full Text Available The study aimed at evaluation of the current state and description of changes in plant communities in wetland habitats in the Czarna river valley and at recommendation of effective methods for the renewal of vegetation on the basis of detail analysis of its space-time changes. The methods applied included a compilation of field studies (inventory, cartographic study and phytosociological analyses, valorisation of nature, numerical syntaxonomy with the use of MVSP program (Cluster Analysis and PCA and digital methods GIS (Geomedia Professional 6.1. The field study of the vegetation cover of the Czarna river valley was performed in the years 2010–2011. The space-time analysis of changes in the vegetation cover and renewal of vegetation was made with the use of archive aerial photographs from 1966, topographic maps from 1982 and 2000 and orthophotomaps from 2011. The vegetation cover of the Czarna river valley was found to be composed of 12 plant communities representing 6 syntaxonomic classes, and to include sites of 8 protected species. The space-time analysis of the vegetation cover of the Czarna river valley, taking into account the changes in the forms of the valley use over the period 1966–2011, showed that the area occupied by forest communities in wetland habitats as a result of secondary succession has increased by 0.16 km2, so by 27% with respect to the area of 0.4406 km2 from 1966. Chronological changes in the vegetation cover over this area analysed on the basis of GIS and digital methods indicate that in the wet meadows in the valley studied the secondary succession leads to the reproduction of the potential forest communities that were growing there once in the past. The renewal of forestless greeneries in the Czarna river valley is related to changes in the use of the area realised by mowing and restoration of the earlier hydrological regime in the entire catchment area, changed by the network of channels and drainage ditches.

  16. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Directory of Open Access Journals (Sweden)

    John M. Boland

    2016-06-01

    Full Text Available The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp., an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball, and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav. Pers.. Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60% in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70% of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley

  17. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California.

    Science.gov (United States)

    Boland, John M

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  18. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California

    Science.gov (United States)

    2016-01-01

    The Tijuana River Valley is the first natural habitat in California to be substantially invaded by the Kuroshio Shot Hole Borer (KSHB, Euwallacea sp.), an ambrosia beetle native to Southeast Asia. This paper documents the distribution of the KSHB in the riparian vegetation in the valley and assesses the damage done to the vegetation as of early 2016, approximately six months after the beetle was first observed in the valley. I divided the riparian habitats into 29 survey units so that the vegetation within each unit was relatively homogenous in terms of plant species composition, age and density. From a random point within each unit, I examined approximately 60 individuals of the dominant plant species for evidence of KSHB infestation and evidence of major damage such as limb breakage. In the 22 forested units,I examined the dominant arroyo and black willows (Salix lasiolepis Benth. and S. gooddingii C.R. Ball), and in the seven scrub units, I examined mule fat (Baccharis salicifolia (Ruiz & Pav.) Pers.). Evidence of KSHB infestation was found in 25 of the 29 units. In the forest units, infestation rates ranged from 0 to 100% and were high (>60%) in 16 of the units. In the scrub units, infestation rates ranged from 0 to 33%. Infestation rates were significantly correlated with the wetness of a unit; wetter units had higher infestation rates. Evidence of major physical damage was found in 24 units, and dense stands of willows were reduced to broken trunks in several areas. Overall, I estimated that more than 280,000 (70%) of the willows in the valley were infested, and more than 140,000 had suffered major limb damage. In addition, I recorded evidence of KSHB infestation in the other common plant species in the valley; of the 23 species examined, 14 showed evidence of beetle attack. The four species with the highest rates of infestation were native trees in the Salicaceae family. The three species considered to be the worst invasive plants in the valley, Ricinus

  19. Floodplain morphodynamics and distribution of trace elements in overbank deposits, Vistula River Valley Gorge near Solec nad Wisłą, Poland

    Science.gov (United States)

    Falkowska, Ewa; Falkowski, Tomasz; Tatur, Andrzej; Kałmykow-Piwińska, Agnieszka

    2016-09-01

    Geological and geochemical investigations were carried out in the floodplain of the Vistula River Valley gorge near Solec nad Wisłą (Małopolska Gorge of the Vistula River). Geological mapping was supported by DEM and remote sensing analysis. Sediment samples were taken from depths of 0.5 m and 1.5 m from all geomorphological features identified. The geochemical analysis included determination of Cr, V, Sr, Ba, Ni, Cu, Co, As, Pb and Zn concentrations. Results indicate that the main factors affecting the pattern of features in the floodplain of this area are (1) the highly dynamic flood flow in the narrow section of the gorge and (2) the relief of the top surface of the sub-alluvial basement. The variable concentrations of trace elements are closely related to the floodplain features. Their concentrations can be considered as valuable geochemical proxies that enable a more thorough reconstruction of the sedimentary evolution of the Vistula River Valley and other similar river valleys, especially in gorge sections.

  20. Predicting Recreational Water Quality Using Turbidity in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2004-7

    Science.gov (United States)

    Brady, Amie M.G.; Bushon, Rebecca N.; Plona, Meg B.

    2009-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) in Ohio is often impaired for recreational use because of elevated concentrations of bacteria, which are indicators of fecal contamination. During the recreational seasons (May through August) of 2004 through 2007, samples were collected at two river sites, one upstream of and one centrally-located within CVNP. Bacterial concentrations and turbidity were determined, and streamflow at time of sampling and rainfall amounts over the previous 24 hours prior to sampling were ascertained. Statistical models to predict Escherichia coli (E. coli) concentrations were developed for each site (with data from 2004 through 2006) and tested during an independent year (2007). At Jaite, a sampling site near the center of CVNP, the predictive model performed better than the traditional method of determining the current day's water quality using the previous day's E. coli concentration. During 2007, the Jaite model, based on turbidity, produced more correct responses (81 percent) and fewer false negatives (3.2 percent) than the traditional method (68 and 26 percent, respectively). At Old Portage, a sampling site just upstream from CVNP, a predictive model with turbidity and rainfall as explanatory variables did not perform as well as the traditional method. The Jaite model was used to estimate water quality at three other sites in the park; although it did not perform as well as the traditional method, it performed well - yielding between 68 and 91 percent correct responses. Further research would be necessary to determine whether using the Jaite model to predict recreational water quality elsewhere on the river would provide accurate results.

  1. Surface-water/ground-water interaction of the Spokane River and the Spokane Valley/Rathdrum Prairie aquifer, Idaho and Washington

    Science.gov (United States)

    Caldwell, Rodney R.; Bowers, Craig L.

    2003-01-01

    Historical mining in the Coeur d’Alene River Basin of northern Idaho has resulted in elevated concentrations of some trace metals (particularly cadmium, lead, and zinc) in water and sediment of Coeur d’Alene Lake and downstream in the Spokane River in Idaho and Washington. These elevated trace-metal concentrations in the Spokane River have raised concerns about potential contamination of ground water in the underlying Spokane Valley/Rathdrum Prairie aquifer, the primary source of drinking water for the city of Spokane and surrounding areas. A study conducted as part of the U.S. Geological Survey’s National Water-Quality Assessment Program examined the interaction of the river and aquifer using hydrologic and chemical data along a losing reach of the Spokane River. The river and ground water were extensively monitored over a range of hydrologic conditions at a streamflow-gaging station and 25 monitoring wells situated from 40 to 3,500 feet from the river. River stage, ground-water levels, water temperature, and specific conductance were measured hourly to biweekly. Water samples were collected on nearly a monthly basis between 1999 and 2001 from the Spokane River and were collected up to nine times between June 2000 and August 2001 from the monitoring wells.

  2. The Effect of Geologic Structures on the Control of Floods in the Middle Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discusses the role of geologic structures in the occurrence of floods and how to prevent flood in the middle reaches of the Yangtze River, and gives the author's suggestion that the Luoshan Qiakou be expanded and the land reclaimed from Dongting Lake be returned to the lake in compliance with the law of geology.

  3. Implications of anthropogenic river stage fluctuations on mass transport in a valley fill aquifer

    Science.gov (United States)

    Boutt, D.F.; Fleming, B.J.

    2009-01-01

    In humid regions a strong coupling between surface water features and groundwater systems may exist. In these environments the exchange of water and solute depends primarily on the hydraulic gradient between the reservoirs. We hypothesize that daily changes in river stage associated with anthropogenic water releases (such as those from a hydroelectric dam) cause anomalous mixing in the near-stream environment by creating large hydraulic head gradients between the stream and adjacent aquifer. We present field observations of hydraulic gradient reversals in a shallow aquifer. Important physical processes observed in the field are explicitly reproduced in a physically based two-dimensional numerical model of groundwater flow coupled to a simplistic surface water boundary condition. Mass transport simulations of a conservative solute introduced into the surface water are performed and examined relative to a stream condition without stage fluctuations. Simulations of 20 d for both fluctuating river stage and fixed high river stage show that more mass is introduced into the aquifer from the stream in the oscillating case even though the net water flux is zero. Enhanced transport by mechanical dispersion leads to mass being driven away from the hydraulic zone of influence of the river. The modification of local hydraulic gradients is likely to be important for understanding dissolved mass transport in near-stream aquifer environments and can influence exchange zone processes under conditions of high-frequency stream stage changes. Copyright 2009 by the American Geophysical Union.

  4. Floristic diversity and agricultural value of Phalaridetum arundinaceae (Koch 1926 n.n. Lib. 1931 in the selected river valleys of the Zamość region

    Directory of Open Access Journals (Sweden)

    Teresa Grażyna Wyłupek

    2015-07-01

    Full Text Available The study presents the results of a floristic survey conducted using the Braun-Blanquet method (50 phytosociological relevés in permanent grasslands in three river valleys of the Zamość region (Por, Huczwa, Wieprz. The goal of the survey was to determine the floristic diversity and fodder value of the Phalaridetum arundinaceae association (Koch 1926 n.n. Lib. 1931.  A total of 93 plant species from 25 botanical families were identified in the areas under study. The species richness of the Phalaridetum arundinaceae differed among river valleys. It was observed that these are often transitional forms similar to the association of the Molinio-Arrhenatheretea class, Molinietalia order. Predominance of hemicryptophytes and a relatively large share of geophytes was recorded. Based on the fodder value score calculated for the dry matter of the association, the community under study can be classified as having a medium or poor nutritional value.

  5. Late Vistulian and Holocene changes in the Ner river valley in light of geological and palaeoecological data from the Ner-Zawada peatland

    Science.gov (United States)

    Forysiak, Jacek; Obremska, Milena; Pawłowski, Dominik; Kittel, Piotr

    2010-12-01

    The Ner-Zawada peatland is located in the valley of the Ner River in Central Poland. It is a small fen peatland that was formed in the Alleröd Period. In the Younger Dryas, it was transformed into a lake and became a peatland again in the Holocene. Within the peatland and around it, geological and archaeological research was carried out. A sediment core collected in the central part of the peatland was subjected to the analysis of pollen, fossil Cladocera, and absolute dating. This study allows a reconstruction of palaeoecological changes in the peatland and drawing conclusions about the palaeogeography of the middle section of the Ner River valley during the past 13 000 years.

  6. CO2 emissions from a temperate drowned river valley estuary adjacent to an emerging megacity (Sydney Harbour)

    Science.gov (United States)

    Tanner, E. L.; Mulhearn, P. J.; Eyre, B. D.

    2017-06-01

    The Sydney Harbour Estuary is a large drowned river valley adjacent to Sydney, a large urban metropolis on track to become a megacity; estimated to reach a population of 10 million by 2100. Monthly underway surveys of surface water pCO2 were undertaken along the main channel and tributaries, from January to December 2013. pCO2 showed substantial spatio-temporal variability in the narrow high residence time upper and mid sections of the estuary, with values reaching a maximum of 5650 μatm in the upper reaches and as low as 173 μatm in the mid estuary section, dominated by respiration and photosynthesis respectively. The large lower estuary displayed less variability in pCO2 with values ranging from 343 to 544 μatm controlled mainly by tidal pumping and temperature. Air-water CO2 emissions reached a maximum of 181 mmol C m-2 d-1 during spring in the eutrophic upper estuary. After a summer high rainfall event nutrient-stimulated biological pumping promoted a large uptake of CO2 transitioning the Sydney Harbour Estuary into a CO2 sink with a maximum uptake of rate of -10.6 mmol C m-2 d-1 in the mid-section of the estuary. Annually the Sydney Harbour Estuary was heterotrophic and a weak source of CO2 with an air-water emission rate of 1.2-5 mmol C m-2 d-1 (0.4-1.8 mol C m-2 y-1) resulting in a total carbon emission of around 930 tonnes per annum. CO2 emissions (weighted m3 s-1 of discharge per km2 of estuary surface area) from Sydney Harbour were an order of magnitude lower than other temperate large tectonic deltas, lagoons and engineered systems of China, India, Taiwan and Europe but were similar to other natural drowned river valley systems in the USA. Discharge per unit area appears to be a good predictor of CO2 emissions from estuaries of a similar climate and geomorphic class.

  7. Development of Hydrological Model of Klang River Valley for flood forecasting

    Science.gov (United States)

    Mohammad, M.; Andras, B.

    2012-12-01

    This study is to review the impact of climate change and land used on flooding through the Klang River and to compare the changes in the existing river system in Klang River Basin with the Storm water Management and Road Tunnel (SMART) which is now already operating in the city centre of Kuala Lumpur. Klang River Basin is the most urbanized region in Malaysia. More than half of the basin has been urbanized on the land that is prone to flooding. Numerous flood mitigation projects and studies have been carried out to enhance the existing flood forecasting and mitigation project. The objective of this study is to develop a hydrological model for flood forecasting in Klang Basin Malaysia. Hydrological modelling generally requires large set of input data and this is more often a challenge for a developing country. Due to this limitation, the Tropical Rainfall Measuring Mission (TRMM) rainfall measurement, initiated by the US space agency NASA and Japanese space agency JAXA was used in this study. TRMM data was transformed and corrected by quantile to quantile transformation. However, transforming the data based on ground measurement doesn't make any significant improvement and the statistical comparison shows only 10% difference. The conceptual HYMOD model was used in this study and calibrated using ROPE algorithm. But, using the whole time series of the observation period in this area resulted in insufficient performance. The depth function which used in ROPE algorithm are then used to identified and calibrated using only unusual event to observed the improvement and efficiency of the model.

  8. Infrastructure and climate change: Impacts and adaptations for the Zambezi River Valley

    OpenAIRE

    Paul S. Chinowsky; Amy E. Schweikert; Strzepek, Niko L.; Strzepek, Kenneth

    2013-01-01

    The African Development Bank has called for US$40 billion per year over the coming decades to be provided to African countries to address development issues directly related to climate change. The current study addresses a key component of these issues, the effect of climate change on the road infrastructure of Malawi, Mozambique, and Zambia, all located within the Zambezi River Basin. The study incorporates a stressor-response approach to estimate the effects of projected precipitation, temp...

  9. Sea urchin Amblypygus dilatatus from Lower Eocene limestone in the Griža quarry in the Rižana river valley, Western Slovenia

    Directory of Open Access Journals (Sweden)

    Vasja Mikuž

    2004-06-01

    Full Text Available In paper irregular sea urchins of species Amblypygus dilatatus Agassiz & Desor, 1847 and accompaying foraminifer remains are considered. All of them were found in Lower Eocene – Cuisian limestones in the Griža quarry in the Rižana river valley. This is the first find of this species of sea urchins in Slovenia. The age of limestone was determined with nummulitinas.

  10. Public support for ecosystem restoration in the Hudson River Valley, USA.

    Science.gov (United States)

    Connelly, Nancy A; Knuth, Barbara A; Kay, David L

    2002-04-01

    We applied the Theory of Planned Behavior to help understand the relationships between environmental beliefs, support for ecosystem restoration actions, and willingness to pay (WTP) for restoration and protection goals in the Hudson River estuary, New York State, USA. We conducted a mail survey with 3,000 randomly-chosen local residents of the Hudson River estuary in the fall of 1999. As hypothesized, the broad ecosystem restoration goals of the Hudson River Estuary Action Plan were more strongly supported than the corresponding specific implementation actions. We found that beliefs and past behavior were better explanatory variables than sociodemographic characteristics for explaining people's support for ecosystem restoration actions and WTP for restoration and protection goals. Because ecosystem restoration goals appear to be more generally acceptable than specific restoration actions, proponents of restoration programs should not become complacent about the need for active public outreach and involvement even if initial restoration program discussions have been low in controversy. Efforts to assess and foster support for ecosystem restoration should be targeted toward audiences identified on the basis of beliefs and past behaviors rather than on sociodemographic characteristics.

  11. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part II. Spatial trends and possible sources of organic composition

    Science.gov (United States)

    Szopińska, Małgorzata; Dymerski, Tomasz; Polkowska, Żaneta; Szumińska, Danuta; Wolska, Lidia

    2016-07-01

    The chemistry of river-lake systems located in Central Mongolia near the southern border of permafrost occurrence has not been well studied. The main aim of this paper is to summarize patterns in water chemistry in supply springs, rivers and lakes in relation to permafrost occurrence, as well as other natural and anthropogenic impacts. The analyses involved water samples taken from two river-lake systems: the Baydrag River-Böön Tsagaan Lake system and the Shargalyuut/Tuyn Rivers-Orog Lake system. Total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) were detected and quantified. Other organic compounds, such as organic halogen compounds, phthalates, and higher alkanes were also noted. The main factors which influence differences in TOC concentrations in the water bodies involve permafrost occurrence, mainly because compounds are released during active layer degradation (in the upper reach of the Tuyn river), and by intensive livestock farming in river valleys and in the vicinity of lakes. In relation to the concentrations of PAHs, high variability between samples (> 300 ng L- 1), indicates the influence of thermal water and local geology structures (e.g., volcanic and sedimentary deposits), as well as accumulation of suspended matter in lakes transported during rapid surface runoff events. The monitoring of TOC as well as individual PAHs is particularly important to future environmental studies, as they may potentially reflect the degradation of the environment. Therefore, monitoring in the Valley of the Lakes should be continued, particularly in the light of the anticipated permafrost degradation in the 21st century, in order to collect more data and be able to anticipate the response of river-lake water chemistry to changes in permafrost occurrence.

  12. Hydraulic Evaluation of Marmet Lock Filling and Emptying System, Kanawha River, West Virginia

    Science.gov (United States)

    2015-04-01

    Army Engineer Waterways Experiment Station. Headquarters, U.S. Army Corps of Engineers. 1975. Hydraulic design of lock culvert valves . Engineer Manual ...operations with various valve operations was computed. The numerical model results indicate that the hydraulic conditions are not significantly...2 1.3 Vertical-Lift Valves

  13. Constructing an Alpine Fault Paleoseismicity Record from Slumped Lacustrine Deposits in the Cascade River Valley, South Westland, New Zealand

    Science.gov (United States)

    Coffey, G.; Moy, C. M.; Toy, V. G.; Ohneiser, C.; Howarth, J. D.

    2014-12-01

    The Alpine Fault is a major structure in New Zealand capable of producing earthquakes of magnitude 7 or greater, which delineates the boundary between the Australian and Pacific plates. Paleoseismic records of these earthquakes indicate recurrence intervals of 300 - 400 years over the last 1,300 years. However, there are no pre-Holocene records. Documenting the late Pleistocene record of magnitude, timing, and frequency of earthquakes would significantly reduce uncertainty in hazard analyses. The tectonically complex Cascade River Valley follows the Southern Alpine Fault, where the fault dominantly accommodates strike-slip motion. Two ~7m outcrops of proglacial lacustrine silt are exposed along the river in which, deformed rhythmites bounded by planar laminated rhythmites have been identified. These exhibit a variety of fold geometries in outcrop and x-ray computed tomography (CT) scans, all of which show some degree of asymmetry. Initial radiocarbon ages of 14,400 and 13,300 14C yr BP have been obtained from terrestrial plant material isolated from samples near the base of one outcrop. Given the age range and laminae density, these dates suggest that the rhythmites are varves, but additional radiocarbon dates and CT-scans will be used to confirm this. The deformed horizons are interpreted to be seismites formed by slumping. Earthquake shaking triggers an increase in pore fluid pressure, which destabilises the sublacustrine slope causing failure and the release of silt into the sedimentary system. As silt is transported by downslope shear it is deformed in distinct layers. Displacement of volumes of silt also causes the formation of seiche waves that apply shear stress to lake floor sediments causing further deformation. Deviations in magnetic susceptibility and the declination of magnetic remanence observed underneath and within deformed horizons are interpreted to be a response of earthquake shaking. Data from these different proxies will be presented and

  14. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  15. Post-earthquake modification of 2015 Gorkha Earthquake landslides in the Bhote Koshi River valley

    Science.gov (United States)

    Cook, Kristen; Andermann, Christoff; Adhikari, Basanta; Schmitt, Clemens; Marc, Odin

    2016-04-01

    Large earthquakes trigger widespread mass failures, and the estimated volumes of landslide material are often used to estimate seismically triggered erosion, assuming that all landslide material is transported out of the affected area. The expectation that earthquakes can generate a pulse of sediment output from the affected area can also potentially be used to recognize large seismic events in the sedimentary record. However, in order to properly understand the relationship between earthquake triggered landslides, sediment flux, and erosion, we need to consider how and when the landslide debris is mobilized in the fluvial system and exported from the catchment. We present observations from three field excursions to the upper Bhote Koshi River following the April 25 2015 Gorkha earthquake, which triggered extensive landsliding in this region. Our observations, from early June, late July, and Oct 2015, cover the pre-monsoon, mid-monsoon, and post-monsoon periods, allowing us to constrain monsoon-driven changes to seismically triggered landslides.In order to quantify post-earthquake modification of individual landslides and of the transport of landslide materials to the main trunk rivers, we conducted surveys using both terrestrial lidar and SfM. Immediately following the earthquake, a large number of landslides were disconnected from the channels, with significant amounts of material stored on the hillslopes. This was facilitated by the widespread presence of a two-step topography, with steep slopes adjacent to the main river channels and a section of lower gradient hillslope above. The landslides above this step typically did not reach the channel, or only delivered material via preexisting narrow debris flow chutes. As expected, the monsoon caused new landslides, the expansion of existing landslides, and the modification of coseisimic landslide deposits. In late July we observed ongoing mobilization of this stored material, with repeated downslope delivery of

  16. People's perception on impacts of hydro-power projects in Bhagirathi river valley, India.

    Science.gov (United States)

    Negi, G C S; Punetha, Disha

    2017-04-01

    The people's perception on environmental and socio-economic impacts due to three hydro-electric projects (HEPs; commissioned and under construction) were studied in the north-west Indian Himalaya. Surveys among 140 project-affected people (PAPs) using a checklist of impacts indicate that among the negative impacts, decrease in flora/fauna, agriculture, flow of river, aesthetic beauty; and increase in water pollution, river bed quarrying for sand/stone, human settlement on river banks and social evils; and among the positive impacts, increase in standard of living, road connectivity, means of transport, public amenities, tourism and environmental awareness were related with HEPs. The PAPs tend to forget the negative impacts with the age of the HEPs after it becomes functional, and the positive impacts seem to outweigh the negative impacts. Study concludes that it is difficult to separate the compounding impacts due to HEP construction and other anthropogenic and natural factors, and in the absence of cause-and-effect analyses, it is hard to dispel the prevailing notion that HEPs are undesirable in the study area that led to agitations by the environmentalists and stopped construction of one of these HEPs. To overcome the situation, multi-disciplinary scientific studies involving the PAPs need to be carried out in planning and decision-making to make HEPs environment friendly and sustainable in this region. There is also a need to adopt low carbon electric power technologies and promote a decentralized energy strategy through joint ventures between public and private companies utilizing locally available renewable energy resources.

  17. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    Directory of Open Access Journals (Sweden)

    H. Wulf

    2012-07-01

    Full Text Available The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001–2009 from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC events. Our study identifies three key findings: First, peak SSC events (≥ 99th SSC percentile coincide frequently (57–80% with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and

  18. Fossil gastropods from the MGS3 stratigraphic segment in the Salawusu River Valley and their climatic and environmental implications

    Institute of Scientific and Technical Information of China (English)

    LI BaoSheng; YE JianPing; GUO YunHai; CHEN DeNiu; David Dian ZHANG; WEN XiaoHao; QIU ShiFan; OU XianJiao; DU ShuHuan; NIU DongFeng; YANG Yi

    2008-01-01

    Contemporaneous with MIS3, the MGS3 segment of the Milanggouwan stratigraphic section in the Salawusu River Valley, Mu Us Desert, China contains fossil gastropods (terrestrial and freshwater snails) in strata 33LS, 35LS, 37FL and 39LS. Examination of these fossils revealed 11 species belonging to 8 families and 10 genera. They can be classified as: (1) assemblage of Gyraulus and Galba mainly consisting of Gyraulus convexiusculus, Gyraulus sibiricus, Galba pervia and Galba superegra Gredler,etc. (2) assemblage of Vallonia mainly consisting of terrestrial snails, such as Vallonia patens, Pupilla muscorum and Discus paupe, etc. Based on the dating results, and the living habits, living conditions,and geographic distribution of their extant species, we suggest that: the ages of 33LS, 35LS, 37FL, and 39LS are 26000, 29000, 33000 and 38000 a, respectively, corresponding well to the interstadial period in GRIP 4,5, 6 and 10 in terms of chronology and climatic characters; 33LS, 35LS and 39LS represent very warm-humid periods, while 37FL represents a less warm-humid period; the four periods of climatic fluctuations recorded in MGS3 were related to the strong impact of the summer monsoon in East Asia in Mu Us Desert of China during the interstadial of MIS3 on a global climatic background.

  19. Fossil gastropods from the MGS3 stratigraphic segment in the Salawusu River Valley and their climatic and environmental implications

    Institute of Scientific and Technical Information of China (English)

    David; Dian

    2008-01-01

    Contemporaneous with MIS3, the MGS3 segment of the Milanggouwan stratigraphic section in the Salawusu River Valley, Mu Us Desert, China contains fossil gastropods (terrestrial and freshwater snails) in strata 33LS, 35LS, 37FL and 39LS. Examination of these fossils revealed 11 species belonging to 8 families and 10 genera. They can be classified as: (1) assemblage of Gyraulus and Galba mainly consisting of Gyraulus convexiusculus, Gyraulus sibiricus, Galba pervia and Galba superegra Gredler, etc. (2) assemblage of Vallonia mainly consisting of terrestrial snails, such as Vallonia patens, Pupilla muscorum and Discus paupe, etc. Based on the dating results, and the living habits, living conditions, and geographic distribution of their extant species, we suggest that: the ages of 33LS, 35LS, 37FL, and 39LS are 26000, 29000, 33000 and 38000 a, respectively, corresponding well to the interstadial period in GRIP 4, 5, 6 and 10 in terms of chronology and climatic characters; 33LS, 35LS and 39LS represent very warm-humid periods, while 37FL represents a less warm-humid period; the four periods of climatic fluctuations recorded in MGS3 were related to the strong impact of the summer monsoon in East Asia in Mu Us Desert of China during the interstadial of MIS3 on a global climatic background.

  20. The Impact of Indian Ocean Variability on HighTemperature Extremes across the Southern Yangtze River Valley in Late Summer

    Institute of Scientific and Technical Information of China (English)

    HU Kaiming; HUANG Gang; QU Xia; HUANG Ronghui

    2012-01-01

    In this study,the teleconnection between Indian Ocean sea surface temperature anomalies (SSTAs) and the frequency of high temperature extremes (HTEs) across the southern Yangtze River valley (YRV) was investigated.The results indicate that the frequency of HTEs across the southern YRV in August is remotely influenced by the Indian Ocean basin mode (IOBM) SSTAs.Corresponding to June-July-August (JJA) IOBM warming condition,the number of HTEs was above normal,and corresponding to IOBM cooling conditions,the number of HTEs was below normal across the southern YRV in August.The results of this study indicate that the tropical IOBM warming triggered low-level anomalous anticyclonic circulation in the subtropical northwestern Pacific Ocean and southern China by emanating a warm Kelvin wave in August.In the southern YRV,the reduced rainfall and downward vertical motion associated with the anomalous low-level anticyclonic circulation led to the increase of HTE frequency in August.

  1. Variation of GPS Precipitable Water over the Qinghai-Tibet Plateau: Possible Teleconnection Triggering Rainfall over the Yangtze River Valley

    Directory of Open Access Journals (Sweden)

    Gui-Rong Xu

    2011-01-01

    Full Text Available GPS technologies show many capabilities for monitoring atmospheric water vapor. This study uses GPS data from the Japan International Co-operation Agency (JICA and Hubei GPS network to monitor precipitable water (PW over the Qinghai-Tibet Plateau (QTP and over the middle Yangtze River Valley (YRV. The results show that the southern QTP is wetter than the central area due to the barring effect of the Plateau on the monsoon. PW is higher in summer than other months over either the QTP or the middle YRV. The diurnal variation of PW over the QTP is more complex than that of the middle YRV with fluctuations occurring during the whole day due to the unique topography. The minimum PW over both the QTP and the middle YRV appears in the morning; however, the peak over the QTP occurs at night while the peak over the middle YRV occurs in the early afternoon. Furthermore, PW over the QTP, especially its southern and eastern edges, are positively correlated with PW over the middle YRV. This may imply that the southern and eastern Plateaus are key regions transporting atmospheric vapor to the middle YRV. Our results indicate the possibility of finding early warning signals resulting from the intensification of the QTP atmospheric vapor leading to heavy rainfall events over the middle YRV.

  2. Geomorphology of the Urümqi River Valley and the uplift of the Tianshan Mountains in Quaternary

    Institute of Scientific and Technical Information of China (English)

    周尚哲; 焦克勤; 赵井东; 张世强; 崔建新; 许刘兵

    2002-01-01

    The Shaerqiaoke Gravel, more than 400 m in thickness, on the north piedmont of the Tianshan Mountains, is located at the exit of the Urümqi River Valley and belongs to the Molasse construction of the Tianshan Mountains. Another uplift event with the tectonic boundary expansion ended the deposition of the Shaerqiaoke Gravel, and resulted in folding, faulting and down-erosion in the frontier of the deposit. The ESR dating indicates that the top of the Shaerqiaoke Gravel accumulated before 1148 kaBP, probably responding to the Kunlun-Huanghe movement of the Qinghai-Tibetan plateau. After that time, erosion-deposition cycle occurred and 9 terraces developed. The TL and ESR dating techniques were employed to date these terraces, and the results indicate that Terrace 3 was formed at MIS 6. Terrace 2 at Houxia also developed simultaneously. Terraces 5 and 6 were accumulated in 338 kaBP and 562-591 kaBP, respectively. The oldest glaciation, named Gao Wangfeng, correlates to MIS 12.

  3. Principal Disease and Insect Pests of Jatropha curcas L. in the Lower Valley of the Senegal River

    Directory of Open Access Journals (Sweden)

    Terren, M.

    2012-01-01

    Full Text Available Jatropha curcas L. seed oil is proven to be toxic to many microorganisms, insects and animals. Despite its toxicity, Jatropha is not pest and disease resistant. The following major pests and diseases affecting Jatropha in the lower valley of the Senegal river have been identified: the leaf miner Stomphastis thraustica (Meyrick, 1908 (Lepidoptera, Gracillariidae, the leaf and stem miner Pempelia morosalis (Saalmuller, 1880 (Lepidoptera, Pyralidae and the shield-backed bug Calidea panaethiopica (Kirkaldy, 1909 (Heteroptera, Scutelleridae, which can cause flower and fruit abortion. Damage from these pests was particularly great during the second year after the plantations were set up (2009 and before later receding. Nevertheless, the worst attacks were caused by a vascular disease transmitted through the soil, which killed 65% of the plants in four years. It is mainly characterised by collar and root rot, which causes foliage to yellow and wilt, before the plant eventually dies. These threats should increase if larger areas are planted with Jatropha. Considering the scale of the damage caused by these attacks in Bokhol, the development of an integrated pest management programme adapted to the local context should be considered.

  4. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River Valley

    Science.gov (United States)

    Chen, Yang; Zhai, Panmao

    2016-08-01

    Concurrent position shifts of the mid-level western Pacific subtropical high (WPSH) and the upper-level South Asia high (SAH) are regarded as significant precursors for persistent extreme precipitation events (PEPEs) in the Yangtze River Valley (YRV). By performing composite analyses, accountable vorticity genesis and dissipation are diagnosed based on a potential vorticity-diabatic heating theory. The results indicate that about 1 week preceding precipitation onset, a wave-like pattern of anomalous diabatic heating (Q) initiates its northwestward propagation from equatorial central Pacific. Subsequently, this wave-like pattern induces substantial changes in both horizontal and vertical structure of local Q along the propagating route. Forced negative vorticities in key areas result in the zonal approach between the SAH and the WPSH. During PEPEs, two thermal-induced vertical circulation cells take shape, with common strong ascent centered in the YRV. These anomalous cells are capable of self-maintaining for a few days via positive feedback processes. The WPSH and the SAH are therefore anchored in respective favorable positions for PEPEs. Simultaneously, descending motion of these two cells increases local solar radiation and decreases upward latent heat flux from surface, facilitating warmer underlying surface and swift accumulation of lower-level moisture. Correspondingly, enhanced heating to the north and rapid developing cyclone over warmer sea surface to the south combine to terminate above positive feedback processes. Finally, both the WPSH and the SAH retreat to their normal positions, accompanied by a quick decay of PEPEs.

  5. Influence of grazing and available moisture on breeding densities of grassland birds in the central platte river valley, Nebraska

    Science.gov (United States)

    Kim, D.H.; Newton, W.E.; Lingle, G.R.; Chavez-Ramirez, F.

    2008-01-01

    We investigated the relationship between grassland breeding bird densities and both grazing and available moisture in the central Platte River Valley. Nebraska between 1980 and 1996. We also compared species richness and community similarity of breeding birds in sedge (Carex spp.) meadows and mesic grasslands. Densities of two species had a significant relationship with grazing and six of seven focal species had a significant relationship with available moisture. Bobolink (Dolichonyx oryzivorus) and Brown-headed Cowbird (Molothrus ater) densities were lower in grazed plots compared to ungrazed plots, whereas Red-winged Blackbird (Agelaius phoeniceus) densities were greater in sedge-meadow plots compared to mesic grassland plots. Bobolink, Dickcissel (Spiza americana). and Brown-headed Cowbird were negatively associated with available moisture with breeding densities peaking during the driest conditions. Our results suggest that wet conditions increase species richness for the community through addition of wetland-dependant and wetland-associated birds, but decrease densities of ground-nesting grassland birds in wet-meadow habitats, whereas dry conditions reduce species richness but increase the density of the avian assemblage. We propose that wet-meadow habitats serve as local refugia for grassland-nesting birds during local or regional droughts.

  6. Preliminary Study on Biological Characteristics of Degraded Soil Ecosystems in Dry Hot Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in thedry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of theJinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groupsof soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in thedry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density ofsoil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only inthe dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than thoseof Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline withdepth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase andacid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that thecharacteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators toshow the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicatorswas highly significant.

  7. LEAF AND INFLORESCENCE PRODUCTION OF THE WINE PALM (Attalea butyracea IN THE DRY MAGDALENA RIVER VALLEY, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Olivares Ingrid

    2013-07-01

    Full Text Available The leaves of the wine palm (Attalea butyracea are collected and harvested along theMagdalena River Valley in Colombia. Young leaves are used as a ceremonial symbol onPalm Sunday, and expanded leaves are used for thatching and for making handicrafts.In order to document leaf production and to evaluate the effect of leaf extraction ongrowth and development, we marked 80 individuals under extractive conditions and40 individuals under non-extractive conditions and we followed leaf production duringseven months. We also studied inflorescence production for one year to evaluate thepotential of A. butyracea as a source of sap for sugar manufacture. Leaf productionin juveniles and sub-adults was correlated to the number of expanded leaves. Leafproduction in adults was correlated with the number of expanded leaves and withstem size. Palms flower throughout the year, and several inflorescences developsimultaneously. The flowering peak occurs during the drier season. Inflorescenceproduction was correlated to the stem height and to the number of expanded leaves,and it is probably affected by leaf harvest. We recommend leaf extraction only fromindividuals with stem over 3 m and with more than 25 expanded leaves. Inflorescenceproduction of A. butyracea gives the palm a potential for sap extraction.

  8. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  9. Hyperspectral Proximal Sensing of Salix Alba Trees in the Sacco River Valley (Latium, Italy

    Directory of Open Access Journals (Sweden)

    Antonio Cenedese

    2013-10-01

    Full Text Available Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy. This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are ‘healthier’ than those downstream.

  10. Hyperspectral proximal sensing of Salix Alba trees in the Sacco river valley (Latium, Italy).

    Science.gov (United States)

    Moroni, Monica; Lupo, Emanuela; Cenedese, Antonio

    2013-10-29

    Recent developments in hardware and software have increased the possibilities and reduced the costs of hyperspectral proximal sensing. Through the analysis of high resolution spectroscopic measurements at the laboratory or field scales, this monitoring technique is suitable for quantitative estimates of biochemical and biophysical variables related to the physiological state of vegetation. Two systems for hyperspectral imaging have been designed and developed at DICEA-Sapienza University of Rome, one based on the use of spectrometers, the other on tunable interference filters. Both systems provide a high spectral and spatial resolution with low weight, power consumption and cost. This paper describes the set-up of the tunable filter platform and its application to the investigation of the environmental status of the region crossed by the Sacco river (Latium, Italy). This was achieved by analyzing the spectral response given by tree samples, with roots partly or wholly submerged in the river, located upstream and downstream of an industrial area affected by contamination. Data acquired is represented as reflectance indices as well as reflectance values. Broadband and narrowband indices based on pigment content and carotenoids vs. chlorophyll content suggest tree samples located upstream of the contaminated area are 'healthier' than those downstream.

  11. Vascular plant biodiversity of the lower Coppermine River valley and vicinity (Nunavut, Canada): an annotated checklist of an Arctic flora

    Science.gov (United States)

    Bull, Roger D.

    2017-01-01

    The Coppermine River in western Nunavut is one of Canada’s great Arctic rivers, yet its vascular plant flora is poorly known. Here, we report the results of a floristic inventory of the lower Coppermine River valley and vicinity, including Kugluk (Bloody Falls) Territorial Park and the hamlet of Kugluktuk. The study area is approximately 1,200 km2, extending from the forest-tundra south of the treeline to the Arctic coast. Vascular plant floristic data are based on a review of all previous collections from the area and more than 1,200 new collections made in 2014. Results are presented in an annotated checklist, including citation of all specimens examined, comments on taxonomy and distribution, and photographs for a subset of taxa. The vascular plant flora comprises 300 species (311 taxa), a 36.6% increase from the 190 species documented by previous collections made in the area over the last century, and is considerably more diverse than other local floras on mainland Nunavut. We document 207 taxa for Kugluk (Bloody Falls) Territorial Park, an important protected area for plants on mainland Nunavut. A total of 190 taxa are newly recorded for the study area. Of these, 14 taxa (13 species and one additional variety) are newly recorded for Nunavut (Allium schoenoprasum, Carex capitata, Draba lonchocarpa, Eremogone capillaris subsp. capillaris, Sabulina elegans, Eleocharis quinqueflora, Epilobium cf. anagallidifolium, Botrychium neolunaria, Botrychium tunux, Festuca altaica, Polygonum aviculare, Salix ovalifolia var. arctolitoralis, Salix ovalifolia var. ovalifolia and Stuckenia pectinata), seven species are newly recorded for mainland Nunavut (Carex gynocrates, Carex livida, Cryptogramma stelleri, Draba simmonsii, Festuca viviparoidea subsp. viviparoidea, Juncus alpinoarticulatus subsp. americanus and Salix pseudomyrsinites) and 56 range extensions are reported. The psbA-trnH and rbcL DNA sequence data were used to help identify the three Botrychium taxa recorded

  12. A river system to watch: documenting the effects of saltcedar (Tamarix spp.) biocontrol in the Virgin River valley

    Science.gov (United States)

    Bateman, Heather L.; Dudley, Tom L.; Bean, Dan W.; Ostoja, Steven M.; Hultine, Kevin R.; Kuehn, Michael J.

    2010-01-01

    Throughout riparian areas of the southwestern United States, non-native saltcedar (also known as tamarisk; Tamarix spp.) can form dense, monotypic stands and is often reported to have detrimental effects on native plants and habitat quality (Everitt 1980; Shafroth et al. 2005). Natural resource managers of these riparian areas spend considerable time and resources controlling saltcedar using a variety of techniques, including chemical (Duncan and McDaniel 1998), mechanical, and burning methods (Shafroth et al. 2005). Approximately one billion dollars are spent each year on river restoration projects nationally (Bernhardt et al. 2005), and a majority of these projects focus on invasive species control in the Southwest (Follstad Shah et al. 2007). A technique that has drawn much attention is the use of the saltcedar leaf beetle (Diorhabda spp.), a specialist herbivore, as biological control of saltcedar (Lewis et al. 2003). Research testing was conducted with beetles housed in secure enclosures in six states in 1998 and 1999 (Dudley et al. 2001), followed by open release at some of those sites starting in 2001 (DeLoach et al. 2004). By 2005, full-scale saltcedar biocontrol was implemented in 13 states, led by the USDA Animal and Plant Health Inspection Service (APHIS), the agency that oversees biological control programs, and with the participation and support of the U.S. Fish and Wildlife Service (USFWS). Despite the widespread application of Diorhabda, however, only limited research has quantified the consequences (benefits and costs) on biotic communities and ecosystem services. Alterations to riparian areas caused by various non-native species control activities have the potential to affect a variety of habitat types used by wildlife (Bateman et al. 2008a); processes like water availability, fluvial deposition, and erosion; and the establishment of other non-native species (Carruthers and D'Antonio 2005, Shafroth et al. 2005, DeLoach et al. 2006). Similarly

  13. Questa baseline and pre-mining ground-water quality investigation. 3. Historical ground-water quality for the Red River Valley, New Mexico

    Science.gov (United States)

    LoVetere, Sara H.; Nordstrom, D. Kirk; Maest, Ann S.; Naus, Cheryl A.

    2003-01-01

    Historical ground-water quality data for 100 wells in the Red River Valley between the U.S. Geological Survey streamflow-gaging station (08265000), near Questa, and Placer Creek east of the town of Red River, New Mexico, were compiled and reviewed. The tabulation included 608 water-quality records from 23 sources entered into an electronic database. Groundwater quality data were first collected at the Red River wastewater-treatment facility in 1982. Most analyses, however, were obtained between 1994 and 2002, even though the first wells were developed in 1962. The data were evaluated by considering (a) temporal consistency, (b) quality of sampling methods, (c) charge imbalance, and (d) replicate analyses. Analyses that qualified on the basis of these criteria were modeled to obtain saturation indices for gypsum, calcite, fluorite, gibbsite, manganite, and rhodocrosite. Plots created from the data illustrate that water chemistry in the Red River Valley is predominantly controlled by calcite dissolution, congruent gypsum dissolution, and pyrite oxidation.

  14. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    Directory of Open Access Journals (Sweden)

    H. Wulf

    2012-01-01

    Full Text Available The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001–2009 from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature, earthquake records, and Schmidt hammer rock strength measurements, we infer climatic and geologic controls of peak suspended sediment concentration (SSC events. Our study identifies three key findings: First, peak SSC events (≥99th SSC percentile coincide frequently (57–80% with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments we find an anticlockwise hysteresis loop of annual sediment flux, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions.

  15. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  16. Effects of fluvial processes in different order river valleys on redistribution and storage of particle-bound radioactive caesium-137 in area of significant Chernobyl fallout and impact on linked rivers with lower contamination levels

    Science.gov (United States)

    Belyaev, Vladimir; Golosov, Valentin; Shamshurina, Evgeniya; Ivanov, Maxim; Ivanova, Nadezhda; Bezukhov, Dmitry; Onda, Yuichi; Wakiyama, Yoshifumi; Evrard, Olivier

    2015-04-01

    Detailed investigations of the post-fallout fate of radionuclide contamination represent an important task in terms of environmental quality assessment. In addition, particle-bound radionuclides such as the most widespread anthropogenic isotope caesium-137 can be used as tracers for quantitative assessment of different sediment redistribution processes. In landscapes of humid plains with agriculture-dominated land use the post-fallout redistribution of caesium-137 is primarily associated with fluvial activity of various scales in cascade systems starting from soil erosion on cultivated hillslopes through gully and small dry valley network into different order perennial streams and rivers. Our investigations in the so-called Plavsk hotspot (area of very high Chernobyl caesium-137 contamination within the Plava River basin, Tula Region, Central European Russia) has been continuing for more than 15 years by now, while the time passed since the Chernobyl disaster and associated radioactive fallout (1986) is almost 29 years. Detailed information on the fluvial sediment and associated caesium-137 redistribution has been obtained for case study sites of different size from individual cultivated slopes and small catchments of different size (2-180 km2) to the entire Plava River basin scale (1856 km2). It has been shown that most of the contaminated sediment over the time passed since the fallout has remained stored within the small dry valleys of the 1-4 Hortonian order and local reservoirs (>70%), while only about 5% reached the 5-6 order valleys (main tributaries of the Plava River) and storage of the Plava floodplain itself represents as low as 0.3% of the basin-scale total sediment production from eroded cultivated hillslopes. Nevertheless, it has been shown that contaminated sediment yield from the Plava River basin exerts significant influence on less polluted downstream-linked river system. Recent progress of the investigations involved sampling of 7 detailed depth

  17. Anthropogenic Impacts on the Sediment Flux in the Dry-hot Valleys of Southwest China-an Example of the Longchuan River

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yue; LU Xixi; HUANG Ying; ZHU Yunmei

    2004-01-01

    The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen's test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir.

  18. Hydrologic data for the San Juan and Animas River valleys in the Farmington, Aztec, Bloomfield, and Cedar Hill areas, San Juan County, New Mexico

    Science.gov (United States)

    McAda, D.P.; Shelton, S.G.

    1987-01-01

    In July 1985, the U.S. Geological Survey initiated a three-year study in San Juan County, New Mexico, to determine the concentrations of chemical constituents in the groundwater in the San Juan and Animas River valleys and to determine the direction and rate of groundwater flow and its relation to river stage. The study was conducted in cooperation with the San Juan County Commission and the New Mexico Oil Conservation Division. The data that was collected during the first 1-1/2 yr of the study is completed. The report includes well records for 51 wells and water levels from 23 wells, hydrographs from four observation wells and one river stage site, and available chemical analyses from 50 wells and 14 surface water sites. Water samples from six wells and one surface-water site were analyzed for purgeable organic chemicals; none were detected. (Lantz-PTT)

  19. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland

    Directory of Open Access Journals (Sweden)

    Damian Chmura

    2015-03-01

    Full Text Available Riparian zones in two rivers in southern Poland were studied in terms of species composition and soil parameters in patches dominated by three knotweed taxa (Fallopia japonica, F. sachalinensis and the hybrid F. ×bohemica. The main purpose was to detect any differences in species diversity, environmental conditions and in the impact of the three Fallopia spp. on resident species. Fieldwork was conducted in spring and summer in 30 invaded plots (in total 90 subplots. It was demonstrated that vegetation dominated by particular knotweed taxa differed in response to soil pH and ammonium, nitrate, and magnesium content. Fallopia spp. (living plants and necromass had a stronger negative impact on the cover and species diversity of the resident species in summer in comparison with spring. Vegetation patches differed significantly in species composition in relation to the knotweed taxa present. These differences may be the consequence of the differentiated biotopic requirements of Fallopia taxa and the coexisting plants, or to the different impact of the knotweed taxa on the resident species.

  20. Chloride Dispersion across Silt Deposits in a Glaciated Bedrock River Valley.

    Science.gov (United States)

    Rotaru, Camelia; Ostendorf, David W; DeGroot, Don J

    2014-03-01

    Soil and groundwater from the Neponset River floodplain deposit that receive high concentrations of deicing agents from nearby highways were investigated. The silty sand floodplain is separated by a silty aquitard from the underlying aquifer that serves as a public water supply. We made a transport-based assessment of the capacity of the aquitard to protect the underlying aquifer. One hundred seventeen soil samples and 469 groundwater samples collected during a period of 4 yr from boreholes and 10 wells grouped in two well clusters were analyzed for dissolved Cl concentration. The soil characterization and groundwater monitoring results agreed, showing a very slow change in subsurface Cl contamination with time. These data also calibrated a vertical one-dimensional advective-dispersive transport model across the deposits. Advective transport dominated only in the top 3.37 m of the floodplain deposit, with dispersion being the main transport mechanism below this depth. Due to the silty nature of the aquitard, dispersion rather than diffusion was the main transport mechanism into the floodplain-aquitard system. Soil and groundwater quality data confirmed a Cl concentration at the floodplain surface near the highway runoff drainage outlets of 2450 mg L. The model estimated a vertical dispersivity at the site of 8 mm and a vertical hydrodynamic dispersion coefficient of 3.71 × 10 m s. These data confirmed the aquitard's capacity to contain deicing agents, protecting the underlying aquifer from contamination.

  1. Anthropogenic changes in environmental conditions of phytocoenoses of medium sized-sized Ukrainian river valleys (based on the example of the River Tyasmyn – a tributary of the Dnieper

    Directory of Open Access Journals (Sweden)

    V. V. Lavrov

    2016-09-01

    Full Text Available The problem of anthropogenic degradation of rivers is usually marked by its multi-sectoral and often international character as well by the large number of sources of environmental threat. Therefore, its solution requires a systematic approach based on transparent and coordinated interagency and international cooperation. The River Dnieper inUkrainehas undergone a remarkable transformation as a result of the construction of a cascade of reservoirs. Anthropogenic damage to the plants and soil that cover its basin have caused damage to the functioning of ecological regimes of theDnieper’s tributaries. Small and medium-sized rivers are dying. In this article, attention is paid to a typical middle-sized (164 km river of theDnieperBasin, the Tyasmyn. Its middle and lower parts are located in the overtransformed Irdyn-Tyasmyn valley. During the last glaciation it formed the central part of the right arm of the ancientDnieper. Regulation of the Tyasmyn runoff, pollution, the creation of theKremenchugreservoir on theDnieper, grazing and recreational load have led to the threat of the river degrading. Therefore, the aim of this article is to characterize the structure of the herbaceous vegetation in the central and lower parts of the Tyasmyn valley and assess the level of its dependence on anthropogenic changes in the conditions of the ecotypes. The methods used are: retrospective and system analysis, comparative ecology (ecological profile or transect, botanic methods, phytoindication, the mapping method and mathematical statistics. The features of changes in environmental conditions of ecotypes of the river valley have been shown through systematic, biomorphological, ecomorphic structure of the herbaceous cover, the ratio of ecological groups and changes in types of ecological strategy of species, phytodiversity. We found 89 species of vascular plants. The most diverse families were Asteraceae, Poaceae and Lamiaceae. The biomorphological range of

  2. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plant, West Virginia Numerical Simulation and Risk Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2008-03-31

    A series of numerical simulations of carbon dioxide (CO{sub 2}) injection were conducted as part of a program to assess the potential for geologic sequestration in deep geologic reservoirs (the Rose Run and Copper Ridge formations), at the American Electric Power (AEP) Mountaineer Power Plant outside of New Haven, West Virginia. The simulations were executed using the H{sub 2}O-CO{sub 2}-NaCl operational mode of the Subsurface Transport Over Multiple Phases (STOMP) simulator (White and Oostrom, 2006). The objective of the Rose Run formation modeling was to predict CO{sub 2} injection rates using data from the core analysis conducted on the samples. A systematic screening procedure was applied to the Ohio River Valley CO{sub 2} storage site utilizing the Features, Elements, and Processes (FEP) database for geological storage of CO{sub 2} (Savage et al., 2004). The objective of the screening was to identify potential risk categories for the long-term geological storage of CO{sub 2} at the Mountaineer Power Plant in New Haven, West Virginia. Over 130 FEPs in seven main classes were assessed for the project based on site characterization information gathered in a geological background study, testing in a deep well drilled on the site, and general site conditions. In evaluating the database, it was apparent that many of the items were not applicable to the Mountaineer site based its geologic framework and environmental setting. Nine FEPs were identified for further consideration for the site. These FEPs generally fell into categories related to variations in subsurface geology, well completion materials, and the behavior of CO{sub 2} in the subsurface. Results from the screening were used to provide guidance on injection system design, developing a monitoring program, performing reservoir simulations, and other risk assessment efforts. Initial work indicates that the significant FEPs may be accounted for by focusing the storage program on these potential issues. The

  3. Development and Validation of National Cotton Cultivar Registration lndex Model in Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    Naiyin XU; Jian Ll

    2014-01-01

    Based on the cotton variety high yielding potential, fiber quality traits, disease resistance, and early maturity characters, a cultivar registration index model was developed to simplify the tedious calculation process in national cotton registration procedure, and thus to enhance the practical application of cultivar regis-tration index in cotton breeding and cotton recommending. [Method] By means of correlation analysis, partial correlation analysis and path analysis methods, the cor-relation of cotton main properties and their effects on cultivar registration index were explored using the dataset of national cotton regional trials in Yangtze River Val ey during 1996-2013. The cultivar registration index model was constructed with step-wise regression statistical technique to ascertain the quantitative relationship of main characters with cultivar registration index, and the regional cotton trial dataset in 2013 was used to validate the model. [Result] Several characters with larger deter-minants to cultivar registration index were screened out, i.e. lint yield increase ratio, pro-frost yield ratio, verticil ium wilt index, fiber strength, fusarium wilt index and mi-cronaire value. The cultivar registration index model defined the functional relation-ship of cultivar registration index with the selected main characters, among which lint yield increase ratio, fiber strength and micronaire value contributed most to culti-var registration index. The model validation with regional cotton trials in 2013 indi-cated the root mean square error, RMSE was only 2.77, and the variation coeffi-cient was 6.77%, which confirmed the model prediction effect was quite perfect. [Conclusion] The developed cultivar registration index model was reliable enough to simulate the complicated scoring system in cultivar registration procedure, also sim-plified cotton registration process, and enhanced the practicability of the cultivar reg-istration index.

  4. [Eco-anatomical characteristics of Sophora davidii leaves along an elevation gradient in upper Minjiang River dry valley].

    Science.gov (United States)

    Li, Fanglan; Bao, Weikai; Liu, Junhua; Wu, Ning

    2006-01-01

    This paper studied the eco-anatomical characteristics of Sorphora davidii leaves at the elevations of 1,650, 1,750, 1,850 and 1,950 m in the upper reaches of Minjiang River dry valley. The indices investigated were leaf length (LL), leaf width (LW), LL/ LW, leaf area, leaf thickness, leaf epidermal thickness, leaf palisade mesophyll thickness (P), leaf spongy mesophyll thickness (S), P/S, leaf cutin membrane thickness, leaf stomatal density and area, leaf epidermis cell density and area, and leaf pubescence length and density. The results showed that the leaves of S. davidii were elliptic, with an area 0.144 approximately 0.208 cm2 and a thickness 171.58 approximately 195.83 microm. The mesophyll was significantly differentiated into palisade and spongy. The thickness of palisade mesophyll was 69.83 approximately 82.42 microm, that of spongy mesophyll was 62.00 approximately 80.67 microm, and P/S was 1.14 approximately 1.01. Upper epidermal thickness was 14.03 approximately 15.33 microm, while lower epidermal thickness was 13.88 approximately 16.17 microm. The stomatal density, stomatal area, epidermis cell density, epidermis cell area, pubescence length, and pubescence density were 13.71 approximately 15.02 mm(-2), 249.86 approximately 280.43 microm2, 160.54 approximately 178.43 mm(-2), 557.43 approximately 626.85 microm2, 186.51 approximately 260.99 microm, and 18.29 approximately 32.27 mm(-2), respectively. With increasing elevation, the leaf area, leaf thickness, palisade mesophyll thickness, spongy mesophyll thickness, stomatal area, epidermis cell area and pubescence density were increased, while cutin membrane thickness, epidermis cell density, pubescence length, and stomatal density were decreased. There was no significant difference in LL/LW, P/S, epidermal thickness and stomatal density along the elevation gradient.

  5. Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI.

    Science.gov (United States)

    Lobell, D B; Lesch, S M; Corwin, D L; Ulmer, M G; Anderson, K A; Potts, D J; Doolittle, J A; Matos, M R; Baltes, M J

    2010-01-01

    The ability to inventory and map soil salinity at regional scales remains a significant challenge to scientists concerned with the salinization of agricultural soils throughout the world. Previous attempts to use satellite or aerial imagery to assess soil salinity have found limited success in part because of the inability of methods to isolate the effects of soil salinity on vegetative growth from other factors. This study evaluated the use of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery in conjunction with directed soil sampling to assess and map soil salinity at a regional scale (i.e., 10-10(5) km(2)) in a parsimonious manner. Correlations with three soil salinity ground truth datasets differing in scale were made in Kittson County within the Red River Valley (RRV) of North Dakota and Minnesota, an area where soil salinity assessment is a top priority for the Natural Resource Conservation Service (NRCS). Multi-year MODIS imagery was used to mitigate the influence of temporally dynamic factors such as weather, pests, disease, and management influences. The average of the MODIS enhanced vegetation index (EVI) for a 7-yr period exhibited a strong relationship with soil salinity in all three datasets, and outperformed the normalized difference vegetation index (NDVI). One-third to one-half of the spatial variability in soil salinity could be captured by measuring average MODIS EVI and whether the land qualified for the Conservation Reserve Program (a USDA program that sets aside marginally productive land based on conservation principles). The approach has the practical simplicity to allow broad application in areas where limited resources are available for salinity assessment.

  6. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; HE JinHai; LIU XuanFei; WU BinGui

    2009-01-01

    Meiyu onset (MO) over Yangtze-Huaihe River Valley (YHRV) possesses obvious characteristics of in-terannual variations. Based on NCEP/NCAR reanalysis data sets, NOAA OLR and ERSST data, the in-terannual variability of MO(IVMO) and its previous strong influence signal (PSIS) are investigated. The possible mechanisms that the PSIS affecting IVMO are also discussed. The results show that the pre-vious CP-ENSO (Central Pacific El Nino/Southern Oscillation) event is the PSIS affecting IVMO and it has a better accuracy rate of short-term climate prediction and practicality. The MO is most likely to be late (early) with the warm (cold) phase of CP-ENSO in previous boreal February and spring. CP-ENSO affects MO mainly by means of EAP (East Asian-Pacific) or JP (Japanese-Pacific) teleconnection, in which the tropical western North Pacific anticyclone plays an important role. In the years of CP-ENSO warm phase, the tropical warm wet water vapor transportation to YHRV is late. The anomalous positive sea surface temperature near the equatorial central Pacific results in late northward jump of the west-ern Pacific subtropical high and late establishment of Indian southwest monsoon via air-sea interaction, which leads to late seasonal transition of the atmospheric circulations over East Asia from boreal spring to summer. Late seasonal transition of the atmospheric circulations and late tropical warm wet water vapor transport to YHRV are the primary reasons that cause the late MO. The situations are directly opposite in the years of CP-ENSO cold phase.

  7. Statistical analyses of soil properties on a quaternary terrace sequence in the upper sava river valley, Slovenia, Yugoslavia

    Science.gov (United States)

    Vidic, N.; Pavich, M.; Lobnik, F.

    1991-01-01

    Alpine glaciations, climatic changes and tectonic movements have created a Quaternary sequence of gravely carbonate sediments in the upper Sava River Valley, Slovenia, Yugoslavia. The names for terraces, assigned in this model, Gu??nz, Mindel, Riss and Wu??rm in order of decreasing age, are used as morphostratigraphic terms. Soil chronosequence on the terraces was examined to evaluate which soil properties are time dependent and can be used to help constrain the ages of glaciofluvial sedimentation. Soil thickness, thickness of Bt horizons, amount and continuity of clay coatings and amount of Fe and Me concretions increase with soil age. The main source of variability consists of solutions of carbonate, leaching of basic cations and acidification of soils, which are time dependent and increase with the age of soils. The second source of variability is the content of organic matter, which is less time dependent, but varies more within soil profiles. Textural changes are significant, presented by solution of carbonate pebbles and sand, and formation is silt loam matrix, which with age becomes finer, with clay loam or clayey texture. The oldest, Gu??nz, terrace shows slight deviation from general progressive trends of changes of soil properties with time. The hypothesis of single versus multiple depositional periods of deposition was tested with one-way analysis of variance (ANOVA) on a staggered, nested hierarchical sampling design on a terrace of largest extent and greatest gravel volume, the Wu??rm terrace. The variability of soil properties is generally higher within subareas than between areas of the terrace, except for the soil thickness. Observed differences in soil thickness between the areas of the terrace could be due to multiple periods of gravel deposition, or to the initial differences of texture of the deposits. ?? 1991.

  8. Nitrogen Mineralization of Prunings of Six N2-Fixing Hedgerow Species in a Dry Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A litterbag experiment of 12 weeks was conducted to study nitrogen mineralization process of prunings of six nitrogen-fixing hedgerow species in a dry valley of the Jinsha River. Prunings were incorporated into soil or used as mulch. The results indicated that pruning N of the six hedgerow species was mineralized fast in the first week and then decreased slowly in the rest of the study period. When prunings were incorporated into soil, the amount of nitrogen mineralized by the end of the first week accounted for 69.9%, 58.2%, 54.5%,43.0%, 29.6% and 20.6% of the total N in prunings of Desmodium rensonii, Tephrosia candida, Leucaena leucocuphala, Albizia yunnanensis, Acacia dealbata, and Acacia mearnsii, respectively. When prunings of L. leucocephala were used as mulch materials, the amount of nitrogen mineralized in the first week was 16.2% less than that of prunings incorporated into soil. The mineralization pattern of pruning N could be simulated by an exponent model Nt% = N01% (1 - exp(-k1t))+ N02% (1 - exp(-k2t)) where Nt% is cumulative mineralized N in time t, N01% and N02 % are readily and less readily mineralizable N in prunings,respectively, and k1 and k2 are rate constants. A half-life period of pruning nitrogen mineralization could ~ be determined by this model. The nitrogen content in the pruning residues decreased quickly in the first week but fluctuated thereafter. The initial C/N ratio was negatively related to the mineralization rate of prunings.``

  9. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    Science.gov (United States)

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  10. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)

    Science.gov (United States)

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.

  11. Survey of Neolithic Sites in the Banghe River and Laohushan River Valleys in Aohan Banner, Inner Mongolia%内蒙古敖汉旗蚌河、老虎山河流域新石器时代遗址调查简报

    Institute of Scientific and Technical Information of China (English)

    中国社会科学院考古研究所内蒙古工作队; 内蒙古自治区敖汉旗博物馆

    2005-01-01

    In 2001, a full-coverage field survey was carried out to explore sites of the Xinglongwa, Zhaobaogou, Hongshan and Xiaoheyan cultures in the lower Banghe River and the upper Laohushan River valleys in Aohan Banner, Inner Mongolia. The aim of the project was, in the perspective of settlernent archaeology, to inquire into the development of social complexity in the two valleys. The data from the lower Banghe River valley show a sharp increase of settlements both in size and in number in the middle Hongshan period. Twenty-three Hongshan sites with a total area of 75.4 ha were found. Moreover, their variety in grade suggests considerable social complexity. In the upper Laohushan River valley, almost no residential sites were recorded except for seven sacrificial sites. This, following the discovery of the Niuheliang ritual complex, again demonstrates the existence of exclusive sacred places separated from everyday secular life.

  12. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    Science.gov (United States)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  13. Surface complexation modeling for predicting solid phase arsenic concentrations in the sediments of the Mississippi River Valley alluvial aquifer, Arkansas, USA

    Science.gov (United States)

    Sharif, M.S.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2011-01-01

    The potential health impact of As in drinking water supply systems in the Mississippi River Valley alluvial aquifer in the state of Arkansas, USA is significant. In this context it is important to understand the occurrence, distribution and mobilization of As in the Mississippi River Valley alluvial aquifer. Application of surface complexation models (SCMs) to predict the sorption behavior of As and hydrous Fe oxides (HFO) in the laboratory has increased in the last decade. However, the application of SCMs to predict the sorption of As in natural sediments has not often been reported, and such applications are greatly constrained by the lack of site-specific model parameters. Attempts have been made to use SCMs considering a component additivity (CA) approach which accounts for relative abundances of pure phases in natural sediments, followed by the addition of SCM parameters individually for each phase. Although few reliable and internally consistent sorption databases related to HFO exist, the use of SCMs using laboratory-derived sorption databases to predict the mobility of As in natural sediments has increased. This study is an attempt to evaluate the ability of the SCMs using the geochemical code PHREEQC to predict solid phase As in the sediments of the Mississippi River Valley alluvial aquifer in Arkansas. The SCM option of the double-layer model (DLM) was simulated using ferrihydrite and goethite as sorbents quantified from chemical extractions, calculated surface-site densities, published surface properties, and published laboratory-derived sorption constants for the sorbents. The model results are satisfactory for shallow wells (10.6. m below ground surface), where the redox condition is relatively oxic or mildly suboxic. However, for the deep alluvial aquifer (21-36.6. m below ground surface) where the redox condition is suboxic to anoxic, the model results are unsatisfactory. ?? 2011 Elsevier Ltd.

  14. Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil

    Directory of Open Access Journals (Sweden)

    Rudiney Ringenberg

    2014-06-01

    Full Text Available Survey of potential sharpshooter and spittlebug vectors of Xylella fastidiosa to grapevines at the São Francisco River Valley, Brazil. Pierce's disease of grapevines, caused by Xylella fastidiosa, is a serious problem in some regions of North America, not yet reported in Brazil. In this study, a survey of potential sharpshooter (Hemiptera, Cicadellidae, Cicadellinae and spittlebug (Hemiptera, Cercopidae vectors of X. fastidiosa was conducted in vineyards at the São Francisco River Valley, a major grape growing region in Brazil. Four vineyards of Vitis vinifera L. were sampled fortnightly from June/2005 to June/2007, using yellow sticky cards, each placed at two different heights (45 cm aboveground and 45 cm above the crop canopy in 10 sampling localities. A total of 4,095 specimens of sharpshooters were collected, nearly all from 3 Proconiini species, Homalodisca spottii Takiya, Cavichioli & McKamey, 2006 (96.8% of the specimens, Tapajosa fulvopunctata (Signoret, 1854 (3.1%, and Tretogonia cribrata Melichar, 1926 (1 specimen. Hortensia similis (Walker, 1851 (2 specimens was the only Cicadellini species. Only 1 cercopid specimen, belonging to Aeneolamia colon (Germar, 1821, was trapped. Even though they are not considered potential Xylella vectors, 2 Gyponini leafhoppers were collected: Curtara samera DeLong & Freytag, 1972 (11 specimens and Curtara inflata DeLong & Freytag, 1976 (1 specimen. Homalodisca spottii was observed feeding and mating on green branches of grapevines, in addition to egg masses. Because of its prevalence on the crop canopy, occurrence throughout the year (with peaks from February to August, and ability to colonize grapevines, H. spottii could be an important vector if a X. fastidiosa strain pathogenic to grapevines becomes introduced at the São Francisco River Valley.

  15. Occurrence, Distribution, Sources, and Trends of Elevated Chloride Concentrations in the Mississippi River Valley Alluvial Aquifer in Southeastern Arkansas

    Science.gov (United States)

    Kresse, Timothy M.; Clark, Brian R.

    2008-01-01

    Water-quality data from approximately 2,500 sites were used to investigate the distribution of chloride concentrations in the Mississippi River Valley alluvial aquifer in southeastern Arkansas. The large volume and areal distribution of the data used for the investigation proved useful in delineating areas of elevated (greater than 100 milligrams per liter) chloride concentrations, assessing potential sources of saline water, and evaluating trends in chloride distribution and concentration over time. Irrigation water containing elevated chloride concentrations is associated with negative effects to rice and soybeans, two of the major crops in Arkansas, and a groundwater chloride concentration of 100 milligrams per liter is recommended as the upper limit for use on rice. As such, accurately delineating areas with high salinity ground water, defining potential sources of chloride, and documenting trends over time is important in assisting the agricultural community in water management. The distribution and range of chloride concentrations in the study area revealed distinct areas of elevated chloride concentrations. Area I includes an elongated, generally northwest-southeast trending band of moderately elevated chloride concentrations in the northern part of the study area. This band of elevated chloride concentrations is approximately 40 miles in length and varies from approximately 2 to 9 miles in width, with a maximum chloride concentration of 360 milligrams per liter. Area II is a narrow, north-south trending band of elevated chloride concentrations in the southern part of the study area, with a maximum chloride concentration of 1,639 milligrams per liter. A zone of chloride concentrations exceeding 200 milligrams per liter is approximately 25 miles in length and 5 to 6 miles in width. In Area I, low chloride concentrations in samples from wells completed in the alluvial aquifer next to the Arkansas River and in samples from the upper Claiborne aquifer, which

  16. A Study on the Construction of Ecological Protective Screen System in the Arid Valley Area of the Upper Reaches of the Min River

    Institute of Scientific and Technical Information of China (English)

    Zhao Bin

    2015-01-01

    The Min River is a large tributary in the upper reaches of the Yangtze River. Its source is the south range of the Min Mountains in the area where Sichuan and Gansu share a bounda ̄ry. The area consists of five counties in the Aba Tibetan-Qiang Autonomous Prefecture, including Wenchuan, Lixian, Maoxian, Songpan, and He ̄ishui. The area covers 25,426 square kilometers. The area in the upper reaches of the Min River is an arid valley, and its ecological position is very important. This area is not only one that is home to world heritage and national scenic spots, but it is also a poor ethnic minority area with relatively backward economic conditions. Moreover,it is also an important ecological screen and water source for the Chengdu plain,as well as an important part of the ecological protective screen in the upper rea ̄ches of the Yangtze River. As a result of natural disasters,pressure on the carrying capacity of the population and the careless manner of economic development,the resources and environment in this area have been exploited irrationally. This has cre ̄ated a series of serious environmental problems,in ̄cluding environmental pollution, and depletion of resources,etc. Therefore, constructing an ecologi ̄cal protective screen in the upper reaches of the Min River becomes very important.

  17. Geologic and geophysical data for wells drilled at Raft River Valley, Cassia County, Idaho, in 1977-1978 and data for wells drilled previously

    Science.gov (United States)

    Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.

    2014-01-01

    In order to better define the size of the thermal anomaly in the Raft River Valley, Idaho, the U.S. Geological Survey drilled a series of intermediate-depth (nominal 500-ft depth) wells in 1977 and 1978.  This report presents geologic, geophysical, and temperature data for these drill holes, along with data for five wells drilled by the Idaho National Engineering Laboratory with U.S. Department of Energy Funding.  Data previously reported for other drill holes are also included in order to make them available as digital files.

  18. Use of Remotely Piloted Aircraft System (RPAS) in the analysis of historical landslide occurred in 1885 in the Rječina River Valley, Croatia

    Science.gov (United States)

    Dugonjić Jovančević, Sanja; Peranić, Josip; Ružić, Igor; Arbanas, Željko; Kalajžić, Duje; Benac, Čedomir

    2016-04-01

    Numerous instability phenomena have been recorded in the Rječina River Valley, near the City of Rijeka, in the past 250 years. Large landslides triggered by rainfall and floods, were registered on both sides of the Valley. Landslide inventory in the Valley was established based on recorded historical events and LiDAR imagery. The Rječina River is a typical karstic river 18.7km long, originating from the Gorski Kotar Mountains. The central part of the Valley, belongs to the dominant morphostructural unit that strikes in the northwest-southeast direction along the Rječina River. Karstified limestone rock mass is visible on the top of the slopes, while the flysch rock mass is present on the lower slopes and at the bottom of the Valley. Different types of movements can be distinguished in the area, such as the sliding of slope deposits over the flysch bedrock, rockfalls from limestone cliffs, sliding of huge rocky blocks, and active landslide on the north-eastern slope. The paper presents investigation of the dormant landslide located on the south-western slope of the Valley, which was recorded in 1870 in numerous historical descriptions. Due to intense and long-term rainfall, the landslide was reactivated in 1885, destroying and damaging houses in the eastern part of the Grohovo Village. To predict possible reactivation of the dormant landslide on the south-western side of the Valley, 2D stability back analyses were performed on the basis of landslide features, in order to approximate the position of sliding surface and landslide dimensions. The landslide topography is very steep, and the slope is covered by unstable debris material, so therefore hard to perform any terrestrial geodetic survey. Consumer-grade DJI Phantom 2 Remotely Piloted Aircraft System (RPAS) was used to provide the data about the present slope topography. The landslide 3D point cloud was derived from approximately 200 photographs taken with RPAS, using structure-from-motion (SfM) photogrammetry

  19. Groundwater components in the alluvial aquifer of the alpine Rhone River valley, Bois de Finges area, Wallis Canton, Switzerland

    Science.gov (United States)

    Schürch, Marc; Vuataz, François-D.

    2000-09-01

    Source, type, and quantity of various components of groundwater, as well as their spatial and temporal variations were determined by different hydrochemical methods in the alluvial aquifer of the upper Rhone River valley, Bois de Finges, Wallis Canton, Switzerland. The methods used are hydrochemical modeling, stable-isotope analysis, and chemical analysis of surface water and groundwater. Sampling during high- and low-water periods determined the spatial distribution of the water chemistry, whereas monthly sampling over three years provided a basis for understanding seasonal variability. The physico-chemical parameters of the groundwater have spatial and seasonal variations. The groundwater chemical composition of the Rhone alluvial aquifer indicates a mixing of weakly mineralized Rhone River water and SO4-rich water entering from the south side of the valley. Temporal changes in groundwater chemistry and in groundwater levels reflect the seasonal variations of the different contributors to groundwater recharge. The Rhone River recharges the alluvial aquifer only during the summer high-water period. Résumé. Origine, type et quantité de nombreux composants d'eau de l'aquifère alluvial dans la vallée supérieure du Rhône, Bois de Finges, Valais, Suisse, ainsi que leurs variations spatiales et temporelles ont été déterminés par différentes méthodes hydrochimiques. Les méthodes utilisées sont la modélisation hydrochimique, les isotopes stables, ainsi que l'échantillonnage en période de hautes eaux et de basses eaux pour étudier la distribution spatiale de la composition chimique, alors qu'un échantillonnage mensuel pendant trois ans sert à comprendre les processus de la variabilité saisonnière. Les paramètres physico-chimiques des eaux souterraines montrent des variations spatiales et saisonnières. La composition chimique de l'aquifère alluvial du Rhône indique un mélange entre une eau peu minéralisée venant du Rhône et une eau sulfatée s

  20. Towards automating measurements and predictions of Escherichia coli concentrations in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2012–14

    Science.gov (United States)

    Brady, Amie M G.; Meg B. Plona,

    2015-07-30

    Nowcasts are systems that can provide estimates of the current bacterial water-quality conditions based on predictive models using easily-measured, explanatory variables; nowcasts can provide the public with the information to make informed decisions on the risk associated with recreational activities in natural water bodies. Previous studies on the Cuyahoga River within Cuyahoga Valley National Park (CVNP) have found that predictive models can be used to provide accurate assessments of the recreational water quality. However, in order to run the previously developed nowcasts for CVNP, manual collection and processing of samples is required on a daily basis to acquire the required explanatory variable data (laboratory-measured turbidity). The U.S. Geological Survey and the National Park Service collaborated to develop a more automated approach to provide more timely results to park visitors regarding the recreational water quality of the river.

  1. Land degradation trends in upper catchments and morphological developments of braided rivers in drylands: the case of a marginal graben of the Ethiopian Rift Valley

    Science.gov (United States)

    Demissie, Biadgilgn; Frankl, Amaury; Haile, Mitiku; Nyssen, Jan

    2014-05-01

    Braided rivers have received relatively little attention in research and development activities in drylands. However, they strongly impact agroecology and agricultural activities and thereby local livelihoods. The Raya Graben (3750 km² including the escarpment) is a marginal graben of the Ethiopian Rift Valley located in North Ethiopia. In order to study the dynamics of braided rivers and the relationship with biophysical controls, 20 representative catchments were selected, ranging between 15 and 311 km². First, the 2005 morphology (length, area) of the braided rivers was related to biophysical controls (vegetation cover, catchment area and slope gradient in the steep upper catchments and gradient in the graben bottom). Second, the changes in length of the braided rivers were related to vegetation cover changes in the upper catchments since 1972. Landsat imagery was used to calculate the Normalized Difference Vegetation Index (NDVI), and to map vegetation cover and the total length of the braided rivers. Spot CNES imagery available from Google Earth was used to identify the total area of the braided rivers in 2005. A linear regression analysis revealed that the length of braided rivers was positively related to the catchment area (R²=0.32, p<0.01), but insignificantly related to vegetation cover in the upper catchments. However, there is an indication that it is an important factor in the relationship calculated for 2005 (R²=0.2, p=0.064). Similarly, the area occupied by the braided rivers was related to NDVI (R²=0.24, p<0.05) and upper catchment area (R²=0.447, p<0.01). Slope gradient is not an important explanatory factor. This is related to the fact that slope gradients are steep (average of 38.1%) in all upper and gentle (average of 3.4%) in graben bottom catchments. The vegetation cover in the upper catchments shows a statistically insignificant increasing trend (R²=0.73, p=0.067) over the last 40 years, whereas length of rivers in the graben bottom

  2. The potential impact of green agendas on historic river landscapes: Numerical modelling of multiple weir removal in the Derwent Valley Mills world heritage site, UK

    Science.gov (United States)

    Howard, A. J.; Coulthard, T. J.; Knight, D.

    2017-09-01

    The exploitation of river systems for power and navigation has commonly been achieved through the installation of a variety of in-channel obstacles of which weirs in Britain are amongst the most common. In the UK, the historic value of many of these features is recognised by planning designations and protection more commonly associated with historic buildings and other major monuments. Their construction, particularly in the north and west of Britain, has often been associated with industries such as textiles, chemicals, and mining, which have polluted waterways with heavy metals and other contaminants. The construction of weirs altered local channel gradients resulting in sedimentation upstream with the potential as well for elevated levels of contamination in sediments deposited there. For centuries these weirs have remained largely undisturbed, but as a result of the growth in hydropower and the drive to improve water quality under the European Union's Water Framework Directive, these structures are under increasing pressure to be modified or removed altogether. At present, weir modifications appear to be considered largely on an individual basis, with little focus on the wider impacts this might have on valley floor environments. Using a numerical modelling approach, this paper simulates the removal of major weirs along a 24-km stretch of the river Derwent, Derbyshire, UK, designated as a UNESCO World Heritage Site. The results suggest that although removal would not result in significant changes to the valley morphology, localised erosion would occur upstream of structures as the river readjusts its base level to new boundary conditions. Modelling indicates that sediment would also be evacuated away from the study area. In the context of the Derwent valley, this raises the potential for the remobilisation of contaminants (legacy sediments) within the wider floodplain system, which could have detrimental, long-term health and environmental implications for the

  3. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  4. Early performance of Pinus radiata provenances in the earthquake-ravaged dry river valley area of Sichuan, southwest China

    Institute of Scientific and Technical Information of China (English)

    Huiquan Bi; Rongwei Li; Zongxing Wu; Quan Huang; Qianli Liu; Yongli; Zhou Yun Li

    2013-01-01

    A provenance experiment involving five native provenances and an Australian landrace of Pinus radiata (D. Don) was established over three sites in the dry river valley area of Sichuan, southwest China in 2004 in order to select the most suitable provenance for environmental planting on the dry, steep and degraded slopes to reduce soil erosion. Although with much lower soil moisture supply and mean minimum temperatures in winter compared to P. radiata provenance trials estab-lished elsewhere in the world, these sites are within the working limits of the species defined by previous climate modelling and matching. Be-cause of the difficult site conditions and severe natural disturbances after the experiment was established, mortality was high across the three sites in comparison to provenance trials in other countries. The average mor-tality rate among the provenance by replicate planting units over the three sites varied from 16% to 76% four years after planting, and from 40%to 88%five years after planting . The repeated measurements of tree size over time were analysed using multilevel linear mixed models to derive growth curves for the mean, median, the 75th and the 90th percen-tiles of the size distribution of each provenance at each site. There were significant site effects on tree growth, but no significant interactions between site and provenance was detected. Among the six provenances, Cambria was the best performer in diameter, height and stem volume growth across all sites. The better than average and the best trees of this provenance, as represented by the 75th and 90th percentiles of the nomi-nal stem volume distribution, were significantly larger than the Austra-lian landrace, Año Nuevo, and the two island provenances, Guadalupe and Cedros. Monterey was overall the second best performer behind Cambria. The Australian landrace, Guadalupe and Año Nuevo had simi-lar performances in general. Cedros was significantly and consistently inferior to all other

  5. Distribution and variability of redox zones controlling spatial variability of arsenic in the Mississippi River Valley alluvial aquifer, southeastern Arkansas

    Science.gov (United States)

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Hays, P.D.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Twenty one of 118 irrigation water wells in the shallow (25-30??m thick) Mississippi River Valley alluvial aquifer in the Bayou Bartholomew watershed, southeastern Arkansas had arsenic (As) concentrations (oxide, organic, and hot HNO3-leachable fraction of As and other compounds in sediments. The Chao reagent (0.25??M hydroxylamine hydrochloride in 0.25??M HCl) removes amorphous Fe and Mn oxides and oxyhydroxides (present as coatings on grains and amorphous minerals) by reductive dissolution and is a measure of reducible Fe and Mn in sediments. The hot HNO3 extraction removes mostly crystalline metal oxides and all other labile forms of As. Significant total As (20%) is complexed with amorphous Fe and Mn oxides in sediments. Arsenic abundance is not significant in carbonates or organic matter. Significant (40-70????g/kg) exchangeable As is only present at shallow depth (0-1??m below ground surface). Arsenic is positively correlated to Fe extracted by Chao reagent (r = 0.83) and hot HNO3 (r = 0.85). Arsenic extracted by Chao reagent decreases significantly with depth as compared to As extracted by hot HNO3. Fe (II)/Fe (the ratio of Fe concentration in the extracts of Chao reagent and hot HNO3) is positively correlated (r = 0.76) to As extracted from Chao reagent. Although Fe (II)/Fe increases with depth, the relative abundance of reducible Fe decreases noticeably with depth. The amount of reducible Fe, as well as As complexed to amorphous Fe and Mn oxides and oxyhydroxides decreases with depth. Possible explanations for the decrease in reducible Fe and its complexed As with depth include historic flushing of As and Fe from hydrous ferric oxides (HFO) by microbially-mediated reductive dissolution and aging of HFO to crystalline phases. Hydrogeochemical data suggests that the groundwater in the area falls in the mildly reducing (suboxic) to relatively highly reducing (anoxic) zone, and points to reductive dissolution of HFO as the dominant As release mechanism

  6. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  7. Management of invasive plant species in the valley of the River Ślepiotka in Katowice – the example of the REURIS project

    Directory of Open Access Journals (Sweden)

    Frelich Małgorzata

    2014-06-01

    Full Text Available In recent years, programmes aimed at improving environmental conditions in river valleys within urban spaces have been initiated in many of the European Community countries. An example is the project “Revitalization of Urban River Spaces – REURIS” which was implemented in 2009-2012. Its main aim was to revitalize a part of the valley of the River Ślepiotka in Katowice. One of the tasks of the project was a comprehensive treatment to combat invasive plant species occurring in this area, carried out by using a combination of chemical and mechanical methods. Chemical treatment involved the application of herbicide mixtures, and mechanical treatment included, among others, mowing and/or removal of the undesirable plants. The work focused primarily on reducing the spread of two species of the Impatiens genus: I. glandulifera and I. parviflora, and the species Padus serotina, Reynoutria japonica and Solidago canadensis. Currently, the maintenance works on this section of the river are performed by the Urban Greenery Department in Katowice, which continues the elimination of invasive plants, according to the objectives of the REURIS program. In 2012 the Department of Botany and Nature Protection at the Faculty of Biology and Environmental Protection started to monitor the implementation and the effects of the implemented actions for elimination and participated in the action of removal of selected invasive plant species: Impatiens parviflora and Reynoutria japonica within specific areas. These actions led to a reduction in the area occupied by invasive plants and a weakening of their growth rate and ability to reproduce.

  8. 白龙江干旱河谷分布区划界定%Distribution Compartment Definition of Arid Valley along Bailongjiang River

    Institute of Scientific and Technical Information of China (English)

    郭星; 陈国鹏; 王飞; 黄旭东; 王杰

    2014-01-01

    按照干旱河谷划分的技术标准,采用“3S”技术结合地面调查的方法,区划界定了甘肃省白龙江干旱河谷的分布范围和面积。结果表明,其主要分布于甘肃省东南部甘南州、陇南市,分布海拔为700~2200 m,面积达271214 hm2。%According to the technical standard of dry valley partition , the boundary and area of the dry valley in Bailongjing River of Gansu province were surveyed and defined by using the combination ap -proach of “3S” technology ( GPS, GIS and RS) and the ground survey.Results showed that the dry val-ley mainly distributed in Gannan and Longnan city of south-east Gansu province with the altitude from 700 m to 2200 m, and the area was 271214 hm2.

  9. Spatial relations between floodplain environments and land use - land cover of a large lowland tropical river valley: Pánuco basin, México.

    Science.gov (United States)

    Hudson, Paul F; Colditz, René R; Aguilar-Robledo, Miguel

    2006-09-01

    Large lowland river valleys include a variety of floodplain environments that represent opportunities and constraints for human activities. This study integrates extensive field observations and geomorphic data with analysis of satellite remote sensing data to examine spatial relations between land use/land cover (LULC) and floodplain environments in the lower Pánuco basin of eastern Mexico. The floodplain of the lower Pánuco basin was delineated by combining a digital elevation model with a satellite image of a large flood event. The LULC was classified by combining a hybrid classification strategy with image stratification, applied to 15-m-resolution ASTER data. A geomorphic classification of floodplain environments was performed using a dry-stage image (ASTER data) and a 1993 Landsat image acquired during a large flood event. Accuracy assessment was based on aerial photographs (1:38,000), global positioning satellite ground-truthing, and a Landsat 7ETM(+) image from 2000, which resulted in an overall accuracy of 82.9% and a KHAT of 79.8% for the LULC classification. The geomorphic classification yielded 83.5% overall accuracy, whereas the KHAT was 81.5%. LULC analysis was performed for the entire floodplain and individually within four valley segments. The analysis indicates that the study area is primarily utilized for grazing and farming. Agriculture is primarily associated with coarse-grained (sandy/silty) natural levee and point bar units close to the river channel, whereas cattle grazing occurs in distal and lower-lying reaches dominated by cohesive fine-grained (clayey) deposits, such as backswamps. In the Pánuco valley, wetlands and lakes occur within backswamp environments, whereas in the Moctezuma segments, wetlands and lakes are associated with relict channels. This study reveals considerable variation in LULC related to spatial differences in floodplain environments and illustrates the importance of considering older anthropogenic influences on the

  10. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    Science.gov (United States)

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  11. Meridional seesaw-like distribution of the Meiyu rainfall over the Changjiang-Huaihe River Valley and characteristics in the anomalous climate years

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Although Meiyu rainfall has its in-phase spatial variability over the Changjiang-Huaihe River Valley (CHRV) in most years, it is distributed in some years like a seesaw to the north and south of the Changjiang River, when the precipitation tends to be nearly normal throughout the valley, which would inevitably increase difficulties of making short-term prediction of the rainfall. For this reason, EOF analysis is made on 15 related stations' precipitation from June to July during 1951─2004, revealing that the EOF2 mode shows largely a north-south seesaw-like pattern, and thereby classifying Meiyu patterns into two types: "northern drought and southern flood (NDSF)" and "northern flood and southern drought (NFSD)". Afterwards, the authors investigated ocean-atmospheric characteristics when these two anomalous types occurred using the NCEP reanalysis (version 1) and the extended reconstructed SSTs (version 2). The results show that in the NDSF years, the low-level frontal area and moisture convergence center lie more southward, accompanied by weaker subtropical summer monsoon over East Asia, with the western Pacific subtropical high and 200 hPa South Asia High being more southward. Both the Northern and Southern Hemisphere Annular Modes are stronger than normal in preceding February; SST is higher off China during boreal winter and spring and the opposite happens in the NFSD years. Also, this seesaw-form Meiyu rainfall distribution might be affected to some degree by the previous ENSO event.

  12. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    Science.gov (United States)

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 debris dams were in the range 103 debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  13. A new red-eyed treefrog of Agalychnis (Anura: Hylidae: Phyllomedusinae) from middle Magdalena River valley of Colombia with comments on its phylogenetic position.

    Science.gov (United States)

    Rivera-Correa, Mauricio; Duarte-Cubides, Felipe; Rueda-Almonacid, José Vicente; Daza, Juan M

    2013-01-01

    We describe a new species of the charismatic red-eyed treefrogs (genus Agalychnis) from middle Magdalena River valley of Colombia (05°50'8.04"N, 74°50'16.55"W, 380 m a.s.l.). The new species is readily distinguished from all species members of the group by having orange flanks with small white warts. Phylogenetic analysis of DNA sequences of 16S rRNA gene recovered the new species as a member of the Agalychnis callidryas group. The presence of a red hue in the iris and a golden reticulated palpebral membrane, putative synapomorphies of the clade, support this hypothesis. Our analysis suggests that Agalychnis terranova sp. nov is closely related to A. callidryas from Central America and is proposed as its sister species with an uncorrected genetic distance of 5.69% between these taxa. The phylogenetic position and the geographic distribution of the new taxon add new lights to the presence of a biogeographic disjunction between Middle America lowlands, the Pacific region and Magdalena River valley of Colombia.

  14. The impact of Mediterranean oscillations on periodicity and trend of temperature in the valley of the Nisava River: A fourier and wavelet approach

    Directory of Open Access Journals (Sweden)

    Martić-Bursać Nataša M.

    2017-01-01

    Full Text Available Periodicity of temperature on three stations in the Nisava River valley in period 1949-2014, has been analyzed by means of Fourier and wavelet transforms. Combined periodogram based on fast Fourier transform shows considerable similarity among individual series and identifies significant periods on 2.2, 2.7, 3.3, 5, 6-7, and 8.2 years in all datasets. Wavelet coherence analysis connects strongest 6-7 years spectral component to Mediterranean oscillation, starting in 1980s. Combined periodogram of Mediterranean oscillation index reveals 6-7 years spectral component as a dominant mode in period 1949-2014. Wavelet power spectra and partial combined periodograms show absence of 6-7 years component before 1975, after which this component becomes dominant in the spectrum. Consistency between alternation in temperature trend in the Nisava River valley and change in periodicity of Mediterranean oscillation was found. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176008

  15. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above.

  16. Analysis of frequency and duration of the functional periods on the basis of long-term variability of limnetic processes within the Bug River valley

    Science.gov (United States)

    Dawidek, J.; Ferencz, B.

    2014-12-01

    Floodplain lakes (FPLs) constitute a very important element of river valleys, both in terms of ecology and hydrology. Dynamic physicochemical, morphometric and biological changes of lake waters are determined by the variability of the functional periods of lakes: limnophases, potamophases and inundations. This paper presents factors that shape long-term dynamics of the frequencies and durations of potamophases and limnophases in 20 selected FPLs. The study area included the left fraction of the Bug River valley located at the European Union's eastern border stretched along countries like Poland, Ukraine, and Belarus. The analysis covered the water years 1952 to 2013. Assigning the value of Limnological Effective Rise (LER) was essential for determining the functional periods for each of the study lakes. The dynamics of the phenomenon was analysed using volatility indicators, while factors determining functional periods were distinguished using Principal Component Analysis (PCA). Results showed that short (0-8 days) and medium-length limnophases were observed most frequently during the study period. In the case of potamophases they most often lasted from 8 to 30 days, continuously. Double-mass curves showed four periods of increasing significance of one of the functional phases: 1952-1962 (limnophases), 1963-1982 (potamophases), 1983-1997 (limnophases) and 1998-2013 (potamophases). A variability that was observed in each floodplain lake under study resulted from two main factors: water input and lake basin morphometry. The major role in FPLs' input was played by potamic supply (inflow of water from the parent river), which was a derivative of Bug River water stages and discharge. Atmospheric precipitation played a smaller role. However, the role of local precipitation was marginal in relation to precipitation in the upper part of the Bug River catchment. Spatial variability of the frequencies and durations of potamophases and limnophases was also associated with the

  17. Development of a coupled Thermo-Hydro model and study of the evolution of a river-valley-talik system in the context of climate change

    Science.gov (United States)

    Regnier, Damien; Grenier, Christophe; Davy, Philippe; Benabderrahmane, Hakim

    2010-05-01

    Boreal regions have been subject to recent and intensive studies within the field of the impact of climate change. A vast number of the modeling approaches correspond to large scale modeling firstly oriented to thermal field and permafrost evolution. We consider the evolution of smaller scale units of the landscape, in particular here the river-valley unit. In cold environments, we know that some rivers have at their bottoms a talik or a non frozen zone. Such systems have been poorly studied until now should it be as such or in relation with their surroundings, as major thermal conductors potentially impacting a larger portion of a region. The present work is part of a more global study implying the Lena river (Siberia) evolution under climate change in collaboration with the IDES laboratory (Interaction et Dynamique des Environnements de Surface at Orsay University, see e.g. Costard and Gautier, 2007) where the study of the system involves a threefold approach including in situ field work (near Yakutsk), experimental modeling (in a cold room at Orsay University) and numerical modeling. The river-valley system is a case where thermal evolution is coupled with water flow (hydrology and hydrogeology in the talik). The thermal field is impacted by and modifies the water flow conditions when freezing. We first present the development of our numerical simulation procedure. A novel 2D-3D simulation approach was developed in the Cast3M code (www-cast3m.cea.fr/cast3m) with a mixed hybrid finite element approach. It couples Darcy equations for flow (permeability depending on temperature) with heat transfer equations (conductive, advective and phase change process) with a Picard iterations algorithm for coupling. Then we present the validation of the code against 1D analytical solutions (Stefan problem) and 2D cases issued from the literature (McKenzie et al. 2007, Bense et al. 2009). We finally study by means of numeric simulations the installation of permafrost in an

  18. Local Farmers' Perceptions of Climate Change and Local Adaptive Strategies: A Case Study from the Middle Yarlung Zangbo River Valley, Tibet, China

    Science.gov (United States)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and government

  19. Local farmers' perceptions of climate change and local adaptive strategies: a case study from the Middle Yarlung Zangbo River Valley, Tibet, China.

    Science.gov (United States)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and

  20. Landslide risk assessment in the Göta Älv river valley to limit consequences of climate change on society

    Science.gov (United States)

    Hedlund, Jonas; Lind, Bo; Tremblay, Marius; Zackrisson, Peter; Cederbom, Charlotte

    2010-05-01

    Higher temperatures, higher average precipitation and increased occurrence of extreme rainfall events are some expected climate changes in Sweden during the coming 70-100 years. Due to the changing climate the risk for floods, erosion and landslides are expected to increase. in large parts of the country. To prevent extensive floodings and damages of cities and infrastructure around Lake Vänern, it is necessary to allow controlled overflow from Lake Vänern through the river Göta Älv. An overflow in the river, in turn, leads to increased risk for erosion and landslides along the Göta Älv valley. In order to meet the upcoming climate changes and to handle the increasing flows through the river, we need to improve the knowledge of the stability of the entire river bank. The Swedish Government has commissioned the Swedish Geotechnical Institute (SGI) to investigate the landslide potential of the Göta Älv valley, taking the predicted climate changes into consideration. The investigated area includes the parts of Göta Älv that could be affected by the increased flows from Lake Vänern; areas where the increased flow will affect stability and where landslides could cause serious damages or damming of the river. The investigation area includes c. 90 km of the Göta Älv river plus tributaries in connection to Göta Älv. In the landslide risk analyses developed for Göta Älv, the likelihood of landslides and estimation of the subsequent consequences are included. The methodology involves mapping of landslide hazards and a judgement of the risk area on the basis of a risk matrix. The landslide risk analysis allows for an assessment of where geotechnical reinforcements would be necessary. A cost estimation for the required reinforcement measures is also provided. In areas where the estimated risk for a landslide is low (e.g. limited consequences), stability mapping in accordance with the model used by the Swedish Civil Contingencies Agency (MSB) is developed

  1. Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain. [Tennessee River Valley

    Science.gov (United States)

    Koepf, D.; Frost, W.

    1981-01-01

    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain.

  2. Comparison of land-atmosphere interaction at different surface types in the mid- to lower Yangzi River Valley

    Science.gov (United States)

    Guo, Weidong; Wang, Xueqian; Sun, Jianning; Ding, Aijun; Zou, Jun

    2016-04-01

    The mid- to lower Yangzi River Valley is located within the typical monsoon zone. Rapid urbanization, industrialization, and development of agriculture have led to fast and complicated land use and land cover changes in this region. To investigate land-atmosphere interaction in this region where human activities and monsoon climate are highly interactive with each other, micro-meteorological elements over four different surface types, i.e. urban surface represented by the observational site at Communist Party School in Nanjing (hereafter DX), suburban surface represented by the ground site at Xianling (XL), and grassland and farmland represented by field sites at Lishui County (LS-grass and LS-crop), are analyzed and their differences are revealed. Impacts of different surface parameters applied for different surface types on the radiation budget and surface-atmosphere heat, water, and mass exchanges are investigated. Results indicate that (1) the largest differences in daily average surface air temperature (Ta), surface skin temperature (Ts), and relative humidity (RH) , which are found during the dry periods between DX and LS-crop, can be up to 3.21°C, 7.26°C, and 22.79% respectively. During the growing season, the diurnal ranges of the above three elements are the smallest at DX and the largest at LS-grass, XL and LS-crop; (2) differences in radiative fluxes are mainly reflected in upward shortwave radiation (USR) that is related to surface albedo and upward longwave radiation (ULR) that is related to Ts. USR is the smallest and ULR is the largest at DX. During the growing season, the average difference in ULR between the DX site and other sites with vegetation cover can be up to 20Wm-2. The USR variability is the largest at LS-crop, while the diurnal variation of ULR is the same as that of Ts at all the four sites; (3) the differences in daily average sensible heat (H) and latent heat (LE) between DX and LS-crop are larger than 45 and 95Wm-2, respectively

  3. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  4. A new model of river dynamics, hydroclimatic change and human settlement in the Nile Valley derived from meta-analysis of the Holocene fluvial archive

    Science.gov (United States)

    Macklin, Mark G.; Toonen, Willem H. J.; Woodward, Jamie C.; Williams, Martin A. J.; Flaux, Clément; Marriner, Nick; Nicoll, Kathleen; Verstraeten, Gert; Spencer, Neal; Welsby, Derek

    2015-12-01

    In the Nile catchment, a growing number of site- and reach-based studies employ radiocarbon and, more recently, OSL dating to reconstruct Holocene river histories, but there has been no attempt to critically evaluate and synthesise these data at the catchment scale. We present the first meta-analysis of published and publically available radiocarbon and OSL dated Holocene fluvial units in the Nile catchment, including the delta region, and relate this to changing climate and river dynamics. Dated fluvial units are separated both geographically (into the Nile Delta and White, Blue, and Desert Nile sub-regions) and into depositional environment (floodplain and palaeochannel fills). Cumulative probability density frequency (CPDF) plots of floodplain and palaeochannel units show a striking inverse relationship during the Holocene, reflecting abrupt (<100 years) climate-related changes in flooding regime. The CPDF plot of dated floodplain units is interpreted as a record of over-bank river flows, whilst the CPDF plot of palaeochannel units reflect periods of major flooding associated with channel abandonment and contraction, as well as transitions to multi-centennial length episodes of greater aridity and low river flow. This analysis has identified major changes in river flow and dynamics in the Nile catchment with phases of channel and floodplain contraction at c. 6150-5750, 4400-4150, 3700-3450, 2700-2250, 1350-900, 800-550 cal. BC and cal. AD 1600, timeframes that mark shifts to new hydrological and geomorphological regimes. We discuss the impacts of these changing hydromorphological regimes upon riverine civilizations in the Nile Valley.

  5. Predictive simulation of alternatives for managing the water resources of North Fork Solomon River Valley between Kirwin Dam and Waconda Lake, north-central Kansas

    Science.gov (United States)

    Burnett, R.D.

    1984-01-01

    Since 1974 water levels in the alluvial aquifer of the North Fork Solomon River Valley in north-central Kansas have decreased due to increases in ground-water pumpage, decreases in availability of surface water for irrigation, and below-average precipitation. A finite-element model was developed in cooperation with the U.S. Bureau of Reclamation to simulate changing conditions between 1970-79. Model results indicate that annual recharge to the aquifer due to precipitation, applcation of water for irrigation, and canal leakage averaged about 22,825 acre-feet and that annual ground-wate discharge to the river averaged about 16,590 acre-feet. Predictive simulations for 1980-2000 were made using management alternatives that involved clay-lining of irrigation ditches, reduction of surface-water availability with and without an increase in ground-water pumping, and continuation of 1979 pumping conditions. The simulations indicated that as much as 5.5 feet of additional average water-level drawdown in wells would occur by 2000 if surface-water supply were reduced 100 percent and ground-water pumpage increased. The simulations also indicated that a decrease in average drawdown of 0.55 foot would occur by 2000 and that base flow to the river would decrease to 12,300 acre-feet per year if 1979 conditions remained constant. (USGS)

  6. Geometry of the Paleo-Nueces River Incised-Valley, Corpus Christi Bay, Texas as it Relates to Quaternary Sea Level History

    Science.gov (United States)

    Lugrin, L.; Gulick, S. S.; Goff, J. A.

    2012-12-01

    CHIRP subbottom seismic data were collected on the 2009 and 2011 Marine Geophysics Field courses at the University of Texas at Austin within the Corpus Christi Bay along the central Texas coast in order to study the geometry of the ancestral Nueces River incised valley and its evolution over Quaternary sea level history. Since the late Pleistocene, the Nueces River valley experienced a gradual infill due to sea level rise, interrupted by two major flooding events that represent periods of rapid sediment influx. These flooding events are recognizable based on abrupt changes in seismic facies. Discontinuous, chaotic fluvial lag deposits present underneath a fairly continuous, stratified, sub-horizontal estuarine coastal plain facies mark what is interpreted to be the Pleistocene/Holocene unconformity. Above the P/H boundary, oyster reefs thrive within the estuary until capped by a strong reflector, marking the second flooding surface that allowed enough incoming sediment to discontinue oyster reef growth. The estuarine deposits within the paleo-Nueces river valley exhibit a landward migration as the Holocene transgression proceeded. As infill continued, the bay-head delta prograded seaward and the flood-tidal delta extended progressively further up the estuary until the central estuarine basin was capped. The earlier flooding events provide strong reflectors that can be linked to the draining of Lake Agassiz around 8.2 k.a.. This event flooded the Gulf of Mexico with freshwater, and interrupted the estuarine infilling of the Nueces paleo-channel. Cores from previous studies have found at least two species of oyster reefs in Corpus Christi Bay: euryhaline species Crassostrea virginica, and Ostrea equestris, a species known to thrive in higher salinity waters. The presence of both species at the flooding boundary suggests the sudden pulse of freshwater mixed with higher salinity oceanic water. The second flooding surface is interpreted to be associated with an increase

  7. Development of a black willow improvement program for biomass production in the Lower Mississippi River Alluvial Valley

    Science.gov (United States)

    Randell J. Rousseau; Emile S. Gardiner; Theodor D. Leininger

    2012-01-01

    Black willow (Salix nigra Marsh.) has the potential to be a significant feedstock source for bioenergy and biofuels production in the Lower Mississippi Alluvial Valley (LMAV). This potential is based on a number of primary factors including rapid growth, ease of vegetative propagation, excellent rooting, and the ability to regenerate from coppice...

  8. The organic and mineral matter contents in deposits infilling floodplain basins: Holocene alluviation record from the Kłodnica and Osobłoga river valleys, southern Poland

    Science.gov (United States)

    Wójcicki, K. J.; Marynowski, L.

    2012-07-01

    The work examines the timing and environmental conditions of floodplain sedimentation in the valleys of the upland Kłodnica and piedmont Osobłoga rivers in the Upper Odra River basin. A distribution of 52 14C-ages shows relatively high floodplain sedimentation at the Late Glacial-Holocene transition, more stable floodplain environments since the Early (in the Kłodnica Valley) and Middle Holocene (in the Osobłoga Valley) and a gradual increase in floodplain deposition in the Late Holocene (since hydrological events) as well as factors affecting the local record of sedimentation (i.e. valley morphology, hydrologic conditions and episodes of local erosion). A clear relationship is shown between an increase in alluviation and climate- or human-induced extension of unforested areas. The deposition of mineral-rich sediments increases rapidly during periods characterized by non-arboreal pollen values exceeding approximately 8% in pollen diagrams. On the other hand, the results obtained do not confirm significant interactions between Holocene changes in forest composition and alluviation. Despite the settlement of agrarian groups, the sedimentary record of human activity in the Osobłoga catchment is very poor during the Neolithic and early Bronze Age. A large-scale alluviation of the Osobłoga and Kłodnica valleys was initiated during the settlement of people of the Lusatian culture from the middle Bronze Age and escalated in the early Middle Ages and Modern Times. The deposition of products of soil erosion was limited to between ca. 1.9-1.2 kyr BP, probably due to demographic regression during the Migration Period. Comparison of OM/MM fluctuations with phases of increased fluvial activity does not show a relationship between Holocene wetter phases and catchment sediment yield. Sedimentary episodes in the Upper Odra basin also show a low degree of correlation with the probability density curve of the 14C-ages. The results obtained in the Kłodnica and Osob

  9. Dynamics of spatial clustering of schistosomiasis in the Yangtze River Valley at the end of and following the World Bank Loan Project.

    Science.gov (United States)

    Hu, Yi; Xiong, Chenglong; Zhang, Zhijie; Luo, Can; Ward, Michael; Gao, Jie; Zhang, Lijuan; Jiang, Qingwu

    2014-06-01

    The 10-year (1992-2001) World Bank Loan Project (WBLP) contributed greatly to schistosomiasis control in China. However, the re-emergence of schistosomiasis in recent years challenged the long-term progress of the WBLP strategy. In order to gain insight in the long-term progress of the WBLP, the spatial pattern of the epidemic was investigated in the Yangtze River Valley between 1999-2001 and 2007-2008. Two spatial cluster methods were jointly used to identify spatial clusters of cases. The magnitude and number of clusters varied during 1999-2001. It was found that prevalence of schistosomiasis had been greatly reduced and maintained at a low level during 2007-2008, with little change. Besides, spatial clusters most frequently occurred within 16 counties in the Dongting Lake region and within 5 counties in the Poyang Lake region. These findings precisely pointed out the prior places for future public health planning and resource allocation of schistosomiasis.

  10. THE REALIZATION OF THE AGRI-ENVIRONMENTAL MANAGEMENT SCHEME IN THE AREA OF NATURA 2000 IN THE VALLEY OF BIEBRZA RIVER

    Directory of Open Access Journals (Sweden)

    Wojciech Gotkiewicz

    2015-12-01

    Full Text Available The aim of the research was to analyse the functioning of agricultural farms located in the areas of Natura 2000 network. The research was conducted in 2015 among 70 farmers whose lands were located in the Valley of Biebrza River in Podlaskie Voivodeship. The main research method was a questionnaire. According to the results of the research, the agri-environmental scheme is a proper tool that combines the environmental protection and local producers’ interests; however, it requires the implementation of a supplement adjusted to the nature of the areas. It is also indicated that even though the economic part of the program does not raise any doubts, the natural eff ects are practically not recognized, which may lead to an incomplete protection of precious species and habitats.

  11. [Study of interaction of wild soybean subpopulations (Glycine soja) in the valley of the Tsukanovka river in the south of Far East of Russia].

    Science.gov (United States)

    Tikhonov, A V; Martynov, V V; Dorokhov, D B

    2011-01-01

    A comparative study of the genetic structure of natural and anthropogenic populations of G. soja gives significant information about formation of different populations, and allows developing measures for preservation of unique natural gene bank of wild soybean, the species closely related to cultivated soybean. In this study, ISSR markers were used to carry out a comparative analysis of genetic structure of natural and anthropogenic subpopulations of G. soja for studying possible mutual influence of subpopulations of anthropogenic and natural phytocenosis on the formation of their genetic diversity and to study genetic structure of natural subpopulations of wild soybean in the contact places between the two types ofcenoses. As a result, the characteristics that describe the genetic diversity of studied populations have been identified and the important role of an interaction between subpopulations of different phytocenoses on formation of the spatial genetic structure of population in the valley of Tsukanovka river has been demonstrated.

  12. 拉萨河谷植被演替规律及人工恢复对策%Succession Patterns and Artificial Renewal Countermeasures of Lhasa River Valley Vegetation

    Institute of Scientific and Technical Information of China (English)

    丁云春

    2013-01-01

    The article described the distribution characteristics and succession patterns of Lhasa River Valley Vegetation, and analyzed the effects on human disturbances on the distribution of vegetation .It proposed the protection of existing natural vegetation , moderate usage of afforestation technology , ade-quate selection of afforestation plantation, the utilization of container seedling technique , development of alternative energy resources , proper usage of water resources and other vegetation renewal countermeasures .%阐述拉萨河谷植被分布特征及演替规律,分析人为干扰对植被分布的影响。提出保护残存的天然植被,适度的造林技术,适当选择造林树种,采用容器育苗技术,开发替代能源,合理利用水资源等植被恢复对策。

  13. Isolation and Characterization of Microsatellite Loci for Hibiscus aridicola (Malvaceae, an Endangered Plant Endemic to the Dry-Hot Valleys of Jinsha River in Southwest China

    Directory of Open Access Journals (Sweden)

    Kaiyun Guan

    2011-09-01

    Full Text Available Hibiscus aridicola (Malvaceae is an endangered ornamental shrub endemic to the dry-hot valleys of Jinsha River in southwest China. Only four natural populations of H. aridicola exist in the wild according to our field investigation. It can be inferred that H. aridicola is facing a very high risk of extinction in the wild and an urgent conservation strategy is required. By using a modified biotin-streptavidin capture method, a total of 40 microsatellite markers were developed and characterized in H. aridicola for the first time. Polymorphisms were evaluated in 39 individuals from four natural populations. Fifteen of the markers showed polymorphisms with two to six alleles per locus; the observed heterozygosity ranged from 0.19 to 0.72. These microsatellite loci would be useful tools for population genetics studies on H. aridicola and other con-generic species which are important to the conservation and development of endangered species.

  14. Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool

    Institute of Scientific and Technical Information of China (English)

    BAO Ming

    2008-01-01

    Using daily outgoing long-wave radiation(OLR)data from the National Oceanic and Atmospheric Ad-ministration(NOAA)and the National Center for Environmental Prediction/National Center for Atmo-spheric Research(NCEP/NCAR)reanalysis data of geopotential height fields for 1979-2006,the relation-ship between persistent heavy rain events(PHREs)in the Huaihe River valley(HRV)and the distribution pattern of convective activity in the tropical western Pacific warm pool(WPWP)is investigated.Based on nine cases of PHREs in the HRV,common characteristics of the West Pacific subtropical high(WPSH)show that the northern edge of the WPSH continues to lie in the HRV and is associated with the persistent "north weak south strong" distribution pattern of convective activities in the WPWP.Composite analysis of OLR leading the circulation indicates that the response of the WPSH to OLR anomaly patterns lags by about 1-2 days.In order to explain the reason for the effects of the distribution pattern of convective activities in the WPWP on the persistent northern edge of the WPSH in the HRV,four typical persistent heavy and light rain events in the Yangtze River valley(YRV)are contrasted with the PHREs in the HRV.The comparison indicates that when the distribution pattern of the convective activities anomaly behaves in a weak(strong)manner across the whole WPWP, persistent heavy(light)rain tends to occur in the YRV.When the distribution pattern of the convective activities anomaly behaves according to the "north weak south strong" pattern in the WPWP,persistent heavy rain tends to occur in the HRV.The effects of the "north weak south strong" distribution pattern of convective activities on PHREs in the HRV are not obvious over the seasonal mean timescale,perhaps due to the non-extreme status of convective activities in the WPWP.

  15. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.

    Science.gov (United States)

    Deonarine, Amrika; Bartov, Gideon; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    The Tennessee Valley Authority Kingston coal ash spill in December 2008 deposited approximately 4.1 million m(3) of fly ash and bottom ash into the Emory and Clinch River system (Harriman, Tennessee, U.S.A.). The objective of this study was to investigate the impact of the ash on surface water and sediment quality over an eighteen month period after the spill, with a specific focus on mercury and methylmercury in sediments. Our results indicated that surface water quality was not impaired with respect to total mercury concentrations. However, in the sediments of the Emory River near the coal ash spill, total mercury concentrations were 3- to 4-times greater than sediments several miles upstream of the ash spill. Similarly, methylmercury content in the Emory and Clinch River sediments near the ash spill were slightly elevated (up to a factor of 3) at certain locations compared to upstream sediments. Up to 2% of the total mercury in sediments containing coal ash was present as methylmercury. Mercury isotope composition and sediment geochemical data suggested that elevated methylmercury concentrations occurred in regions where native sediments were mixed with coal ash (e.g., less than 28% as coal ash in the Emory River). This coal ash may have provided substrates (such as sulfate) that stimulated biomethylation of mercury. The production of methylmercury in these areas is a concern because this neurotoxic organomercury compound can be highly bioaccumulative. Future risk assessments of coal ash spills should consider not only the leaching potential of mercury from the wastes but also the potential for methylmercury production in receiving waters.

  16. Presquile National Wildlife Refuge, James River National Wildlife Refuge, Rappahannock River Valley National Wildlife Refuge: Annual narrative report: Calendar year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Presquile, James River, and Rappahannock National Wildlife Refuges outlines Refuge accomplishments during the 1996 calendar year....

  17. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    Science.gov (United States)

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that

  18. 甘肃白龙江流域鸡皮衣属地衣的研究%The lichen genus Pertusaria from Bailong River valley of Gansu,China

    Institute of Scientific and Technical Information of China (English)

    杨芳; 任强; 史秀莉; 张权; 赵遵田

    2008-01-01

    @@ 1 INTRODUCTION Bailong River,a tributary of Jialing River belonging to the Yangtse River system,is located in the southern part of Gansu Province and the northeast rimland of Qinghai-Tibet Plateau,with total length of over 600kin and drainage area of about 31,800km2.Originating from Dagcanglhamo,Luqu of Gansu Province,the river flows through Min Shan Mountains from northwest to southeast,and passes through Tewo,Zhugqu,Wudu and Wenxian.The annual temperature of the river valley is around 4.7-12.7℃,and annual precipitation is 448.9-911.6mm.The climate of the upper reaches is temperate-humid,of the middle reaches warm-humid,and the lower reaches subtropic-humid.

  19. Indicators used to assess the quantity and quality of water in Special Area of Conservation located in the valleys of large lowland rivers - case study

    Science.gov (United States)

    Utratna, Marta; Okruszko, Tomasz

    2016-04-01

    One of the aims of Ecological network Natura 2000 is to protect rare habitats from complete disappearance in Europe. That is why natural and transformed river valleys were and still are often included into this form of protection. The problem of influences on Natura 2000 areas an their impact on the conservation status of protected habitats within the network is well known. Solving this issue may have a significant impact on the planning of protection tasks, as well as on assessing the impact of new and existing investments on protected areas. The aim of this study was to build a statistical model for assessing the impact of selected external factors related to the quantity and quality of water on the conservation status of habitats in large lowland river areas protected under the Natura 2000 network. The method used in the study is based on a structural study which uses the knowledge and experience of experts in the field of Phytosociology as well as indicators used to assess the quantity and quality of water in the analyzed area.

  20. Population genetic structure of a widespread coniferous tree, Taxodium distichum [L.] Rich. (Cupressaceae), in the Mississippi River Alluvial Valley and Florida

    Science.gov (United States)

    Tanaka, Ayako; Ohtani, Masato; Suyama, Yoshihisa; Inomata, Nobuyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori; Kusumi, Junko

    2012-01-01

    Studies of genetic variation can elucidate the structure of present and past populations as well as the genetic basis of the phenotypic variability of species. Taxodium distichum is a coniferous tree dominant in lowland river flood plains and swamps of the southeastern USA which exhibits morphological variability and adaption to stressful habitats. This study provides a survey of the Mississippi River Alluvial Valley (MAV) and Florida to elucidate their population structure and the extent of genetic differentiation between the two regions and sympatric varieties, including bald cypress (var. distichum) and pond cypress (var. imbricatum). We determined the genotypes of 12 simple sequence repeat loci totaling 444 adult individuals from 18 natural populations. Bayesian clustering analysis revealed high levels of differentiation between the MAV and the Florida regions. Within the MAV region, there was a significant correlation between genetic and geographical distances. In addition, we found that there was almost no genetic differentiation between the varieties. Most genetic variation was found within individuals (76.73 %), 1.67 % among individuals within population, 15.36 % among populations within the regions, and 9.23 % between regions within the variety. Our results suggest that (1) the populations of the MAV and the Florida regions are divided into two major genetic groups, which might originate from different glacial refugia, and (2) the patterns of genetic differentiation and phenotypic differentiation were not parallel in this species.

  1. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  2. 基于MODIS/NDVI的新疆伊犁河谷植被变化%Vegetation dynamics in Ili River valley of Xinjiang based on MODIS/NDVI

    Institute of Scientific and Technical Information of China (English)

    闫俊杰; 乔木; 周宏飞; 周生斌; 卢磊; 宋鹏

    2013-01-01

    利用2000-2010年16d合成的MODIS/NDVI数据,结合植被异常指数、趋势线分析和Hurst 指数等分析方法,对新疆伊犁河谷植被覆盖的时空变化特征进行了分析.结果表明:(1)伊犁河谷内植被覆盖随海拔增高而先增加后减小,最高植被覆盖区位于2000~2 500m的高程带;2000-2010年伊犁河谷各高程带内植被覆盖整体下降趋势明显,但海拔低于1000m的高程带除外.(2)受干湿环境影响,伊犁河谷全区平均被植异常指数最高值出现在降水最多的2002年,最低值出现在降水最少的2008年,但不同区域植被异常指数的变化存在较大差异.(3)伊犁河谷内植被覆盖增加和减小的区域分别占总面积的4.09%和19.34%,增加区域主要位于伊犁河两岸的平原区,减小区域主要位于乌孙山两端以及伊犁河谷周围海拔2000m左右的低山区域;变标度极差分析结果表明,伊犁河谷内植被覆盖年际变化呈现很强的持续性,未来一定时间内将保持现有变化趋势不变.%16-day composite data set of normalized difference vegetation index (NDVI) from an moderate-resolu-tion imaging spectroradiometer(MODIS) was used to capture essential feature of temporal and spatial vegetation variability in Ili River valley of Xinjiang during the 2000-2010 period.Various statistical analyses involving vegetation anomaly index,linear regression analysis and Hurst index were applied.Examination shows as follows:(1) Vegetation cover of Ili River Valley increases firstly and then decreases as altitude increases,with highest vegetation cover located in the area with the altitude from 2 000 to 2 500 m.Generally,vegetation cover of different elevation zones of Ili River valley followed a decreasing trend during the period of 2000-2010,not including the areas located below 1 000 m above the sea level.(2)As vegetation anomaly index is subject to humidity of the air,so the highest spatially averaged vegetation anomaly index value

  3. Deglacial Record in the Illinois River Valley Explains Asynchronous Phases of Meltwater Pulses and Clay Mineral Excursions in the Gulf of Mexico

    Science.gov (United States)

    Wang, H.

    2014-12-01

    One prominent event of the Bølling/Allerød (B/A) interstadial was the large meltwater release to global oceans. The Laurentide Ice Sheet (LIS) is usually considered the main source. But, the large LIS meltwater discharge conflicts with the marine record showing an active North Atlantic meridional overturning circulation (AMOC) during the B/A interval. Continuous dune-lacustrine successions in the Illinois River Valley (IRV) have shown complete records of the last deglacial chronozones. Their grain-size distributions and accurate B/A age 14C dates of plant fossils from 15 m deep lacustrine sediment in the IRV suggest that most of the IRV and parts of the adjacent upland were inundated by water. The inundation was caused by a sediment dam interpreted to have been constructed and followed by a breach at the confluence of the Mississippi and Illinois Rivers during the B/A interval due to sediment mobilization by the large meltwater release. The grain size distributions correlate with meltwater pulses and mineralogical excursions in sediments from the Gulf of Mexico (GOM) very well. The blockage and release of illite and chlorite rich fine-grained sediments from the Lake Michigan basin changed the relative abundance of clay minerals and thus the ratio of smectite/(illite + chlorite) in the sediment of the GOM. This finding explains why the meltwater episodes from the LIS and the associated detrital discharges are not synchronous in the sediments in the GOM. The finding also ties meltwater pulses and associated detrital discharges in the GOM closely to the LIS discharges via the Mississippi River Valley on chronozonal scales. Three arguments can be made from this result: 1) unaffected AMOC during B/A interval resulted potentially from the hyperpycnal inflow into the GOM floor; 2) limited volume of the meltwater discharge did not significantly influence the AMOC; and 3) the freshwater input into the GOM from the LIS at this particular location did not significantly

  4. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  5. Probable hydrologic effects of a hypothetical failure of Mackay Dam on the Big Lost River Valley from Mackay, Idaho to the Idaho National Engineering Laboratory

    Science.gov (United States)

    Druffel, Leroy; Stiltner, Gloria J.; Keefer, Thomas N.

    1979-01-01

    Mackay Dam is an irrigation reservoir on the Big Lost River, Idaho, approximately 7.2 kilometers northwest of Mackay, Idaho. Consequences of possible rupture of the dam have long concerned the residents of the river valley. The presence of reactors and of a management complex for nuclear wastes on the reservation of the Idaho National Engineering Laboratory (INEL), near the river , give additional cause for concern over the consequences of a rupture of Mackay Dam. The objective of this report is to calculate and route the flood wave resulting from the hypothetical failure of Mackay Dam downstream to the INEL. Both a full and a 50 percent partial breach of this dam are investigated. Two techniques are used to develop the dam-break model. The method of characteristics is used to propagate the shock wave after the dam fails. The linear implicit finite-difference solution is used to route the flood wave after the shock wave has dissipated. The time of travel of the flood wave, duration of flooding, and magnitude of the flood are determined for eight selected sites from Mackay Dam, Idaho, through the INEL diversion. At 4.2 kilometers above the INEL diversion, peak discharges of 1,550.2 and 1,275 cubic meters per second and peak flood elevations of 1,550.3 and 1,550.2 meters were calculated for the full and partial breach, respectively. Flood discharges and flood peaks were not compared for the area downstream of the diversion because of the lack of detailed flood plain geometry. (Kosco-USGS)

  6. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions

    Science.gov (United States)

    Sharma, Shubhra; Bartarya, S. K.; Marh, B. S.

    2016-04-01

    Late Quaternary landform evolution in monsoon-dominated middle Satluj valley is reconstructed using the fragmentary records of fluvial terraces, alluvial fans, debris flows, paleo-flood deposits, and epigenetic gorges. Based on detailed field mapping, alluvial stratigraphy, sedimentology and optical chronology, two phases of fluvial aggradations are identified. The older aggradation event dated between ˜13 and 11 ka (early-Holocene), occurred in the pre-existing topography carved by multiple events of erosion and incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon (ISM). The younger aggradation event dated between ˜5 and 0.4 ka (mid- to late-Holocene), was during the declining phase of ISM. The terrain witnessed high magnitude floods during transitional climate (˜6.5-7 ka). The fluvial sedimentation was punctuated by short-lived debris flows and alluvial fans during the LGM (weak ISM), early to mid-Holocene transition climate and mid- to late-Holocene declining ISM. Based on the terrace morphology, an event of relatively enhanced surface uplift is inferred after late Holocene. The present study suggests that post-glacial landforms in the middle Satluj valley owe their genesis to the interplay between the climate variability and local/regional tectonic interactions.

  7. Post-glacial landform evolution in the middle Satluj River valley, India: Implications towards understanding the climate tectonic interactions

    Indian Academy of Sciences (India)

    Shubhra Sharma; S K Bartarya; B S Marh

    2016-04-01

    Late Quaternary landform evolution in monsoon-dominated middle Satluj valley is reconstructed using the fragmentary records of fluvial terraces, alluvial fans, debris flows, paleo-flood deposits, and epigenetic gorges. Based on detailed field mapping, alluvial stratigraphy, sedimentology and optical chronology, two phases of fluvial aggradations are identified. The older aggradation event dated between ∼13 and 11 ka (early-Holocene), occurred in the pre-existing topography carved by multiple events of erosion and incision. Climatically, the event corresponds to the post-glacial strengthened Indian summer monsoon (ISM). The younger aggradation event dated between ∼5 and 0.4 ka (mid- to late-Holocene), was duringthe declining phase of ISM. The terrain witnessed high magnitude floods during transitional climate (∼6.5–7 ka). The fluvial sedimentation was punctuated by short-lived debris flows and alluvial fans during the LGM (weak ISM), early to mid-Holocene transition climate and mid- to late-Holocene decliningISM. Based on the terrace morphology, an event of relatively enhanced surface uplift is inferred after late Holocene. The present study suggests that post-glacial landforms in the middle Satluj valley owe their genesis to the interplay between the climate variability and local/regional tectonic interactions.

  8. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 17. Geomorphology of the Red River Valley, Taos County, New Mexico, and Influence on Ground-Water Flow in the Shallow Alluvial Aquifer

    Science.gov (United States)

    Vincent, Kirk R.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley of north-central New Mexico. This report is one in a series of reports that can be used to determine pre-mining ground-water conditions at the mine site. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The bedrock of the Taos Range surrounding the Red River is composed of Proterozoic rocks of various types, which are intruded and overlain by Oligocene volcanic rocks associated with the Questa caldera. Locally, these rocks were altered by hydrothermal activity. The alteration zones that contain sulfide minerals are particularly important because they constitute the commercial ore bodies of the region and, where exposed to weathering, form sites of rapid erosion referred to as alteration scars. Over the past thousand years, if not over the entire Holocene, erosion rates were spatially variable. Forested hillslopes eroded at about 0.04 millimeter per year, whereas alteration scars eroded at about 2.7 millimeters per year. The erosion rate of the alteration scars is unusually rapid for naturally occurring sites that have not been disturbed by humans. Watersheds containing large alteration scars delivered more sediment to the Red River Valley than the Red River could remove. Consequently, large debris fans, as much as 80 meters thick, developed within the valley. The geomorphology of the Red River Valley has had several large influences on the hydrology of the shallow alluvial aquifer, and those influences were in effect before the onset of mining within the watershed. Several reaches where alluvial ground water emerges to become Red River streamflow were observed by a tracer dilution study conducted in 2001. The aquifer narrows

  9. 78 FR 8018 - Establishment of the Indiana Uplands Viticultural Area and Modification of the Ohio River Valley...

    Science.gov (United States)

    2013-02-05

    ...) generally easterly to the mouth of French Creek in Franklin Township, Floyd County, Indiana (Louisville map..., approximately 0.3 mile south of the White River; then (6) Proceed easterly along the meandering 200-meter... easterly then southwesterly along the meandering 200- meter contour line, crossing to the Bedford map,...

  10. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  11. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  12. Instability in eight sub-basins of the Chilliwack River Valley, British Columbia, Canada: A comparison of natural and logging-related landslides

    Science.gov (United States)

    Wolter, Andrea; Ward, Brent; Millard, Tom

    2010-08-01

    Logging causes increased landslide frequency in British Columbia. In this study, the slope, type, initiation location, aspect, rate, bedrock geology, and size of mass movements located in eight logged tributary valleys of the Chilliwack River Valley are investigated. A landslide inventory was created by digitizing landslides identified on aerial photographs dating from 1941 to 2002. This database was analysed using qualitative observations and simple statistical tests, and a comparison between natural and logging-related landslides was made. Slope tests displayed a significant difference between natural and logging-related events, indicating that, on average, logging-related landslides require lower slope gradients to initiate than natural events. Although aspect, initiation location, and landslide type did not show a significant relationship between natural and logging-related landslides, they do suggest subtle differences. Landslide rate was calculated and compared for natural and logging-related landslides. It was significantly higher for logging-related events, attaining a maximum of 31 times the natural rate in 1978 and an overall average increase of nine times the natural rate. Logging-related landslides were on average smaller than natural landslides but this nevertheless resulted in a 3.1 times increase in area affected by logging-related landslides compared to natural landslides. Geology may influence landslide frequency as well; it appears to be higher over the less resistive sedimentary rocks of the Cultus Formation and Chilliwack Group and lower in granodioritic areas. Finally, roads affected slope stability more than clearcuts in the early decades of the study, but this effect decreased over time, suggesting a correlation with improved road construction.

  13. Field measurements of incision rates following bedrock exposure: Implications for process controls on the long profiles of valleys cut by rivers and debris flows

    Science.gov (United States)

    Stock, Jonathan D.; Montgomery, David R.; Collins, Brian D.; Dietrich, William E.; Sklar, Leonard

    2005-01-01

    Until recently, published rates of incision of bedrock valleys came from indirect dating of incised surfaces. A small but growing literature based on direct measurement reports short-term bedrock lowering at geologically unsustainable rates. We report observations of bedrock lowering from erosion pins monitored over 1–7 yr in 10 valleys that cut indurated volcanic and sedimentary rocks in Washington, Oregon, California, and Taiwan. Most of these channels have historically been stripped of sediment. Their bedrock is exposed to bed-load abrasion, plucking, and seasonal wetting and drying that comminutes hard, intact rock into plates or equant fragments that are removed by higher flows. Consequent incision rates are proportional to the square of rock tensile strength, in agreement with experimental results of others. Measured rates up to centimeters per year far exceed regional long-term erosion-rate estimates, even for apparently minor sediment-transport rates. Cultural artifacts on adjoining strath terraces in Washington and Taiwan indicate at least several decades of lowering at these extreme rates. Lacking sediment cover, lithologies at these sites lower at rates that far exceed long-term rock-uplift rates. This rate disparity makes it unlikely that the long profiles of these rivers are directly adjusted to either bedrock hardness or rock-uplift rate in the manner predicted by the stream power law, despite the observation that their profiles are well fit by power-law plots of drainage area vs. slope. We hypothesize that the threshold of motion of a thin sediment mantle, rather than bedrock hardness or rock-uplift rate, controls channel slope in weak bedrock lithologies with tensile strengths below ∼3–5 MPa. To illustrate this hypothesis and to provide an alternative interpretation for power-law plots of area vs. slope, we combine Shields' threshold transport concept with measured hydraulic relationships and downstream fining rates. In contrast to fluvial

  14. Time as An Important Soil-Forming Factor Influencing Modern and Ancient Magnetic Susceptibility Enhancement Along the Delaware River Valley, USA

    Science.gov (United States)

    Stinchcomb, G. E.; Peppe, D. J.; Driese, S. G.

    2011-12-01

    Magnetic susceptibility is an increasingly popular low-cost method for rapidly assessing paleoclimate and paleoenvironmental impact on buried soils. The goal of this study is to determine the primary influence(s) on soil magnetic susceptibility along floodplain, terrace and upland soils in the middle Delaware River Valley, USA, using environmental magnetic, pedologic, and stratigraphic techniques. Two-hundred thirty samples were collected from age-constrained sandy, quartz-rich, floodplain, terrace, and upland soils (Entisols, Inceptisols). A Kruskal-Wallis (K-W) and post-hoc Tukey-Kramer (T-K) (α=0.05) multiple comparisons analysis on 176 mass-specific low-field susceptibility (Xlf) assays show that A and B horizons are magnetically enhanced compared to C and E horizons (p<0.0001). Results of descriptive soil micromorphology show that A and B horizons contain anywhere from 10-50% more amorphous organic matter and clay films along pores than do C and E horizons. Enhanced Xlf values also correlate positively (R^2=0.63) with the soil molecular weathering ratio of Alumina/Bases, suggesting that increased weathering likely results in the formation of pedogenic magnetic minerals and enhanced magnetic susceptibility signal. Additional K-W and T-K testing show that Xlf results, when grouped by floodplain-terrace designation (i.e., chronofunction) are significantly different (p<0.0001). The older T3 terrace and upland Xlf values (0.34±0.14 10^-6 m^3 kg^-1) are greater than the younger T2 terrace (0.18±0.06 10^-6 m^3 kg^-1) values, which are greater than modern floodplain (0.09±0.01 10^-6 m^3 kg^-1) Xlf values. These data suggest that longer intervals of soil formation enhance the Χlf value. This hypothesis is further supported when 159 Xlf values are plotted vs. age for the entire Holocene. A locally-weighted regression smoothing curve (LOESS) shows two distinct intervals of magnetic enhancement during previously established dry intervals, the early and late

  15. Analysis of landslide development using aerial photographs and DEMs comparison, along part of the Chacoura River valley, Quebec, Canada.

    Science.gov (United States)

    Lévy, S.; Locat, J.; Jaboyedoff, M.; Demers, D.; Loye, A.

    2009-04-01

    The large plains of Eastern Canada sensitive clays are cut by numerous rivers, in a way that their slopes have been and are still affected by landslides. They play an important role in the modelling of the landscape of these regions. Hence, the role of erosion as a trigger of landslides is important. On the Chacoura River, north of Louiseville (Quebec), several large landslides scars, more or less recent, are visible. A first inventory of areas of erosion, slides and landslides clay was carried out by Locat et al. (1984) on some series of aerial photographs covering a period from 1948 to 1979. This study is based on a detailed analysis of aerial photographs, dating from 1948 to 1997 and an airborne LiDAR digital elevation model (DEM-LiDAR), dating from 2007, in a GIS environment, using two different approaches: (1) a map of the phenomena was drawn by identifying various elements such as land movements, limits of the slope, position of the river, the area covered by forest and agricultural drainage structures, e.g., and (2) the comparison of DEMs was performed to estimate slipped and eroded volumes, the rate of erosion on a section of the river (about 6 km) and the spatial distribution of movements. The results show that the location of landslides is directly linked to the presence of some characteristic topographical features, such as (1) the shape of the meandering river, (2) the flow of agricultural drainage, or (3) the erosion at the toe of the slope. Finally, the study of landslides over a period of 60 years shows that the major landslide scars in this area could be in fact the sum of several events of lesser importance. For example, a large landslide (around 13'000 m2) occurred in 1976 at the same place where a first landslide of 1500 m2 in 1964. Locat, J., Demers, D., Lebuis, J. and Rissmann, P. (1984), Prédiction des Glissements de Terrain; Application aux Argiles Sensibles, Rivière Chacoura, Québec, Canada, the IV International Symposium on Landslides

  16. Valley Fever

    Science.gov (United States)

    Valley Fever is a disease caused by a fungus (or mold) called Coccidioides. The fungi live in the soil ... from person to person. Anyone can get Valley Fever. But it's most common among older adults, especially ...

  17. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland.

    Science.gov (United States)

    Magiera, Tadeusz; Mendakiewicz, Maria; Szuszkiewicz, Marcin; Jabłońska, Mariola; Chróst, Leszek

    2016-10-01

    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas.

  18. Occurrence, distribution, and trends of volatile organic compounds in the Ohio River and its major tributaries, 1987-96

    Science.gov (United States)

    Lundgren, Robert F.; Lopes, Thomas J.

    1999-01-01

    The Ohio River is a source of drinking water for more than 3 million people. Thus, it is important to monitor the water quality of this river to determine if contaminants are present, their concentrations, and if water quality is changing with time. This report presents an analysis of the occurrence, distribution, and trends of 21 volatile organic compounds (VOCs) along the main stem of the Ohio River and its major tributaries from 1987 through 1996. The data were collected by the Ohio River Valley Water Sanitation Commission's Organics Detection System, which monitors daily for VOCs at 15 stations. Various statistical methods were applied to basinwide data from all monitoring stations and to data from individual monitoring stations. For the basinwide data, one or more VOCs were detected in 45 percent of the 44,837 river-water samples. Trichloromethane, detected in 26 percent of the samples, was the most frequently detected VOC followed by benzene (11 percent), methylbenzene (6.4 percent), and the other 18 VOCs, which were detected in less than 4 percent of the samples. In samples from 8 of the 15 monitoring stations, trichloromethane was also the most frequently detected VOC. These stations were generally near large cities along the Ohio River. The median trichloromethane concentration was 0.3 microgram per liter (μg/L), and concentrations ranged from less than 0.1 to 125.3 μg/L. Most of the VOCs had median detected concentrations that ranged from 0.1 to 0.4 μg/L for the basinwide data and for samples from individual stations. Samples from stations in the upstream part of the basin and from the Kanawha River had the highest median concentrations. Ninety-nine percent of the detected VOC concentrations were within U.S. Environmental Protection Agency drinking-water regulations. Of the 268 exceedances of drinking-water regulations, 188 were due to the detection of 1,2-dichloroethane prior to 1993 in samples from the monitoring station near Paducah, Ky. Time trend

  19. Landscape pattern of seed banks and anthropogenic impacts in forested wetlands of the northern Mississippi River Alluvial Valley

    Science.gov (United States)

    Middleton, B.; Wu, X.B.

    2008-01-01

    Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may

  20. Millennial-centennial Scales Climate Changes of Holocene Indicated by Magnetic Susceptibility of High-resolution Section in Salawusu River Valley China

    Institute of Scientific and Technical Information of China (English)

    LU Yingxia; LI Baosheng; WEN Xiaohao; QIU Shifan; WANG Fengnian; NIU Dongfeng; LI Zhiwen

    2010-01-01

    The upmost segment(Holocene series)of the Milanggouwan stratigraphic section(MGS1)in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies,or dune sands and paleosols.The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high,in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks.The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia,respectively,and the study area has experienced at least 22 times of mil-lennial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene.In terms of the time and the climate nature,the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well.They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.

  1. CHANGES IN THE MOISTURE CONTENT OF THE MIDDLE FEN SOILS IN THE ODRA RIVER VALLEY IN THE REGION OF BRZEG DOLNY IN THE VEGETATION PERIODS 2004–2009

    Directory of Open Access Journals (Sweden)

    Leszek Pływaczyk

    2014-10-01

    Full Text Available In soils, where the water table is deeply located and has a minor impact on the moisture content of the surface layer, we are dealing with the precipitation-and-water type of water management. If underground water level is close to the surface, the top stratum of the soil, apart from precipitation, is additionally fed by water absorption from underground waters. Then we are dealing with ground-and-water type of management. We consider such types of water management of soil in the area of the left-bank valley of the Odra river, above and below the dam in Brzeg Dolny. The dominant soil types here are middle fen soils, based on middle clay and heavy clay as well as loam, which, in conditions of either excess or deficiency of moisture, are difficult to cultivate. The work compares water management of two soil profiles in vegetation periods between 2004 and 2009. The formation of underground waters, meteorological conditions and the course of the water reserves in the strata 0–50 cm and 0–100 cm were estimated with various supplying conditions of the active stratum of the soil. The volume of the supply with percolated water from underground water of the layer 50–100 cm on approximately 75–90 mm was also estimated. This value was mainly dependent on the depth of the retention of the water table of the soil profile above the level in Brzeg Dolny.

  2. [Effects of grazing disturbance on soil active organic carbon in mountain forest-arid valley ecotone in the upper reaches of Minjiang River].

    Science.gov (United States)

    Liu, Shan-Shan; Zhang, Xing-Hua; Gong, Yuan-Bo; Li, Yuan; Wang, Yan; Yin, Yan-Jie; Ma, Jin-Song; Guo, Ting

    2014-02-01

    Effects of grazing disturbance on the soil carbon contents and active components in the four vegetations, i.e., artificial Robinia pseudoacacia plantation, artificial poplar plantation, Berberis aggregate shrubland and grassland, were studied in the mountain forest-arid valley ecotone in the upper Minjiang River. Soil organic carbon and active component contents in 0-10 cm soil layer were greater than in 10-20 cm soil layer at each level of grazing disturbance. With increasing the grazing intensity, the total organic carbon (TOC), light fraction organic carbon (LFOC), particulate organic carbon (POC) and easily oxidized carbon (LOC) contents in 0-10 cm soil layer decreased gradually in the artificial R. pseudoacacia plantation. The LFOC content decreased, the POC content increased, and the TOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the artificial poplar plantation. The POC content decreased, and the TOC, LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the B. aggregate shrubland. The POC and TOC contents decreased, and the LFOC and LOC contents decreased initially and then increased with increasing the grazing intensity in the grassland. The decreasing ranges of LOC, LFOC and POC contents were 0.1-7.9 times more than that of TOC content. There were significant positive relationships between TOC and LOC, LFOC and POC, suggesting that the active organic carbon components could reflect the change of soil total carbon content.

  3. A STUDY ON THE RELATION BETWEEN THE VARIATION OF THE PRECIPITATION IN EASTERN JIANGHUAI WATERSHED AND SEDIMENT TRANSPORT IN CHIHE RIVER VALLEY

    Institute of Scientific and Technical Information of China (English)

    ZAHNGJian-chun; PENGPu-zhuo

    2002-01-01

    Rainfall resource is very important to the development of society and economy,especially to eastern Jianghuai watershed which is now facing serious challenge of water shortage.Based on the observational records covering the period from 1957 to 1999,the characteristics of precipitation changing over eastern JiangHuai watershed and its connection to sediment discharge in Chibe River valley were studied using tendency analysis and correlation analysis.Results show that the rainfall in this area had a declining tendency in Spring at a rate of -21.2mm/10a,annual and Summer precipitation was increasing at the rate of 10.6mm/10a and 14.8mm/10a.The gray correlation analysis shows that sediment discharge correlated most closely with runoffs and the frequency of the rainstorm with a daily precipitation of 50-100mm,on the second place,with the number of rainy days.In addition,the paper suggests the major countermeasures and methods for controlling of soil and water losses in this area.

  4. Ethnobotany of food plants in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula): non-crop food vascular plants and crop food plants with medicinal properties.

    Science.gov (United States)

    Rigat, Montse; Bonet, Maria Àngels; Garcia, Sònia; Garnatje, Teresa; Vallès, Joan

    2009-01-01

    The present study reports a part of the findings of an ethnobotanical research project conducted in the Catalan region of the high river Ter valley (Iberian Peninsula), concerning the use of wild vascular plants as food and the medicinal uses of both wild and cultivated food plants. We have detected 100 species which are or have been consumed in this region, 83 of which are treated here (the remaining are the cultivated food plants without additional medicinal uses). Some of them, such as Achillea ptarmica subsp. pyrenaica, Convolvulus arvensis, Leontodon hispidus, Molopospermum peloponnesiacum and Taraxacum dissectum, have not been previously reported, or have only very rarely been cited or indicated as plant foods in very restricted geographical areas. Several of these edible wild plants have a therapeutic use attributed to them by local people, making them a kind of functional food. They are usually eaten raw, dressed in salads or cooked; the elaboration of products from these species such as liquors or marmalades is a common practice in the region. The consumption of these resources is still fairly alive in popular practice, as is the existence of homegardens, where many of these plants are cultivated for private consumption.

  5. Analysis of the Profitability and Marketing Channels of Rice: A Case Study of Menchum River Valley, North-West Region, Cameroon

    Directory of Open Access Journals (Sweden)

    Bime, M. J.

    2014-06-01

    Full Text Available The study carried out in Menchum River valley, Northwest Region of Cameroon had as objective to analyze the profitability and establish the marketing channels of rice in this zone. The study in-terviewed a total of 126 respondents, selected purposively and using the snow ball sampling tech-nique. Results showed that the main actors involved in the rice marketing channel were; produc-ers, wholesalers, hullers, retailers and consumers. The production and marketing of rice in the zone is a profitable venture. In terms of profitability in the rice business, millers obtain a relatively large profit margin as a percentage of the cost price (18.69% followed by the producers (12.77%, wholesalers (8.5% then retailers (8.33%. The average profit margin per bag of 50kg was; 1054.5FCFA (franc Communauté financière d'Afrique for producers, 1963.5 FCFA for millers; 1100 FCFA for the wholesalers and 1250FCFA for the retailers. The principal constraints identi-fied by the study that affects actors of the rice channel were, bad condition of the roads, lack of capital, poor quality of rice. It was recommended that there should be improvement in infrastruc-ture.

  6. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis.

    Science.gov (United States)

    Ouyang, Ying; Parajuli, Prem B; Li, Yide; Leininger, Theodor D; Feng, Gary

    2017-08-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature and its impact upon forest stream flows in Lower Mississippi River Alluvial Valley (LMRAV). Four surface water monitoring stations, which locate near the headwater areas with very few land use disturbances and the long-term data records (60-90 years) in the LMRAV, were selected to obtain stream discharge and air temperature data. The wavelet analysis showed that air temperature had an increasing temporal trend around its mean value during the past several decades in the LMRAV, whereas stream flow had a decreasing temporal trend around its average value at the same time period in the same region. Results of this study demonstrated that the climate in the LMRAV did get warmer as time elapsed and the streams were drier as a result of warmer air temperature. This study further revealed that the best way to estimate the temporal trends of air temperature and stream flow was to perform the wavelet transformation around their mean values. Published by Elsevier Ltd.

  7. Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid-hot river valley area in Panxi, Sichuan, China.

    Science.gov (United States)

    Xu, Kai Wei; Penttinen, Petri; Chen, Yuan Xue; Chen, Qiang; Zhang, Xiaoping

    2013-01-01

    In search of effective nitrogen-fixing strains for inoculating Leucaena leucocephala, we assessed the symbiotic efficiency of 41 rhizobial isolates from root nodules of L. leucocephala growing in the arid-hot river valley area in Panxi, China. The genetic diversity of the isolates was studied by analyzing the housekeeping genes 16S rRNA and recA, and the symbiotic genes nifH and nodC. In the nodulation and symbiotic efficiency assay, only 11 of the 41 isolates promoted the growth of L. leucocephala while the majority of the isolates were ineffective in symbiotic nitrogen fixation. Furthermore, one fourth of the isolates had a growth slowing effect on the host. According to the 16S rRNA and recA gene analyses, most of the isolates were Ensifer spp. The remaining isolates were assigned to Rhizobium, Mesorhizobium and Bradyrhizobium. The sequence analyses indicated that the L. leucocephala rhizobia had undergone gene recombination. In contrast to the promiscuity observed as a wide species distribution of the isolates, the results implied that L. leucocephala is preferentially nodulated by strains that share common symbiosis genes. The symbiotic efficiency was not connected to chromosomal background of the symbionts and isolates carrying a similar nifH or nodC showed totally different nitrogen fixation efficiency.

  8. Carbon Dioxide Emissions as Affected by Alternative Long-Term Irrigation and Tillage Management Practices in the Lower Mississippi River Valley

    Directory of Open Access Journals (Sweden)

    S. F. Smith

    2014-01-01

    Full Text Available Ensuring the sustainability of cultivated soils is an ever-increasing priority for producers in the Lower Mississippi River Valley (LMRV. As groundwater sources become depleted and environmental regulations become more strict, producers will look to alternative management practices that will ensure the sustainability and cost-effectiveness of their production systems. This study was conducted to assess the long-term (>7 years effects of irrigation (i.e., irrigated and dryland production and tillage (conventional and no-tillage on estimated carbon dioxide (CO2 emissions from soil respiration during two soybean (Glycine max L. growing seasons from a wheat- (Triticum aestivum L.- soybean, double-cropped production system in the LMRV region of eastern Arkansas. Soil surface CO2 fluxes were measured approximately every two weeks during two soybean growing seasons. Estimated season-long CO2 emissions were unaffected by irrigation in 2011 (P>0.05; however, during the unusually dry 2012 growing season, season-long CO2 emissions were 87.6% greater (P=0.044 under irrigated (21.9 Mg CO2 ha−1 than under dryland management (11.7 Mg CO2 ha−1. Contrary to what was expected, there was no interactive effect of irrigation and tillage on estimated season-long CO2 emissions. Understanding how long-term agricultural management practices affect soil respiration can help improve policies for soil and environmental sustainability.

  9. Effects of Irrigation and Rainfall on the Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-Prone Tana River County, Kenya.

    Science.gov (United States)

    Sang, R; Lutomiah, J; Said, M; Makio, A; Koka, H; Koskei, E; Nyunja, A; Owaka, S; Matoke-Muhia, D; Bukachi, S; Lindahl, J; Grace, D; Bett, B

    2017-03-01

    Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that is found in most regions of sub-Saharan Africa, and it affects humans, livestock, and some wild ungulates. Outbreaks are precipitated by an abundance of mosquito vectors associated with heavy persistent rainfall with flooding. We determined the impact of flood-irrigation farming and the effect of environmental parameters on the ecology and densities of primary and secondary vectors of the RVF virus (RVFV) in an RVF-epidemic hotspot in the Tana River Basin, Kenya. Mosquito sampling was conducted in farms and villages (settlements) in an irrigated and a neighboring nonirrigated site (Murukani). Overall, a significantly higher number of mosquitoes were collected in farms in the irrigation scheme compared with villages in the same area (P mosquito densities, particularly the primary vectors. Adult floodwater mosquitoes and Mansonia spp. were collected indoors; immatures of Ae. mcintoshi and secondary vectors were collected in the irrigation drainage canals, whereas those of Ae. ochraceous and Aedes sudanensis Theobald were missing from these water bodies. In conclusion, irrigation in RVF endemic areas provides conducive resting and breeding conditions for vectors of RVFV and other endemic arboviruses. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  10. Description of a new genus and species of Candonopsini (Crustacea, Ostracoda, Candoninae from the alluvial valley of the Upper Parana River (Brazil, South America

    Directory of Open Access Journals (Sweden)

    Janet Higuti

    2012-12-01

    Full Text Available The genus Candobrasilopsis gen. nov. is here described, with C. rochai gen. nov. sp. nov. as type species, from the alluvial valley of the Upper Paraná River. The enigmatic Candonopsis brasiliensis Sars, 1901 is here redescribed and transferred to this new genus, the new combination being Candobrasilopsis brasiliensis (Sars, 1901. The new candonid genus belongs to the tribe Candonopsini, because of the absence of the proximal seta on the caudal ramus. It is closely related to Latinopsis Karanovic & Datry, 2009, because of the relatively short terminal segment of the mandibular palp (length less than 1.5 times the basal width, while this segment is longer than three times the basal width in Candonopsis and the large and stout b-seta on the T1. However, it differs markedly from Latinopsis in the size and shape of the calcified inner lamellae of both valves and in the type of hemipenis. We also discuss the doubtful allocation of several other genera to the Candonopsini, raise Abcandonopsis Karanovic, 2004 to generic status and reassess the uncertain position of Candonopsis anisitsi Daday, 1905 within Latinopsis.

  11. Grain-size distribution characteristics of red sandy sediments in Dongjiang River valley, southern Nanling Mountains,during the MIS2 stage

    Institute of Scientific and Technical Information of China (English)

    ShuHuan Du; BaoSheng Li; DongFeng Niu; XiaoHao Wen; FengNian Wang; XianJiao Ou; Yi Yang; YueJun Si; XinNan Zhao

    2009-01-01

    Layer LJ3 of Linjiang sttrigraphic section in Dongjiang River valley in the south of the Nanling Mountains is a set of red sandy sediments.Measured by thermoluminescence (TL) dating, it was found to be formed in MIS2-9,500±800 yr to 19,600±1,800 yr B.P. After analysis of the grain sizes of the 16 samples (LJ3-100 to LJ3-85) in this layer, it was discovered that (1) The contents of each grain group in different samples are similar. (2) The values of Md, Mz,σ,Sk and Kg vary from LJ3-100 to LJ3-85 in a narrow range. (3) The segments of each sample in the accumulative curves extend parallel with similar slopes. All the three aspects reveal the Aeolian characteristics of Layer LJ3.Therefore, it is thought that Layer LJ3 consists of red sandy sediments formed in MIS2 in the south of Nanling Mountain, which reflects the arid climate at that time.

  12. The cultural and chronological context of early Holocene maize and squash domestication in the Central Balsas River Valley, Mexico.

    Science.gov (United States)

    Ranere, Anthony J; Piperno, Dolores R; Holst, Irene; Dickau, Ruth; Iriarte, José

    2009-03-31

    Molecular evidence indicates that the wild ancestor of maize is presently native to the seasonally dry tropical forest of the Central Balsas watershed in southwestern Mexico. We report here on archaeological investigations in a region of the Central Balsas located near the Iguala Valley in Guerrero state that show for the first time a long sequence of human occupation and plant exploitation reaching back to the early Holocene. One of the sites excavated, the Xihuatoxtla Shelter, contains well-stratified deposits and a stone tool assemblage of bifacially flaked points, simple flake tools, and numerous handstones and milling stone bases radiocarbon dated to at least 8700 calendrical years B.P. As reported in a companion paper (Piperno DR, et al., in this issue of PNAS), starch grain and phytolith residues from the ground and chipped stone tools, plus phytoliths from directly associated sediments, provide evidence for maize (Zea mays L.) and domesticated squash (Cucurbita spp.) in contexts contemporaneous with and stratigraphically below the 8700 calendrical years B.P. date. The radiocarbon determinations, stratigraphic integrity of Xihuatoxtla's deposits, and characteristics of the stone tool assemblages associated with the maize and squash remains all indicate that these plants were early Holocene domesticates. Early agriculture in this region of Mexico appears to have involved small groups of cultivators who were shifting their settlements seasonally and engaging in a variety of subsistence pursuits.

  13. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    Energy Technology Data Exchange (ETDEWEB)

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest (Or.)

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  14. Estimates of consumptive use and ground-water return flow and the effect of rising and sustained high river stage on the method of estimation in Cibola Valley, Arizona and California, 1983 and 1984

    Science.gov (United States)

    Owen-Joyce, Sandra J.

    1990-01-01

    In Cibola Valley, Arizona, water is pumped from the Colorado River to irrigate crops and to maintain wildlife habitat. Unused water percolates to the water table and, as groundwater, moves downgradient into areas of phreatophytes, into a drainage ditch, out of the flood plain, and back to the river. In 1983 and 1984, groundwater return flow was negligible because in most of Cibola Valley the river lost water to the aquifer. Evapotranspiration was used as an approximation for consumptive use by vegetation. Evapotranspiration was calculated as the sum of the products of the area of vegetation types and water-use rate by vegetation type. Evapotranspiration was estimated to be 70,100 acre-ft in 1983 and 62,600 acre-ft in 1984. These estimates may be in error because of the effect of sustained inundation on the rate of water use by phreatophytes. The effects cannot be quantified and therefore adjustments to rates calculated for dry-surface conditions could not be made. The method of estimating consumptive use of water by vegetation and groundwater return flow is affected by changing conditions during years of rising and sustained high river stage caused by flood-control releases at Parker Dam. Most of the bank storage that will return to the river when the high river stage subsides did not originate as irrigation water. High river stage caused some areas to be flooded directly or raised groundwater levels above the land surface. No crops could be grown in flooded fields. The decreased depth to water and inundation with fresh water resulted in new phreatophyte growth in some areas. In some areas that were flooded, many phreatophytes died. Changes in the inundated and flooded areas throughout the years made it difficult to estimate the evaporation losses from the increased water surface. (USGS)

  15. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  16. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-09-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~ 2450-1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~ 1 m) incision.

  17. Holocene alluvial stratigraphy and response to climate change in the Roaring River valley, Front Range, Colorado, USA

    Science.gov (United States)

    Madole, Richard F.

    2012-01-01

    Stratigraphic analyses and radiocarbon geochronology of alluvial deposits exposed along the Roaring River, Colorado, lead to three principal conclusions: (1) the opinion that stream channels in the higher parts of the Front Range are relics of the Pleistocene and nonalluvial under the present climate, as argued in a water-rights trial USA v. Colorado, is untenable, (2) beds of clast-supported gravel alternate in vertical succession with beds of fine-grained sediment (sand, mud, and peat) in response to centennial-scale changes in snowmelt-driven peak discharges, and (3) alluvial strata provide information about Holocene climate history that complements the history provided by cirque moraines, periglacial deposits, and paleontological data. Most alluvial strata are of late Holocene age and record, among other things, that: (1) the largest peak flows since the end of the Pleistocene occurred during the late Holocene; (2) the occurrence of a mid- to late Holocene interval (~2450–1630(?) cal yr BP) of warmer climate, which is not clearly identified in palynological records; and (3) the Little Ice Age climate seems to have had little impact on stream channels, except perhaps for minor (~1 m) incision. Published

  18. Ground-water quality in the West Salt River Valley, Arizona, 1996-98: relations to hydrogeology, water use, and land use

    Science.gov (United States)

    Edmonds, Robert J.; Gellenbeck, Dorinda J.

    2002-01-01

    The U.S. Geological Survey collected and analyzed ground-water samples in the West Salt River Valley from 64 existing wells selected by a stratified-random procedure. Samples from an areally distributed group of 35 of these wells were used to characterize overall ground-water quality in the basin-fill aquifer. Analytes included the principal inorganic constituents, trace constituents, pesticides, and volatile organic compounds. Additional analytes were tritium, radon, and stable isotopes of hydrogen and oxygen. Analyses of replicate samples and blank samples provided evidence that the analyses of the ground-water samples were adequate for interpretation. The median concentration of dissolved solids in samples from the 35 wells was 560 milligrams per liter, which exceeded the U.S. Environmental Protection Agency Secondary Maximum Contaminant Level for drinking water. Eleven of the 35 samples had a nitrate concentration (as nitrogen) that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Pesticides were detected in eight samples; concentrations were below the Maximum Contaminant Levels. Deethylatrazine was most commonly detected. The pesticides were detected in samples from wells in agricultural or urban areas that have been irrigated. Concentrations of all trace constituents, except arsenic, were less than the Maximum Contaminant Levels. The concentration of arsenic exceeded the Maximum Contaminant Level of 50 micrograms per liter in two samples. Nine monitoring wells were constructed in an area near Buckeye to assess the effects of agricultural land use on shallow ground water. The median concentration of dissolved solids was 3,340 milligrams per liter in samples collected from these wells in August 1997. The nitrate concentration (as nitrogen) exceeded the Maximum Contaminant Level (10 milligrams per liter) in samples from eight of the nine monitoring wells in August 1997 and again in

  19. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: A case of the Brynica River Valley, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Magiera, Tadeusz, E-mail: tadeusz.magiera@ipis.zabrze.pl [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Mendakiewicz, Maria; Szuszkiewicz, Marcin [Institute of Environmental Engineering, Polish Academy of Sciences, Skłodowskiej-Curie 34, Zabrze (Poland); Jabłońska, Mariola [Department of Geochemistry, Mineralogy and Petrology, Faculty of Earth Sciences, University of Silesia, Sosnowiec (Poland); Chróst, Leszek [Laboratory for Ecological Research, Ekopomiar, Gliwice (Poland)

    2016-10-01

    In the area of Brynica River basin (Upper Silesia, southern Poland) the exploitation and smelting of iron, silver and lead ores was historically documented since early Middle Ages. First investigations showed that metallurgy industry had a large impact from 9th century (AD) until the Second World War. The aim of the study was to use magnetic prospection to detect traces of past mining and ore smelting in Brynica River Valley located in Upper Silesia (southern Poland). The field screening was performed by measurement magnetic susceptibility (κ) on surface and in vertical profiles and was supported locally by gradiometric measurements. Vertical distribution of magnetic susceptibility values was closely associated with the type of soil use. Historical technogenic magnetic particles resulting from exploitation, processing, and smelting of iron, silver, and lead ores were accumulated in the soil layer at the depth 10 to 25 cm. They were represented by sharp-edged particles of slag, coke, as well as various mineralogical forms of iron minerals and aggregates composed of carbon particles, aluminosilicate glass, and single particles of metallic iron. The additional geochemical study in adjacent peat bog supported by radiocarbon dating was also performed. The application of integrated geochemical-magnetic methods to reconstruct the historical accumulation of pollutants in the studied peat bog was effective. The magnetic peak, which was pointed out by magnetic analyses, is consistent with the presence of charcoal and pollution from heavy metals, such as Ag, Cd, Cu, Fe, Pb, or Sn. The results of this work will be helpful for the further study of human's impact on the environment related to the historical and even pre-historical ore exploitation and smelting and also used for better targeting the archeological excavations on such areas. - Highlights: • Due to ferrimagnetic properties of historical slags magnetic prospection is an efficient tool for they localization.

  20. Out-of-phase decadal changes in boreal summer rainfall between Yellow-Huaihe River Valley and southern China around 2002/2003

    Science.gov (United States)

    Ha, Yao; Zhong, Zhong; Chen, Haishan; Hu, Yijia

    2016-07-01

    This study investigates the decadal variability of rainfall over China in boreal summer (June-August) since the early 1990s. Results show that the rainfall experiences an abrupt decadal change at around 2002/2003. The decadal change is statistically significant and characterized by an out-of-phase pattern between southern China (SC) and the Yellow-Huaihe River Valley (YHRV). The rainfall over SC decreases during the decade 2003-2012 compared to that in the preceding decade 1993-2002. A simultaneous decadal increase in rainfall has occurred over the YHRV. Meanwhile, a significant sea surface temperature warming appears over the western Pacific Ocean and the northern Indian Ocean after 2002 on the decadal time scale. Further analysis reveals that enhanced convections are activated over the tropical regions between 130°E and 160°E and west of 80°E due to the SST anomalies, which induce the dry air in an area of anomalous subsidence located over SC and the northern South China Sea (SCS) via zonal circulation. Accompanied by the anomalous descending flow over the northern SCS, tropical cyclone (TC) activities in the SCS also experience a concurrent decadal reduction. The decrease in landfall TCs contributes to the decadal decrease in SC rainfall since 2003. Corresponding to the anomalous descending motion that is dominant south of 30°N, an anomalous moist ascending flow develops over the YHRV at around 35°N. Meanwhile, the western Pacific subtropical high becomes stronger and extends further westward during 2003-2012, leading to enhanced moisture transport by the southwesterly in the northwestern flank of subtropical high. As a result, more precipitation occurs over the YHRV. The above analysis has revealed the physical-dynamical processes involved in the decadal changes in rainfall over China. The mechanisms behind the out-of-phase pattern of rainfall changes between SC and the YHRV that occurred at 2002/2003 are explored.

  1. Interdecadal Modulation of the Influence of La Ni(n)a Events on Mei-yu Rainfall over the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; WANG Dongxiao; ZHOU Wen; LI Chongyin

    2012-01-01

    The aim of this study was to investigate changes in the relationship between mei-yu rainfall over East China and La Ni(n)a events in the late 1970s,a period concurrent with the Pacific climate shift,using meiyu rainfall data and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis.This relationship was modulated by the climate shift:Before the 1977/1978 climate shift and after the 1992/1993 climate shift,mei-yu rainfall levels were above normal in most La Ni(n)a years,whereas during the period 1979-1991,mei-yu rainfall was usually below normal levels in La Ni(n)a years.Both composite analyses and results from an atmospheric general circulation model show remarkable detail in terms of La Ni(n)a's impacts on mei-yu rainfall in the late 1970s due to the change in the mean climatic state over the tropical Pacific.After the late 1970s.the tropical Pacific SSTs were warmer,and the mean state of low-level anticyclone circulation over the western North Pacific (WNP) weakened.Superimposed on La Ni(n)a related cyclonic anomaly over the WNP.anticyclonic circulation weakened.Prior to the late 1970s,the mean state of low-level anticyclone circulation over the WNP was stronger and was less affected by La Ni(n)a-related anomalous cyclones.Anticyclone circulation may have brought moisture to the Yangtze River valley,leading to above-normal rainfall.

  2. An Economic Valuation Of The Water Footprint: A Case Study Of The Citrus Sector In The Lower Sundays River Valley, Eastern Cape, South Africa.

    Science.gov (United States)

    Munro, S. A.; Fraser, G. C. G.; Snowball, J. D.

    2014-12-01

    With the implementation of the South African National Water Act (NWA) currently underway, water intensive sectors, such as the irrigated agriculture sector, can expect reduced water allocations and an increase in water prices. Water footprints (WFs) are increasingly being recognised as a meaningful way by which to represent human appropriation of water resources. This study examines the green and blue WFs of a variety of citrus cultivars in the lower Sundays River Valley, Eastern Cape, South Africa. WFs were calculated across dry, humid and long-term average climates and comparisons were made to available global average benchmark WFs. An number of indicators were also explored including; water productivity (ton/m3), economic land productivity (R/ha) and economic water productivity (R/m3) across all three climatic years. Most applications of WF sustainability assessments have focused on examining physical water scarcity as a measure for determining environmental hotspots. This study, therefore, also calculates the marginal product value for the irrigation water using a non-parametric linear programming approach. Marginal product value of irrigation water is not only useful in assisting with water-allocation decision making, but also useful in demonstrating the effects of resource depletion and degradation, and is therefore a useful measure for determining economic water scarcity. The study highlights that both farmers and governments could reduce blue WF's through adopting measures to increase water efficiency and considering economic water and land productivity. It also demonstrates the importance of including both environmental and economic scarcity indicators into water management and planning strategies, and the importance of conducting WF assessments using more accurate, site specific data.

  3. Participation of Calamagrostis epigejos (L. Roth in plant communities of the River Bytomka valley in terms of its biomass use in the power industry

    Directory of Open Access Journals (Sweden)

    Sierka Edyta

    2014-06-01

    Full Text Available This paper presents an attempt to assess the potential use of Calamagrostis epigejos (L. Roth. as a renewable energy source. Abandonment of human management is often followed by a decrease in species richness in semi-natural grasslands, mainly due to the increased dominance of clonal grasses such as Calamagrostis epigejos which were formerly repressed by management. The biomass resource of this, and its accompanying, species, i.e. species of the Solidago genus and others e.g. Cirsium rivulare, Deschampsia caespitosa, Molinia coerulea and Filipendula ulmaria, was evaluated in the green wastelands of the River Bytomka valley (Upper Silesia, Poland. It was found that approx. 1.2 t·ha−1 of dry matter can be obtained from approx. 30% of the average share of Calamagrostis epigejos in plant communities of unmown meadows. This is 10 times less than in the case of Miscanthus giganteus, a non-native cultivated grass. An increase in the biomass component of Calamagrostis epigejos reduced that of Solidago sp. (−0.522176, p< 0.05 and other species (−0.465806, p< 0.05. The calorific value of Calamagrostis epigejos biomass is approx. 15.91 MJ·kg−1, which is comparable to the calorific value of coal and close to, inter alia, that of Miscanthus sacchariflorus (19 MJ·kg−1 as an energy crop. The presented research is in its preliminary stages and therefore, it is necessary to investigate the reaction of Calamagrostis epigejos to regular mowing and to removal of the biomass from the studied areas.

  4. Sedimentos arcillosos en un suelo del valle inferior del río Colorado (Argentina Clay sediments in a soil of the lower Colorado river valley (Argentina

    Directory of Open Access Journals (Sweden)

    Norman Peinemann

    2008-12-01

    Full Text Available Se describe la presencia de capas sedimentarias ricas en minerales de arcilla en un subsuelo del valle inferior del río Colorado por su importancia para el régimen hídrico de suelos bajo riego. Difractogramas de rayos X efectuados sobre la fracción arcilla fina de estos sedimentos revelaron que está compuesta por smectitas con muy buena cristalización. La caracterización fisicoquímica del perfil de suelo mostró que el fuerte incremento de minerales de arcilla en el subsuelo estuvo vinculado con un aumento de pH y PSI y en consecuencia una marcada disminución en la conductividad hidráulica, motivo por el cual la eventual presencia de estas capas sedimentarias debe ser muy tenida en cuenta en la programación de las prácticas de riego para evitar el posible deterioro de los suelos.The presence of sedimentary clay layers in subsoils of the lower Colorado river valley are described due to their impact on the water balance of soils under irrigation. X-ray difractograms of the fine clay fraction of these sediments show that they are composed of smectites with a very good crystallization. The physicochemical characterization of the soil profile indicates that the abrupt increase of clay minerals was associated with high pH and ESP values as well as a sharp decrease in hydraulic conductivity. Therefore, the presence of sedimentary clay layers in soils has to be considered when planning irrigation practices to avoid soil degradation.

  5. 西藏拉萨河谷地土壤中的暗色丝孢菌%Soil dematiaceous hyphomycetes from Lhasa River Valley, Tibet, China

    Institute of Scientific and Technical Information of China (English)

    耿月华; 张天宇

    2010-01-01

    A total of 38 isolates of soil dernatiaceous hyphomycetes belonging to 25 species in 15 genera were obtained from 17 soil samples in the Lhasa River Valley. Among them, Gliomastix tibetensis, Monodictys tibetensis and Phialomyces microsporus are new species. Chrysosporium keratinophilum is a new record for China. The other 21 species previously known from China are also included.All descriptions and illustrations provided were based on Chinese isolates. The holotype and isotype specimens are deposited in the Herbarium of Sbandong Agricultural University: Plant Pathology (HSAUP) and the Herbarium Mycologieum, Academiae Sinicae (HMAS), respectively. The other specimens are kept in HSAUP.%从采自拉萨河谷地的17份土样中,分离获得38个暗色丝孢菌分离物,经鉴定分别属于15属中的25种,其中包括3个新种,即西藏粘鞭霉Gliomastix tibetensis,西藏单格孢Monodictys tibetensis和小孢瓶梗霉Phialomyces microsporus,1个中国新记录种嗜毛金色孢Chrysosporium keratinophilum.对新种和中国新记录种进行了描述和图示,对其他21个中国已报道种作了分离地点和生境的引证.主模式和等模式标本(干制培养物)分别保藏在山东农业大学植物病理学标本室(HSAUP)和中国科学院菌物标本馆(HMAS).其余研究过的标本(干制培养物)与活菌种保存在HSAUP.

  6. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley

    Science.gov (United States)

    Chen, Xiaolong; Zhou, Tianjun

    2017-08-01

    The Yangtze River valley (YRV), located in central-eastern China, has witnessed increased numbers of heat waves in the summer since 1951. Knowing what factors control and affect the interannual variability of heat waves, especially distinguishing the contributions of anomalous sea surface temperature (SST) forcings and those of internal modes of variability, is important to improving heat wave prediction. After evaluating 70 members of the atmospheric model intercomparison project (AMIP) experiments from the 25 models that participated in the coupled model intercomparison project phase 5 (CMIP5), 13 high-skill members (HSMs) are selected to estimate the SST-forced variability. The results show that approximately 2/3 of the total variability of the July-August heat waves in the YRV during 1979-2008 can be attributed to anomalous SST forcings, whereas the other 1/3 are due to internal variability. Within the SST-forced component, one-half of the influence is from the impact of the El Niño-Southern Oscillation (ENSO) and the other half is from non-ENSO related SST forcings, specifically, the SST anomalies in the North Pacific and the North Atlantic. Both the decaying El Niño and developing La Niña accompanied by a warm Indian Ocean and cold central Pacific, respectively, are favorable to hotter summers in the YRV because these patterns strengthen and extend the western North Pacific Subtropical High (WNPSH) westwards, for which the decaying ENSO plays a dominant role. The internal variability shows a circumglobal teleconnection in which Rossby waves propagate southeastwards over the Eurasian Continent and strengthen the WNPSH. Atmospheric model sensitivity experiments confirm that non-ENSO SST forcings can modulate the WNPSH and heat wave variability by projecting their influences onto the internal mode.

  7. Factors influencing temporal changes in chemical composition of biogenic deposits in the middle Tążyna River Valley (Kuyavian Lakeland, central Poland)

    Science.gov (United States)

    Okupny, Daniel; Rzepecki, Seweryn; Borówka, Ryszard Krzysztof; Forysiak, Jacek; Twardy, Juliusz; Fortuniak, Anna; Tomkowiak, Julita

    2016-06-01

    The present paper discusses the influence of geochemical properties on biogenic deposits in the Wilkostowo mire near Toruń, central Poland. The analysed core has allowed the documentation of environmental changes between the older part of the Atlantic Period and the present day (probably interrupted at the turn of the Meso- and Neoholocene). In order to reconstruct the main stages in the sedimentation of biogenic deposits, we have used stratigraphic variability of selected litho-geochemical elements (organic matter, calcium carbonate, biogenic and terrigenous silica, macro- and micro-elements: Na, K, Mg, Ca, Fe, Mn, Cu, Zn, Pb, Cr and Ni). The main litho-geochemical component is CaCO3; its content ranges from 4.1 per cent to 92 per cent. The variability of CaCO3 content reflects mainly changes in hydrological and geomorphological conditions within the catchment area. The effects of prehistoric anthropogenic activities in the catchment of the River Tążyna, e.g., the use of saline water for economic purposes, are recorded in a change from calcareous gyttja into detritus-calcareous gyttja sedimentation and an increased content of lithophilous elements (Na, K, Mg and Ni) in the sediments. Principal component analysis (PCA) has enabled the distinction the most important factors that affected the chemical composition of sediments at the Wilkostowo site, i.e., mechanical and chemical denudation processes in the catchment, changes in redox conditions, bioaccumulation of selected elements and human activity. Sediments of the Wilkostowo mire are located in the direct vicinity of an archaeological site, where traces of intensive settlement dating back to the Neolithic have been documented. The settlement phase is recorded both in lithology and geochemical properties of biogenic deposits which fill the reservoir formed at the bottom of the Parchania Canal Valley.

  8. Geochemical correlation and 40Ar/39Ar dating of the Kern River ash bed and related tephra layers: Implications for the stratigraphy of petroleum-bearing formations in the San Joaquin Valley, California

    Science.gov (United States)

    Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.

    2008-01-01

    The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.

  9. Spring migration ecology of the mid-continent sandhill crane population with an emphasis on use of the Central Platte River Valley, Nebraska

    Science.gov (United States)

    Krapu, Gary L.; Brandt, David A.; Kinzel, Paul J.; Pearse, Aaron T.

    2014-01-01

    We conducted a 10-year study (1998–2007) of the Mid-Continent Population (MCP) of sandhill cranes (Grus canadensis) to identify spring-migration corridors, locations of major stopovers, and migration chronology by crane breeding affiliation (western Alaska–Siberia [WA–S], northern Canada–Nunavut [NC–N], west-central Canada–Alaska [WC–A], and east-central Canada–Minnesota [EC–M]). In the Central Platte River Valley (CPRV) of Nebraska, we evaluated factors influencing staging chronology, food habits, fat storage, and habitat use of sandhill cranes. We compared our findings to results from the Platte River Ecology Study conducted during 1978–1980. We determined spring migration corridors used by the breeding affiliations (designated subpopulations for management purposes) by monitoring 169 cranes marked with platform transmitter terminals (PTTs). We also marked and monitored 456 cranes in the CPRV with very high frequency (VHF) transmitters to evaluate length and pattern of stay, habitat use, and movements. An estimated 42% and 58% of cranes staging in the CPRV were greater sandhill cranes (G. c. tabida) and lesser sandhill cranes (G. c. canadensis), and they stayed for an average of 20 and 25 days (2000–2007), respectively. Cranes from the WA–S, NC–N, WC–A, and EC–M affiliations spent an average of 72, 77, 52, and 53 days, respectively, in spring migration of which 28, 23, 24, and 18 days occurred in the CPRV. The majority of the WA–S subpopulation settled in the CPRV apparently because of inadequate habitat to support more birds upstream, although WA–S cranes accounted for >90% of birds staging in the North Platte River Valley. Crane staging duration in the CPRV was negatively correlated with arrival dates; 92% of cranes stayed >7 days. A program of annual mechanical removal of mature stands of woody growth and seedlings that began in the early 1980s primarily in the main channel of the Platte River has allowed distribution of crane

  10. The quality of our Nation's waters: water quality in the Mississippi embayment-Texas coastal uplands aquifer system and Mississippi River Valley alluvial aquifer, south-central United States, 1994-2008

    Science.gov (United States)

    Kingsbury, James A.; Barlow, Jeannie R.; Katz, Brian G.; Welch, Heather L.; Tollett, Roland W.; Fahlquist, Lynne S.

    2015-01-01

    About 8 million people rely on groundwater from the Mississippi embayment—Texas coastal uplands aquifer system for drinking water. The Mississippi River Valley alluvial aquifer also provides drinking water for domestic use in rural areas but is of primary importance to the region as a source of water for irrigation. Irrigation withdrawals from this aquifer are among the largest in the Nation and play a key role in the economy of the area, where annual crop sales total more than $7 billion. The reliance of the region on both aquifers for drinking water and irrigation highlights the importance of long-term management to sustain the availability and quality of these resources.

  11. Comparison of land-atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley

    Science.gov (United States)

    Guo, Weidong; Wang, Xueqian; Sun, Jianning; Ding, Aijun; Zou, Jun

    2016-08-01

    The mid- to lower reaches of the Yangtze River valley are located within the typical East Asian monsoon zone. Rapid urbanization, industrialization, and development of agriculture have led to fast and complicated land use and land cover change in this region. To investigate land-atmosphere interaction in this region where human activities and monsoon climate have considerable interaction with each other, micrometeorological elements over four sites with different surface types around Nanjing, including urban surface at Dangxiao (hereafter DX-urban), suburban surface at Xianling (XL-suburb), and grassland and farmland at Lishui County (LS-grass and LS-crop), are analyzed and their differences are revealed. The impacts of surface parameters of different surface types on the radiation budget and land surface-atmosphere heat, water, and mass exchanges are investigated and compared. The results indicate the following. (1) The largest differences in daily average surface air temperature (Ta), surface skin temperature (Ts), and relative humidity (RH), which are found during the dry periods between DX-urban and LS-crop, can be up to 3.21 °C, 7.26 °C, and 22.79 %, respectively. The diurnal ranges of the above three elements are the smallest at DX-urban and the largest at LS-grass, XL-suburb, and LS-crop. (2) Differences in radiative fluxes are mainly reflected in upward shortwave radiation (USR) that is related to surface albedo and upward longwave radiation (ULR) that is related to Ts. When comparing four sites, it can be found that both the smallest USR and the largest ULR occur at the DX-urban site. The diurnal variation in ULR is same as that of Ts at all four sites. (3) The differences in daily average sensible heat (H) and latent heat (LE) between DX-urban and LS-crop are larger than 45 and 95 Wm-2, respectively. The proportion of latent heat flux in the net radiation (LE/Rn) keeps increasing with the change in season from the spring to summer. (4) Human activities

  12. 赤水河中下游黔境教育概述%Review of the Education in the Middle and Lower Sections of the Chishui River Valley

    Institute of Scientific and Technical Information of China (English)

    黄万机

    2015-01-01

    The Renhuai County in the Daguan period of the Song Dynasty covered the areas of the now Renhuai City, Chishui City and Xishui County, all situated in the middle and lower valleys of the Chishui River. It was disthroned as a county the turned into Renhuai fort, long being controlled by Yang Tusi of Bozhou, causing lack of culture and education. Later in the period of Pacification of Bozhou Renhuai County was rebuilt. The government of the Qign Dynasty set of the Renhuai Hall and the National Repub-lic added Xishui County. Since the flourishing establishing of state schools, private schools, village schools and academies, many learners had got on the road to imperial examinations, some enrolled as skilful writers and others as successful candidate in the imperial examinations at the provincial level or successful candidate in the highest imperial examinations, all becoming social talents. The reformation of school education system at the end of the Qing Dynasty and beginning of the National Republic pushed forward the development of the educational cause in Renhuai area, producing many more talents enjoying popularity home and abroad.%宋大观年间始建仁怀县,辖境含今仁怀市、赤水市和习水县,属赤水河中下游流域。后废县改仁怀堡,长期受控于播州杨氏土司,文教阙如。明万历平播,重建仁怀县。清代增设仁怀厅,民国增设习水县。自清康熙年间学宫,私塾、社学、书院兴起,不少学子踏上科举之路,考中秀才、举人或进士,成为社会有为之才。清末及民国初年改革学制,此地教育事业有较大发展,涌现出更多人才蜚声海内外。

  13. Revised geologic cross sections of parts of the Colorado, White River, and Death Valley regional groundwater flow systems, Nevada, Utah, and Arizona

    Science.gov (United States)

    Page, William R.; Scheirer, Daniel S.; Langenheim, V.E.; Berger, Mary A.

    2006-01-01

    This report presents revisions to parts of seven of the ten cross sections originally published in U.S. Geological Survey Open-File Report 2006-1040. The revisions were necessary to correct errors in some of the original cross sections, and to show new parts of several sections that were extended and (or) appended to the original section profiles. Revisions were made to cross sections C-C', D-D', E-E', F-F', G-G', I-I', and J-J', and the parts of the sections revised or extended are highlighted below the sections on plate 1 by red brackets and the word "revised," or "extended." Sections not listed above, as well as the interpretive text and figures, are generally unchanged from the original report. Cross section C-C' includes revisions in the east Mormon Mountains in the east part of the section; D-D' includes revisions in the Mormon Mesa area in the east part of the section; E-E' includes revisions in the Muddy Mountains in the east part of the section; F-F' includes revisions from the Muddy Mountains to the south Virgin Mountains in the east part of the section; and J-J' includes some revisions from the east Mormon Mountains to the Virgin Mountains. The east end of G-G' was extended about 16 km from the Black Mountains to the southern Virgin Mountains, and the northern end of I-I' was extended about 45 km from the Muddy Mountains to the Mormon Mountains, and revisions were made in the Muddy Mountains part of the original section. This report contains 10 interpretive cross sections and an integrated text describing the geology of parts of the Colorado, White River, and Death Valley regional groundwater flow systems in Nevada, Utah, and Arizona. The primary purpose of the report is to provide geologic framework data for input into a numerical groundwater model. Therefore, the stratigraphic and structural summaries are written in a hydrogeologic context. The oldest rocks (basement) are Early Proterozoic metamorphic and intrusive crystalline rocks that are considered

  14. Analysis of the influence of tectonics on the evolution valley network based on the SRTM DEM and the relationship of automatically extracted lineaments and the tectonic faults, Jemma River basin, Ethiopia

    Science.gov (United States)

    Kusák, Michal

    2016-04-01

    The Ethiopian Highland is good example of high plateau landscape formed by combination of tectonic uplift and episodic volcanism (Kazmin, 1975; Pik et al., 2003; Gani et al., 2009). Deeply incised gorges indicate active fluvial erosion which leads to instabilities of over-steepened slopes. In this study we focus on Jemma River basin which is a left tributary of Abay - Blue Nile to assess the influence of neotectonics on the evolution of its river and valley network. Tectonic lineaments, shape of valley networks, direction of river courses and intensity of fluvial erosion were compared in six subregions which were delineate beforehand by means of morphometric analysis. The influence of tectonics on the valley network is low in the older deep and wide canyons and in the and on the high plateau covered with Tertiary lava flows while younger upper part of the canyons it is high. Furthermore, the coincidence of the valley network with the tectonic lineaments differs in the subregions. The fluvial erosion along the main tectonic zones (NE-SW) direction made the way for backward erosion possible to reach far distant areas in E for the fluvial erosion. This tectonic zone also separates older areas in the W from the youngest landscape evolution subregions in the E, next to the Rift Valley. We studied the functions that can automatically extract lineaments in programs ArcGIS 10.1 and PCI Geomatica. The values of input parameters and their influence of the final shape and number of lineaments. A map of automated extracted lineaments was created and compared with 1) the tectonic faults by Geology Survey of Ethiopia (1996); and 2) the lineaments based on visual interpretation of by the author. The comparation of lineaments by automated visualization in GIS and visual interpretation of lineaments by the author proves that both sets of lineaments are in the same azimuth (NE-SW) - the same direction as the orientation of the rift. But it the mapping of lineaments by automated

  15. 金沙江干热河谷区优质晚熟芒果栽培技术%Cultivation Techniques of High Quality Late Mango in Dry and Hot Valley Areas of Jinsha River

    Institute of Scientific and Technical Information of China (English)

    马学林; 郭学红

    2013-01-01

    根据华坪晚熟芒果生长特性,结合金沙江干热河谷区自然气候特点,借鉴10多年的生产经验,集成金沙江干热河谷区优质晚熟芒果规范化栽培技术,包括品种选择、培育初生壮苗、果园规划、定植、嫁接改良、幼树管理、花期管理、幼果期管理、果实膨大期管理、果实成熟期管理、采果后的管理等方面内容,以供参考。%According to the growth characteristics of Huaping late ripening mango ,combined with the natural climate characteristic of dry and hot valley areas of Jinsha River ,based on 10 years of production experiences ,the cultivation technologies of high-quality late mango in dry and hot valley areas of Jinsha River were integrated ,which contained variety choice ,nuture nascent seedlings ,orchard planning ,field planting ,engrafting and improving,young trees management,blooming period management,young fruit stage management,fruit expanding process management,fruit maturation period management ,management after mining furit and so on ,in order to provide references.

  16. Atlas de pólen e esporos do Vale do Rio Caí, RS, Brasil Pollen and spores atlas of the Caí River Valley, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Soraia Girardi Bauermann

    2009-10-01

    Full Text Available O atlas descritivo de polens e esporos de plantas do Vale do Rio Caí tem o objetivo de facilitar a comparação com os palinomorfos dispersos nos sedimentos fósseis e fornecer dados para ações de manejo ambiental. O atlas consta de 93 espécies características das quatro formações vegetacionais do Vale do Rio Caí, incluindo Floresta Ombrófila Mista, Floresta Estacional Decidual, Floresta Estacional Semidecidual e Estepe, além de plantas exóticas e de locais alterados. Incluíram-se, nessa primeira parte, descrições detalhadas e fotomicrografias de 24 espécies, 21 gêneros e 17 famílias.A descriptive atlas of pollen and spores from plants of Caí river Valley aimed to facilitate the identification of dispersed palynomorphs in fossil sediments and provide data for environmental management actions. The atlas presents 93 characteristic species of four Caí river valley plant associations, including Floresta Ombrófila Mista, Floresta Estacional Decidual, Floresta Estacional Semidecidual and Estepe, besides exotic plants and disturbed sites. In this first part, detailed descriptions and light micrographs of 24 species, 21 genera, and 17 families were included.

  17. 基于遥感技术的陕西省渭河流域污染演变研究%Research on contamination evolution in Weihe River valley in Shaanxi province based on remote sensing technology

    Institute of Scientific and Technical Information of China (English)

    李思; 崔晨风; 梁宁

    2013-01-01

    Water pollution is one of the great issues in todays society. The paper analyzed the application of remote sensing technology especially with NDVI and water quality change trend in Weihe River valley in Shaanxi Province. The result indicated that water quality is one of the important factors which influence the growth of plants. The extremum of vegetation index went down in Weihe River valley, witch reflected that water quality turned into integral downtrend from 1998 to 2008 and pollution is more serious on high levels. The paper confirmed the feasibility of remote sensing technology to conduct water quality monitoring.%水污染是当今社会面临的一个重大问题.论文应用遥感技术,以NDVI为指标,对陕西省渭河流域水质变化趋势进行了分析.结果表明:水质是影响植物生长的重要的因素之一.渭河流域的植被指数极值下降,反映出渭河流域的水质从1998年到2008年整体呈下降趋势,污染日趋严重,且污染程度居高不下.证实了遥感技术进行水质监测的可行性.

  18. 历史时期长江流域农业生态变迁述论%A Study of Change in Agro-Ecology in Yangtze River Valley from Historical Perspective

    Institute of Scientific and Technical Information of China (English)

    惠富平; 李琦珂

    2011-01-01

    The ecological changes of the Yangtze River Valley in history,such as those in the climate,soil,water,forest vegetation and other environmental factors,have been closely linked with the human social activities,particularly with the agricultural activities of rice production as its center.On the one hand,the ecological environment has been limiting the development of rice agriculture;on the other hand,agricultural activities can exert certain effects on the ecological environment to some extent.Since Song Dynasty and Yuan Dynasty,the lager-scale agricultural economic development mainly focusing on land reclamation around lakes and from hills in the south in China has gradually had great negative influence on the ecological environment of the Yangtze River Valley,resulting in soil erosion,silting rivers and lakes,and frequent floods and droughts.At the same time,the agricultural production and people's lives,therefore,have been subject to great harm.In modern times,the economic development of the Yangtze River Valley has been further strengthened in a broad and deep sense,leading to serious river and lake silt waste,the increasing forest destruction and the severe chemical contamination of soil and water environment.Fortunately,the government has paid great attention to these problems,which have also aroused the public attention.The Yangtze River Valley is the cradle of Chinese rice civilization and the main place of rice production in china.Here,the study on the relationship between the changes of environmental factors and the development of rice agriculture will pose important academic significance to the protection of the regional ecological environment and the sustainable development of local agriculture.%历史时期长江流域气候、水土和森林植被等生态环境要素的变迁,与人类活动尤其是以稻空大点作生产为中心的农业活动有密切关系。一方面生态环境制约着稻作农业的发展变化,另一方面,农业活动

  19. The 20-30-day oscillation of the global circulation and heavy precipitation over the lower reaches of the Yangtze River valley

    Institute of Scientific and Technical Information of China (English)

    YANG QiuMing

    2009-01-01

    Based on the observational data in summer, the variations of intraseasonal oscillation (ISO) of the daily rainfall over the lower reaches of the Yangtze River valley (LYRV) were studied by using the non-integer spectrum analysis. The NCEP/NCAR reanalysis data for the period of 1979-2005 were analyzed by principal oscillation pattern analysis (POP) to investigate the spatial and temporal characteristics of principal ISO patterns of the global circulation. The relationships of these ISO patterns to the rainfall ISO and the heavy precipitation process over LYRV were also discussed. It is found that the rainfall over LYRV in May-August is mainly of periodic oscillations of 10-20, 20-30 and 60-70 days, and the interannual variation of the intensity of its 20-30-day oscillation has a strongly positive correlation with the number of the heavy precipitation process. Two modes (POP1, POP2) are revealed by POP for the 20-30-day oscillation of the global 850 hPa geopotential height. One is a circumglobal telecon-nection wave train in the middle latitude of the Southern Hemisphere (SCGT) with an eastward propa-gation, and the other is the southward propagation pattern in the tropical western Pacific (TWP). The POP modes explain 7.72% and 7.66% of the variance, respectively. These two principal ISO patterns are closely linked to the low frequency rainfall and heavy precipitation process over LYRV, in which the probability for the heavy precipitation process over LYRV is 54.9% and 60.4% for the positive phase of the imaginary part of POP1 and real part of POP2, respectively. Furthermore, the models of the global atmospheric circulation for the 20-30-day oscillation in association with or without the heavy pre-cipitation process over LYRV during the Northern Hemisphere summer are set up by means of the composite analysis method. Most of the heavy precipitation processes over LYRV appear in Phase 4 of SCGT or Phase 6 of TWP. When the positive phases of 20-30-day oscillations for

  20. Geomorphic changes of a scarp on a slope gully by applying 3D photo-reconstruction technique (Duratón river valley, central Spain).

    Science.gov (United States)

    Rodríguez, Lourdes; Tanarro, Luis M.

    2017-04-01

    Recent advances in the field of photogrammetry and the computer vision has allowed the improvement of the art 3D Photo-Reconstruction (FR-3D). This technique, which uses Structure from Motion (SfM) and Multi-View Stereo (MVS) reconstruction algorithms, allows us to obtain three-dimensional models of the terrain of high resolution. Its application in the field of Earth Sciences is recent (Westoby et al., 2012, James and Robson, 2012), and has been applied mainly to evaluate the activity of different morphodynamic environments (coastal cliffs, gully erosion, etc.). In this work the FR-3D technique is applied to analyze the geomorphological dynamics of a scarp modelled on the valley-side gully of the right side of the Duraton river (41° 16'N, 3°39'W, 988 m, central Spain). The scarp has a length of about 50 m and a height in the central part of 10 m and the lithology is constituted by red clays with levels of conglomerates of Miocene age. Photographs along the scarp have been taken with a compact digital camera (Canon PowerShot S95, 10 MP) in two different time periods (2014/08/27 and 2016/02/06), and have been processed using Bentley ContextCapture software, generating the respective 3D meshes and from these, directly the Digital Surface Models (DSM) for each date. Finally, DSMs have been compared, obtaining the difference in surface elevations. Previously, at the base of the scarp were placed three wood-stakes, whose coordinates were obtained by GPS, and have been used as control points for georreferencing the models. The DMS obtained have a high resolution (the default cell size of each model are 0.0039 m and 0.0063 m respectively). Volumetric change from elevation differences for the entire time interval (529 days) shows a predominance of sedimentation against erosion (426.79 m3 versus 65.61 m3). In conclusion, FR-3D technique provides high resolution Digital Surface Models, allowing to detect changes in the surface at a high level of detail (cm or even mm

  1. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate.

    Science.gov (United States)

    Tiwari, S; Kumar, R; Tunved, P; Singh, S; Panicker, A S

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56μgm(-3) with an annual average of 7.17±1.89μgm(-3), while, CO varied from 0.19 to 1.20ppm with a mean value of 0.51±0.19ppm during the study period. The concentrations of BC (8.37μgm(-3)) and CO (0.67ppm) were ~39% and ~55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1±1.4μgm(-3)ppmv(-1) (12.6±2.2μgm(-3)ppmv(-1)) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72Gg in and around Guwahati which is about 44% lower than the mega city 'Delhi' (4.86Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was +9.5Wm(-2), however, the RF value at the surface (SFC) was -21.1Wm(-2) which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (-30Wm(-2)) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was +30.16 (annual mean) Wm(-2) varying from +23.1 to +43.8Wm(-2). The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86Kday(-1) indicates the enhancement in radiation effect over the study region. The Weather Research and Forecasting model

  2. Co-creating Understanding in Water Use & Agricultural Resilience in a Multi-scale Natural-human System: Sacramento River Valley--California's Water Heartland in Transition

    Science.gov (United States)

    Fairbanks, D. H.; Brimlowe, J.; Chaudry, A.; Gray, K.; Greene, T.; Guzley, R.; Hatfield, C.; Houk, E.; Le Page, C.

    2012-12-01

    The Sacramento River Valley (SRV), valued for its $2.5 billion agricultural production and its biodiversity, is the main supplier of California's water, servicing 25 million people. . Despite rapid changes to the region, little is known about the collective motivations and consequences of land and water use decisions, or the social and environmental vulnerability and resilience of the SRV. The overarching research goal is to examine whether the SRV can continue to supply clean water for California and accommodate agricultural production and biodiversity while coping with climate change and population growth. Without understanding these issues, the resources of the SRV face an uncertain future. The defining goal is to construct a framework that integrates cross-disciplinary and diverse stakeholder perspectives in order to develop a comprehensive understanding of how SRV stakeholders make land and water use decisions. Traditional approaches for modeling have failed to take into consideration multi-scale stakeholder input. Currently there is no effective method to facilitate producers and government agencies in developing a shared representation to address the issues that face the region. To address this gap, researchers and stakeholders are working together to collect and consolidate disconnected knowledge held by stakeholder groups (agencies, irrigation districts, and producers) into a holistic conceptual model of how stakeholders view and make decisions with land and water use under various management systems. Our approach integrates a top-down approach (agency stakeholders) for larger scale management decisions with a conceptual co-creation and data gathering bottom-up approach with local agricultural producer stakeholders for input water and landuse decisions. Land use change models that combine a top-down approach with a bottom-up stakeholder approach are rare and yet essential to understanding how the social process of land use change and ecosystem function are

  3. Simulation of climate change in San Francisco Bay Basins, California: Case studies in the Russian River Valley and Santa Cruz Mountains

    Science.gov (United States)

    Flint, Lorraine E.; Flint, Alan L.

    2012-01-01

    As a result of ongoing changes in climate, hydrologic and ecologic effects are being seen across the western United States. A regional study of how climate change affects water resources and habitats in the San Francisco Bay area relied on historical climate data and future projections of climate, which were downscaled to fine spatial scales for application to a regional water-balance model. Changes in climate, potential evapotranspiration, recharge, runoff, and climatic water deficit were modeled for the Bay Area. In addition, detailed studies in the Russian River Valley and Santa Cruz Mountains, which are on the northern and southern extremes of the Bay Area, respectively, were carried out in collaboration with local water agencies. Resource managers depend on science-based projections to inform planning exercises that result in competent adaptation to ongoing and future changes in water supply and environmental conditions. Results indicated large spatial variability in climate change and the hydrologic response across the region; although there is warming under all projections, potential change in precipitation by the end of the 21st century differed according to model. Hydrologic models predicted reduced early and late wet season runoff for the end of the century for both wetter and drier future climate projections, which could result in an extended dry season. In fact, summers are projected to be longer and drier in the future than in the past regardless of precipitation trends. While water supply could be subject to increased variability (that is, reduced reliability) due to greater variability in precipitation, water demand is likely to steadily increase because of increased evapotranspiration rates and climatic water deficit during the extended summers. Extended dry season conditions and the potential for drought, combined with unprecedented increases in precipitation, could serve as additional stressors on water quality and habitat. By focusing on the

  4. Archaeological Investigations into the Prehistory of the Middle Cumberland River Valley: The Hurricane Branch Site (40JK27), Jackson County, Tennessee

    Science.gov (United States)

    1982-07-31

    VALLEY: THE HURRICANE BRANCH SITE (LiJK 27), JACKSON COUNTY, TENNESSEE Archaeological Report 68 Edited by Tom Dillehay, Thomas W. Gatus and Nancy... Matanzas ) .... ............ 182 VI-58 Side Notched 27 .owan-like) ........ ........ 183 VI-59 Side Notched 28 ( amed) ....... ........... .. 184 VI-6Q...192 VI- 68 Triangular I (Madison) ............. ..... 193 VI-69 Triangular 2 (Ft. Ancient) ..... ................ ... 193 VI-70 Triangular 9

  5. Bedrock geologic map of the Spring Valley, West Plains, and parts of the Piedmont and Poplar Bluff 30'x60' quadrangles, Missouri, including the upper Current River and Eleven Point River drainage basins

    Science.gov (United States)

    Weary, David J.; Harrison, Richard W.; Orndorff, Randall C.; Weems, Robert E.; Schindler, J. Stephen; Repetski, John E.; Pierce, Herbert A.

    2015-01-01

    This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs.

  6. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River.

    Directory of Open Access Journals (Sweden)

    Yan Peng

    Full Text Available Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana and oak (Quercus baronii in ecotone; cypress (Cupressus chengiana and clovershrub (Campylotropis macrocarpa in dry valley; and fir (Abies faxoniana and birch (Betula albosinensis in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8% was observed in the ecotone, and the lowest contribution (0.4%-25.8% was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter

  7. 基于HA-GGE双标图的长江流域棉花区域试验环境评价%Evaluation of Cotton Regional Trial Environments Based on HA-GGE Biplot in the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    许乃银; 张国伟; 李健; 周治国

    2012-01-01

    The latest heritability adjusted GGE (HA-GGE) biplot analysis was adopted to evaluate cotton regional trial environments (trial locations) in terms of the discriminating ability, representative ability, desirability index and superiority index for cotton lint yield selection in 27 independent sets of cotton variety trials in the Yangtze River Valley during 2000-2010 periods. The results showed that Huanggang, Nanjing and Jinzhou were the most ideal trial environments and therefore were the most effective locations for developing and/or recommending cultivars for broad adaptation selection in the target region. However, Shehong, Jianyang, Xiangyang and Nanyang were not desirable for cotton lint yield selection in the whole regions. The desirable test environments were all located in the middle and lower reaches of the Yangtze River Valley, while among the undesirable test environments Nanyang and Xiangyang were located at the inland Nan-Xiang Basin bordering with the Yellow River Valley in the north, where the first frost came early and temperature declined sharply in the late autumn, and Shehong and Jianyang were located at the mountainous Sichuan Basin in the west area, where cotton planting density was higher and cotton matured earlier. Therefore, this article fully displayed the HA-GGE biplot application efficiency in regional trial environment evaluation and also provided the theory background for the decision-making in national cotton scheme implementation and cotton megaenvironment investigation in the Yangtze River Valley.%采用遗传力校正的GGE (HA-GGE)双标图方法对2000-2010年间27个独立的长江流域棉花品种区域试验的15个试验环境(试验点)在皮棉产量选择上的鉴别力、代表性、理想指数和离优度指数进行分析和综合评价.结果表明,湖北黄冈、江苏南京和湖北荆州是最理想的试验环境,对以长江流域为目标环境的广适性新品种选育和作为区域试验点鉴别理想品

  8. 贵州猫跳河与美国田纳西河流域开发的比较%Comparison of the Development of the Maotiaohe River in China and the Tennessee Valley in the U.S.

    Institute of Scientific and Technical Information of China (English)

    黄园淅; 张雷; 程晓凌

    2011-01-01

    自1933年以流域综合开发治理为目标的田纳西流域管理局(TVA)成立以来,美国田纳西流域开发管理模式就成为世界各地流域开发的成功榜样。作为美国第一大河密西西比河的二级支流,田纳西河流域开发在带动当地社会经济发展等方面的确取得了一定成就,但其经验也存在一定的局限性。本文通过对比同为中国第一大河长江二级支流的猫跳河流域与田纳西流域开发的自然资源环境基础条件、社会经济发展背景及其人文响应等方面,比较了两者生态效益和开发模式的差异。同时,由于猫跳河流域面临着更为严峻的资源本底、生态环境和人口压力,其开发更应注重整%This paper compares exploitation of the Tennessee Valley in the U.S. and the Maotiaohe River in southwestern China by taking into account background, effect, and mode. Because of differences in natural resources, situations of social and economic development, as well as the degree of human responses, the effects of exploitation are not the same. As successful experience of river basin management in the world, the Tennessee Valley benefits greatly from the Tennessee Valley Authority (TVA), which was founded in 1933 and aimed to improve its development. The Tennessee Valley was the poorest region in the U.S. before TVA. After 50 years of exploitation, the region gained a huge improvement on economy and society. Of course, pollution cannot be completely avoided. The cascade development of the Matiaohe River began in the 1950s, which leaded to increases in regional wealth, the upgrade of the industrial structure along with acute deterioration of the environment and ecological systems. The negative effects, usually representing the worsening of environments, always exist along with the positive effects described as regional development during the process of river basin development. The main causes of differing negative effects in the two

  9. 默科特橘橙在贵州郜柳江河谷地区的栽培适应性%Cultivated Adaptability of Murcott (an Introduced Citrus Variety) in Duliu River Valley of Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    吴秀刚; 樊卫国

    2011-01-01

    The cultivation adaptability, mature period and fruit quality of Murcott (an introduced citrus variety) were identified to provide the scientific basis for adjustment and optimization of citrus variety structure in Duliu river valley, Guizhou. The results show that t.he fruits ripen from the last tenday period of March to the middle ten-day period of April, mean single fruit weight is 153 g, the mean yield per tree in the fourth and fifth year after grafting is 27.2 kg and 39.1 kg respectively. Murcott with strong stress resistance, strong adaptability, good fruit quality and late-maturing can be cultivated in Duliu river valley and other similar ecological regions in Guizhou.%根据贵州都柳江河谷柑橘品种结构的调整和优化的需要,对默科特橘橙在都柳江河谷的栽培适应性、成熟期和果实品质进行了鉴定.结果表明:默科特橘橙果实在3月下旬至4月中旬成熟,属杂柑中的晚熟品种;平均单果重153 g,高接后第4、5年平均株产量分别为27.2 kg和39.1 kg;抗逆性、适应性强,果实品质优良,适宜在贵州都柳江河谷及其类似生态地区作晚熟柑橘栽培.

  10. Questa baseline and pre-mining ground-water quality investigation 4. Historical surface-water quality for the Red River Valley, New Mexico, 1965 to 2001

    Science.gov (United States)

    Maest, Ann S.; Nordstrom, D. Kirk; LoVetere, Sara H.

    2004-01-01

    Historical water-quality samples collected from the Red River over the past 35 years were compiled, reviewed for quality, and evaluated to determine influences on water quality over time. Hydrologic conditions in the Red River were found to have a major effect on water quality. The lowest sulfate concentrations were associated with the highest flow events, especially peak, rising limb, and falling limb conditions. The highest sulfate concentrations were associated with the early part of the rising limb of summer thunderstorm events and early snowmelt runoff, transient events that can be difficult to capture as part of planned sampling programs but were observed in some of the data. The first increase in flows in the spring, or during summer thunderstorm events, causes a flushing of sulfide oxidation products from scars and mine-disturbed areas to the Red River before being diluted by rising river waters. A trend of increasing sulfate concentrations and loads over long time periods also was noted at the Questa Ranger Station gage on the Red River, possibly related to mining activities, because the same trend is not apparent for concentrations upstream. This trend was only apparent when the dynamic events of snowmelt and summer rainstorms were eliminated and only low-flow concentrations were considered. An increase in sulfate concentrations and loads over time was not seen at locations upstream from the Molycorp, Inc., molybdenum mine and downstream from scar areas. Sulfate concentrations and loads and zinc concentrations downstream from the mine were uniformly higher, and alkalinity values were consistently lower, than those upstream from the mine, suggesting that additional sources of sulfate, zinc, and acidity enter the river in the vicinity of the mine. During storm events, alkalinity values decreased both upstream and downstream of the mine, indicating that natural sources, most likely scar areas, can cause short-term changes in the buffering capacity of the Red

  11. River

    Directory of Open Access Journals (Sweden)

    Morel Mathieu

    2016-01-01

    Full Text Available The OECD report “Boosting Resilience through Innovative Risk Governance” examines the efforts of OECD countries to prevent or reduce future disaster impacts, and highlights several key areas where improvements can be made. International collaboration is insufficiently utilised to address shocks that have increasingly global consequences. Institutional design plays a significant role in facilitating or hampering the engagement and investments of governmental and non-governmental stakeholders in disaster risk prevention and mitigation. To inform the design of “better” institutions, the OECD proposes the application of a diagnostic framework that helps governments identify institutional shortcomings and take actions to improve them. The goal of the case study on the Rhone River is to conduct an analysis of the progress, achievements and existing challenges in designing and implementing disaster risk reduction strategies through the Rhone Plan from a comparative perspective across a set of selected countries of this study, like Austria and Switzerland, will inform how to improve institutional frameworks governing risk prevention and mitigation. The case study will be used to identify examples of successful practice taking into account their specific country contexts, and analyse their potential for policy transfer.

  12. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed...

  13. Report on Red-shouldered Hawk nesting within the Milan Bottoms and Pools 9-16 of the Upper Mississippi River Valley during 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During our investigations along the Upper Mississippi River during 1999 we located Red-shouldered Hawks (Buteo lineatus) in a total of 32 of the 51 areas searched....

  14. Significant cooling effect on the surface due to soot particles over Brahmaputra River Valley region, India: An impact on regional climate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S., E-mail: smbtiwari@tropmet.res.in [Indian Institute of Tropical Meteorology, New Delhi Branch, New Delhi 110060 (India); Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Kumar, R. [Research Application Laboratory, National Center for Atmospheric Research, Boulder, CO (United States); Tunved, P. [Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm SE-10691 (Sweden); Singh, S. [CSIR, Central Institute of Mining & Fuel Research, Dhanbad, Jharkhand 826001 (India); Panicker, A.S. [Indian Institute of Tropical Meteorology, Pune 411008 (India)

    2016-08-15

    Black carbon (BC) is an important atmospheric aerosol constituent that affects the climate by absorbing (directly) the sunlight and modifying cloud characteristics (indirectly). Here, we present first time yearlong measurements of BC and carbon monoxide (CO) from an urban location of Guwahati located in the Brahmaputra River valley (BRV) in the northeast region of India from 1st July 2013 to 30th June 2014. Daily BC concentrations varied within the range of 2.86 to 11.56 μg m{sup −3} with an annual average of 7.17 ± 1.89 μg m{sup −3}{sub ,} while, CO varied from 0.19 to 1.20 ppm with a mean value of 0.51 ± 0.19 ppm during the study period. The concentrations of BC (8.37 μg m{sup −3}) and CO (0.67 ppm) were ~ 39% and ~ 55% higher during the dry months (October to March) than the wet months (April to September) suggesting that seasonal changes in meteorology and emission sources play an important role in controlling these species. The seasonal ΔBC/ΔCO ratios were highest (lowest) in the pre-monsoon (winter) 18.1 ± 1.4 μg m{sup −3} ppmv{sup −1} (12.6 ± 2.2 μg m{sup −3} ppmv{sup −1}) which indicate the combustion of biofuel/biomass as well as direct emissions from fossil fuel during the pre-monsoon season. The annual BC emission was estimated to be 2.72 Gg in and around Guwahati which is about 44% lower than the mega city ‘Delhi’ (4.86 Gg). During the study period, the annual mean radiative forcing (RF) at the top of the atmosphere (TOA) for clear skies of BC was + 9.5 Wm{sup −2}, however, the RF value at the surface (SFC) was − 21.1 Wm{sup −2} which indicates the net warming and cooling effects, respectively. The highest RF at SFC was in the month of April (− 30 Wm{sup −2}) which is coincident with the highest BC mass level. The BC atmospheric radiative forcing (ARF) was + 30.16 (annual mean) Wm{sup −2} varying from + 23.1 to + 43.8 Wm{sup −2}. The annual mean atmospheric heating rate (AHR) due to the BC aerosols was 0.86 K

  15. Genetic Damage of Root Tip Cells in Broad Bean Plant (Vicia faba) Induced by Water in Liao River Valley%辽河流域水诱发蚕豆根尖细胞遗传损伤的研究

    Institute of Scientific and Technical Information of China (English)

    张利红; 徐成斌; 陈忠林; 苏丹; 王家懿

    2009-01-01

    以辽河流域12个不同断面的河水为诱变剂,运用蚕豆根尖微核检测技术和染色体畸变实验方法,测定蚕豆根尖细胞的有丝分裂指数、微核率和染色体畸变率.结果表明:不同断面的河水均能降低蚕豆根尖细胞有丝分裂指数,能诱发较高频率的微核和染色体畸变,产生染色体断片、核突起和核碎裂.所有样点微核率和染色体畸变率均高于对照组.根据采样点水质污染指数分析町知,福德店水质属重度污染,东辽河、条子河、红庙子水质属中度污染,招苏台河水质属轻度污染.%Water in 12 sections of Liao River Valley was sampled as mutagen and micronucleus test and chromosome aberration assay were used to detect mitotic index,micronucleus ratio and chromosome aberration ratio of root tip cells in broad bean plant(Viciafaba).Results showed that water in different sections can decrease the mitotic index in Vicia faba root tip ceHs,induce higher raftos of either micronucleus or chromosome aberration and produce chromosomal segments,nuclear protuberances and fragments.Micronucleus ratio and chromosome aberration ratio in different sections were higher than those of the control group.Analysis of pollution index in 12 sections showed that water quality Was graded as heavy pollution in Fudedian River,moderate pollution in Dongliao River,Tiaozi River and Hongmiaozi River and light pollution in Zhaosutai River.

  16. On Chishui River Valley mental health status and personality characteristics of the children left behind%赤水河流域留守儿童心理健康状况与人格特征的关系探究

    Institute of Scientific and Technical Information of China (English)

    邵义萍

    2013-01-01

    Chishui River Valley children left behind lack of communication with their parents, as well as a lack of parent-child education and family education, which leads to personality characteristics and mental health compared with normal children with differences. To summarize the author of the main personality characteristics and psychological problems of children left behind in the Red River Basin, and put forward a strategy to improve such situation, hoping to be helpful.%  赤水河流域留守儿童与父母缺乏足够的交流,同时也缺乏亲子教育和家庭教育,这导致其人格特征和心理健康状况与正常儿童相比具有差异性。笔者对赤水河流域留守儿童的主要人格特点和心理问题加以总结,并提出了改善此类状况的策略,希望能有所帮助。

  17. Analysis on Relationships between Soil Salinization and Spectra in Manas River Valley%玛纳斯河流域土壤盐渍化现状及其与光谱关系研究

    Institute of Scientific and Technical Information of China (English)

    李娜; 吴玲; 王绍明; 夏军; 朱宏伟

    2011-01-01

    Taking Manas River Valley as an example, three landform types of alluvial proluvial fan, alluvial plain and delta were selected for the study targets, portable spectrometer was used to measure the soil spectral reflectance, combined with the statistical data of soil salinity, the soil salinity status characteristics and the relationship between soil spectrum in Manas River Basin were approached. The results showed that; in the studied region the composition of soil salinity has obvious regional characteristics; in a small number of spectral bands, the salt content and the dominant salt-ions of the three landfrom types are significantly correlated with the spectral reflectance. On this foundation, multiple linear regression model is established, thus providing a scientific basis for the establishment of spectral database and remote sensing monitoring of soil salin-ization in Mans River Valley.%以玛纳斯河流域为研究对象,选择冲积洪积扇、冲积平原和干三角洲3种主要地貌类型为研究区域,利用便携式光谱仪测量土壤光谱反射率,结合土壤盐分因子数据进行统计分析,探讨玛纳斯河流域土壤盐渍化现状特征及其与土壤光谱之间的关系.结果表明:研究区土壤盐分组成具有明显的地域性特点;在少数光谱波段,3种地貌类型的含盐量及占优势的盐离子均与光谱反射率呈显著相关,在此基础上,建立多元线性回归模型,为玛纳斯河流域地物光谱数据库的建立及土壤盐渍化的遥感监测提供科学依据.

  18. The chemistry of river-lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations

    Science.gov (United States)

    Szopińska, Małgorzata; Szumińska, Danuta; Polkowska, Żaneta; Machowiak, Katarzyna; Lehmann, Sara; Chmiel, Stanisław

    2016-07-01

    This study provides a description of water chemistry in river-lake systems located in central Mongolia, at the borderline of permafrost occurrence. The analysis involved water samples collected from two river-lake systems: Baydrag River-Böön Tsagaan Lake system, and Shargalyuut/Tuyn Rivers-Orog Lake system. In the water samples, ions and trace elements were detected and quantified. Additionally, the parameters of pH, electrical conductivity (SEC), total dissolved solids (TDS) and total organic carbon (TOC) were determined. Principal Component Analysis (PCA) was performed on the sample results. Water chemistry is mostly influenced by geochemical and hydrometeorological processes. Permafrost thawing could increase the concentration of nitrogen (NH4+, NO3-) as well as Na+ and Ca2+, Cl- and SO42 -. However, it may also be an effect of other factors such as livestock farming. Seasonal drying out of lakes (e.g., Lake Orog) may also influence water chemistry by deflation of evaporites from exposed lake beds and, at the same time, with lower concentration of chemical compounds in water. The PCA shows that water samples can be divided into two groups. The first group contains lake samples, where water chemistry is shaped by prevailing evaporation processes, whereas the second includes samples from rivers and springs. Water chemistry of the latter is predominantly influenced by geochemical and hydro-meteorological processes.

  19. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    Science.gov (United States)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to

  20. TDRS satellite over African Rift Valley, Kenya, Africa

    Science.gov (United States)

    1983-01-01

    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  1. Uranium favorability of tertiary sedimentary rocks of the Pend Oreille River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water logs

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the Pend Oreille River valley were investigated in a regional study to determine the favorability for potential uranium resources of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, chemical and mineralogical analyses of samples, and examination of available water well logs. The Box Canyon Dam area north of Ione is judged to have very high favorability. Thick-bedded conglomerates interbedded with sandstones and silty sandstones compose the Tiger Formation in this area, and high radioactivity levels are found near the base of the formation. Uranophane is found along fracture surfaces or in veins. Carbonaceous material is present throughout the Tiger Formation in the area. Part of the broad Pend Oreille valley surrounding Cusick, Washington, is an area of high favorability. Potential host rocks in the Tiger Formation, consisting of arkosic sandstones interbedded with radioactive shales, probably extend throughout the subsurface part of this area. Carbonaceous material is present and some samples contain high concentrations of uranium. In addition, several other possible chemical indicators were found. The Tiger-Lost Creek area is rated as having medium favorability. The Tiger Formation contains very hard, poorly sorted granite conglomerate with some beds of arkosic sandstone and silty sandstone. The granite conglomerate was apparently derived from source rocks having relatively high uranium content. The lower part of the formation is more favorable than the upper part because of the presence of carbonaceous material, anomalously high concentrations of uranium, and other possible chemical indicators. The area west of Ione is judged to have low favorability, because of the very low permeability of the rocks and the very low uranium content. (auth)

  2. Large depressions, thickened terraces, and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): Evidence of glauberite and halite interstratal karstification

    Science.gov (United States)

    Guerrero, Jesús; Gutiérrez, Francisco; Galve, Jorge P.

    2013-08-01

    In the studied reach of the Ebro Valley, the terrace and pediment sediments deposited over glauberite- and halite-bearing evaporites show local thickenings (> 50 m) recording dissolution-induced synsedimentary subsidence. Recent data on the lithostratigraphy of the evaporite sequence allow relating the alluvium thickenings with either halite or glauberite dissolution. The alluvium-filled dissolution basin underlying the youngest terraces (T8-T11) is ascribed to halite karstification; the top of a halite unit approximately 75 m thick is situated 40-15 m below the valley bottom. The thickenings of terrace (T1-T7) and pediment sediments are attributed to interstratal glauberite karstification: (1) Coincidence between the elevation range of the terraces and that of the glauberite-rich unit. Glauberite beds reach 30 and 100 m in single-bed and cumulative thickness, respectively. (2) The exposed bedrock underlying thickened alluvium shows abundant subsidence features indicative of interstratal karstification. The most common structure corresponds to hectometer-scale sag basins with superimposed collapses in the central sector of each basin. The subsided bedrock is frequently transformed into dissolution-collapse breccias showing a complete textural gradation, from crackle packbreccias to chaotic floatbreccias and karstic residues. (3) Paleokarst exposures show evidence of karstification confined to specific beds made up of secondary gypsum after precursory glauberite, partly dissolved and partly replaced. Despite the magnitude of the subsidence recorded by the thickened alluvium and unlike nearby tributaries, the terraces show a continuous and parallel arrangement indicating that the fluvial system was able to counterbalance subsidence by aggradation. A number of kilometer-size flat-bottom depressions have been developed in the valley margin, typically next to and inset into thickened terrace and pediment deposits. The subsidence structures exposed in artificial

  3. Extraction of Martian valley networks from digital topography

    Science.gov (United States)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  4. Species composition and diversity characteristics of Quercus franchetii communities in dry-hot valley of Jinsha River%金沙江干热河谷锥连栎群落物种组成与多样性特征

    Institute of Scientific and Technical Information of China (English)

    刘方炎; 王小庆; 李昆; 孙永玉; 张志翔; 张春华

    2012-01-01

    金沙江干热河谷元谋段残存的锥连栎群落中植物种类组成较为简单,共发现68种植物,隶属于35科60属,其中,禾本科、蝶形花科、菊科、唇形科等科植物占有较大优势;从植物生活型和功能型来看,群落内以草本植物和多年生植物数量居多,分别占所有植物种类的58.8%和63.2%.不同类型群落中,除了扭黄茅始终为各群落中最为重要的优势种之外,同一草本植物在不同群落中的作用和地位存在较大差异;群落物种多样性及相似性程度较为低下,其Shannon-Weiner指数在1.7~2.6之间,且与群落受干扰程度存在较大关联.%Species composition and diversity characteristics of different Quercus franchetii communities in dry-hot valley of Jinsha River were studied based on the plots data. The results showed that there was a simple plant species composition in remained Q. franchetii communities in Jinsha River dry-hot valley of YuanMou section. In communities,68 plant species were found,which belong to 35 families 60 genera,and Poaceae,Papilionaceae, Asteraceae,and Lamiaceae plants had a large advantage; in the plant life form and functional type,the majority of the plants within communities were herbs and perennials,which occupied respectively 58. 8% and 63. 2%. In Q. franchetii communities , excepted that Heteropogon contortus was eventually the most important dominant species, the same herb in different communities were quite different in the role and status. Simultaneously,Q. franchetii communities had lower species diversity and similarity,and Shannon-Weiner index was between 1. 7 and 2. 6,which was correlated with the degree of disturbance of communities.

  5. Flora y vegetación del valle superior del Rió Atuel (Mendoza-Argentina Flora and vegetation of the Upper Valley of the Atuel River (Mendoza-Argentina

    Directory of Open Access Journals (Sweden)

    Ernesto A Morici

    2010-06-01

    Full Text Available El valle superior del Río Atuel presenta variaciones altitudinales y topográficas, siendo un territorio de confluencia de elementos propios de las provincias fitogeográficas Andina, del Monte, de la estepa Patagónica y de la Payunia. En este trabajo se estudia su flora y vegetación, a través de censos florísticos siguiendo la metodología de Braun-Blanquet (1979. A partir de la matriz de especies por censos se determinó el espectro biológico ponderado y la diversidad florística. Además, se estimó la cobertura basal registrándose los porcentajes de vegetación, broza, suelo desnudo, roca y fragmentos de roca. El estudio se desarrolló en un área restringida a la vertiente norte del Río Atuel entre su intersección con la Ruta Nacional 40 y las inmediaciones de la Planta de Azufre. En los censos se registraron un total de 89 especies pertenecientes a 36 familias, siendo las más numerosas Asteraceae, Poaceae, Verbenaceae, Fabaceae y Solanaceae. El 96% de las especies son nativas y sólo el 4% exóticas. Se diferenciaron 15 comunidades: 12 matorrales, 1 pastizal, 1 herbazal y 1 estepa de cojines.In this study we present a description of the flora and vegetation of the upper valley of Rio Atuel, Mendoza Province. In this area, characteristic taxa fron the Andina, Monte, Payunia and Patagonia Phytogeographical Provinces overlap their ranges. Considering that Atuel river high valley shows relevant altitudinal and topographical variations and a confluence of typical components from Andina, Monte, Patagonia and Payunia phytogeographic provinces, we plained to study, flora and vegetation. Floristic censuses were performed according to Braun-Blanquet (1979 and the matrix at coverage species was used to obtain cover data, weighted biological spectrum and floristic diversity. Furthermore, basal cover was estimated and vegetation, litter, bare soil, stones and stone pieces were recorded. This research was developed in an area restricted to the

  6. 黑龙港流域油葵-夏玉米套播高效栽培模式研究%Research of Oil Sunflower and Summer Maize Interplanted Cultivation Mode in Heilonggang River Valley

    Institute of Scientific and Technical Information of China (English)

    李积铭; 宋聪敏; 李爱国; 李和平

    2014-01-01

    For against the serious shortage of groundwater due to drought and over-exploitation in Heilonggang river valley.According to the production and climatic characteristics of the area, within the region two major water-saving crops oil sunflower and summer maize were taking as the materials, the maize sowed on July 5 with rotation was using as control, in the interplanted conditions, the effects of different cultivation mode (60 cm of row spacing, 40 cm +80 cm of narrow and wide row spacing) and different sowing date (June 20, 25 and 30 of maize on economic benefit of unit area were studied.The results showed that in the condition of oil sunflower and summer maize interplanted, using the narrow and wide row spacing and sowed maize on June 25, in which the economic benefit of unit area was highest (40 080 yuan /hm2 ), in Heilonggang river valley, the cultivation mode of oil sunflower and summer maize interplanted could be used to partially replace the wheat and summer maize rotation mode with huge water consumption at present.%针对黑龙港流域干旱少雨、地下水资源由于超量开采而严重匮乏的局面,河北省农林科学院旱作农业研究所立足于黑龙港流域的生产和气候特点,以区域内两大主要节水作物---油葵和夏玉米为试验材料,以7月5日轮作直播玉米为对照,在套播条件下研究了不同种植模式(60 cm 等行距,40 cm +80 cm宽窄行)和玉米不同播期(6月20日、25日和30日)对单位面积经济效益的影响。结果表明:油葵-夏玉米套播时,采用宽窄行种植、6月25日播种玉米,单位面积经济效益最高,达到了40080元/hm2。在黑龙港流域可以采用油葵-夏玉米套播种植模式,部分替代目前耗水量巨大的小麦-夏玉米轮作模式。

  7. Evaluation and Analysis of Fruit Characters of Mango Germplasm Resources in the Nu River Valley%怒江流域杧果种质资源果实性状评价与分析

    Institute of Scientific and Technical Information of China (English)

    解德宏; 龙亚芹; 张翠仙; 陈于福; 尼章光; 张发明; 张永超; 杨恩聪

    2014-01-01

    During 2005 to 2011, mango germplasm of Nu River Valley were collected and evaluated, including fruit shape, fruit weight, fruit color, flesh color, embryonic, edible rate, soluble solids, flavor, and etc. The results showed that in the 50 mango germplasm investigation, whether it is from the fruit the size, color, embryo, there are some excellent germplasm in fruit quality traits; correlation analysis showed that the correlation coefficients of mango fruit weight, fruit length, fruit width, seed length were showed a significant positive correlation, the correlation coefficient and the edible rate between seed weight was positively correlated, soluble solids removal and fruit width and fruit thickness was negatively correlated, and the correlation coefficient between the other traits were not significantly related. Mango germplasm in Nu River valley has excellent characters of rich, these excellent characters has laid a good foundation for breeding and variety improvement of mango.%2005~2011年,对怒江流域杧果种质资源进行收集及鉴定评价(主要包括果实形状、果实重量、果皮颜色、果肉颜色、胚性、可食率、可溶性固形物和风味等)。结果表明:在调查的50份杧果种质资源中,无论是从果实的大小、颜色、胚性等方面都存在着一些优良的种质资源;在杧果果实品质性状间相关性分析发现,单果重、果实长度、果实宽度、种子长度间的相关系数均呈极显著正相关,可食率和种子重量间的相关系数呈显著正相关,可溶性固形物除与果宽和果厚呈显著负相关外,与其他性状间的相关系数均未呈现显著相关。怒江流域杧果种质资源存在着丰富的优异性状,这些优异性状为杧果的品种选育及品种改良创造了良好的基础。

  8. An evaluation of the evolution of the latest miocene to earliest pliocene bouse lake system in the lower Colorado river valley, southwestern USA

    Science.gov (United States)

    Spencer, J.E.; Pearthree, P.A.; House, P.K.

    2008-01-01

    The upper Miocene to lower Pliocene Bouse Formation in the lower Colorado River trough of the American Southwest was deposited in three basins - from north to south, the Mohave, Havasu, and Blythe Basins - that were formed by extensional fault ing in the early to middle Miocene. Fossils of marine, brackish, and freshwater organ isms in the Bouse Formation have been interpreted to indicate an estuarine environment associated with early opening of the nearby Gulf of California. Regional uplift since 5 Ma is required to position the estuarine Bouse Formation at present elevations as high as 555 m, where greater uplift is required in the north. We present a compilation of Bouse Formation elevations that is consistent with Bouse deposition in lakes, with an abrupt 225 m northward increase in maximum Bouse elevations at Topock gorge north of Lake Havasu. Within Blythe and Havasu Basins, maximum Bouse elevations are 330 m above sea level in three widely spaced areas and reveal no evidence of regional tilting. To the north in Mohave Basin, numerous Bouse outcrops above 480 m elevation include three widely spaced sites where the Bouse Formation is exposed at 536-555 m. Numerical simulations of initial Colorado River inflow to a sequence of closed basins along the lower Colorado River corridor model a history of lake filling, spilling, evaporation and salt concentration, and outflow-channel incision. The simulations support the plausibility of evaporative concentration of Colorado River water to seawater-level salinities in Blythe Basin and indicate that such salinities could have remained stable for as long as 20-30 k.y. We infer that fossil marine organ isms in the Bouse Formation, restricted to the southern (Blythe) basin, reflect coloniza tion of a salty lake by a small number of species that were transported by birds.

  9. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas, 1918-1998, with simulations of water levels caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Reed, Thomas B.

    2003-01-01

    A digital model of the Mississippi River Valley alluvial aquifer in eastern Arkansas was used to simulate ground-water flow for the period from 1918 to 2049. The model results were used to evaluate effects on water levels caused by demand for ground water from the alluvial aquifer, which has increased steadily for the last 40 years. The model results showed that water currently (1998) is being withdrawn from the aquifer at rates greater than what can be sustained for the long term. The saturated thickness of the alluvial aquifer has been reduced in some areas resulting in dry wells, degraded water quality, decreased water availability, increased pumping costs, and lower well yields. The model simulated the aquifer from a line just north of the Arkansas-Missouri border to south of the Arkansas River and on the east from the Mississippi River westward to the less permeable geologic units of Paleozoic age. The model consists of 2 layers, a grid of 184 rows by 156 columns, and comprises 14,118 active cells each measuring 1 mile on a side. It simulates time periods from 1918 to 1998 along with further time periods to 2049 testing different pumping scenarios. Model flux boundary conditions were specified for rivers, general head boundaries along parts of the western side of the model and parts of Crowleys Ridge, and a specified head boundary across the aquifer further north in Missouri. Model calibration was conducted for observed water levels for the years 1972, 1982, 1992, and 1998. The average absolute residual was 4.69 feet and the root-mean square error was 6.04 feet for the hydraulic head observations for 1998. Hydraulic-conductivity values obtained during the calibration process were 230 feet per day for the upper layer and ranged from 230 to 730 feet per day for the lower layer with the maximum mean for the combined aquifer of 480 feet per day. Specific yield values were 0.30 throughout the model and specific storage values were 0.000001 inverse-feet throughout

  10. Uranium favorability of tertiary sedimentary rocks of the western Okanogan highlands and of the upper Columbia River valley, Washington. [Measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples; no known uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Marjaniemi, D.K.; Robins, J.W.

    1975-08-01

    Tertiary sedimentary rocks in the northern portions of the western Okanogan highlands and in the upper Columbia River valley were investigated during a regional study to determine the favorability for potential uranium resources of the Tertiary sedimentary rocks of northeastern Washington. This project involved measurement and sampling of surface sections, collection of samples from isolated outcrops, and chemical and mineralogical analyses of samples. No portion of the project area of this report is rated of high or of medium favorability for potential uranium resources. Low favorability ratings are given to Oroville, Tonasket, and Pine Creek areas of the Okanogan River valley; to the Republic graben; and to the William Lakes, Colville, and Sheep Creek areas of the upper Columbia River valley. All these areas contain some fluvial, poorly sorted feldspathic or arkosic sandstones and conglomerates. These rocks are characterized by very low permeability and a consistently high siliceous matrix suggesting very low initial permeability. There are no known uranium deposits in any of these areas, and low level uranium anomalies are rare.

  11. Groundwater links between Kenyan Rift Valley lakes

    OpenAIRE

    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong

    2006-01-01

    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  12. Evolution of Nitrogen, Phosphorus and Potassium Fertilizer Application Rates in Cotton Fields and lts lnfluences on Cotton Yield in the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    Naiyin XU; Jian Ll

    2014-01-01

    Objective] The historical evolution pattern of nitrogen (N), phosphorus (P) and potassium (K) fertilizer application rate and its effects on lint cotton yield were explored to provide the theoretical basis for reasonable fertilizer management strate-gy in the cotton planting region of the Yangtze River Val ey. [Method] GGE biplot analysis method was adopted to analyze the correlation among N, P and K fertilizer application rate and lint cotton yield with the dataset of national cotton regional trials of the Yangtze River Val ey during 1991-2013. The linear and nonlinear regression analysis method was used to reveal the evolution of the fertilizer applying patterns, and analyze the effects of N, P, K application rates on cotton lint yield. [Result] The application rates of N, P and K fertilizer presented highly significant positive corre-lation with lint cotton yield, among which the potassium fertilizer was the strongest relative factor with lint cotton yield, fol owed by phosphorus fertilizer, while nitrogen fertilizer was the weakest factor. The application rate of nitrogen fertilizer was relat-ed with the test year in the pattern of a quadratic function, while phosphate and potassium had progressive increase linear relation with the test year in the cotton planting region of the Yangtze River Val ey. Meanwhile, cotton lint yield was in re-sponse to nitrogen fertilizer content increase with a quadratic parabola function, and increased with the applying phosphate fertilizer and potassium fertilizer content with linearly increasing function. [Conclusion] The increasing application amount of N, P and K fertilizer was general y beneficial to cotton yield improvements, however, ex-orbitant applying nitrogen fertilizer was unfavorable for cotton production, and a reasonable mixture formula of N, P and K fertilizer was better in terms of cotton yield-increasing effect.

  13. Evaluation on the High Yielding, Stability and Comprehensive Performances of Check Cultivars in National Cotton Regional Trials in the Yangtze River Valley

    Institute of Scientific and Technical Information of China (English)

    Shiqiao JIN; Naiyin XU

    2014-01-01

    Objective] This study was to analyze the high yielding, stability, adaptabil-ity and main characteristics of check cultivars in national cotton regional trials in the Yangtze River Val ey in 2000-2013, with the aim to provide theoretical basis for the reasonable selection of check cultivars for cotton regional trials. [Method] GGE biplot analysis method was used to carry out the intensive analysis and comprehensive comparisons on the performances and differences of the 9 major characters of check cultivars, namely, lint cotton yield , stability, and other main traits including bol weight, bol number, lint percentage, fiber length, fiber strength, micronaire val-ue, plant height and seed index. [Result] Ezamian 10 was suitable in the majority of cotton planting regions in the Yangtze River Val ey, with the best high yielding abili-ty and perfect yield stability. The yielding ability of Xiangzamian 8 ranked the sec-ond, but its stability was the poorest. Xiangzamian 8 was of the specific adaptive cultivar with relatively good performance in high yielding but the poorest stability. The suitable planting areas of Xiangzamian 8 were limited to the cotton planting re-gion around Dongting Lake in Hunan province, Poyang Lake in Jiangxi Province, the Coastal region in Jiangsu Province and Wuhan district in Hubei Province. Xi-angzamian 2 performanced poorer in both yielding and stability, while Simian 3 ranked first in stability but the last in yielding ability. The dominant character of Xi-angzamian 8 and Xiangzamian 2 were high cotton plants and big bol s. Simian 3 performanced super in lint percentage and fiber length. Ezamian 10 was strong in cotton bol formation ability, lint cotton yielding, fiber strength and seed size, as wel as high micronaire value. [Conclusion] The outstanding performance of Ezamian 10 in high and stable yield in the Yangtze River Val ey in recent years has effectively promoted the high yielding ability of candidate varieties in cotton regional

  14. 岷江上游干旱河谷旱地土壤斥水性特征初步研究%Preliminary Study on the Characteristics of Soil Repellency in the Dry Valley of Minjiang River

    Institute of Scientific and Technical Information of China (English)

    秦纪洪; 赵利坤; 孙辉; 李沙

    2012-01-01

    土壤斥水性是土壤颗粒不易被水滴浸润的现象,对土壤水分特征曲线、土壤溶质运移、土壤优先流、土壤导水率以及地表径流和土壤侵蚀等具有重要影响。研究结果表明,3月份岷江上游干旱河谷0-5cm土层具斥水性的土壤在空间上的分布概率约为34%,其中强度斥水性土壤分布比例为5%;在时间分布上,土壤斥水性主要表现在7月,轻度以下斥水性概率为91%,强度以上斥水性概率为58%;从各粒级土壤斥水性的研究结果来看,斥水性与土壤粒级呈显著负相关,粒级越小,土壤斥水性越高。因此,岷江上游干旱河谷旱地土壤斥水性具有明显的时空分布差异,并且粒级越小土壤斥水性越强,7月份土壤表层的土壤斥水性强度与分布比例高。这可能是导致干旱河谷严重水土流失、土壤砂砾化的一个重要原因。%Soil water repellency is a widespread hydrologic phenomenon in different soils all over the world,and its implications encompass hysteresis of the water retention curve,unstable wetting fronts with fingered flow,reduced infiltration capacity as compared to wettable soils,and accelerated hillslope runoff and erosion.The results show that probability of 0-5 cm layer of soil with slight and strong repellency is about 34% in total,of which soil with strong water repellency is 5% in the dry valley of Minjiang River in March.In July,the probability of soil with slight and strong repellency is 91%,in which 58% is strong water repellent soil.The results also show that soil water repellency is significantly negatively related to the ratio of soil particle size.It can be concluded that there are apparently temporal and spatial variability for soil water repellency and water repellent soil distribution in the dry valley of Minjiang River.A higher ratio of strong soil water repellency exhibits in July of monsoon in topsoil,and in soil with higher proportion of fine fraction,which may be one of

  15. 沱江流域人工针叶林演替系列的物种多样性%Species diversity in successional series of artificial Coniferous forest in Tuojiang River Valley

    Institute of Scientific and Technical Information of China (English)

    陈文年; 卿东红; 张轩波

    2011-01-01

    采用空间代替时间的方法研究了沱江流域人工墨西哥柏林演替系列上的物种多样性.结果表明,随着时间的推移,乔木层的物种多样性逐渐增加,灌木层和草本层的物种多样性逐渐降低,群落总体物种多样性也逐渐降低.20龄林各层次的物种多样性和当地的针阔叶混交林已很接近,这说明人工墨西哥柏林通过针阔叶混交林演替成地带性的常绿阔叶林的趋势很明显,墨西哥柏作为当地速生的造林绿化树种是适合的.%By using the substitution of space for time,species diversity in successional series of Cupressus lusitanica Mill stand in Tuojiang river valley was studied.As time went on,species diversity in tree layer increased,whereas species diversity in shrub layer

  16. 萨拉乌苏河流域萨拉乌苏组砂丘砂沉积特征%Sedimentary characteristics of paleo-aeolian dune sands of Salawusu Formation in the Salawusu River Valley

    Institute of Scientific and Technical Information of China (English)

    欧先交; 杨艺; 刘宇飞; 李保生; 靳鹤龄; 董光荣; 章典; 吴正; 温小浩; 曾兰华; 欧阳椿陶

    2008-01-01

    The Salawusu Formation of Milanggouwan section in Salawusu River Valley in-cludes 7 layers of paleo-mobile dune sands, and 4 layers of paleo-fixed and semi-fixed dune sands. Their structures have been observed and their grain size, surface textural features and several main chemical elements have been analyzed. The results showed that: 1) Some of the aeolian structural characteristics of these dune sands are similar to that of the recent dune sands. 2) They are also similar to the recent dune sands in grain size components, and pa-rameters of Mz, σ, Sk and Kg, as well as in several main chemical components. 3) The scattergrams of Mz-σ and SiO2--Al2O3+TOFE and the probability curves of grain size showed that these paleo-dune sands are different from paleosols and fluvio-lacustrine facies, but are consistency with recent dune sands. 4) Quartz sands have well roundness and surface tex-tural features such as dish-shaped pits, crescent-shaped pits, pockmarked pits, upturnedcleavage plates, siliceous precipitates and siliceous crevasses, indicating that they had been carried for a long time by the wind. As the 11 layers of paleo-dune sands possess the aeolian characteristics in structure, grain size, surface textural features and chemical elements, the origin of their formation should be attributed to eolation.

  17. Interglacial Extension of the Boreal Forest Limit in the Noatak Valley, Northwest Alaska: Evidence from an Exhumed River-Cut Bluff and Debris Apron

    Science.gov (United States)

    Edwards, M.E.; Hamilton, T.D.; Elias, S.A.; Bigelow, N.H.; Krumhardt, A.P.

    2003-01-01

    Numerous exposures of Pleistocene sediments occur in the Noatak basin, which extends for 130 km along the Noatak River in northwestern Alaska. Nk-37, an extensive bluff exposure near the west end of the basin, contains a record of at least three glacial advances separated by interglacial and interstadial deposits. An ancient river-cut bluff and associated debris apron is exposed in profile through the central part of Nk-37. The debris apron contains a rich biotic record and represents part of an interglaciation that is probably assignable to marine-isotope stage 5. Pollen spectra from the lower part of the debris apron closely resemble modern samples taken from the Noatak floodplain in spruce gallery forest, and macrofossils of spruce are also present at this level. Fossil bark beetles and carpenter ants occur higher in the debris apron. Mutual Climatic Range (MCR) estimates from the fossil beetles suggest temperatures similar to or warmer than today. Together, these fossils indicate the presence of an interglacial spruce forest in the western part of the Noatak Basin, which lies about 80 km upstream of the modern limit of spruce forest.

  18. Evidence of late glacial runoff in the lower Mississippi Valley

    Science.gov (United States)

    Saucier, Roger T.

    Thousands of cubic kilometers of massive coarse-grained glacial outwash underlie the alluvial plain of the Lower Mississippi Valley between Cairo, Illinois, and the Gulf of Mexico. However, valley trains deposited by braided streams characterize less than one-third of the valley area, and those attributable to runoff from the Laurentide Ice Sheet cover less than 15,000 km2, mostly in the St. Francis Basin segment of the valley. There they form a series of subdued terraces that reflect episodes of meltwater release and possibly catastrophic flood events. Radiocarbon-dated sediment cores establish that the initial runoff entered the basin about 16.3 ka BP and continued without a significant lull for about 5000 years. The distribution of archeological sites tends to support an effective brief cessation of runoff to the valley about 11.0 ka BP when meltwater is thought to have been diverted from the Mississippi River Valley to the St. Lawrence Valley. Both radiocarbon dates and archeological evidence document a final pulse of outwash to the (Lower) Mississippi Valley about 10.0 ka BP when the Mississippi River occupied Thebes Gap near Cairo and created the Charleston Fan. All outwash deposition ended, and the river adopted a meandering regime not later than 9.8 ka BP.

  19. 岷江上游干旱河谷区岷江柏对不同海拔的响应%Effects of Different Altitudes on Growth Condition of Cupressus chengiana in the Arid River Valleys in the Upper Reaches of the Minjiang River

    Institute of Scientific and Technical Information of China (English)

    施广

    2011-01-01

    在岷江上游干旱河谷区通过设置不同海拔梯度,对土壤水分、岷江柏生理生化及生长指标进行了分析,旨在探索干旱河谷区主要造林树种对逆境的响应,为这一地区岷江柏人工林的营造提供理论和技术支撑。研究结果表明:随海拔的升高,岷江柏的光合速率、水分利用率、SOD活性、丙二醛(MDA)含量、可溶性糖含量、脯氨酸含量、苗高和地径年生长量的蒸腾速率、可溶性蛋白含量表现为先升高再下降的趋势;而POD活性和叶绿素含量则是随着海拔的升高呈不断下降的变化趋势。从其生长指标和生理指标来看,岷江柏在海拔2 200 m~2 300 m之间生长最好。因此,在该区营造人工岷江柏林的时候,应该优先选择这一地段。%Cupressus chengiana had been cultivated at different altitudes in arid valleys of the Minjiang River for 2 years.The soil moisture,plant physiology,biochemistry and growth were analyzed to explore the response of the main afforestation tree species to adversity in arid valleys and provide theory and technical guidance for the cultivation of Cupressus chengiana plantations in this area.The reseach results were as follows:with the increase of elevation,the photosynthetic rate,water use efficiency,the ativity of SOD,the content of MDA,soluble sugar and proline and the growth increment of Cupressus chengiana decreased firstly and then increased.While the transpiration rate and soluble protein increased firstly and then decreased.And the activity of POD and chlorophyll's content decreased with the increase of elevation.The results showd that the most suitable growth area of Cupressus chengiana in arid valleys of the Minjiang River was between 2 200 meter and 2 300 meter.Therefore Cupressus chengiana could widely planted in this area.

  20. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  1. 雅鲁藏布江米林宽谷段爬升沙丘粒度分异特征研究%Variation of grain sizes on a mountain climbing dune in Mainling wide valley, Yarlung Zangbo River

    Institute of Scientific and Technical Information of China (English)

    周娜; 张春来; 刘永刚

    2012-01-01

    Mountain climbing dunes are widely distributed in the Mainling wide valley of Yarlung Zangbo River, southern Qinghai-Tibet Plateau. The climbing dunes studied are located on the right bank of Yarlung Zangbo River at an S-shaped meander, west of Wolong town. Samples are collected according to dune climbing height and sites of super- imposed dunes along prevailing wind (NE). As parts of the aeolian sand dune system in the valley, sediments are also sampled on dunes developing on the alluvial flat and terrace. Grain size analysis shows that sediments of the mountain climbing dune are generally char- acterized by fine and very fine sands (2.07 to 3.71φ), moderately well sorting (0.20 to 1.41φ), fine skewness (-0.33 to 0.61) and multi-mode