WorldWideScience

Sample records for kam wing chan

  1. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  2. Mineral pigments at Huaca Tacaynamo (Chan Chan, Peru)

    OpenAIRE

    Brooks, William E.; Piminchumo, Víctor; Suárez, Héctor; Jackson, John C.; McGeehin, John P.

    2014-01-01

    X-ray diffraction analyses of five samples of pigments from a recently excavated mural at the archaeological site of Huaca Tacaynamo, a part of the Chan Chan archaeological complex, northern Peru, show that minerals related to metal occurrences known to have been exploited by ancient Andeans were also used as pigments. These minerals include: atacamite [Cu2Cl(OH3)] for green; azurite [Cu3(CO3)2(OH)2] for blue; calcite [CaCO3] for white; cinnabar [HgS] for red; and goethite [HFeO2] for yellow....

  3. Exile: Rupture and Continuity in Jean Vanmai's Chan Dang and Fils de Chan Dang

    Directory of Open Access Journals (Sweden)

    Tess Do

    2005-08-01

    Full Text Available This essay focuses on the work of the New Caledonian-born writer Jean Vanmai. His first two novels, Chan Dang and Fils de Chan Dang, describe the working conditions and exilic existence of the little known Chan Dang, the voluntary workers from Tonkin (North Vietnam who moved to New Caledonia many decades ago. Descended himself from a Chan Dang family, Vanmai wishes to preserve the memory of the Chan DangDang’s past. In writing the story of the Chan Dang, Vanmai sees himself as the guardian of the Chan Dang’s collective memory, a keeper and defender of their common past. The paper argues that Vanmai's depictions of the Chan Dang have two important effects. First, by sharing with other Vietnamese migrants/refugees the life and experiences of the Tonkinese voluntary workers in New Caledonia, Vanmai breaks the silence surrounding colonial exile and exploitation and provides a full account of the Chan Dang’s exile that can be integrated into the contemporary history of Vietnamese migration. Second, by using different narrative resolutions for each of his protagonists, Vanmai stresses the need to fulfil one’s filial duty among the young Vietnamese generations. With this symbolic filial act, Vanmai pays homage to his Vietnamese ancestors and earns himself a honourable title, that of a true dutiful "son of Chan Dang".

  4. Non-existence of KAM Torus

    Institute of Scientific and Technical Information of China (English)

    Chong Qing CHENG

    2011-01-01

    Given an integrable Hamiltonian ho with n-degrees of freedom and a Diophantine frequency w, then, arbitrarily close to ho in the Cr topology with r < 2n, there exists an analytical Hamiltonian h∈ with no KAM torus of rotation vector w. In contrast with it, KAM tori exist if perturbations are small in Cr topology with r > 2n.

  5. KAM Stability and Celestial Mechanics

    CERN Document Server

    Celletti, A

    2004-01-01

    KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems" for ``observable" values of the perturbation parameters. Here, we consider the Restricted, Circular, Planar, Three-Body Problem (RCPTBP),i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small the RCPTBP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is ne...

  6. The Chan-Vese Algorithm

    CERN Document Server

    Cohen, Rami

    2011-01-01

    Segmentation is the process of partitioning a digital image into multiple segments (sets of pixels). Such common segmentation tasks including segmenting written text or segmenting tumors from healthy brain tissue in an MRI image, etc. Chan-Vese model for active contours is a powerful and flexible method which is able to segment many types of images, including some that would be quite difficult to segments in means of "classical" segmentation - i.e., using thresholding or gradient based methods. This model is based on the Mumford-Shah functional for segmentation, and is used widely in the medical imaging field, especially for the segmentation of the brain, heart and trachea. The model is based on an energy minimization problem, which can be reformulated in the level set formulation, leading to an easier way to solve the problem. In this project, the model will be presented (there is an extension to color (vector-valued) images, but it will not be considered here), and Matlab code that implements it will be int...

  7. Results from KamLAND-Zen

    CERN Document Server

    ,

    2014-01-01

    KamLAND-Zen reports on a preliminary search for neutrinoless double-beta decay with ^{136}Xe based on 114.8 live-days after the purification of the xenon loaded liquid scintillator. In this data, the problematic ^{110m}Ag background peak identified in previous searches is reduced by more than a factor of 10. By combining the KamLAND-Zen pre- and post-purification data, we obtain a preliminary lower limit on the 0\

  8. Low Background Phase of KamLAND

    Science.gov (United States)

    Keefer, Gregory

    2008-04-01

    The KamLAND collaboration operates a 1 kton liquid scintillation detector in the Kamioka mine in Japan. KamLAND's main scientific results are the precision measurement of the solar δm^2 utilizing reactor anti-neutrinos and first evidence for the observation of geologically produced anti-neutrinos. The KamLAND collaboration has been working toward upgrading the detector for a low background phase. During the spring of 2007, we performed the first phase of purification by circulating 1.3 ktons of KamLAND liquid scintillator through a newly developed distillation and purging system. The ultimate goal of purification is to allow for a direct measurement of the 862 keV, ^7Be neutrinos originating from the Sun. A description of the purification process, liquid scintillator quality control measures, and detector monitoring will be presented. The achieved background reduction after this first phase of purification and planned future work on KamLAND will be discussed.

  9. Improved KAM estimates for the Siegel radius

    Energy Technology Data Exchange (ETDEWEB)

    Liverani, C.; Turchetti, G.

    1986-12-01

    For the Siegel center problem the authors explore the possibility of improving the KAM estimates, with a view to possible extensions to Hamiltonian systems. The use of a suitable norm and explicit perturbative computations allow estimates to within a factor 2 of the Siegel radius for the quadratic map.

  10. KamLAND Results and Future

    Science.gov (United States)

    Mitsui, Tadao; KamLAND Collaboration

    2011-12-01

    KamLAND results, current status, and near-future plans are reviewed. For reactor and geoneutrino physics, reduction of the systematic uncertainties is underway, while taking subsequent data. For the detection of 7Be solar neutrinos, purification of the scintillator by distillation will start soon.

  11. KamLAND's precision neutrino oscillation measurements

    Science.gov (United States)

    Decowski, M. P.

    2016-07-01

    The KamLAND experiment started operation in the Spring of 2002 and is operational to this day. The experiment observes signals from electron antineutrinos from distant nuclear reactors. The program, spanning more than a decade, allowed the determination of LMA-MSW as the solution to the solar neutrino transformation results (under the assumption of CPT invariance) and the measurement of various neutrino oscillation parameters. In particular, the solar mass-splitting Δ m212 was determined to high precision. Besides the study of neutrino oscillation, KamLAND started the investigation of geologically produced antineutrinos (geo-ν‾e). The collaboration also reported on a variety of other topics related to particle and astroparticle physics.

  12. JACKIE CHAN 龙的心(上)

    Institute of Scientific and Technical Information of China (English)

    轶凡

    2009-01-01

    在当今国际影坛,没有人不知道"Jackie Chan"这个名字。他是功夫绝顶的武术高手,他是耀眼夺目的国际巨星;他将惊叹与欢笑留给观众,他把名字印刻在星光大道;他是一个有血有肉的普通中国人,他用自己的功夫混合着汗水将中华民族的侠义精神发挥得淋漓尽致;他是成龙,永远的中国龙!

  13. Coal and cremation at the Tschudi burn, Chan Chan, Northern Peru

    Science.gov (United States)

    Brooks, W.E.; Galvez, Mora C.; Jackson, J.C.; McGeehin, J.P.; Hood, D.G.

    2008-01-01

    Analyses of a 20-30 cm thick, completely combusted ash at the 25 ?? 70 m Tschudi burn at Chan Chan, northern Peru??, contain 52-55 wt% SiO2, 180-210 ppm zirconium and are consistent with coal ash. Soil geochemistry across the burn showed elevated calcium and phosphorus content, possible evidence for reported human cremation. A calcined, 5 g, 4.5 cm skull fragment recovered from the burn was confirmed as human by protein radioimmunoassay (pRIA). X-ray diffraction showed that the bone had been heated to 520??C. The burn took place c. ad 1312-1438 based on interpretation of a 14C date on carbonized plant tinder. ?? 2008 University of Oxford.

  14. Geometry of KAM tori for nearly integrable Hamiltonian systems

    NARCIS (Netherlands)

    Broer, Hendrik; Cushman, Richard; Fassò, Francesco; Takens, Floris

    2007-01-01

    We obtain a global version of the Hamiltonian KAM theorem for invariant Lagrangian tori by gluing together local KAM conjugacies with the help of a partition of unity. In this way we find a global Whitney smooth conjugacy between a nearly integrable system and an integrable one. This leads to the pr

  15. A Hamiltonian KAM theorem for bundles of Lagrangean tori

    NARCIS (Netherlands)

    Broer, HW; Cushman, RH; Fasso, F; Dumortier, F; Broer, H; Mawhin, J; Vanderbauwhede, A; Lunel, SV

    2005-01-01

    The classical KAM theorem deals with Lagrangean invariant tori in nearly integrable Hamiltonian systems. The stability formulation of the KAM theorem states that, when restricting to a large measure Diophantine "Cantor set" of such tori, the integrable approximation is smoothly conjugate to the near

  16. Solar Neutrino Oscillation Parameters after KamLAND

    CERN Document Server

    Goswami, S; Choubey, S; Goswami, Srubabati; Bandyopadhyay, Abhijit; Choubey, Sandhya

    2003-01-01

    We explore the impact of the data from the KamLAND experiment in constraining neutrino mass and mixing angles involved in solar neutrino oscillations. In particular we discuss the precision with which we can determine the the mass squared difference $\\Delta m^2_{solar}$ and the mixing angle $\\theta_{solar}$ from combined solar and KamLAND data. We show that the precision with which $\\Delta m^_{solar}$ can be determined improves drastically with the KamLAND data but the sensitivity of KamLAND to the mixing angle is not as good. We study the effect of enhanced statistics in KamLAND as well as reduced systematics in improving the precision. We also show the effect of the SNO salt data in improving the precision. Finally we discuss how a dedicated reactor experiment with a baseline of 70 km can improve the $\\theta_{solar}$ sensitivity by a large amount.

  17. Kõrgharidust tõukab tagant kvaliteet / Cecilia Ka Yuk Chan

    Index Scriptorium Estoniae

    Chan, Cecilia Ka Yuk

    2014-01-01

    Õppekvaliteedi kindlustamise vajadusest ja oma kogemusest räägib Hongkongi ülikooli õppimise ja õpetamise täiustamise keskuse abiprofessor dr Chan Tartu ülikoolis õppeuuenduskonverentsil „Kõrgharidus 2020”

  18. Kõrgharidust tõukab tagant kvaliteet / Cecilia Ka Yuk Chan

    Index Scriptorium Estoniae

    Chan, Cecilia Ka Yuk

    2014-01-01

    Õppekvaliteedi kindlustamise vajadusest ja oma kogemusest räägib Hongkongi ülikooli õppimise ja õpetamise täiustamise keskuse abiprofessor dr Chan Tartu ülikoolis õppeuuenduskonverentsil „Kõrgharidus 2020”

  19. Kes kardab Park Chan-Wooki? / Karlo Funk

    Index Scriptorium Estoniae

    Funk, Karlo, 1971-

    2007-01-01

    Vägivalla ajendite teemadel. USA meedia süüdistas peale Virginia koolitulistamist filmikunsti. Seoseid ja/või põhjusi otsiti korealase Park Chan-Wooki filmist "Vana poiss" ("Old Boy") ja John Woo filmidest

  20. Kes kardab Park Chan-Wooki? / Karlo Funk

    Index Scriptorium Estoniae

    Funk, Karlo, 1971-

    2007-01-01

    Vägivalla ajendite teemadel. USA meedia süüdistas peale Virginia koolitulistamist filmikunsti. Seoseid ja/või põhjusi otsiti korealase Park Chan-Wooki filmist "Vana poiss" ("Old Boy") ja John Woo filmidest

  1. KamLAND results and the radiogenic terrestrial heat

    CERN Document Server

    Fiorentini, G; Mantovani, F; Ricci, B; Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio; Ricci, Barbara

    2005-01-01

    We find that recent results from the KamLAND collaboration on geologically produced antineutrinos, N(U+Th) = 28+16-15 events, correspond to a radiogenic heat production from Uranium and Thorium decay chains H(U+Th) = 38+35-33 TW. The 99% confidence limit on the geo-neutrino signal translates into the upper bound H(U+Th) < 162 TW, which is much weaker than that claimed by KamLAND, H(U+Th) < 60 TW, based on a too narrow class of geological models. We also performed an analysis of KamLAND data including recent high precision measurements of the C13(\\alpha,n)O16 cross section. The result, N(U+Th) = 31+14-13, corroborates the evidence (approx 2.5\\sigma) for geo-neutrinos in KamLAND data.

  2. Neutrino Oscillation Parameters After High Statistics KamLAND Results

    CERN Document Server

    Bandyopadhyay, Abhijit; Goswami, Srubabati; Petcov, S T; Roy, D P

    2008-01-01

    We do a re-analysis to asses the impact of the results of the Borexino experiment and the recent 2.8 KTy KamLAND data on the solar neutrino oscillation parameters. The current Borexino results are found to have no impact on the allowed solar neutrino parameter space. The new KamLAND data causes a significant reduction of the allowed range of $\\Delta m^2_{21}$, determining it with an unprecedented precision of 8.3% at 3$\\sigma$. The precision of $\\Delta m^2_{21}$ is controlled practically by the KamLAND data alone. Inclusion of new KamLAND results also improves the upper bound on $\\sin^2\\theta_{12}$, but the precision of this parameter continues to be controlled by the solar data. The third mixing angle is constrained to be $\\sin^2\\theta_{13} < 0.063$ at $3\\sigma$ from a combined fit to the solar, KamLAND, atmospheric and CHOOZ results. We also address the issue of how much further reduction of allowed range of $\\Delta m^2_{21}$ and $\\sin^2\\theta_{12}$ is possible with increased statistics from KamLAND. We ...

  3. Stability of T.Chan's Preconditioner from Numerical Range

    Institute of Scientific and Technical Information of China (English)

    Cheman Cheng; Xiaoqing Jin; Vaikuong Sin

    2007-01-01

    A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan's preconditioner cu(An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.

  4. Non recursive proof of the KAM theorem Report-no 93-4-FISROM

    CERN Document Server

    Gallavotti, G; Gallavotti, Giovanni; Gentile, Guido

    1993-01-01

    Abstract: A selfcontained proof of the KAM theorem in the Thirring model is discussed, completely relaxing the ``strong diophantine property'' hypothesis used in previous papers. Keywords: \\it\\ KAM, invariant tori, classical mechanics, perturbation theory, chaos

  5. Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems

    Science.gov (United States)

    Kapela, Tomasz; Simó, Carles

    2017-03-01

    We set up a methodology for computer assisted proofs of the existence and the KAM stability of an arbitrary periodic orbit for Hamiltonian systems. We give two examples of application for systems with two and three degrees of freedom. The first example verifies the existence of tiny elliptic islands inside large chaotic domains for a quartic potential. In the 3-body problem we prove the KAM stability of the well-known figure eight orbit and two selected orbits of the so called family of rotating eights. Some additional theoretical and numerical information is also given for the dynamics of both examples.

  6. KamLAND, solar antineutrinos and the solar magnetic field

    CERN Document Server

    Chauhan, B C; Torrente-Lujan, E; Chauhan, Bhag C.; Pulido, Joao

    2003-01-01

    In this work the possibility of detecting solar electron antineutrinos produced by a solar core magnetic field from the KamLAND recent observations is investigated. We find a scaling of the antineutrino probability with respect to the magnetic field profile in the sense that the same probability function can be reproduced by any profile with a suitable peak field value. In this way the solar electron antineutrino spectrum can be unambiguosly predicted. We use this scaling and the negative results indicated by the KamLAND experiment to obtain upper bounds on the solar electron antineutrino flux. We get $\\phi_{\\bar\

  7. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  8. Regularization of subsolutions in discrete weak KAM theory

    CERN Document Server

    Bernard, Patrick

    2012-01-01

    We expose different methods of regularizations of subsolutions in the context of discrete weak KAM theory. They allow to prove the existence and the density of $C^{1,1}$ subsolutions. Moreover, these subsolutions can be made strict and smooth outside of the Aubry set.

  9. Reactor on-off antineutrino measurement with KamLAND

    NARCIS (Netherlands)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, A.; Xu, B.D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Yoshida, S.; Piepke, A.; Banks, T.I.; Fujikawa, B.K.; Han, K.; O'Donnell, T.; Berger, B.E.; Learned, J.G.; Matsuno, S.; Sakai, M.; Efremenko, Y.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2013-01-01

    The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor ν¯e flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor ν¯e oscillation analysis. The data set also has improved sensitivi

  10. Analysis of Future KamLAND and Gadolinium Doped SK

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, Sandhya [INFN and SISSA, Trieste (Italy)

    2005-12-15

    We probe in detail the precision expected in the measurement of {delta}m{sub 21}{sup 2} and sin{sup 2}{theta}{sub 12} in the SNO, KamLAND, the proposed SK-Gd and a reactor experiment tuned to the SPMIN.

  11. An infinite-dimensional weak KAM theory via random variables

    KAUST Repository

    Gomes, Diogo A.

    2016-08-31

    We develop several aspects of the infinite-dimensional Weak KAM theory using a random variables\\' approach. We prove that the infinite-dimensional cell problem admits a viscosity solution that is a fixed point of the Lax-Oleinik semigroup. Furthermore, we show the existence of invariant minimizing measures and calibrated curves defined on R.

  12. Neutrino geophysics with KamLAND and future prospects

    CERN Document Server

    Enomoto, S; Inoue, K; Suzuki, A

    2005-01-01

    The Kamioka liquid scintillator anti-neutrino detector (KamLAND) is a low-energy and low-background neutrino detector which could be a useful probe for determining the U and Th abundances of the Earth. We constructed a model of the Earth in order to evaluate the rate of geologically produced anti-neutrinos (geo-neutrinos) detectable by KamLAND. We found that KamLAND can be used to determine the absolute abundances of U and Th in the Earth with an accuracy sufficient for placing important constraints on Earth's accretional process and succeeding thermal history. The present observation of geo-neutrinos with KamLAND is consistent with our model prediction based on the bulk silicate Earth (BSE) composition within the uncertainty of the measurement. If a neutrino detector were to be built in Hawaii, where effects of the continental crust would be negligible, it could be used to estimate the U and Th content in the lower mantle and the core. Our calculation of the geo-neutrino event rate on the Earth's surface ind...

  13. Convex Relaxations for a Generalized Chan-Vese Model

    KAUST Repository

    Bae, Egil

    2013-01-01

    We revisit the Chan-Vese model of image segmentation with a focus on the encoding with several integer-valued labeling functions. We relate several representations with varying amount of complexity and demonstrate the connection to recent relaxations for product sets and to dual maxflow-based formulations. For some special cases, it can be shown that it is possible to guarantee binary minimizers. While this is not true in general, we show how to derive a convex approximation of the combinatorial problem for more than 4 phases. We also provide a method to avoid overcounting of boundaries in the original Chan-Vese model without departing from the efficient product-set representation. Finally, we derive an algorithm to solve the associated discretized problem, and demonstrate that it allows to obtain good approximations for the segmentation problem with various number of regions. © 2013 Springer-Verlag.

  14. Integrating Ecological and Social Knowledge: Learning from CHANS Research

    Directory of Open Access Journals (Sweden)

    Bruce Shindler

    2017-03-01

    Full Text Available Scientists are increasingly called upon to integrate across ecological and social disciplines to tackle complex coupled human and natural system (CHANS problems. Integration of these disciplines is challenging and many scientists do not have experience with large integrated research projects. However, much can be learned about the complicated process of integration from such efforts. We document some of these lessons from a National Science Foundation-funded CHANS project (Forests, People, Fire and present considerations for developing and engaging in coupled human and natural system projects. Certainly we are not the first to undertake this endeavor, and many of our findings complement those of other research teams. We focus here on the process of coming together, learning to work as an integrated science team, and describe the challenges and opportunities of engaging stakeholders (agency personnel and citizen communities of interests in our efforts. Throughout this project our intention was to foster dialogue among diverse interests and, thus, incorporate this knowledge into uncovering primary social and ecological drivers of change. A primary tool was an agent-based model, Envision, that used this information in landscape simulation, visualization models, and scenario development. Although integration can be an end in itself, the proof of value in the approach can be the degree to which it provides new insights or tools to CHANS, including closer interaction among multiple stakeholders, that could not have been reached without it.

  15. Questions of Right and Left or Right and Wrong: A Disability-Ethics Analysis of the Right-Wing and Left-Wing Media Portrayals of the Latimer Case

    Science.gov (United States)

    Janz, Heidi L.; Hayward, Sally

    2009-01-01

    This paper examines the right and left wing media coverage of the Robert Latimer case, arguing that, in particular, the left-wing progressive portrayal of this case not only creates a "preferred version and vision of social order" (Ericson, Baranek, & Chan,1991, p. 4), but also affirms a utilitarian ethics and a normative framework…

  16. 7Be Solar Neutrino Measurement with KamLAND

    CERN Document Server

    Gando, A; Hanakago, H; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Kishimoto, Y; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakajima, K; Nakamura, K; Obata, A; Oki, A; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suzuki, A; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yamada, S; Yamauchi, Y; Yoshida, H; Kozlov, A; Takemoto, Y; Yoshida, S; Grant, C; Keefer, G; McKee, D W; Piepke, A; Banks, T I; Bloxham, T; Freedman, S J; Fujikawa, B K; Han, K; Hsu, L; Ichimura, K; Murayama, H; O'Donnell, T; Steiner, H M; Winslow, L A; Dwyer, D; Mauger, C; McKeown, R D; Zhang, C; Berger, B E; Lane, C E; Maricic, J; Miletic, T; Learned, J G; Sakai, M; Horton-Smith, G A; Tang, A; Downum, K E; Tolich, K; Efremenko, Y; Kamyshkov, Y; Perevozchikov, O; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Heeger, K; Decowski, M P

    2014-01-01

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure electron flavor flux. Comparing this flux with the standard solar model prediction and further assuming three flavor mixing, a nu_e survival probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a global three flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard solar model predictions.

  17. The Status of KamLAND After Purification

    Science.gov (United States)

    Grant, Christopher

    2010-02-01

    KamLAND is a 1-kton liquid scintillation detector located in the Kamioka underground laboratory, in Japan. KamLAND has provided a precision measurement of δm^221 using reactor anti-neutrinos, and yielded first observational evidence of geologically produced anti-neutrinos. Since April of 2007, the collaboration has been working on the purification of the detector with the goal of observing 862 keV, ^7Be solar neutrinos. Two purification campaigns have concluded, with a total of 5.4 ktons of scintillator circulated through a distillation and nitrogen purge system. The results of purification and the overall background reduction factors will be presented, along with an update of the ^7Be solar neutrino analysis. )

  18. The KamLAND Full-Volume Calibration System

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Berger, B. E.; Busenitz, J.; Classen, T.; Decowski, M. P.; Dwyer, D. A.; Elor, G.; Frank, A.; Freedman, S. J.; Fujikawa, B. K.; Galloway, M.; Gray, F.; Heeger, K. M.; Hsu, L.; Ichimura, K.; Kadel, R.; Keefer, G.; Lendvai, C.; McKee, D.; O' Donnell, T.; Piepke, A.; Steiner, H. M.; Syversrud, D.; Wallig, J.; Winslow, L. A.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Owada, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Tamae, K.; Yoshida, S.; Kozlov, A.; Murayama, H.; Grant, C.; Leonard, D. S.; Luk, K.-B.; Jillings, C.; Mauger, C.; McKeown, R. D.; Zhang, C.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Piquemal, F.; Ricol, J.-S.

    2009-03-05

    We have successfully built and operated a source deployment system for the KamLAND detector. This system was used to position radioactive sources throughout the delicate 1-kton liquid scintillator volume, while meeting stringent material cleanliness, material compatibility, and safety requirements. The calibration data obtained with this device were used to fully characterize detector position and energy reconstruction biases. As a result, the uncertainty in the size of the detector fiducial volume was reduced by a factor of two. Prior to calibration with this system, the fiducial volume was the largest source of systematic uncertainty in measuring the number of antineutrinos detected by KamLAND. This paper describes the design, operation and performance of this unique calibration system.

  19. 7Be solar neutrino measurement with KamLAND

    NARCIS (Netherlands)

    Gando, A.; et al., [Unknown; Decowski, M.P.

    2015-01-01

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV Be7 solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582±94(kt d)−1, which corresponds to an 862-keV Be7 solar neutrino flux of (3.26±0.52)×109cm−2s−1, assuming a pure electron-flavor f

  20. Solar neutrino oscillation parameters after first KamLAND results

    CERN Document Server

    Fogli, G L; Marrone, A; Montanino, D; Palazzo, A; Rotunno, A M

    2003-01-01

    We analyze the energy spectrum of reactor neutrino events recently observed in the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) and combine them with solar and terrestrial neutrino data, in the context of two- and three-family active neutrino oscillations. In the 2-neutrino case, we find that the solution to the solar neutrino problem at large mixing angle (LMA) is basically split into two sub-regions, that we denote as LMA-I and LMA-II. The LMA-I solution, characterized by lower values of the squared neutrino mass gap, is favored by the global data fit. This picture is not significantly modified in the 3-neutrino mixing case. A brief discussion is given about the discrimination of the LMA-I and LMA-II solutions with future KamLAND data. In both the 2- and 3-neutrino cases, we present a detailed analysis of the post-KamLAND bounds on the oscillation parameters.

  1. Testing the solar LMA region with KamLAND data

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Abhijit [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700064 (India); Choubey, Sandhya [Scuola Internazionale Superiore di Studi Avanzati I-34014, Trieste (Italy); Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Gandhi, Raj [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Roy, D P [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2003-11-01

    We investigate the potential of 3 kiloton-years (kTy) of KamLAND data to further constrain the {delta}m{sup 2} and tan{sup 2}{theta} values compared to those presently allowed by existing KamLAND and global solar data. We study the extent, dependence and characteristics of this sensitivity in and around the two parts of the LMA region that are currently allowed. Our analysis with 3 kTy simulated spectra shows that KamLAND spectrum data by itself can constrain {delta}m{sup 2} with high precision. Combining the spectrum with global solar data further tightens the constraints on allowed values of tan{sup 2}{theta} and {delta}m{sup 2}. We also study the effects of future neutral current data with a total error of 7% from the Sudbury Neutrino Observatory. We find that these future measurements offer the potential of considerable precision in determining the oscillation parameters (specially the mass parameter)

  2. Mantle geoneutrinos in KamLAND and Borexino

    CERN Document Server

    Fiorentini, G; Lisi, E; Mantovani, F; Rotunno, A M

    2012-01-01

    The KamLAND and Borexino experiments have observed, each at ~4 sigma level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. To this purpose, we analyze in detail the experimental Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino oscillation effects. We estimate the crustal flux at the two detector sites, using state-of-the-art information about the Th and U distribution on global and local scales. We find that crust-subtracted signals show hints of a residual mantle component, emerging at ~2.4 sigma level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th ...

  3. Testing the solar LMA region with KamLAND data

    CERN Document Server

    Bandyopadhyay, A; Gandhi, R; Goswami, S; Roy, D P; Bandyopadhyay, Abhijit; Choubey, Sandhya; Gandhi, Raj; Goswami, Srubabati

    2003-01-01

    In this paper we investigate the potential of 1 and 3 kiloTon-years(kTy) of KamLAND data to further constrain the $\\Delta m^2$ and $\\tan^2\\theta$ values allowed by the post-SNO NC global solar data. We find that although an energy integrated oscillation to no oscillation event-rate ratio in the range $\\sim$ 0.3-0.8 observed in KamLAND can provide support for the Large-Mixing Angle (LMA) solution, sensitive determination of the oscillation parameters will have to wait until the spectrum data is made available. We study the extent, dependence and characteristics of this sensitivity in and around the LMA region. Our analysis with 3 kTy simulated spectra shows that KamLAND spectrum data by itself can constrain $\\Delta m^2$ with a high precision if the simulation point lies around the LMA best-fit from global solar analysis. For spectra generated at lower values of $\\tan^2\\theta$ or higher values of $\\Delta m^2$, multiple regions become allowed indicating a significantly reduced reconstruction efficiency if the tr...

  4. Topography Image Segmentation Based on Improved Chan-Vese Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min-rong; ZHANG Xi-wen; JIANG Juan-na

    2013-01-01

    Aiming to solve the inefficient segmentation in traditional C-V model for complex topography image and time-consuming process caused by the level set function solving with partial differential, an improved Chan-Vese model is presented in this paper. With the good performances of maintaining topological properties of the traditional level set method and avoiding the numerical so-lution of partial differential, the same segmentation results could be easily obtained. Thus, a stable foundation for rapid segmenta-tion-based on image reconstruction identification is established.

  5. Advancement in research of anti-cancer effects of toad venom (ChanSu) and perspectives

    Institute of Scientific and Technical Information of China (English)

    Miao Liu; Li-Xing Feng; Li-Hong Hu; Xuan Liu; De-An Guo

    2015-01-01

    Toad venom, called as ChanSu in China, is a widely used traditional Chinese medicine (TCM) whose active components are mainly bufadienolides. ChanSu could exhibit cardiotonic, anti-microbial, anti-inflammatory and, most importantly, anti-cancer effects. In the present review, reports about the in vitro, in vivo and clinical anti-cancer effects of ChanSu or its representative component, bufalin, were summarized. And, reported anti-cancer mechanisms of cardenolides, structure analogues of bufadienolides, were also introduced. Based on the results got from research of ChanSu/bufalin and the results from cardenolides, possible signal network related to the anti-cancer effects of ChanSu/bufalin was predicted. Furthermore, future potential use of ChanSu in anti-cancer therapy was discussed.

  6. A mechanical counterexample to KAM theory with low regularity

    Science.gov (United States)

    Marò, Stefano

    2014-08-01

    We give a mechanical example concerning the fact that some regularity is necessary in KAM theory. We consider the model given by the vertical bouncing motion of a ball on a periodically moving plate. Denoting with f the motion of the plate, some variants of Moser invariant curve theorem apply if ḟ is small in norm C5 and every motion has bounded velocity. This is not possible if the function f is only C1. Indeed we construct a function f∈C1 with arbitrary small derivative in norm C0 for which a motion with unbounded velocity exists.

  7. Reactor On-Off Antineutrino Measurement with KamLAND

    CERN Document Server

    ,

    2013-01-01

    The recent long-term shutdown of Japanese nuclear reactors has resulted in a significantly reduced reactor $\\bar{nu}_{e}$ flux at KamLAND. This running condition provides a unique opportunity to confirm and constrain backgrounds for the reactor $\\bar{nu}_{e}$ oscillation analysis. The data set also has improved sensitivity for other $\\bar{nu}_{e}$ signals, in particular $\\bar{nu}_{e}$'s produced in $\\beta$-decays from $^{238}$U and $^{232}$Th within the Earth's interior, whose energy spectrum overlaps with that of reactor $\\bar{nu}_{e}$'s. Including constraints on $\\theta_{13}$ from accelerator and short-baseline reactor neutrino experiments, a combined three-flavor analysis of solar and KamLAND data gives fit values for the oscillation parameters of $tan^{2} \\theta_{12} = 0.436^{+0.029}_{-0.025}$, $\\Delta m^{2}_{21} = 7.53^{+0.18}_{-0.18} \\times 10^{-5} {eV}^{2}$, and $sin^{2} \\theta_{13} = 0.023^{+0.002}_{-0.002}$. Assuming a chondritic Th/U mass ratio, we obtain $116^{+28}_{-27}$ $\\bar{nu}_{e}$ events from...

  8. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  9. LIFETIME PREDICTION FOR MODEL 9975 O-RINGS IN KAMS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.; Skidmore, E.

    2009-11-24

    The Savannah River Site (SRS) is currently storing plutonium materials in the K-Area Materials Storage (KAMS) facility. The materials are packaged per the DOE 3013 Standard and transported and stored in KAMS in Model 9975 shipping packages, which include double containment vessels sealed with dual O-rings made of Parker Seals compound V0835-75 (based on Viton{reg_sign} GLT). The outer O-ring of each containment vessel is credited for leaktight containment per ANSI N14.5. O-ring service life depends on many factors, including the failure criterion, environmental conditions, overall design, fabrication quality and assembly practices. A preliminary life prediction model has been developed for the V0835-75 O-rings in KAMS. The conservative model is based primarily on long-term compression stress relaxation (CSR) experiments and Arrhenius accelerated-aging methodology. For model development purposes, seal lifetime is defined as a 90% loss of measurable sealing force. Thus far, CSR experiments have only reached this target level of degradation at temperatures {ge} 300 F. At lower temperatures, relaxation values are more tolerable. Using time-temperature superposition principles, the conservative model predicts a service life of approximately 20-25 years at a constant seal temperature of 175 F. This represents a maximum payload package at a constant ambient temperature of 104 F, the highest recorded in KAMS to date. This is considered a highly conservative value as such ambient temperatures are only reached on occasion and for short durations. The presence of fiberboard in the package minimizes the impact of such temperature swings, with many hours to several days required for seal temperatures to respond proportionately. At 85 F ambient, a more realistic but still conservative value, bounding seal temperatures are reduced to {approx}158 F, with an estimated seal lifetime of {approx}35-45 years. The actual service life for O-rings in a maximum wattage package likely lies

  10. An Update on Progress at KamLAND

    CERN Document Server

    Dazeley, S A

    2002-01-01

    The first generation of solar neutrino experiments narrowed the allowed flavor mixing and mass parameter solutions (for nu_e nu_x) to a few isolated regions of sin^2*2*theta - delta M^2 parameter space. Recently, the Small Mixing Angle (SMA) solution, and the ``just so'' solutions have been disfavored by results from Super-Kamiokande and SNO. The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) recently became operational, and is particularly sensitive to the Large Mixing Angle (LMA) region. We believe the background impurity levels in the detector are low enough to conduct a successful experiment. The stability of the central balloon and PMTs has also been confirmed.

  11. Weak KAM theory for a weakly coupled system of Hamilton–Jacobi equations

    KAUST Repository

    Figalli, Alessio

    2016-06-23

    Here, we extend the weak KAM and Aubry–Mather theories to optimal switching problems. We consider three issues: the analysis of the calculus of variations problem, the study of a generalized weak KAM theorem for solutions of weakly coupled systems of Hamilton–Jacobi equations, and the long-time behavior of time-dependent systems. We prove the existence and regularity of action minimizers, obtain necessary conditions for minimality, extend Fathi’s weak KAM theorem, and describe the asymptotic limit of the generalized Lax–Oleinik semigroup. © 2016, Springer-Verlag Berlin Heidelberg.

  12. Disappearing neutrinos at KamLAND suport the case for neutrino mass

    CERN Multimedia

    Johnson, G

    2002-01-01

    Measurements from KamLAND, show that anti-neutrinos emanating from nearby nuclear reactors are "disappearing," which indicates they have mass and can oscillate or change from one type to another (2 pages)

  13. Parameterized KAM Theorem for Differentiable Hamiltonian Vector Fields without Action-Angle Variables

    Directory of Open Access Journals (Sweden)

    Wu-hwan Jong

    2013-11-01

    Full Text Available We proved a parameterized KAM theorem in Hamiltonian system which has differentiable Hamiltonian without action-angle coordinates. It is a generalization of the result of [20] that deals with real analytic Hamiltonians.

  14. On the origin of the discrepancy between the expected and observed results at KamLAND

    CERN Document Server

    Slad, L M

    2016-01-01

    After an elegant solution of the solar neutrino problem was found on the basis of a hypothesis of semiweak interaction between electron neutrinos and nucleons, a question has appeared about the origin of the difference between the expected results and the ones observed at KamLAND. We argue for significant role of light attenuation in the KamLAND liquid scintillator which has not been taken into account in theoretical calculations of the observability of expected events $\\bar{\

  15. Precision Measurement of Neutrino Oscillation Parameters with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    O' Donnell, Thomas [Univ. of California, Berkeley, CA (United States)

    2011-12-01

    This dissertation describes a measurement of the neutrino oscillation parameters m2 21, θ12 and constraints on θ13 based on a study of reactor antineutrinos at a baseline of ~ 180 km with the KamLAND detector. The data presented here was collected between April 2002 and November 2009, and amounts to a total exposure of 2.64 ± 0.07 × 1032 proton-years. For this exposure we expect 2140 ± 74(syst) antineutrino candidates from reactors, assuming standard model neutrino behavior, and 350±88(syst) candidates from background. The number observed is 1614. The ratio of background-subtracted candidates observed to expected is (NObs - NBkg)/ (NExp) = 0.59 ± 0.02(stat) ± 0.045(syst) which confirms reactor neutrino disappearance at greater than 5σ significance. Interpreting this deficit as being due to neutrino oscillation, the best-fit oscillation parameters from a three-flavor analysis are m2 21= 7.60+0.20 -0.19×10-5eV2, θ12 = 32.5 ± 2.9 degrees and sin2 θ13 = 0.025+0.035 -0.035, the 95% confidence-level upper limit on sin2 θ13 is sin2 θ13 < 0.083. Assuming CPT invariance, a combined analysis of KamLAND and solar neutrino data yields best-fit values: m2 21 = 7.60+0.20 -0.20 × 10-5eV2, θ12 = 33.5+1.0 -1.1 degrees, and sin2 θ13 = 0.013 ± 0.028 or sin2 θ13 < 0.06 at the 95% confidence level.

  16. On the measurement of solar neutrino oscillation parameters with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati; Petcov, S.T

    2004-02-12

    A new reactor power plant Shika-2, with a power of approximately 4 GW and at a distance of about 88 km from the KamLAND detector is scheduled to start operating in March 2006. We study the impact of the {nu}-bar{sub e} flux from this reactor on the sensitivity of the KamLAND experiment to the solar neutrino oscillation parameters. We present results on prospective determination of {delta}m{sup 2}{sub o} and sin{sup 2}{theta}{sub o} using the combined data from KamLAND and the solar neutrino experiments, including the effect of the Shika-2 contribution to the KamLAND signal and the latest data from the salt enriched phase of the SNO experiment. We find that contrary to the expectations, the addition of the Shika-2 reactor flux does not improve the sin{sup 2}{theta}{sub o} sensitivity of KamLAND, while the ambiguity in {delta}m{sup 2}{sub o} measurement may even increase, as a result of the averaging effect between Kashiwazaki and the Shika-2 reactor contributions to the KamLAND signal.

  17. Update of the solar neutrino oscillation analysis with the 766 Ty KamLAND spectrum

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Petcov, S T; Roy, D P; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2004-01-01

    We investigate the impact of the observed spectral distortion in the 766.3 Ty KamLAND data in sharpening the allowed areas in solar neutrino oscillation parameter space. We study the robustness of the allowed regions and mutual consistency between different data sets by doing two generation neutrino oscillation global fits by removing one of the solar neutrino experiments from the analysis. We also examine the change if any in the bound on $\\theta_{13}$ from a three generation analysis with the inclusion of the new KamLAND data. We find that the precision of $\\Delta m^2_{21}$ improves significantly with the new KamLAND data in both two and three generation analysis but there is still scope for improvement for the precision of $\\theta_{12}$. The combined solar and KamLAND data excludes the high-LMA solution at the 4$\\sigma$ level in a one parameter fit. The maximal mixing solution is disfavoured to a greater extent by the new KamLAND data and the solar + KamLAND combination excludes it at about 6$\\sigma$. We d...

  18. Status of balloon production for KamLAND-Zen 800 kg phase

    Science.gov (United States)

    Obara, S.

    2017-02-01

    KamLAND-Zen is an experiment for neutrinoless double beta decay (0 ν 2 β) search with 136Xe, based on the large liquid scintillator detector KamLAND. KamLAND-Zen includes 16.5 m3 xenon loaded liquid scintillator in a 3.16 m diameter nylon balloon (inner-balloon) with 25 μm wall thickness. KamLAND-Zen 400 (383 kg 136Xe used) released a lower limit on the 0 ν 2 β half-life of 136Xe. However, the sensitivity is limited by the contamination of radioactive backgrounds from the inner-balloon. Then, we planned KamLAND-Zen 800, upgrading the detector with a new inner-balloon of 3.84 m diameter with 800 kg 136Xe and 31.4 m3 liquid scintillator. We present the current status of KamLAND-Zen, the new mini-balloon construction and methods to avoid background contaminations. In addition, the development of a scintillating balloon for future upgrades in order to remove the radioactive decay chain daughter nuclei bismuth is also introduced.

  19. KamLAND-PICO Dark Mater Search Project

    Science.gov (United States)

    Fushimi, K.; Awatani, Y.; Ejiri, H.; Hazama, R.; Ikeda, H.; Imagawa, K.; Inoue, K.; Kozlov, A.; Orito, R.; Shima, T.; Sugawara, R.; Yasuda, K.

    Dark matter search project KamLAND-PICO is proposed. The first phase of the project aims to verifying the annual modulation signal which has been reported by DAMA/LIBRA. The last phase of the project aims to determining the type of interaction between WIMPs and nucleus. The thin and wide area NaI(Tl) detector PICO-LON has been developed to determine the type of WIMPs interaction. The good performance of PICO-LON detector was obtained. The energy threshold was as low as 2 keVee and the the energy resolution was as small as 25% at 60 keVee. The highly pure NaI(Tl) crystal has been developed in collaboration with the Japanese developer. The purity of U and Th chain contaminants have been reduced to the order of a few tens of ppt. It should be remarked that the concentration of 210Pb was reduced to about 60 μBq/kg. The sensitivity to spin-independent WIMPs are discussed by applying 170 modules of NaI(Tl) with the dimension of 5 inch ϕ× 5 inch.

  20. The KAM story a friendly introduction to the content, history, and significance of classical Kolmogorov-Arnold-Moser theory

    CERN Document Server

    Dumas, H Scott

    2014-01-01

    This is a semi-popular mathematics book aimed at a broad readership of mathematically literate scientists, especially mathematicians and physicists who are not experts in classical mechanics or KAM theory, and scientific-minded readers. Parts of the book should also appeal to less mathematically trained readers with an interest in the history or philosophy of science. The scope of the book is broad: it not only describes KAM theory in some detail, but also presents its historical context (thus showing why it was a 'breakthrough'). Also discussed are applications of KAM theory (especially to celestial mechanics and statistical mechanics) and the parts of mathematics and physics in which KAM theory resides (dynamical systems, classical mechanics, and Hamiltonian perturbation theory). Although a number of sources on KAM theory are now available for experts, this book attempts to fill a long-standing gap at a more descriptive level. It stands out very clearly from existing publications on KAM theory because it ...

  1. Ground Stereo Vision-Based Navigation for Autonomous Take-off and Landing of UAVs: A Chan-Vese Model Approach

    Directory of Open Access Journals (Sweden)

    Dengqing Tang

    2016-04-01

    Full Text Available This article aims at flying target detection and localization of a fixed-wing unmanned aerial vehicle (UAV autonomous take-off and landing within Global Navigation Satellite System (GNSS-denied environments. A Chan-Vese model–based approach is proposed and developed for ground stereo vision detection. Extended Kalman Filter (EKF is fused into state estimation to reduce the localization inaccuracy caused by measurement errors of object detection and Pan-Tilt unit (PTU attitudes. Furthermore, the region-of-interest (ROI setting up is conducted to improve the real-time capability. The present work contributes to real-time, accurate and robust features, compared with our previous works. Both offline and online experimental results validate the effectiveness and better performances of the proposed method against the traditional triangulation-based localization algorithm.

  2. The Clinical and Experimental Studies of ChanLe Chongji for Reducing Bleeding after Abortion

    Institute of Scientific and Technical Information of China (English)

    赵荣胜; 丁元珍; 胡燕尔

    1999-01-01

    ChanLe Chongji (ChanLe dissolvable granule preparation) is a mixed Chinese traditional medicine composed of Prunus persica Batsch, Carthamus tinctorius, Angelica sinensis Diets, Typha angustifotia Borv. et Chaub. , Prunus mume Sieb. et Zucc.,etc. which could clear fever and remove blood stasis. The bleeding days in vagina after abortion by drug and the complete abortion rate were observed, 100cases were selected randomly from the treated group and the control group respectively. The results showed that the mean bleeding period in the treated group was 8. 4 days, while 13.3 days in the control. Although the mean complete abortion rate had no distinct difference between these two groups, the absolute level was higher in the treated group. The resuits of animal experiments showed that ChanLe Chongji could increase the contraction of uterus, stop bleeding, resist bacteria and diminish inflammation, thus providing its potentiality for clinical application.

  3. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice.

    Science.gov (United States)

    Chang, Kang-Ming; Chun, Yu-Teng; Chen, Sih-Huei; Lu, Luo; Su, Hsiao-Ting Jannis; Liang, Hung-Meng; Santhosh, Jayasree; Ching, Congo Tak-Shing; Liu, Shing-Hong

    2016-07-20

    Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI) was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI) was also conducted. Results showed that the PSI of the three groups measured during 20-30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***). The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***). Correlation coefficients between PSI and CHI of the three groups were -0.440, -0.369, and -0.537, respectively (p < 0.01 **). PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  4. The Evaluation of Physical Stillness with Wearable Chest and Arm Accelerometer during Chan Ding Practice

    Directory of Open Access Journals (Sweden)

    Kang-Ming Chang

    2016-07-01

    Full Text Available Chan Ding training is beneficial to health and emotional wellbeing. More and more people have taken up this practice over the past few years. A major training method of Chan Ding is to focus on the ten Mailuns, i.e., energy points, and to maintain physical stillness. In this article, wireless wearable accelerometers were used to detect physical stillness, and the created physical stillness index (PSI was also shown. Ninety college students participated in this study. Primarily, accelerometers used on the arms and chest were examined. The results showed that the PSI values on the arms were higher than that of the chest, when participants moved their bodies in three different ways, left-right, anterior-posterior, and hand, movements with natural breathing. Then, they were divided into three groups to practice Chan Ding for approximately thirty minutes. Participants without any Chan Ding experience were in Group I. Participants with one year of Chan Ding experience were in Group II, and participants with over three year of experience were in Group III. The Chinese Happiness Inventory (CHI was also conducted. Results showed that the PSI of the three groups measured during 20–30 min were 0.123 ± 0.155, 0.012 ± 0.013, and 0.001 ± 0.0003, respectively (p < 0.001 ***. The averaged CHI scores of the three groups were 10.13, 17.17, and 25.53, respectively (p < 0.001 ***. Correlation coefficients between PSI and CHI of the three groups were −0.440, −0.369, and −0.537, respectively (p < 0.01 **. PSI value and the wearable accelerometer that are presently available on the market could be used to evaluate the quality of the physical stillness of the participants during Chan Ding practice.

  5. The solar neutrino problem after the first results from KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Abhijit; Choubey, Sandhya; Gandhi, Raj; Goswami, Srubabati; Roy, D.P

    2003-05-01

    The first results from the KamLAND experiment have provided confirmational evidence for the Large Mixing Angle (LMA) Mikheyev-Smirnov-Wolfenstein (MSW) solution to the solar neutrino problem. We do a global analysis of solar and the recently announced KamLAND data (both rate and spectrum) and investigate its effect on the allowed region in the {delta}m{sup 2}-tan{sup 2}{theta} plane. The best-fit from a combined analysis which uses the KamLAND rate plus global solar data comes at {delta}m{sup 2}=6.06x10{sup -5} eV{sup 2} and tan{sup 2}{theta}=0.42, very close to the global solar best-fit, leaving a large allowed region within the global solar LMA contour. The inclusion of the KamLAND spectral data in the global fit gives a best-fit {delta}m{sup 2}=7.17x10{sup -5} eV{sup 2} and tan{sup 2}{theta}=0.43 and constrains the allowed areas within LMA, leaving essentially two allowed zones. Maximal mixing though allowed by the KamLAND data alone is disfavored by the global solar data and remains disallowed at about 3{sigma}. The low {delta}m{sup 2} solution (LOW) is now ruled out at about 5{sigma} with respect to the LMA solution.

  6. IsoDAR@KamLAND: A Conceptual Design Report for the Technical Facility

    CERN Document Server

    Abs, M; Alonso, J R; Axani, S; Barletta, W A; Barlow, R; Bartoszek, L; Bungau, A; Calabretta, L; Calanna, A; Campo, D; Castro, G; Celona, L; Collin, G H; Conrad, J M; Gammino, S; Johnson, R; Karagiorgi, G; Kayser, S; Kleeven, W; Kolano, A; Labrecque, F; Loinaz, W A; Minervini, J; Moulai, M H; Okuno, H; Owen, H; Papavassiliou, V; Shaevitz, M H; Shimizu, I; Shokair, T M; Sorensen, K F; Spitz, J; Toups, M; Vagins, M; Van Bibber, K; Wascko, M O; Winklehner, D; Winslow, L A; Yang, J J

    2015-01-01

    This conceptual design report describes the technical facility for the IsoDAR electron-antineutrino source at KamLAND. The IsoDAR source will allow an impressive program of neutrino oscillation and electroweak physics to be performed at KamLAND. This report provides information on the physics case, the conceptual design for the subsystems, alternative designs considered, specifics of installation at KamLAND, and identified needs for future development. We discuss the risks we have identified and our approach to mitigating those risks with this design. A substantial portion of the conceptual design is based on three years of experimental efforts and on industry experience. This report also includes information on the conventional facilities.

  7. Practical application of KAM theory to galactic dynamics: I. Motivation and methodology

    CERN Document Server

    Weinberg, Martin D

    2015-01-01

    Our understanding of the mechanisms governing the structure and secular evolution galaxies assume nearly integrable Hamiltonians with regular orbits; our perturbation theories are founded on the averaging theorem for isolated resonances. On the other hand, it is well-known that dynamical systems with many degrees of freedom are irregular in all but special cases. The best developed framework for studying the breakdown of regularity and the onset is the Kolmogorov-Arnold-Moser (KAM) theory. Here, we use a numerical version of the KAM procedure to construct regular orbits (tori) and locate irregular orbits (broken tori). Irregular orbits are most often classified in astronomical dynamics by their exponential divergence using Lyapunov exponents. Although their computation is numerically challenging, the procedure is straightforward and they are often used to estimate the measure of regularity. The numerical KAM approach has several advantages: 1) it provides the morphology of perturbed orbits; 2) its constructiv...

  8. Constraints on theta 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND

    NARCIS (Netherlands)

    Gando, A.; et al., [Unknown; Decowski, M.P.

    2011-01-01

    We present new constraints on the neutrino oscillation parameters Δm212, θ12, and θ13 from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49×1032 target-proton-year. Under the assumpt

  9. Break-Up of Three-Frequency KAM Tori: Determination of the Critical Parameters

    Institute of Scientific and Technical Information of China (English)

    周济林; 孙义燧; 胡斑比

    2001-01-01

    With a four-dimensional symplectic map we study numerically the break-up of three-frequency KolmogorovArnold-Moser (KAM) tori. The locations and stabilities of a sequence of periodic orbits, whose winding numbersapproach the irrational winding number of the KAM torus, are examined. The break-up of quadratic frequencytori is characterized as the exponential growth of the residue means of the convergent periodic orbits. Criticalparameters of the break-up of tori with different winding numbers are calculated, which show that the spiralmean torus is the most robust one in our model

  10. A Longitudinal Measurement Study of 4chan's Politically Incorrect Forum and its Effect on the Web

    CERN Document Server

    Hine, Gabriel Emile; De Cristofaro, Emiliano; Kourtellis, Nicolas; Leontiadis, Ilias; Samaras, Riginos; Stringhini, Gianluca; Blackburn, Jeremy

    2016-01-01

    Although it has been a part of the dark underbelly of the Internet since its inception, recent events have brought the discussion board site 4chan to the forefront of the world's collective mind. In particular, /pol/, 4chan's "Politically Incorrect" board has become a central figure in the outlandish 2016 Presidential election. Even though 4chan has long been viewed as the "final boss of the Internet," it remains relatively unstudied in the academic literature. In this paper we analyze /pol/ along several axes using a dataset of over 8M posts. We first perform a general characterization that reveals how active posters are, as well as how some unique features of 4chan affect the flow of discussion. We then analyze the content posted to /pol/ with a focus on determining topics of interest and types of media shared, as well as the usage of hate speech and differences in poster demographics. We additionally provide quantitative evidence of /pol/'s collective attacks on other social media platforms. We perform a q...

  11. Spatially Nonlinear Interdependence of Alpha-Oscillatory Neural Networks under Chan Meditation

    Directory of Open Access Journals (Sweden)

    Pei-Chen Lo

    2013-01-01

    Full Text Available This paper reports the results of our investigation of the effects of Chan meditation on brain electrophysiological behaviors from the viewpoint of spatially nonlinear interdependence among regional neural networks. Particular emphasis is laid on the alpha-dominated EEG (electroencephalograph. Continuous-time wavelet transform was adopted to detect the epochs containing substantial alpha activities. Nonlinear interdependence quantified by similarity index S(X∣Y, the influence of source signal Y on sink signal X, was applied to the nonlinear dynamical model in phase space reconstructed from multichannel EEG. Experimental group involved ten experienced Chan-Meditation practitioners, while control group included ten healthy subjects within the same age range, yet, without any meditation experience. Nonlinear interdependence among various cortical regions was explored for five local neural-network regions, frontal, posterior, right-temporal, left-temporal, and central regions. In the experimental group, the inter-regional interaction was evaluated for the brain dynamics under three different stages, at rest (stage R, pre-meditation background recording, in Chan meditation (stage M, and the unique Chakra-focusing practice (stage C. Experimental group exhibits stronger interactions among various local neural networks at stages M and C compared with those at stage R. The intergroup comparison demonstrates that Chan-meditation brain possesses better cortical inter-regional interactions than the resting brain of control group.

  12. Silent Illumination: A Study on Chan (Zen) Meditation, Anxiety, and Musical Performance Quality

    Science.gov (United States)

    Lin, Peter; Chang, Joanne; Zemon, Vance; Midlarsky, Elizabeth

    2008-01-01

    This study investigated the effects of Chan (Zen) meditation on musical performance anxiety and musical performance quality. Nineteen participants were recruited from music conservatories and randomly assigned to either an eight-week meditation group or a wait-list control group. After the intervention, all participants performed in a public…

  13. In Memory of Professors Chen Yaozhen (Eugene Chan) and Mao Wenshu (Winifred Mao)

    Institute of Scientific and Technical Information of China (English)

    Lezheng Wu

    2002-01-01

    @@ It has been 16 and 14 years respectively since Professor Chen Yaozhen (Eugene Chan) and Pro-fessor Mao Wenshu (Winifred Mao) passed away. We recollect the great and extraordinary lives ofthese two seniors, their outstanding achievements and contributions as well as the unforgettable andvaluable academic heritages left by them to the ophthalmology in China.

  14. Top 40 questions in coupled human and natural systems (CHANS research

    Directory of Open Access Journals (Sweden)

    Daniel Boyd. Kramer

    2017-06-01

    Full Text Available Understanding and managing coupled human and natural systems (CHANS is a central challenge of the 21st century, but more focus is needed to pursue the most important questions within this vast field given limited research capacity and funding. We present 40 important questions for CHANS research, identified through a two-part crowdsourcing exercise within the CHANS community. We solicited members of the International Network of Research on Coupled Human and Natural Systems (CHANS-Net to submit up to three questions that they considered transformative, receiving 540 questions from 207 respondents. After editing for clarity and consistency, we asked the network's members to each evaluate a random subset of 20 questions in importance on a scale from 1 (least important to 7 (extremely important. Questions on land use and agriculture topped the list, with a median importance ranking of 5.7, followed by questions of scale, climate change and energy, sustainability and development, adaptation and resilience, in addition to seven other categories. We identified 40 questions with a median importance of 6.0 or above, which we highlight as the current view of researchers active in the field as research questions to pursue in order to maximize impact on understanding and managing coupled human and natural systems for achieving sustainable development goals and addressing emerging global challenges.

  15. Wandering saints : Chan eccentrics in the art and culture of Song and Yuan China

    NARCIS (Netherlands)

    Paul, Paramita

    2009-01-01

    In Chinese history, few personalities compare to the Chan eccentrics. These legendary, exceptional monks, including the friends Hanshan and Shide, their teacher Fenggan, and Budai, supposedly dwelled in the mountains and cities of southeast China between the seventh and tenth centuries. Dressed in r

  16. Angel's Wings

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Angel's wings had fallen off. It started slowly,a couple of feathers breaking loose in the wind,floating away in carefree spirals, then in clumps in the shower, matted wet and clogging the drain,until one day he woke in a thick layer of white plumage, quills snagging on the stained sheets.

  17. Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion

    CERN Document Server

    Araki, T; Enomoto, S; Furuno, K; Ichimura, K; Ikeda, H; Inoue, K; Ishihara, K; Iwamoto, T; Kawashima, T; Kishimoto, Y; Koga, M; Koseki, Y; Maeda, T; Mitsui, T; Motoki, M; Nakajima, K; Ogawa, H; Owada, K; Ricol, J S; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Tada, K; Tajima, O; Tamae, K; Tsuda, Y; Watanabe, H; Busenitz, J; Classen, T; Djurcic, Z; Keefer, G; McKinny, K; Mei, D M; Piepke, A; Yakushev, E; Berger, B E; Chan, Y D; Decowski, M P; Dwyer, D A; Freedman, S J; Fu, Y; Fujikawa, B K; Goldman, J; Gray, F; Heeger, K M; Lesko, K T; Luk, K B; Murayama, H; Poon, A W P; Steiner, H M; Winslow, L A; Horton-Smith, G A; Mauger, C; McKeown, R D; Vogel, P; Lane, C E; Miletic, T; Gorham, P W; Guillian, G; Learned, J G; Maricic, J; Matsuno, S; Pakvasa, S; Dazeley, S; Hatakeyama, S; Rojas, A; Svoboda, R; Dieterle, B D; Detwiler, J; Gratta, G; Ishii, K; Tolich, N; Uchida, Y; Batygov, M; Bugg, W; Efremenko, Yu V; Kamyshkov, Yu A; Kozlov, A; Nakamura, Y; Gould, C R; Karwowski, H J; Markoff, D M; Messimore, J A; Nakamura, K; Rohm, R M; Tornow, W; Wendell, R; Young, A R; Chen, M J; Wang, Y F; Piquemal, F

    2005-01-01

    We present an improved measurement of the oscillation between the first two neutrino families based on a 766.3 ton-year exposure of KamLAND to reactor anti-neutrinos. KamLAND observes 258 events with nue-bar energies above 3.4MeV compared to 365.2 events expected in the absence of neutrino oscillation. The confidence level for reactor nue-bar disappearance is now 99.995%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at the 99.9% confidence level but agrees with the distortion expected from nue-bar oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives a best-fit point at DeltaMSq=8.3times10^{-5}eV^2 and tan{^2}theta=0.41. A global analysis of data from KamLAND and solar neutrino experiments yields DeltaMSq=8.2^{+0.6}_{-0.5}times10^{-5}eV^2 and tan^{2}theta =0.40^{+0.09}_{-0.07}, the most precise determination to date.

  18. Update of the solar neutrino oscillation analysis with the 766 Ty KamLAND spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Abhijit [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700 064 (India); Choubey, Sandhya [INFN, Sezione di Trieste, Trieste (Italy) and Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste (Italy)]. E-mail: sandhya@he.sissa.it; Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019 (India); Petcov, S.T. [Scuola Internazionale Superiore di Studi Avanzati, I-34014 Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia (Bulgaria); Roy, D.P. [Abdus Salam International Centre for Theoretical Physics, I-34100 Trieste (Italy); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India)

    2005-02-17

    We investigate the impact of the 766.3 Ty KamLAND spectrum data on the determination of the solar neutrino oscillation parameters. We show that the observed spectrum distortion in the KamLAND experiment firmly establishes {delta}m{sub 21}{sup 2} to lie in the low-LMA solution region. The high-LMA solution is excluded at more than 4{sigma} by the global solar neutrino and KamLAND spectrum data. The maximal solar neutrino mixing is ruled out at 6{sigma} level. The 3{sigma} allowed region in the {delta}m{sub 21}{sup 2}-sin{sup 2}{theta}{sub 12} plane is found to be remarkably stable with respect to leaving out the data from one of the solar neutrino experiments from the global analysis. We perform a three flavor neutrino oscillation analysis of the global solar neutrino and KamLAND spectrum data as well. The 3{sigma} upper limit on sin{sup 2}{theta}{sub 13} is found to be sin{sup 2}{theta}{sub 13}<0.055. We derive predictions for the CC to NC event rate ratio and day-night (D-N) asymmetry in the CC event rate, measured in the SNO experiment, and for the suppression of the event rate in the BOREXINO and LowNu experiments. Prospective high precision measurements of the solar neutrino oscillation parameters are also discussed.

  19. On the Measurement of Solar Neutrino Oscillation Parameters with KamLAND

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Petcov, S T; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati

    2004-01-01

    A new reactor power plant Shika-2, with a power of approximately 4 GW and at a distance of about 88 km from the KamLAND detector is scheduled to start operating in March 2006. We study the impact of the $\\bar\

  20. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NARCIS (Netherlands)

    Banks, T.I.; Freedman, S.J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B.K.; Han, K.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Sakai, M.; Horton-Smith, G.A.; Downum, K.E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assort

  1. Search for extraterrestrial antineutrino sources with the KamLAND detector

    NARCIS (Netherlands)

    Abe, S.; et al., [Unknown; Decowski, M.P.

    2012-01-01

    We present the results of a search for extraterrestrial electron antineutrinos ( 's) in the energy range 8.3 MeV < Eve < 31.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most important

  2. Solving the Solar Neutrino Puzzle with KamLAND and Solar Data

    CERN Document Server

    De Gouvêa, A; Gouv\\^ea, Andr\\'e de

    2001-01-01

    We study what will be learnt about the solar neutrino puzzle and solar neutrino oscillations once the data from the KamLAND reactor neutrino experiment (soon to become available) are combined with those from the current solar neutrino experiments. We find that, in agreement with previous estimates, if the solution to the solar neutrino puzzle falls on the LMA region, KamLAND should be able to ``pin-point'' the right solution with unprecedented accuracy after a few years of data taking. Furthermore, the light side ($\\theta\\pi/4$) at the 95% confidence level (CL) for most of the LMA region allowed by the current data at the 99% CL, while the addition of the KamLAND data need not improve our ability to limit a sterile component in ``solar'' oscillations. If KamLAND does not see an oscillation signal, the solar data would point to the LOW/VAC regions, while the SMA region would still lurk at the two sigma CL, meaning we would probably have to wait for Borexino data in order to finally piece the solar neutrino puz...

  3. Data analysis of the high frequency surface wave radar during typhoon Chan-hom

    Science.gov (United States)

    Li, Cheng; Wang, Hui; Gao, Jia; Li, Huan; Wang, Guosong; Pan, Song; Fan, Wenjing; Liu, Kexiu; Zhao, Chen; Qi, Anxiang

    2017-01-01

    Multi-frequency high frequency radar with small circular array was deployed in Zhujiajian and Shengshan to detect the winds, waves, and currents in the overlapping area operationally in 2007. No. 1509 typhoon Chan-hom landed in the coastal areas of Jujiajian, and then moved north by east, passing the radar detection area. This paper compared the radar observed data to anchored-buoy observed data and ASCAT satellite remote sensing large area wind data respectively. The results of comparison indicated that radar basically reflected the real distribution of wind and current of Zhoushan area during typhoon Chan-hom, showing the radar is qualified to detect the winds and currents under complex marine conditions.

  4. Normal Vector Projection Method used for Convex Optimization of Chan-Vese Model for Image Segmentation

    Science.gov (United States)

    Wei, W. B.; Tan, L.; Jia, M. Q.; Pan, Z. K.

    2017-01-01

    The variational level set method is one of the main methods of image segmentation. Due to signed distance functions as level sets have to keep the nature of the functions through numerical remedy or additional technology in an evolutionary process, it is not very efficient. In this paper, a normal vector projection method for image segmentation using Chan-Vese model is proposed. An equivalent formulation of Chan-Vese model is used by taking advantage of property of binary level set functions and combining with the concept of convex relaxation. Threshold method and projection formula are applied in the implementation. It can avoid the above problems and obtain a global optimal solution. Experimental results on both synthetic and real images validate the effects of the proposed normal vector projection method, and show advantages over traditional algorithms in terms of computational efficiency.

  5. Sismondi’s correspondence with Eulalie de Sainte-Aulaire and William Ellery Channing. New edition

    Directory of Open Access Journals (Sweden)

    Francesca Sofia

    2015-12-01

    Full Text Available The surviving letters exchanged between Sismondi and Eulalie Beaupoil de Sainte - Aulaire and the Unitarian pastor W.E. Channing were published in 1857 by Adélaïde de Mongolfier, who had based herself on the copies made by Bianca Milesi Mojon after the historian’s death. The finding of the original notebook in which Bianca had transcribed most of the letters compels us to present some of them to the readers in a new edition.

  6. HOJAS DE CHAN (Hyptis suaveolens PARA EL CONTROL DE Sitophilus zeamais Y Zabrotes subfasciatus

    Directory of Open Access Journals (Sweden)

    Modesto Armando G\\u00F3mez-Peralta

    2009-01-01

    Full Text Available Con el obje­tivo de evaluar el efecto de la hoja de chan sobre Sitophilus zeamais y Zabrotes subfasciatus en granos almacenados de maíz y fri­jol respectivamente, se estableció un ensayo en condiciones controladas en el año 2007, entre los meses de mayo a setiembre, en la ciudad de León, Nicaragua, a 129 msnm y una temperatura promedio de 29 °C. Se emplearon semillas de frijol de la variedad DOR 364 y semillas de maíz de la variedad NB - 6. Las hojas de chan del estrato medio de las plantas hacia el estrato superior y de tamaño similar, se colectaron antes de la floración se secaron por tres días en un secador solar y luego fueron pulverizadas. Las unidades experimentales consistieron de frascos de plástico de 172,2 g de capacidad, y dimensiones de 7,5 cm de diámetro por 8 cm de alto, a los que se adicionaron 100 g de maíz o 100 g de frijol. Los tratamientos consistieron en la adición del polvo de hoja seca de chan entre las semillas en seis dosis: 0, 5, 10, 15, 20 y 25 gramos por 100 de semilla. Luego se adicionaron 20 adultos seleccionados al azar y sin sexar. Las variables medidas en frijol y maíz fueron: número de insectos muertos; número de granos picados; número de adultos mergidos de los granos y peso del los granos. El polvo de las hojas de chan sólo tuvo efecto en la mortalidad de S. zeamays.

  7. /Co/operation and /co/mmunity in /co/mics: 4chan's Hypercrisis

    Directory of Open Access Journals (Sweden)

    Tim Bavlnka

    2013-06-01

    Full Text Available The Hypercrisis—an online attempt by fans of DC Comics to create an overarching story across the entirety of the history of the comic company's line—provides insight into online comic book fandom. Comic fans on 4chan (http://4chan.org began noticing connections between this overarching story and the canon of comics writer Grant Morrison's work. However, the Hypercrisis is entirely fan made; it is not a part of DC Comics's continuity and not necessarily a part of the possible published futures of the comics; nor is it officially part of Morrison's work. However, the fans continue to create and discuss the developing Hypercrisis, providing deep analysis and intricate images. Part of what makes this process interesting is that it is developed and maintained entirely by an anonymous Internet group. Further, it focuses on the work of one particular creator, Grant Morrison. Because of the brief display time, no one on 4chan knows or is able to maintain any consistent relationship to any other user. Yet the Hypercrisis has remained a prominent and powerful part of this particular Web culture. The group has maintained this theoretical event, exhibiting remarkable consistency and a nuanced understanding of the texts. The group's analyses explore important aspects relating to Morrison's work and to DC Comics.

  8. Fu-Chan Wei—Surgeon, Innovator, and Leader of the Legendary Chang Gung Microsurgery Center

    Science.gov (United States)

    AL Deek, Nidal Farhan

    2016-01-01

    Fu-Chan Wei is a world-renowned plastic and reconstructive surgeon. He is clearly one of the most influential and innovative surgeons in the history of plastic surgery. The Taiwanese legend is the innovator of the osteoseptocutaneous fibula flap, which revolutionized the reconstruction of composite bone and soft tissue defects in the jaw and extremities. He has pioneered several perforator flaps, including the free style variety. He has taken toe-to-hand microsurgical transplantation to a whole new level. He is not only recognized for his surgical skills and clinical innovations, but also for his vision, leadership, and teaching. The establishment and development of the famous Microsurgery Center at Chang Gung Memorial Hospital is unparalleled anywhere. The international fellowship program in microsurgery there remains the envy of all microsurgical trainees. Dr. Wei and his colleagues have trained and influenced more than 1,500 surgeons from all over the world. The aim of this video article is to share what we learned by interviewing Fu-Chan Wei at Chang Gung. The story of Fu Chan Wei, his colleagues, and the development of the Microsurgery Center in Taiwan is worth knowing. PMID:27757352

  9. KamLAND Sensitivity to Neutrinos from Pre-Supernova Stars

    CERN Document Server

    Asakura, K; Gando, Y; Hachiya, T; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, T; Ishio, S; Koga, M; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Obara, S; Oura, T; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Tachibana, H; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Kozlov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Piepke, A; Banks, T I; Berger, B E; Fujikawa, B K; O'Donnell, T; Learned, J G; Maricic, J; Matsuno, S; Sakai, M; Winslow, L A; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2015-01-01

    In the late stages of nuclear burning for massive stars ($M$> 10 $M_{sun}$), the production of neutrino-antineutrino pairs through various processes becomes the dominant mechanism of stellar cooling. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 $M_{sun}$ at a distance less than 660 pc with 3{\\sigma} significance before the supernova. This limit is dependent on the neutrino mass hierarchy and background levels. KamLAND takes data continuously and can provide an alarm for supernovae to the community.

  10. Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND

    CERN Document Server

    Gomes, G Balieiro; de Holanda, P C; Oliveira, R L N

    2016-01-01

    In the framework of quantum open systems we analyze data from KamLAND by using a model that considers neutrino oscillation in a three-family approximation with the inclusion of the decoherence effect. Using a $\\chi^2$ test we find new limits for the decoherence parameter which we call $\\gamma$, considering the most recent data by KamLAND. Assuming an energy dependence of the type $ \\gamma = \\gamma_0 \\left( E/E_0 \\right) ^n$, in 95 \\% C.L. the limits found are $3.7 \\times 10^{-27} GeV$ for $ n=-1$, $6.8 \\times 10^{-22} GeV$ for $ n=0$, and $1.5 \\times 10^{-16} GeV$ for $ n=1 $ on the energy dependence.

  11. Genetic affinity between the Kam-Sui speaking Chadong and Mulam people

    Institute of Scientific and Technical Information of China (English)

    Qiong-Ying DENG; Chuan-Chao WANG; Xiao-Qing WANG; Ling-Xiang WANG; Zhong-Yan WANG; Wen-Jun WU; Hui LI

    2013-01-01

    The origins of Kam-Sui speaking Chadong and Mulam people have been controversial subjects in ethnic history studies and other related fields.Here,we studied Y chromosome (40 informative single nucleotide polymorphisms and 17 short tandem repeats in a non-recombining region) and mtDNA (hypervariable segment I and coding region single nucleotide polymorphisms) diversities in 50 Chadong and 93 Mulam individuals.The Y chromosome and mtDNA haplogroup components and network analyses indicated that both Chadong and Mulam originated from the admixture between surrounding populations and the indigenous Kam-Sui populations.The newly found Chadong is more closely related to Mulam than to Maonan,especially in the matemal lineages.

  12. Hamiltonian Chaos Beyond the KAM Theory Dedicated to George M Zaslavsky (1935–2008)

    CERN Document Server

    Luo, Albert C J

    2011-01-01

    “Hamiltonian Chaos Beyond the KAM Theory: Dedicated to George M. Zaslavsky (1935—2008)” covers the recent developments and advances in the theory and application of Hamiltonian chaos in nonlinear Hamiltonian systems. The book is dedicated to Dr. George Zaslavsky, who was one of three founders of the theory of Hamiltonian chaos. Each chapter in this book was written by well-established scientists in the field of nonlinear Hamiltonian systems. The development presented in this book goes beyond the KAM theory, and the onset and disappearance of chaos in the stochastic and resonant layers of nonlinear Hamiltonian systems are predicted analytically, instead of qualitatively. The book is intended for researchers in the field of nonlinear dynamics in mathematics, physics and engineering. Dr. Albert C.J. Luo is a Professor at Southern Illinois University Edwardsville, USA. Dr. Valentin Afraimovich is a Professor at San Luis Potosi University, Mexico.

  13. KAM tori in 1D random discrete nonlinear Schr\\"odinger model?

    CERN Document Server

    Johansson, Magnus; Aubry, Serge

    2010-01-01

    We suggest that KAM theory could be extended for certain infinite-dimensional systems with purely discrete linear spectrum. We provide empirical arguments for the existence of square summable infinite-dimensional invariant tori in the random discrete nonlinear Schr\\"odinger equation, appearing with a finite probability for a given initial condition with sufficiently small norm. Numerical support for the existence of a fat Cantor set of initial conditions generating almost-periodic oscillations is obtained by analyzing (i) sets of recurrent trajectories over successively larger time scales, and (ii) finite-time Lyapunov exponents. The norm region where such KAM-like tori may exist shrinks to zero when the disorder strength goes to zero and the localization length diverges.

  14. Twistless Version of Thirring's Approach to the KAM Theorem for Quadratic Hamiltonians

    CERN Document Server

    Chandre, C

    1998-01-01

    We give a proof of the KAM theorem on the existence of invariant tori for weakly perturbed Hamiltonian systems, based on Thirring's approach for Hamiltonians that are quadratic in the action variables. The main point of this approach is that the iteration of canonical transformations on which the proof is based stays within the space of quadratic Hamiltonians. We show that Thirring's proof for nondegenerate Hamiltonians can be adapted to twistless Hamiltonians. This twistless assumption, in fact, drastically simplifies Thirring's proof.

  15. KAM for autonomous quasi-linear perturbations of KdV

    Science.gov (United States)

    Baldi, Pietro; Berti, Massimiliano; Montalto, Riccardo

    2016-11-01

    We prove the existence of Cantor families of small amplitude, linearly stable, quasi-periodic solutions of quasi-linear (also called strongly nonlinear) autonomous Hamiltonian differentiable perturbations of the mKdV equation. The proof is based on a weak version of the Birkhoff normal form algorithm and a nonlinear Nash-Moser iteration. The analysis of the linearized operators at each step of the iteration is achieved by pseudo-differential operator techniques and a linear KAM reducibility scheme.

  16. Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector

    NARCIS (Netherlands)

    Abe, S.; et al., [Unknown; Decowski, M.P.

    2011-01-01

    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 ± 0.14(stat) ± 0.17(syst) events per kton-day. Interpreted as due t

  17. Searches for sterile component with solar neutrinos and KamLAND

    CERN Document Server

    De Holanda, P C

    2002-01-01

    Possible mixing of the active and sterile neutrinos has been considered both in the single Delta m^2 approximation and in the case of more than one Delta m^2. We perform global fit of the available solar neutrino data with free boron neutrino flux in the single Delta m^2 context. The best fit value corresponds to zero fraction of sterile component eta=0. We get the upper bounds: eta<0.26 (0.64) at 1\\sigma (3 sigma). Due to degeneracy of parameters no one individual experiment restricts eta. The bound appears as an interplay of the SNO and Gallium as well as SuperKamiokande data. Future measurements of the NC/CC ratio at SNO can strengthen the bound down to eta<0.5 (3 sigma). If KamLAND confirms the LMA solution with its best fit point a combined analysis of the KamLAND and solar neutrino results will lead to eta<0.19 (0.56) at 1 sigma (3 sigma). We find that existence of sterile neutrino can explain the intermediate value of suppression of the KamLAND event rate: R_{KL}~0.75-0.90 in the case when mor...

  18. Strategic Plan for Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Kimberlyn C. Mousseau; Hyung Lee

    2011-09-01

    NE-KAMS knowledge base will assist computational analysts, physics model developers, experimentalists, nuclear reactor designers, and federal regulators by: (1) Establishing accepted standards, requirements and best practices for V&V and UQ of computational models and simulations, (2) Establishing accepted standards and procedures for qualifying and classifying experimental and numerical benchmark data, (3) Providing readily accessible databases for nuclear energy related experimental and numerical benchmark data that can be used in V&V assessments and computational methods development, (4) Providing a searchable knowledge base of information, documents and data on V&V and UQ, and (5) Providing web-enabled applications, tools and utilities for V&V and UQ activities, data assessment and processing, and information and data searches. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the Consortium for Advanced Simulation of Light Water Reactors (CASL), the Nuclear Energy Advanced Modeling and Simulation (NEAMS), the Light Water Reactor Sustainability (LWRS), the Small Modular Reactors (SMR), and the Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve computational modeling and simulation (M&S) of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs. In addition, from the outset, NE-KAMS will support the use of computational M&S in the nuclear industry by developing guidelines and recommended practices aimed at quantifying the uncertainty and assessing the applicability of existing analysis models and methods. The NE-KAMS effort will initially focus on supporting the use of computational fluid dynamics (CFD) and thermal hydraulics (T/H) analysis for M&S of nuclear

  19. Intestinal Transport and Biotransformation of Resibufogenin and Cinobufagin in Chan Su via HPLC/APCI-MSn

    Institute of Scientific and Technical Information of China (English)

    HAN Tian-jiao; WANG Qing; SONG Feng-rui; LIU Zhong-ying; LIU Zhi-qiang; LIU Shu-ying

    2011-01-01

    In vitro models of human colon carcinoma cell line(Caco-2 cell monolayer) and human intestinal bacteria were used to investigate the intestinal transport and biotransformation of resibufogenin and cinobufagin in Chan Su by HPLC/APCI-MSn. The experimental results of Caco-2 cell monolayer demonstrate that the apparent permeability coefficients(Papp) of resibufogenin and cinobufagin are higher than 10-6 cm/s, which indicates that both resibufogenin and cinobufagin have a good absorption in the small intestine. And the biotransformation result of human intestinal bacteria shows that resibufogenin has been transformed to 3-epiresibufogenin and cinobufagin has been transformed to 3-epicinobufagin, deacetylcinobufagin and 3-epideacetycinobufagin, respectively.

  20. First observation of beryllium-7 solar neutrinos with KamLAND

    Science.gov (United States)

    Keefer, Gregory J.

    2009-09-01

    The international KamLAND collaboration operates a 1 kton liquid scintillation detector in the Kamioka mine in Gifu, Japan. KamLAND's main scientific results are the precision measurement of the solar Dm 2 12 = 7.58[Special characters omitted.] (stat) [Special characters omitted.] (syst) and tan 2 [straight theta] 12 = 0.56[Special characters omitted.] (stat) [Special characters omitted.] (syst) utilizing reactor n e and first evidence for the observation of geologically produced anti-neutrinos. In an effort to extend KamLAND's scientific reach, extensive research has been performed on preparing a spectroscopic measurement of 7 Be solar n e s. This work provides the first inclusive analysis of KamLAND's backgrounds below 1 MeV. 85 Kr and 210 Pb, dissolved in KamLAND liquid scintillator, were found to be the dominant source of low energy backgrounds. The concentration of these ultra-trace contaminants were determined to be 10 -20 g/g. This is more than 6 orders of magnitude lower than commercially available ultra-pure liquids. To attain a signal-to-background ratio suitable for the detection of 7 Be solar n e s, the concentration of these contaminants had to be reduced by 5 orders of magnitude. A comprehensive study of 210 Pb removal was undertaken over the course of this thesis. This work further covers techniques for the removal of 220 Rn, 222 Rn and their daughter nuclei from liquid scintillator at concentrations of 10^-18 g/g. Purification techniques studied in this work include water extraction, isotope exchange, adsorption, and distillation. These laboratory studies guided the design and implementation of a large scale purification system in the Kamioka mine. The purification system's design and operation is discussed in detail as well as specific experiments devised to control scintillator quality and radio-purity. The purification system's effectiveness in removing radioactive trace impurities is analyzed in detail. The total scintillator purified over two

  1. A Chinese Chan-based lifestyle intervention improves memory of older adults

    Directory of Open Access Journals (Sweden)

    Agnes S. eChan

    2014-03-01

    Full Text Available This study aims to explore the potential benefits of a Chinese Chan-based lifestyle intervention on enhancing memory in older people with lower memory function. Forty-four aged 60 to 83 adults with various level of memory ability participated in the study. Their memories (including verbal and visual components were assessed before and after a 3-month intervention. The intervention consisted of 12 sessions, with one 90-minute session per week. The intervention involved components of adopting a special vegetarian diet, practicing a type of mind-body exercises and learning self-realization. Elderly with lower memory function at the baseline (i.e., their performance on standardized memory tests was within 25th percentile showed a significant memory improvement after the intervention. Their verbal and visual memory performance has showed 50% and 49% enhancement respectively. In addition, their improvement can be considered as a reliable and clinically significant change as reflected by their significant pre-post differences and reliable change indices. Such robust treatment effect was found to be specific to memory functions, but less influencing on the other cognitive functions. These preliminary encouraging results have shed some light on the potential applicability of the Chinese Chan-based lifestyle intervention as a method for enhancing memory in the elderly population.

  2. Sally Ride EarthKAM: 15 Years of STEM Education and Outreach from Aboard the International Space Station

    Science.gov (United States)

    Finley, T.; Griffin, R.; Klug, T.; Harbour, S.; Au, B.; Graves, S. J.

    2016-12-01

    Sally Ride EarthKAM @ Space Camp is a digital camera payload on board the International Space Station (ISS) that allows students from around the globe to request photos of the Earth from space. Since its launch to the ISS in 2001, approximately 110,000 images have been requested by students from over 90 countries. EarthKAM provides the ultimate platform for STEM engagement in both formal and informal educational settings, as it is currently the only earth observation science payload on station completely controlled by students. Images are requested and accessed through a web portal and can be used by educators in a multitude of ways to promote interest in geosciences, math, physics, and numerous other fields. EarthKAM is currently operated out of the US Space and Rocket Center in Huntsville, Alabama and is incorporated into many Space Camp programs. Space Camp hosts nearly 25,000 students and 500 educators each year, vastly improving EarthKAM exposure. Future concepts currently in development include the ability to collect new data products such as night-time and near-infrared imagery, additional science curricula in the form of focused lesson plans and image applications, and a redesigned graphical user interface for requesting photos. The EarthKAM project, a NASA educational outreach program, is currently managed by the US Space and Rocket Center, the University of Alabama in Huntsville, and Teledyne Brown Engineering, Inc.

  3. LMA MSW solution of the solar neutrino problem and first KamLAND results

    CERN Document Server

    De Holanda, P C

    2003-01-01

    The first KamLAND results are in a very good agreement with the predictions made on the basis of the solar neutrino data and the LMA realization of the MSW mechanism. We perform a combined analysis of the KamLAND (rate, spectrum) and the solar neutrino data with a free boron neutrino flux f_B. The best fit values of neutrino parameters are Delta m^2 = 7.3e-5 eV^2, tg^2 theta = 0.41 and f_B = 1.05 with the 1 sigma intervals: Delta m^2 = (6.2 - 8.4)e-5 eV^2, tg^2 theta = 0.33 - 0.54. We find the 3 sigma upper bounds: Delta m^2 4e-5 eV^2. At 99% C.L. the KamLAND spectral result splits the LMA region into two parts with the preferred one at Delta m^2 < 1e-4 eV^2. The higher Delta m^2 region is accepted at about 2 sigma level. We show that effects of non-zero 13-mixing, sin^2 theta_{13} < 0.04, are small leading to slight improvement of the fit in higher Delta m^2 region. In the best fit point we predict for SNO: CC/NC = 0.33 +0.05-0.03 and A_{DN}(SNO) = 2.8+-0.8 % (68% C.L.), and A_{DN}(SNO) < 9 % at th...

  4. The classical KAM theory at the dawn of the twenty-first century

    CERN Document Server

    Sevryuk, M B

    2002-01-01

    We survey several recent achievements in the KAM theory. The achievements chosen pertain to Hamiltonian systems only and are closely connected with the content of Kolmogorov's original theorem of 1954. They include the weak nondegeneracy conditions, Gevrey smoothness of families of perturbed invariant tori, the ``exponential condensation'' of perturbed tori, destruction mechanisms of the resonant unperturbed tori, the excitation of the elliptic normal modes of the unperturbed tori, and ``atropic'' invariant tori (i.e., tori that are neither isotropic nor coisotropic). The exposition is informal and nontechnical, and, as a rule, the methods of proofs are not discussed. The paper contains 152 references.

  5. KamLAND-PICO project to search for cosmic dark matter

    CERN Document Server

    Fushimi, K; Ejiri, H; Hazama, R; Ikeda, H; Imagawa, K; Inoue, K; Kozlov, A; Orito, R; Shima, T; Yasuda, R Sugawaraand K

    2014-01-01

    KamLAND-PICO project aims to search for WIMPs dark matter by means of NaI(Tl) scintillator. To investigate the WIMPs candidate whose cross section is as small as $10^{-9}$ pb, a pure NaI(Tl) crystal was developed by chemical processing and taking care of surroundings. The concentration of U and Th chain was reduced to $5.4\\pm0.9$ ppt and $3.3\\pm2.2$ ppt, respectively. It should be remarked that the concentration of $^{210}$Pb which was difficult to reduce reached to the high purity as $58\\pm26$ $\\mu$Bq/kg.

  6. Whitney smooth families of invariant tori within the reversible context 2 of KAM theory

    Science.gov (United States)

    Sevryuk, Mikhail B.

    2016-11-01

    We prove a general theorem on the persistence of Whitney C ∞-smooth families of invariant tori in the reversible context 2 of KAM theory. This context refers to the situation where dim Fix G Fix G is the fixed point manifold of the reversing involution G and T is the invariant torus in question. Our result is obtained as a corollary of the theorem by H. W.Broer, M.-C.Ciocci, H.Hanßmann, and A.Vanderbauwhede (2009) concerning quasi-periodic stability of invariant tori with singular "normal" matrices in reversible systems.

  7. Vortices around Dragonfly Wings

    OpenAIRE

    Kweon, Jihoon; Choi, Haecheon

    2009-01-01

    Dragonfly beats its wings independently, resulting in its superior maneuverability. Depending on the magnitude of phase difference between the fore- and hind-wings of dragonfly, the vortical structures and their interaction with wings become significantly changed, and so does the aerodynamic performance. In this study, we consider hovering flights of modelled dragonfly with three different phase differences (phi=-90, 90, 180 degrees). The three-dimensional wing shape is based on that of Aesch...

  8. Coastal evolution between two giant rivers: The Chan May embayment in central Vietnam

    Science.gov (United States)

    Gouramanis, C.; Switzer, A.; Bristow, C.; Pham, D. T.; Mauz, B.; Pile, J.; Doan, L. D.; Hoang, Q. D.; Ngo, C. K.; Dao, N.; Polivka, P.; Soria, L.; Lee, Y.; Sloss, C.; Hoang, L. V.

    2015-12-01

    The coastal landscapes of Vietnam are dominated in the north and south by the very large Red and Mekong rivers. Central Vietnam, in contrast, has few large rivers that flow to the coastal zone. This coupled with the high relief (>1500 m) of the granitic Truong Son Range and shallow gradient continental shelf, has produced two different coastal geomorphologies. The first is a shallow basin infilled with a sequence of parallel, arcuate beach ridges, and the second includes the development of shore-parallel spits and coastal lagoons. All systems are Holocene in age and we present evidence of the Holocene evolution of the northward-facing, beach ridge strandplain located in the Chan May embayment, approximately 35 km north of Danang. This embayment is relatively small (5 km long at the beach and with a beach ridge sequence that spans 11 km from the modern beach to the base of the Truong Son Range) compared to other beach ridge strandplains to the north and south and serves as an analogue for the evolution of these larger systems. The Holocene evolution of the embayment was resolved using Ground Penetrating Radar (GPR), high-resolution sedimentological analysis and quartz Optically Stimulated Luminescence were used to investigate the internal stratigraphy and chronological development of the beach ridges at Chan May. The strandplain contains uniform, clean quartz-rich sediment interspersed by thin heavy mineral rich bands forming shallow-gradient beach ridges that have steadily prograded seaward during the regression after the mid-Holocene sea level highstand. As the beach ridges prograded seaward, a small river feeding directly from the Truong Son Range meandered across the strandplain and significantly modified the embayment. Recently, the river has become much reduced due to anthropogenic modification of the river and landscape. Prior to the Holocene marine highstand, the area was similarly characterized by a surface of prograding beach ridges that were eroded by

  9. Wavelet-based improved Chan-Vese model for image segmentation

    Science.gov (United States)

    Zhao, Xiaoli; Zhou, Pucheng; Xue, Mogen

    2016-10-01

    In this paper, a kind of image segmentation approach which based on improved Chan-Vese (CV) model and wavelet transform was proposed. Firstly, one-level wavelet decomposition was adopted to get the low frequency approximation image. And then, the improved CV model, which contains the global term, local term and the regularization term, was utilized to segment the low frequency approximation image, so as to obtain the coarse image segmentation result. Finally, the coarse segmentation result was interpolated into the fine scale as an initial contour, and the improved CV model was utilized again to get the fine scale segmentation result. Experimental results show that our method can segment low contrast images and/or inhomogeneous intensity images more effectively than traditional level set methods.

  10. Segmentation and shape tracking of whole fluorescent cells based on the Chan-Vese model.

    Science.gov (United States)

    Maška, Martin; Daněk, Ondřej; Garasa, Saray; Rouzaut, Ana; Muñoz-Barrutia, Arrate; Ortiz-de-Solorzano, Carlos

    2013-06-01

    We present a fast and robust approach to tracking the evolving shape of whole fluorescent cells in time-lapse series. The proposed tracking scheme involves two steps. First, coherence-enhancing diffusion filtering is applied on each frame to reduce the amount of noise and enhance flow-like structures. Second, the cell boundaries are detected by minimizing the Chan-Vese model in the fast level set-like and graph cut frameworks. To allow simultaneous tracking of multiple cells over time, both frameworks have been integrated with a topological prior exploiting the object indication function. The potential of the proposed tracking scheme and the advantages and disadvantages of both frameworks are demonstrated on 2-D and 3-D time-lapse series of rat adipose-derived mesenchymal stem cells and human lung squamous cell carcinoma cells, respectively.

  11. Statistically improved Analysis of Neutrino Oscillation Data with the latest KamLAND result

    CERN Document Server

    Aliani, P; Torrente-Lujan, E

    2005-01-01

    We present an updated analysis of all available solar and reactor neutrino data, emphasizing in particular the totality of the KamLAND (314d live time) results and including for the first time the solar $SNO$ (391d live time, phase II NaCl-enhanced) spectrum data. As a novelty of the statistical analysis, we study the variability of the KamLand results with respect the use of diverse statistics. A new statistic, not used before is proposed. Moreover, in the analysis of the SNO spectrum a novel technique is used in order to include full correlated errors among bins. Combining all data, we obtain the following best-fit parameters: we determine individual neutrino mixing parameters and their errors $ \\Delta m^2= 8.2\\pm 0.08\\times 10^{-5} \\eV^2,\\quad \\tan^2\\theta= 0.50^{+0.12}_{-0.07}.$ The impact of these results is discussed. We also estimate the individual elements of the neutrino mass matrix. In the framework of three neutrino oscillations we obtain the mass matrix: \\begin{eqnarray}M&=& eV \\pmatrix{1....

  12. Prospects of probing $\\theta_{13}$ and neutrino mass hierarchy by Supernova Neutrinos in KamLAND

    CERN Document Server

    Bandyopadhyay, A; Goswami, S; Kar, K; Bandyopadhyay, Abhijit; Choubey, Sandhya; Goswami, Srubabati; Kar, Kamales

    2003-01-01

    In this paper we study the physics potential of the KamLAND detector in probing neutrino oscillation parameters through observation of supernova neutrinos. In particular, we discuss the possibilities of probing the mixing angle $\\theta_{13}$ and determining the sign of $\\Delta m^2_{32}$ from the total charged current(CC) event rates on the proton and $^{12}{C}$ target, as well as from the CC spectra. We discuss the chances of probing the earth matter effect induced modulations from the observation of CC spectra in the different CC reactions in KamLAND and find the volume required to get a statistically significant signature of the earth matter effect in different energy bins. We also calculate the event rates expected in the neutral current (NC) reactions on Carbon and free proton and investigate if the charged current to neutral current ratios, which are free of the absolute luminosity uncertainty in the supernova neutrino fluxes, can be useful in probing the oscillation parameters.

  13. Study of the Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    KamLAND Collaboration; Abe, S.; Enomoto, S.; Furuno, K.; Gando, Y.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Nakajima, K.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Terashima, A.; Watanabe, H.; Yonezawa, E.; Yoshida, S.; Kozlov, A.; Murayama, H.; Busenitz, J.; Classen, T.; Grant, C.; Keefer, G.; Leonard, D. S.; McKee, D.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Gray, F.; Guardincerri, E.; Hsu, L.; Ichimura, K.; Kadel, R.; Lendvai, C.; Luk, K.-B.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; Jillings, C.; Mauger, C.; McKeown, R. D.; Vogel, P.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Pakvasa, S.; Foster, J.; Horton-Smith, G. A.; Tang, A.; Dazeley, S.; Downum, K. E.; Gratta, G.; Tolich, K.; Bugg, W.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Piquemal, F.; Ricol, J.-S.; Decowski, M. P.

    2009-06-30

    Radioactive isotopes produced through cosmic muon spallation are a background for rare event detection in {nu} detectors, double-beta-decay experiments, and dark-matter searches. Understanding the nature of cosmogenic backgrounds is particularly important for future experiments aiming to determine the pep and CNO solar neutrino fluxes, for which the background is dominated by the spallation production of {sup 11}C. Data from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) provides valuable information for better understanding these backgrounds, especially in liquid scintillator, and for checking estimates from current simulations based upon MUSIC, FLUKA, and Geant4. Using the time correlation between detected muons and neutron captures, the neutron production yield in the KamLAND liquid scintillator is measured to be (2.8 {+-} 0.3) x 10{sup -4} n/({mu} {center_dot} (g/cm{sup 2})). For other isotopes, the production yield is determined from the observed time correlation related to known isotope lifetimes. We find some yields are inconsistent with extrapolations based on an accelerator muon beam experiment.

  14. KamLAND SENSITIVITY TO NEUTRINOS FROM PRE-SUPERNOVA STARS

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, K.; Gando, A.; Gando, Y.; Hachiya, T.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, T.; Ishio, S.; Koga, M.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakamura, K.; Obara, S.; Oura, T.; Shimizu, I.; Shirahata, Y.; Shirai, J. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Collaboration: KamLAND Collaboration; and others

    2016-02-10

    In the late stages of nuclear burning for massive stars (M > 8 M{sub ⊙}), the production of neutrino–antineutrino pairs through various processes becomes the dominant stellar cooling mechanism. As the star evolves, the energy of these neutrinos increases and in the days preceding the supernova a significant fraction of emitted electron anti-neutrinos exceeds the energy threshold for inverse beta decay on free hydrogen. This is the golden channel for liquid scintillator detectors because the coincidence signature allows for significant reductions in background signals. We find that the kiloton-scale liquid scintillator detector KamLAND can detect these pre-supernova neutrinos from a star with a mass of 25 M{sub ⊙} at a distance less than 690 pc with 3σ significance before the supernova. This limit is dependent on the neutrino mass ordering and background levels. KamLAND takes data continuously and can provide a supernova alert to the community.

  15. A Monte Carlo approach to Beryllium-7 solar neutrino analysis with KamLAND

    Science.gov (United States)

    Grant, Christopher Peter

    Terrestrial measurements of neutrinos produced by the Sun have been of great interest for over half a century because of their ability to test the accuracy of solar models. The first solar neutrinos detected with KamLAND provided a measurement of the 8B solar neutrino interaction rate above an analysis threshold of 5.5 MeV. This work describes efforts to extend KamLAND's detection sensitivity to solar neutrinos below 1 MeV, more specifically, those produced with an energy of 0.862 MeV from the 7Be electron-capture decay. Many of the difficulties in measuring solar neutrinos below 1 MeV arise from backgrounds caused abundantly by both naturally occurring, and man-made, radioactive nuclides. The primary nuclides of concern were 210Bi, 85Kr, and 39Ar. Since May of 2007, the KamLAND experiment has undergone two separate purification campaigns. During both campaigns a total of 5.4 ktons (about 6440 m3) of scintillator was circulated through a purification system, which utilized fractional distillation and nitrogen purging. After the purification campaign, reduction factors of 1.5 x 103 for 210Bi and 6.5 x 10 4 for 85Kr were observed. The reduction of the backgrounds provided a unique opportunity to observe the 7Be solar neutrino rate in KamLAND. An observation required detailed knowledge of the detector response at low energies, and to accomplish this, a full detector Monte Carlo simulation, called KLG4sim, was utilized. The optical model of the simulation was tuned to match the detector response observed in data after purification, and the software was optimized for the simulation of internal backgrounds used in the 7Be solar neutrino analysis. The results of this tuning and estimates from simulations of the internal backgrounds and external backgrounds caused by radioactivity on the detector components are presented. The first KamLAND analysis based on Monte Carlo simulations in the energy region below 2 MeV is shown here. The comparison of the chi2 between the null

  16. English as a Third Language in Rural China: Lessons from the Zaidang Kam-Mandarin Bilingual Education Project

    Science.gov (United States)

    Finifrock, Jacob E.

    2010-01-01

    This article explores the findings of a study that compared 2 groups of 5th-grade first-language Kam-Dong minority students as they learned English as a third language (L3) in the remote mountain village of Zaidang, in Rongjiang county, Guizhou Province, P.R. China. One group had previously been taught using Mandarin only (MO), whereas the other…

  17. Combined analysis of KamLAND and Borexino neutrino signals from Th and U decays in the Earth's interior

    CERN Document Server

    Fogli, G L; Palazzo, A; Rotunno, A M

    2010-01-01

    The KamLAND and Borexino experiments have detected electron antineutrinos produced in the decay chains of natural thorium and uranium (Th and U geoneutrinos). We analyze the energy spectra of current geoneutrino data in combination with solar and long-baseline reactor neutrino data, with marginalized three-neutrino oscillation parameters. We consider the case with unconstrained Th and U event rates in KamLAND and Borexino, as well as cases with fewer degrees of freedom, as obtained by successively assuming for both experiments a common Th/U ratio, a common scaling of Th+U event rates, and a chondritic Th/U value. In combination, KamLAND and Borexino can reject the null hypothesis (no geoneutrino signal) at 5 sigma. Interesting bounds or indications emerge on the Th+U geoneutrino rates and on the Th/U ratio, in broad agreement with typical Earth model expectations. Conversely, the results disfavor the hypothesis of a georeactor in the Earth's core, if its power exceeds a few TW. The interplay of KamLAND and Bo...

  18. Slotted Aircraft Wing

    Science.gov (United States)

    McLean, James D. (Inventor); Witkowski, David P. (Inventor); Campbell, Richard L. (Inventor)

    2006-01-01

    A swept aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one full-span slot is defined by the wing during at least one transonic condition of the wing. The full-span slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition.

  19. Measurement of the 8B Solar Neutrino Flux with KamLAND

    CERN Document Server

    Abe, S; Gando, A; Gando, Y; Ichimura, K; Ikeda, H; Inoue, K; Kibe, Y; Kimura, W; Kishimoto, Y; Koga, M; Minekawa, Y; Mitsui, T; Morikawa, T; Nagai, N; Nakajima, K; Nakamura, K; Nakamura, M; Narita, K; Shimizu, I; Shimizu, Y; Shirai, J; Suekane, F; Suzuki, A; Takahashi, H; Takahashi, N; Takemoto, Y; Tamae, K; Watanabe, H; Xu, B D; Yabumoto, H; Yonezawa, E; Yoshida, H; Yoshida, S; Enomoto, S; Kozlov, A; Murayama, H; Grant, C; Keefer, G; McKee, D; Piepke, A; Banks, T I; Bloxham, T; Detwiler, J A; Freedman, S J; Fujikawa, B K; Han, K; Kadel, R; O'Donnell, T; Steiner, H M; Winslow, L A; Dwyer, D A; Mauger, C; McKeown, R D; Zhang, C; Berger, B E; Lane, C E; Maricic, J; Miletic, T; Batygov, M; Learned, J G; Matsuno, S; Pakvasa, S; Sakai, M; Horton-Smith, G A; Tang, A; Downum, K E; Gratta, G; Tolich, K; Efremenko, Y; Kamyshkov, Y; Perevozchikov, O; Karwowski, H J; Markoff, D M; Tornow, W; Heeger, K M; Piquemal, F; Ricol, J -S; Decowski, M P

    2011-01-01

    We report a measurement of the neutrino-electron elastic scattering rate from 8B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5 MeV analysis threshold is 1.49+/-0.14(stat)+/-0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a 8B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77+/-0.26(stat)+/-0.32(syst) x 10^6 cm^-2s^-1. The analysis threshold is driven by 208Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic 11Be. The measured rate is consistent with existing measurements and with Standard Solar Model predictions which include matter enhanced neutrino oscillation.

  20. Measurement of the 8B Solar Neutrino Flux with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Abe, S.; Furuno, K.; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kimura, W.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Nakamura, M.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B.D.; Yabumoto, H.; Yonezawa, E.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; McKee, D.; Piepke, A.; Banks, T.I.; Bloxham, T.; Detwiler, J.A.; Freedman, S.J.; Fujikawa, B.K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; Mauger, C.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Pakvasa, S.; Sakai, M.; Horton-Smith, G.A.; Tang, A.; Downum, K.E.; Gratta, G.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Piquemal, F.; Ricol, J.-S.; Decowski, M.P.

    2011-06-04

    We report a measurement of the neutrino-electron elastic scattering rate from {sup 8}B solar neutrinos based on a 123 kton-day exposure of KamLAND. The background-subtracted electron recoil rate, above a 5.5-MeV analysis threshold is 1.49 {+-} 0.14(stat) {+-} 0.17(syst) events per kton-day. Interpreted as due to a pure electron flavor flux with a {sup 8}B neutrino spectrum, this corresponds to a spectrum integrated flux of 2.77 {+-} 0.26(stat) {+-} 0.32(syst) x 10{sup 6} cm{sup -2}s{sup -1}. The analysis threshold is driven by {sup 208}Tl present in the liquid scintillator, and the main source of systematic uncertainty is due to background from cosmogenic {sup 11}Be. The measured rate is consistent with existing measurements and with standard solar model predictions which include matter-enhanced neutrino oscillation.

  1. A study of extraterrestrial antineutrino sources with the KamLAND detector

    Energy Technology Data Exchange (ETDEWEB)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2011-05-18

    We present the results of a search for extraterrestrial electron antineutrinos ({bar {nu}}{sub e}'s) in the energy range 8.3 MeV < E{sub {bar {nu}}}{sub e} < 30.8 MeV using the KamLAND detector. In an exposure of 4.53 kton-year, we identify 25 candidate events. All of the candidate events can be attributed to background, most importantly neutral current atmospheric neutrino interactions, setting an upper limit on the probability of {sup 8}B solar {nu}{sub e}'s converting into {bar {nu}}{sub e}'s at 5.3 x 10{sup -5} (90% C.L.). The present data also allows us to set more stringent limits on the diffuse supernova neutrino flux and on the annihilation rates for light dark matter particles.

  2. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Energy Technology Data Exchange (ETDEWEB)

    Banks, T.I., E-mail: tbanks@berkeley.edu [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Freedman, S.J. [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Wallig, J.; Ybarrolaza, N. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gando, A.; Gando, Y.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kishimoto, Y. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Koga, M. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Mitsui, T. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Nakamura, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); and others

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  3. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    CERN Document Server

    Banks, T I; Wallig, J; Ybarrolaza, N; Gando, A; Gando, Y; Ikeda, H; Inoue, K; Kishimoto, Y; Koga, M; Mitsui, T; Nakamura, K; Shimizu, I; Shirai, J; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yoshida, H; Yoshida, S; Kozlov, A; Grant, C; Keefer, G; Piepke, A; Bloxham, T; Fujikawa, B K; Han, K; Ichimura, K; Murayama, H; O'Donnell, T; Steiner, H M; Winslow, L A; Dwyer, D A; McKeown, R D; Zhang, C; Berger, B E; Lane, C E; Maricic, J; Miletic, T; Batygov, M; Learned, J G; Matsuno, S; Sakai, M; Horton-Smith, G A; Downum, K E; Gratta, G; Efremenko, Y; Perevozchikov, O; Karwowski, H J; Markoff, D M; Tornow, W; Heeger, K M; Detwiler, J A; Enomoto, S; Decowski, M P

    2014-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  4. How much Uranium is in the Earth? Predictions for geo-neutrinos at KamLAND

    CERN Document Server

    Fiorentini, G; Mantovani, F; Vannucci, R; Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio; Vannucci, Riccardo

    2005-01-01

    Geo-neutrino detection can determine the amount of long-lived radioactive elements within our planet, thus providing a direct test of the Bulk Silicate Earth (BSE) model and fixing the radiogenic contribution to the terrestrial heat. We present a prediction for the geo-neutrino signal at KamLAND as a function of the Uranium mass in the Earth. The prediction is based on global mass balance, supplemented by a detailed geochemical and geophysical study of the region near the detector. The prediction is weakly dependent on mantle modeling. If BSE is correct, Uranium geo-neutrinos will produce between 25 and 35 events per year and 10^32 protons at Kamioka.

  5. SAR River Image Segmentation Based on Reciprocal Gray Entropy and Improved Chan-Vese Model

    Directory of Open Access Journals (Sweden)

    WU Shihua

    2015-11-01

    Full Text Available To further improve the accuracy and speed of river segmentation on synthetic aperture radar(SAR images, a segmentation method is proposed, which is based on improved Chan-Vese(CV model combining with reciprocal gray entropy multi-threshold selection optimized by artificial bee colony algorithm. Considering the uniformity of the gray level within river object cluster and background cluster, a coarse river image segmentation is made by using the multi-threshold selection algorithm based on reciprocal gray entropy and artificial bee colony optimization; Contrapose the low convergence speed and the sensitivity to initial conditions of basic CV model, the Dirac function is replaced with the image edge intensity and the coarse segmentation results serve as the initial condition of improved CV model which is utilized to make a fine segmentation for the river image. A large number of experimental results show that, the proposed segmentation method needs not set initial conditions and has high running speed as well as segmentation accuracy.

  6. A safety assessment approach using coupled NEAR3D and CHAN3D - Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars (Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)); Gylling, Bjoern (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    Safety assessment calculations for the Forsmark site were performed using a new code, which couples the far-field code CHAN3D and the near-field code NEAR3D. In addition, the package has a Graphical User Interface (GUI) and a code that governs the simulations (Coupling). The simulations were performed for 90 different canister locations, which were randomly chosen. Deterministic data were used for tunnels, deposition holes, and shafts. The background fractures were stochastically generated in two HRD realizations. The F-ratio and the water travel time distributions were used to study the performance of the simulations. Near-field calculations were not performed for the Forsmark site using the new coded presented in the prevailing report. However, the obtained results in this study are compared with the results from the Task 2 model of the ConnectFlow report /Joyce et al. 2010/. Although the results cannot be compared directly, a reasonably good agreement is obtained for the F-ratio

  7. Religiones omnívoras: el chamanismo chané y las relaciones interétnicas

    Directory of Open Access Journals (Sweden)

    Diego Villar

    2007-12-01

    Full Text Available Of Arawak origin, the ethnic group identified as the Chané indigenous group in the Amerindian literature, settled on the eastern slopes of the Andes before the Conquest of the Occidental region or Paraguayan Chaco took place. There, this group engaged in complex inter-ethnic relationships with other Guarani-speaking ethnic groups, Chaco natives, and thereafter, as the colonization process consolidated, with several Creole social agents: landowners, foremen of sugar plantations, the military, and missionaries. Supported by ethnographic and ethno-historical documents, the author suggests that the open, flexible, malleable and integrating organization of Chané shamanism was marked by these multiple historical interactions, thereby becoming an ideal symbolic language to reflect the problems arising from situations of intercultural contact.

  8. First record of Puerulus mesodontus Chan, Ma & Chu, 2013 (Crustacea, Decapoda, Achelata, Palinuridae) from south of Java, Indonesia.

    Science.gov (United States)

    Wardiatno, Yusli; Hakim, Agus Alim; Mashar, Ali; Butet, Nurlisa Alias; Adrianto, Luky; Farajallah, Achmad

    2016-01-01

    Three specimens of Puerulus mesodontus Chan, Ma & Chu, 2013 (Crustacea, Decapoda, Achelata, Palinuridae) were collected from Palabuhanratu Bay, southern Java, Indonesia. There is no previous record on the presence of the species in Indonesia. This finding represents the first record of this species in Java, Indonesia, and confirms that the species is present in the Indian Ocean. The morphological characters of the species are described. This paper contains a new distribution record of a lobster species from Indonesian waters.

  9. A Chinese Chan-Based Mind-Body Intervention Improves Sleep on Patients with Depression: A Randomized Controlled Trial

    OpenAIRE

    Chan, Agnes S.; Wong, Queenie Y.; Sze, Sophia L.; Kwong, Patrick P. K.; Han, Yvonne M. Y.; Mei-chun Cheung

    2012-01-01

    Sleep disturbance is a common problem associated with depression, and cognitive-behavioral therapy (CBT) is a more common behavioral intervention for sleep problems. The present study compares the effect of a newly developed Chinese Chan-based intervention, namely Dejian mind-body intervention (DMBI), with the CBT on improving sleep problems of patients with depression. Seventy-five participants diagnosed with major depressive disorder were randomly assigned to receive 10 weekly sessions of C...

  10. Fitness Assessment Comparison Between the "Jackie Chan Action Run" Videogame, 1-Mile Run/Walk, and the PACER.

    Science.gov (United States)

    Haddock, Bryan; Siegel, Shannon; Costa, Pablo; Jarvis, Sarah; Klug, Nicholas; Medina, Ernie; Wilkin, Linda

    2012-06-01

    The purpose of this study was to examine whether a correlation existed among the scores of the "Jackie Chan Studio Fitness(™) Action Run" active videogame (XaviX(®), SSD Company, Ltd., Kusatsu, Japan), the 1-mile run/walk, and Progressive Aerobic Cardiovascular Endurance Run (PACER) aerobic fitness tests of the FITNESSGRAM(®) (The Cooper Institute, Dallas, TX) in order to provide a potential alternative testing method for days that are not environmentally desirable for outdoor testing. Participants were a convenience sample from physical education classes of students between the ages of 10 and 15 years. Participants (n=108) were randomly assigned to one of three groups with the only difference being the order of testing. The tests included the "Jackie Chan Action Run" active videogame, the 1-mile run/walk, and the PACER. Testing occurred on three different days during the physical education class. Rating of perceived exertion (RPE) was reported. Significant correlations (r=-0.598 to 0.312) were found among the three aerobic fitness tests administered (Peducation teachers to perform aerobic fitness testing in an indoor setting that requires less space. Also, children may be more willing to participate in the "Jackie Chan Action Run" based on the lower RPE.

  11. The Chandra Planetary Nebula Survey (ChanPlaNS). II. X-ray Emission from Compact Planetary Nebulae

    CERN Document Server

    Freeman, M; Montez, R; Balick, B; Frew, D J; Jones, D; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Zijlstra, A; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q A; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E

    2014-01-01

    We present results from the most recent set of observations obtained as part of the Chandra X-ray observatory Planetary Nebula Survey (ChanPlaNS), the first comprehensive X-ray survey of planetary nebulae (PNe) in the solar neighborhood (i.e., within ~1.5 kpc of the Sun). The survey is designed to place constraints on the frequency of appearance and range of X-ray spectral characteristics of X-ray-emitting PN central stars and the evolutionary timescales of wind-shock-heated bubbles within PNe. ChanPlaNS began with a combined Cycle 12 and archive Chandra survey of 35 PNe. ChanPlaNS continued via a Chandra Cycle 14 Large Program which targeted all (24) remaining known compact (R_neb ~1000 cm^-3), and rarely associated with PNe that show H_2 emission and/or pronounced butterfly structures. Hb 5 is one such exception of a PN with a butterfly structure that hosts diffuse X-ray emission. Additionally, of the five new diffuse X-ray detections, two host [WR]-type CSPNe, NGC 1501 and NGC 6369, supporting the hypothes...

  12. Peter Chan film voice application%陈可辛电影的声音运用

    Institute of Scientific and Technical Information of China (English)

    潘茜

    2011-01-01

    上世纪90年代初,陈可辛即以自己的处女作《双城故事》在香港一片成名,他影片的对白和音乐等声音的运用都显示出更为鲜明的个人风格。其以直白主观的语言将人物的真实心理明明白白地告诉观众。更以抒情表意的音乐来构建影片的时代氛围,为观众营造一个记忆空间,并借此说明剧中人物的身份、难以言说的心绪以及情感的历程和角色背后的灵魂所在。%In the early 1990s with their own debut for Hong kong's Peter Chan namely the twins story in Hong kong a famous.His films such as the dialogue and music voice used showing clearer personal style.His with straightforward subjective language will be the real psychlolgical characters loudly and clearly tell the audience.More music on the lyrical expression to construct the fiom for the audience era atmosphere,create a memory space and to cxplain the character's identity,difficuit moods and feelings about the process and the role of the soul and spirit behind.

  13. Schrödinger spectra and the effective Hamiltonian of weak KAM theory on the flat torus

    Science.gov (United States)

    Zanelli, Lorenzo

    2016-08-01

    In this paper we investigate the link between the spectrum of some periodic Schrödinger type operators and the effective Hamiltonian of the weak KAM theory. We show that the extension of some local quasimodes is linked to the localization of the Schrödinger spectrum. Such a result provides additional information with respect to the well known Bohr-Sommerfeld quantization rules, here in a more general setting than the integrable or quasi-integrable ones.

  14. Laboratory Studies on the Removal of Radon-Born Lead from KamLAND's Organic Liquid Scintillator

    CERN Document Server

    Keefer, G; Piepke, A; Ebihara, T; Ikeda, H; Kishimoto, Y; Kibe, Y; Koseki, Y; Ogawa, M; Shirai, J; Takeuchi, S; Mauger, C; Zhang, C; Schweitzer, G; Berger, B E; Dazeley, S; Decowski, M P; Detwiler, J A; Djurcic, Z; Dwyer, D A; Efremenko, Y; Enomoto, S; Freedman, S J; Fujikawa, B K; Furuno, K; Gando, A; Gando, Y; Gratta, G; Hatakeyama, S; Heeger, K M; Hsu, L; Ichimura, K; Inoue, K; Iwamoto, T; Kamyshkov, Y; Karwowski, H J; Koga, M; Kozlov, A; Lane, C E; Learned, J G; Maricic, J; Marko, D M; Matsuno, S; McKee, D; McKeown, R D; Miletic, T; Mitsui, T; Motoki, M; Nakajima, K; Nakamura, K; O'Donnell, T; Ogawa, H; Piquemal, F; Ricol, J -S; Shimizu, I; Suekane, F; Suzuki, A; Svoboda, R; Tajima, O; Takemoto, Y; Tamae, K; Tolich, K; Tornow, W; Watanabe, Hideki; Watanabe, Hiroko; Winslow, L A; Yoshida, S

    2013-01-01

    The removal of radioactivity from liquid scintillator has been studied in preparation of a low background phase of KamLAND. This paper describes the methods and techniques developed to measure and efficiently extract radon decay products from liquid scintillator. We report the radio-isotope reduction factors obtained when applying various extraction methods. During this study, distillation was identified as the most efficient method for removing radon daughters from liquid scintillator.

  15. KamLAND-PICO dark matter search project Low background test by highly radiopure NaI(Tl)

    Science.gov (United States)

    Fushimi, Kenichi; Ejiri, Hiroyasu; Hazama, Ryuta; Ikeda, Haruo; Imagawa, Kyoshiro; Inoue, Kunio; Kozlov, Alexandre; Orito, Reiko; Shima, Tatsushi; Takemoto, Yasuhiro; Umehara, Saori; Yasuda, Kensuke; KamLAND-PICO Collaboration

    2014-09-01

    KamLAND-PICO aims to search for WIMPs dark matter by means of highly radiopure NaI(Tl) scintillator. The impurities in NaI(Tl) has been successfully reduced by chemical processing of raw NaI(Tl) powder. The intensity of alpha ray was observed and the contamination in 210Pb has been dramatically reduced to about 60 μBq/kg. The present status of low background measurement will be reported.

  16. Search for electron antineutrinos associated with gravitational wave events GW150914 and GW151226 using KamLAND

    CERN Document Server

    Gando, A; Hachiya, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Oura, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozolov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Piepke, A; Banks, T I; Berger, B E; Fujikawa, B K; O'Donnell, T; Learned, J G; Maricic, J; Sakai, M; Winslow, L A; Krupczak, E; Ouellet, J; Efremenko, Y; Karwowski, H J; Markoff, D M; Tornow, W; Detwiler, J A; Enomoto, S; Decowski, M P

    2016-01-01

    We present a search for low energy antineutrino events coincident with the gravitational wave events GW150914 and GW151226, and the candidate event LVT151012 using KamLAND, a kiloton-scale antineutrino detector. We find no inverse beta-decay neutrino events within $\\pm 500$ seconds of either gravitational wave signal. This non-detection is used to constrain the electron antineutrino fluence and the luminosity of the astrophysical sources.

  17. Wing Warping, Roll Control and Aerodynamic Optimization of Inflatable Wings

    Science.gov (United States)

    Simpson, Andrew

    2005-11-01

    The research presents work on aerodynamic control by warping inflatable wings. Inflatable wings are deformable by their nature. Mechanical manipulation of the wing's shape has been demonstrated to alter the performance and control the vehicle in flight by deforming the trailing edge of the wing near the wing tip. Predicting and correlating the forces required in deforming the wings to a particular shape and the deformation generated for a given internal pressure were conducted through the use of photogrammetry. This research focuses on optimizing the roll moments and aerodynamic performance of the vehicle, given the current level of wing warping ability. Predictions from lifting line theory applied to wing shape changes are presented. Comparisons from the experimental results are made with lifting line analysis for wings with arbitrary twist and the solutions are used to determine rolling moment and optimum L/D. Results from flight tests will also be presented.

  18. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    Science.gov (United States)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of

  19. Active Control of Flapping Wings Using Wing Deformation

    Science.gov (United States)

    Tokutake, Hiroshi; Sunada, Shigeru; Ohtsuka, Yukio

    A new method for the attitude control of a flapping-wing aircraft is proposed. In this method, the variations in wing deformation, that is, the feathering angle and the camber, are controlled by pulling the wing at a certain point with a thread connected to a servomotor. The experimental setup for verifying the practicability of this method was developed, and aerodynamic forces and wing deformation were measured. It was concluded that thread control caused effective wing deformation, and the variation in the deformation generated the pitching moment that controls the attitude of a flapping-wing aircraft.

  20. Intestinal Transport and Biotransformation of Resibufogenin and Cinobufagin in Chan Su via HPLC/APCI-MS~n

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In vitro models of human colon carcinoma cell line(Caco-2 cell monolayer) and human intestinal bacteria were used to investigate the intestinal transport and biotransformation of resibufogenin and cinobufagin in Chan Su by HPLC/APCI-MSn. The experimental results of Caco-2 cell monolayer demonstrate that the apparent permeability coefficients(Papp) of resibufogenin and cinobufagin are higher than 10-6 cm/s, which indicates that both resibufogenin and cinobufagin have a good absorption in the small intestine. And the biotransformation result of human intestinal bacteria shows that resibufogenin has been transformed to 3-epiresibufogenin and cinobufagin has been transformed to 3-epicinobufagin, deacetylcinobufagin and 3-epideacetycinobufagin, respectively.

  1. The Chandra X-ray Survey of Planetary Nebulae (ChanPlaNS): Probing Binarity, Magnetic Fields, and Wind Collisions

    CERN Document Server

    Kastner, J H; Balick, B; Frew, D J; Miszalski, B; Sahai, R; Blackman, E; Chu, Y -H; De Marco, O; Frank, A; Guerrero, M A; Lopez, J A; Rapson, V; Zijlstra, A; Behar, E; Bujarrabal, V; Corradi, R L M; Nordhaus, J; Parker, Q; Sandin, C; Schönberner, D; Soker, N; Sokoloski, J L; Steffen, M; Ueta, T; Villaver, E

    2012-01-01

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (ChanPlaNS), the first systematic (volume-limited) Chandra X-ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of ChanPlaNS targeted 21 mostly high-excitation PNe within ~1.5 kpc of Earth, yielding 3 detections of diffuse X-ray emission and 9 detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within ~1.5 kpc that have been observed to date, we find an overall X-ray detection rate of 68%. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks formed by energetic wind collisions is detected in ~30%; five objects display both diffuse and point-like emission components. The presence of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are...

  2. A Chinese Chan-Based Mind-Body Intervention Improves Sleep on Patients with Depression: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2012-01-01

    Full Text Available Sleep disturbance is a common problem associated with depression, and cognitive-behavioral therapy (CBT is a more common behavioral intervention for sleep problems. The present study compares the effect of a newly developed Chinese Chan-based intervention, namely Dejian mind-body intervention (DMBI, with the CBT on improving sleep problems of patients with depression. Seventy-five participants diagnosed with major depressive disorder were randomly assigned to receive 10 weekly sessions of CBT or DMBI, or placed on a waitlist. Measurements included ratings by psychiatrists who were blinded to the experimental design, and a standardized questionnaire on sleep quantity and quality was obtained before and after the 10-week intervention. Results indicated that both the CBT and DMBI groups demonstrated significantly reduced sleep onset latency and wake time after sleep onset (effect size range = 0.46–1.0, P≤0.05 as compared to nonsignificant changes in the waitlist group (P>0.1. Furthermore, the DMBI group, but not the CBT or waitlist groups, demonstrated significantly reduced psychiatrist ratings on overall sleep problems (effect size = 1.0, P=0.00 and improved total sleep time (effect size = 0.8, P=0.05 after treatment. The present findings suggest that a Chinese Chan-based mind-body intervention has positive effects on improving sleep in individuals with depression.

  3. A Chinese chan-based mind-body intervention improves sleep on patients with depression: a randomized controlled trial.

    Science.gov (United States)

    Chan, Agnes S; Wong, Queenie Y; Sze, Sophia L; Kwong, Patrick P K; Han, Yvonne M Y; Cheung, Mei-chun

    2012-01-01

    Sleep disturbance is a common problem associated with depression, and cognitive-behavioral therapy (CBT) is a more common behavioral intervention for sleep problems. The present study compares the effect of a newly developed Chinese Chan-based intervention, namely Dejian mind-body intervention (DMBI), with the CBT on improving sleep problems of patients with depression. Seventy-five participants diagnosed with major depressive disorder were randomly assigned to receive 10 weekly sessions of CBT or DMBI, or placed on a waitlist. Measurements included ratings by psychiatrists who were blinded to the experimental design, and a standardized questionnaire on sleep quantity and quality was obtained before and after the 10-week intervention. Results indicated that both the CBT and DMBI groups demonstrated significantly reduced sleep onset latency and wake time after sleep onset (effect size range = 0.46-1.0, P ≤ 0.05) as compared to nonsignificant changes in the waitlist group (P > 0.1). Furthermore, the DMBI group, but not the CBT or waitlist groups, demonstrated significantly reduced psychiatrist ratings on overall sleep problems (effect size = 1.0, P = 0.00) and improved total sleep time (effect size = 0.8, P = 0.05) after treatment. The present findings suggest that a Chinese Chan-based mind-body intervention has positive effects on improving sleep in individuals with depression.

  4. Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O' Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2010-09-24

    We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.

  5. Twin Flavor Chicken Wings

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ingredients:1000g chicken wings,about,100g Shredded rape-seedleaves,100g black sesame seeds,7g salt,5g sugar,3gMSG,10g cooking wine,5g cassia bark,1000g cookingoil(actual consumption only 100 grams),one egg,anoptional amount of scallion,ginger root,starch and

  6. A KAM theory for conformally symplectic systems: Efficient algorithms and their validation

    Science.gov (United States)

    Calleja, Renato C.; Celletti, Alessandra; de la Llave, Rafael

    We present a KAM theory for some dissipative systems (geometrically, these are conformally symplectic systems, i.e. systems that transform a symplectic form into a multiple of itself). For systems with n degrees of freedom depending on n parameters we show that it is possible to find solutions with a fixed n-dimensional (Diophantine) frequency by adjusting the parameters. We do not assume that the system is close to integrable, but we present the results in an a-posteriori format. Our unknowns are a parameterization of the quasi-periodic solution and some parameters in the system. We formulate an invariance equation that expresses that the system with the parameters leaves invariant the solution given by the embedding. We show that if there is a sufficiently approximate solution of the invariance equation, which also satisfies some non-degeneracy conditions, then there is a true solution nearby. The smallness assumptions above can be understood either in Sobolev or in analytic norms. The a-posteriori format has several consequences: A) smooth dependence on the parameters, including the singular limit of zero dissipation; B) estimates on the measure of parameters covered by quasi-periodic solutions; C) convergence of perturbative expansions in dissipative analytic systems; D) bootstrap of regularity (i.e. that all tori which are smooth enough are analytic if the map is analytic); E) a numerically efficient criterion for the breakdown of the quasi-periodic solutions. The proof is based on an iterative quadratically convergent method. The iterative step takes advantage of some geometric identities; these identities also lead to an efficient algorithm. If we discretize the parameterization with N terms, a modified Newton step requires O(N) storage and O(Nlog(N)) operations. The a-posteriori theorems allow one to be confident on the numerical results even very close to breakdown. The algorithm does not require that the system is close to integrable, so that a

  7. SMA actuators for morphing wings

    Science.gov (United States)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  8. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings.

    Science.gov (United States)

    Lehmann, Fritz-Olaf

    2008-01-01

    Understanding the fluid dynamics of force control in flying insects requires the exploration of how oscillating wings interact with the surrounding fluid. The production of vorticity and the shedding of vortical structures within the stroke cycle thus depend on two factors: the temporal structure of the flow induced by the wing's own instantaneous motion and the flow components resulting from both the force production in previous wing strokes and the motion of other wings flapping in close proximity. These wake-wing interactions may change on a stroke-by-stroke basis, confronting the neuro-muscular system of the animal with a complex problem for force control. In a single oscillating wing, the flow induced by the preceding half stroke may lower the wing's effective angle of attack but permits the recycling of kinetic energy from the wake via the wake capture mechanism. In two-winged insects, the acceleration fields produced by each wing may strongly interact via the clap-and-fling mechanism during the dorsal stroke reversal. Four-winged insects must cope with the fact that the flow over their hindwings is affected by the presence of the forewings. In these animals, a phase-shift between the stroke cycles of fore- and hindwing modulates aerodynamic performance of the hindwing via leading edge vortex destruction and changes in local flow condition including wake capture. Moreover, robotic wings demonstrate that phase-lag during peak performance and the strength of force modulation depend on the vertical spacing between the two stroke planes and the size ratio between fore- and hindwing. This study broadly summarizes the most prominent mechanisms of wake-wing and wing-wing interactions found in flapping insect wings and evaluates the consequences of these processes for the control of locomotor forces in the behaving animal.

  9. Status Report - Cane Fiberboard Properties and Degradation Rates for Storage of the 9975 Shipping Package in KAMS

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, W. L.

    2013-01-31

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature < 250 ?F (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight loss and height decrease) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAMS, these models allow development of service life predictions. Some of the predicted degradation rates presented in this report are relatively extreme. However, these relate to environments that do not exist within KAMS, or would be postulated only as upset conditions that would not likely persist for an extended period. For a typical package with ~10 watts internal heat load or less, and ambient temperatures below 90 ?F, the fiberboard experiences storage conditions less severe than any of the aging environments. Little or no degradation of the fiberboard is expected for typical storage conditions. It should be noted that the ultimate service life will be determined by the cumulative effect of degradation from all the conditions these packages might encounter. The assumptions and inputs behind the models in this report should be well understood before attempting to identify an actual service life in KAMS. Additional data continue to be collected to permit future refinements to the models and assumptions. For developing service life predictions, the ambient conditions within KAMS can be reasonably identified, and the temperature profiles within the various packages (with a range of heat loads and at varying locations within an array of packages) can be calculated. However, the humidity within the

  10. Cistus ladanifer L. and Cistus monspeliensis L. behaviour in Chança mine soils contaminated with trace elements

    OpenAIRE

    Eliana Fernandes; Mª Manuela Abreu; Erika Santos; Mª Clara Magalhães

    2011-01-01

    Comparou-se a acumulação e translocação de elementos vestigiais em duas espécies de plantas espontâneas na área mineira do Chança, Cistus ladanifer L. e Cistus monspeliensis L., e caracterizaram-se os solos da área da rizosfera. Os solos apresentaram diferenças no conteúdo em arsénio, cobre, crómio, manganês, vanádio e zinco e alguns elementos atingiram valores totais (mg kg-1) de: 151 (As); 320 (Cr); 926 (Cu); 1010 (Mn); 235 (V). As concentrações em crómio, manganês e vanádio são diferentes ...

  11. NILAI-NILAI PENDIDIKAN DAN PENGARUHNYA TERHADAP HUBUNGAN SOSIAL ANAK DALAM NOVEL TOTTO-CHAN KARYA TETSUKO KUROYANAGI

    Directory of Open Access Journals (Sweden)

    Nur Hastuti

    2015-06-01

    Full Text Available chan by Tetsuko Kuroyanagi. The object research is Novel Madogiwa No Tottochan by Tetsuko Kuroyanagi that is published in 1981. This research has aim to get description of education values and the effects toward children social relationship in the novel of Totto-chan. The approach method to answer both problems is literary sociology approach. Litetature has relation with people in the society, the effort of people to addapt and change society. Sociology is objective and scientific study about human in society, study about institution and social process. The difference between literature and sociology is sociology does scientific and  objective analysis. In other hand, literature infiltrates and penetrates social life and shows human ways to comprehend society with their feeling. The teaching result of education values and the effects for the children social relationship are: 1. Want to listen what the students tell. We must respect each other and appreciate to the others. It happens when people is speaking to us, so we must pay attention and listen well. The social relationship with everyone created by communication can run well. 2. Give self confidence. When we give trust to the others to do their tasks, so we must believe that person can responsible for their task, so that that person can be success in their task. When we give believe to the other person to overcome their problem, so we have to be sure that they can do it well. The trust between one and others create harmonious social relationship. 3. Delete unpretentious feeling  in disable children. Whoever our frien, we must love them eventhough they have lack (disable. Teacher Kobayashi also teach that children or students can not underestimate those disable person. This case makes children in Tomoe love each other, so that social relationship like friendship will create well without underestimate each other.

  12. Design optimization of deployable wings

    Science.gov (United States)

    Gaddam, Pradeep

    Morphing technology is an important aspect of UAV design, particularly in regards to deployable systems. The design of such system has an important impact on the vehicle's performance. The primary focus of the present research work was to determine the most optimum deployable wing design from 3 competing designs and develop one of the deployable wing designs to test in the research facility. A Matlab code was developed to optimize 3 deployable wing concepts inflatable, inflatable telescopic and rigid-folding wings based on a sequential optimization strategy. The constraints that were part of the code include the packaging constraints during its stowed state, fixed length of the deployed section and the minimum L/D constraint. This code resulted in determining the optimum weight of all the 3 designs, the most optimum weight design is the inflatable wing design. This is a result of the flexible skin material and also due to no rigid parts in the deployed wing section. Another goal of the research involved developing an inflatable telescopic wing. The prototype was tested in a wind tunnel, while the actual wing was tested in the altitude chamber to determine the deployment speed, input pressure, analyze and predict the deployment sequence and behavior of the wing at such high wind speeds and altitudes ranging from 60,000 ft to 90,000 ft. Results from these tests allowed us to conclude the deployment sequence of the telescopic wing followed from the root to the tip section. The results were used to analyze the deployment time of the wing. As expected the deployment time decreased with an increase in input pressure. The results also show us that as the altitude increases, the deployment speed of the wing also increased. This was demonstrated when the wing was tested at a maximum altitude pressure of 90,000ft, well above the design altitude of 60,000ft.

  13. Rediscovering a Kunqu Classic——Interview with Yip Kam Tim, stage and costume designer for The Palace of Eternal Youth

    Institute of Scientific and Technical Information of China (English)

    ZHANGHONG

    2005-01-01

    OSCAR-WINNING art designer Yip Kam Tim, dressed in his trademark blackand-white T-shirt and baseball cap,greets me with a welcoming smile. He is keen to talk about his latest and probably most challenging project.

  14. The mass spectrum of high energy elementary particles via El Naschie's E sup ( supinfinity sup ) golden mean nested oscillators, the Dunkerly-Southwell eigenvalue theorems and KAM

    CERN Document Server

    Marek-Crnjac, L

    2003-01-01

    In the present work we give a classical nested mechanical model and corresponding expressions for the theoretical masses of elementary particles, including the masses of quarks as being the joint eigenvalues of combined vibrating sets using the Southwell and the Dunkerly theorems. The role played by the golden mean in KAM theory and consequently our present model is also discussed.

  15. Implications of partially degenerate neutrinos at a high scale in the light of KamLAND and WMAP

    CERN Document Server

    Joshipura, A S; Joshipura, Anjan S.; Mohanty, Subhendra

    2003-01-01

    Electroweak radiative corrections can generate the neutrino (mass)$^2$ difference required for the large mixing angle solution (LMA) to the solar neutrino problem if two of the neutrinos are assumed degenerate at high energy. We test this possibility with the existing experimental knowledge of the low energy neutrino mass and mixing parameters. We derive restrictions on ranges of the high scale mixing matrix elements and obtain predictions for the low energy parameters required in order to get the LMA solution of the solar neutrino problem picked out by KamLAND. We find that in the case of standard model this is achieved only when the (degenerate) neutrino masses lie in the range $(0.7-2) \\eV$ which is at odds with the cosmological limit $m_{\

  16. High Level Requirements for the Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Rich Johnson; Hyung Lee; Kimberlyn C. Mousseau

    2011-09-01

    (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base that will provide technical services and resources for V&V and UQ of M&S in nuclear energy sciences and engineering. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear reactor design, analysis and licensing. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and the public and will help ensure the safe, economical and reliable operation of existing and future nuclear reactors. From its inception, NE-KAMS will directly support nuclear energy research, development and demonstration programs within the U.S. Department of Energy (DOE), including the CASL, NEAMS, Light Water Reactor Sustainability (LWRS), Small Modular Reactors (SMR), and Next Generation Nuclear Power Plant (NGNP) programs. These programs all involve M&S of nuclear reactor systems, components and processes, and it is envisioned that NE-KAMS will help to coordinate and facilitate collaboration and sharing of resources and expertise for V&V and UQ across these programs.

  17. From original enlightment critics to the genealogy of Chan sect Inquiry to Chan sect by Lv Cheng%从“本觉批判”到“禅宗谱系学”吕潋《禅宗》考察

    Institute of Scientific and Technical Information of China (English)

    丁海虎

    2012-01-01

    The Chan sect by Lv Cheng is a classics in the history of the criticism of Chan sect in modem China. It not only made articulation of original enlightenment in the whole process of China Chart, but also made the initial analysis of the relation between Chan, Dhyana and Buddhism. It suggests a possible " genealogy of Chan" from the overall perspective. From the framework of historical narrative and the theoretical analysis, the interpretation of Chan in the book of The Origin and History of Chinese Buddhist philosophy is " the genealogy of Chan sect" on the basis of Chan Sect.%摘要:吕激先生的《禅宗》一文是我国现代思想史上禅批判的经典文本,此文不但对中国禅前后期的本觉论的脉络作了明确刻画,而且对禅宗发展过程中禅与禅定以及言教的关系也作了初步梳理。从整体上看,《禅宗》标示了一种可能的“禅宗谱系学”,从历史叙述的框架或理论分析的框架看,《中国佛学源流略讲》的禅学论述是以《禅宗》为蓝本而展开的“禅宗谱系学”。

  18. Automated measurement of Drosophila wings

    Directory of Open Access Journals (Sweden)

    Mezey Jason

    2003-12-01

    Full Text Available Abstract Background Many studies in evolutionary biology and genetics are limited by the rate at which phenotypic information can be acquired. The wings of Drosophila species are a favorable target for automated analysis because of the many interesting questions in evolution and development that can be addressed with them, and because of their simple structure. Results We have developed an automated image analysis system (WINGMACHINE that measures the positions of all the veins and the edges of the wing blade of Drosophilid flies. A video image is obtained with the aid of a simple suction device that immobilizes the wing of a live fly. Low-level processing is used to find the major intersections of the veins. High-level processing then optimizes the fit of an a priori B-spline model of wing shape. WINGMACHINE allows the measurement of 1 wing per minute, including handling, imaging, analysis, and data editing. The repeatabilities of 12 vein intersections averaged 86% in a sample of flies of the same species and sex. Comparison of 2400 wings of 25 Drosophilid species shows that wing shape is quite conservative within the group, but that almost all taxa are diagnosably different from one another. Wing shape retains some phylogenetic structure, although some species have shapes very different from closely related species. The WINGMACHINE system facilitates artificial selection experiments on complex aspects of wing shape. We selected on an index which is a function of 14 separate measurements of each wing. After 14 generations, we achieved a 15 S.D. difference between up and down-selected treatments. Conclusion WINGMACHINE enables rapid, highly repeatable measurements of wings in the family Drosophilidae. Our approach to image analysis may be applicable to a variety of biological objects that can be represented as a framework of connected lines.

  19. Producción artesanal indígena: una aproximación a la problemática en la comunidad Chané de Campo Durán (Salta, Argentina Indigenous craft production: an approach to the problematic of the chané community of Campo Durán, Salta province

    Directory of Open Access Journals (Sweden)

    Cecilia Benedetti

    2007-12-01

    Full Text Available Este trabajo presenta un conjunto de consideraciones que surgen de una investigación en curso sobre producción artesanal indígena en la comunidad Chané de la localidad de Campo Durán, provincia de Salta, Argentina. En el contexto de las vulnerables condiciones socioeconómicas que atraviesan a este pueblo, las artesanías se presentan como una importante fuente de ingreso, al mismo tiempo que constituyen una de sus manifestaciones tradicionales más relevantes. Tras recorrer brevemente la historia de las artesanías Chané, se señalan las problemáticas fundamentales que se presentan en torno a esta actividad en la actualidad, focalizando en la dimensión económica. En este sentido, se propone que las artesanías Chané atraviesan un proceso de dinamización. El análisis realizado en este trabajo apunta a especificar este fenómeno y a comprender sus implicancias en la estructuración de los procesos productivos y la caracterización de los productores. Desde esta perspectiva, la dinámica actual de la producción artesanal Chané se vincula con dos cuestiones: el incremento de las posibilidades de comercialización y la necesidad de diversificar las fuentes de ingreso en un contexto de precarización del trabajo asalariado.This paper presents some considerations that emerge from current research on indigenous craft production in the Chané community of Campo Durán, province of Salta, Argentina. In the context of the vulnerable social and economic situation that characterizes this group, the handicrafts are an important source of income, and also one of their most prominent traditional manifestations. After examining briefly the history of Chané handicrafts, some contemporary problems related to this activity are revealed, focusing on the economic dimension. In this sense, it is proposed that Chané crafts are undergoing a process of increased dynamism. The following analysis aims to explain this phenomenon and understand its

  20. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  1. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  2. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  3. Hepatoprotective activity of Chhit-Chan-Than extract powder against carbon tetrachloride-induced liver injury in rats

    Directory of Open Access Journals (Sweden)

    Yi-Chun Lin

    2014-06-01

    Full Text Available The capability of Chhit-Chan-Than extract powder (CCTEP, 10% aqueous Ocimum gratissimum L. extract to protect against carbon tetrachloride (CCl4-induced oxidative stress and hepatotoxicity in vivo was investigated. Wistar rats were divided into five groups. Group A was a normal control group given only vehicle; Group B, the hepatotoxic group, was injected intraperitoneally twice a week with repeated 8% CCl4/olive oil (0.1 mL/100 g of body weight; Groups C–E, extract-treated groups received CCl4 and different doses of CCTEP (100 mg/kg and 200 mg/kg or silymarin (200 mg/kg of body weight daily by gavage for 8 weeks, respectively. The results showed that the CCl4-induced histopathogical changes may be prevented by CCTEP through reducing the intercellular collogen stack, dropping blood serum alanine aminotransferase and aspartate aminotransferase levels, and restoring the catalase activity and glutathione content. The hepatoprotective properties were further confirmed by the marked improvement in histopathological examination and by quantitative steatosis-fibrosis scoring. The above results suggest that CCTEP is able to prevent the liver inflammation and fibrosis induced by repeated CCl4 administration, and the hepatoprotective effects might be correlated partly with its antioxidant and free radical scavenging effects.

  4. Antropología y formación de colecciones: las producciones artesanales del pueblo Chané

    Directory of Open Access Journals (Sweden)

    Cecilia Mariana Benedetti

    2006-12-01

    Full Text Available Los antropólogos desempeñaron un importante papel en la formación de colecciones de artesanías indígenas en la primera mitad del siglo XX. El objetivo de este trabajo es abordar este proceso, centrándonos en el caso del pueblo chané. En esta dirección, consideraremos la dinámica de relaciones interétnicas que se desarrollaron en el contexto de consolidación del estado nación argentino, y su articulación con las teorías y las practicas de dos antropólogos —Alfred Métraux y Enrique Palavecino— quienes ademas de realizar estudios sobre este grupo, crearon importantes colecciones con sus producciones artesanales. Así, comprenderemos a la preservación como un espacio generado a partir de las relaciones entre el Estado Nacional y los pueblos originarios, entre la antropología la "otredad".

  5. Ideas and Methods of Psychotherapy in Chan%略论中国禅学的心理治疗思想与方法

    Institute of Scientific and Technical Information of China (English)

    姚瑞; 唐秋萍; 邓云龙

    2012-01-01

    本文立足于中国禅学,对禅的明心见性、禅定等修行方法中心理治疗要素进行挖掘,认为其中具有丰富的人本、认知和行为治疗思想与方法,可为心理治疗本土化及本土心理治疗的建立提供参考.%Based on the Chinese Chan, this paper discovered the main elements of the psychological treatments from the recognition of mind's nature, meditation, etc., and pointed out that Chan, with rich humanistic, cognitive and behavioral therapy ideas and methods, could provide a useful reference for the localized treatment and the establishment of native psychotherapy.

  6. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by “Chan-Lam Cross-Coupling” Reaction

    Indian Academy of Sciences (India)

    SATYA KARUNA PULAKHANDAM; NARESH KUMAR KATARI; RAVI PRAKASH REDDY MANDA

    2017-02-01

    An efficient method for the synthesis of S-aryl/heteroaryl-quinazoline has been developed through the cross-coupling of 1,4-dihydroquinazoline with a variety of aryl and heteroaryl boronic acids assisted by [Cu(OAc)₂] as the catalyst for the formation of carbon-sulfur bonds. This newly developed method demonstratesthat the conditions of the traditional copper-catalyzed Chan-Lam reaction can be improved. Optimized reaction involves base, solvent and catalyst.

  7. Assembly modes of dragonfly wings.

    Science.gov (United States)

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  8. Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Professor Tony F. Chan Assistant Director for Mathematics and Physical Sciences National Science Foundation United States of America on 23rd May 2007. Here visiting ATLAS experiment with P. Jenni and M. Tuts.

  9. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting LHCb experiment on 23rd May 2007 with Spokesperson T. Nakada, Advisor to CERN Director-General J. Ellis and I. Belyaev of Syracuse

  10. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  11. White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND

    CERN Document Server

    Gando, A; Ichimura, K; Ikeda, H; Inoue, K; Kibe, Y; Kishimoto, Y; Koga, M; Minekawa, Y; Mitsui, T; Morikawa, T; Nagai, N; Nakamura, K Nakajima K; Narita, K; Shimizu, I; Shimizu, Y; Shirai, J; Suekane, F; Suzuki, A; Takahashi, H; Takahashi, N; Takemoto, Y; Tamae, K; Watanabe, H; Xu, B D; Yabumoto, H; Yoshida, H; Yoshida, S; Berger, B E; Cribier, M; Decowski, P; Detwiler, J A; Durero, M; Dwyer, D; Efremenko, Y; Enomoto, S; Fischer, V; Fujikawa, B K; Gaffiot, J; Gelis, V M; Karwowski, H J; Kolomensky, Yu G; Kornoukhov, N; Lasserre, T; Learned, J G; Letourneau, A; Lhuillier, D; Maricic, J; Markoff, D M; Matsuno, S; Mention, G; Milincic, R; O'Donnell, T; Saldikov, I S; Scola, L; Tikhomirov, G V; Veyssiere, Ch; Vivier, M

    2013-01-01

    We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.

  12. A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)

    Energy Technology Data Exchange (ETDEWEB)

    Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

    2011-12-01

    The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

  13. Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable hamiltonian systems a review

    CERN Document Server

    Gallavotti, G

    1993-01-01

    Abstract: Rotators interacting with a pendulum via small, velocity independent, potentials are considered. If the interaction potential does not depend on the pendulum position then the pendulum and the rotators are decoupled and we study the invariant tori of the rotators system at fixed rotation numbers: we exhibit cancellations, to all orders of perturbation theory, that allow proving the stability and analyticity of the dipohantine tori. We find in this way a proof of the KAM theorem by direct bounds of the $k$--th order coefficient of the perturbation expansion of the parametric equations of the tori in terms of their average anomalies: this extends Siegel's approach, from the linearization of analytic maps to the KAM theory; the convergence radius does not depend, in this case, on the twist strength, which could even vanish ({\\it "twistless KAM tori"}). The same ideas apply to the case in which the potential couples the pendulum and the rotators: in this case the invariant tori with diophantine rotation...

  14. Evidence for spreading in the lower Kam Group of the Yellowknife greenstone belt: Implications for Archaean basin evolution in the Slave Province

    Science.gov (United States)

    Helmstaedt, H.; Padgham, W. A.

    The Yellowknife greenstone belt is the western margin of an Archean turbidite-filled basin bordered on the east by the Cameron River and Beaulieu River volcanic belts (Henderson, 1981; Lambert, 1982). This model implies that rifting was entirely ensialic and did not proceed beyond the graben stage. Volcanism is assumed to have been restricted to the boundary faults, and the basin was floored by a downfaulted granitic basement. On the other hand, the enormous thickness of submarine volcanic rocks and the presence of a spreading complex at the base of the Kam Group suggest that volcanic rocks were much more widespread than indicated by their present distribution. Rather than resembling volcanic sequences in intracratonic graben structures, the Kam Group and its tectonic setting within the Yellowknife greenstone belt have greater affinities to the Rocas Verdes of southern Chile, Mesozoic ophiolites, that were formed in an arc-related marginal basin setting. The similarities of these ophiolites with some Archean volcanic sequences was previously recognized, and served as basis for their marginal-basin model of greenstone belts. The discovery of a multiple and sheeted dike complex in the Kam Group confirms that features typical of Phanerozoic ophiolites are indeed preserved in some greenstone belts and provides further field evidence in support of such a model.

  15. Conceptual design and optimization methodology for box wing aircraft

    OpenAIRE

    Jemitola, Paul Olugbeji

    2012-01-01

    A conceptual design optimization methodology was developed for a medium range box wing aircraft. A baseline conventional cantilever wing aircraft designed for the same mis- sion and payload was also optimized alongside a baseline box wing aircraft. An empirical formula for the mass estimation of the fore and aft wings of the box wing aircraft was derived by relating conventional cantilever wings to box wing aircraft wings. The results indicate that the fore and aft wings would ...

  16. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.;

    2014-01-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......% for J ≲ 20.5 and K ≲ 19.4. The IR subsample with a Sersic fit comprises 71 687 objects. A morphological classification is available for 39 923 galaxies. We publish spectroscopic data, including 6132 redshifts, 5299 star formation histories, and 4381 equivalent widths. Finally, a calculation of local...

  17. Static aeroelastic analysis of composite wing

    Science.gov (United States)

    Lee, IN; Hong, Chang Sun; Miura, Hirokazu; Kim, Seung KO

    1990-01-01

    A static aeroelastic analysis capability that can predict aerodynamic loads for the deformed shape of the composite wing has been developed. The finite element method (FEM) was used for composite plate structural analysis, and the linear vortex lattice method (VLM) was used for steady aerodynamic analysis. The final deformed shape of the wing due to applied forces is determined by iterative manner using FEM and VLM. FEM and VLM analysis are related by a surface spline interpolation procedure. The wing with Gr/Ep composite material has been investigated to see the wing deformation effect. Aerodynamic load change due to wing flexibility has been investigated. Also, the effect of fiber orientation and sweep angle on the deformation pattern and aerodynamic coefficients are examined. For a certain fiber orientation, the deflection and aerodynamic loading of the composite wing is very much reduced. The swept forward wing has more significant effect of wing flexibility on aerodynamic coefficient than the swept back wing does.

  18. Aircraft wing structural detail design (wing, aileron, flaps, and subsystems)

    Science.gov (United States)

    Downs, Robert; Zable, Mike; Hughes, James; Heiser, Terry; Adrian, Kenneth

    1993-01-01

    The goal of this project was to design, in detail, the wing, flaps, and ailerons for a primary flight trainer. Integrated in this design are provisions for the fuel system, the electrical system, and the fuselage/cabin carry-through interface structure. This conceptual design displays the general arrangement of all major components in the wing structure, taking into consideration the requirements set forth by the appropriate sections of Federal Aviation Regulation Part 23 (FAR23) as well as those established in the statement of work.

  19. A computational study of the wing-wing and wing-body interactions of a model insect

    Institute of Scientific and Technical Information of China (English)

    Xin Yu; Mao Sun

    2009-01-01

    The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of thebody are less than 2%. The reason for this is as following. During each down-or up-stroke, a wing produces a vortexring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex tings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.

  20. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  1. Insect Evolution: The Origin of Wings.

    Science.gov (United States)

    Ross, Andrew

    2017-02-06

    The debate on the evolution of wings in insects has reached a new level. The study of primitive fossil insect nymphs has revealed that wings developed from a combination of the dorsal part of the thorax and the body wall.

  2. Span morphing using the GNATSpar wing

    OpenAIRE

    2016-01-01

    Rigid wings usually fly at sub-optimal conditions generating unnecessary aerodynamic loses represented in flight time, fuel consumption, and unfavourable operational characteristics. High aspect ratio wings have good range and fuel efficiency, but lack manoeuvrability. On the other hand, low aspect ratio wings fly faster and are more manoeuvrable, but have poor aerodynamic performance. Span morphing technology allows integrating both features in a single wing design and allows continuously ad...

  3. Structural Analysis of a Dragonfly Wing

    OpenAIRE

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned for carrying these loads, is however not fully understood. To study this we made a three-dimensional scan of a dragonfly (Sympetrum vulgatum) fore- and hindwing with a micro-CT scanner. The scans c...

  4. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  5. Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia

    Science.gov (United States)

    Piao, Daqing; Sun, Tengfei; Ranjan, Ashish

    2017-02-01

    Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.

  6. The influences of Chan-Chuang qi-gong therapy on complete blood cell counts in breast cancer patients treated with chemotherapy.

    Science.gov (United States)

    Yeh, Mei-Ling; Lee, Tsoy-Ing; Chen, Hsing-Hsia; Chao, Tsu-Yi

    2006-01-01

    After surgery, breast cancer patients are offered adjuvant chemotherapy to avoid cancer cell spread. During chemotherapy process, neutrophils could fall relatively, and side effects could spike to the peak. Therefore, the medical care personnel should prevent the progression of the side effects. This study aimed to examine the effects of Chan-Chuang qi-gong therapy on complete blood counts in breast cancer patients treated with chemotherapy. This study used a quasi-experimental design. The experiment group (n = 32) received a 21-day Chan-Chuang qi-gong therapy, whereas the control group (n = 35) did not. White blood cells, platelet, and hemoglobin were measured on the day before chemotherapy and on days 8, 15, and 22 during chemotherapy. According to this study, there were significant differences in white blood cells (F = 115.76, P qi-gong therapy may decrease leukopenia in breast cancer patients treated with chemotherapy. It is recommended conducting more studies on qi-gong and then introducing it in clinical nursing practice at an appropriate time to promote quality of nursing care and quality of patient life.

  7. 简析中国禅学中的心理病理观%A Brief Analysis on the Psychopathology of Chan

    Institute of Scientific and Technical Information of China (English)

    魏吉槐; 唐秋萍; 邓云龙

    2012-01-01

    本文从禅所追求的“涅槃”境界出发,阐述了禅学对心理病理现象及产生缘由的若干观点.禅学认为人的心理病理现象主要表现为“烦恼”;无明、住相及贪、嗔、痴三毒是产生心理问题的主要原因.禅的“五蕴模型”描述了人的正常心理过程及其心理问题的产生.%Based on "Nirvana", the author elaborated the unique insight in psychopathology of Chan. The psy-chopathological phenomenon of Chan is "be vexed". The causes of psychological problems are "ignorance", "settle" and the three poisons. Furthermore, the model of five aggregates demonstrates the normal mental processes and how the psychological problems arose.

  8. A Randomized Controlled Neurophysiological Study of a Chinese Chan-Based Mind-Body Intervention in Patients with Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Agnes S. Chan

    2013-01-01

    Full Text Available Our previous studies have reported the therapeutic effects of 10-session Chinese Chan-based Dejian mind-body interventions (DMBI in reducing the intake of antidepressants, improving depressive symptoms, and enhancing the attentional abilities of patients with depression. This study aims to explore the possible neuroelectrophysiological mechanisms underlying the previously reported treatment effects of DMBI in comparison with those of cognitive behavioral therapy (CBT. Seventy-five age-, gender-, and education-matched participants with depression were randomly assigned to receive either CBT or DMBI or placed on a waitlist. Eyes-closed resting EEG data were obtained individually before and after 10 weeks. After intervention, the DMBI group demonstrated significantly enhanced frontal alpha asymmetry (an index of positive mood and intra- and interhemispheric theta coherence in frontoposterior and posterior brain regions (an index of attention. In contrast, neither the CBT nor the waitlist group showed significant changes in EEG activity patterns. Furthermore, the asymmetry and coherence indices of the DMBI group were correlated with self-reported depression severity levels and performance on an attention test, respectively. The present findings provide support for the effects of a Chinese Chan-based mind-body intervention in fostering human brain states that can facilitate positive mood and an attentive mind.

  9. Bat flight with bad wings: is flight metabolism affected by damaged wings?

    Science.gov (United States)

    Voigt, Christian C

    2013-04-15

    Infection of North American bats with the keratin-digesting fungus Geomyces destructans often results in holes and ruptures of wing membranes, yet it is unknown whether flight performance and metabolism of bats are altered by such injuries. I conducted flight experiments in a circular flight arena with Myotis albescens and M. nigricans individuals with an intact or ruptured trailing edge of one of the plagiopatagial membranes. In both species, individuals with damaged wings were lighter, had a higher aspect ratio (squared wing span divided by wing area) and an increased wing loading (weight divided by wing area) than conspecifics with intact wings. Bats with an asymmetric reduction of the wing area flew at similar speeds to conspecifics with intact wings but performed fewer flight manoeuvres. Individuals with damaged wings showed lower metabolic rates during flight than conspecifics with intact wings, even when controlling for body mass differences; the difference in mass-specific metabolic rate may be attributable to the lower number of flight manoeuvres (U-turns) by bats with damaged wings compared with conspecifics with intact wings. Possibly, bats compensated for an asymmetric reduction in wing area by lowering their body mass and avoiding flight manoeuvres. In conclusion, it may be that bats suffer from moderate wing damage not directly, by experiencing increased metabolic rate, but indirectly, by a reduced manoeuvrability and foraging success. This could impede a bat's ability to gain sufficient body mass before hibernation.

  10. The Wings for Angels Project

    Science.gov (United States)

    McMillan, Liberty; McMillan, Ellen; Ayers, Ann

    2012-01-01

    How can the spirits of critically ill children be raised? Alexis Weisel (co-president of the Monarch High School National Art Honor Society, 2010-2011) had this question in mind when she initiated and developed the Wings for Angels Project after hearing about the Believe in Tomorrow (BIT) organization through her art teacher, Ellen McMillan. The…

  11. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  12. FLEXIBLE WING INDIVIDUAL DROP GLIDER

    Science.gov (United States)

    The feasibility of the paraglider concept as a means of descent for individual airborne troops is presented. Full-scale 22-foot inflatable wings and...in an effort to achieve system reliability. The feasibility of using the paraglider as a means of controlled delivery of airborne paratroopers was successfully demonstrated.

  13. [Winged scapula in lyme borreliosis].

    Science.gov (United States)

    Rausch, V; Königshausen, M; Gessmann, J; Schildhauer, T A; Seybold, D

    2016-06-01

    Here we present the case of a young patient with one-sided winged scapula and lyme borreliosis. This disease can be very delimitating in daily life. If non-operative treatment fails, dynamic or static stabilization of the scapula can be a therapeutic option.

  14. Chinese Chan's View of Human Nature and Its Enlightenment to Psychotherapy%中国禅学的人性观及对心理治疗的启示

    Institute of Scientific and Technical Information of China (English)

    谭素芬; 吴希林; 邓云龙

    2012-01-01

    禅的人性假设是人的自性是本来清净圆满的;人性的发展是由自己主宰的;人性本身具有发展的无限可能性.本文试图阐述中国禅学的人性观,探析其对心理治疗的启示,期望能为中国本土心理治疗提供有益的参考.%Chinese Chan is a knowledge of thought about human spiritual self-cultivation. Chan supposes human present Svabha'va is originally pure; the development of humanity is dominated by one' s own; the development of human nature itself has infinite possibilities. This article attempts to elaborate on Chan' s view of human nature for the enlightenment to psychotherapy, and hopes to provide a useful reference for the formation of our native psychotherapy.

  15. Review Results on Wing-Body Interference

    OpenAIRE

    Frolov Vladimir

    2016-01-01

    The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM) and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combin...

  16. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  17. AST Composite Wing Program: Executive Summary

    Science.gov (United States)

    Karal, Michael

    2001-01-01

    The Boeing Company demonstrated the application of stitched/resin infused (S/RFI) composite materials on commercial transport aircraft primary wing structures under the Advanced Subsonic technology (AST) Composite Wing contract. This report describes a weight trade study utilizing a wing torque box design applicable to a 220-passenger commercial aircraft and was used to verify the weight savings a S/RFI structure would offer compared to an identical aluminum wing box design. This trade study was performed in the AST Composite Wing program, and the overall weight savings are reported. Previous program work involved the design of a S/RFI-base-line wing box structural test component and its associated testing hardware. This detail structural design effort which is known as the "semi-span" in this report, was completed under a previous NASA contract. The full-scale wing design was based on a configuration for a MD-90-40X airplane, and the objective of this structural test component was to demonstrate the maturity of the S/RFI technology through the evaluation of a full-scale wing box/fuselage section structural test. However, scope reductions of the AST Composite Wing Program pre-vented the fabrication and evaluation of this wing box structure. Results obtained from the weight trade study, the full-scale test component design effort, fabrication, design development testing, and full-scale testing of the semi-span wing box are reported.

  18. Topology of Vortex-Wing Interaction

    Science.gov (United States)

    McKenna, Chris; Rockwell, Donald

    2016-11-01

    Aircraft flying together in an echelon or V formation experience aerodynamic advantages. Impingement of the tip vortex from the leader (upstream) wing on the follower wing can yield an increase of lift to drag ratio. This enhancement is known to depend on the location of vortex impingement on the follower wing. Particle image velocimetry is employed to determine streamline topology in successive crossflow planes, which characterize the streamwise evolution of the vortex structure along the chord of the follower wing and into its wake. Different modes of vortex-follower wing interaction are created by varying both the spanwise and vertical locations of the leader wing. These modes are defined by differences in the number and locations of critical points of the flow topology, and involve bifurcation, attenuation, and mutual induction. The bifurcation and attenuation modes decrease the strength of the tip vortex from the follower wing. In contrast, the mutual induction mode increases the strength of the follower tip vortex. AFOSR.

  19. Periodic and Chaotic Flapping of Insectile Wings

    CERN Document Server

    Huang, Yangyang

    2015-01-01

    Insects use flight muscles attached at the base of the wings to produce impressive wing flapping frequencies. The maximum power output of these flight muscles is insufficient to maintain such wing oscillations unless there is good elastic storage of energy in the insect flight system. Here, we explore the intrinsic self-oscillatory behavior of an insectile wing model, consisting of two rigid wings connected at their base by an elastic torsional spring. We study the wings behavior as a function of the total energy and spring stiffness. Three types of behavior are identified: end-over-end rotation, chaotic motion, and periodic flapping. Interestingly, the region of periodic flapping decreases as energy increases but is favored as stiffness increases. These findings are consistent with the fact that insect wings and flight muscles are stiff. They further imply that, by adjusting their muscle stiffness to the desired energy level, insects can maintain periodic flapping mechanically for a range of operating condit...

  20. Piezoelectrically actuated insect scale flapping wing

    Science.gov (United States)

    Mukherjee, Sujoy; Ganguli, Ranjan

    2010-04-01

    An energy method is used in order to derive the non-linear equations of motion of a smart flapping wing. Flapping wing is actuated from the root by a PZT unimorph in the piezofan configuration. Dynamic characteristics of the wing, having the same size as dragonfly Aeshna Multicolor, are analyzed using numerical simulations. It is shown that flapping angle variations of the smart flapping wing are similar to the actual dragonfly wing for a specific feasible voltage. An unsteady aerodynamic model based on modified strip theory is used to obtain the aerodynamic forces. It is found that the smart wing generates sufficient lift to support its own weight and carry a small payload. It is therefore a potential candidate for flapping wing of micro air vehicles.

  1. CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

    CERN Document Server

    Gando, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Ishikawa, H; Koga, M; Matsuda, R; Matsuda, S; Mitsui, T; Motoki, D; Nakamura, K; Oki, Y; Otani, M; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Takemoto, Y; Tamae, K; Ueshima, K; Watanabe, H; Xu, B D; Yamada, S; Yamauchi, Y; Yoshida, H; Cribier, M; Durero, M; Fischer, V; Gaffiot, J; Jonqueres, N; Kouchner, A; Lasserre, T; Leterme, D; Letourneau, A; Lhuillier, D; Mention, G; Rampal, G; Scola, L; Veyssiere, Ch; Vivier, M; Yala, P; Berger, B E; Kozlov, A; Banks, T; Dwyer, D; Fujikawa, B K; Han, K; Kolomensky, Yu G; Mei, Y; O'Donnell, T; Decowski, P; Markoff, D M; Yoshida, S; Kornoukhov, V N; Gelis, T V M; Tikhomirov, G V; Learned, J G; Maricic, J; Matsuno, S; Milincic, R; Karwowski, H J; Efremenko, Y; Detwiler, A; Enomoto, S

    2013-01-01

    The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLAND's 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.

  2. Be7 solar neutrino measurement with KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Gando, A.; Gando, Y.; Hanakago, H.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Ishikawa, H.; Kishimoto, Y.; Koga, M.; Matsuda, R.; Matsuda, S.; Mitsui, T.; Motoki, D.; Nakajima, K.; Nakamura, K.; Obata, A.; Oki, A.; Oki, Y.; Otani, M.; Shimizu, I.; Shirai, J.; Suzuki, A.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yamada, S.; Yamauchi, Y.; Yoshida, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Grant, C.; Keefer, G.; McKee, D. W.; Piepke, A.; Banks, T. I.; Bloxham, T.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Hsu, L.; Ichimura, K.; Murayama, H.; O' Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D.; Mauger, C.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Learned, J. G.; Sakai, M.; Horton-Smith, G. A.; Tang, A.; Downum, K. E.; Tolich, K.; Efremenko, Y.; Kamyshkov, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Heeger, K.; Decowski, M. P.

    2015-11-30

    We report a measurement of the neutrino-electron elastic scattering rate of 862 keV 7Be solar neutrinos based on a 165.4 kt d exposure of KamLAND. The observed rate is 582±94(kt d)₋1, which corresponds to an 862-keV 7Be solar neutrino flux of (3.26±0.52)×109cm₋2s₋1, assuming a pure electron-flavor flux. Comparing this flux with the standard solar model prediction and further assuming three-flavor mixing, a νe survival probability of 0.66±0.15 is determined from the KamLAND data. Lastly, utilizing a global three-flavor oscillation analysis, we obtain a total 7Be solar neutrino flux of (5.82±1.02)×109cm₋2s₋1, which is consistent with the standard solar model predictions.

  3. A study of the Diao Chan crown and Its Historical Development%论貂蝉冠的产生及其历史演变

    Institute of Scientific and Technical Information of China (English)

    景红艳

    2012-01-01

    貂蝉是中国古代王朝的一种冠服,是国家服制的重要内容之一。它初为胡冠,以金铛和貂尾为饰,赵武灵王胡服骑射之时将它引入赵国,为赵国将士之冠服,是胡汉文化融合的产物。秦统一六国时,将赵国的这种冠服纳入新王朝,且将它改制成以蝉纹和貂尾作为装饰的帽子,成为皇帝近侍的专服,貂蝉冠遂以得名。至于汉代,貂蝉冠又被文人赋予了雅致幽远的文化深意,被认为寄予了古代帝王对于臣工精神境界和政治才能的诫勉和期待。此后,貂蝉冠一直成为中国封建社会贵族身份等级的象征。大清时期,貂蝉从官方服饰中消失。%Diao Chan, a kind of Chinese ancient dynasty dress, was one of the important contents of national costume. It was Hu dress at the beginning, decorated with goldern bell and sable tail, which is cultural fusion betwween Hu and Han because Wuling introduced it to Kingdom Zhao and let it to be memorial crown clothing. Qin changed it into hat which was only used by emperor's bodyguard decorated with cicada pattern and sable tail after Shin Shi kyoutei unified six countries. The name of Diao Chan crown appeared. It was given elegant and quiet cultural meaning by literati and believed to be the have admonitions and expectation of minister's spirit and political ability by emperor in Han Dynasty. Thereafter, Diao Chan crown has become the symbol of rank of China's feudal society aristocratic identity. It disappeared from the official dress in Qin Dynasty.

  4. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  5. Preparative separation and purification of bufadienolides from ChanSu by high-speed counter-current chromatography combined with preparative HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jialian; Zhang, Yongqing, E-mail: fleiv@163.com [College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong (China); Lin, Yunliang; Wang, Xiao; Fang, Lei; Geng, Yanling [Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, Shandong (China); Zhang, Qinde [Shandong College of Traditional Chinese Medicine, Laiyang, Shandong (China)

    2013-09-01

    Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC) combined with preparative HPLC (prep-HPLC). First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether-ethyl acetate-methanol-water (4:6:4:6, 4:6:5:5, v/v) was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prepHPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and {sup 1}H-NMR spectra. (author)

  6. Preparative separation and purification of bufadienolides from ChanSu by high-speed counter-current chromatography combined with preparative HPLC

    Directory of Open Access Journals (Sweden)

    Jialian Li

    2013-01-01

    Full Text Available Eight bufadienolides were successfully isolated and purified from ChanSu by high-speed counter-current chromatography (HSCCC combined with preparative HPLC (prep-HPLC. First, a stepwise elution mode of HSCCC with the solvent system composed of petroleum ether - ethyl acetate - methanol - water (4:6:4:6, 4:6:5:5, v/v was employed and four bufadienolides, two partially purified fractions were obtained from 200 mg of crude extract. The partially purified fractions III and VI were then further separated by prep-HPLC, respectively, and another four bufadienolides were recovered. Their structures were confirmed by ESI-MS and ¹H-NMR spectra.

  7. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  8. Rotor/Wing Interactions in Hover

    Science.gov (United States)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  9. Experimental Study on the Wing Formation of a Paraglider Canopy Cell (Inflatable Wing)

    Science.gov (United States)

    Yamamori, Keitaro; Umemura, Akira; Hishida, Manabu

    This study focuses on the formation mechanism of para-foil canopy. Three types of model wing, which represent each cell of para-foil canopy (a rigid wing with air intake, an inflatable wing and a cassette model) were prepared to explore the effects of air intake on inflatable wing formation in wind tunnel experiments. The flow fields both outside and inside of the wings were investigated, together with the process that the flexible wing inflates to form a wing. It was found that the robust nature of canopy is derived from the concaving deformation of the leading edge at small angles of attack, and the enhanced outward suction pressure acting on the leading edge, which are caused by the flexibility of the wing as well as the pressure of air intake in sacrifice of increased drag coefficient.

  10. Experimental Investigation on Limit Cycle Wing Rock Effect on Wing Body Configuration Induced by Forebody Vortices

    National Research Council Canada - National Science Library

    Rong, Zhen; Deng, Xueying; Ma, Baofeng; Wang, Bing

    2016-01-01

    ...° swept wing configuration undergoing a limit cycle oscillation using a synchronous measurement and control technique of wing rock/particle image velocimetry/dynamic pressure associated with the time...

  11. Morphing fixed wing MAV modeling using VAM

    OpenAIRE

    2012-01-01

    The design and implementation of a morphing Micro Air Vehicle (MAV) wing using a smart composite is attempted in this research work. Control surfaces actuated by traditional servos are difficult to instrument and fabricate on thin composite-wings of MAVs. Piezoelectric Fiber Reinforced Composites (PFRCs) are the chosen smart structural materials in the current work for incorporation onto fixed-wing MAVs to simultaneously perform the dual functions of structural load-bearing and actuatio...

  12. High performance forward swept wing aircraft

    Science.gov (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  13. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  14. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  15. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  16. Projection moire interferometry measurements of micro air vehicle wings

    Science.gov (United States)

    Fleming, Gary A.; Bartram, Scott M.; Waszak, Martin R.; Jenkins, Luther N.

    2001-11-01

    Projection Moire Interferometry (PMI) has been used to measure the structural deformation of micro air vehicle (MAV) wings during a series of wind tunnel tests. The MAV wings had a highly flexible wing structure, generically reminiscent of a bat's wing, which resulted in significant changes in wing shape as a function of MAV angle-of-attack and simulated flight speed. This flow-adaptable wing deformation is thought to provide enhanced vehicle stability and wind gust alleviation compared to rigid wing designs. Investigation of the potential aerodynamic benefits of a flexible MAV wing required measurement of the wing shape under aerodynamic loads. PMI was used to quantify the aerodynamically induced changes in wing shape for three MAV wings having different structural designs and stiffness characteristics. This paper describes the PMI technique, its application to MAV testing, and presents a portion of the PMI data acquired for the three different MAV wings tested.

  17. An exponentially local spectral flow for possibly non-self-adjoint perturbations of non-interacting quantum spins, inspired by KAM theory

    Science.gov (United States)

    Roeck, Wojciech De; Schütz, Marius

    2016-11-01

    Since its introduction by Hastings (Phys Rev B 69:104431, 2004), the technique of quasi-adiabatic continuation has become a central tool in the discussion and classification of ground-state phases. It connects the ground states of self-adjoint Hamiltonians in the same phase by a unitary quasi-local transformation. This paper takes a step towards extending this result to non-self-adjoint perturbations, though, for technical reason, we restrict ourselves here to weak perturbations of non-interacting spins. The extension to non-self-adjoint perturbation is important for potential applications to Glauber dynamics (and its quantum analogues). In contrast to the standard quasi-adiabatic transformation, the transformation constructed here is exponentially local. Our scheme is inspired by KAM theory, with frustration-free operators playing the role of integrable Hamiltonians.

  18. Effect of leading edge roundness on a delta wing in wing-rock motion

    Science.gov (United States)

    Ng, T. Terry; Malcolm, Gerald N.

    1990-01-01

    The effect of wing leading-edge roundness on wing rock was investigated using flow visualization in a water tunnel. Eighty degree delta wing models were tested on free-to-roll and forced oscillation rigs. The onset of wing rock was delayed by increasing the roundness of the leading edges. The wing rock amplitude and frequency results suggested that damping was increased at lower angles of attack but reduced at higher angles of attack. Vortex lift-off and vortex breakdown, especially during dynamic situations, were strongly affected by the leading edge roundness. Different forms of wing rock motion could be sustained by combinations of vortex breakdown and vortex lift-off. Behaviors of the wing and vortex motions were explained by the influence of leading edge roundness on the separation location, vortex trajectory, and vortex breakdown.

  19. The Realization and Study of Optical Wings

    Science.gov (United States)

    Artusio-Glimpse, Alexandra Brae

    Consider the airfoil: a carefully designed structure capable of stable lift in a uniform air flow. It so happens that air pressure and radiation (light) pressure are similar phenomena because each transfer momentum to flow-disturbing objects. This, then, begs the question: does an optical analogue to the airfoil exist? Though an exceedingly small effect, scientists harness radiation pressure in a wide gamut of applications from micromanipulation of single biological particles to the propulsion of large spacecrafts called solar sails. We introduce a cambered, refractive rod that is subjected to optical forces analogous to those seen in aerodynamics, and I call this analogue the optical wing. Flight characteristics of optical wings are determined by wing shape and material in a uniform radiation field. Theory predicts the lift force and axial torque are functions of the wing's angle of attack with stable and unstable orientations. These structures can operate as intensity-dependent, parametrically driven oscillators. In two-dimensions, the wings exhibit bistability when analyzed in an accelerating frame. In three-dimensions, the motion of axially symmetric spinning hemispherical wings is analogous to a spinning top. Experiments on semi-buoyant wings in water found semicylindrically shaped, refractive microparticles traversed a laser beam and rotated to an illumination-dependent stable orientation. Preliminary tests aid in the development of a calibrated force measurement experiment to directly evaluate the optical forces and torque on these samples. A foundational study of the optical wing, this work contributes to future advancements of flight-by-light.

  20. Biaxial mechanical characterization of bat wing skin.

    Science.gov (United States)

    Skulborstad, A J; Swartz, S M; Goulbourne, N C

    2015-04-21

    The highly flexible and stretchable wing skin of bats, together with the skeletal structure and musculature, enables large changes in wing shape during flight. Such compliance distinguishes bat wings from those of all other flying animals. Although several studies have investigated the aerodynamics and kinematics of bats, few have examined the complex histology and mechanical response of the wing skin. This work presents the first biaxial characterization of the local deformation, mechanical properties, and fiber kinematics of bat wing skin. Analysis of these data has provided insight into the relationships among the structural morphology, mechanical properties, and functionality of wing skin. Large spatial variations in tissue deformation and non-negligible fiber strains in the cross-fiber direction for both chordwise and spanwise fibers indicate fibers should be modeled as two-dimensional elements. The macroscopic constitutive behavior was anisotropic and nonlinear, with very low spanwise and chordwise stiffness (hundreds of kilopascals) in the toe region of the stress-strain curve. The structural arrangement of the fibers and matrix facilitates a low energy mechanism for wing deployment and extension, and we fabricate examples of skins capturing this mechanism. We propose a comprehensive deformation map for the entire loading regime. The results of this work underscore the importance of biaxial field approaches for soft heterogeneous tissue, and provide a foundation for development of bio-inspired skins to probe the effects of the wing skin properties on aerodynamic performance.

  1. Winglets on low aspect ratio wings

    Science.gov (United States)

    Kuhlman, John M.; Liaw, Paul

    1987-01-01

    The drag reduction potentially available from the use of winglets at the tips of low aspect ratio (1.75-2.67) wings with pronounced (45-60 deg) leading edge sweep is assessed numerically for the case of a cruise design point at Mach of 0.8 and a lift coefficient of 0.3. Both wing-winglet and wing-alone design geometries are derived from a linear-theory, minimum induced drag design methodology. Relative performance is evaluated with a nonlinear extended small disturbance potential flow analysis code. Predicted lift coefficient/pressure drag coefficient increases at equal lift for the wing-winglet configurations over the wing-alone planform are of the order of 14.6-15.8, when boundary layer interaction is included.

  2. A Chinese Chan-based mind–body intervention improves psychological well-being and physical health of community-dwelling elderly: a pilot study

    Directory of Open Access Journals (Sweden)

    Yu R

    2014-04-01

    Full Text Available Ruby Yu,1 Jean Woo,1 Agnes S Chan,2–4 Sophia L Sze2,3 1Department of Medicine and Therapeutics, 2Department of Psychology, 3Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, New Territories, Hong Kong; 4Henan Songshan Research Institute for Chanwuyi, Henan, People's Republic of China Background: The aim of this study was to explore the potential benefits of the Dejian mind–body intervention (DMBI for psychological and physical health in older Chinese adults. Methods: After confirmation of eligibility, the subjects were invited to receive DMBI once a week for 12 weeks. The intervention involved components of learning self-awareness and self-control, practicing mind–body exercises, and adopting a special vegetarian diet. Intervention-related changes were measured using the Perceived Stress Scale, Geriatric Depression Scale, Pittsburgh Sleep Quality Index, Chinese Constipation Questionnaire, and self-report ratings of health. Indicators of metabolic syndrome and walking speed were also measured. Results: Of the 44 subjects recruited, 42 (54.8% men completed the study, giving an adherence rate of 95%. There was a significant reduction in perceived stress (P<0.05. A significant improvement was also found in systolic blood pressure among those who had abnormally high blood pressure at baseline (P<0.05. Physical fitness as reflected by walking speed was also significantly increased after the intervention (P<0.05. Sleep disturbances were reduced (P<0.01. Self-rated health was significantly enhanced, with the percentage rating very good health increasing from 14.3% at baseline to 42.8% after the intervention (P<0.001. No intervention effect was found for waist circumference, lipids and fasting blood glucose levels, Pittsburgh Sleep Quality Index global score, and constipation measures. Conclusion: The DMBI was feasible and acceptable, and subjects showed some improvements in psychological and physical

  3. Habitat variation and wing coloration affect wing shape evolution in dragonflies.

    Science.gov (United States)

    Outomuro, D; Dijkstra, K-D B; Johansson, F

    2013-09-01

    Habitats are spatially and temporally variable, and organisms must be able to track these changes. One potential mechanism for this is dispersal by flight. Therefore, we would expect flying animals to show adaptations in wing shape related to habitat variation. In this work, we explored variation in wing shape in relation to preferred water body (flowing water or standing water with tolerance for temporary conditions) and landscape (forested to open) using 32 species of dragonflies of the genus Trithemis (80% of the known species). We included a potential source of variation linked to sexual selection: the extent of wing coloration on hindwings. We used geometric morphometric methods for studying wing shape. We also explored the phenotypic correlation of wing shape between the sexes. We found that wing shape showed a phylogenetic structure and therefore also ran phylogenetic independent contrasts. After correcting for the phylogenetic effects, we found (i) no significant effect of water body on wing shape; (ii) male forewings and female hindwings differed with regard to landscape, being progressively broader from forested to open habitats; (iii) hindwings showed a wider base in wings with more coloration, especially in males; and (iv) evidence for phenotypic correlation of wing shape between the sexes across species. Hence, our results suggest that natural and sexual selection are acting partially independently on fore- and hindwings and with differences between the sexes, despite evidence for phenotypic correlation of wing shape between males and females.

  4. Design, fabrication, and characterization of multifunctional wings to harvest solar energy in flapping wing air vehicles

    Science.gov (United States)

    Perez-Rosado, Ariel; Gehlhar, Rachel D.; Nolen, Savannah; Gupta, Satyandra K.; Bruck, Hugh A.

    2015-06-01

    Currently, flapping wing unmanned aerial vehicles (a.k.a., ornithopters or robotic birds) sustain very short duration flight due to limited on-board energy storage capacity. Therefore, energy harvesting elements, such as flexible solar cells, need to be used as materials in critical components, such as wing structures, to increase operational performance. In this paper, we describe a layered fabrication method that was developed for realizing multifunctional composite wings for a unique robotic bird we developed, known as Robo Raven, by creating compliant wing structure from flexible solar cells. The deformed wing shape and aerodynamic lift/thrust loads were characterized throughout the flapping cycle to understand wing mechanics. A multifunctional performance analysis was developed to understand how integration of solar cells into the wings influences flight performance under two different operating conditions: (1) directly powering wings to increase operation time, and (2) recharging batteries to eliminate need for external charging sources. The experimental data is then used in the analysis to identify a performance index for assessing benefits of multifunctional compliant wing structures. The resulting platform, Robo Raven III, was the first demonstration of a robotic bird that flew using energy harvested from solar cells. We developed three different versions of the wing design to validate the multifunctional performance analysis. It was also determined that residual thrust correlated to shear deformation of the wing induced by torsional twist, while biaxial strain related to change in aerodynamic shape correlated to lift. It was also found that shear deformation of the solar cells induced changes in power output directly correlating to thrust generation associated with torsional deformation. Thus, it was determined that multifunctional solar cell wings may be capable of three functions: (1) lightweight and flexible structure to generate aerodynamic forces, (2

  5. Interval Finite Element Analysis of Wing Flutter

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaojun; Qiu Zhiping

    2008-01-01

    The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.

  6. In the wings of physics

    CERN Document Server

    Jacob, Maurice René Michel

    1995-01-01

    In physics research, many activities occur backstage or to continue the theatrical metaphor, in the wings of physics. This book focuses on two such activities: the editing of physics journals and the operation of physical societies. The author was editor of Physics Letters B for particle physics and then of Physics Reports for a total of 18 years, as well as being president of the French Physical Society and later of the European Physical Society. This book puts together papers dealing with such activities which he has written at various times in his career. It takes the reader into the inner circles of scientific editing and of physical societies. Each introduced by a foreword, these papers can be read separately.

  7. The Chandra Planetary Nebulae Survey (ChanPlaNS): III. X-ray Emission from the Central Stars of Planetary Nebulae

    CERN Document Server

    Montez, R; Balick, B; Behar, E; Blackman, E; Bujarrabal, V; Chu, Y -H; Corradi, R L M; De Marco, O; Frank, A; Freeman, M; Frew, D J; Guerrero, M A; Jones, D; Lopez, J A; Miszalski, B; Nordhaus, J; Parker, Q A; Sahai, R; Sandin, C; Schonberner, D; Soker, N; Sokoloski, J L; Steffen, M; Toalá, J A; Ueta, T; Villaver, E; Zijlstra, A

    2014-01-01

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey (ChanPlaNS) observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively "hard" ($\\geq0.5$~keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically-thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-ray emission: (1) high-temperature plasmas with X-ray luminosities, $L_{\\rm X}$, that appear uncorrelated with the CSPN bolometric luminosity, $L_{\\rm bol}$; and (2) lower-temperature plasmas with $L_{\\rm X}/L_{\\rm bol}\\sim10^{-7}$. We suggest these two classes correspond to the physical processes of magnetically active binary comp...

  8. Induce Drag Reduction of an Airplane Wing

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.

  9. New records of caridean shrimp (Crustacea: Decapoda) from hydrothermally influenced fields off Futuna Island, Southwest Pacific, with description of a new species assigned to the genus Alvinocaridinides Komai & Chan, 2010 (Alvinocarididae).

    Science.gov (United States)

    Komai, Tomoyuki; Menot, Lenaick; Segonzac, Michel

    2016-01-01

    Five species of caridean shrimp, including four Alvinocarididae Christoffersen, 1986 and one thorid species of the genus Lebbeus White, 1847, are reported from the recently discovered hydrothermal vent field off Futuna Island in the Southwest Pacific (depths 1418-1478 m): Alvinocaridinides semidentatus n. sp., Alvinocaris komaii Zelnio & Hourdez, 2009, Nautilocaris saintlaurentae Komai & Segonzac, 2004, Rimicaris variabilis (Komai & Tsuchida, 2015), and Lebbeus wera Ahyong, 2009. The new species, provisionally assigned to Alvinocaridinides Komai & Chan, 2010, is readily distinguished from the type species of the genus, A. formosa Komai & Chan, 2010, by the characteristic armature of the rostrum and of the propodi of the third and fourth pereopods and the possession of ischial spines on the third and fourth pereopods. Identification of R. variabilis has been confirmed by morphology and sequence comparison of mitochondrial COI gene. The geographical range of L. wera is extended to the north from the Brothers Caldera in the Kermadec Ridge.

  10. The making of a Chinese head of the WHO: a study of the media discourse on Margaret Chan's contest for the WHO director-generalship and its implications for the collective memory of SARS.

    Science.gov (United States)

    Yin, Chan Wai; Yun, Ma Shu

    2009-01-01

    In 2003, Margaret Chan Fung Fu-chun, former Director of Health of the Hong Kong government, was criticized for her unsatisfactory performance in handling the SARS outbreak. But three years later, she was celebrated for her success in the contest for the WHO director-generalship. How was she transformed from an incompetent official into an "honor winner" for China and Hong Kong? In what context was this made possible? How was the collective memory about Chan recalled and reconstructed? This article tackles these questions by reviewing relevant reportage and commentary in major local (Hong Kong), national (China), and international media. It maps the political context of the media discourse and explores the construction of a collective past to foster national cohesion in postcolonial Hong Kong.

  11. Static aeroelastic analysis for generic configuration wing

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1991-01-01

    A static aeroelastic analysis capability that calculates flexible air loads for generic configuration wings was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used, and the aerodynamic influence coefficient matrix was computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible air loads of an oblique wing configuration including asymmetric wings can be calculated reliably by this code both in subsonic and supersonic speeds.

  12. CineVersum BlackWing Four

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    从BlackWing One到现在最新推出的BlackWing Four,一直以来C1ndVersum所带来的投影机都受到了不少投影机爱好者的关注,其帅气的外形搭配独特的欧美系画面风格,让人印象深刻。BlackWingFour是Cine Versum最为强悍的家庭影院投影机之一,

  13. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  14. Active Dihedral Control System for a Torisionally Flexible Wing

    Science.gov (United States)

    Kendall, Greg T. (Inventor); Lisoski, Derek L. (Inventor); Morgan, Walter R. (Inventor); Griecci, John A. (Inventor)

    2015-01-01

    A span-loaded, highly flexible flying wing, having horizontal control surfaces mounted aft of the wing on extended beams to form local pitch-control devices. Each of five spanwise wing segments of the wing has one or more motors and photovoltaic arrays, and produces its own lift independent of the other wing segments, to minimize inter-segment loads. Wing dihedral is controlled by separately controlling the local pitch-control devices consisting of a control surface on a boom, such that inboard and outboard wing segment pitch changes relative to each other, and thus relative inboard and outboard lift is varied.

  15. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  16. DrawWing, a program for numerical description of insect wings

    Directory of Open Access Journals (Sweden)

    Adam Tofilski

    2004-05-01

    Full Text Available There is usually a pattern of veins on an insect wing. This pattern is species-specific and is used taxonomically. For example, the coordinates of some characteristic points on the wing are used to compare vein patterns. The characteristic points are often vein junctions or vein ends. A tool is presented that enables automatic identification of vein junctions. An image of an insect wing is used to determine the wing outline and veins. The vein skeleton is obtained using a thinning algorithm. Bezier splines are fitted to both the wing outline and the vein skeleton. The splines are saved in an encapsulated postscript file. Another output file in text format contains the coordinates of vein junctions. Both the program and its source code are available under GNU General Public License at [www.cyf-kr.edu.pl/~rotofils/drawwing.html]. The program presented in this paper automatically provides a numerical description of an insect wing. It converts an image of an insect wing to a list of coordinates of vein junctions, and a wing diagram that can be used as an illustration. Coordinates of the vein junctions extracted by the program from wing images were used successfully to discriminate between males of Dolichovespula sylvestris and Dolichovespula saxonica.

  17. Fruit fly scale robots can hover longer with flapping wings than with spinning wings.

    Science.gov (United States)

    Hawkes, Elliot W; Lentink, David

    2016-10-01

    Hovering flies generate exceptionally high lift, because their wings generate a stable leading edge vortex. Micro flying robots with a similar wing design can generate similar high lift by either flapping or spinning their wings. While it requires less power to spin a wing, the overall efficiency depends also on the actuator system driving the wing. Here, we present the first holistic analysis to calculate how long a fly-inspired micro robot can hover with flapping versus spinning wings across scales. We integrate aerodynamic data with data-driven scaling laws for actuator, electronics and mechanism performance from fruit fly to hummingbird scales. Our analysis finds that spinning wings driven by rotary actuators are superior for robots with wingspans similar to hummingbirds, yet flapping wings driven by oscillatory actuators are superior at fruit fly scale. This crossover is driven by the reduction in performance of rotary compared with oscillatory actuators at smaller scale. Our calculations emphasize that a systems-level analysis is essential for trading-off flapping versus spinning wings for micro flying robots.

  18. Resilin in dragonfly and damselfly wings and its implications for wing flexibility.

    Science.gov (United States)

    Donoughe, Seth; Crall, James D; Merz, Rachel A; Combes, Stacey A

    2011-12-01

    Although there is mounting evidence that passive mechanical dynamics of insect wings play an integral role in insect flight, our understanding of the structural details underlying insect wing flexibility remains incomplete. Here, we use comparative morphological and mechanical techniques to illuminate the function and diversity of two mechanisms within Odonata wings presumed to affect dynamic wing deformations: flexible resilin vein-joints and cuticular spikes. Mechanical tests show that joints with more resilin have lower rotational stiffness and deform more in response to a load applied to an intact wing. Morphological studies of 12 species of Odonata reveal that resilin joints and cuticular spikes are widespread taxonomically, yet both traits display a striking degree of morphological and functional diversity that follows taxonomically distinct patterns. Interestingly, damselfly wings (suborder Zygoptera) are mainly characterized by vein-joints that are double-sided (containing resilin both dorsally and ventrally), whereas dragonfly wings (suborder Epiprocta) are largely characterized by single-sided vein-joints (containing resilin either ventrally or dorsally, but not both). The functional significance and diversity of resilin joints and cuticular spikes could yield insight into the evolutionary relationship between form and function of wings, as well as revealing basic principles of insect wing mechanical design.

  19. Parametric weight evaluation of joined wings by structural optimization

    Science.gov (United States)

    Miura, Hirokazu; Shyu, Albert T.; Wolkovitch, Julian

    1988-01-01

    Joined-wing aircraft employ tandem wings having positive and negative sweep and dihedral, arranged to form diamond shapes in both plan and front views. An optimization method was applied to study the effects of joined-wing geometry parameters on structural weight. The lightest wings were obtained by increasing dihedral and taper ratio, decreasing sweep and span, increasing fraction of airfoil chord occupied by structural box, and locating the joint inboard of the front wing tip.

  20. Nuclear Energy -- Knowledge Base for Advanced Modeling and Simulation (NE-KAMS) Code Verification and Validation Data Standards and Requirements: Fluid Dynamics Version 1.0

    Energy Technology Data Exchange (ETDEWEB)

    Greg Weirs; Hyung Lee

    2011-09-01

    V&V and UQ are the primary means to assess the accuracy and reliability of M&S and, hence, to establish confidence in M&S. Though other industries are establishing standards and requirements for the performance of V&V and UQ, at present, the nuclear industry has not established such standards or requirements. However, the nuclear industry is beginning to recognize that such standards are needed and that the resources needed to support V&V and UQ will be very significant. In fact, no single organization has sufficient resources or expertise required to organize, conduct and maintain a comprehensive V&V and UQ program. What is needed is a systematic and standardized approach to establish and provide V&V and UQ resources at a national or even international level, with a consortium of partners from government, academia and industry. Specifically, what is needed is a structured and cost-effective knowledge base that collects, evaluates and stores verification and validation data, and shows how it can be used to perform V&V and UQ, leveraging collaboration and sharing of resources to support existing engineering and licensing procedures as well as science-based V&V and UQ processes. The Nuclear Energy Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Utah State University and others with the objective of establishing a comprehensive and web-accessible knowledge base to provide V&V and UQ resources for M&S for nuclear reactor design, analysis and licensing. The knowledge base will serve as an important resource for technical exchange and collaboration that will enable credible and reliable computational models and simulations for application to nuclear power. NE-KAMS will serve as a valuable resource for the nuclear industry, academia, the national laboratories, the U.S. Nuclear Regulatory Commission (NRC) and

  1. Coriolis effects enhance lift on revolving wings.

    Science.gov (United States)

    Jardin, T; David, L

    2015-03-01

    At high angles of attack, an aircraft wing stalls. This dreaded event is characterized by the development of a leading edge vortex on the upper surface of the wing, followed by its shedding which causes a drastic drop in the aerodynamic lift. At similar angles of attack, the leading edge vortex on an insect wing or an autorotating seed membrane remains robustly attached, ensuring high sustained lift. What are the mechanisms responsible for both leading edge vortex attachment and high lift generation on revolving wings? We review the three main hypotheses that attempt to explain this specificity and, using direct numerical simulations of the Navier-Stokes equations, we show that the latter originates in Coriolis effects.

  2. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  3. Mallard age and sex determination from wings

    Science.gov (United States)

    Carney, S.M.; Geis, A.D.

    1960-01-01

    This paper describes characters on the wing plumage of the mallard that indicate age and sex. A key outlines a logical order in which to check age and sex characters on wings. This method was tested and found to be more than 95 percent reliable, although it was found that considerable practice and training with known-age specimens was required to achieve this level of accuracy....The implications of this technique and the sampling procedure it permits are discussed. Wing collections could provide information on production, and, if coupled with a banding program could permit seasonal population estimates to be calculated. In addition, representative samples of wings would provide data to check the reliability of several other waterfowl surveys.

  4. Trajectory Optimization Design for Morphing Wing Missile

    Institute of Scientific and Technical Information of China (English)

    Ruisheng Sun; Chao Ming; Chuanjie Sun

    2015-01-01

    This paper presents a new particle swarm optimization ( PSO) algorithm to optimize the trajectory of morphing⁃wing missile so as to achieve the enlargement of the maximum range. Equations of motion for the two⁃dimensional dynamics are derived by treating the missile as an ideal controllable mass point. An investigation of aerodynamic characteristics of morphing⁃wing missile with varying geometries is performed. After deducing the optimizing trajectory model for maximizing range, a type of discrete method is put forward for taking optimization control problem into nonlinear dynamic programming problem. The optimal trajectory is solved by using PSO algorithm and penalty function method. The simulation results suggest that morphing⁃wing missile has the larger range than the fixed⁃shape missile when launched at supersonic speed, while morphing⁃wing missile has no obvious range increment than the fixed⁃shape missile at subsonic speed.

  5. Molecular determinants of bat wing development.

    Science.gov (United States)

    Sears, K E

    2008-01-01

    The specialization of the forelimb into a wing allowed bats to become the only mammals to achieve powered flight. Recent studies in developmental biology have begun to elucidate the molecular mechanisms behind elements of this important morphological transformation. Specifically, researchers have identified molecular changes contributing to: the formation of the bat wing membrane, the elongation of skeletal elements of the bat wing and the reduction of the bat ulna. The general picture emerging from this research is that small changes in the expression of genes critical to many aspects of development have driven large changes in bat wing morphology. Thus, bats can be added to the growing list of groups in which expression changes in key developmental genes have been linked to the evolution of morphological innovations (e.g. early bilaterians, cetaceans, insects).

  6. Analysis of the Wing Tsun Punching Methods

    Directory of Open Access Journals (Sweden)

    Jeff Webb

    2012-07-01

    Full Text Available The three punching techniques of Wing Tsun, while few in number, represent an effective approach to striking with the closed fist. At first glance, the rather short stroke of each punch would seem disproportionate to the amount of power it generates. Therefore, this article will discuss the structure and body mechanics of each punch, in addition to the various training methods employed for developing power. Two of the Wing Tsun punches, namely the lifting punch and the hooking punch, are often confused with similar punches found in Western boxing. The key differences between the Wing Tsun and boxing punches, both in form and function, will be discussed. Finally, the strategy for applying the Wing Tsun punches will serve as the greatest factor in differentiating them from the punches of other martial arts styles.

  7. Cross Service Fixed-Wing Cost Estimation

    Science.gov (United States)

    2016-05-17

    clarify the costing methods for O&S costs for fixed-wing delivery platforms with the intent of extending the research to other cross- service mission costs...proof-of-concept, this project will concentrate on equating equitable cross- service costs for fixed-wing munitions delivery platforms. The method of... delivery is an essential part of the AoA, especially when the project proposed is the replacement of current missile systems. The services have

  8. Identity Reconstruction and Symbol Feature of the Kam Grand Choirs by the View of“State Presence”%“国家在场”与“侗族大歌身份”重构及符号特征

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    侗族大歌是侗族人民在历史发展演变过程中创造出来的优秀民族文化。它不仅呈现出侗族文化的独特魅力,同时也彰显了中华民族文化的多样性。自侗族大歌成功申遗以来,其常以一种独特的符号形式在各种场域频繁出现,并因此被世人熟知。在国家强有力的政策支持下,侗族大歌不仅获得了生存空间,而且其价值和意义也得到新的诠释。%The Kam Grand Choirs is an excellent national culture of Dong nationality. It is created by their work and wisdom in the evolution of historical development. It is not only present the unique charm of Dong nationality’s culture, but also embody the diversity of Chinese culture.Since the Kam Grand Choirs has successfully applied for the list of world heritage.It always frequently appear in many occasions as a particular symbol.So, it is coming to be known. Under the powerful national policy support, the Kam Grand Choirs has more living spaces, and its value and significance has been newly annotate.

  9. Lift augmentation for highly swept wing aircraft

    Science.gov (United States)

    Rao, Dhanvada M. (Inventor)

    1993-01-01

    A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

  10. Wetting Characteristics of Insect Wing Surfaces

    Institute of Scientific and Technical Information of China (English)

    Doyoung Byun; Jongin Hong; Saputra; Jin Hwan Ko; Young Jong Lee; Hoon Cheol Park; Bong-Kyu Byun; Jennifer R. Lukes

    2009-01-01

    Biological tiny structures have been observed on many kinds of surfaces such as lotus leaves, which have an effect on the coloration of Morpho butterflies and enhance the hydrophobicity of natural surfaces. We investigated the micro-scale and nano-scale structures on the wing surfaces of insects and found that the hierarchical multiple roughness structures help in enhancing the hydrophobicity. After examining 10 orders and 24 species of flying Pterygotan insects, we found that micro-scale and nano-scale structures typically exist on both the upper and lower wing surfaces of flying insects. The tiny structures such as denticle or setae on the insect wings enhance the hydrophobicity, thereby enabling the wings to be cleaned more easily. And the hydrophobic insect wings undergo a transition from Cassie to Wenzel states at pitch/size ratio of about 20. In order to examine the wetting characteristics on a rough surface, a biomimetic surface with micro-scale pillars is fabricated on a silicon wafer,which exhibits the same behavior as the insect wing, with the Cassie-Wenzel transition occurring consistently around a pitch/width value of 20.

  11. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  12. Numerical study of the trailing vortex of a wing with wing-tip blowing

    Science.gov (United States)

    Lim, Hock-Bin

    1994-01-01

    Trailing vortices generated by lifting surfaces such as helicopter rotor blades, ship propellers, fixed wings, and canard control surfaces are known to be the source of noise, vibration, cavitation, degradation of performance, and other hazardous problems. Controlling these vortices is, therefore, of practical interest. The formation and behavior of the trailing vortices are studied in the present research. In addition, wing-tip blowing concepts employing axial blowing and spanwise blowing are studied to determine their effectiveness in controlling these vortices and their effects on the performance of the wing. The 3D, unsteady, thin-layer compressible Navier-Stokes equations are solved using a time-accurate, implicit, finite difference scheme that employs LU-ADI factorization. The wing-tip blowing is simulated using the actuator plane concept, thereby, not requiring resolution of the jet slot geometry. Furthermore, the solution blanking feature of the chimera scheme is used to simplify the parametric study procedure for the wing-tip blowing. Computed results are shown to compare favorably with experimental measurements. It is found that axial wing-tip blowing, although delaying the rolling-up of the trailing vortices and the near-field behavior of the flowfield, does not dissipate the circulation strength of the trailing vortex farther downstream. Spanwise wing-tip blowing has the effect of displacing the trailing vortices outboard and upward. The increased 'wing-span' due to the spanwise wing-tip blowing has the effect of lift augmentation on the wing and the strengthening of the trailing vortices. Secondary trailing vortices are created at high spanwise wing-tip blowing intensities.

  13. Populists in Parliament : Comparing Left-Wing and Right-Wing Populism in the Netherlands

    NARCIS (Netherlands)

    Otjes, Simon; Louwerse, Tom

    2015-01-01

    In parliament, populist parties express their positions almost every day through voting. There is great diversity among them, for instance between left-wing and right-wing populist parties. This gives rise to the question: is the parliamentary behaviour of populists motivated by their populism or by

  14. Aerodynamics of two-dimensional flapping wings in tandem configuration

    Science.gov (United States)

    Lua, K. B.; Lu, H.; Zhang, X. H.; Lim, T. T.; Yeo, K. S.

    2016-12-01

    This paper reports a fundamental investigation on the aerodynamics of two-dimensional flapping wings in tandem configuration in forward flight. Of particular interest are the effects of phase angle (φ) and center-to-center distance (L) between the front wing and the rear wing on the aerodynamic force generation at a Reynolds number of 5000. Both experimental and numerical methods were employed. A force sensor was used to measure the time-history aerodynamic forces experienced by the two wings and digital particle image velocimetry was utilized to obtain the corresponding flow structures. Both the front wing and the rear wing executed the same simple harmonic motions with φ ranging from -180° to 180° and four values of L, i.e., 1.5c, 2c, 3c, and 4c (c is the wing chord length). Results show that at fixed L = 2c, tandem wings perform better than the sum of two single wings that flap independently in terms of thrust for phase angle approximately from -90° to 90°. The maximum thrust on the rear wing occurs during in-phase flapping (φ = 0°). Correlation of transient thrust and flow structure indicates that there are generally two types of wing-wake interactions, depending on whether the rear wing crosses the shear layer shed from the front wing. Finally, increasing wing spacing has similar effect as reducing the phase angle, and an approximate mathematical model is derived to describe the relationship between these two parameters.

  15. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  16. Comportamento de Cistus Ladanifer L. e Cistus Monspeliensis L. face aos elementos vestigiais em solos na área mineira do Chança Cistus Ladanifer L. and Cistus Monspeliensis L. behaviour in Chança mine soils contaminated with trace elements

    Directory of Open Access Journals (Sweden)

    Eliana Fernandes

    2011-07-01

    Full Text Available Comparou-se a acumulação e translocação de elementos vestigiais em duas espécies de plantas espontâneas na área mineira do Chança, Cistus ladanifer L. e Cistus monspeliensis L., e caracterizaram-se os solos da área da rizosfera. Os solos apresentaram diferenças no conteúdo em arsénio, cobre, crómio, manganês, vanádio e zinco e alguns elementos atingiram valores totais (mg kg-1 de: 151 (As; 320 (Cr; 926 (Cu; 1010 (Mn; 235 (V. As concentrações em crómio, manganês e vanádio são diferentes na raiz das duas espécies. Na parte aérea, apenas a concentração de manganês e de níquel é semelhante. As espécies mostraram comportamento acumulador relativamente ao manganês, com excepção do C. monspeliensis numa das zonas de amostragem. Para a maioria dos elementos vestigiais, o C. monspeliensis possui maior capacidade de translocação (raiz-parte aérea do que o C. ladanifer. Os coeficientes de translocação do crómio, manganês, níquel e zinco são superiores a 1,5 nas duas espécies.Trace elements accumulation and translocation in two spontaneous plants of genus Cistus, Cistus ladanifer L. and Cistus monspeliensis L., growing in the Chança mine area, were compared. Samples of plants and soils from rizosphere were collected and characterized. Soil samples showed different total content of arsenic, chromium, copper, manganese, vanadium and zinc, and some of the trace elements had the following total values (mg kg-1: 151 (As; 320 (Cr; 926 (Cu; 1010 (Mn; 235 (V. The concentrations of chromium, manganese and vanadium in roots were different between species. In the shoots, only manganese and nickel concentrations were similar. The two species were manganese accumulators, with C. mon-speliensis exception in one of the sampled areas. Cistus monspeliensis showed the largest translocation capacity of trace elements from roots to shoots. Both species presented the translocation coefficient of chromium, manganese, nickel and zinc

  17. Flapping wing aerodynamics: from insects to vertebrates.

    Science.gov (United States)

    Chin, Diana D; Lentink, David

    2016-04-01

    More than a million insects and approximately 11,000 vertebrates utilize flapping wings to fly. However, flapping flight has only been studied in a few of these species, so many challenges remain in understanding this form of locomotion. Five key aerodynamic mechanisms have been identified for insect flight. Among these is the leading edge vortex, which is a convergent solution to avoid stall for insects, bats and birds. The roles of the other mechanisms - added mass, clap and fling, rotational circulation and wing-wake interactions - have not yet been thoroughly studied in the context of vertebrate flight. Further challenges to understanding bat and bird flight are posed by the complex, dynamic wing morphologies of these species and the more turbulent airflow generated by their wings compared with that observed during insect flight. Nevertheless, three dimensionless numbers that combine key flow, morphological and kinematic parameters - the Reynolds number, Rossby number and advance ratio - govern flapping wing aerodynamics for both insects and vertebrates. These numbers can thus be used to organize an integrative framework for studying and comparing animal flapping flight. Here, we provide a roadmap for developing such a framework, highlighting the aerodynamic mechanisms that remain to be quantified and compared across species. Ultimately, incorporating complex flight maneuvers, environmental effects and developmental stages into this framework will also be essential to advancing our understanding of the biomechanics, movement ecology and evolution of animal flight.

  18. Antifatigue properties of dragonfly Pantala flavescens wings.

    Science.gov (United States)

    Li, Xiu-Juan; Zhang, Zhi-Hui; Liang, Yun-Hong; Ren, Lu-Quan; Jie, Meng; Yang, Zhi-Gang

    2014-05-01

    The wing of a dragonfly is thin and light, but can bear high frequent alternating stress and present excellent antifatigue properties. The surface morphology and microstructure of the wings of dragonfly Pantala flavescens were observed using SEM in this study. Based on the biological analysis method, the configuration, morphology, and structure of the vein were studied, and the antifatigue properties of the wings were investigated. The analytical results indicated that the longitudinal veins, cross veins, and membrane of dragonfly wing form a optimized network morphology and spacially truss-like structure which can restrain the formation and propagation of the fatigue cracks. The veins with multilayer structure present high strength, flexibility, and toughness, which are beneficial to bear alternating load during the flight of dragonfly. Through tensile-tensile fatigue failure tests, the results were verified and indicate that the wings of dragonfly P. flavescens have excellent antifatigue properties which are the results of the biological coupling and synergistic effect of morphological and structural factors.

  19. Elastic deformation and energy loss of flapping fly wings.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Gorb, Stanislav; Nasir, Nazri; Schützner, Peter

    2011-09-01

    During flight, the wings of many insects undergo considerable shape changes in spanwise and chordwise directions. We determined the origin of spanwise wing deformation by combining measurements on segmental wing stiffness of the blowfly Calliphora vicina in the ventral and dorsal directions with numerical modelling of instantaneous aerodynamic and inertial forces within the stroke cycle using a two-dimensional unsteady blade elementary approach. We completed this approach by an experimental study on the wing's rotational axis during stroke reversal. The wing's local flexural stiffness ranges from 30 to 40 nN m(2) near the root, whereas the distal wing parts are highly compliant (0.6 to 2.2 nN m(2)). Local bending moments during wing flapping peak near the wing root at the beginning of each half stroke due to both aerodynamic and inertial forces, producing a maximum wing tip deflection of up to 46 deg. Blowfly wings store up to 2.30 μJ elastic potential energy that converts into a mean wing deformation power of 27.3 μW. This value equates to approximately 5.9 and 2.3% of the inertial and aerodynamic power requirements for flight in this animal, respectively. Wing elasticity measurements suggest that approximately 20% or 0.46 μJ of elastic potential energy cannot be recovered within each half stroke. Local strain energy increases from tip to root, matching the distribution of the wing's elastic protein resilin, whereas local strain energy density varies little in the spanwise direction. This study demonstrates a source of mechanical energy loss in fly flight owing to spanwise wing bending at the stroke reversals, even in cases in which aerodynamic power exceeds inertial power. Despite lower stiffness estimates, our findings are widely consistent with previous stiffness measurements on insect wings but highlight the relationship between local flexural stiffness, wing deformation power and energy expenditure in flapping insect wings.

  20. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  1. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  2. Transonic flow theory of airfoils and wings

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, P R

    1976-01-01

    Supercritical wing technology is expected to have a significant influence on the next generation of commercial aircraft. Computational fluid dynamics is playing a central role in the development of new supercritical wing sections. One of the principal tools is a fast and reliable code that simulates two-dimensional wind tunnel data for transonic flow at high Reynolds numbers. This is used widely by industry to assess drag creep and drag rise. Codes for the design of shockless airfoils by the hodograph method have not been so well received because they usually require a lot of trial and error. However, a more advanced mathematical approach makes it possible to assign the pressure as a function of the arc length and then obtain a shockless airfoil that nearly achieves the given distribution of pressure. This tool should enable engineers to design families of transonic airfoils more easily both for airplane wings and for compressor blades in cascade.

  3. Active Aeroelastic Tailoring of High-Aspect-Ratio Composite Wings

    Science.gov (United States)

    2005-09-01

    34 - 26000 , ......... . . . ...... . . .... .. .......................... ... - - ----------- 21000 ... ........... ~0 50 LOAD... ISO 5: B s mission....f Figure 5: Basic mission profile 7 Figure 6: Baseline single-wing and joined-wing vehicles 3.1 Baseline vehicles Three sets

  4. Decoupler pylon: wing/store flutter suppressor

    Science.gov (United States)

    Reed, W. H., III (Inventor)

    1982-01-01

    A device for suspending a store from a support such as an aircraft wing and more specifically for increasing the flutter speed of an aircraft flying with attached store and reducing the sensitivity of flutter to changes in the pitch inertia and center of gravity location of the store is described. It comprises softspring where the store pitch mode is decoupled from support modes and a low frequency active control mechanism which maintains store alignment. A pneumatic suspension system both isolates the store in pitch and, under conditions of changing mean load, aligns the store with the wing to which it is attached.

  5. Spanwise transition section for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    A blended wing-body aircraft includes a central body, a wing, and a transition section which interconnects the body and the wing on each side of the aircraft. The two transition sections are identical, and each has a variable chord length and thickness which varies in proportion to the chord length. This enables the transition section to connect the thin wing to the thicker body. Each transition section has a negative sweep angle.

  6. Design and aerodynamic characteristics of a span morphing wing

    Science.gov (United States)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  7. Nonlinear, unsteady aerodynamic loads on rectangular and delta wings

    Science.gov (United States)

    Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1977-01-01

    Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.

  8. Ornithopter type flapping wings for autonomous micro air vehicles

    OpenAIRE

    2015-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings a...

  9. Comment on Viscoelastic properties of confined polymer films measured via thermal wrinkling by E. P. Chan, K. A. Page, S. H. Im, D. L. Patton, R. Huang, and C. M. Stafford, Soft Matter, 2009, 5, 4638-4641

    Science.gov (United States)

    2011-01-01

    R. Huang, and C. M. Stafford, Soft Matter , 2009, 5, 4638–4641 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: In the original paper using the thin...wrinkling” by E. P. Chan, K. A. Page, S. H. Im, D. L. Patton, R. Huang, and C. M. Stafford, Soft Matter , 2009, 5, 4638–4641 Report Title ABSTRACT In the...Published in Soft Matter , Vol. 7, (2), Ed. 0 (2011), (Ed. ). DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce

  10. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  11. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which extr

  12. A Wind Tunnel Investigation of Joined Wing Scissor Morphing

    Science.gov (United States)

    2006-06-01

    wing stalls when the rear wing stalls [23]. While this improves efficiency it also decreases the wetted area while maintaining the same lifting...Analysis and Optimization on Joined-Wing Configurations. Dir. Dong-Hwan Lee and P. C. Chen. Slide Program. Zona Technology. 2. Bagwill, Tracy L., and

  13. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Müller, U.K.; Stamhuis, E.J.; Kat, de R.; Gestel, van W.J.H.; Veldhuis, L.L.M.; Henningsson, P.; Hedenström, A.; Videler, J.J.; Leeuwen, van J.L.

    2007-01-01

    Gliding birds continually change the shape and size of their wings1, 2, 3, 4, 5, 6, presumably to exploit the profound effect of wing morphology on aerodynamic performance7, 8, 9. That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models2, 10

  14. The costae presenting in high-temperature-induced vestigial wings of Drosophila: implications for anterior wing margin formation

    Indian Academy of Sciences (India)

    Daxiang Yang

    2007-01-01

    It has long been noted that high temperature produces great variation in wing forms of the vestigial mutant of Drosophila. Most of the wings have defects in the wing blade and partially formed wing margin, which are the result of autonomous cell death in the presumptive wing blade or costal region of the wing disc. The vestigial gene ($vg$) and the interaction of Vg protein with other gene products are well understood. With this biochemical knowledge, reinvestigations of the high-temperature-induced vestigial wings and the elucidation of the molecular mechanism underlying the large-scale variation of the wing forms may provide insight into further understanding of development of the wing of Drosophila. As a first step of such explorations, I examined high-temperature-induced (29°C) vestigial wings. In the first part of this paper, I provide evidences to show that the proximal and distal costae in these wings exhibit regular and continuous variation, which suggests different developmental processes for the proximal and distal costal sections. Judging by the costae presenting in the anterior wing margin, I propose that the proximal and distal costal sections are independent growth units. The genes that regulate formation of the distal costal section also strongly affect proliferation of cells nearby; however, the same phenomenon has not been found in the proximal costal section. The distal costal section seems to be an extension of the radius vein. vestigial, one of the most intensely researched temperature-sensitive mutations, is a good candidate for the study of marginal vein formation. In the second part of the paper, I regroup the wing forms of these wings, chiefly by comparison of venation among these wings, and try to elucidate the variation of the wing forms according to the results of previous work and the conclusions reached in the first part of this paper, and provide clues for further researches.

  15. Computational wing optimization and comparisons with experiment for a semi-span wing model

    Science.gov (United States)

    Waggoner, E. G.; Haney, H. P.; Ballhaus, W. F.

    1978-01-01

    A computational wing optimization procedure was developed and verified by an experimental investigation of a semi-span variable camber wing model in the NASA Ames Research Center 14 foot transonic wind tunnel. The Bailey-Ballhaus transonic potential flow analysis and Woodward-Carmichael linear theory codes were linked to Vanderplaats constrained minimization routine to optimize model configurations at several subsonic and transonic design points. The 35 deg swept wing is characterized by multi-segmented leading and trailing edge flaps whose hinge lines are swept relative to the leading and trailing edges of the wing. By varying deflection angles of the flap segments, camber and twist distribution can be optimized for different design conditions. Results indicate that numerical optimization can be both an effective and efficient design tool. The optimized configurations had as good or better lift to drag ratios at the design points as the best designs previously tested during an extensive parametric study.

  16. Aerodynamic Interactions Between Contralateral Wings and Between Wings and Body of a Model Insect at Hovering and Small Speed Motions

    Institute of Scientific and Technical Information of China (English)

    LIANG Bin; SUN Mao

    2011-01-01

    In this paper,we study the aerodynamic interactions between the contralateral wings and between the body and wings of a model insect,when the insect is hovering and has various translational and rotational motions,using the method numerically solving the Navier-Stokes equations over moving overset grids.The aerodynamic interactional effects are identified by comparing the results of a complete model insect,the corresponding wing pair,single wing and body without the wings.Horizontal,vertical and lateral translations and roll,pitch and yaw rotations at small speeds are considered.The results indicate that for the motions considered,both the interaction between the contralateral wings and the interaction between the body and wings are weak.The changes in the forces and moments of a wing due to the contralateral wing interaction,of the wings due to the presence of the body,and of the body due to the presence of the wings are generally less than 4.5%.Results show that aerodynamic forces of wings and body can be measured or computed separately in the analysis of flight stability and control of hovering insects.

  17. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  18. Fiber-optically sensorized composite wing

    Science.gov (United States)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  19. Applications of a transonic wing design method

    Science.gov (United States)

    Campbell, Richard L.; Smith, Leigh A.

    1989-01-01

    A method for designing wings and airfoils at transonic speeds using a predictor/corrector approach was developed. The procedure iterates between an aerodynamic code, which predicts the flow about a given geometry, and the design module, which compares the calculated and target pressure distributions and modifies the geometry using an algorithm that relates differences in pressure to a change in surface curvature. The modular nature of the design method makes it relatively simple to couple it to any analysis method. The iterative approach allows the design process and aerodynamic analysis to converge in parallel, significantly reducing the time required to reach a final design. Viscous and static aeroelastic effects can also be accounted for during the design or as a post-design correction. Results from several pilot design codes indicated that the method accurately reproduced pressure distributions as well as the coordinates of a given airfoil or wing by modifying an initial contour. The codes were applied to supercritical as well as conventional airfoils, forward- and aft-swept transport wings, and moderate-to-highly swept fighter wings. The design method was found to be robust and efficient, even for cases having fairly strong shocks.

  20. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    xx  I.  Introduction ...Edge TPV Thermo-Photovoltaic CONCEPTUAL STUDY OF ROTARY-WING MICROROBOTICS I. Introduction Flying micro-robots offer unimaginable military...Tweezers 1989 1 cm3 inch robot 1991 Magnetostrictive mover in pipe 1992 Insect-based robot 1993 Ciliary-motion conveyor 1994 Pipe inspection robot

  1. Mother Nature inspires new wind turbine wing

    DEFF Research Database (Denmark)

    Sønderberg Petersen, L.

    2007-01-01

    The sight of a bird of prey hanging immobile in the air while its wings continuously adjust themselves slightly in relation to the wind in order to keep the bird in the same position in the air, is a sight that most of us have admired, including the windenergy scientists at Risø DTU. They have st...

  2. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  3. Hybrid Wing Body Configuration Scaling Study

    Science.gov (United States)

    Nickol, Craig L.

    2012-01-01

    The Hybrid Wing Body (HWB) configuration is a subsonic transport aircraft concept with the potential to simultaneously reduce fuel burn, noise and emissions compared to conventional concepts. Initial studies focused on very large applications with capacities for up to 800 passengers. More recent studies have focused on the large, twin-aisle class with passenger capacities in the 300-450 range. Efficiently scaling this concept down to the single aisle or smaller size is challenging due to geometric constraints, potentially reducing the desirability of this concept for applications in the 100-200 passenger capacity range or less. In order to quantify this scaling challenge, five advanced conventional (tube-and-wing layout) concepts were developed, along with equivalent (payload/range/technology) HWB concepts, and their fuel burn performance compared. The comparison showed that the HWB concepts have fuel burn advantages over advanced tube-and-wing concepts in the larger payload/range classes (roughly 767-sized and larger). Although noise performance was not quantified in this study, the HWB concept has distinct noise advantages over the conventional tube-and-wing configuration due to the inherent noise shielding features of the HWB. NASA s Environmentally Responsible Aviation (ERA) project will continue to investigate advanced configurations, such as the HWB, due to their potential to simultaneously reduce fuel burn, noise and emissions.

  4. Aerodynamics of a rigid curved kite wing

    CERN Document Server

    Maneia, Gianmauro; Tordella, Daniela; Iovieno, Michele

    2013-01-01

    A preliminary numerical study on the aerodynamics of a kite wing for high altitude wind power generators is proposed. Tethered kites are a key element of an innovative wind energy technology, which aims to capture energy from the wind at higher altitudes than conventional wind towers. We present the results obtained from three-dimensional finite volume numerical simulations of the steady air flow past a three-dimensional curved rectangular kite wing (aspect ratio equal to 3.2, Reynolds number equal to 3x10^6). Two angles of incidence -- a standard incidence for the flight of a tethered airfoil (6{\\deg}) and an incidence close to the stall (18{\\deg}) -- were considered. The simulations were performed by solving the Reynolds Averaged Navier-Stokes flow model using the industrial STAR-CCM+ code. The overall aerodynamic characteristics of the kite wing were determined and compared to the aerodynamic characteristics of the flat rectangular non twisted wing with an identical aspect ratio and section (Clark Y profil...

  5. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  6. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    baseline products were built in Solidworks prior to the optimization process. Loading on the wing was applied for multiple aerodynamic profiles generating...redesign and placement of the fuel tank was desired. A simple model of the baseline tank was built in Solidworks to estimate the total volume. Overall

  7. Aircraft energy efficiency laminar flow control wing design study

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  8. Aerodynamics on a transport aircraft type wing-body model

    Science.gov (United States)

    Schmitt, V.

    1982-01-01

    The DFLR-F4 wing-body combination is studied. The 1/38 model is formed by a 9.5 aspect ratio transonic wing and an Airbus A 310 fuselage. The F4 wing geometrical characteristics are described and the main experimental results obtained in the S2MA wind tunnel are discussed. Both wing-fuselage interferences and viscous effects, which are important on the wing due to a high rear loading, are investigated by performing 3D calculations. An attempt is made to find their limitations.

  9. Investigation and design of a C-Wing passenger aircraft

    OpenAIRE

    Karan BIKKANNAVAR; Scholz, Dieter

    2016-01-01

    A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in...

  10. Large capacity oblique all-wing transport aircraft

    Science.gov (United States)

    Galloway, Thomas L.; Phillips, James A.; Kennelly, Robert A., Jr.; Waters, Mark H.

    1996-01-01

    Dr. R. T. Jones first developed the theory for oblique wing aircraft in 1952, and in subsequent years numerous analytical and experimental projects conducted at NASA Ames and elsewhere have established that the Jones' oblique wing theory is correct. Until the late 1980's all proposed oblique wing configurations were wing/body aircraft with the wing mounted on a pivot. With the emerging requirement for commercial transports with very large payloads, 450-800 passengers, Jones proposed a supersonic oblique flying wing in 1988. For such an aircraft all payload, fuel, and systems are carried within the wing, and the wing is designed with a variable sweep to maintain a fixed subsonic normal Mach number. Engines and vertical tails are mounted on pivots supported from the primary structure of the wing. The oblique flying wing transport has come to be known as the Oblique All-Wing (OAW) transport. This presentation gives the highlights of the OAW project that was to study the total concept of the OAW as a commercial transport.

  11. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  12. Mimicking unfolding motion of a beetle hind wing

    Institute of Scientific and Technical Information of China (English)

    MUHAMMAD Azhar; PARK Hoon C; HWANG Do Y; BYUN Doyoung; GOO Nam S

    2009-01-01

    This paper presents an experimental research aiming to realize an artificial hind wing that can mimic the wing unfolding motion of Allomyrina dichotoma, an insect in coleopteran order. Based on the understanding of working principles of beetle wing folding/unfolding mechanisms, the hind wing unfolding motion is mimicked by a combination of creative ideas and state-of-art artificial muscle actuator. In this work, we devise two types of artificial wings and the successfully demonstrate that they can be unfolded by actuation of shape memory alloy wires to provide actuation force at the wing base and along the leading edge vein. The folding/unfolding mechanisms may provide an insight for portable nano/micro air vehicles with morphing wings.

  13. Preliminary study of effects of winglets on wing flutter

    Science.gov (United States)

    Doggett, R. V., Jr.; Farmer, M. G.

    1976-01-01

    Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories.

  14. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  15. Effects of Dragonfly Wing Structure on the Dynamic Performances

    Institute of Scientific and Technical Information of China (English)

    Huaihui Ren; Xishu Wang; Xudong Li; Yinglong Chen

    2013-01-01

    The configurations of dragonfly wings,including the corrugations of the chordwise cross-section,the microstructure of the longitudinal veins and membrane,were comprehensively investigated using the Environmental Scanning Electron Microscopy (ESEM).Based on the experimental results reported previously,the multi-scale and multi-dimensional models with different structural features of dragonfly wing were created,and the biological dynamic behaviors of wing models were discussed through the Finite Element Method (FEM).The results demonstrate that the effects of different structural features on dynamic behaviors of dragonfly wing such as natural frequency/modal,bending/torsional deformation,reaction force/torque are very significant.The corrugations of dragonfly wing along the chordwise can observably improve the flapping frequency because of the greater structural stiffness of wings.In updated model,the novel sandwich microstructure of the longitudinal veins remarkably improves the torsional deformation of dragonfly wing while it has a little effect on the flapping frequency and bending deformation.These integrated structural features can adjust the deformation of wing oneself,therefore the flow field around the wings can be controlled adaptively.The fact is that the flights of dragonfly wing with sandwich microstructure of longitudinal veins are more efficient and intelligent.

  16. Interceptive management of winged maxillary central incisors

    Directory of Open Access Journals (Sweden)

    Mamta Dali

    2013-01-01

    Full Text Available Introduction: Winged maxillary incisors are a well-recognized clinical finding, which can result in psychological trauma to children at growing age. Interceptive treatment is usually carried out in mixed dentition period in order to reduce the severity of a developing malocclusion in future. Case Report: This paper reports a case of 6-years-old female patient with winged maxillary central incisor being treated with derotation technique using the beggs brackets along with nance palatal arch space maintainer. Discussion: The major advantages in carrying out this treatment with fixed brackets are the ease with which the force magnitude and vector can be controlled much more precisely than with a removable appliance, minimal discomfort to the patient and reduces the need for patient co-operation.

  17. The Crest Wing Wave Energy Device

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Antonishen, Michael Patrick

    This report presents the results of a continuation of an experimental study of the wave energy converting abilities of the Crest Wing wave energy converter (WEC), in the following referred to as ‘Phase 2'. The Crest Wing is a WEC that uses its movement in matching the shape of an oncoming wave...... to generate power. Model tests have been performed using scale models (length scale 1:30), provided by WaveEnergyFyn, in regular and irregular wave states that can be found in Assessment of Wave Energy Devices. Best Practice as used in Denmark (Frigaard et al., 2008). The tests were carried out at Dept....... of Civil Engineering, Aalborg University (AAU) in the 3D deep water wave tank. The displacement and force applied to a power take off system, provided by WaveEnergyFyn, were measured and used to calculate mechanical power available to the power take off....

  18. Charge Capacity of Piezoelectric Membrane Wings

    Science.gov (United States)

    Grybas, Matthew; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) have small wings often fabricated with flexible frames and membranes. These membranes flex and vibrate. Piezoelectric films have the ability to convert induced stress or strain into electrical energy. Thus, it is of interest to investigate if piezoelectric films can be used as a structural member of an MAV wing and generate both lift and energy through passive vibrations. Both a shaker test and a wind tunnel test have been conducted to characterize and assess energy production and aerodynamic characteristics including lift, drag and efficiency. The piezoelectric film has been successful as a lifting surface and produces a measurable charge. This work was supported by NSF REU Site Award 1358991.

  19. WOODEN DOOR WINGS OF ADIYAMAN GREAT MOSQUE

    Directory of Open Access Journals (Sweden)

    Muhammet ARSLAN

    2010-06-01

    Full Text Available Woodworking which is in the most important Turk art branches have been used especially in Anatolia land readily. Wooden material that is seen on architectural units such as mimbar, ambo, wings of door and window, lectern has an important particularly with its ornamental figures. Wooden composition on the north and east doors of Adıyaman Great Mosque was built by Dulkadir Principality but regulated again in the last period of Ottoman Empire, is a theme which is exemined detailedly in Turk art. In this article, it is tried to determined ornamentel and tecnical characteristics of wooden door wings of Adıyaman Great Mosque belongs to early XX. century and the place of them in Turk art.

  20. Origin and diversification of wings: Insights from a neopteran insect.

    Science.gov (United States)

    Medved, Victor; Marden, James H; Fescemyer, Howard W; Der, Joshua P; Liu, Jin; Mahfooz, Najmus; Popadić, Aleksandar

    2015-12-29

    Winged insects underwent an unparalleled evolutionary radiation, but mechanisms underlying the origin and diversification of wings in basal insects are sparsely known compared with more derived holometabolous insects. In the neopteran species Oncopeltus fasciatus, we manipulated wing specification genes and used RNA-seq to obtain both functional and genomic perspectives. Combined with previous studies, our results suggest the following key steps in wing origin and diversification. First, a set of dorsally derived outgrowths evolved along a number of body segments including the first thoracic segment (T1). Homeotic genes were subsequently co-opted to suppress growth of some dorsal flaps in the thorax and abdomen. In T1 this suppression was accomplished by Sex combs reduced, that when experimentally removed, results in an ectopic T1 flap similar to prothoracic winglets present in fossil hemipteroids and other early insects. Global gene-expression differences in ectopic T1 vs. T2/T3 wings suggest that the transition from flaps to wings required ventrally originating cells, homologous with those in ancestral arthropod gill flaps/epipods, to migrate dorsally and fuse with the dorsal flap tissue thereby bringing new functional gene networks; these presumably enabled the T2/T3 wing's increased size and functionality. Third, "fused" wings became both the wing blade and surrounding regions of the dorsal thorax cuticle, providing tissue for subsequent modifications including wing folding and the fit of folded wings. Finally, Ultrabithorax was co-opted to uncouple the morphology of T2 and T3 wings and to act as a general modifier of hindwings, which in turn governed the subsequent diversification of lineage-specific wing forms.

  1. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  2. X-38 on B-52 Wing Pylon

    Science.gov (United States)

    1997-01-01

    A unique, close-up view of the X-38 (Crew Return Vehicle) under the wing of NASA's B-52 mothership prior to launch of the lifting-body research vehicle. The photo was taken from the observation window of the B-52 bomber as it banked in flight. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle or lifeboat for the International Space Station.

  3. Maintenance cost study of rotary wing aircraft

    Science.gov (United States)

    1977-01-01

    The feasibility was studied of predicting rotary wing operation maintenance costs by using several aircraft design factors for the aircraft dynamic systems. The dynamic systems considered were engines, drives and transmissions, rotors, and flight controls. Multiple regression analysis was used to correlate aircraft design and operational factors with manhours per flight hour, and equations for each dynamic system were developed. Results of labor predictions using the equations compare favorably with actual values.

  4. Autonomous Deicing System For Airplane Wing

    Science.gov (United States)

    Hickman, G. A.; Gerardi, J. J.

    1993-01-01

    Prototype autonomous deicing system for airplane includes network of electronic and electromechanical modules at various locations in wings and connected to central data-processing unit. Small, integrated solid-state device, using long coils installed under leading edge, exciting small vibrations to detect ice and larger vibrations to knock ice off. In extension of concept, outputs of vibration sensors and other sensors used to detect rivet-line fractures, fatigue cracks, and other potentially dangerous defects.

  5. Mother Nature inspires new wind turbine wing

    DEFF Research Database (Denmark)

    Sønderberg Petersen, L.

    2007-01-01

    The sight of a bird of prey hanging immobile in the air while its wings continuously adjust themselves slightly in relation to the wind in order to keep the bird in the same position in the air, is a sight that most of us have admired, including the windenergy scientists at Risø DTU. They have st...... started transferring the principle to wind turbine blades to make them adaptive...

  6. 唐代古文学家独孤及与佛学北宗%DUGU Ji and the Northern School of Chan Buddhism

    Institute of Scientific and Technical Information of China (English)

    郭树伟

    2011-01-01

    Dugu Ji was a Mid-dynasty's Tang Dynasty politicians and writers.He disseminated Confucianism as his own mission.He believed the north wing zen and showed a very high Buddhism attainments.He tried analog Zen and Confucianism,his work has significant history of ideas.%独孤及是中唐时期著名的政治家、文学家,其散文创作是中唐韩柳古文运动的先驱。作为以弘扬儒道为己任的古文家,其思想的主体是儒家思想,同时他又信仰禅宗北宗,对佛学思想研究表现出浓厚的兴趣和很高的佛学造诣。他尝试类比禅宗北宗和儒学之间关系的努力具有思想史意义。

  7. 电站锅炉掺烧非设计煤种的分析与燃烧调整%The Electricity Stands Boiler Chan's Burning don't Design Analysis and Combustion Adjustment that the Coal Grows

    Institute of Scientific and Technical Information of China (English)

    聂名清

    2014-01-01

    In the current coal resources day by day under the short of situation , particularly request opposite and higher e-lectricity station to the coal quality boiler , usually dont'can use to design coal to grow according to the theoretical request complete Ran, therefore, have to consider research to don't design coal to grow the problem that the big proportion Chan burns or purely burns , this text knots a cooperator in the process of practicing to the my plant boiler Chan burn don 't design the combustion adjustment that the coal grows an aspect backlog xperience , from not design the characteristic parameter that the coal grows and Chan to burn a proportion to measure calculate , coal Cang up anticipate management , combustion adjust method and excrescent circumstance under of a few aspects like emergency response treatment ,etcs carried on analysis and summary, and passed the verification of fulfillment .%在当前煤炭资源日益匮乏的形势下,尤其是对煤质要求相对较高的电站锅炉,往往不能按照理论的要求完全燃用设计煤种,因此,不得不考虑研究非设计煤种大比例掺烧或者纯烧的问题,本文结合作者在实践过程对本厂锅炉掺烧非设计煤种方面积累的燃烧调整经验,从非设计煤种的特性参数、掺烧比例测算、煤仓上料管理、燃烧调整方法以及异常情况下的应急处置等几个方面进行了分析和总结,并通过了实践的验证。

  8. Functional analysis of genes differentially expressed in the Drosophila wing disc: role of transcripts enriched in the wing region.

    Science.gov (United States)

    Jacobsen, Thomas L; Cain, Donna; Paul, Litty; Justiniano, Steven; Alli, Anwar; Mullins, Jeremi S; Wang, Chun Ping; Butchar, Jon P; Simcox, Amanda

    2006-12-01

    Differential gene expression is the major mechanism underlying the development of specific body regions. Here we assessed the role of genes differentially expressed in the Drosophila wing imaginal disc, which gives rise to two distinct adult structures: the body wall and the wing. Reverse genetics was used to test the function of uncharacterized genes first identified in a microarray screen as having high levels of expression in the presumptive wing. Such genes could participate in elaborating the specific morphological characteristics of the wing. The activity of the genes was modulated using misexpression and RNAi-mediated silencing. Misexpression of eight of nine genes tested caused phenotypes. Of 12 genes tested, 10 showed effective silencing with RNAi transgenes, but only 3 of these had resulting phenotypes. The wing phenotypes resulting from RNAi suggest that CG8780 is involved in patterning the veins in the proximal region of the wing blade and that CG17278 and CG30069 are required for adhesion of wing surfaces. Venation and apposition of the wing surfaces are processes specific to wing development providing a correlation between the expression and function of these genes. The results show that a combination of expression profiling and tissue-specific gene silencing has the potential to identify new genes involved in wing development and hence to contribute to our understanding of this process. However, there are both technical and biological limitations to this approach, including the efficacy of RNAi and the role that gene redundancy may play in masking phenotypes.

  9. The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings

    Institute of Scientific and Technical Information of China (English)

    Guoyu Luo; Mao Sun

    2005-01-01

    The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40° are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragonfly (forewing), respectively (AR of these wings varies greatly,from 2.84 to 5.45). The following facts are shown.(1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second moment of wing area) is used as the reference velocity; i.e.the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small:when AR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand,the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of pan of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.

  10. Analysis and Flexible Structural Modeling for Oscillating Wing Utilizing Aeroelasticity

    Institute of Scientific and Technical Information of China (English)

    Shao Ke; Wu Zhigang; Yang Chao

    2008-01-01

    Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed.A series of equations concerning the oscillating wing of flexible structures are derived. The kinetic equation for aerodynamic force coupled with elastic movement is set up, and relevant formulae are derived. The unsteady aerodynamic one in that formulae is revised. The design principle, design process and range of application of such oscillating wing analytical method are elaborated. A flexible structural oscillating wing model is set up, and relevant time response analysis and frequency response analysis are conducted. The analytical results indicate that adopting the new-type driving way for the oscillating wing will not have flutter problems and will be able to produce propulsive force. Furthermore, it will consume much less power than the fixed wing for generating the same lift.

  11. Fiber Optic Wing Shape Sensing on NASA's Ikhana UAV

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This document discusses the development of fiber optic wing shape sensing on NASA's Ikhana vehicle. The Dryden Flight Research Center's Aerostructures Branch initiated fiber-optic instrumentation development efforts in the mid-1990s. Motivated by a failure to control wing dihedral resulting in a mishap with the Helios aircraft, new wing displacement techniques were developed. Research objectives for Ikhana included validating fiber optic sensor measurements and real-time wing shape sensing predictions; the validation of fiber optic mathematical models and design tools; assessing technical viability and, if applicable, developing methodology and approaches to incorporate wing shape measurements within the vehicle flight control system; and, developing and flight validating approaches to perform active wing shape control using conventional control surfaces and active material concepts.

  12. Compound Wing Vertical Takeoff and Landing Small Unmanned Aircraft System

    Science.gov (United States)

    Logan, Michael J. (Inventor); Motter, Mark A. (Inventor); Deloach, Richard (Inventor); Vranas, Thomas L. (Inventor); Prendergast, Joseph M. (Inventor); Lipp, Brittney N. (Inventor)

    2017-01-01

    Systems, methods, and devices are provided that enable robust operations of a small unmanned aircraft system (sUAS) using a compound wing. The various embodiments may provide a sUAS with vertical takeoff and landing capability, long endurance, and the capability to operate in adverse environmental conditions. In the various embodiments a sUAS may include a fuselage and a compound wing comprising a fixed portion coupled to the fuselage, a wing lifting portion outboard of the fixed portion comprising a rigid cross member and a controllable articulating portion configured to rotate controllable through a range of motion from a horizontal position to a vertical position, and a freely rotating wing portion outboard of the wing lifting portion and configured to rotate freely based on wind forces incident on the freely rotating wing portion.

  13. Video measurements of instantaneous forces of flapping wing vehicles

    Science.gov (United States)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan

    2015-12-01

    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  14. Vortex Interaction on Low Aspect Ratio Membrane Wings

    Science.gov (United States)

    Waldman, Rye M.; Breuer, Kenneth S.

    2013-11-01

    Inspired by the flight of bats and by recent interest in Micro Air Vehicles, we present measurements on the steady and unsteady behavior of low aspect ratio membrane wings. We conduct wind tunnel experiments with coupled force, kinematic, and flow field measurements, both on the wing and in the near wake. Membrane wings interact strongly with the vortices shed from the leading- and trailing-edges and the wing tips, and the details of the membrane support play an important role in the fluid-structure interaction. Membranes that are supported at the wing tip exhibit less membrane flutter, more coherent tip vortices, and enhanced lift. The interior wake can exhibit organized spanwise vortex shedding, and shows little influence from the tip vortex. In contrast, membranes with an unsupported wing tip show exaggerated static deformation, significant membrane fluttering and a diffuse, unsteady tip vortex. The unsteady tip vortex modifies the behavior of the interior wake, disrupting the wake coherence.

  15. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings.

    Science.gov (United States)

    Bahlman, Joseph W; Price-Waldman, Rosalyn M; Lippe, Hannah W; Breuer, Kenneth S; Swartz, Sharon M

    2016-07-01

    Bat wings, like other mammalian forelimbs, contain many joints within the digits. These joints collectively affect dynamic three-dimensional (3D) wing shape, thereby affecting the amount of aerodynamic force a wing can generate. Bats are a speciose group, and show substantial variation in the number of wing joints. Additionally, some bat species have joints with extensor but no flexor muscles. While several studies have examined the diversity in number of joints and presence of muscles, musculoskeletal variation in the digits has not been interpreted in phylogenetic, functional or ecological contexts. To provide this context, the number of joints and the presence/absence of muscles are quantified for 44 bat species, and are mapped phylogenetically. It is shown that, relative to the ancestral state, joints and muscles were lost multiple times from different digits and in many lineages. It is also shown that joints lacking flexors undergo cyclical flexion and extension, in a manner similar to that observed in joints with both flexors and extensors. Comparison of species with contrasting feeding ecologies demonstrates that species that feed primarily on non-mobile food (e.g. fruit) have fewer fully active joints than species that catch mobile prey (e.g. insects). It is hypothesized that there is a functional trade-off between energetic savings and maneuverability. Having fewer joints and muscles reduces the mass of the wing, thereby reducing the energetic requirements of flapping flight, and having more joints increases the assortment of possible 3D wing shapes, thereby enhancing the range and fine control of aerodynamic force production and thus maneuverability.

  16. Incompressible Turbulent Wing-Body Junction Flow

    Science.gov (United States)

    Krishnamurthy, R.; Cagle, Corey D.; Chandra, S.

    1998-01-01

    The overall objective of this study is to contribute to the optimized design of fan bypass systems in advanced turbofan engines. Increasing the engine bypass ratios have provided a major boost in engine performance improvement over the last fifty years. An engine with high bypass ratio (11-16:1) such as the Advanced Ducted Propulsion (ADP) is being developed and is expected to provide an additional 25% improvement in overall efficiency over the early turbofans. Such significant improvements in overall efficiency would reduce the cost per seat mile, which is a major government and Industry challenge for the 21th century. The research is part of the Advanced Subsonic Technology (AST) program that involves a NASA, U.S. Industry and FAA partnership with the goal of a safe and highly productive global air transportation system. The immediate objective of the study is to perform numerical simulation of duct-strut interactions to elucidate the loss mechanisms associated with this configuration that is typical of advanced turbofan engines such as ADP. However, at present experimental data for a duct-strut configuration are not available. Thus, as a first step a wing-body junction flow would be studied and is the specific objective of the present study. At the outset it is to be recognized that while duct-strut interaction flow is similar to that of wing-body junction flows, there are some differences owing to the presence of a wall at both ends of the strut. Likewise, some differences are due to the sheared inflow (as opposed to a uniform inflow) velocity profile. It is however expected that some features of a wing-body junction flow would persist. Next, some of the salient aspects of the complex flow near a wing-body junction, as revealed by various studies reported in the literature will be reviewed. One of the principle characteristics of the juncture flow, is the presence of the mean flow components in a plane perpendicular to the direction of the oncoming free

  17. Winging of scapula due to serratus anterior tear

    Institute of Scientific and Technical Information of China (English)

    Varun Kumar Singh; Gauresh Shantaram Vargaonkar

    2014-01-01

    Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle.Traumatic injury to serratus anterior muscle itself is very rare.We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male.Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test.Patient was managed conservatively and achieved satisfactory result.

  18. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  19. Wing shape of dengue vectors from around the world

    OpenAIRE

    Henry, A; Thongsripong, P.; Fonseca-Gonzalez, I.; Jaramillo-Ocampo, N.; Dujardin, Jean-Pierre

    2010-01-01

    Wing shape is increasingly utilized in species identification and characterization. For dengue vectors Aedes aegypti and Aedes albopictus, it could be used as a complement for ensuring accurate diagnostic of damaged specimens. However, the impact of world migration on wing shape is unknown. Has the spread of these invasive species increased shape variation to the extent of producing interspecific overlapping? To answer this question, the geometric patterns of wing venation in Ae. aegypti and ...

  20. Investigation and design of a C-Wing passenger aircraft

    Directory of Open Access Journals (Sweden)

    Karan BIKKANNAVAR

    2016-06-01

    Full Text Available A novel nonplanar wing concept called C-Wing is studied and implemented on a commercial aircraft to reduce induced drag which has a significant effect on fuel consumption. A preliminary sizing method which employs an optimization algorithm is utilized. The Airbus A320 aircraft is used as a reference aircraft to evaluate design parameters and to investigate the C-Wing design potential beyond current wing tip designs. An increase in aspect ratio due to wing area reduction at 36m span results in a reduction of required fuel mass by 16%. Also take-off mass savings were obtained for the aircraft with C-Wing configuration. The effect of a variations of height to span ratio (h/b of C-Wings on induced drag factor k, is formulated from a vortex lattice method and literature based equations. Finally the DOC costing methods used by the Association of European Airlines (AEA was applied to the existing A320 aircraft and to the C-Wing configuration obtaining a reduction of 6% in Direct Operating Costs (DOC for the novel concept resulted. From overall outcomes, the C-Wing concept suggests interesting aerodynamic efficiency and stability benefits.

  1. Technicians prepare the inflatable wing on Paresev 1-C

    Science.gov (United States)

    1963-01-01

    This photo shows the Paresev (Paraglider Research Vehicle) space frame receiving a new wing. Frank Fedor and a technician helper are attaching a half-scale version of an inflatable wing in a hangar at NASA Flight Research Center at Edwards, California. The Paresev in this configuration was called the 1-C and was expected to closely approximate the aerodynamic characteristics that would be encountered with the Gemini space capsule with a parawing extended. The whole wing was not inflatable; the three chambers that acted as spars and supported the wing inflated.

  2. Aeroelastic Deformation and Buckling of Inflatable Wings under Dynamic Loads

    Science.gov (United States)

    Simpson, Andrew; Smith, Suzanne; Jacob, Jamey

    2006-11-01

    Inflatable wings have recently been used to control a vehicle in flight via wing warping. Internal pressure is required to maintain wing shape and externally mounted mechanical actuators are used to asynchronously deform the wing semi-spans for control. Since the rigidity of the inflatable wing varies as a function of inflation pressure, there is a need to relate the wing shape with aerodynamic loads. Via wind tunnel tests, span-wise deformations, twist and flutter have been observed under certain dynamic loading conditions. Photogrammetry techniques are used to measure the static aeroelastic deformation of the wings and videogrammetry is used to examine the dynamic shape changes (flutter). The resulting shapes can be used to determine corresponding aerodynamic characteristics. For particular inflation pressures, buckling can be induced at sufficiently high dynamic loads either through high dynamic pressure or large angle of attack. This results in a set of critical loading parameters. An inflatable winged vehicle would require operation within these limits. The focus of the presentation will be on defining and exploring the unsuitable operating conditions and the effects these conditions have on the operation of the wing.

  3. Embedded Fiber Optic Shape Sensing for Aeroelastic Wing Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the aerospace industry continues to push for greater vehicle efficiency, performance, and longevity, properties of wing aeroelasticity and flight dynamics have...

  4. Design, Fabrication and Testing Of Flapping Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    K. P. Preethi Manohari Sai

    2016-01-01

    Full Text Available Flapping flight has the potential to revolutionize micro air vehicles (MAVs due to increased aerodynamic performance, improved maneuverability and hover capabilities. The purpose of this project is to design and fabrication of flapping wing micro air vehicle. The designed MAV will have a wing span of 40cm. The drive mechanism will be a gear mechanism to drive the flapping wing MAV, along with one actuator. Initially, a preliminary design of flapping wing MAV is drawn and necessary calculation for the lift calculation has been done. Later a CAD model is drawn in CATIA V5 software. Finally we tested by Flying.

  5. MEMS wing technology for a battery-powered ornithopter

    OpenAIRE

    2000-01-01

    The objective of this project is to develop a battery-powered ornithopter (flapping-wing) Micro Aerial Vehicle (MAV) with MEMS wings. In this paper, we present a novel MEMS-based wing technology that we developed using titanium-alloy metal as wingframe and parylene C as wing membrane. MEMS technology enables systematic research in terms of repeatablility, size control, and weight minimization. We constructed a high quality low-speed wind tunnel with velocity uniformity of 0.5% and speeds from...

  6. Feedback Linearization Controller Of The Delta WingRock Phenomena

    Directory of Open Access Journals (Sweden)

    Mohammed Alkandari

    2015-05-01

    Full Text Available This project deals with the control of the wing rock phenomena of a delta wing aircraft. a control schemeis proposed to stabilize the system. The controlleris a feedback linearization controller. It is shown that the proposed control scheme guarantee the asymptotic convergence to zero of all the states of the system. To illustrate the performance of the proposed controller, simulation results are presented and discussed. It is found that the proposed control scheme work well for the wing rock phenomena of a delta wing aircraft.

  7. Experimental investigations of the functional morphology of dragonfly wings

    Institute of Scientific and Technical Information of China (English)

    H.Rajabi; A.Darvizeh

    2013-01-01

    Nowadays,the importance of identifying the flight mechanisms of the dragonfly,as an inspiration for designing flapping wing vehicles,is well known.An experimental approach to understanding the complexities of insect wings as organs of flight could provide significant outcomes for design purposes.In this paper,a comprehensive investigation is carried out on the morphological and microstructural features of dragonfly wings.Scanning electron microscopy (SEM) and tensile testing are used to experimentally verify the functional roles of different parts of the wings.A number of SEM images of the elements of the wings,such as the nodus,leading edge,trailing edge,and vein sections,which play dominant roles in strengthening the whole structure,are presented.The results from the tensile tests indicate that the nodus might be the critical region of the wing that is subjected to high tensile stresses.Considering the patterns of the longitudinal corrugations of the wings obtained in this paper,it can be supposed that they increase the load-bearing capacity,giving the wings an ability to tolerate dynamic loading conditions.In addition,it is suggested that the longitudinal veins,along with the leading and trailing edges,are structural mechanisms that further improve fatigue resistance by providing higher fracture toughness,preventing crack propagation,and allowing the wings to sustain a significant amount of damage without loss of strength.

  8. Complexity analyses of multi-wing chaotic systems

    Institute of Scientific and Technical Information of China (English)

    He Shao-Bo; Sun Ke-Hui; Zhu Cong-Xu

    2013-01-01

    The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm.How to choose the parameters of the SCM and SE algorithms is discussed.The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases,and it is consistent with the results of the Grassberger-Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.

  9. Complexity analyses of multi-wing chaotic systems

    Science.gov (United States)

    He, Shao-Bo; Sun, Ke-Hui; Zhu, Cong-Xu

    2013-05-01

    The complexities of multi-wing chaotic systems based on the modified Chen system and a multi-segment quadratic function are investigated by employing the statistical complexity measure (SCM) and the spectral entropy (SE) algorithm. How to choose the parameters of the SCM and SE algorithms is discussed. The results show that the complexity of the multi-wing chaotic system does not increase as the number of wings increases, and it is consistent with the results of the Grassberger—Procaccia (GP) algorithm and the largest Lyapunov exponent (LLE) of the multi-wing chaotic system.

  10. Prediction of span loading of straight-wing/propeller combinations up to stall. [propeller slipstreams and wing loading

    Science.gov (United States)

    Mcveigh, M. A.; Gray, L.; Kisielowski, E.

    1975-01-01

    A method is presented for calculating the spanwise lift distribution on straight-wing/propeller combinations. The method combines a modified form of the Prandtl wing theory with a realistic representation of the propeller slipstream distribution. The slipstream analysis permits calculations of the nonuniform axial and rotational slipstream velocity field of propeller/nacelle combinations. This nonuniform field was then used to calculate the wing lift distribution by means of the modified Prandtl wing theory. The theory was developed for any number of nonoverlapping propellers, on a wing with partial or full-span flaps, and is applicable throughout an aspect ratio range from 2.0 and higher. A computer program was used to calculate slipstream characteristics and wing span load distributions for a number of configurations for which experimental data are available, and favorable comparisons are demonstrated between the theoretical predictions and the existing data.

  11. Folding wings like a cockroach: a review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania.

    Directory of Open Access Journals (Sweden)

    István Mikó

    Full Text Available We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea. It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves.

  12. Folding wings like a cockroach: a review of transverse wing folding ensign wasps (Hymenoptera: Evaniidae: Afrevania and Trissevania).

    Science.gov (United States)

    Mikó, István; Copeland, Robert S; Balhoff, James P; Yoder, Matthew J; Deans, Andrew R

    2014-01-01

    We revise two relatively rare ensign wasp genera, whose species are restricted to Sub-Saharan Africa: Afrevania and Trissevania. Afrevania longipetiolata sp. nov., Trissevania heatherae sp. nov., T. hugoi sp. nov., T. mrimaensis sp. nov. and T. slideri sp. nov. are described, males and females of T. anemotis and Afrevania leroyi are redescribed, and an identification key for Trissevaniini is provided. We argue that Trissevania mrimaensis sp. nov. and T. heatherae sp. nov. populations are vulnerable, given their limited distributions and threats from mining activities in Kenya. We hypothesize that these taxa together comprise a monophyletic lineage, Trissevaniini, tr. nov., the members of which share the ability to fold their fore wings along two intersecting fold lines. Although wing folding of this type has been described for the hind wing of some insects four-plane wing folding of the fore wing has never been documented. The wing folding mechanism and the pattern of wing folds of Trissevaniini is shared only with some cockroach species (Blattodea). It is an interesting coincidence that all evaniids are predators of cockroach eggs. The major wing fold lines of Trissevaniini likely are not homologous to any known longitudinal anatomical structures on the wings of other Evaniidae. Members of the new tribe share the presence of a coupling mechanism between the fore wing and the mesosoma that is composed of a setal patch on the mesosoma and the retinaculum of the fore wing. While the setal patch is an evolutionary novelty, the retinaculum, which originally evolved to facilitate fore and hind wing coupling in Hymenoptera, exemplifies morphological exaptation. We also refine and clarify the Semantic Phenotype approach used in previous taxonomic revisions and explore the consequences of merging new with existing data. The way that semantic statements are formulated can evolve in parallel, alongside improvements to the ontologies themselves.

  13. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation

    Science.gov (United States)

    Rajabi, H.; Ghoroubi, N.; Malaki, M.; Darvizeh, A.; Gorb, S. N.

    2016-01-01

    Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs). PMID:27513753

  14. Farklı Azot Dozlarının Kamışsı Yumak (Festuca arundinacea L. Çeşitlerinin Çim Alan Performansı Üzerine Etkileri

    Directory of Open Access Journals (Sweden)

    Gökhan KILIÇ

    2016-09-01

    Full Text Available Bu çalışma, Süleyman Demirel Üniversitesi Tarımsal Araştırma ve Uygulama Merkezinde bazı kamışsı yumak çeşitlerinin yeşil alan performanslarına farklı azot dozlarının etkisini belirlemek amacıyla 2014-2015 yıllarında, tesadüf blokları deneme desenine göre 3 tekerrürlü olarak yürütülmüştür. Bu araştırmada kamışsı yumak (Festuca arundinacea Schreb. çim türünün Starlet, Debussy ve Rebel çeşitlerine 4 farklı azot dozu (0, 2, 4 ve 6 g m2/ay uygulanmıştır. Araştırmada kamışsı yumak çeşitlerine ait; çıkış hızı (gün, kaplama hızı (gün, kışa dayanıklılık (1-9 puan, kaplama derecesi (1-9 puan, yaprak dokusu (1-9 puan, yaprak rengi (1-9 puan, yenilenme gücü (1-5 puan, dm2’deki kardeş sayısı, kuru madde verimi (kg/da ve genel görünüm (1-9 puan değerleri tespit edilmiştir. Elde edilen sonuçlara göre, Debussy çeşidi yaprak rengi, yenileme gücü ve kuru madde verimi bakımından en iyi performansı göstermiştir. Çim performansına azotlu uygulamalarının etkileri önemli bulunmuştur. Azot dozlarının artmasıyla kışa dayanıklılık, kaplama derecesi, yaprak dokusu, yaprak rengi, yenilenme gücü, kardeş sayısı, kuru madde verimi ve genel görünümde bir artış belirlenmiştir.

  15. National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    National Science Foundation Assistant Director for Mathematics and Physical Sciences Tony Chan (USA) visiting CMS experiment on 23rd May 2007 with Spokesperson T. Virdee, Deputy Spokesperson R. Cousins, Advisor to CERN Director-General J. Ellis, US CMS Research Program Deputy Manager D. Marlow and FNAL D. Green

  16. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  17. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method.

    Science.gov (United States)

    Tay, W B; van Oudheusden, B W; Bijl, H

    2014-09-01

    The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the

  18. The energetic cost of variations in wing span and wing asymmetry in the zebra finch Taeniopygia guttata.

    Science.gov (United States)

    Hambly, C; Harper, E J; Speakman, J R

    2004-10-01

    Asymmetry is a difference in the sizes of bilaterally paired structures. Wing asymmetry may have an effect on the kinematics of flight, with knock-on effects for the energetic cost of flying. In this study the 13C-labelled bicarbonate technique was used to measure the energy expended during the flight of zebra finches Taeniopygia guttata, prior to and after experimental manipulation to generate asymmetry and a change in wing span by trimming the primary feathers. In addition, simultaneous high-speed video footage enabled differences in flight kinematics such as flight speed, wing amplitude, up- and downstroke duration and wing beat frequency to be examined. In 10 individuals, the primary feathers on the right wing were trimmed first, by 0.5 cm, and then by an additional 0.5 cm in six of these individuals. In a separate 'control' group (N=7), approximately 0.25 cm was trimmed off the primary feathers of both wings, to produce the same reduction in wing span as 0.5 cm trimmed from one wing, while maintaining symmetry. When birds were manipulated to become asymmetric they maintained flight speed. They also increased the left wing amplitude and decreased the right up- and downstroke durations to counteract the changes in wing shape, which meant that they had an increase in wing beat frequency. When the wing area was reduced while maintaining symmetry, birds flew with slower flight speed. In this case wing amplitude did not change and wing upstroke slightly decreased, causing an increased wing beat frequency. The mean flight cost in the pre-manipulated birds was 1.90+/-0.1 W. There was a slight increase in flight cost with both of the asymmetry manipulations (0.5 cm, increase of 0.04 W; 1.0 cm, increase of 0.12 W), neither of which reached statistical significance. There was, however, a significantly increased flight cost when the wing span was reduced without causing asymmetry (increase of 0.45 W; paired t-test T=2.3, P=0.03).

  19. Wing Force & Moment Characterization of Flapping Wings for Micro Air Vehicle Application

    Science.gov (United States)

    2005-02-21

    is that position of the wing where φ = Φ0 as shown in Fig. 3(B). When Φ0 6= 0, the motion is called asymetric flapping. When Φ0 = 0, the motion is...For symmetric rotation, Ψ0 = 0, otherwise the motion is refered to as asymetric rotation. Angle of attack The angle of attack is the angle between

  20. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  1. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    Science.gov (United States)

    2011-03-01

    104 A1.5 Dragonfly ......................................................................................................... 106 A1.6...in the size range being investigated include bats, swallows, hummingbirds, butterflies, beetles, dragonflies , and moths. A short synopsis of the...a MAV wing. Dragonflies are precise and controlled flyers, with the ability to hover and accelerate quickly, both from a dead stop as well as

  2. Optimization of composite tiltrotor wings with extensions and winglets

    Science.gov (United States)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  3. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  4. Three-dimensional winged nanocone optical antennas.

    Science.gov (United States)

    Huttunen, Mikko J; Lindfors, Klas; Andriano, Domenico; Mäkitalo, Jouni; Bautista, Godofredo; Lippitz, Markus; Kauranen, Martti

    2014-06-15

    We introduce 3D optical antennas based on winged nanocones. The antennas support particle plasmon oscillations with current distributions that facilitate transformation of transverse far-field radiation to strong longitudinal local fields near the cone apices. We characterize the optical responses of the antennas by their extinction spectra and by second-harmonic generation microscopy with cylindrical vector beams. The results demonstrate a new 3D polarization-controllable optical antenna for applications in apertureless near-field microscopy, spectroscopy, and plasmonic sensing.

  5. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  6. Morphing Wing Design with an Innovative Three-Dimensional Warping Actuation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced wing configurations where traditional control surfaces are replaced by dynamically controlled distribution of wing twist and/or camber can provide...

  7. Una mirada a la vitalidad de la lengua indígena Kamëntsá a través de la descripción sociolingüística

    OpenAIRE

    Avila Mora Marlen

    2004-01-01

    Teniendo en cuenta aspectos históricos, sociales, culturales, se logra dar una mirada a la vitalidad de la lengua indígena kamëntsá, lengua hablada por la comunidad que lleva el mismo nombre. En el primer apartado se describe la comunidad, las lenguas que allí se hablan, el fenómeno del bilingüismo como consecuencia de la interacción lingüística; también se expone la problemática de la educación bilingüe y su permanencia dentro de la comunidad indígena. Además se hace una especial re...

  8. Una mirada a la vitalidad de la lengua indígena Kamëntsá a través de la descripción sociolingüística

    Directory of Open Access Journals (Sweden)

    Avila Mora Marlen

    2004-06-01

    Full Text Available

    Teniendo en cuenta aspectos históricos, sociales, culturales, se logra dar una mirada a la vitalidad de la lengua indígena kamëntsá, lengua hablada por la comunidad que lleva el mismo nombre. En el primer apartado se describe la comunidad, las lenguas que allí se hablan, el fenómeno del bilingüismo como consecuencia de la interacción lingüística; también se expone la problemática de la educación bilingüe y su permanencia dentro de la comunidad indígena. Además se hace una especial referencia al problema de la transmisión generacional de los últimos años y a algunas manifestaciones del contacto de lenguas como es la interferencia ínter lingüística.

  9. Global Local Structural Optimization of Transportation Aircraft Wings

    NARCIS (Netherlands)

    Ciampa, P.D.; Nagel, B.; Van Tooren, M.J.L.

    2010-01-01

    The study presents a multilevel optimization methodology for the preliminary structural design of transportation aircraft wings. A global level is defined by taking into account the primary wing structural components (i.e., ribs, spars and skin) which are explicitly modeled by shell layered finite e

  10. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  11. Ray analysis of a class of hybrid cylindrical aircraft wings

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakan, V; Mahapatra, PR

    1988-01-01

    A new approach to the modelling of aircraft wings, based on the combination of hybrid quadric (parabolic and circular) cylinders, has been presented for electromagnetic applications. Closed-form expressions have been obtained for ray parameters required in the high-frequency mutual coupling computation of antenna pairs located arbitrarily on an aircraft wing.

  12. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  13. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.

    2011-01-01

    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept v

  14. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  15. Significance of wing morphometry in distinguishing some of the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... the photos, Scale factor values were shown on the ruler. Wing pho- tos were ... Analysis of wing Landmark data (in TPS format). At the end of the .... not clearly separated, and most groups were mixed. (Figure 9, Table 7).

  16. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water t

  17. The function of PS integrins in Drosophila wing morphogenesis.

    Science.gov (United States)

    Wilcox, M; DiAntonio, A; Leptin, M

    1989-12-01

    Integrins are found on many cell types during the development of most organisms. In Drosophila their functions can be analysed genetically. An analysis of lethal mutations in a PS integrin gene showed that the integrins were required for muscle attachment and for certain cell sheet migrations during embryogenesis. In this paper we use viable mutations in integrin component genes to look at integrin function in the later stages of development of one adult structure, the wing. We show that two known viable mutations, one which has its primary effect on the fly's escape response, the other on wing morphogenesis, are mutations in the beta and PS2alpha subunits, respectively, of the PS integrins. The mutation non-jumper (mys(mj42)) in the beta subunit leads to wasting of the thoracic jump muscles. Flies in which the dosage of this allele is reduced (and no wildtype copy is present) show defects also in wing morphogenesis. The two surfaces of the wing fail to connect properly, resulting in 'blistering' of the wing and the formation of extra crossveins. The mutation in the gene for the PS2alpha integrin subunit, inflated, also leads to a failure in wing surface apposition and consequent wing blistering. When the two mutations are combined, the mutant phenotype is greatly enhanced. Thus, one of the roles of the PS integrins in late Drosophila development is to ensure the correct apposition and patterning of the wing epithelia.

  18. Anisotropism of the Non-Smooth Surface of Butterfly Wing

    Institute of Scientific and Technical Information of China (English)

    Gang Sun; Yan Fang; Qian Cong; Lu-quan Ren

    2009-01-01

    Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope (SEM). Butterfly wing surface displays structural anisotropism in micro-, submicro- and nano-scales. The scales on butterfly wing surface arrange like overlapping roof tiles. There are submicrometric vertical gibbosities, horizontal links, and nano-protuberances on the scales. First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle (SA) of droplet on butterfly wing surface by an optical Contact Angle (CA) measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property. Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface. The SAs on the butterfly wing surface without scales are remarkably larger than those with scales, which proves the crucial role of scales in determining the self-cleaning property. Butterfly wing surface is a template for design and fabrication of biomimetic materials and self-cleaning substrates. This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.

  19. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  20. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  1. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  2. Jet reorientation in active galactic nuclei : two winged radio galaxies

    NARCIS (Netherlands)

    Dennett-Thorpe, J; Scheuer, PAG; Laing, RA; Bridle, AH; Pooley, GG; Reich, W

    2002-01-01

    Winged, or X-shaped, radio sources form a small class of morphologically peculiar extragalactic sources. We present multifrequency radio observations of two such sources. We derive maximum ages since any re-injection of fresh particles of 34 and 17 Myr for the wings of 3C 223.1 and 3C 403 respective

  3. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  4. Vortex interactions with flapping wings and fins can be unpredictable

    NARCIS (Netherlands)

    Lentink, D.; Heijst, van G.J.F.; Muijres, F.T.; Leeuwen, van J.L.

    2010-01-01

    As they fly or swim, many animals generate a wake of vortices with their flapping fins and wings that reveals the dynamics of their locomotion. Previous studies have shown that the dynamic interaction of vortices in the wake with fins and wings can increase propulsive force. Here, we explore whether

  5. Flexibility and inertia of flapping wings in forward flight

    Science.gov (United States)

    Tian, Fang-Bao; Luo, Haoxiang; Lu, Xi-Yun

    2011-11-01

    Insect wings typically deform passively in flight under the combined aerodynamic force and inertia of the wing. To study the effect of the wing flexibility on the aerodynamic performance, a two-dimensional numerical study is employed to simulate the fluid-structure interaction of an elastic plate performing forward flight. The leading edge of the plate is clamped, while the rest of the chord is free to deform, leading to passive pitching and a dynamic camber. The wing stiffness and mass ratio are varied, and their effects on the lift, thrust, and aerodynamic power are investigated. The results shows that the moderate chordwise deformation can improve both lift and thrust performance significantly. The instantaneous passive pitching angle and consequently the forces are largely affected by the mass ratio that determines whether the deformation is caused by the wing inertia or the aerodynamic force. The high mass ratio wings, whose deformation is due to the wing inertia, can produce more thrust than the low mass ratio wing at the same amount of deformation. However, the high thrust is gained at a price of more power requirement. This work is sponsored by the U.S. NSF and the NSF of China.

  6. On the Minimum Induced Drag of Wings

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  7. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  8. Limb disparity and wing shape in pterosaurs.

    Science.gov (United States)

    Dyke, G J; Nudds, R L; Rayner, J M V

    2006-07-01

    The limb proportions of the extinct flying pterosaurs were clearly distinct from their living counterparts, birds and bats. Within pterosaurs, however, we show that further differences in limb proportions exist between the two main groups: the clade of short-tailed Pterodactyloidea and the paraphyletic clades of long-tailed rhamphorhynchoids. The hindlimb to forelimb ratios of rhamphorhynchoid pterosaurs are similar to that seen in bats, whereas those of pterodactyloids are much higher. Such a clear difference in limb ratios indicates that the extent of the wing membrane in rhamphorhynchoids and pterodactyloids may also have differed; this is borne out by simple ternary analyses. Further, analyses also indicate that the limbs of Sordes pilosus, a well-preserved small taxon used as key evidence for inferring the extent and shape of the wing membrane in all pterosaurs, are not typical even of its closest relatives, other rhamphorhynchoids. Thus, a bat-like extensive hindlimb flight membrane, integrated with the feet and tail may be applicable only to a small subset of pterosaur diversity. The range of flight morphologies seen in these extinct reptiles may prove much broader than previously thought.

  9. STUDY OF WING SHIELDING EFFECT OF PROPELLER AIRCRAFT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The calculation of wing shielding effect starts from solving Ffowcs Williams and Hawkings equation without quadrupole source in time domain. The sound scattering of the wing and fuselage which are surrounded by a multi-propeller sound field is modeled as a second sound source. A program is developed to calculate the acoustical effects of the rigid fuselage as well as wings with arbitrary shape in motion at low Mach number. As an example, the numerical calculation of the wing shielding of Y12 aircraft with an approximate shape is presented. The result manifests clearly the shielding effect of the wing on the fuselage and the approach is more efficient than that published before.

  10. Unsteady flow past wings having sharp-edge separation

    Science.gov (United States)

    Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1976-01-01

    A vortex-lattice technique is developed to model unsteady, incompressible flow past thin wings. This technique predicts the shape of the wake as a function of time; thus, it is not restricted by planform, aspect ratio, or angle of attack as long as vortex bursting does not occur and the flow does not separate from the wing surface. Moreover, the technique can be applied to wings of arbitrary curvature undergoing general motion; thus, it can treat rigid-body motion, arbitrary wing deformation, gusts in the freestream, and periodic motions. Numerical results are presented for low-aspect rectangular wings undergoing a constant-rate, rigid-body rotation about the trailing edge. The results for the unsteady motion are compared with those predicted by assuming quasi-steady motion. The present results exhibit hysteretic behavior.

  11. Effects of Wing-Cuff on NACA 23015 Aerodynamic Performances

    Directory of Open Access Journals (Sweden)

    Meftah S.M.A

    2014-03-01

    Full Text Available The main subject of this work is the numerical study control of flow separation on a NACA 23015 airfoil by using wing cuff. This last is a leading edge modification done to the wing. The modification consists of a slight extension of the chord on the outboard section of the wings. Different numerical cases are considered for the baseline and modified airfoil NACA 23015 according at different angle of incidence. The turbulence is modeled by two equations k-epsilon model. The results of this numerical investigation showed several benefits of the wing cuff compared with a conventional airfoil and an agreement is observed between the experimental data and the present study. The most intriguing result of this research is the capability for wing cuff to perform short take-offs and landings.

  12. The Aerodynamics of Deforming Wings at Low Reynolds Number

    Science.gov (United States)

    Medina, Albert

    Flapping flight has gained much attention in the past decade driven by the desire to understand capabilities observed in nature and the desire to develop agile small-scale aerial vehicles. Advancing our current understanding of unsteady aerodynamics is an essential component in the development of micro-air vehicles (MAV) intended to utilize flight mechanics akin to insect flight. Thus the efforts undertaken that of bio-mimicry. The complexities of insect wing motion are dissected and simplified to more tractable problems to elucidate the fundamentals of unsteady aerodynamics in biologically inspired kinematics. The MAV's fruition would satisfy long established needs in both the military and civilian sectors. Although recent studies have provided great insight into the lift generating mechanisms of flapping wings the deflection response of such wings remains poorly understood. This dissertation numerically and experimentally investigates the aerodynamic performance of passively and actively deflected wings in hover and rotary kinematics. Flexibility is distilled to discrete lines of flexion which acknowledging major flexion lines in insect wings to be the primary avenue for deformation. Of primary concern is the development of the leading-edge vortex (LEV), a high circulation region of low pressure above the wing to which much of the wing's lift generation is attributed. Two-dimensional simulations of wings with chord-wise flexibility in a freestream reveal a lift generating mechanism unavailable to rigid wings with origins in vortical symmetry breaking. The inclusion of flexibility in translating wings accelerated from rest revealed the formation time of the initial LEV was very weakly dependent on the flexible stiffness of the wing, maintaining a universal time scale of four to five chords of travel before shedding. The frequency of oscillatory shedding of the leading and trailing-edge vortices that develops after the initial vortex shedding was shown to be

  13. Four-winged flapping flyer in forward flight

    CERN Document Server

    Godoy-Diana, Ramiro; Centeno, Mariana; Weinreb, Alexis; Thiria, Benjamin

    2015-01-01

    We study experimentally a four-winged flapping flyer with chord-wise flexible wings in a self-propelled setup. For a given physical configuration of the flyer (i.e. fixed distance between the forewing and hindwing pairs and fixed wing flexibility), we explore the kinematic parameter space constituted by the flapping frequency and the forewing-hindwing phase lag. Cruising speed and consumed electric power measurements are performed for each point in the $(f,\\varphi)$ parameter space and allow us to discuss the problem of performance and efficiency in four-winged flapping flight. We show that different phase-lags are needed for the system to be optimised for fastest flight or lowest energy consumption. A conjecture of the underlying mechanism is proposed in terms of the coupled dynamics of the forewing-hindwing phase lag and the deformation kinematics of the flexible wings.

  14. Optimization of Kinematics of a Flapping Wing Mechanism

    Science.gov (United States)

    George, Ryan; Thomson, Scott; Mattson, Christopher; Colton, Mark; Tree, Mike

    2010-11-01

    Flapping flight offers several potential advantages over conventional fixed wing flight, such as agility and maneuverability in confined spaces, potentially decreased noise and detectability, and hovering capability. In this presentation, a water tunnel-based flapping wing apparatus is introduced that allows for arbitrary wing trajectories in three rotational degrees of freedom and simultaneous measurements of lift and thrust production. An optimal flapping trajectory for takeoff is found using hardware-in-the-loop optimization methodology. Wing motion derived from high-speed imaging of a ladybug during takeoff is used as a first iteration of the hardware-in-the-loop optimization. Using real-time force measurements and a gradient-based optimization approach, the algorithm searches for the optimal trajectory for a variety of parameters such as lift or efficiency. Hardware performance is assessed. Results from the optimization routine, including the final flapping trajectory are reported for both rigid and compliant wings.

  15. Design and Construction of Passively Articulated Ornithopter Wings

    Science.gov (United States)

    Mastro, Alexander Timothy

    Birds, bats, and insects are able to fly efficiently and execute impressive in-flight, landing, and takeoff maneuvers with apparent ease through actuation of their highly articulated wings. This contrasts the approach used to enable the flight of comparatively simple man-made rotary and fixed wing aircraft. The complex aerodynamics underlying flapping-based flight pose an everpresent challenge to scientists hoping to reveal the secrets of animal flight. Despite this, interest in engineering aircraft on the bird and insect scale is higher than ever. Herein, I present my attempt to design and construct bioinspired passively articulated ornithopter wings. Two different hinge-based joint design concepts are investigated across several design iterations. The advantages and disadvantages of each implementation are discussed. Finally, the necessary instrumentation to analyze the performance of the wings is designed and fabricated, followed by testing of the wings.

  16. Physical properties of the benchmark models program supercritical wing

    Science.gov (United States)

    Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Turnock, David L.; Silva, Walter A.; Rivera, Jose A., Jr.

    1993-01-01

    The goal of the Benchmark Models Program is to provide data useful in the development and evaluation of aeroelastic computational fluid dynamics (CFD) codes. To that end, a series of three similar wing models are being flutter tested in the Langley Transonic Dynamics Tunnel. These models are designed to simultaneously acquire model response data and unsteady surface pressure data during wing flutter conditions. The supercritical wing is the second model of this series. It is a rigid semispan model with a rectangular planform and a NASA SC(2)-0414 supercritical airfoil shape. The supercritical wing model was flutter tested on a flexible mount, called the Pitch and Plunge Apparatus, that provides a well-defined, two-degree-of-freedom dynamic system. The supercritical wing model and associated flutter test apparatus is described and experimentally determined wind-off structural dynamic characteristics of the combined rigid model and flexible mount system are included.

  17. Ontogeny of aerial righting and wing flapping in juvenile birds

    CERN Document Server

    Evangelista, Dennis; Huynh, Tony; Krivitskiy, Igor; Dudley, Robert

    2014-01-01

    Mechanisms of aerial righting in juvenile Chukar Partridge (Alectoris chukar) were studied from hatching through 14 days post hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e., wing assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development, and are potentially relevant to understanding the origins of avian flight.

  18. Dynamic Pattern Formation for Wings of Pterygota in an Eclosion ---Pattern Analysis for Wings with the Imago---

    Science.gov (United States)

    Seino, M.; Kakazu, Y.

    The vein and cell patterns for the fore and hind wing of Lepidoptera, Hemiptera, Orthoptera and Odonata are analyzed and discussed. For vein patterns of them, the fractal properties are shown and the inequality between four orders is obtained. The nature of wings observed by mass distributions for fractal dimensions of the vein pattern is presented.

  19. Is there a right-wing alternative to the left-wing Bohemianism in Israel?

    Directory of Open Access Journals (Sweden)

    Cyril Aslanov

    2012-01-01

    Full Text Available Cet article s’efforce de comprendre les raisons de l’absence d’une bohème littéraire de droite en Israël. Au-delà des facteurs structurels liés à l’association naturelle de la bohème avec la gauche, soit comme un choix par défaut soit comme un terme marqué, le conservatisme inhérent à la littérature droitière est incompatible avec la renonciation au passé qui caractérise souvent les lettres israéliennes. En outre, la bohème de gauche en Israël ne tarit pas de critiques vis-à-vis de son propre pays. Cette préoccupation brille par son absence dans les écrits souvent partisans émanant de la droite. Enfin, la réception de la littérature israélienne hors d’Israël favorise nettement la bohème littéraire de gauche au point qu’on voit se dessiner une répartition complémentaire entre la droite aux commandes du pays et la gauche, maîtresse presque exclusive du Parnasse israélien.This article tries to understand why a right-wing literary Bohemianism failed to emerge in Israel. Besides the structural reasons connected with the natural association of Bohemianism with the Left, either as a default choice or as a marked option, the conservatism inherent to right-wing oriented literature is incompatible with modern Israeli attempt to get rid of the tradition. Moreover, what makes left-wing Israeli Bohemianism more credible is its constant need of self-criticism, a concern that blatantly lacks in the partisan writing emanating from the Right. Lastly, the reception abroad obviously favors left-wing Israeli Bohemianism to the extent that there might be a complementary distribution of functions between right-wing politics and left-wing literature in contemporary Israel.

  20. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, Blas [Stanford Univ., CA (United States); Gratta, Giorgio [Stanford Univ., CA (United States)

    2013-08-30

    design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on

  1. Effect of a wing-tip mounted pusher turboprop on the aerodynamic characteristics of a semi-span wing

    Science.gov (United States)

    Patterson, J. C., Jr.; Bartlett, G. R.

    1985-01-01

    An exploratory investigation has been conducted at the NASA Langley Research Center to determine the installed performance of a wing tip-mounted pusher turboprop. Tests were conducted using a semispan model having an unswept, untapered wing with a air-driven motor located on the tip of the wing, with an SR-2 design high speed propeller installed on the rear shaft of the motor. All tests were conducted at a Mach number of 0.70, at angles of attack of approximately -2 to +4 deg, and at a Reynolds number of 3.82 million based on the wing chord of 13 inches. The data indicate that, as a result of locating the propeller behind the wing trailing edge, at the wingtip, in the cross flow of the tip vortex, it is possible to recover part of the vortex energy as an increase in propeller thrust and, therefore, a reduction in the lift-induced drag as well.

  2. Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover

    Science.gov (United States)

    Shahzad, Aamer; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2016-11-01

    This numerical study is focused on assessing the effect on the aerodynamic hovering performance of wing shapes defined by the radius of the first moment of the wing area ( r 1 ¯ ) and aspect ratio (AR). In addition, the effect of introducing a deviation angle in the kinematics is examined. The performance of r 1 ¯ = 0 . 43 , 0.53, and 0.63 wings with AR of 1.5, 2.96, 4.5, and 6.0 is investigated at Reynolds numbers (Re) = 12, 400, and 13 500. The performance trends of the wing shapes have been observed to be independent of Re for both 2-angle and 3-angle kinematics. This is because high suction pressures associated with the leading-edge vortex are predominantly spread in the distal (away from the wing root) and leeward regions (towards the trailing-edge) of high flapping velocities for all the cases. While the deviation angle is detrimental to the production of lift and power economy (PE, defined as the ratio of the mean lift coefficient to the mean aerodynamic power coefficient) at Re = 12 due to strong viscous effects, it improves PE at Re = 400 and 13 500. A high instantaneous angle of attack at the stroke reversal results in high lift peak for 3-angle kinematics but its effect at Re = 400 and 13 500 is attenuated by strong vortical structures on the underside of the wing. Maximum PE is achieved at AR = 2.96, as a low AR wing does not produce enough lift and high AR wings consume more aerodynamic power. Although the lift is maximized using high r 1 ¯ and AR wings, our results show that low r 1 ¯ and high AR wings are best for maximizing PE for a given lift in insects.

  3. Variable-complexity aerodynamic optimization of an HSCT wing using structural wing-weight equations

    Science.gov (United States)

    Hutchison, M. G.; Unger, E. R.; Mason, W. H.; Grossman, B.; Haftka, R. T.

    1992-01-01

    A new approach for combining conceptual and preliminary design techniques for wing optimization is presented for the high-speed civil transport (HSCT). A wing-shape parametrization procedure is developed which allows the linking of planform and airfoil design variables. Variable-complexity design strategies are used to combine conceptual and preliminary-design approaches, both to preserve interdisciplinary design influences and to reduce computational expense. In the study, conceptual-design-level algebraic equations are used to estimate aircraft weight, supersonic wave drag, friction drag and drag due to lift. The drag due to lift and wave drag are also evaluated using more detailed, preliminary-design-level techniques. The methodology is applied to the minimization of the gross weight of an HSCT that flies at Mach 3.0 with a range of 6500 miles.

  4. Numerical Wing/Store Interaction Analysis of a Parametric F16 Wing

    OpenAIRE

    Cattarius, Jens

    1999-01-01

    A new numerical methodology to examine fluid-structure interaction of a wing/pylon/store system has been developed. The aeroelastic equation of motion of the complete system is solved iteratively in the time domain using a two-entity numerical code comprised of ABAQUS/Standard and the Unsteady-Vortex-Lattice Method. Both codes communicate through an iterative handshake procedure during which displacements and air loads are updated. For each increment in time the force/displacement equilibriu...

  5. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean

    2017-01-01

    Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574

  6. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  7. Geometric design of the best performing auto-rotating wing

    Science.gov (United States)

    Liu, Yucen; Vincent, Lionel; Kanso, Eva

    2016-11-01

    Many plants use gravity and aerodynamics to disperse their seeds away from the parent plant. Various seed designs result in different dispersal modes from gliding to auto-rotating. Here, we are interested in understanding the effect of geometric design of auto-rotating seedpods on their aerodynamic performance. As an experimentally tractable surrogate to real seedpods, we investigate auto-rotating paper wings of various shape designs. We compare these designs to a control case consisting of the canonical rectangular wing. Inspired by aerodynamics, we begin by considering the benefit of an elliptical planform, and test the effect of aspect ratio on flight range and descent angle. We find the elliptical planform improves the tumbling rate and the aspect ratio has a positive effect on the flight performance of the wings. We then test two families of more complex shapes: one of tapered planform and one of a planform with sharp tips. We look for an optimal flight performance while constraining either the mass or the maximum length and width of the wing. We find that wings with sharper tips and larger length have higher auto-rotation rates and improved performance. The results imply that both the planform and length of the wing contribute to the wing's flight performance.

  8. Modeling the Motion of a Flapping Wing Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Vorochaeva L.Y.

    2017-01-01

    Full Text Available The article discusses the vertical flight of a flapping wing aerial vehicle, which is also called an ornithopter. The robot is a chain of five links connected in series by active cylindrical hinges with the central link being the body and the remainder forming folding wings in pairs. The distinctive feature of this device is that the flaps of its wings imitate those of a seagull i.e. the device has a biological prototype. We construct a mathematical model of this device; much attention is given to the model of the interaction of the wings with the air environment and we determine the positions and velocities of points of application of the reduced aerodynamic forces to each of the links. Based on the results of numerical modelling of the vertical flight of the robot three modes of flight were established: ascent, hovering at a certain height and descent. The device can operate in these modes based on the oscillation parameters of the wings in particular flapping frequency and amplitude, the ratio of the amplitudes of two links and one wing and the shift of the equilibrium oscillation position of the wings relative to zero.

  9. Turbulent Flow Over a Low-Camber Pitching Arc Wing

    Science.gov (United States)

    Molki, Majid

    2014-11-01

    Aerodynamics of pitching airfoils and wings are of great importance to the design of air vehicles. This investigation presents the effect of camber on flow field and force coefficient for a pitching circular-arc airfoil. The wing considered in this study is a cambered plate of zero thickness which executes a linear pitch ramp, hold and return of 45° amplitude. The momentum equation is solved on a mesh that is attached to the wing and executes a pitching motion with the wing about a pivot point located at 0.25-chord or 0.50-chord distance from the leading edge. Turbulence is modeled by the k - ω SST model. Using the open-source software OpenFOAM, the conservation equations are solved on a dynamic mesh and the flow is resolved all the way to the wall (y+ ~ 1). The computations are performed for Re = 40,000 with the reduced pitch rate equal to K = cθ˙ / 2U∞ = 0 . 2 . The results are presented for three wings, namely, a flat plate (zero camber) and wings of 4% and 10% camber. It is found that the flow has complex features such as leading-edge vortex, near-wake vortex pairs, clockwise and counter-clockwise vortices, and trailing-edge vortex. While vortices are formed over the flat plate, they are formed both over and under the cambered wing.

  10. Aerodynamics and flight performance of flapping wing micro air vehicles

    Science.gov (United States)

    Silin, Dmytro

    Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as a vector sum of a freestream velocity and a strokeaveraged wingtip velocity. No abrupt stall was observed in flapping wings for the angle of attack up to vertical. If was found that in the presence of a freestream lift of a flapping wing in vertical position is higher than the propulsive thrust. Camber and dihedral increased both lift and thrust. Lift-curve slope, and maximum lift coefficient increased with Reynolds number. Performance model of an ornithopter was developed. Parametric studies of steady level flight of ornithopters with, and without a tail were performed. A model was proposed to account for wing-sizing effects during hover. Three micro ornithopter designs were presented. Ornithopter flight testing and data-logging was performed using a telemetry acquisition system, as well as motion capture technology. The ability of ornithopter for a sustained flight and a presence of passive aerodynamic stability were shown. Flight data were compared with performance simulations. Close agreement in terms of airspeed and flapping frequency was observed.

  11. The design and testing of subscale smart aircraft wing bolts

    Science.gov (United States)

    Vugampore, J. M. V.; Bemont, C.

    2012-07-01

    Presently costly periodic inspection is vital in guaranteeing the structural integrity of aircraft. This investigation assesses the potential for significantly reducing aircraft maintenance costs without modification of aircraft structures by implementing smart wing bolts, manufactured from TRIP steel, which can be monitored for damage in situ. TRIP steels undergo a transformation from paramagnetic austenite to ferromagnetic martensite during deformation. Subscale smart aircraft wing bolts were manufactured from hot rolled TRIP steel. These wing bolts were used to demonstrate that washers incorporating embedded inductance coils can be utilized to measure the martensitic transformation occurring in the TRIP steel during bolt deformation. Early in situ warning of a critical bolt stress level was thereby facilitated, potentially reducing the costly requirement for periodic wing bolt removal and inspection. The hot rolled TRIP steels that were utilized in these subscale bolts do not however exhibit the mechanical properties required of wing bolt material. Thus warm rolled TRIP steel alloys were also investigated. The mechanical properties of the best warm rolled TRIP steel alloy tested almost matched those of AISI 4340. The warm rolled alloys were also shown to exhibit transformation before yield, allowing for earlier warning when overload occurs. Further work will be required relating to fatigue crack detection, environmental temperature fluctuation and more thorough material characterization. However, present results show that in situ early detection of wing bolt overload is feasible via the use of high alloy warm rolled TRIP steel wing bolts in combination with inductive sensor embedded washers.

  12. Static Aeroelastic Effects of Formation Flight for Slender Unswept Wings

    Science.gov (United States)

    Hanson, Curtis E.

    2009-01-01

    The static aeroelastic equilibrium equations for slender, straight wings are modified to incorporate the effects of aerodynamically-coupled formation flight. A system of equations is developed by applying trim constraints and is solved for component lift distribution, trim angle-of-attack, and trim aileron deflection. The trim values are then used to calculate the elastic twist distribution of the wing box. This system of equations is applied to a formation of two gliders in trimmed flight. Structural and aerodynamic properties are assumed for the gliders, and solutions are calculated for flexible and rigid wings in solo and formation flight. It is shown for a sample application of two gliders in formation flight, that formation disturbances produce greater twist in the wingtip immersed in the vortex than for either the opposing wingtip or the wings of a similar airplane in solo flight. Changes in the lift distribution, resulting from wing twist, increase the performance benefits of formation flight. A flexible wing in formation flight will require greater aileron deflection to achieve roll trim than a rigid wing.

  13. Rib for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    Structural ribs for providing structural support for a structure, such as the pressure cabin of a blended-wing body aircraft. In a first embodiment, the ribs are generally Y-shaped, being comprised of a vertical web and a pair of inclined webs attached to the vertical web to extend upwardly and outwardly from the vertical web in different directions, with only the upper edges of the inclined webs being attached to a structural element. In a second embodiment, the ribs are generally trident-shaped, whereby the vertical web extends upwardly beyond the intersection of the inclined webs with the vertical web, with the upper edge of the vertical web as well as the upper edges of the inclined webs being attached to the same structural element.

  14. Prediction of Wing Downwash Using CFD

    Directory of Open Access Journals (Sweden)

    Mohammed MAHDI

    2015-06-01

    Full Text Available Wing downwash study and estimation of downwash effect on the tail plane is an important task during the aircraft design process, although a lot of papers and works has been done, but the experimental work is the most important, the progress in CFD simulation has reached to the point it is able to reduce the number of runs in the wind tunnel. In this work CFD has been utilized to calculate the downwash angle and downwash gradient with respect to the angle of attack over a high aspect ratio of a typical UAV. The results of the simulation shall be used in the estimation and calculation of the longitudinal static stability analysis of the UAV.

  15. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  16. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  17. The morphological basis of the arm-to-wing transition.

    Science.gov (United States)

    Poore, Samuel O

    2008-02-01

    Human-powered flight has fascinated scientists, artists, and physicians for centuries. This history includes Abbas Ibn Firnas, a Spanish inventor who attempted the first well-documented human flight; Leonardo da Vinci and his flying machines; the Turkish inventor Hezarfen Ahmed Celebi; and the modern aeronautical pioneer Otto Lilienthal. These historic figures held in common their attempts to construct wings from man-made materials, and though their human-powered attempts at flight never came to fruition, the ideas and creative elements contained within their flying machines were essential to modern aeronautics. Since the time of these early pioneers, flight has continued to captivate humans, and recently, in a departure from creating wings from artificial elements, there has been discussion of using reconstructive surgery to fabricate human wings from human arms. This article is a descriptive study of how one might attempt such a reconstruction and in doing so calls upon essential evidence in the evolution of flight, an understanding of which is paramount to constructing human wings from arms. This includes a brief analysis and exploration of the anatomy of the 150-million-year-old fossil Archaeopteryx lithographica, with particular emphasis on the skeletal organization of this primitive bird's wing and wrist. Additionally, certain elements of the reconstruction must be drawn from an analysis of modern birds including a description of the specialized shoulder of the European starling, Sturnus vulgaris. With this anatomic description in tow, basic calculations regarding wing loading and allometry suggest that human wings would likely be nonfunctional. However, with the proper reconstructive balance between primitive (Archaeopteryx) and modern (Sturnus), and in attempting to integrate a careful analysis of bird anatomy with modern surgical techniques, the newly constructed human wings could function as cosmetic features simulating, for example, the nonfunctional

  18. Winging of scapula due to serratus anterior tear

    Directory of Open Access Journals (Sweden)

    Varun Singh Kumar

    2014-10-01

    Full Text Available 【Abstract】Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle. Traumatic injury to serratus anterior muscle itself is very rare. We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male. Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test. Patient was managed conservatively and achieved satisfactory result. Key words: Serratus anterior tear; Scapula; Wounds and injuries

  19. Laminar-turbulent transition on the flying wing model

    Science.gov (United States)

    Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.

    2016-10-01

    Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.

  20. Static measurements of slender delta wing rolling moment hysteresis

    Science.gov (United States)

    Katz, Joseph; Levin, Daniel

    1991-01-01

    Slender delta wing planforms are susceptible to self-induced roll oscillations due to aerodynamic hysteresis during the limit cycle roll oscillation. Test results are presented which clearly establish that the static rolling moment hysteresis has a damping character; hysteresis tends to be greater when, due to either wing roll or side slip, the vortex burst moves back and forth over the wing trailing edge. These data are an indirect indication of the damping role of the vortex burst during limit cycle roll oscillations.

  1. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  2. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  3. Bioinspired ultraviolet reflective photonic structures derived from butterfly wings (Euploea)

    Science.gov (United States)

    Song, Fang; Su, Huilan; Chen, Jianjun; Zhang, Di; Moon, Won-Jin

    2011-10-01

    Butterfly wings have been demonstrated to have potential applications in various optical devices. For complementarily, we extend them to ultraviolet (UV) reflectors, inspired by the UV reflective photonic structures that have been evolved to satisfy UV communication systems of butterflies. UV reflective photonic structures of butterfly wings were replicated in multiscale, and thus endowed the resultant SnO2 materials with enhanced UV reflection. This biomimetic strategy provides us a universal way towards UV reflectors without changing the chemical compositions. Furthermore, the UV reflection could be potentially tuned by choosing different photonic structures of butterfly wings and other bio-species.

  4. Fruit flies modulate passive wing pitching to generate in-flight turns

    CERN Document Server

    Bergou, Attila J; Guckenheimer, John; Cohen, Itai; Wang, Z Jane

    2009-01-01

    Flying insects execute aerial maneuvers through subtle manipulations of their wing motions. Here, we measure the free flight kinematics of fruit flies and determine how they modulate their wing pitching to induce sharp turns. By analyzing the torques these insects exert to pitch their wings, we infer that the wing hinge acts as a torsional spring that passively resists the wing's tendency to flip in response to aerodynamic and inertial forces. To turn, the insects asymmetrically change the spring rest angles to generate rowing motions of their wings. Thus, insects can generate these maneuvers using only a slight active actuation that biases their wing motion.

  5. A Model for Selection of Eyespots on Butterfly Wings.

    Directory of Open Access Journals (Sweden)

    Toshio Sekimura

    Full Text Available The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins. A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not.We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions

  6. Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Science.gov (United States)

    2009-03-01

    wings. These devices are often called entomopters, winged in- sect machines, or ornithopter , winged bird machines. The flapping wing benefits from both...minutes of flight before refueling is required [26–28]. An ornithopter from Tamkang University was reviewed. It was constructed using titanium alloy...Grasmeyer, Y. C. Tai, C. M. Ho, and M. Keennon, “Mems wing technology for a battery-powered ornithopter ,” Proceedings of the IEEE Micro Electro Mechanical

  7. Celebrating 100 Years of Flight: Testing Wing Designs in Aircraft

    Science.gov (United States)

    Pugalee, David K.; Nusinov, Chuck; Giersch, Chris; Royster, David; Pinelli, Thomas E.

    2005-01-01

    This article describes an investigation involving several designs of airplane wings in trial flight simulations based on a NASA CONNECT program. Students' experiences with data collection and interpretation are highlighted. (Contains 5 figures.)

  8. A novel posture alignment system for aircraft wing assembly

    Institute of Scientific and Technical Information of China (English)

    Bin ZHANG; Bao-guo YAO; Ying-lin KE

    2009-01-01

    A novel 6-degree of freedom (DOF) posture alignment system, based on 3-DOF positioners, is presented for the assembly of aircraft wings. Each positioner is connected with the wing through a rotational and adsorptive half-ball shaped end-effector, and the positioners together with the wing are considered as a 3-PPPS (P denotes a prismatic joint and S denotes a spherical joint) redundantly actuated parallel mechanism. The kinematic model of this system is established and a trajectory planning method is introduced. A complete analysis of inverse dynamics is carried out with the Newton-Euler algorithm, which is used to find the desired actuating torque in the design and path planning phase. Simulation analysis of the displacement and actuating torque of each joint of the positioners based on inverse kinematics and dynamics is conducted, and the results show that the system is feasible for the posture alignment of aircraft wings.

  9. Lift estimation of Half-Rotating Wing in hovering flight

    Science.gov (United States)

    Wang, X. Y.; Dong, Y. P.; Qiu, Z. Z.; Zhang, Y. Q.; Shan, J. H.

    2016-11-01

    Half-Rotating Wing (HRW) is a new kind of flapping wing system with rotating flapping instead of oscillating flapping. Estimating approach of hovering lift which generated in hovering flight was important theoretical foundation to design aircraft using HRW. The working principle of HRW based on Half-Rotating Mechanism (HRM) was firstly introduced in this paper. Generating process of lift by HRW was also given. The calculating models of two lift mechanisms for HRW, including Lift of Flow Around Wing (LFAW) and Lift of Flow Dragging Wing (LFDW), were respectively established. The lift estimating model of HRW was further deduced, by which hovering lift for HRW with different angular velocity could be calculated. Case study using XFLOW software simulation indicates that the above estimating method was effective and feasible to predict roughly the hovering lift for a new HRW system.

  10. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  11. Winging of the scapula: An unusual complication of needle thoracocentesis.

    Science.gov (United States)

    Faruqi, S; Raychaudhuri, C; Thirumaran, M; Blaxill, P

    2008-07-01

    Needle thoracocentesis is a common interventional procedure and is generally considered to be safe. Major complications associated with this procedure are uncommon. Here we describe a rare instance of winging of the scapula following needle thoracocentesis.

  12. Dynamic distributions and population declines of Golden-winged Warblers

    Science.gov (United States)

    Rosenberg, Kenneth V.; Will, Tom; Buehler, David A.; Barker Swarthout, Sara; Thogmartin, Wayne E.; Chandler, Richard

    2016-01-01

    With an estimated breeding population in 2010 of 383,000 pairs, the Golden-winged Warbler (Vermivora chrysoptera) is among the most vulnerable and steeply declining of North American passerines. This species also has exhibited among the most dynamic breeding distributions, with populations expanding and then contracting over the past 150 years in response to regional habitat changes, interactions with closely related Blue-winged Warblers (V. cyanoptera), and possibly climate change. Since 1966, the rangewide population has declined by >70% (-2.3% per year; latest North American Breeding Bird Survey data), with much steeper declines in the Appalachian Mountains bird conservation region (-8.3% per year, 98% overall decline). Despite apparently stable or increasing populations in the northwestern part of the range (Minnesota, Manitoba), population estimates for Golden-winged Warbler have continued to decline by 18% from the decade of the 1990s to the 2000s. Population modeling predicts a further decline to roughly 37,000 individuals by 2100, with the species likely to persist only in Manitoba, Minnesota, and possibly Ontario. To delineate the present-day distribution and to identify population concentrations that could serve as conservation focus areas, we compiled rangewide survey data collected in 2000-2006 in 21 states and 3 Canadian provinces, as part of the Golden-winged Warbler Atlas Project (GOWAP), supplemented by state and provincial Breeding Bird Atlas data and more recent observations in eBird. Based on >8,000 GOWAP surveys for Golden-winged and Blue-winged warblers and their hybrids, we mapped occurrence of phenotypically pure and mixed populations in a roughly 0.5-degree grid across the species’ ranges. Hybrids and mixed Golden-winged-Blue-winged populations occurred in a relatively narrow zone across Minnesota, Wisconsin, Michigan, southern Ontario, and northern New York. Phenotypically pure Golden-winged Warbler populations occurred north of this

  13. Wing Kinematics and Wake Velocity Characteristics of Bat Flight

    Science.gov (United States)

    Swartz, Sharon

    2005-11-01

    Bats demonstrate unequalled flight characteristics and are capable of highly efficient flight as well as extreme maneuverability at high speeds. They have morphological properties that are unique in the animal world including jointed wings skeletons, elastic wing membranes and very complex wing motions. We report on a series of experiments on bats flying in a flight cage along both a straight path and through a 90-degree turn. Measurements of their kinematic wing motion (using high speed photography) and wake velocity structures (using stereo PIV) are reported. The live animal measurements are also interpreted with the help of a series of companion wind tunnel experiments using model structures that mimic some key features of bat flight mechanics. The results reveal a complex vortex wake structure which is compared and contrasted to that found in bird and insect flight.

  14. Gyroid cuticular structures in butterfly wing scales : biological photonic crystals

    NARCIS (Netherlands)

    Michielsen, K.; Stavenga, D. G.

    2008-01-01

    We present a systematic study of the cuticular structure in the butterfly wing scales of some papilionids (Parides sesostris and Teinopalpus imperialis) and lycaenids (Callophrys rubi, Cyanophrys remus, Mitoura gryneus and Callophrys dumetorum). Using published scanning and transmission electron mic

  15. Glaucous-winged gull nesting on Amchitka Island

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The glaucous-winged gull (Larus glaucescens) is the most common gull in the north Pacific (Bent 1921, Murie 1959). It is also one of the most abundant permanent...

  16. The efficient solution of transonic wing flow fields

    Science.gov (United States)

    Holst, T. L.; Subramanian, N. R.; Thomas, S. D.

    1983-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is presented. TWING utilizes a fully implicit, approximate-factorization iteration scheme to solve the full-potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations have been analyzed, and comparisons of computed results have been made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative, full-potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations, including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  17. Recent applications of the transonic wing analysis computer code, TWING

    Science.gov (United States)

    Subramanian, N. R.; Holst, T. L.; Thomas, S. D.

    1982-01-01

    An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.

  18. New findings of twisted-wing parasites (Strepsiptera) in Alaska

    Science.gov (United States)

    Mcdermott, Molly

    2016-01-01

    Strepsipterans are a group of insects with a gruesome life history and an enigmatic evolutionary past. Called ‘twisted-wing parasites’, they are minute parasitoids with a very distinct morphology (Figure 1). Alternatively thought to be related to ichneumon wasps, Diptera (flies), Coleoptera (beetles), and even Neuroptera (net-winged insects) (Pohl and Beutel, 2013); the latest genetic and morphological data support the sister order relationship of Strepsiptera and Coleoptera (Niehuis et al., 2012). Strepsipterans are highly modified, males having two hind wings and halteres instead of front wings or elytra. Unlike most parasitoids, they develop inside active, living insects who are sexually sterilized but not killed until or after emergence (Kathirithamby et al., 2015).

  19. Experimental Investigation of wing-tip vortex evolution in turbulence

    Science.gov (United States)

    Bailey, Sean; Ghimire, Hari

    2016-11-01

    Towing tank experiments were conducted to examine the evolution of a wing-tip vortex in grid-generated turbulence. Measurements using particle image velocimetry (PIV) were conducted of the velocity field generated by towing a semi-span symmetric wing oriented at 8 degree angle of attack. Turbulence of different kinetic energy and length scales was produced by simultaneously towing grids of different mesh sizes upstream of the wing. Results showed that wing-tip vortex wandering increased with the increase in turbulence kinetic energy, ultimately leading to spontaneous collapse of the vortex. During this process, a measurable diffusion of overall vortex circulation was observed, with the rate of diffusion leading to the collapse of the vortex dependent on the turbulence intensity. Interestingly, the radius of the vortex core remained largely unchanged during the diffusion process, Evidence suggests that the breakdown of vortex was enhanced by entrainment of fluid inside vortex core due to vortex stripping in presence of turbulence.

  20. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  1. Wings of the butterfly: Sunspot groups for 1826-2015

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Denker, C.; Mursula, K.

    2017-03-01

    The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Spörer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30°-45°) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20°-30°) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2°-10°) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. Digital data for Fig. 1 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A131

  2. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    The flight of birds has intrigued and motivated man for many years. Bird flight served as the primary inspiration of flying machines developed by Leonardo Da Vinci, Otto Lilienthal, and even the Wright brothers. Avian flight has once again drawn the attention of the scientific community as unmanned aerial vehicles (UAV) are not only becoming more popular, but smaller. Birds are once again influencing the designs of aircraft. Small UAVs operating within flight conditions and low Reynolds numbers common to birds are not yet capable of the high levels of control and agility that birds display with ease. Many researchers believe the potential to improve small UAV performance can be obtained by applying features common to birds such as feathers and flapping flight to small UAVs. Although the effects of feathers on a wing have received some attention, the effects of localized transient feather motion and surface geometry on the flight performance of a wing have been largely overlooked. In this research, the effects of freely moving feathers on a preserved red tailed hawk wing were studied. A series of experiments were conducted to measure the aerodynamic forces on a hawk wing with varying levels of feather movement permitted. Angle of attack and air speed were varied within the natural flight envelope of the hawk. Subsequent identical tests were performed with the feather motion constrained through the use of externally-applied surface treatments. Additional tests involved the study of an absolutely fixed geometry mold-and-cast wing model of the original bird wing. Final tests were also performed after applying surface coatings to the cast wing. High speed videos taken during tests revealed the extent of the feather movement between wing models. Images of the microscopic surface structure of each wing model were analyzed to establish variations in surface geometry between models. Recorded aerodynamic forces were then compared to the known feather motion and surface

  3. Bristles reduce force required to fling wings apart in small insects

    Science.gov (United States)

    Jones, Shannon; Yun, Young; Hedrick, Tyson; Griffith, Boyce; Miller, Laura

    2016-11-01

    The smallest flying insects commonly possess wings with long bristles. Little quantitative information is available on the morphology of these bristles, and the functional importance of these bristles remains a mystery. In this study, we used the immersed boundary method to determine via numerical simulation if bristled wings reduced the force required to fling the wings apart during "clap and fling". The challenge of studying the fluid dynamics of bristles was in resolving the fluid flow between the bristles. The effects of Reynolds number, angle of attack, bristle spacing, and wing-wing interactions were investigated. We found that a bristled wing experiences less force than a solid wing, however bristled wings may act more like solid wings at lower angles of attack than they do at higher angles of attack. In wing-wing interactions, bristled wings significantly decrease the drag required to fling two wings apart compared with solid wings, especially at lower Reynolds numbers. These results support the idea that bristles may offer an aerodynamic benefit during clap and fling by reducing the force required to fling the wings apart in tiny insects.

  4. Aeroelastic stability analysis of high aspect ratio aircraft wings

    OpenAIRE

    Banerjee, J. R.; Liu, X.; Kassem, H. I.

    2014-01-01

    Free vibration and flutter analyses of two types of high aspect ratio aircraft wings are presented. The wing is idealised as an assembly of bending-torsion coupled beams using the dynamic stiffness method leading to a nonlinear eigenvalue problem. This problem is solved using the Wattrick-Williams algorithm yielding natural frequencies and mode shapes. The flutter analysis is carried out using the normal mode method in conjunction with generalised coordinates and two-dimensional unsteady aero...

  5. Simulating Bird Strike on Aircraft Composite Wing Leading Edge.

    OpenAIRE

    Ericsson, Max

    2012-01-01

    In this master thesis project the possibility to model the response of a wing when subjected to bird strike using finite elements is analyzed. Since this transient event lasts only a few milliseconds the used solution method is explicit time integration. The wing is manufactured using carbon fiber laminate. Carbon fiber laminates have orthotropic material properties with different stiffness in different directions. Accordingly, there are damage mechanisms not considered when using metal that ...

  6. A Drone with Insect-Inspired Folding Wings

    OpenAIRE

    Dufour, Louis; Owen, Kevin; Mintchev, Stefano; Floreano, Dario

    2016-01-01

    Flying robots are increasingly adopted in search and rescue missions because of their capability to quickly collect and stream information from remote and dangerous areas. To further enhance their use, we are investigating the development of a new class of drones, foldable sensorized hubs that can quickly take off from rescuers’ hands as soon as they are taken out of a pocket or a backpack. With this aim, this paper presents the development of a foldable wing inspired by insects. The wing can...

  7. A Computational Method for Wings of Arbitrary Planform.

    Science.gov (United States)

    1984-12-01

    wing is considered variable with discrete values at the specified grid points. h3. nir -= difference equations are utilizedl to determine these discrete...separate circulation functions, one non-dimenstonai with respect to semi-span and fr-ee =, Cream velocity, and one non-dimensional with respect to mean...mapping points on the wing from the physical (xy)-plane to corresponding points in the ’o )-plane and - ice versa. Fig. 4 depicts a uni-orm rectangular

  8. Unveiling spatial correlations in biophotonic architecture of transparent insect wings

    CERN Document Server

    Kumar, Pramod; Singh, Dhirendra P; Mandal, Sudip; Singh, Kamal P

    2014-01-01

    We probe the natural complex structures in the transparent insect wings by a simple, non-invasive, real time optical technique using both monochromatic and broadband femtosecond lasers. A stable, reproducible and novel diffraction pattern is observed unveiling long range spatial correlations and structural-symmetry at various length scales for a large variety of wings. While matching the sensitivity of SEM for such microstructures, it is highly efficient for extracting long range structural organization with potentially broad applicability.

  9. Spatial Disorientation Training in the Rotor Wing Flight Simulator.

    Science.gov (United States)

    Powell-Dunford, Nicole; Bushby, Alaistair; Leland, Richard A

    This study is intended to identify efficacy, evolving applications, best practices, and challenges of spatial disorientation (SD) training in flight simulators for rotor wing pilots. Queries of a UK Ministry of Defense research database and Pub Med were undertaken using the search terms 'spatial disorientation,' 'rotor wing,' and 'flight simulator.' Efficacy, evolving applications, best practices, and challenges of SD simulation for rotor wing pilots were also ascertained through discussion with subject matter experts and industrial partners. Expert opinions were solicited at the aeromedical physiologist, aeromedical psychologist, instructor pilot, aeromedical examiner, and corporate executive levels. Peer review literature search yielded 129 articles, with 5 relevant to the use of flight simulators for the spatial disorientation training of rotor wing pilots. Efficacy of such training was measured subjectively and objectively. A preponderance of anecdotal reports endorse the benefits of rotor wing simulator SD training, with a small trial substantiating performance improvement. Advancing technologies enable novel training applications. The mobile nature of flight students and concurrent anticollision technologies can make long-range assessment of SD training efficacy challenging. Costs of advanced technologies could limit the extent to which the most advanced simulators can be employed across the rotor wing community. Evidence suggests the excellent training value of rotor wing simulators for SD training. Objective data from further research, particularly with regards to evolving technologies, may justify further usage of advanced simulator platforms for SD training and research. Powell-Dunford N, Bushby A, Leland RA. Spatial disorientation training in the rotor wing flight simulator. Aerosp Med Hum Perform. 2016; 87(10):890-893.

  10. Simulating Bird Strike on Aircraft Composite Wing Leading Edge.

    OpenAIRE

    Ericsson, Max

    2012-01-01

    In this master thesis project the possibility to model the response of a wing when subjected to bird strike using finite elements is analyzed. Since this transient event lasts only a few milliseconds the used solution method is explicit time integration. The wing is manufactured using carbon fiber laminate. Carbon fiber laminates have orthotropic material properties with different stiffness in different directions. Accordingly, there are damage mechanisms not considered when using metal that ...

  11. A Variable Control Structure Controller for the Wing Rock Phenomenon

    OpenAIRE

    2016-01-01

    This paper presents the design of a variable structure controller for the model of the wing rock phenomenon of a delta wing aircraft. It is considered to be a continue study of the last two researches for the same phenomena "Feedback linearization [15] and back stepping controller [14] ". A control technique is proposed to stabilize the aircraft phenomena. The solution presented in this paper give a guarantee of asymptotic convergence to zero of all variables of the system. MATLAB...

  12. CFD Analysis of a T-38 Wing Fence

    Science.gov (United States)

    2007-06-01

    or making major adjustments to the existing airframe. The answer lies in flow control. Flow control devices like vortex generators, winglets , and wing...proposed by the Air Force Test Pilot School. The driving force for considering a wing fence as opposed to vane vortex generators or winglets 3 was a row of...devices are vortex generators, fences, high lift flaps, and winglets . Active flow control injects the boundary layer with energy from small jets of

  13. Design of a variable-span morphing wing

    OpenAIRE

    Mestrinho, João Rafael da Conceição

    2009-01-01

    The present work focuses on the study, design and validation of a variable-span morphing wing to be tted to the UAV \\Olharapo". Using an optimization code, which uses a viscous two-dimensional panel method formulation coupled with a non-linear liftingline algorithm and a sequential quadratic programming optimization routine, na aerodynamic analysis is performed to estimate the optimal values of wing span which ensure minimum drag across the ight speed envelope. The UAV ies in a relativ...

  14. Do the Golden-winged Warbler and Blue-winged Warbler Exhibit Species-specific Differences in their Breeding Habitat Use?

    Directory of Open Access Journals (Sweden)

    David S. Maehr

    2010-12-01

    Full Text Available We compared habitat features of Golden-winged Warbler (Vermivora chrysoptera territories in the presence and absence of the Blue-winged Warbler (V. cyanoptera on reclaimed coal mines in southeastern Kentucky, USA. Our objective was to determine whether there are species specific differences in habitat that can be manipulated to encourage population persistence of the Golden-winged Warbler. When compared with Blue-winged Warblers, Golden-winged Warblers established territories at higher elevations and with greater percentages of grass and canopy cover. Mean territory size (minimum convex polygon was 1.3 ha (se = 0.1 for Golden-winged Warbler in absence of Blue-winged Warbler, 1.7 ha (se = 0.3 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 2.1 ha (se = 0.3 for Blue-winged Warbler. Territory overlap occurred within and between species (18 of n = 73 territories, 24.7%. All Golden-winged and Blue-winged Warblers established territories that included an edge between reclaimed mine land and mature forest, as opposed to establishing territories in open grassland/shrubland habitat. The mean distance territories extended from a forest edge was 28.0 m (se = 3.8 for Golden-winged Warbler in absence of Blue-winged Warbler, 44.7 m (se = 5.7 for Golden-winged Warbler coexisting with Blue-winged Warbler, and 33.1 m (se = 6.1 for Blue-winged Warbler. Neither territory size nor distances to forest edges differed significantly between Golden-winged Warbler in presence or absence of Blue-winged Warbler. According to Monte Carlo analyses, orchardgrass (Dactylis glomerata, green ash (Fraxinus pennsylvanica seedlings and saplings, and black locust (Robinia pseudoacacia saplings were indicative of sites with only Golden-winged Warblers. Sericea lespedeza, goldenrod (Solidago spp., clematis vine (Clematis spp., and blackberry (Rubus spp. were indicative of sites where both species occurred. Our findings complement recent genetic studies and add

  15. Application of slender wing benefits to military aircraft

    Science.gov (United States)

    Polhamus, E. C.

    1983-01-01

    A review is provided of aerodynamic research conducted at the Langley Research Center with respect to the application of slender wing benefits in the design of high-speed military aircraft, taking into account the supersonic performance and leading-edge vortex flow associated with very highly sweptback wings. The beginning of the development of modern classical swept wing jet aircraft is related to the German Me 262 project during World War II. In the U.S., a theoretical study conducted by Jones (1945) pointed out the advantages of the sweptback wing concept. Developments with respect to variable sweep wings are discussed, taking into account early research in 1946, a joint program of the U.S. with the United Kingdom, the tactical aircraft concept, and the important part which the Langley variable-sweep research program played in the development of the F-111, F-14, and B-1. Attention is also given to hybrid wings, vortex flow theory development, and examples of flow design technology.

  16. Features of owl wings that promote silent flight.

    Science.gov (United States)

    Wagner, Hermann; Weger, Matthias; Klaas, Michael; Schröder, Wolfgang

    2017-02-06

    Owls are an order of birds of prey that are known for the development of a silent flight. We review here the morphological adaptations of owls leading to silent flight and discuss also aerodynamic properties of owl wings. We start with early observations (until 2005), and then turn to recent advances. The large wings of these birds, resulting in low wing loading and a low aspect ratio, contribute to noise reduction by allowing slow flight. The serrations on the leading edge of the wing and the velvet-like surface have an effect on noise reduction and also lead to an improvement of aerodynamic performance. The fringes at the inner feather vanes reduce noise by gliding into the grooves at the lower wing surface that are formed by barb shafts. The fringed trailing edge of the wing has been shown to reduce trailing edge noise. These adaptations to silent flight have been an inspiration for biologists and engineers for the development of devices with reduced noise production. Today several biomimetic applications such as a serrated pantograph or a fringed ventilator are available. Finally, we discuss unresolved questions and possible future directions.

  17. Flying Wings. A New Paradigm for Civil Aviation?

    Directory of Open Access Journals (Sweden)

    R. Martinez-Val

    2007-01-01

    Full Text Available Over the last 50 years, commercial aviation has been mainly based what is currently called the conventional layout, characterized by a slender fuselage mated to a high aspect ratio wing, with aft-tail planes and pod-mounted engines under the wing. However, it seems that this primary configuration is approaching an asymptote in its productivity and performance characteristics. One of the most promising configurations for the future is the flying wing in its distinct arrangements: blended-wing-body, C-wing, tail-less aircraft, etc. These layouts might provide significant fuel savings and, hence, a decrease in pollution. This configuration would also reduce noise in take-off and landing. All this explains the great deal of activity carried out by the aircraft industry and by numerous investigators to perform feasibility and conceptual design studies of this aircraft layout to gain better knowledge of its main characteristics: productivity, airport compatibility, passenger acceptance, internal architecture, emergency evacuation, etc. The present paper discusses the main features of flying wings, their advantages over conventional competitors, and some key operational issues, such as evacuation and vortex wake intensity. 

  18. Unsteady flow over flexible wings at different low Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1 was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000. Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  19. Passive flow control by membrane wings for aerodynamic benefit

    Science.gov (United States)

    Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence

    2013-03-01

    The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.

  20. Circulation Produced by a Flapping Wing During Stroke Reversal

    Science.gov (United States)

    Burge, Matthew; Ringuette, Matthew

    2016-11-01

    We investigate the circulation behavior of the 3D flow structures formed during the stroke-reversal of a 2-degree-of-freedom flapping wing in hover. Previous work has related circulation peaks to the unsteady wing kinematics and forces. However, information from experiments detailing contributions from the multiple, 3D flow structures is lacking. The objective of this work is to quantitatively study the spanwise circulation as well as the spanwise flow which advects vorticity in the complex loop topology of a flapping wing during stroke reversal. We analyze the flow features of a scaled wing model using multi-plane stereo digital particle image velocimetry in a glycerin-water mixture. Data plane locations along the wing span are inspired by the time-resolved behavior of the 3D vortex structures observed in our earlier flow visualization studies. As with our prior work, we vary dimensionless parameters such as the pitching reduced frequency to understand their effect on the circulation. This research provides insight into the vortex dynamics produced by the coupled rotational and pitching wing motions during stroke reversal, when lift generation is challenging. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Dimitrios Papavassiliou.

  1. A fast Chebyshev method for simulating flexible-wing propulsion

    Science.gov (United States)

    Moore, M. Nicholas J.

    2017-09-01

    We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wing's elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing these distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with O (Nlog ⁡ N) operations, where N is the number of collocation points on the wing. This is in contrast to the minimum O (N2) cost of a direct 2D fluid solver. The coupled wing-fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, O (Nlog ⁡ N) , allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.

  2. Phase shifts of the paired wings of butterfly diagrams

    Institute of Scientific and Technical Information of China (English)

    Ke-Jun Li; Hong-Fei Liang; Wen Feng

    2010-01-01

    Sunspot groups observed by the Royal Greenwich Observatory/US Air Force/NOAA from 1874 May to 2008 November and the Carte Synoptique solar filaments from 1919 March to 1989 December are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities.Latitudinal migration of sunspot groups(or filaments)does asynchronously occur in the northern and southern hemispheres,and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle,making the paired wings spatially asymmetrical on the solar equator.It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle,demonstrating the paired wings phenomenon and showing the phase relationship between the northern and southern hemispherical solar activity strengths,as well as a relative phase shift between the paired wings of a butterfly diagram,which should bring about almost the same relative phase shift of hemispheric solar activity strength.

  3. The Phase Shifts of the Paired Wings of Butterfly Diagrams

    CERN Document Server

    Li, Kejun; Feng, Wen

    2010-01-01

    Sunspot groups observed by Royal Greenwich Observatory/US Air Force/NOAA from May 1874 to November 2008 and the Carte Synoptique solar filaments from March 1919 to December 1989 are used to investigate the relative phase shift of the paired wings of butterfly diagrams of sunspot and filament activities. Latitudinal migration of sunspot groups (or filaments) does asynchronously occur in the northern and southern hemispheres, and there is a relative phase shift between the paired wings of their butterfly diagrams in a cycle, making the paired wings spatially asymmetrical on the solar equator. It is inferred that hemispherical solar activity strength should evolve in a similar way within the paired wings of a butterfly diagram in a cycle, making the paired wings just and only keep the phase relationship between the northern and southern hemispherical solar activity strengths, but a relative phase shift between the paired wings of a butterfly diagram should bring about an almost same relative phase shift of hemis...

  4. Unsteady flow over flexible wings at different low Reynolds numbers

    Science.gov (United States)

    Genç, Mustafa Serdar; Özden, Mustafa; Hakan Açikel, Halil; Demir, Hacımurat; Isabekov, Iliasbek

    2016-03-01

    In this study, unsteady flow around flexible membrane wing which had aspect ratio of 1 (AR=1) was investigated experimentally at various Reynolds numbers (Re = 25000 and Re = 50000). Smoke-wire technique for flow visualization over the flexible membrane wing was utilized in the experiments. Digital Image Correlation system (DIC) was used for measuring deformation of AR = 1 flexible membrane wing. Instantaneous deformation measurements of membrane wing were combined with the flow field measurements. In low aspect ratio flexible membrane wings, unsteadiness includes tip vortices and vortex shedding, and the combination of tip vortices. In these types of wings, complex unsteady deformations occurred due to vortex shedding. The results showed that the increasing angle of attack results in increase of membrane deformation. Moreover, it was concluded that analysis of the instantaneous deformation revealed chordwise and spanwise, modes which were due to the shedding of leading-edge vortices as well as tip vortices. Consequently, vibrational mode decreased and maximum standard deviation location approached to the trailing edge by reason of increasing angle of attack.

  5. Application of Piezoelectrics to Flapping-Wing MAVs

    Science.gov (United States)

    Widstrand, Alex; Hubner, J. Paul

    2015-11-01

    Micro air vehicles (MAVs) are a class of unmanned aerial vehicles that are size-restricted and operate at low velocities and low Reynolds numbers. An ongoing challenge with MAVs is that their flight-related operations are highly constrained by their size and weight, which limits battery size and, therefore, available power. One type of MAV called an ornithopter flies using flapping wings to create both lift and thrust, much like birds and insects do. Further bio-inspiration from bats led to the design of membrane wings for these vehicles, which provide aerodynamic benefits through passive vibration. In an attempt to capitalize on this vibration, a piezoelectric film, which generates a voltage when stressed, was investigated as the wing surface. Two wing planforms with constant area were designed and fabricated. The goal was to measure the wings' flight characteristics and output energy in freestream conditions. Complications with the flapper arose which prevented wind tunnel tests from being performed; however, energy data was obtained from table-top shaker tests. Preliminary results indicate that wing shape affects the magnitude of the charge generated, with a quarter-elliptic planform outperforming a rectangular planform. Funding provided by NSF REU Site Award number 1358991.

  6. Genetic Basis of Melanin Pigmentation in Butterfly Wings.

    Science.gov (United States)

    Zhang, Linlin; Martin, Arnaud; Perry, Michael W; van der Burg, Karin R L; Matsuoka, Yuji; Monteiro, Antónia; Reed, Robert D

    2017-04-01

    Despite the variety, prominence, and adaptive significance of butterfly wing patterns, surprisingly little is known about the genetic basis of wing color diversity. Even though there is intense interest in wing pattern evolution and development, the technical challenge of genetically manipulating butterflies has slowed efforts to functionally characterize color pattern development genes. To identify candidate wing pigmentation genes, we used RNA sequencing to characterize transcription across multiple stages of butterfly wing development, and between different color pattern elements, in the painted lady butterfly Vanessa cardui This allowed us to pinpoint genes specifically associated with red and black pigment patterns. To test the functions of a subset of genes associated with presumptive melanin pigmentation, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing in four different butterfly genera. pale, Ddc, and yellow knockouts displayed reduction of melanin pigmentation, consistent with previous findings in other insects. Interestingly, however, yellow-d, ebony, and black knockouts revealed that these genes have localized effects on tuning the color of red, brown, and ochre pattern elements. These results point to previously undescribed mechanisms for modulating the color of specific wing pattern elements in butterflies, and provide an expanded portrait of the insect melanin pathway. Copyright © 2017 by the Genetics Society of America.

  7. A low-cost simulation platform for flapping wing MAVs

    Science.gov (United States)

    Kok, J. M.; Chahl, J. S.

    2015-03-01

    This paper describes the design of a flight simulator for analysing the systems level performance of a Dragonfly-Inspired Micro Air Vehicle (DIMAV). A quasi-steady blade element model is used to analyse the aerodynamic forces. Aerodynamic and environmental forces are then incorporated into a real world flight dynamics model to determine the dynamics of the DIMAV system. The paper also discusses the implementation of the flight simulator for analysing the manoeuvrability of a DIMAV, specifically several modes of flight commonly found in dragonflies. This includes take-off, roll turns and yaw turns. Our findings with the simulator are consistent with results from wind tunnel studies and slow motion cinematography of dragonflies. In the take-off mode of flight, we see a strong dependence of take-off accelerations with flapping frequency. An increase in wing-beat frequency of 10% causes the maximum vertical acceleration to increase by 2g which is similar to that of dragonflies in nature. For the roll and yaw modes of manoeuvring, asymmetrical inputs are applied between the left and right set of wings. The flapping amplitude is increased on the left pair of wings which causes a time averaged roll rate to the right of 1.76rad/s within two wing beats. In the yaw mode, the stroke plane angle is reduced in the left pair of wings to initiate the yaw manoeuvre. In two wing beats, the time averaged yaw rate is 2.54rad/s.

  8. Reassessment of the wing feathers of Archaeopteryx lithographica suggests no robust evidence for the presence of elongated dorsal wing coverts.

    Directory of Open Access Journals (Sweden)

    Robert L Nudds

    Full Text Available Recently it was proposed that the primary feathers of Archaeopteryx lithographica (HMN1880 were overlaid by long covert feathers, and that a multilayered feathered wing was a feature of early fossils with feathered forelimbs. The proposed long covert feathers of Archaeopteryx were previously interpreted as dorsally displaced remiges or a second set of impressions made by the wing. The following study shows that the qualitative arguments forwarded in support of the elongated covert hypothesis are neither robust nor supported quantitatively. The idea that the extant bird wing with its single layer of overlapping primaries evolved from an earlier multilayered heavily coveted feathered forelimb as seen in Anchiornis huxleyi is reasonable. At this juncture, however, it is premature to conclude unequivocally that the wing of Archaeopteryx consisted of primary feathers overlaid with elongated coverts.

  9. Aerodynamic characteristics of a high-wing transport configuration with a over-the-wing nacelle-pylon arrangement

    Science.gov (United States)

    Henderson, W. P.; Abeyounis, W. K.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.

  10. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  11. The Effect of Height, Wing Length, and Wing Symmetry on Tabebuia rosea Seed Dispersal

    Directory of Open Access Journals (Sweden)

    Yasmeen Moussa

    2014-12-01

    Full Text Available The relationship between the vertical drop height and the horizontal distance traveled (dispersal ratio was investigated for a sample of fifty Tabebuia rosea seeds by dropping the seeds from five heights ranging from 1.00 to 2.00 meters. The dispersal ratio was found to be a constant 0.16 m/m for these heights. The effects of total seed length and asymmetry of seed wings on dispersal ratio were also measured using separate samples of fifty Tabebuia rosea seeds. It was found that neither seed length nor asymmetry had a significant effect on the dispersal ratio.

  12. Observations and Measurements of Wing Parameters of the Selected Beetle Species and the Design of a Mechanism Structure Implementing a Complex Wing Movement

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2016-12-01

    Full Text Available Beetle wings perform a flapping movement, consisting of the rotation relative to the two axes. This paper presents the results of observations and measurements of wings operating parameters in different planes of some beetle species. High speed photos and videos were used. The concept of the mechanism performing a complex wing movement was proposed and developed.

  13. Pigs taking wing with transposons and recombinases

    Science.gov (United States)

    Clark, Karl J; Carlson, Daniel F; Fahrenkrug, Scott C

    2007-01-01

    Swine production has been an important part of our lives since the late Mesolithic or early Neolithic periods, and ranks number one in world meat production. Pig production also contributes to high-value-added medical markets in the form of pharmaceuticals, heart valves, and surgical materials. Genetic engineering, including the addition of exogenous genetic material or manipulation of the endogenous genome, holds great promise for changing pig phenotypes for agricultural and medical applications. Although the first transgenic pigs were described in 1985, poor survival of manipulated embryos; inefficiencies in the integration, transmission, and expression of transgenes; and expensive husbandry costs have impeded the widespread application of pig genetic engineering. Sequencing of the pig genome and advances in reproductive technologies have rejuvenated efforts to apply transgenesis to swine. Pigs provide a compelling new resource for the directed production of pharmaceutical proteins and the provision of cells, vascular grafts, and organs for xenotransplantation. Additionally, given remarkable similarities in the physiology and size of people and pigs, swine will increasingly provide large animal models of human disease where rodent models are insufficient. We review the challenges facing pig transgenesis and discuss the utility of transposases and recombinases for enhancing the success and sophistication of pig genetic engineering. 'The paradise of my fancy is one where pigs have wings.' (GK Chesterton). PMID:18047690

  14. Age determination of blue-winged teal

    Science.gov (United States)

    Dane, C.W.

    1968-01-01

    Primary feather length, markings on the greater secondary coverts, and the degree of bill spotting were evaluated as characters for use in the spring to distinguish first-year, blue-winged teal (Anas discors) females from older ones. The length of the 10th primary feather did not prove suitable to separate different aged females. Extreme primary lengths might be used to determine the age of some males. In females that have been through a postnuptial molt the greater secondary coverts have a more symmetrical, and more acutely angled, white, inverted 'V'-marking. Any female with a 'V' subjectively classified as good has gone through at least one postnuptial molt, and a female with no sign of a 'V' on the coverts is a juvenile or yearling before her first postnuptial molt. By measuring the longest bill spot on the upper mandible of each known-age female, it was possible to determine the age of some female teal. Because the spots fade during the breeding season, no lower size limit could be set to delineate first-year females at that time of year, but any nest-trapped hen with a spot longer than 10 mm was considered to be older than 1 year. Upper and lower limits were also established to distinguish some yearlings and 2-year-olds in the fall.

  15. A new technique for investigating the induced and profile drag coefficients of a smooth wing and a tubercled wing

    Directory of Open Access Journals (Sweden)

    Bolzon Michael

    2016-01-01

    Full Text Available The induced and profile drag coefficients of a wing are typically determined through a complex experimental technique, such as wake surveying. Such a technique requires measurement of all three orthogonal components of the downstream velocity to find the components of drag, which results in the necessary usage of a sophisticated and costly measurement device, such as multi-hole pressure probe. However, in this paper data is presented which demonstrate that the relative changes in the induced and profile drag coefficients can largely be determined through the sole measurement of the downstream, streamwise velocity. To demonstrate this, the induced and profile drags of two NACA 0021 wings, one with a smooth leading edge and the other wing a tubercled leading edge for comparison, are determined through the measurement of the three orthogonal velocities. The downstream, streamwise velocity distribution of each wing is then constructed and relationships can be determined. The wings were surveyed at 3°, 9°, and 12°. It has been found that the relative magnitude of the profile drag coefficient can be found for all considered angles of attack, while the relative magnitude of the induced drag coefficient can be found at 9° and 12°. These findings produce an innovative, simpler, and more cost effective experimental technique in determining the components of drag of a wing, and reduces the burdensome requirement of a sophisticated measurement device for such an experiment. Further investigation is required to determine the induced drag at 3°.

  16. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing

    Institute of Scientific and Technical Information of China (English)

    胡文蓉; 张仕栋; 王雅赟

    2014-01-01

    It is shown that the leading edge protuberances on the flippers of a humpback whale can significantly improve the hydrodynamic performance. The present study numerically investigates the flow control mechanisms of the leading edge protuberances on a static wing and a pitching wing. For static wings, the performance in both laminar flow and turbulent flow are studied in the context of the flow control mechanisms. It is shown that the protuberances have slight effects on the performance of static wings in laminar flow. Also, it could be deduced that non-uniform downwash does not delay the stall occurrence in either laminar flow or turbulent flow. In turbulent flow, the leading edge protuberances act in a manner similar to vortex generators, enhancing the momentum exchange within the boundary layer. Streamwise vortices do contribute to the delay of the stall occurrence. The normal vorticity component also plays an important role in delaying the stall occurrence. However, for the pitching wing, the effect of leading edge protuberances is negligible in turbulent flow. Detailed analysis of the flow field indicates that for the wing with the leading edge protuberances, the leading edge vortices become more complex, while the thrust jet and the vortices in the wake are not changed significantly by the leading edge protuberances.

  17. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    Science.gov (United States)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  18. Pulsed eddy current inspection of CF-188 inner wing spar

    Science.gov (United States)

    Horan, Peter Francis

    Royal Canadian Air Force (RCAF) CF-188 Hornet aircraft engineering authorities have stated a requirement for a Non-Destructive Evaluation (NDE) technique to detect Stress Corrosion Cracking (SCC) in the inner wing spars without fastener or composite wing skin removal. Current radiographic inspections involve significant aircraft downtime, and Pulsed Eddy Current (PEC) inspection is proposed as a solution. The aluminum inner wing spars of CF-188 Hornet aircraft may undergo stress corrosion cracking (SCC) along the spar between the fasteners that secure carbon-fiber/ epoxy composite skin to the wing. Inspection of the spar through the wing skin is required to avoid wing disassembly. The thickness of the wing skin varies between 8 and 20 mm (0.3 to 0.8 inch) and fasteners may be either titanium or ferrous. PEC generated by a probe centered over a fastener, demonstrates capability of detecting simulated cracks within spars with the wing skin present. Comparison of signals from separate sensors, mounted to either side of the excitation coil, is used to detect differences in induced eddy current fields, which arise in the presence of cracks. To overcome variability in PEC signal response due to variation in 1) skin thickness, 2) fastener material and size, and 3) centering over fasteners, a large calibration data set is acquired. Multi-dimensional scores from a Modified Principal Components Analysis (PCA) of the data are reduced to one dimension (1D) using a Discriminant Analysis method. Under inspection conditions, calibrated PCA scores combined with discriminant analysis permit rapid real time go/no-go PEC detection of cracks in CF-188 inner wing spar. Probe designs using both pickup coils and Giant Magnetoresistive (GMR) sensors were tested on samples with the same ferrous and titanium fasteners found on the CF-188. Flaws were correctly detected at lift-offs of up to 21mm utilizing a variety of insulating skin materials simulating the carbon-fibre reinforced polymer

  19. Performance Assessment in a Heat Exchanger Tube with Opposite/Parallel Wing Twisted Tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-02-01

    Full Text Available The thermohydraulic performance in a tube containing a modified twisted tape with alternate-axes and wing arrangements is reported. This work aims to investigate the effects of wing arrangements (opposite (O and parallel (P wings at different wing shapes (triangle (Tri, rectangular (Rec, and trapezoidal (Tra wings and on the thermohydraulic performance characteristics. The obtained results show that wing twisted tapes with all wing shape arrangements (O-Tri/O-Rec/O-Tra/P-Tri/P-Rec/P-Tra give superior thermohydraulic performance and heat transfer rate to the typical twisted tape. In addition, the tapes with opposite wing arrangement of O-Tra, O-Rec, and O-Tri give superior thermohydraulic performances to those with parallel wing arrangement of P-Tra, P-Rec, and P-Tri around 2.7%, 3.5%, and 3.2%, respectively.

  20. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  1. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  2. The moment of inertia of bird wings and the inertial power requirement for flapping flight

    Science.gov (United States)

    Berg; Rayner

    1995-01-01

    The agility and manoeuvrability of a flying animal and the inertial power required to flap the wings are related to the moment of inertia of the wings. The moments of inertia of the wings of 29 bird species and three bat species were determined using wing strip analysis. We also measured wing length, wing span, wing area, wing mass and body mass. A strong correlation (r2=0.997) was found between the moment of inertia and the product of wing mass and the square of wing length. Using this relationship, it was found that all birds that use their wings for underwater flight had a higher than average moment of inertia. Assuming sinusoidal wing movement, the inertial power requirement was found to be proportional to (body mass)0.799, an exponent close to literature values for both metabolic power output and minimum power required for flight. Ignoring wing retraction, a fairly approximate estimate showed that the inertial power required is 11­15 % of the minimum flight power. If the kinetic energy of the wings is partly converted into aerodynamic (useful) work at stroke reversal, the power loss due to inertial effects may be smaller.

  3. Spontaneous long-range calcium waves in developing butterfly wings.

    Science.gov (United States)

    Ohno, Yoshikazu; Otaki, Joji M

    2015-03-25

    Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.

  4. Drosophila Smad2 Opposes Mad Signaling during Wing Vein Development

    Science.gov (United States)

    Sander, Veronika; Eivers, Edward; Choi, Renee H.; De Robertis, Edward M.

    2010-01-01

    In the vertebrates, the BMP/Smad1 and TGF-β/Smad2 signaling pathways execute antagonistic functions in different contexts of development. The differentiation of specific structures results from the balance between these two pathways. For example, the gastrula organizer/node of the vertebrates requires a region of low Smad1 and high Smad2 signaling. In Drosophila, Mad regulates tissue determination and growth in the wing, but the function of dSmad2 in wing patterning is largely unknown. In this study, we used an RNAi loss-of-function approach to investigate dSmad2 signaling during wing development. RNAi-mediated knockdown of dSmad2 caused formation of extra vein tissue, with phenotypes similar to those seen in Dpp/Mad gain-of-function. Clonal analyses revealed that the normal function of dSmad2 is to inhibit the response of wing intervein cells to the extracellular Dpp morphogen gradient that specifies vein formation, as measured by expression of the activated phospho-Mad protein. The effect of dSmad2 depletion in promoting vein differentiation was dependent on Medea, the co-factor shared by Mad and dSmad2. Furthermore, double RNAi experiments showed that Mad is epistatic to dSmad2. In other words, depletion of Smad2 had no effect in Mad-deficient wings. Our results demonstrate a novel role for dSmad2 in opposing Mad-mediated vein formation in the wing. We propose that the main function of dActivin/dSmad2 in Drosophila wing development is to antagonize Dpp/Mad signaling. Possible molecular mechanisms for the opposition between dSmad2 and Mad signaling are discussed. PMID:20442782

  5. Simplified physical models of the flow around flexible insect wings at low Reynolds numbers

    Science.gov (United States)

    Harenberg, Steve; Reis, Johnny; Miller, Laura

    2011-11-01

    Some of the smallest insects fly at Reynolds numbers in the range of 5-100. We built a dynamically scaled physical model of a flexible insect wing and measured the resulting wing deformations and flow fields. The wing models were submerged in diluted corn syrup and rotated about the root of the wing for Reynolds numbers ranging from 1-100. Spatially resolved flow fields were obtained using particle image velocimetry (PIV). Deformations of the wing were tracked using DLTdv software to determine the motion and induced curvature of the wing.

  6. Analysis of Kinematics of Flapping Wing UAV Using OptiTrack Systems

    OpenAIRE

    2016-01-01

    An analysis of the kinematics of a flapping membrane wing using experimental kinematic data is presented. This motion capture technique tracks the positon of the retroreflective marker(s) placed on the left wing of a 1.3-m-wingspan ornithopter. The time-varying three-dimensional data of the wing kinematics were recorded for a single frequency. The wing shape data was then plotted on a two-dimensional plane to understand the wing dynamic behaviour of an ornithopter. Specifically, the wing tip ...

  7. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    Science.gov (United States)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    Aeroelasticity Branch will examine other experimental efforts within the Subsonic Fixed Wing (SFW) program (such as testing of the NASA Common Research Model (CRM)) and other NASA programs and assess aeroelasticity issues and research topics.

  8. Age-class separation of blue-winged ducks

    Science.gov (United States)

    Hohman, W.L.; Moore, J.L.; Twedt, D.J.; Mensik, John G.; Logerwell, E.

    1995-01-01

    Accurate determination of age is of fundamental importance to population and life history studies of waterfowl and their management. Therefore, we developed quantitative methods that separate adult and immature blue-winged teal (Anas discors), cinnamon teal (A. cyanoptera), and northern shovelers (A. clypeata) during spring and summer. To assess suitability of discriminant models using 9 remigial measurements, we compared model performance (% agreement between predicted age and age assigned to birds on the basis of definitive cloacal or rectral feather characteristics) in different flyways (Mississippi and Pacific) and between years (1990-91 and 1991-92). We also applied age-classification models to wings obtained from U.S. Fish and Wildlife Service harvest surveys in the Mississippi and Central-Pacific flyways (wing-bees) for which age had been determined using qualitative characteristics (i.e., remigial markings, shape, or wear). Except for male northern shovelers, models correctly aged lt 90% (range 70-86%) of blue-winged ducks. Model performance varied among species and differed between sexes and years. Proportions of individuals that were correctly aged were greater for males (range 63-86%) than females (range 39-69%). Models for northern shovelers performed better in flyway comparisons within year (1991-92, La. model applied to Calif. birds, and Calif. model applied to La. birds: 90 and 94% for M, and 89 and 76% for F, respectively) than in annual comparisons within the Mississippi Flyway (1991-92 model applied to 1990-91 data: 79% for M, 50% for F). Exclusion of measurements that varied by flyway or year did not improve model performance. Quantitative methods appear to be of limited value for age separation of female blue-winged ducks. Close agreement between predicted age and age assigned to wings from the wing-bees suggests that qualitative and quantitative methods may be equally accurate for age separation of male blue-winged ducks. We interpret annual

  9. Postnatal development in Andersen's leaf-nosed bat Hipposideros pomona: flight, wing shape, and wing bone lengths.

    Science.gov (United States)

    Lin, Ai-Qing; Jin, Long-Ru; Shi, Li-Min; Sun, Ke-Ping; Berquist, Sean W; Liu, Ying; Feng, Jiang

    2011-04-01

    Postnatal changes in flight development, wing shape and wing bone lengths of 56 marked neonate Hipposideros pomona were investigated under natural conditions in southwest China. Flight experiments showed that pups began to flutter with a short horizontal displacement at 10 days and first took flight at 19 days, with most achieving sustained flight at 1 month old. Analysis of covariance on wingspan, wing area, and the other seven wing characteristics between 'pre-flight' and 'post-volancy' periods supports the hypothesis that growth had one 'pre-flight' trajectory and a different 'post-volancy' trajectory in bats. Wingspan, handwing length and area, armwing length and area, and total wing area increased linearly until the age of first flight, after which the growth rates decreased (all P Wing loading declined linearly until day 19 before ultimately decreasing to adult levels (P span-wise length and chord-wise length was evaluated to test the hypothesis that compensatory growth of wing bones in H. pomona occurred in both 'pre-flight' and 'post-volancy' periods. The frequency of short-long and long-short pairs was significantly greater than that of short-short, long-long pairs in most pairs of bone elements in adults. The results indicate that a bone 'shorter than expected' would be compensated by a bone or bones 'longer than expected', suggesting compensatory growth in H. pomona. The pairwise comparisons conducted in adults were also performed in young bats during 'pre-flight' and 'post-volancy' periods, demonstrating that compensatory growth occurred throughout postnatal ontogeny.

  10. Effect of insect density and host plant quality on wing-form in Megamelus scutellaris (Hemiptera: Delphacidae)

    Science.gov (United States)

    Megamelus scutellaris Berg (Hemiptera: Delphacidae) is a South American species that feeds on waterhyacinth, Eichhornia crassipes Mart. (Solms). This species exhibits significant wing dimorphism whereby fully winged adults (macropters) are capable of flight while those with reduced wings (brachtypt...

  11. a New Efficient Control Method for Blended Wing Body

    Science.gov (United States)

    Wu, Wenhua; Chen, Dehua; Qin, Ning; Peng, Xin; Tang, Xinwu

    The blended wing body (BWB) is the hottest one of the aerodynamic shapes of next generation airliner because of its' high lift-drag ratio, but there are still some flaws that cut down its aerodynamical performance. One of the most harmful flaws is the low efficiency of elevator and direction rudder, this makes the BWB hard to be controlled. In this paper, we proposed a new control method to solve this problem by morphing wing—that is, to control the BWB only by changing its wing shape but without any rudder. The pitching moments, rolling moments and yawing moments are plotted versus the parameters section and the wing shape in figures and are discussed in the paper. The result shows that the morphing wing can control the moments of BWB more precisely and in wider range. The pitching moments, rolling moments and yawing moments increases or decreases linearly or almost linearly, with the value of the selected parameters. These results show that using morphing wing is an excellent aerodynamic control way for a BWB craft.

  12. Stability of Alfvén wings in uniform plasmas

    Science.gov (United States)

    Sallago, P. A.; Platzeck, A. M.

    2007-12-01

    A conducting source moving uniformly through a magnetized plasma generates, among a variety of perturbations, Alfvén waves. An interesting characteristic of Alfvén waves is that they can build up structures in the plasma called Alfvén wings. These wings have been detected and measured in many solar system bodies, and their existence has also been theoretically proven. However, their stability remains to be studied. The aim of this paper is to analyze the stability of an Alfvén wing developed in a uniform background field, in the presence of an incompressible perturbation that has the same symmetry as the Alfvén wing, in the magnetohydrodynamic approximation. The study of the stability of a magnetohydrodynamic system is often performed by linearizing the equations and using either the normal modes method or the energy method. In spite of being applicable for many problems, both methods become algebraically complicated if the structure under analysis is a highly non-uniform one. Palumbo has developed an analytical method for the study of the stability of static structures with a symmetry in magnetized plasmas, in the presence of incompressible perturbations with the same symmetry as the structure (Palumbo 1998 Thesis, Universidad de Firenze, Italia). In the present paper we extend this method for Alfvén wings that are stationary structures, and conclude that in the presence of this kind of perturbation they are stable.

  13. Wing Warping and Its Impact on Aerodynamic Efficiency

    Science.gov (United States)

    Loh, Ben; Jacob, Jamey

    2007-11-01

    Inflatable wings have been demonstrated in many applications such as UAVs, airships, and missile stabilization surfaces. A major concern presented by the use of an inflatable wing has been the lack of traditional roll control surfaces. This leaves the designer with several options in order to have control about the roll axis. Since inflatable wings have a semi-flexible structure, wing warping is the obvious solution to this problem. The current method is to attach servos and control linkages to external surface of the wing that results in variation of profile chamber and angle of attack from leading edge or trailing edge deflection. Designs using internal muscles will also be discussed. This creates a lift differential between the half-spans, resulting in a roll moment. The trailing edge on the other half-span can also be deflected in the opposite direction to increase the roll moment as well as to reduce roll-yaw coupling. Comparisons show that higher L/D ratios are possible than using traditional control surfaces. An additional benefit is the ability to perform symmetric warping to achieve optimum aerodynamic performance. Via warping alone, an arbitrary span can be warped such that it has the same aerodynamic characteristics as an elliptical planform. Comparisons between lifting line theory and test results will be presented.

  14. PS2 integrin requirements in Drosophila embryo and wing morphogenesis.

    Science.gov (United States)

    Brabant, M C; Brower, D L

    1993-05-01

    The Drosophila inflated (if) gene encodes the alpha PS2 subunit of the PS integrins. We describe the generation of new if mutations, their lethal embryonic phenotype, and experiments that examine the spatial and temporal requirements for integrins in adult wing morphogenesis. Embryos hemizygous for either new allele, ifA7 or ifB2, make reduced amounts of alpha PS2. In a variety of genetic tests, these alleles behave similarly to ifk27e, which makes no detectable alpha PS2, and all three alleles display the same embryonic phenotype. We therefore conclude that all of the lethal alleles retain little or no wild-type alpha PS2 function. As seen for strong mutations at the myospheroid (mys) locus, which encodes the beta PS integrin subunit, if mutants show extreme defects in somatic muscle attachments and in midgut morphogenesis. Unlike mys, however, there is no dorsal herniation of the if mutant embryos. With respect to wing morphogenesis, clonal analysis experiments demonstrate that if+ function is required only in cells of the ventral wing surface. We have rescued the wing blister phenotype of double mutants for the hypomorphic mysnj42 and if3 alleles using a heat shock-inducible mys+ transgene. By varying times of transgene induction, we find that integrin function is required from very early in metamorphosis until at least the last 24-48 hr of wing development.

  15. Helical vortices generated by flapping wings of bumblebees

    Science.gov (United States)

    Farge, Marie; Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Lehmann, Fritz; Sesterhenn, Jörn

    2016-11-01

    We analyze high resolution numerical simulation data of a bumblebee with fixed body and prescribed wing motion, flying in a numerical wind tunnel, presented in. The inflow condition of the tunnel varies from unperturbed laminar to strongly turbulent. The flow generated by the flapping wings indicates the important role of the leading edge vortex (LEV), responsible for elevated lift production and which is not significantly altered by the inflow turbulence. The LEV has a conical structure due to the three-dimensional motion of the wings. This flow configuration produces strong vorticity on the sharp leading edge and the outwards velocity (from the root to the tip of the wing) in the spanwise direction. Flow visualizations show that the generated vortical structures are characterized by a strong helicity. We study the evolution of the mean helicity for each wing and analyze the impact of turbulent inflow. We thankfully acknowledge financial support from the French-German AIFIT project funded by DFG and ANR (Grant 15-CE40-0019). DK gratefully acknowledges financial support from the JSPS postdoctoral fellowship.

  16. Passive mechanism of pitch recoil in flapping insect wings.

    Science.gov (United States)

    Ishihara, D; Horie, T

    2016-12-20

    The high torsional flexibility of insect wings allows for elastic recoil after the rotation of the wing during stroke reversal. However, the underlying mechanism of this recoil remains unclear because of the dynamic process of transitioning from the wing rotation during stroke reversal to the maintenance of a high angle of attack during the middle of each half-stroke, when the inertial, elastic, and aerodynamic effects all have a significant impact. Therefore, the interaction between the flapping wing and the surrounding air was directly simulated by simultaneously solving the incompressible Navier-Stokes equations, the equation of motion for an elastic body, and the fluid-structure interface conditions using the three-dimensional finite element method. This direct numerical simulation controlling the aerodynamic effect revealed that the recoil is the residual of the free pitch vibration induced by the flapping acceleration during stroke reversal in the transient response very close to critical damping due to the dynamic pressure resistance of the surrounding air. This understanding will enable the control of the leading-edge vortex and lift generation, the reduction of the work performed by flapping wings, and the interpretation of the underlying necessity for the kinematic characteristics of the flapping motion.

  17. Do hummingbirds use a different mechanism than insects to flip and twist their wings?

    Science.gov (United States)

    Song, Jialei; Luo, Haoxiang; Hedrick, Tyson

    2014-11-01

    Hovering hummingbirds flap their wings in an almost horizontal stroke plane and flip the wings to invert the angle of attack after stroke reversal, a strategy also utilized by many hovering insects such as fruit flies. However, unlike insects whose wing actuation mechanism is only located at the base, hummingbirds have a vertebrate musculoskeletal system and their wings contain bones and muscles and thus, they may be capable of both actively flipping and twisting their wings. To investigate this issue, we constructed a hummingbird wing model and study its pitching dynamics. The wing kinematics are reconstructed from high-speed imaging data, and the inertial torques are calculated in a rotating frame of reference using mass distribution data measured from dissections of hummingbird wings. Pressure data from a previous CFD study of the same wing kinematics are used to calculate the aerodynamic torque. The results show that like insect wings, the hummingbird wing pitching is driven by its own inertia during reversal, and the aerodynamic torque is responsible for wing twist during mid-stroke. In conclusion, our study suggests that their wing dynamics are very similar even though their actuation systems are entirely different. This research was supported by the NSF.

  18. On the vein-stiffening membrane structure of a dragonfly hind wing

    Institute of Scientific and Technical Information of China (English)

    Zhong-xue LI; Wei SHEN; Gen-shu TONG; Jia-meng TIAN; Loc VU-QUOC

    2009-01-01

    Aiming at exploring the excellent structural performance of the vein-stiffening membrane structure of dragonfly hind wings, we analyzed two planar computational models and three 3D computational models with cambered corrugation based on the finite element method. It is shown that the vein size in different zones is proportional to the magnitude of the vein internal force when the wing structure is subjected to uniform out-of-plane transverse loading. The membrane contributes little to the flexural stiffness of the planar wing models, while exerting an immense impact upon the stiffness of the 3D wing models with cambered corrugation. If a lumped mass of 10% of the wing is fixed on the leading edge close to the wing tip, the wing fundamental fre-quency decreases by 10.7%~13.2%; ifa lumped mass is connected to the wing via multiple springs, the wing fundamental fre-quency decreases by 16.0%~18.0%. Such decrease in fundamental frequency explains the special function of the wing pterostigma in alleviating the wing quivering effect. These particular features of dragonfly wings can be mimicked in the design of new-style reticulately stiffening thin-walled roof systems and flapping wings in novel intelligent aerial vehicles.

  19. Silencing abnormal wing disc gene of the Asian citrus psyllid, Diaphorina citri disrupts adult wing development and increases nymph mortality.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Shesheny

    Full Text Available Huanglongbing (HLB causes considerable economic losses to citrus industries worldwide. Its management depends on controlling of the Asian citrus Psyllid (ACP, the vector of the bacterium, Candidatus Liberibacter asiaticus (CLas, the causal agent of HLB. Silencing genes by RNA interference (RNAi is a promising tool to explore gene functions as well as control pests. In the current study, abnormal wing disc (awd gene associated with wing development in insects is used to interfere with the flight of psyllids. Our study showed that transcription of awd is development-dependent and the highest level was found in the last instar (5(th of the nymphal stage. Micro-application (topical application of dsRNA to 5(th instar of nymphs caused significant nymphal mortality and adult wing-malformation. These adverse effects in ACP were positively correlated with the amounts of dsRNA used. A qRT-PCR analysis confirmed the dsRNA-mediated transcriptional down-regulation of the awd gene. Significant down-regulation was required to induce a wing-malformed phenotype. No effect was found when dsRNA-gfp was used, indicating the specific effect of dsRNA-awd. Our findings suggest a role for awd in ACP wing development and metamorphosis. awd could serve as a potential target for insect management either via direct application of dsRNA or by producing transgenic plants expressing dsRNA-awd. These strategies will help to mitigate HLB by controlling ACP.

  20. Effect of leading- and trailing-edge flaps on clipped delta wings with and without wing camber at supersonic speeds

    Science.gov (United States)

    Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.

    1994-01-01

    An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.

  1. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  2. Application of variable-sweep wings to commuter aircraft

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Lovell, W. A.; Price, J. E.; Turriiziani, R. V.; Washburn, F. F.

    1983-01-01

    The effects of using variable-sweep wings on the riding quality and mission-performance characteristics of commuter-type aircraft were studied. A fixed-wing baseline vehicle and a variable-sweep version of the baseline were designed and evaluated. Both vehicles were twin-turboprop, pressurized-cabin, 30-passenger commuter aircraft with identical mission requirements. Mission performance was calculated with and without various ride-quality constraints for several combinations of cruise altitude and stage lengths. The variable-sweep aircraft had a gross weight of almost four percent greater than the fixed-wing baseline in order to meet the design-mission requirements. In smooth air, the variable sweep configuration flying with low sweep had a two to three percent fuel-use penalty. However, the imposition of quality constraints in rough air can result in advantages in both fuel economy and flight time for the variable-sweep vehicle flying with high sweep.

  3. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  4. High Performance Piezoelectric Actuators and Wings for Nano Air Vehicles

    Science.gov (United States)

    2012-08-26

    video , and lift is measured using a force transducer coupled with a specially designed apparatus. Many piezoelectrically actuated flapping wing...2.3 Modeling FL øA øB ö mR Lg R yT m gF FT (c) Front View (d) Right Side View(b) Left Side View (a) Top View rcgxö kT c rcp ,xxr rcp ,y z xy y xz y x z y...wing reference frame by the rotation 25 á -ø z y y´ g v z´ rcp ,y F CP ô Figure 2.3.2. Aerodynamic forces on the wings(adapted from Andersen et. al. [61

  5. Leading-edge vortex shedding from rotating wings

    CERN Document Server

    Kolomenskiy, Dmitry; Schneider, Kai

    2014-01-01

    The paper presents a numerical investigation of the leading-edge vortices generated by rotating triangular wings at Reynolds number $Re=250$. A series of three-dimensional numerical simulations have been carried out using a Fourier pseudo-spectral method with volume penalization. The transition from stable attachment of the leading-edge vortex to periodic vortex shedding is explored, as a function of the wing aspect ratio and the angle of attack. It is found that, in a stable configuration, the spanwise flow in the recirculation bubble past the wing is due to the centrifugal force, incompressibility and viscous stresses. For the flow outside of the bubble, an inviscid model of spanwise flow is presented.

  6. Trajectory tracking of an underactuated fixed-wing UAV

    Science.gov (United States)

    Oland, Espen; Kristiansen, Raymond

    2014-12-01

    This paper presents a solution to the problem of trajectory tracking for a fixed-wing UAV. With its inherent actuator constraints, a fixed-wing UAV is not able to track an arbitrary trajectory, such that a guidance scheme is required in order to solve the trajectory tracking problem. In this paper, this is solved by first designing a virtual saturated control law that makes the position and velocity errors go to zero. Then the outputs from the virtual control law are mapped onto actuated variables that can be tracked using the available actuators. To that end, a model-based proportional speed controller and a quaternion-based sliding surface controller are presented, making all the errors go to zero. The solution is proved using Lyapunov theory and is validated through simulations where a fixed-wing UAV tracks a circular trajectory.

  7. HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

    Directory of Open Access Journals (Sweden)

    Vitalii Korobov

    2017-07-01

    Full Text Available Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

  8. Surface roughness measurement on a wing aircraft by speckle correlation.

    Science.gov (United States)

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  9. Development and Experiments of the Sea-Wing Underwater Glider

    Institute of Scientific and Technical Information of China (English)

    YU Jian-cheng; ZHANG Ai-qun; JIN Wen-ming; CHEN Qi; TIAN Yu; LIU Chong-jie

    2011-01-01

    Underwater gliders,which glide through water columns by use of a pair of wings,are efficient long-distance,long-duration marine environment observatory platforms.The Sea-Wing underwater glider,developed by the Shenyang Institute of Automation,CAS,is designed for the application of deep-sea environment variables observation.The system components,the mechanical design,and the control system design of the Sea-Wing underwater glider are described in this paper.The pitch and roll adjusting models are derived based on the mechanical design,and the adjusting capabilities for the pitch and roll are analyzed according to the models.Field experiments have been carried out for validating the gliding motion and the ability of measuring ocean environment variables.Experimental results of the motion performances of the glider are presented.

  10. A Simple Model of Wings in Heavy-Ion Collisions

    CERN Document Server

    Parikh, Aditya

    2015-01-01

    We create a simple model of heavy ion collisions independent of any generators as a way of investigating a possible source of the wings seen in data. As a first test, we reproduce a standard correlations plot to verify the integrity of the model. We then proceed to test whether an η dependent v2 could be a source of the wings and take projections along multiple Δφ intervals and compare with data. Other variations of the model are tested by having dN/dφ and v2 depend on η as well as including pions and protons into the model to make it more realistic. Comparisons with data seem to indicate that an η dependent v2 is not the main source of the wings.

  11. Environment Identification in Flight using Sparse Approximation of Wing Strain

    CERN Document Server

    Manohar, Krithika; Kutz, J Nathan

    2016-01-01

    This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimensional strain features originating from different aerodynamic environments using Proper Orthogonal Decomposition (POD) modes in the frequency domain, and leverages compressed sensing and sparse approximation to classify a set of strain frequency signatures using a dictionary of POD modes. This bio-inspired machine learning architecture for dictionary learning and sparse classification permits fewer costly physical strain sensors while being simultaneously robust to sensor noise. A sensor placement algorithm identifies the frequency samples that best separate the different aerodynamic environments in rank-reduced POD feature...

  12. Concomitant leg injuries in raptors with wing damage : to the editor

    National Research Council Canada - National Science Library

    Buttle, E. Pohlandt

    2004-01-01

    Extracted from text ... To the editor - Aan die redakteur Concomitant leg injuries in raptors with wing damage Juvenile raptors, in their first year, often experience trauma to the wings as they miss their prey or misjudge...

  13. VISCOELASTIC CONSTITUTIVE MODEL RELATED TO DEFORMATION OF INSECT WING UNDER LOADING IN FLAPPING MOTION

    Institute of Scientific and Technical Information of China (English)

    BAO Lin; HU Jin-song; YU Yong-liang; CHENG Peng; XU Bo-qing; TONG Bing-gang

    2006-01-01

    Flexible insect wings deform passively under the periodic loading during flapping flight. The wing flexibility is considered as one of the specific mechanisms on improving insect flight performance. The constitutive relation of the insect wing material plays a key role on the wing deformation, but has not been clearly understood yet. A viscoelastic constitutive relation model was established based on the stress relaxation experiment of a dragonfly wing (in vitro). This model was examined by the finite clement analysis of the dynamic deformation response for a model insect wing under the action of the periodical inertial force in flapping. It is revealed that the viscoelastic constitutive relation is rational to characterize the biomaterial property of insect wings in contrast to the elastic one. The amplitude and form of the passive viscoelastic deformation of the wing is evidently dependent on the viscous parameters in the constitutive relation.

  14. Design, realization and structural testing of a compliant adaptable wing

    Science.gov (United States)

    Molinari, G.; Quack, M.; Arrieta, A. F.; Morari, M.; Ermanni, P.

    2015-10-01

    This paper presents the design, optimization, realization and testing of a novel wing morphing concept, based on distributed compliance structures, and actuated by piezoelectric elements. The adaptive wing features ribs with a selectively compliant inner structure, numerically optimized to achieve aerodynamically efficient shape changes while simultaneously withstanding aeroelastic loads. The static and dynamic aeroelastic behavior of the wing, and the effect of activating the actuators, is assessed by means of coupled 3D aerodynamic and structural simulations. To demonstrate the capabilities of the proposed morphing concept and optimization procedure, the wings of a model airplane are designed and manufactured according to the presented approach. The goal is to replace conventional ailerons, thus to achieve controllability in roll purely by morphing. The mechanical properties of the manufactured components are characterized experimentally, and used to create a refined and correlated finite element model. The overall stiffness, strength, and actuation capabilities are experimentally tested and successfully compared with the numerical prediction. To counteract the nonlinear hysteretic behavior of the piezoelectric actuators, a closed-loop controller is implemented, and its capability of accurately achieving the desired shape adaptation is evaluated experimentally. Using the correlated finite element model, the aeroelastic behavior of the manufactured wing is simulated, showing that the morphing concept can provide sufficient roll authority to allow controllability of the flight. The additional degrees of freedom offered by morphing can be also used to vary the plane lift coefficient, similarly to conventional flaps. The efficiency improvements offered by this technique are evaluated numerically, and compared to the performance of a rigid wing.

  15. Morphometric Wing Characters as a Tool for Mosquito Identification

    Science.gov (United States)

    Christe, Rafael de Oliveira; Multini, Laura Cristina; Vidal, Paloma Oliveira; Wilk-da-Silva, Ramon; de Carvalho, Gabriela Cristina; Marrelli, Mauro Toledo

    2016-01-01

    Mosquitoes are responsible for the transmission of important infectious diseases, causing millions of deaths every year and endangering approximately 3 billion people around the world. As such, precise identification of mosquito species is crucial for an understanding of epidemiological patterns of disease transmission. Currently, the most common method of mosquito identification relies on morphological taxonomic keys, which do not always distinguish cryptic species. However, wing geometric morphometrics is a promising tool for the identification of vector mosquitoes, sibling and cryptic species included. This study therefore sought to accurately identify mosquito species from the three most epidemiologically important mosquito genera using wing morphometrics. Twelve mosquito species from three epidemiologically important genera (Aedes, Anopheles and Culex) were collected and identified by taxonomic keys. Next, the right wing of each adult female mosquito was removed and photographed, and the coordinates of eighteen digitized landmarks at the intersections of wing veins were collected. The allometric influence was assessed, and canonical variate analysis and thin-plate splines were used for species identification. Cross-validated reclassification tests were performed for each individual, and a Neighbor Joining tree was constructed to illustrate species segregation patterns. The analyses were carried out and the graphs plotted with TpsUtil 1.29, TpsRelw 1.39, MorphoJ 1.02 and Past 2.17c. Canonical variate analysis for Aedes, Anopheles and Culex genera showed three clear clusters in morphospace, correctly distinguishing the three mosquito genera, and pairwise cross-validated reclassification resulted in at least 99% accuracy; subgenera were also identified correctly with a mean accuracy of 96%, and in 88 of the 132 possible comparisons, species were identified with 100% accuracy after the data was subjected to reclassification. Our results showed that Aedes, Culex

  16. Design of a hybrid rocket / inflatable wing UAV

    Science.gov (United States)

    Sudduth, Cory

    This paper discusses the design challenges and development of a UAV that transitions from a rocket, which allows the aircraft to reach a target altitude rapidly, and then deploys an inflatable wing from an enclosed shell in midflight to allow for loitering and surveillance. The wing deployment and transition is tested in static and dynamic environments, while the performance and stability of both the aircraft mode and rocket mode are examined analytically. An in-depth discussion of key components, including the design, analysis and testing, is also included. Designing an UAV that transitions from a high velocity rocket, to a slow velocity UAV provides many difficult and unique design challenges. For example, the incorporation of deployable wing technology into a full UAV system results in many design constraints. In this particular design inflatable wings are used to generate lift during aircraft mode, and the stabilizing fins for the main wing also acted as the fins for the vehicle during its rocket phase. This required the balancing of the two different vehicle configurations to ensure that the aircraft would be able to fly stably in both modes, and transition between them without catastrophic failure. Significant research, and testing went into the finding the best method of storing the inflatable wing, as well as finding the required inflation rate to minimize unsteady aerodynamic affects. Design work was also invested in the development of an inflation system, as it had to be highly reliable, and yet very light weight for use in this small UAV. This paper discusses how these design challenges were overcome, the development and testing of individual sub-components and how they are incorporated into the overall vehicle. The analysis that went into this UAV, as well as methods used to optimize the design in order to minimize weight and maximize the aircraft performance and loitering time is also discussed.

  17. Electric Loading Simulation System for Missile Wings and Rudders

    Institute of Scientific and Technical Information of China (English)

    QI Rong; LIN Hui; CHEN Ming

    2006-01-01

    The design and the realization of missile wings and rudders loading simulation system based on digital signal processor (DSP) TMS320LF2407 and direct torque control (DTC) servo driver ACS600 are discussed. The structure and opration principle for the system are presented. Speediness and elimination of superabundant torque are two key difficulties for electric loading simulation system. The method which can eliminate the superabundant torque is researched. Test results show the airflow resistance when missile wings and rudders are spreading can be rapidly simulated with high accuracy.

  18. Prediction Approach to Life on Wing for Civil Aeroengine

    Institute of Scientific and Technical Information of China (English)

    RONG Xiang; ZUO Hong-fu; ZHANG Hai-jun

    2008-01-01

    To reduce engine maintenance cost and support safe operation, a prediction method of engine life on wing was proposed. This method is a kind of regression model which is a function of the condition monitoring and failure data. Key causes of engine removals were analyzed, and the life limit due to performance deterioration was predicted by proportional hazards model. Then the scheduled removal causes were considered as constraints of engine life to predicte the final life on wing. Application of the proposed prediction method to the case of CF6-80C2A5 engine fleet in an airline proved its effectiveness.

  19. The Development and Control of Axial Vortices over Swept Wings

    OpenAIRE

    Klute, Sandra M.

    1999-01-01

    The natural unsteadiness in the post-breakdown flowfield of a 75° sweep delta wing at 40° angle of attack was studied with dual and single point hot-wire anemometry in the Engineering Science and Mechanics (ESM) Wind Tunnel at a Reynolds number Re = 210,000. Data were taken in five crossflow planes surrounding the wing's trailing edge. Results showed a dominant narrowband Strouhal frequency of St = 1.5 covering approximately 80% of the area with lower-intensity broadband secondary freque...

  20. Unsteady aerodynamics and flow control for flapping wing flyers

    Science.gov (United States)

    Ho, Steven; Nassef, Hany; Pornsinsirirak, Nick; Tai, Yu-Chong; Ho, Chih-Ming

    2003-11-01

    The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (10 4-10 5) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed