WorldWideScience

Sample records for kalpakkam pulsed fast reactor

  1. Storage and management of fuel from fast breeder test reactor and KAlpakkam MINI

    Sodhi, B.S.; Rao, M.S.; Natarajan, R.

    1999-01-01

    Two Research Reactors, FBTR (Fast Breeder Test Reactor) and KAMINI (KAlpakkam MINI) are in operation at Kalpakkam, India. FBTR is a 40 MWt reactor. It is the first reactor to use mixed carbide (70% PuC-30% UC) as driver fuel. Special precautions are needed to fabricate pellets in glove boxes under inert atmosphere to take into account the possibility of criticality, radiation, pyrophoricity and toxicity of PuC. FBTR has been operating with small core up to 12 MWt power. The initial limit was 250 W/cm, linear heat rating and 25,000 MWd/t peak burnup. This limit was increased to 320 W/cm and 50,000 MWd/t respectively after rigorous analysis. At present the core has reached 40,000 MWd/t without any pin failure. After 25,000 MWd/t burnup one fuel subassembly (SA) was removed and PEE was carried out. The results were as expected by the analysis. In FBTR, fuel is stored in a container filled with argon and the container is cooled by forced circulation of air (during storage). Closing the fuel cycle is important for the breeder programme. Therefore, efforts have been made to set up a reprocessing plant. It uses the well proven purex process. The irradiated fuel is sheared in a single pin chopper and dissolved in an electrochemical dissolver. The resulting solution after adjusting the valency of Pu to IVth state is processed in the solvent extraction plant using 30% Tri-n-Butyl phosphate/n-dodecane as solvent. KAMINI is 30 kWt neutron source reactor which uses light water as moderator and coolant and has as a fuel U-233 aluminium alloy. Uranium-233 has been indigenously recovered from thorium irradiated in CIRUS reactor at Trombay. KAMINI was made critical on October 1996. It is housed in a vault below one of the hot cells in the Radiometallurgy laboratories of IGCAR. This reactor is planned to be used for neutron radiography of fuel elements and neutron activation analysis. It is available for use by research institutions and universities also. This paper describes the

  2. Kalpakkam multigroup cross section set for fast reactor applications - status and performance

    Ramanadhan, M.M.; Gopalakrishnan, M.M.

    1986-01-01

    This report documents the status of the presently created set of multigroup constants at Kalpakkam. The list of nuclides processed and the details of multigroup structure are given. Also included are the particulars of dilutions and temperatures for each nuclide in the multigroup cross section set for which self shielding factors have been calculated. Using this new multigroup cross section set, measured integral quantities such as K-eff, central reaction rate ratios, central reactivity worths etc. were calculated for a few fast critical benchmark assemblies and the calculated values of neutronic parameters obtained were compared with those obtained using the available Cadarache cross section library and those published in literature for ENDF/B-IV based set and Japanese evaluated nuclear data library (JENDL). The details of analyses are documented along with the conclusions. (author). 17 refs., 12 tabs

  3. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  4. Kinetic studies on a repetitively pulsed fast reactor

    Das, S.

    1982-01-01

    Neutronic analysis of an earlier proposed periodically pulsed fast reactor at Kalpakkam (KPFR) has been carried out numerically under equilibrium and transient conditions using the one-point model of reactor kinetics and the experimentally measured total worth of reactivity modulator, the parabolic coefficient of reactivity of the movable reflector and the mean prompt neutron lifetime. Results of steady-state calculations - treated on the basis of delayed neutron precursor and energy balances during a period of operation - have been compared with the analytical formulae of Larrimore for a parabolic reactivity input. Empirical relations for half-width of the fast neutron pulse, the peak pulse power and the power at first crossing of prompt criticality have been obtained and shown to be accurate enough for predicting steady-state power pulse characteristics of a periodically pulsed fast reactor. The concept of a subprompt-critical reactor has been used to calculate the fictitious delayed neutron fraction, β of the KPFR through a numerical experiment. Relative pulse height stability and pulse shape sensitivity to changes of maximum reactivity is discussed. With the aid of new safety concepts, the Power Amplification Factor (PAF) and the Pulse Growth Factor (Rsub(p)), the dynamics KPFR under accidental conditions has been studied for step and ramp reactivity perturbations. All the analysis has been done without taking account of reactivity feedback. (orig.)

  5. A perspective on research and development in austenitic stainless steels for fast breeder reactor technology at Kalpakkam

    Baldev Raj; Jayakumar, T.; Shankar, P.

    2010-01-01

    A fast breeder reactor with closed fuel cycle is an inevitable technology option to provide energy security for India. Innovations in materials technology have enabled the realization of unique and advanced features in the Indian fast breeder reactors and their associated fuel cycles. Materials development and materials technologies, particularly the widely used austenitic stainless steels discussed in this paper, have a deterministic influence on the advancement, safety, reliability, cost effectiveness and thus success of the fast breeder programme. Rigorous research and development for alloy development complemented with detailed structure-property evaluation of relevant mechanical and corrosion behaviour data have been possible with the state of art facilities housed at IGCAR. These data provide useful inputs for design engineers to ensure reliable and safe operation of the components. Advanced concepts in alloy design and grain boundary engineering are utilized to enhance the corrosion resistance and mechanical properties of various structural materials. Advanced NDE techniques for the assessment of manufactured components and in-service inspection have been developed, enhancing the confidence in the performance of the plant components and systems. The technology demonstration of critical stainless steel components using advanced forming and welding technologies with support from modelling for optimization of the fabrication processes enhanced the confidence in the development of the complex fast breeder reactor and associated fuel cycle technologies, with active support from national academic and research institutes and industry. This chapter presents a comprehensive overview on the advances in stainless steel technology as well as the challenges ahead for aspiring young minds in the field of fast reactor technology. (author)

  6. Development of pulsed plate columns for fast reactor fuel reprocessing

    Jenkins, J.A.; Logsdail, D.H.; Lyall, E.; Myers, P.E.; Partridge, B.A.

    1987-01-01

    The UK Atomic Energy Authority has undertaken a development programme on solvent extraction equipment for reprocessing fast reactor fuels. As part of this programme a solvent extraction pilot plant has been built at Harwell in which a variety of flowsheet conditions can be simulated using the system uranyl nitrate/nitric acid (UN/HNO 3 ) - 20% tri-n-butyl phosphate in odourless kerosene (TBP/OK). The main purpose of present pilot plant operations is to study the performance of pulsed plate columns, with the following specific objectives: to measure the volumetric throughput capacity of the columns, - to study the effect of scale-up of column diameter on U mass transfer performance, - to provide hydraulic and mass transfer data for a dynamic simulation model of pulsed column operation, - to develop and test instruments and ancillary equipment. This poster describes the pilot plant and is illustrated by experimental data, with particular reference to an external settler for controlling the removal of aqueous phase from columns operated with the aqueous phase dispersed

  7. Operational characteristics of the CALIBAN fast pulse reactor

    Cortella, J.; Reberol, R.; Vanel, M.

    1976-01-01

    CALIBAN is a FPR operated at CEA-Valduc Center since 1971. It has been designed as a fast neutron irradiation source and its environment is specific for this utilization. To date, it delivered more than 400 bursts and the fuel integrated about 5.10 19 fissions. The main characteristics are: - cylindirical core 113 kg U 235 - Mo 10% alloy - integrated dose in a burst in the central 2.5cm diam cavity:3.10 14 n.cm -2 - integrated dose in a burst outside of the core:5.10 13 n.cm -2 - pulse width:50μs A special effort was made in measuring the spectrometric and dosimetric neutron and gamma characteristics. Some results will be presented here. (auth.)

  8. Recent Development of Radioanalytical Methods at the IBR-2 Pulsed Fast Reactor

    Nazarov, V.M.; Peresedov, V.F.

    1994-01-01

    Experience in the application of radioanalytical methods, including NAA, at the IBR-2 pulsed fast reactor is reviewed. Details of the instruments dedicated to neutron activation analysis and radiography studies are reported. Applications of resonance neutrons to environmental monitoring and to the investigation of high-purity materials, are examplified. 15 refs. 9 figs., 9 tabs

  9. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO 2 fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject

  10. A pulsed fast reactor; Un reacteur pulse a neutrons rapides; Impul'snyj reaktor na bystrykh nejtronakh; Reactor rapido pulsado

    Blokhin, G. E.; Blokhintsev, D. I.; Blyumkina, Yu. A.; Bondarenko, I. I.; Deryagin, B. N.; Zajmovskij, A. S.; Zinov' ev, V. P.; Kazachkovskij, O. D.; Krasnoyarov, N. V.; Lejpunskij, A. I.; Malykh, V. A.; Nazarov, P. M.; Nikolaev, S. K.; Stavisskij, Yu. Ya.; Ukraintsev, F. I.; Frank, I. M.; Shapiro, F. Ji.; Yazvitskij, Yu. S. [Akademiya Nauk, Moscow, SSSR (Russian Federation)

    1962-03-15

    A pulsed fast reactor (IBR) has been operating at rated capacity since December 1960 in the Joint Institute for Nuclear Research. This reactor is used as a pulsed neutron source for physical experiments carried out by the time-of-flight method. It is used for total cross-section and intermediate neutron capture cross- section measurements, for studying the interaction between slow neutrons and solids and liquids, and for measuring neutron spectra produced in various media. The paper describes the basic structural features of the reactor and the results of the experiments for which it has been used. The reactor's operating system is based on recurrent pulses. Power pulses are produced when the mobile part of the reactor core moves swiftly through the stationary part of the core. The mobile part of the core is fastened to a rotating disc and travels at a speed of 230 m/s. The frequency of power pulses can be altered by means of an auxiliary mobile zone which has a range of 2.3-88 pulses per second. The mean power of the reactor is 1 kW, and the half-width of the power pulse in 36 {mu}s. The reactor is provided with a control and safety system which ensures automatic maintenance of mean power and swift shutdown in the event of any operational irregularity. It is fitted with a system of evacuated-neutron-flight tubes used in time-of-flight experiments. The main tube is 1000 m in length. In the start-up process and during physical experiments carried out on the reactor, the influence on reactivity of displacing the controls and the mobile parts of the core was studied ; the length of the pulse was measured under various operating conditions, and power pulse amplitude fluctuations were studied. Further measurements were made to establish the lifetime of prompt neutrons, the effective fraction of delayed neutrons, and coefficients of reactivity. (author) [French] L'Institut unifie de recherches nucleaires dispose d'un reacteur puise a neutrons rapides (IBR), qui

  11. Radiation environment at Kalpakkam

    Iyengar, M.A.R.

    1989-01-01

    Nuclear facilities located at Kalpakkam in Tamil Nadu State of India include at present nuclear power reactors, a fast breeder reactor, a nuclear research centre and a waste management facility. Active wastes generated at the site are collected, treated and safely disposed. High-level wastes are stored underground in RCC trenches and tile hole and low-level wastes in the from of liquid effluents are discharged into the sea. Off-gases are dispersed through stacks in the atmosphere. Environmental survey laboratory established at the site in 1974 carries out radiation surveillance of the environment, evaluates radiological impacts on environment and public, and assesses radiation exposure of the population. It is observed that even after five years of operation of the nuclear power station, radioactivity and radiation levels in the environment have virtually remained at the pre-operational levels. (M.G.B.). 14 figs., 4 tabs

  12. The analysis of neutron physical characteristics of fast reactors by means of pulsed experiments

    Stumbur, Eh.A.; Milyutina, Z.N.

    1992-01-01

    Possibility is considered for determination of macroscopic cross sections of homogeneous multiplicating media with fast neutrons. It is shown that by means of the critical size, laplaccian and neutron pulse damping decrement measurement results it is possible to obtain values of almost all cross sections of a medium. The method is tested with systems of metal 235 U and BFS-32 assemblies with the composition, typical for fast power reactors. A suitable algorithm is developed for solving nonstationary asymptotic transport problems. Calculation results are compared with experimental ones. 21 refs.; 2 figs.; 3 tabs

  13. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  14. Fast reactors

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  15. Pulsed Nd-YAG laser welding of Prototype Fast Breeder Reactor fuel elements

    Suresh Varma, P.V.; Gupta, Amit; Amit, K.; Bhatt, R.B.; Afzal, Mohd.; Panakkal, J.P.; Kamath, H.S.

    2009-02-01

    End plug welding of Prototype Fast Breeder Reactor (PFBR) fuel elements involves welding of fully Austenitic Stainless Steel (ASS) of grade D9 clad tube with 316M end plug. Pulsed Gas Tungsten Arc Welding (GTAW) is being used for the production of PFBR fuel elements at Advanced Fuel Fabrication Facility (AFFF). GTAW is an established process for end plug welding and hence adopted by many countries. GTAW has got certain limitations like heat input, arc gap sensitivity and certain sporadic defects like tungsten inclusion. Experiments have been carried out at AFFF to use Laser Beam Welding (LBW) technique as LBW offers a number of advantages over the former process. This report mainly deals with the optimization of laser parameters for welding of PFBR fuel elements. To facilitate pulsed Nd-YAG laser spot welding, parameters like peak power, pulse duration, pulse energy, frequency and defocusing of laser beam on to the work piece have been optimized. On the basis of penetration requirement laser welding parameters have been optimized. (author)

  16. Fast reactor fuel reprocessing. An Indian perspective

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  17. Present status and future program of YAYOI as a fast pulse reactor

    An, S.; Oka, Y.; Saito, I.

    1978-01-01

    Fast neutron source reactor YAYOI was constructed in 1971 and has been operated by the Faculty of Engineering of the University of Tokyo. The reactor is a development of AFSR and HARMONIE and is air cooled, modified to enhance flexibility for research and training, using 93% enriched uranium metal fuel. The YAYOI is principally used for LMFBR development work. The new features of YAYOI include pulsation with or without an electron linac. (author)

  18. Preliminary design of the cooling system for a gas-cooled, high-fluence fast pulsed reactor (HFFPR)

    Monteith, H.C.

    1978-10-01

    The High-Fluence Fast Pulsed Reactor (HFFPR) is a research reactor concept currently being evaluated as a source for weapon effects experimentation and advanced reactor safety experiments. One of the designs under consideration is a gas-cooled design for testing large-scale weapon hardware or large bundles of full-length, fast reactor fuel pins. This report describes a conceptual cooling system design for such a reactor. The primary coolant would be helium and the secondary coolant would be water. The size of the helium-to-water heat exchanger and the water-to-water heat exchanger will be on the order of 0.9 metre (3 feet) in diameter and 3 metres (10 feet) in length. Analysis indicates that the entire cooling system will easily fit into the existing Sandia Engineering Reactor Facility (SERF) building. The alloy Incoloy 800H appears to be the best candidate for the tube material in the helium-to-water heat exchanger. Type 316 stainless steel has been recommended for the shell of this heat exchanger. Estimates place the cost of the helium-to-water heat exchanger at approximately $100,000, the water-to-water heat exchanger at approximately $25,000, and the helium pump at approximately $450,000. The overall cost of the cooling system will approach $2 million

  19. The prototype fast reactor

    Broomfield, A.M.

    1985-01-01

    The paper concerns the Prototype Fast Reactor (PFR), which is a liquid metal cooled fast reactor power station, situated at Dounreay, Scotland. The principal design features of a Fast Reactor and the PFR are given, along with key points of operating history, and health and safety features. The role of the PFR in the development programme for commercial reactors is discussed. (U.K.)

  20. Prototype fast breeder reactor main options

    Bhoje, S.B.; Chellapandi, P.

    1996-01-01

    Fast reactor programme gets importance in the Indian energy market because of continuous growing demand of electricity and resources limited to only coal and FBR. India started its fast reactor programme with the construction of 40 MWt Fast Breeder Test Reactor (FBTR). The reactor attained its first criticality in October 1985. The reactor power will be raised to 40 MWt in near future. As a logical follow-up of FBTR, it was decided to build a prototype fast breeder reactor, PFBR. Considering significant effects of capital cost and construction period on economy, systematic efforts are made to reduce the same. The number of primary and secondary sodium loops and components have been reduced. Sodium coolant, pool type concept, oxide fuel, 20% CW D9, SS 316 LN and modified 9Cr-1Mo steel (T91) materials have been selected for PFBR. Based on the operating experience, the integrity of the high temperature components including fuel and cost optimization aspects, the plant temperatures are recommended. Steam temperature of 763 K at 16.6 MPa and a single TG of 500 MWe gross output have been decided. PFBR will be located at Kalpakkam site on the coast of Bay of Bengal. The plant life is designed for 30 y and 75% load factor. In this paper the justifications for the main options chosen are given in brief. (author). 2 figs, 2 tabs

  1. Recent development of radioanalytical method at IBR-2 pulsed fast reactor of the JINR

    Nazarov, V.M.; Pavlov, S.S.; Herrera, E.

    1991-01-01

    The experience of the use of radioanalytical methods, including NAA at IBR-2 pilsed fast reactor of the JINR, is discussed. Physical and technical parameters of the experimental installation designed for NAA and radiography are given. The detailed examples of the application of resonance neutrons to the control of the environment in the geology of oil, in multi-element analysis of food products and superpure materials as well as in nuclear physics are reviewed. The works on the application of the neutron isotopes sources for express determination of nitrogen content in original and synthetic materials are introduced. 7 refs.; 8 figs.; 3 tabs

  2. Fast breeder reactors

    Heinzel, V.

    1975-01-01

    The author gives a survey of 'fast breeder reactors'. In detail the process of breeding, the reasons for the development of fast breeders, the possible breeder reactors, the design criteria, fuels, cladding, coolant, and safety aspects are reported on. Design data of some experimental reactors already in operation are summarized in stabular form. 300 MWe Prototype-Reactors SNR-300 and PFR are explained in detail and data of KWU helium-cooled fast breeder reactors are given. (HR) [de

  3. The fast reactor

    1980-02-01

    The subject is discussed as follows: brief description of fast reactors; advantage in conserving uranium resources; experience, in UK and elsewhere, in fast reactor design, construction and operation; safety; production of plutonium, security aspects; consideration of future UK fast reactor programme. (U.K.)

  4. The fast breeder reactor

    Collier, J.

    1990-01-01

    The arguments for and against the fast breeder reactor are debated. The case for the fast reactor is that the world energy demand will increase due to increasing population over the next forty years and that the damage to the global environment from burning fossil fuels which contribute to the greenhouse effect. Nuclear fission is the only large scale energy source which can achieve a cut in the use of carbon based fuels although energy conservation and renewable sources will also be important. Fast reactors produce more energy from uranium than other types of (thermal) reactors such as AGRs and PWRs. Fast reactors would be important from about 2020 onwards especially as by then many thermal reactors will need to be replaced. Fast reactors are also safer than normal reactors. The arguments against fast reactors are largely economic. The cost, especially the capital cost is very high. The viability of the technology is also questioned. (UK)

  5. Sandia Pulse Reactor-IV Project

    Reuscher, J.A.

    1983-01-01

    Sandia National Laboratories has developed, designed and operated fast burst reactors for over 20 years. These reactors have been used for a variety of radiation effects programs. During this period, programs have required larger irradiation volumes primarily to expose complex electronic systems to postulated threat environments. As experiment volumes increased, a new reactor was built so that these components could be tested. The Sandia Pulse Reactor-IV is a logical evolution of the two decades of fast burst reactor development at Sandia

  6. The fast breeder reactor

    Davis, D.A.; Baker, M.A.W.; Hall, R.S.

    1990-01-01

    Following submission of written evidence, the Energy Committee members asked questions of three witnesses from the Central Electricity Generating Board and Nuclear Electric (which will be the government owned company running nuclear power stations after privatisation). Both questions and answers are reported verbatim. The points raised include where the responsibility for the future fast reactor programme should lie, with government only or with private enterprise or both and the viability of fast breeder reactors in the future. The case for the fast reactor was stated as essentially strategic not economic. This raised the issue of nuclear cost which has both a construction and a decommissioning element. There was considerable discussion as to the cost of building a European Fast reactor and the cost of the electricity it would generate compared with PWR type reactors. The likely demand for fast reactors will not arrive for 20-30 years and the need to build a fast reactor now is questioned. (UK)

  7. Fast breeder reactor safety : a perspective

    Kale, R.D.

    1992-01-01

    Taking into consideration India's limited reserves of natural and vast reserves of thorium, the fast reactor route holds a great promise for India's energy supply in future. The fast reactor fueled with 239 Pu/ 238 U (unused or depleted) produces (breeds) more fissionable fuel material 239 Pu than it consumes. Calculations show that a fast breeder reactor (FBR) increases energy potential of natural uranium by about 60 times. As the fast reactor can also convert 232 Th into 233 U which is a fissionable material, it can make India's thorium reserves a source of almost inexhaustible energy supply for a long time to come. Significant advantage of FBR plants cooled by sodium and their world-wide operating experience are reviewed. There are two main safety issues of FBR, one nuclear and the other non-nuclear. The nuclear issue concerns core disruptive accident and the non-nuclear one concerns the high chemical energy potential of sodium. These two issues are analysed and it is pointed that they are manageable by current design, construction and operational practices. Main findings of safety research during the last six to eight years in West European Countries and United States of America (US) are summarised. Three stage engineered safety provision incorporated into the design of the sodium cooled Fast Breeder Test Reactor (FBTR) commissioned at Kalpakkam are explained. The important design safety features of FBTR such as primary system containment, emergency core cooling, plant protection system, inherent safety features achieved through reactivity coefficients, and natural convection cooling are discussed. Theoretical analysis and experimental research in fast reactor safety carried out at the Indira Gandhi Centre for Atomic Research during the past some years are reviewed. (M.G.B.)

  8. Fast reactors worldwide

    Hall, R.S.; Vignon, D.

    1985-01-01

    The paper concerns the evolution of fast reactors over the past 30 years, and their present status. Fast reactor development in different countries is described, and the present position, with emphasis on cost reduction and collaboration, is examined. The French development of the fast breeder type reactor is reviewed, and includes: the acquisition of technical skills, the search for competitive costs and the spx2 project, and more advanced designs. Future prospects are also discussed. (U.K.)

  9. Fast Spectrum Reactors

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  10. Fast Breeder Reactor studies

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts

  11. Fast Breeder Reactor studies

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  12. Pulsed fusion reactors

    1975-01-01

    This summer school specialized in examining specific fusion center systems. Papers on scientific feasibility are first presented: confinement of high-beta plasma, liners, plasma focus, compression and heating and the use of high power electron beams for thermonuclear reactors. As for technological feasibility, lectures were on the theta-pinch toroidal reactors, toroidal diffuse pinch, electrical engineering problems in pulsed magnetically confined reactors, neutral gas layer for heat removal, the conceptual design of a series of laser fusion power plants with ''Saturn'', implosion experiments and the problem of the targets, the high brightness lasers for plasma generation, and topping and bottoming cycles. Some problems common to pulsed reactors were examined: energy storage and transfer, thermomechanical and erosion effects in the first wall and blanket, the problems of tritium production, radiation damage and neutron activation in blankets, and the magnetic and inertial confinement

  13. The Integral Fast Reactor

    Till, C.E.; Chang, Y.I.; Lineberry, M.J.

    1990-01-01

    Argonne National Laboratory, since 1984, has been developing the Integral Fast Reactor (IFR). This paper will describe the way in which this new reactor concept came about; the technical, public acceptance, and environmental issues that are addressed by the IFR; the technical progress that has been made; and our expectations for this program in the near term. 5 refs., 3 figs

  14. Integral fast reactor

    Chang, Y.I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics

  15. The Integral Fast Reactor

    Chang, Y.I.

    1988-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  16. Fast breeder reactors

    Waltar, A.E.; Reynolds, A.B.

    1981-01-01

    This book describes the major design features of fast breeder reactors and the methods used for their design and analysis. The foremost objective of this book is to fulfill the need for a textbook on Fast Breeder Reactor (FBR) technology at the graduate level or the advanced undergraduate level. It is assumed that the reader has an introductory understanding of reactor theory, heat transfer, and fluid mechanics. The book is expected to be used most widely for a one-semester general course on fast breeder reactors, with the extent of material covered to vary according to the interest of the instructor. The book could also be used effectively for a two-quarter or a two-semester course. In addition, the book could serve as a text for a course on fast reactor safety since many topics other than those appearing in the safety chapters relate to FBR safety. Methodology in fast reactor design and analysis, together with physical descriptions of systems, is emphasized in this text more than numerical results. Analytical and design results continue to change with the ongoing evolution of FBR design whereas many design methods have remained fundamentally unchanged for a considerable time

  17. The fast breeder reactor

    Patterson, W.

    1990-01-01

    The author criticises the United Kingdom Atomic Energy Authority's fast breeder reactor programme in his evidence to the House of Commons Select Committee on Energy in January 1990. He argues for power generation by renewable means and greater efficiency in the use rather than in the generation of electricity. He refutes the arguments for nuclear power on the basis of reduced global warming as he claims support technology produces significant amounts of carbon dioxide in any case. Serious doubts are raised about the costs of a fast breeder reactor programme compared to, say, generation by pressurised water reactors. The idea of a uranium scarcity in several decades is also refuted. The reliability of fast breeder reactor technology is called into question. He argues against reprocessing plutonium for economic, health and safety reasons. (UK)

  18. The fast breeder reactor

    Keck, O.

    1984-01-01

    Nowadays the fast-breeder reactor is a negative symbol of advanced technology which is getting out of control and, due to its complexity, is incomprehensible for politicians and therefore by-passes the established order. The author lists the most important decisions over state aid to the fast-breeder-reactors up until the mid-seventies and uses documents from the appropriate advisory bodies as reference. He was also aided by interviews with those directly involved with the project. The empirical facts forces us to discard our traditional view of the relationship between state and industry with regard to advanced technology. The author explains that it is impossible to find any economic value in the fast-breeder reactor. The insight gained through this project allows him to draw conclusions which apply to all aspects of state aid to advanced technology. (orig.) [de

  19. Fast breeder reactor research

    1975-01-01

    Full text: The meeting was attended by 15 participants from seven countries and two international organizations. The Eighth Annual Meeting of the International Working Group on Fast Reactors (IWGFR) was attended by representatives from France, Fed. Rep. Germany, Italy, Japan, United Kingdom, Union of Soviet Socialist Republics and the United States of America - countries that have made significant progress in developing the technology and physics of sodium cooled fast reactors and have extensive national programmes in this field - as well as by representatives of the Commission of the European Communities and the IAEA. The design of fast-reactor power plants is a more difficult task than developing facilities with thermal reactors. Different reactor kinetics and dynamics, a hard neutron spectrum, larger integral doses of fuel and structural material irradiation, higher core temperatures, the use of an essentially novel coolant, and, as a result of all these factors, the additional reliability and safety requirements that are imposed on the planning and operation of sodium cooled fast reactors - all these factors pose problems that can be solved comprehensively only by countries with a high level of scientific and technical development. The exchange of experience between these countries and their combined efforts in solving the fundamental problems that arise in planning, constructing and operating fast reactors are promoting technical progress and reducing the relative expenditure required for various studies on developing and introducing commercial fast reactors. For this reason, the meeting concentrated on reviewing and discussing national fast reactor programmes. The situation with regard to planning, constructing and operating fast experimental and demonstration reactors in the countries concerned, the experience accumulated in operating them, the difficulties arising during operation and ways of over-coming them, the search for optimal designs for the power

  20. Fast reactor programme

    Plakman, J.C.

    1982-01-01

    This progress report summarizes the fast reactor research carried out by ECN during the period covering the year 1980. This research is mainly concerned with the cores of sodium-cooled breeders, in particular the SNR-300, and its related safety aspects. It comprises six items: A programme to determine relevant nuclear data of fission- and corrosion-products; A fuel performance programme comprising in-pile cladding failure experiments and a study of the consequences of loss-of-cooling and overpower; Basic research on fuel; Investigation of the changes in the mechanical properties of austenitic stainless steel DIN 1.4948 due to fast neutron doses, this material has been used in the manufacture of the reactor vessel and its internal components; Study of aerosols which could be formed at the time of a fast reactor accident and their progressive behaviour on leaking through cracks in the concrete containment; Studies on heat transfer in a sodium-cooled fast reactor core. As fast breeders operate at high power densities, an accurate knowledge of the heat transfer phenomena under single-phase and two-phase conditions is sought. (Auth.)

  1. Sodium cooled fast reactor

    Hokkyo, N; Inoue, K; Maeda, H

    1968-11-21

    In a sodium cooled fast neutron reactor, an ultrasonic generator is installed at a fuel assembly hold-down mechanism positioned above a blanket or fission gas reservoir located above the core. During operation of the reactor an ultrsonic wave of frequency 10/sup 3/ - 10/sup 4/ Hz is constantly transmitted to the core to resonantly inject the primary bubble with ultrasonic energy to thereby facilitate its growth. Hence, small bubbles grow gradually to prevent the sudden boiling of sodium if an accident occurs in the cooling system during operation of the reactor.

  2. The integral fast reactor

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two dramatic demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the Integral Fast Reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics and also makes possible a simplified closed fuel cycle and waste process improvements

  3. The integral fast reactor

    Till, C.E.

    1987-01-01

    On April 3rd, 1986, two demonstrations of the inherent capability of sodium-cooled fast reactors to survive unprotected loss of cooling accidents were carried out on the experimental sodium-cooled power reactor, EBR-II, on the Idaho site of Argonne National Laboratory. Transients potentially of the most serious kind, one an unprotected loss of flow, the other an unprotected loss of heat sink, both initiated from full power. In both cases the reactor quietly shut itself down, without damage of any kind. These tests were a part of the on-going development program at Argonne to develop an advanced reactor with significant new inherent safety characteristics. Called the integral fast reactor, or IFR, the basic thrust is to develop everything that is needed for a complete nuclear power system - reactor, closed fuel cycle, and waste processing - as a single optimized entity, and, for simplicity in concept, as an integral part of a single plant. The particular selection of reactor materials emphasizes inherent safety characteristics also makes possible a simplified close fuel cycle and waste process improvements. The paper describes the IFR concept, the inherent safety, tests, and status of IFR development today

  4. Integral Fast Reactor concept

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path

  5. Integral Fast Reactor concept

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  6. Integral Fast Reactor Program

    Chang, Y.I.; Walters, L.C.; Laidler, J.J.; Pedersen, D.R.; Wade, D.C.; Lineberry, M.J.

    1993-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1992. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D

  7. The Integral Fast Reactor

    Till, C.E.

    1985-01-01

    During the past two years, scientists from Argonne have developed an advanced breeder reactor with a closed self contained fuel cycle. The Integral Fast Reactor (IFR) is a new reactor concept, adaptable to a variety of designs, that is based on a fuel cycle radically different from the CRBR line of breeder development. The essential features of the IFR are metal fuel, pool layout, and pyro- and electro-reprocessing in a facility integral with the reactor plant. The IFR shows promise to provide an inexhaustible, safe, economic, environmentally acceptable, and diversion resistant source of nuclear power. It shows potential for major improvement in all of the areas that have led to concern about nuclear power

  8. Pulsed Compression Reactor

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  9. Dounreay fast reactor

    Maclennan, R.; Eggar, T.; Skeet, T.

    1992-01-01

    The short debate which followed a private notice question asking for a statement on Government policy on the future of the European fast breeder nuclear research programme is reported verbatim. In response to the question, the Minister for Energy said that the Government had decided in 1988 that the Dounreay prototype fast reactor would close in 1994. That decision had been confirmed. Funding of fast breeder research and development beyond 1993 is not a priority as commercialization is not expected until well into the next century. Dounreay will be supported financially until 1994 and then for its subsequent decommissioning and reprocessing of spent fuel. The debate raised issues such as Britain losing its lead in fast breeder research, loss of jobs and the Government's nuclear policy in general. However, the Government's position was that the research had reached a stage where it could be left and returned to in the future. (UK)

  10. Fast reactors: potential for power

    1983-02-01

    The subject is discussed as follows: basic facts about conventional and fast reactors; uranium economy; plutonium and fast reactors; cooling systems; sodium coolant; safety engineering; handling and recycling plutonium; safeguards; development of fast reactors in Britain and abroad; future progress. (U.K.)

  11. Ageing management practice in Fast Breeder Test Reactor

    Srinivasan, G.; Ramanathan, V.; Swaminathan, P.R.; Babu, A.; Rajasekarappa, E.; Rajendran, B.; Ramalingam, P.V.

    2006-01-01

    Fast Breeder Test Reactor is a 40 MWt, sodium cooled, PuC-UC fuelled fast reactor, located at Kalpakkam, India. The reactor went critical in October 85 with Mark I core rated for 10.5 MWt at a peak LHR of 320 W/cm. The reactor core was progressively enlarged and TG was synchronized to the grid in July 97. The present core has 41 fuel subassemblies rated for 15.7 MWt at a peak LHR of 320 W/cm. The reactor has so far been operated for 33000 h and has seen 660 EFPD of operation corresponding to peak LHR of 320 W/cm. The peak burnup reached by the carbide fuel is 127 GWd/t, without any fuel clad failure. The four sodium pumps have been operating satisfactorily for a cumulative time of more than 5,00,000 h. Creep, fatigue and fluence govern the life of the nuclear systems. Because of the reduced power and temperature at which the reactor has so far been operated, there is little ageing of the nuclear systems. The life of the nuclear components is being monitored by periodic surveillance. Periodic assessment of the fluence seen by reactor components is being made. The conventional systems have been in service for the past 19 years. Civil structures are 25 years old. These have been maintained by periodic preventive maintenance and replacement / repair wherever required. This paper details the various ageing management practices in FBTR. (author)

  12. Fast reactor database

    1996-02-01

    This publication contains detailed data on liquid metal cooled fast reactors (LMFRs), specifically plant parameters and design details. Each LMFR power plant is characterized by about 400 parameters, by design data and by relevant materials. The report provides general and detailed design characteristics including structural materials, data on experimental, demonstration, prototype and commercial size LMFRs. The focus is on practical issues that are useful to engineers, scientists, managers and university students and professors. The report includes updated information contained in IAEA previous publications on LMFR plant parameters: IWGRF/51 (1985) and IWGFR/80 (1991) and reflects experience gained from two consultants meetings held in Vienna (1993,1994). This compilation of data was produced by members of the IAEA International Working Group on Fast Reactors (IWGFR)

  13. Fast reactors in nuclear power

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  14. Knowledge management in fast reactors

    Kuriakose, K.K.; Satya Murty, S.A.V.; Swaminathan, P.; Raj, Baldev

    2010-01-01

    This paper highlights the work that is being carried out in Knowledge Management of Fast Reactors at Indira Gandhi Centre for Atomic Research (IGCAR) including a few examples of how the knowledge acquired because of various incidents in the initial years has been utilized for the successful operation of Fast Breeder Test Reactor. It also briefly refers to the features of the IAEA initiative on the preservation of Knowledge in the area of Fast Reactors in the form of 'Fast Reactor Knowledge Organization System' (FR-KOS), which is based on a taxonomy for storage and mining of Fast Reactor Knowledge. (author)

  15. Fast breeder reactors

    Ollier, J.L.

    1987-01-01

    The first industrial-scale fast breeder reactor (FBR) is the Superphenix I at Crays-Melville. It was designed and built by Novatome, a French company, and Ansaldo, an Italian company. The advantages of FBRs are summarized. The status of Superphenix and the testing schedule is given. The stages in its power escalation in 1986 are given. The article is optimistic about the future for FBRs and expects FBRs to take over from PWRs at the beginning of the 21st Century. To achieve economic viability, European financial cooperation for the research and development programme is advocated. (UK)

  16. Fast pulse amplifier

    Lepetit, J.; Poussier, E.

    1984-01-01

    This amplifier comprises an inverter transformer, the primary circuit of which receives a pulse and the secondary circuit of which is connected to several amplifying elements in parallel. The inverter transformer is made of coaxial cable segments winded around a magnetic torus; the cable cores connected in series constitute the primary circuit and the braiding of cables, connected in parallel, are the secondary circuit. The transformer comprises, besides, delay lines in series with each braiding of the secondary circuit, these ones are such that pulses issued from each braiding arrive together to the secondary circuit connectors. This invention applies, noticeably in the case of a high voltage amplifier, to the control of deflection blocks of particles used in medicine or in particle accelerators [fr

  17. New fast reactor installation concept

    Anon.

    1976-01-01

    The large size and complexity of fast reactor installations are emphasised and these difficulties will be increased with the advent of fast reactors of higher power. In this connection a new concept of fast reactor installation is described with a view to reducing the size of the installation and enabling most components, including even the primary vessel, to be constructed within the confines of a workshop. Full constructional details are given. (U.K.)

  18. Fast reactors and nonproliferation

    Orlov, V.V.

    1997-01-01

    1.Three aspects of nonproliferation relevant to nuclear power are: Pu buildup in NPP spent fuel cooling ponds (∼ 104 t in case of consumption of ∼ 107 t cheap uranium). Danger of illegal radiochemical extraction of Pu for weapons production; Pu extraction from NPP fuel at the plants available in nuclear countries, its burning along with weapon-grade Pu in NPP reactors or in special-purpose burners; increased hazard of nuclear weapons sprawl with breeders and closed fuel cycle technology spreading all over the world. 2.The latter is one of major obstacles to creation of large-scale nuclear power. 3.Nuclear power of the first stage using 235 U will be able to meet the demands of certain fuel-deficient countries and regions, replacing ∼ 5-10% of conventional fuels in the global consumption for a number of decades. 4.Fast reactors of the first generation and the currently employed fuel technology are far from exhausting their potential for solving economic problems and meeting the challenges of safety, radioactive waste and nonproliferation. Development of large-scale nuclear power will become an option accepted by society for solving energy problems in the following century, provided a breeder technology is elaborated and demonstrated in the next 15-20 years, which would comply with the totality of the following requirement: full internal Pu breeding deterministic elimination of severe accidents involving fuel damage and high radioactivity releases: fast runaway, loss of coolant, fires, steam and hydrogen explosions, etc.; reaching a balance between radioactive wastes disposed of and uranium mined in terms of radiation hazard; technology of closed fuel cycle preventing its use for Pu extraction and permitting physical protection from fuel thefts;economic competitiveness of nuclear power for most of countries and regions, i.e. primarily the cost of NPPs with fat reactors is to be below the cost of modern LWR plants, etc

  19. PREFRE-3A, Kalpakkam

    Rahaman, K.S.; Ravi, K.V.; Roy, Amitava

    2017-01-01

    PREFRE-3A (P3A) is presently the largest reprocessing plant in India. The purpose of this plant is to recover important elements in the spent fuel as a part of delivering clean energy. Spent fuel from various PHWRs is received at spent fuel storage facility at Kalpakkam where it is stored till the short lived radioactive isotopes decay off and then sent for reprocessing

  20. Physical model of reactor pulse

    Petrovic, A.; Ravnik, M.

    2004-01-01

    Pulse experiments have been performed at J. Stefan Institute TRIGA reactor since 1991. In total, more than 130 pulses have been performed. Extensive experimental information on the pulse physical characteristics has been accumulated. Fuchs-Hansen adiabatic model has been used for predicting and analysing the pulse parameters. The model is based on point kinetics equation, neglecting the delayed neutrons and assuming constant inserted reactivity in form of step function. Deficiencies of the Fuchs-Hansen model and systematic experimental errors have been observed and analysed. Recently, the pulse model was improved by including the delayed neutrons and time dependence of inserted reactivity. The results explain the observed non-linearity of the pulse energy for high pulses due to finite time of pulse rod withdrawal and the contribution of the delayed neutrons after the prompt part of the pulse. The results of the improved model are in good agreement with experimental results. (author)

  1. Fast reactor programme

    Hoekstra, E.K.

    1976-11-01

    Estimated reactivity effects of fission products in the SNR-300 fast breeder are given. Neutron cross sections of 127 I and 129 I are also given. Results of the in-pile canning failure experiments on fuel pins R54-F35 and F39 are discussed. Sinter experiments using mixed UC-UN powders are reported. Results of tensile tests on high-dose and low-dose irradiated specimens of 18Cr1 1Ni stainless steel (DIN 1.4948) used in the SNR-300 reactor vessel are given. It is shown that the aerosol behaviour in condensing sodium vapour can be described by the same MADCA model developed for the decay of aerosols in condensing water vapour. Results of heat transfer measurements in the electrically heated 28-rod bundle under liquid-phase and subsequently under two-phase conditions are commented on

  2. Instrumentation and control of future sodium cooled fast reactors - Design improvements

    Madhusoodanan, K.; Sakthivel, M.; Chellapandi, P.

    2013-06-01

    India's fast reactor program started with the 40 MWt Fast Breeder Test Reactor. 500 MWe Prototype Fast Breeder Reactor (PFBR) is currently under construction at Kalpakkam. Safety of PFBR is enhanced by improved design features of I and C system. Since the design of Instrumentation and control (I and C) of PFBR, considerable improvements in terms of advancement in technology and indigenization has taken place. Further improvements in I and C is proposed for solving many of the difficulties faced during the design and construction phases of PFBR. Design improvements proposed are covered in this paper which will make the implementation and maintenance of I and C of future SFRs easier. (authors)

  3. Uranium and the fast reactor

    Price, T.

    1982-01-01

    The influence of uranium availability upon the future of the fast reactor is reviewed. The important issues considered are uranium reserves and resources, uranium market prices, fast reactor economics and the political availability of uranium to customers in other countries. (U.K.)

  4. The safety of fast reactors

    Justin, F.

    1976-01-01

    A response is made to the main questions that a man in the street may arise concerning fast breeder reactors, in particular: the advantages of this line, dangerous materials contained in fast breeder reactors, containment shells protecting the environment from radiations, main studies now in progress [fr

  5. Fast reactor physics - an overview

    Lee, S.M.

    2004-01-01

    An introduction to the basic features of fast neutron reactors is made, highlighting the differences from the more conventional thermal neutron reactors. A discussion of important feedback reactivity mechanisms is given. Then an overview is presented of the methods of fast reactor physics, which play an important role in the successful design and operation of fast reactors. The methods are based on three main elements, namely (i) nuclear data bases, (ii) numerical methods and computer codes, and (iii) critical experiments. These elements are reviewed and the present status and future trends are summarized. (author)

  6. An assessment of fission product data for decay power calculation in fast reactors

    Sridharan, M.S.; Murthy, K.P.N.

    1987-01-01

    A review of our present capability at IGC, Kalpakkam to predict fission product decay power in fast reactors is presented. This is accomplished by comparing our summation calculations with the calculations of others and the reported experimental measurements. Our calculations are based on Chandy code developed at our Centre. The fission product data base of Chandy is essentially drawn from the yield data compiled by Crouch (1977) and the data on halflives etc. compiled by Tobias (1973). In general, we find good agreement amongst the different calculations (within ±5%) and our calculations also compare well with experimental measurements of AKIAMA et al and MURPHY et al

  7. Main boiler feed pump for fast breeder test reactor. Failure analysis and remedial measures

    Iyer, M.A.K.; Chande, S.K.; Raghuvir, A.D.; Baskar, S.; Kale, R.D.

    1994-01-01

    A small capacity ten stage 670 kw feed water pump is used for supplying feed water at a temperature of 190 deg C to a once through steam generator in the Fast Breeder Test Reactor at Kalpakkam. During preparatory heating up stage to commission the steam generator the pump suffered a severe loss of suction which resulted in failure of hydrostatic journal bearings and extensive damage to pump internals. This paper discusses the detailed mechanism of loss of suction, details of damage to the pump and various modifications carried out to prevent recurrence of the problem. (author). 4 refs., 3 figs., 2 tabs

  8. Spent fuel storage facility, Kalpakkam

    Shreekumar, B.; Anthony, S.

    2017-01-01

    Spent Fuel Storage Facility (SFSF), Kalpakkam is designed to store spent fuel arising from PHWRs. Spent fuel is transported in AERB qualified/authorized shipping cask by NPCIL to SFSF by road or rail route. The spent fuel storage facility at Kalpakkam was hot commissioned in December 2006. All systems, structures and components (SSCs) related to safety are designed to meet the operational requirements

  9. Fast mixed spectrum reactor concept

    Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.

    1979-04-01

    The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high

  10. A review of the Indian fast reactor programme

    Bhoje, S.B.

    1990-01-01

    Development of Fast Breeder activities is being done mainly at the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and the total Scientific and Technical staff working at the Centre for development of FBRs is about 1200. The development work relating to the fuel fabrication and design and development for some of the fuel handling equipment is being done at the Bhabha Atomic Research Centre, Trombay, Bombay. Complete recovery from the fuel handling incident of FBTR was achieved during the beginning of 1989. Damaged guide tube and bent subassemblies were replaced, the incident was analysed in detail and appropriate remedial measures, viz., modifications in the fuel handling machine control logic and plug rotation logic were implemented to prevent its recurrence. Safety clearances for the restart of the reactor were obtained from the Atomic Energy Regulatory Board in May 1989. As steam generators were not valved in the secondary sodium system, the reactor power during this phase of operation was limited to 500 KWt. The main objectives during this phase were to complete the balance low power physics experiments and to operate the reactor for a sufficiently long time to assess the performance of various systems, in particular the neutronic instrumentation, control rod drive and safety logic system which were not in active service for the two years. From May to July, 1989, the reactor was successfully operated up to a power level of 500 KWt with 50% operating time. Design of PFBR is progressing intensively. (author). 1 tab

  11. Fast reactor programme

    Plakman, J.C.

    1981-06-01

    The accuracy requirements and the status of the evaluated fission-product cross sections for fast reactors are reviewed; the work on calculating the sensitivity of the sodium void effect to fission-product cross sections is described; some results of the intercomparison of adjusted data sets for capture cross sections of fission-products (RCN-2A and CARNAVAL-IV) are discussed; the applicability of the maximum-likelihood method for the analysis of resolved resonance parameters for a large class of fission-product nuclides is demonstrated; the neutron cross sections for corrosion product 64 Ni are evaluated. Some results of post-irradiation examination of a loss-of-cooling experiment are given; the progress in testing the equipment and instrumentation for transient-overpower experiments is reported. The proceedings in the thermochemical investigations on uranium compounds with some fission-products are described. The creep behaviour of a heat of DIN 1.4948 parent metal is investigated with respect to the changes in strain with different test temperatures. Sodium smoke aerosols have been produced and analysed with respect to their aerodynamic behaviour and morphology. The two-phase local boiling experiments have been analysed to find criteria for the occurrence of different boiling regimes with the objection to deduce general dryout correlations

  12. Fast reactor recharging device

    Artemiev, L.N.; Kurilkin, V.V.

    1979-01-01

    Disclosure is made of a device for recharging a fast-neutron reactor, intended for the transfer of fuel assemblies and rods of the control and safety system, having profiled heads to be gripped on the outside. The device comprises storage drums whose compartments for rods of the control and safety system are identical to compartments for fuel assemblies. In order to store and transport rods of the control and safety system from the storage drums to the recharging mechanism provision is made for sleeve-type holders. When placed in such a holder, the dimensions of a rod of the control and safety system are equal to those of a fuel assembly. To join a holder to a rod of the control and safety system, on the open end of each holder there is mounted a collet, whereas on the surface of each rod of the control and safety system, close to its head, there is provided an encircling groove to interact with the collet. The grip of the recharging mechanism is provided with a stop interacting with the collet in order to open the latter and withdraw the safety and control system rod from its holder

  13. Fast reactor database. 2006 update

    2006-12-01

    Liquid metal cooled fast reactors (LMFRs) have been under development for about 50 years. Ten experimental fast reactors and six prototype and commercial size fast reactor plants have been constructed and operated. In many cases, the overall experience with LMFRs has been rather good, with the reactors themselves and also the various components showing remarkable performances, well in accordance with the design expectations. The fast reactor system has also been shown to have very attractive safety characteristics, resulting to a large extent from the fact that the fast reactor is a low pressure system with large thermal inertia and negative power and temperature coefficients. In addition to the LMFRs that have been constructed and operated, more than ten advanced LMFR projects have been developed, and the latest designs are now close to achieving economic competitivity with other reactor types. In the current world economic climate, the introduction of a new nuclear energy system based on the LMFR may not be considered by utilities as a near future option when compared to other potential power plants. However, there is a strong agreement between experts in the nuclear energy field that, for sustainability reasons, long term development of nuclear power as a part of the world's future energy mix will require the fast reactor technology, and that, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This publication contains detailed design data and main operational data on experimental, prototype, demonstration, and commercial size LMFRs. Each LMFR plant is characterized by about 500 parameters: physics, thermohydraulics, thermomechanics, by design and technical data, and by relevant sketches. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors with complete technical information of a total of 37 LMFR

  14. Fast reactor collaboration in Europe

    Smith, G.E.I.

    1987-01-01

    Fast reactors have been developed in several European countries, the United Kingdom, France, Germany and Italy. A suggestion to collaborate on fast reactor research and development resulted in an Intergovernmental Memorandum of Understanding signed in 1984 by the UK, France, Germany, Italy and Belgium. Holland was expected to join later. This provided for co-operation between electric utilities, reactor design, research and development companies and fuel cycle companies. Three steering committees have so far been set up, the European fast reactor utilities Group, the European research and development and the European fuel cycle steering committees. Progress on these is detailed. The main areas of technology exchange are listed in the Appendix. The possibility exists for a series of three large demonstration plants to be built in Europe and a fuel reprocessing plant to confirm the reactor system. (U.K.)

  15. The integral fast reactor concept

    Chang, Yoon I.; Marchaterre, J.F.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) an integral fuel cycle, based on pyrometallurgical processing and injection-cast fuel fabrication, with the fuel cycle facility collocated with the reactor, if so desired. This paper gives a review of the IFR concept

  16. Review of fast reactor activities

    1982-01-01

    A description of some highlights of the activities performed by the Commission of the European Communities in the field of fast reactors is given. They fall into two categories: coordinating and harmonizing activities and research activities. The former are essentially performed in the frame of the Fast Reactor Coordinating Committee (FRCC), the latter in the Commission's Joint Research Center and to some extent under contract in research centers of the Member States

  17. PUSPATI Triga Reactor pulsing parameters

    Auu, Gui Ah; Abu, Puad Haji; Yunus, Yaziz [PUSPATI, Selangor (Malaysia)

    1984-06-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw.

  18. Floristic composition of Kalpakkam

    Gajendiran, N; Raghupathy, S.

    2003-10-01

    This report is a brief highlights of 618 plants mostly of terrestrial and flowering types. The description of taxa is based on the field observation, analysis and after referring with authentic Herbarium collections. The identified specimens were also preserved for Herbarium at IGCAR campus. Each highlights of the taxon carries its taxonomic position, distribution, vernacular name, uses, produces, bio-chemical component and ethnobotany. This detailed report of macro plants of this site can serve as reference guide for estate managers and environmentalists. This floral analysis has been made in time before any major construction activity for PFBR is being initiated. The plant diversity observed in the coastal areas attracts great importance owing to the salt and stress tolerance. The systematic analysis of flora is first of its kind in Kalpakkam and it reveals the genetic richness of the campus. (author)

  19. Review of fast reactor activities

    Haeussermann, W.; Royen, J.

    1978-01-01

    Since 1971, when the Co-ordinating Group on Gas-Cooled Fast reactors Development was set up, the participating countries have maintained an interest in keeping this option as a back-up solution to the sodium cooled fast reactors. Two different concepts were investigated, one based on coated particle type fuel elements and the other on pin type fuel elements. The coated particles studies have been brought to an end, and resources were concentrated on the further development of the pin type concept. The work done in previous years covered design and safety investigations, heat transfer studies and irradiation experiments in thermal reactors

  20. Review of fast reactor activities in India

    Paranjpe, S.R.

    1982-01-01

    A review of fast reactor activities in India is introduced. One stage of construction of the Fast Breeder Test Reactor (FBTR) and design studies for 500MWe Prototype Fast Breeder Reactor (PFBR) are briefly summarized. The emphasis is on fast reactor physics, materials studies, radiochemistry, and the safety and fuel reprocessing programme

  1. Fast breeder reactor

    Ito, Shin-ichi; Maki, Koichi.

    1975-01-01

    Object: To conserve loaded fuel, aquire controllable surplus reaction degree, increase the breeding index, flatten output and improve sealing of neutrons by inserting a decelerating substance in a blanket section. Structure: A decelerating substance such as beryllium or beryllium oxide is inserted in a blanket section between an outer reactor core and reflector. With this arrangement, neutrons are decelerated to increase the low energy components, which are partly subjected to reflection by the outer reactor core to thereby reduce leakage of neutrons from the reactor core. (Kamimura, M.)

  2. Astrid (fast breeder nuclear reactor)

    2014-01-01

    This document presents ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a French project of sodium-cooled fast breeder reactor, fourth generation reactor which should be fuelled by uranium 238 rather than uranium 235, and should therefore need less extracted natural uranium to produce electricity. The operation principle of fast breeder reactors is described. They notably directly consume plutonium, allow an easier radioactive waste management as they transform long life radioactive elements into shorter life elements by transmutation. The regeneration process is briefly described, and the various operation modes are evoked (iso-generator, sub-generator, and breeder). Some peculiarities of sodium-cooled reactors are outlined. The Astrid operation principle is described, its main design innovations outlined. Various challenges are discussed regarding safety of supply and waste processing, and the safety of future reactors. Major actors are indicated: CEA, Areva, EDF, SEIV Alcen, Toshiba, Rolls Royce, and Comex. Some key data are indicated: expected lifetime, expected availability rate, cost. The projected site is Marcoule and fast breeder reactors operated or under construction in the world are indicated. The document also proposes an overview of the background and evolution of reactors of 4. generation

  3. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    Estes, B.F.; Berry, D.T.

    1980-02-01

    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters

  4. Fast reactors: the industrial perspective

    Vaughan, R.D.

    1986-01-01

    Industrial participation in the development of the fast reactor is reviewed, from the construction of PFR at Dounreay to the initial steps towards collaboration in Europe. The optimum design of the fast reactor has changed considerably from the days when it was needed urgently to forestall a shortage of uranium to today when uranium is abundant and cheap. The evolution of the reactor design over this period is described. Collaboration in Europe is shown to be the only answer to high development costs and the search for a reactor which will compete with thermal reactors in today's environment. The partner countries in this collaboration are all motivated differently, and this is leading to some delays in concluding the necessary agreements. The objective on the industrial front is now to participate in the two or three demonstration fast reactors that will be built in Europe during the remainder of the century leading, it is hoped, to a competitive reactor design by the year 2000. (author)

  5. Upgrade of the Annular Core Pulse Reactor

    Reuscher, J A [Sandia Laboratories, Albuquerque, NM (United States)

    1976-07-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past two years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 by utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. Preliminary studies have identified several potential approaches to the ACPR performance improvement. The most promising approach appears to be the two-region core concept. The inner region, surrounding the irradiation cavity, would consist of a high-heat capacity fuel capable of absorbing the fission energy associated with a large nuclear pulse. The number of fissions occurring near the cavity would be greatly increased which, in turn, would significantly increase the fluence in the cavity. The outer region would consist of a U-ZrH fuel to provide an overall negative temperature coefficient for the two region core. Two candidate high heat capacity fuels [(BeO-UO{sub 2} and UC-ZrC) - graphite] are under consideration. Since this reactor upgrade represents a modification to an existing facility, it can be achieved in a relatively short time. It is anticipated that most of the existing reactor structure can be used for the upgrade. The present core occupies about one-half of the location in the grid plate. The high-heat capacity fuel

  6. Fast reactor programme

    Plakman, J.C.

    1979-10-01

    Various experiments being performed at the SNR reactor are described including: capture cross sections of various nuclei; fuel can failure; creep testing of welded joints; gas leakage through concrete/steel interfaces; testing of the test section of the four rod bundle for Laser Doppler Anemometry

  7. PUSPATI Triga Reactor pulsing parameters

    Gui Ah Auu; Puad Haji Abu; Yaziz Yunus

    1984-01-01

    The pulsing experiment was carried out as part of the commissioning activites of PUSPATI TRIGA Reactor (PTR). Several parameters of PTR were deduced from the experiment. It was found that the maximum temperature of the fuel was far below the safety limit when the maximum allowable positive reactivity of $3.00 was inserted into the core. The peak power achieved was 1354 Mw. (author)

  8. The instrumentation of fast reactor

    Endo, Akira

    2003-03-01

    The author has been engaged in the development of fast reactors over the last 30 years with both an involvement with the early technology development on the experimental breeder reactor Joyo, and latterly continuing this work on the prototype breeder reactor, Monju. In order to pass on this experience to younger engineers this paper is produced to outline this experience in the sincere hope that the information given will be utilised in future educational training material. The paper discusses the wide diversity on the associated instrument technology which the fast breeder reactor requires. The first chapter outlines the fast reactor system, followed by discussions on reactor instrumentation, measurement principles, temperature dependencies, and verification response characteristics from various viewpoints, are discussed in chapters two and three. The important issues of failed fuel location detection, and sodium leak detection from steam generators are discussed in chapters 4 and 5 respectively. Appended to this report is an explanation on the methods of measuring response characteristics on instrumentation systems using error analysis, random signal theory and measuring method of response characteristic by AR (autoregressive) model on which it appears is becoming an indispensable problem for persons involved with this technology in the future. (author)

  9. Fast Reactors and Nuclear Nonproliferation

    Avrorina, E.N.; Chebeskovb, A.N.

    2013-01-01

    Conclusion remarks: 1. Fast reactor start-up with U-Pu fuel: – dependent on thermal reactors, – no needs in U enrichment, – needs in SNF reprocessing, – Pu is a little suitable for NED, – practically impossible gun-type NED, – difficulties for implosion-type NED: necessary tests, advanced technologies, etc. – Pu in blankets is similar to WPu by isotopic composition, – Use of blanket for production isotopes (e.g. 233 U), – Combined reprocessing of SNF: altogether blanket and core, – Blanket elimination: decrease in Pu production – No pure Pu separation. 2. Fast reactor start-up with U fuel: - Needs in both U enrichment and SNF reprocessing, - Independent of thermal reactors, - Good Pu bred in the core let alone blankets, - NED of simple gun-type design, - Increase of needs in SWU, - Increased demands in U supply. 3. Fast reactors for export: - Uranium shortage, - To replace thermal reactors in future, - No blankets (depends on the country, though), - Fuel supply and SNF take back, - International centers for rendering services of NFC. Time has come to remove from FRs and their NFC the label unfairly identifying them as the most dangerous installations of nuclear power from the standpoint of being a proliferation problem

  10. The Integral Fast Reactor concept

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes the key features and potential advantages of the IFR concept, its technology development status, fuel cycle economics potential, and its future development path

  11. Fast reactor research in Switzerland

    Brogli, R.; Hudina, M.; Pelloni, S.; Sigg, B.; Stanculescu, A.

    1998-01-01

    The small Swiss research program on fast reactors serves to further understanding of the role of LMFR for energy production and to convert radioactive waste to more environmentally benign forms. These activities are on the one hand the contribution to the comparison of advanced nuclear systems and bring on the other to our physical and engineers understanding. (author)

  12. Pulsed reactors: A dissenting view

    Ganev, I.Kh.; Orlov, V.V.

    1995-01-01

    The preceding article, by G.A. Ivanov et al., contains interesting estimates of the expanded production of plutonium in thermonuclear explosions initiated by plutonium charges. It must be noted that more than 40 years of efforts, despite some technical successes, have not led to a fast-reactor technology suitable for large-scale power production. This explains the incessant search for a nuclear technology for the future and the renewed interest in accelerator, hybrid, and explosive approaches to plutonium production. The success of such efforts will depend largely on the formulation of goals and the choice of the principal criteria. It is appropriate to discuss these issues here because the adoption of the rate of plutonium production or the plutonium doubling time as the principal criterion sets the stage for the repetition of previous errors. However, as a preliminary, I would like to question some categorical assertions that were made by Ivanov et al. without the presentation of adequate supporting data (the assertions that open-quotes the creation of an power industry on the basis of ordinary breeder reactors is practically impossibleclose quotes and that open-quotes adequate power generation in the 21st centuryclose quotes is impossible). In fact, it is simple to calculate that, given a realistic doubling time for fast reactors of ∼10 years and the plutonium produced by thermal reactors (around 10 12 W), it would be possible, if so desired, to introduce power far exceeding 10 14 W in the 21st century

  13. Review of fast reactor activities

    Balz, W [Commission of the European Communities, Brussels (Belgium)

    1978-07-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle.

  14. Review of fast reactor activities

    Balz, W.

    1978-01-01

    The Commission of the European Communities continued its activities on the following lines: activities aimed at preparing for commercialization of fast breeder reactors which are essentially performed in the frame of Fast Reactor Coordinating Committee (FRCC); the execution of its own research program in the Joint Research Center. The report covers activities of the FRCC, of the Safety Working Group (SWG), the Whole Core Accident Code (WAC) subgroup, Containment (CONT) subgroup, Codes and Standards Working Group (CSWG). Research and development activities are concerned with LMFBR safety, subassembly thermal hydraulics, fuel-coolant interactions, post-accident heat removal, dynamic load response, safety related material properties, utilization limits of fast breeder fuels, plutonium and actinide aspects of nuclear fuel cycle

  15. Status of sodium cooled fast reactors with closed fuel cycle in India

    Raj, B.

    2007-01-01

    Fast reactors form the second stage of India's 3-stage nuclear power programme. The seed for India's fast reactor programme was sown through the construction of the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam, that was commissioned in 1985. FBTR has operated with an unique, indigenously developed plutonium rich mixed carbide fuel, which has reached a burn up as high as 155 GWd/t without any fuel failure in the core. The sodium systems in the reactor have performed excellently. The availability of the reactor has been as high as 92% in the recent campaigns. The fuel discharged from FBTR up to 100 GWd/t has been reprocessed successfully. The experience gained in the construction, commissioning and operation of FBTR has provided the necessary confidence to launch a Prototype FBR of 500 MWe capacity (PFBR). This reactor will be fuelled by uranium, plutonium mixed oxide. The reactor construction started in 2003 and the reactor is scheduled to be commissioned by 2010. The design of the reactor has incorporated the worldwide operating experience from the FBRs and has addressed various safety issues reported in literature, besides introducing a number of innovative features which have reduced the unit energy cost and contributed to its enhanced safety. Simultaneous with the construction of the reactor, the fuel cycle of the reactor has been addressed in a comprehensive manner and construction of a fuel cycle facility has been initiated. Subsequent to the PFBR, 4 more reactors with identical design are proposed to be constructed. Various elements of reactor design are being carefully analysed with the aim of introducing innovative features towards further reduction in unit energy cost and enhancing safety in these reactors

  16. Status of national programmes on fast reactors

    1994-04-01

    Based on the International Working Group on Fast reactors (IWGFR) members' request, the IAEA organized a special meeting on Fast Reactor Development and the Role of the IAEA in May 1993. The purpose of the meeting was to review and discuss the status and recent development, to present major changes in fast reactor programmes and to recommend future activities on fast reactors. The IWGFR took note that in some Member States large prototypes have been built or are under construction. However, some countries, due to their current budget constraints, have reduced the level of funding for research and development programmes on fast reactors. The IWGFR noted that in this situation the international exchange of information and cooperation on the development of fast reactors is highly desirable and stressed the importance of the IAEA's programme on fast reactors. These proceedings contain important and useful information on national programmes and new developments in sodium cooled fast reactors in Member States. Refs, figs and tabs

  17. Post-accident monitoring systems in Prototype Fast Breeder Reactor

    Suriya Murthy, N.; Sivasailanathan, Vidhya; Ananth, Allu; Roy, Kallol

    2018-01-01

    PFBR is a 500 MW(e) MOX fueled and sodium cooled fast reactor (SFR) under advanced stage of commissioning at Kalpakkam. Currently, the main vessel is preheated and sodium has been charged into two secondary loops that are operated in recirculation mode. In order to characterize the radiation field and contamination, the workplace monitoring is undertaken using installed monitors that are commissioned and made operational. This helps to ensure radiological protection during normal operating conditions. On the other hand, radiological monitoring in emergency conditions is quite different. For undertaking the mitigative accident management, a set of specialized nuclear instruments called post-accident monitoring systems (PAMS) which include radiation monitors are stipulated. The Fukushima Daiichi accident emphasized the importance and need for reliable accident monitoring instrumentation to indicate the safety functions during the progression and aftermath of accident in NPP. In PFBR, the PAMS are integrated with other monitoring systems in design stage itself to manage the measurements and indicating the safety functions for implementing EOP and SAMG

  18. Fast reactor core monitoring device

    Sanda, Toshio; Inoue, Kotaro; Azekura, Kazuo.

    1982-01-01

    Purpose: To enable the rapid and accurate on-line identification of the state of a fast reactor core by effectively utilizing the measured data on the temperature and flow rate of the coolant. Constitution: The spacial power distribution and average assembly power are quickly calculated using an approximate calculating method, the measured values and the calculated values of the inlet and outlet temperature difference, flow rate and coolant physical values of an assembly are combined and are individually obtained, the most definite respective values and their errors are obtained by a least square method utilizing a formula of the relation between these values, and the power distribution and the temperature distribution of a reactor core are estimated in this manner. Accordingly, even when the measuring accuracy and the calculating accuracy are equal as in a fast reactor, the power distribution and the temperature distribution can be accurately estimated on-line at a high speed in a nuclear reactor, information required for the operator is provided, and the reactor can thus be safely and efficiently operated. (Yoshihara, H.)

  19. Introduction of the experimental fast reactor JOYO

    Matsuba, Ken-ichi; Kawahara, Hirotaka; Aoyama, Takafumi

    2006-01-01

    The experimental fast reactor JOYO at O-arai Engineering Center of Japan Nuclear Cycle Development Institute is the first liquid metal cooled fast reactor in Japan. This paper describes the plant outline, experiences on the fast reactor technology and test results accumulated through twenty eight years successful operation of JOYO. (author)

  20. Pulsed electron beam generation with fast repetitive double pulse system

    Sharma, Surender Kumar; Deb, Pankaj; Shyam, Anurag, E-mail: surender80@gmail.com [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre, Visakhapatnam (India); Sharma, Archana [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Longer duration high voltage pulse (∼ 100 kV, 260 ns) is generated and reported using helical pulse forming line in compact geometry. The transmission line characteristics of the helical pulse forming line are also used to develop fast repetition double pulse system with very short inter pulse interval. It overcomes the limitations caused due to circuit parameters, power supplies and load characteristics for fast repetitive high voltage pulse generation. The high voltage double pulse of 100 kV, 100 ns with an inter pulse repetition interval of 30 ns is applied across the vacuum field emission diode for pulsed electron beam generation. The electron beam is generated from cathode material by application of negative high voltage (> 100 kV) across the diode by explosive electron emission process. The vacuum field emission diode is made of 40 mm diameter graphite cathode and SS mesh anode. The anode cathode gap was 6 mm and the drift tube diameter was 10 cm. The initial experimental results of pulsed electron beam generation with fast repetitive double pulse system are reported and discussed. (author)

  1. Integral fast reactor safety features

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: (1) a pool-type primary system, (2) an advanced ternary alloy metallic fuel, and (3) an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by (1) the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and (2) a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  2. Integral fast reactor safety features

    Cahalan, J.E.; Kramer, J.M.; Marchaterre, J.F.; Mueller, C.J.; Pedersen, D.R.; Sevy, R.H.; Wade, D.C.; Wei, T.Y.C.

    1988-01-01

    The integral fast reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. In addition to liquid metal cooling, the principal design features that distinguish the IFR are: a pool-type primary system, and advanced ternary alloy metallic fuel, and an integral fuel cycle with on-site fuel reprocessing and fabrication. This paper focuses on the technical aspects of the improved safety margins available in the IFR concept. This increased level of safety is made possible by the liquid metal (sodium) coolant and pool-type primary system layout, which together facilitate passive decay heat removal, and a sodium-bonded metallic fuel pin design with thermal and neutronic properties that provide passive core responses which control and mitigate the consequences of reactor accidents

  3. The 'SURA' fast reactor program

    Anon.

    1979-01-01

    The Commissariat a l'Energie Atomique's SURA program on fast reactor safety consists of two specific testing programs on fastbreeder reactor safety: the Cabri and Scarabee programs. Both Cabri and Scarabee are examples of multinational research collaboration. The CEA and the Karlsruhe Nuclear Research Center are each covering half of the construction costs. Britain, the US and Japan are also due to participate in these experiments. The aim of the programs is to examine the behaviour of fuel in sodium cooled fast reactors. The Cabri program consists of setting off a reactivity accident in a power reactor core which is cooled with liquid sodium, such an accident occurring after a sharp increase in reactivity or as a result of the pump suddenly breaking down without there at the same time being any fall in the control rods. In 1967 the Commissariat a l'Energie Atomique started its Scarabee research program which is trying to analyse the sort of things that can go wrong with fuel cooling systems and what the consequences can be [fr

  4. Fast breeder reactors an engineering introduction

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  5. Concept and basic performance of an in-pile experimental reactor for fast breeder reactors using fast driver core

    Obara, Toru; Sekimoto, Hiroshi

    1997-01-01

    The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors. (author)

  6. Advances by the Integral Fast Reactor Program

    Lineberry, M.J.; Pedersen, D.R.; Walters, L.C.; Cahalan, J.E.

    1991-01-01

    The advances by the Integral Fast Reactor Program at Argonne National Laboratory are the subject of this paper. The Integral Fast Reactor (IFR) is an advanced liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The advances stressed in the paper include fuel irradiation performance, improved passive safety, and the development of a prototype fuel cycle facility. 14 refs

  7. Electrochemistry in fast reactor technology

    Mathews, C.K.

    1987-01-01

    Electrochemistry plays a significant role in the production, characterisation or behaviour of the fuel, the coolant and structural materials used in fast reactor systems. The role of electrochemistry in sodium production, in the fuel cycle, in the development of electrochemical meters used for the on-line monitoring of the various impurities at sub ppm levels and in the recovery of plutonium and uranium are discussed. The advantage of voltammmetric techniques in the analysis of impurities and the application of electrochemical meters have been investigated. (author). 5 figs., 15 refs

  8. A review of the UK fast reactor programme. March 1977

    Smith, R.D.

    1977-01-01

    This paper reports on the Fast Reactor Programme of United Kingdom. These are the main lines: Dounreay Fast Reactor; Prototype Fast Reactor; Commercial Fast Reactor; engineering development; materials development; chemical engineering/sodium technology; fast reactor fuel; fuel cycle; safety; reactor performance study

  9. Pulse-voltage fast generator

    Valeev, R.I.; Nikiforov, M.G.; Kharchenko, A.F.

    1988-01-01

    The design is described and the test results of a four-channel pulse-voltage generator with maximum output voltage 200 kV are presented. The measurement results of generator triggering time depending on the value and polarity of the triggering voltage pulse for different triggering circuits are presented. The tests have shown stable triggering of all four channels of the generator in the range up to 40 % from selfbreakdown voltage. The generator triggering delay in the given range is <25 ns, asynchronism in channel triggering is <±1 ns

  10. International Experience with Fast Reactor Operation & Testing

    Sackett, John I.; Grandy, C.

    2013-01-01

    Conclusion: • Worldwide experience with fast reactors has demonstrated the robustness of the technology and it stands ready for worldwide deployment. • The lessons learned are many and there is danger that what has been learned will be forgotten given that there is little activity in fast reactor development at the present time. • For this reason it is essential that knowledge of fast reactor technology be preserved, an activity supported in the U.S. as well as other countries

  11. Advanced Safeguards Approaches for New Fast Reactors

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-01-01

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to 'breed' nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and 'burn' actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is 'fertile' or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing 'TRU'-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II 'EBR-II' at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line--a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors

  12. Advanced Safeguards Approaches for New Fast Reactors

    Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

    2007-12-15

    This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

  13. Fast Reactor Physics. Vol. II. Proceedings of a Symposium on Fast Reactor Physics and Related Safety Problems

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Karlsruhe, 30 October - 3 November 1967. The meeting was attended by 183 scientists from 23 countries and three international organizations. Contents: (Vol.1) Review of national programmes (5 papers); Nuclear data for fast reactors (12 papers); Experimental methods (3 papers); Zoned systems (7 papers); Kinetics (7 papers). (Vol.11) Fast critical experiments (8 papers); Heterogeneity in fast critical experiments (5 papers); Fast power reactors (13 papers); Fast pulsed reactors (3 papers); Panel discussion. Each paper is in its original language (50 English, 11 French and 3 Russian) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  14. Stabilization of magnet assemblies of permanent magnet sodium flowmeters used in fast breeder reactors

    Rajan, K.K., E-mail: kkrajan@igcar.gov.in; Vijayakumar, G.

    2014-08-15

    Highlights: • Stabilization procedure for ALNICO-5 permanent magnet material is evolved. • Effect of time and temperature on ALNICO-5 assembly is determined. • Suitability of ALNICO-5 flowmeters at high temperatures is established. • Temperature coefficient of flux density is determined. - Abstract: Permanent magnet flow meters (PMFMs) are used to measure the sodium flow in sodium cooled Fast Breeder Reactor Circuits. Prototype fast breeder reactor (PFBR) which is under construction at Kalpakkam is a 500 MWe, sodium cooled, pool type reactor. Sodium flow measurement in various loops of the reactor is of prime importance from operational and safety point of view. To measure the flow of electrically conducting liquid sodium, in primary and secondary circuit pipe lines of PFBR, permanent magnet flow meters are used. PMFM is a non-invasive device, which works on the principle of generation of motional EMF by magnetic forces exerted on the charges in a moving conductor. Flowmeters of different pipe sizes ranging from 10 mm to 200 mm pipe diameter are required for PFBR. Long term performance of the flowmeters mainly depends on stability of permanent magnets used in flowmeters to generate constant magnetic field in stainless steel (SS) pipes. This paper describes the effects of time and temperature on permanent magnet assemblies made of ALNICO-V used in PFBR flowmeters. The stabilization methodology for ALNICO-V permanent magnet assemblies is evolved and established. Loss of magnetic field strength with respect to time and temperatures is determined by experiments and found negligible.

  15. Development of sputter ion pump based SG leak detection system for Fast Breeder Test Reactor

    Babu, B.; Sureshkumar, K.V.; Srinivasan, G.

    2013-01-01

    Highlights: ► Development and commissioning of SG leak detection system for FBTR. ► Development of Robust method of using sputter ion pump based system. ► Modifications for improving reliability and availability. ► On line injection of hydrogen in sodium during reactor operation. ► Triplication of the SG leak detection system. - Abstract: The Fast Breeder Test Reactor (FBTR) is a 40 MWt, loop type sodium cooled fast reactor built at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam as a fore-runner to the second stage of Indian nuclear power programme. The reactor design is based on the French reactor Rapsodie with several modifications which include the provision of a steam-water circuit and turbo-generator. FBTR uses sodium as the coolant in the main heat transport medium to transfer heat from the reactor core to the feed water in the tertiary loop for producing superheated steam, which drives the turbo-generator. Sodium and water flow in shell and tube side respectively, separated by thin-walls of the ferritic steel tubes of the once-through steam generator (SG). Material defects in these tubes can lead to leakage of water into sodium, resulting in sodium water reactions leading to undesirable consequences. Early detection of water or steam leaks into sodium in the steam generator units of liquid metal fast breeder reactors (LMFBR) is an important requirement from safety and economic considerations. The SG leak in FBTR is detected by Sputter Ion Pump (SIP) based Steam Generator Leak Detection (SGLD) system and Thermal Conductivity Detector (TCD) based Hydrogen in Argon Detection (HAD) system. Many modifications were carried out in the SGLD system for the reactor operation to improve the reliability and availability. This paper details the development and the acquired experience of SIP based SGLD system instrumentation for real time hydrogen detection in sodium for FBTR.

  16. Holography for fast reactor inspection

    Tozer, B.A.

    1980-01-01

    Holography, an optical process whereby an image of the original subject can be reconstructed in three dimensions, is being developed for use as an optical inspection tool. With a potential information storage density of 10 16 bits/m 2 , the ability to reconstruct in 3 dimensions, a depth of field of up to 8 metres, extremely wide angle of view, and potentially diffraction limited resolution, holography should be invaluable for the optical recording of fast reactors during construction, and the inspection of optically accessible regions during operation, or maintenance down-times. The photographic emulsions used for high resolution holography are fine-grained and fog only very slowly when subjected to γ-radiation, so that inspection of highly radio-active regions and components can be effected satisfactorily. Some of the practical limitations affecting holography are described and ways of overcoming them discussed. Some preliminary results are presented. (author)

  17. Interfacial effects in fast reactors

    Saidi, M.S.; Driscoll, M.J.

    1979-05-01

    The problem of increased resonance capture rates near zone interfaces in fast reactor media has been examined both theoretically and experimentally. An interface traversing assembly was designed, constructed and employed to measure U-238 capture rates near th blanket--reflector interface in the MIT Blanket Test Facility. Prior MIT experiments on a thorium--uranium interface in a blanket assembly were also reanalyzed. Extremely localized fertile capture rate increases of on the order of 50% were measured immediately at the interfaces relative to extrapolation of asymptotic interior traverses, and relative to state-of-the-art (LIB-IV, SPHINX, ANISN/2DB) calculations which employ infinite-medium self-shielding throughout a given zone. A method was developed to compute a spatially varying background scattering cross section per absorber nucleus which takes into account both homogeneous and heterogeneous effects on the interface flux transient

  18. The UK commercial demonstration fast reactor design

    Holmes, J.A.G.

    1987-01-01

    The paper on the UK Commercial Demonstration Fast Reactor design was presented to the seminar on 'European Commercial Fast Reactor Programme, London 1987. The design is discussed under the topic headings:- primary circuit, intermediate heat exchangers and pumps, fuel and core, refuelling, steam generators, and nuclear island layout. (U.K.)

  19. Aspects of the fast reactors fuel cycle

    Zouain, D.M.

    1982-06-01

    The fuel cycle for fast reactors, is analysed, regarding the technical aspects of the developing of the reprocessing stages and the fuel fabrication. The environmental impact of LMFBRs and the waste management of this cycle are studied. The economic aspects of the fuel cycle, are studied too. Some coments about the Brazilian fast reactors programs are done. (E.G.) [pt

  20. Euratom contributions in Fast Reactor research programmes

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  1. Gas-cooled fast breeder reactor

    Yoshida, Hiroyuki

    1982-07-01

    Almost all the R D works of gas-cooled fast breeder reactor in the world were terminated at the end of the year 1980. In order to show that the R D termination was not due to technical difficulties of the reactor itself, the present paper describes the reactor plant concept, reactor performances, safety, economics and fuel cycle characteristics of the reactor, and also describes the reactor technologies developed so far, technological problems remained to be solved and planned development schedules of the reactor. (author)

  2. Economic Issues of Fast Reactor in China

    Yang Hongyi

    2013-01-01

    Conclusions: 1. More and more fast reactors could be appearing in the world currently and near future. 2. China gets little experience and practice about the economics issues of sodium cooled fast reactors. 3. The economic issues become more and more important for the deplot of fast reactors. Suggestions: 1. An authoritative economic evaluation solution for fast reactor and related fuel cycles facilities is necessary. The solution may be developed by the interested country in order to share the few data, experience and methodology. 2. A new initiative to help to share the economic information for fast reactor and related fuel cycle facilities is necessary. A meeting like TM-44899 organized by the IAEA is very beneficial for this topic and hopefully will continue

  3. Status of fast reactor activities in Russia

    Poplavski, V.M.; Ashurko, Yu.M.; Zverev, K.V.

    1998-01-01

    This paper outlines state-of-the-art of the Russian nuclear power as of 1997 and its prospects for the nearest future. Results of the BR-10, BOR-60 and BN-600 reactors operation are described, as well as activity of the Russian institutions on scientific and technological support of the BN-350 reactor. Analysis of current status of the BN-800 reactor South-Urals NPP and Beloyarskaya NPP designs is given in brief, as well as prospects of their construction and possible ways of fast reactor technology improvement. Studies on fast reactors now under way in Russia are described. (author)

  4. Fast reactor fuel reprocessing in the UK

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  5. General remarks on fast neutron reactor physics

    Barre, J.Y.

    1980-01-01

    The main aspects of fast reactor physics, presented in these lecture notes, are restricted to LMFBR's. The emphasis is placed on the core neutronic balance and the burn-up problems. After a brief description of the power reactor main components and of the fast reactor chronology, the fundamental parameters of the one-group neutronic balance are briefly reviewed. Then the neutronic burn-up problems related to the Pu production and to the doubling time are considered

  6. Pool type liquid metal fast breeder reactors

    Guthrie, B.M.

    1978-08-01

    Various technical aspects of the liquid metal fast breeder reactor (LMFBR), specifically pool type LMFBR's, are summarized. The information presented, for the most part, draws upon existing data. Special sections are devoted to design, technical feasibility (normal operating conditions), and safety (accident conditions). A survey of world fast reactors is presented in tabular form, as are two sets of reference reactor parameters based on available data from present and conceptual LMFBR's. (auth)

  7. From reactors to long pulse sources

    Mezei, F.

    1995-01-01

    We will show, that by using an adapted instrumentation concept, the performance of a continuous source can be emulated by one switch on in long pulses for only about 10% of the total time. This 10 fold gain in neutron economy opens up the way for building reactor like sources with an order of magnitude higher flux than the present technological limits. Linac accelerator driven spallation lends itself favorably for the realization of this kind of long pulse sources, which will be complementary to short pulse spallation sources, the same way continuous reactor sources are

  8. Fission energy: The integral fast reactor

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements

  9. Fission energy: The integral fast reactor

    Chang, Yoon I.

    1989-01-01

    The Integral Fast Reactor (IFR) is an innovative reactor concept being developed at Argonne National Laboratory as a such next- generation reactor concept. The IFR concept has a number of specific technical advantages that collectively address the potential difficulties facing the expansion of nuclear power deployment. In particular, the IFR concept can meet all three fundamental requirements needed in a next-generation reactor as discussed below. This document discusses these requirements.

  10. Fast reactor fuel design and development

    Bishop, J.F.W.; Chamberlain, A.; Holmes, J.A.G.

    1977-01-01

    Fuel design parameters for oxide and carbide fast reactor fuels are reviewed in the context of minimising the total uranium demands for a combined thermal and fast reactor system. The major physical phenomena conditioning fast reactor fuel design, with a target of high burn-up, good breeding and reliable operation, are characterised. These include neutron induced void swelling, irradiation creep, pin failure modes, sub-assembly structural behaviour, behaviour of defect fuel, behaviour of alternative fuel forms. The salient considerations in the commercial scale fabrication and reprocessing of the fuels are reviewed, leading to the delineation of possible routes for the manufacture and reprocessing of Commercial Reactor fuel. From the desiderata and restraints arising from Surveys, Performance and Manufacture, the problems posed to the Designer are considered, and a narrow range of design alternatives is proposed. The paper concludes with a consideration of the development areas and the conceptual problems for fast reactors associated with those areas

  11. Safeguards challenges of Fast Breeder Reactor

    Ko, H. S.

    2010-01-01

    Although the safeguards system of Sodium Fast Reactor (SFR) seems similar to that of Light Water Reactor (LWR), it was raised safeguards challenges of SFR that resulted from the visual opacity of liquid sodium, chemical reactivity of sodium and other characteristics of fast reactor. As it is the basic concept stage of the safeguards of SFR in Korea, this study tried to analyze the latest similar study of safeguards issues of the Fast Breeder Reactor (FBR) at Joyo and Monju in Japan. For this reason, this study is to introduce some potential safeguards challenges of Fast Breeder Reactor. With this analysis, future study could be to address the safeguards challenges of SFR in Korea

  12. Power from plutonium: fast reactor fuel

    Bishop, J.F.W.

    1981-01-01

    Points of similarity and of difference between fast reactor fuel and fuels for AGR and PWR plants are established. The flow of uranium and plutonium in fast and thermal systems is also mentioned, establishing the role of the fast reactor as a plutonium burner. A historical perspective of fast reactors is given in which the substantial experience accumulated in test and prototype is indicated and it is noted that fast reactors have now entered the commercial phase. The relevance of the data obtained in the test and prototype reactors to the behaviour of commercial fast reactor fuel is considered. The design concepts employed in fuel are reviewed, including sections on core support styles, pin support and pin detail. This is followed by a discussion of current issues under the headings of manufacture, performance and reprocessing. This section includes a consideration of gel fuel, achievable burn-up, irradiation induced distortions and material choices, fuel form, and fuel failure mechanisms. Future development possibilities are also discussed and the Paper concludes with a view on the logic of a UK fast reactor strategy. (U.K.)

  13. Development of physical conceptions of fast reactors

    Khomyakov, Yu.S.; Matveev, V.I.; Moiseev, A.V.

    2013-01-01

    • Russian experience in developing fast reactors has proved clearly scientific justification of conceptual physical principles and their technical feasibility. • However, the potential of fast reactors caused by their physical features has not been fully realized. • In order to assure the real possibility of transition to the nuclear power with fast reactors by about 2030 it is necessary to consistently update fast reactor designs for solving the following key problems: - increasing of self-protection level of reactor core; - improvement of technical and economical characteristics; - solution of the problems related to the fuel supply of nuclear power and assimilation of closed nuclear fuel cycle; - disposal of long lived radioactive waste and transmutation of minor actinides. • Russian program (2010-2020) on the development of basic concepts of the new generation reactors implies successive solution of the above problems. • New technical decisions will be demonstrated by development and assimilation of the new reactors: - BN-800 – development of the fuel cycle infrastructure and mastering of the new types of fuel; - BN-1200 reactor – demonstration economical efficiency of fast reactor and new level of safety; - BREST development and demonstration new heavy liquid metal coolant technology and alternative design concept

  14. Some questions and answers concerning fast reactors

    Marshall, W.

    1980-01-01

    The theme of the lecture is the place of the fast reactor in an evolving nuclear programme. The whole question of plutonium is first considered, ie its method of production and the ways in which it can be used in the fast reactor fuel cycle. Whether fast reactors are necessary is then discussed. Their safety is examined with particular attention to those design features which are most criticised ie high volumetric power density of the core, and the use of liquid sodium as coolant. Attention is then paid to environmental and safeguard aspects. (U.K.)

  15. Fast breeder reactors--lecture 4

    Marshall, W.; Davies, L.M.

    1986-01-01

    This paper discusses the economics of fast breeder reactors. An algebraic background is presented which represents the various views expressed by different nations regarding the cost of fast breeder reactors and their associated fuel cycle services, the timescale by which they might be available, and the simultaneous variations in the price of uranium. Actual presentations made by individual countries in recent discussions serve to verify the general nature of this present discussion. It is assumed that if nuclear power is to make a long term contribution to the needs of the world, the introduction of fast breeder reactors is both essential and necessary

  16. Sodium fast reactors with closed fuel cycle

    Raj, Baldev; Vasudeva Rao, PR 0

    2015-01-01

    Sodium Fast Reactors with Closed Fuel Cycle delivers a detailed discussion of an important technology that is being harnessed for commercial energy production in many parts of the world. Presenting the state of the art of sodium-cooled fast reactors with closed fuel cycles, this book:Offers in-depth coverage of reactor physics, materials, design, safety analysis, validations, engineering, construction, and commissioning aspectsFeatures a special chapter on allied sciences to highlight advanced reactor core materials, specialized manufacturing technologies, chemical sensors, in-service inspecti

  17. Comparison between TRU burning reactors and commercial fast reactor

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    Research and development for stabilizing or shortening the radioactive wastes including in spent nuclear fuel are widely conducted in view point of reducing the environmental impact. Especially it is effective way to irradiate and transmute long-lived TRU by fast reactors. Two types of loading way were previously proposed. The former is loading relatively small amount of TRU in all commercial fast reactors and the latter is loading large amount of TRU in a few TRU burning reactors. This study has been intended to contribute to the feasibility studies on commercialized fast reactor cycle system. The transmutation and nuclear characteristics of TRU burning reactors were evaluated and compared with those of conventional transmutation system using commercial type fast reactor based upon the investigation of technical information about TRU burning reactors. Major results are summarized as follows. (1) Investigation of technical information about TRU burning reactors. Based on published reports and papers, technical information about TRU burning reactor concepts transmutation system using convectional commercial type fast reactors were investigated. Transmutation and nuclear characteristics or R and D issue were investigated based on these results. Homogeneously loading of about 5 wt% MAs on core fuels in the conventional commercial type fast reactor may not cause significant impact on the nuclear core characteristics. Transmutation of MAs being produced in about five fast reactors generating the same output is feasible. The helium cooled MA burning fast reactor core concept propose by JAERI attains criticality using particle type nitride fuels which contain more than 60 wt% MA. This reactor could transmute MAs being produced in more than ten 1000 MWe-LWRs. Ultra-long life core concepts attaining more than 30 years operation without refueling by utilizing MA's nuclear characteristics as burnable absorber and fertile nuclides were proposed. Those were pointed out that

  18. Decommissioning of fast reactors after sodium draining

    2009-11-01

    Acknowledging the importance of passing on knowledge and experience, as well mentoring the next generation of scientists and engineers, and in response to expressed needs by Member States, the IAEA has undertaken concrete steps towards the implementation of a fast reactor data retrieval and knowledge preservation initiative. Decommissioning of fast reactors and other sodium bearing facilities is a domain in which considerable experience has been accumulated. Within the framework and drawing on the wide expertise of the Technical Working Group on Fast Reactors (TWG-FR), the IAEA has initiated activities aiming at preserving the feedback (lessons learned) from this experience and condensing those to technical recommendations on fast reactor design features that would ease their decommissioning. Following a recommendation by the TWG-FR, the IAEA had convened a topical Technical Meeting (TM) on 'Operational and Decommissioning Experience with Fast Reactors', hosted by CEA, Centre d'Etudes de Cadarache, France, from 11 to 15 March 2002 (IAEA-TECDOC- 1405). The participants in that TM exchanged detailed technical information on fast reactor operation and decommissioning experience with various sodium cooled fast reactors, and, in particular, reviewed the status of the various decommissioning programmes. The TM concluded that the decommissioning of fast reactors to reach safe enclosure presented no major difficulties, and that this had been accomplished mainly through judicious adaptation of processes and procedures implemented during the reactor operation phase, and the development of safe sodium waste treatment processes. However, the TM also concluded that, on the path to achieving total dismantling, challenges remain with regard to the decommissioning of components after sodium draining, and suggested that a follow-on TM be convened, that would provide a forum for in-depth scientific and technical exchange on this topic. This publication constitutes the Proceedings of

  19. Performance improvement of the Annular Core Pulse Reactor for reactor safety experiments

    Reuscher, J.A.; Pickard, P.S.

    1976-01-01

    The Annular Core Pulse Reactor (ACPR) is a TRIGA type reactor which has been in operation at Sandia Laboratories since 1967. The reactor is utilized in a wide variety of experimental programs which include radiation effects, neutron radiography, activation analysis, and fast reactor safety. During the past several years, the ACPR has become an important experimental facility for the United States Fast Reactor Safety Research Program and questions of interest to the safety of the LMFBR are being addressed. In order to enhance the capabilities of the ACPR for reactor safety experiments, a project to improve the performance of the reactor was initiated. It is anticipated that the pulse fluence can be increased by a factor of 2.0 to 2.5 utilizing a two-region core concept with high heat capacity fuel elements around the central irradiation cavity. In addition, the steady-state power of the reactor will be increased by about a factor of two. The new features of the improvements are described

  20. The energy gap and the fast reactor

    Hill, J.

    1977-01-01

    The background to the development of fast reactors is summarized. In Britain, the results of the many experiments performed, the operation of the Dounreay Fast Reactor for the past 18 years and the first year's operation of the larger Prototype Fast Reactor have all been very encouraging, in that they demonstrated that the performance corresponded well with predictions, breeding is possible, and the system is exceptionally stable in operation. The next step in fast reactor engineering is to build a full-scale fast reactor power station. There would seem to be little reason to expect more trouble than could reasonably be expected in constructing any large project of this general nature. However, from an engineering point of view continuity of experience is required. If a decision to build a commercial fast reactor were taken today there would be a 14-year gap between strating this and the start of the Prototype Fast Reactor. This is already much too long. From an environmental standpoint we have to demonstrate that we can manufacture and reprocess fast reacctor fuel for a substantial programme in a way that does not lead to pollution of the environment, and that plutonium-containing fuel can be transported in the quantities required in safety and in a way that does not attract terrorists or require a private army to ensure its security. Finally, we have to find a way to allow many countries to obtain the energy they need from fast reactors, without leading to the proliferation of nuclear weapons or weapons capability. (author)

  1. Optimal reactor strategy for commercializing fast breeder reactors

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    In this paper, a fuel cycle optimization model developed for analyzing the condition of selecting fast breeder reactors in the optimal reactor strategy is described. By dividing the period of planning, 1966-2055, into nine ten-year periods, the model was formulated as a compact linear programming model. With the model, the best mix of reactor types as well as the optimal timing of reprocessing spent fuel from LWRs to minimize the total cost were found. The results of the analysis are summarized as follows. Fast breeder reactors could be introduced in the optimal strategy when they can economically compete with LWRs with 30 year storage of spent fuel. In order that fast breeder reactors monopolize the new reactor market after the achievement of their technical availability, their capital cost should be less than 0.9 times as much as that of LWRs. When a certain amount of reprocessing commitment is assumed, the condition of employing fast breeder reactors in the optimal strategy is mitigated. In the optimal strategy, reprocessing is done just to meet plutonium demand, and the storage of spent fuel is selected to adjust the mismatch of plutonium production and utilization. The price hike of uranium ore facilitates the commercial adoption of fast breeder reactors. (Kako, I.)

  2. The fast reactor and energy supply

    1979-01-01

    The progress made with fast reactor development in many countries is summarised showing that the aim is to provide to the nation concerned an ability to instal fast reactor power stations at the end of this century or early in the next one. Accepting the importance of fast reactors as a potential independent source of energy, problems concerning economics, industrial capability, technical factors, public acceptibility and in particular plutonium management, are discussed. It is concluded that although fast reactors have reached a comparatively advanced stage of development, a number of factors make it likely that their introduction for electricity generation will be a gradual process. Nevertheless it is necessary to complete demonstration and development phases in good time. (U.K.)

  3. Design codes for fast reactor steam generators

    Townley, C.H.A.

    1978-01-01

    The paper reviews the design methods and design criteria which are available for fast reactor structures, and discusses the materials data which are required to demonstrate the integrity of the plant components. (author)

  4. Economic evaluation of fast reactor fuel cycling

    Hu Ping; Zhao Fuyu; Yan Zhou; Li Chong

    2012-01-01

    Economic calculation and analysis of two kinds of nuclear fuel cycle are conducted by check off method, based on the nuclear fuel cycling process and model for fast reactor power plant, and comparison is carried out for the economy of fast reactor fuel cycle and PWR once-through fuel cycle. Calculated based on the current price level, the economy of PWR one-through fuel cycle is better than that of the fast reactor fuel cycle. However, in the long term considering the rising of the natural uranium's price and the development of the post treatment technology for nuclear fuels, the cost of the fast reactor fuel cycle is expected to match or lower than that of the PWR once-through fuel cycle. (authors)

  5. Pulse shape discrimination with fast digitizers

    Cester, D.; Lunardon, M.; Nebbia, G.; Stevanato, L.; Viesti, G.; Petrucci, S.; Tintori, C.

    2014-01-01

    The pulse shape discrimination (PSD) between neutrons and gamma rays in liquid scintillators is studied by using the charge integration method with fast digitizers having different technical characteristics. The use of the Figure of Merit (FoM) to verify the PSD capability is discussed. The dependence of the FoM on the digitizer sampling rate and resolution is experimentally determined. The effects due to the type of source and the irradiation geometry are also evidenced and discussed

  6. Reactor kinetics - pulse and steady state

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  7. Review of fast reactor activities in India

    Paranjpe, S R [Reactor Research Centre, Kalpakkam, Tamil Nadu (India)

    1981-05-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties.

  8. Fast reactors - Dounreay and the future

    Jordan, G.

    1988-01-01

    In 1960 at Dounreay, the Dounreay Fast Reactor (DFR) supplied the world's first fast reactor grid electricity, and went on to a highly successful career as a test facility, as fuel designs advanced. In the 1960s, the Prototype Fast Reactor (PFR) was designed and built, beginning operation in 1974. The PFR was built to provide a sound technical and experienced base to support the UK's future Fast Reactor development and design. The in-vessel fuel handling facilities have demonstrated the flexibility of the pool design and a considerable body of in-core fuel handling experience is available. A key issue for further Fast Reactor application is the performance of fuel and, because PFR was designed to take full-scale fuel assemblies, the fuel performance experience is directly relevant to commercial designs. The original PFR design irradiation target of 60000 MWd/t U (equivalent to 7.5 % burn-up) has already been exceeded by a factor of more than two and a 15.9 % burn-up sub-assembly has been discharged and reprocessed without difficulty. Soon a 20 % sub-assembly will follow. Also the PFR reprocessing plant has demonstrated the safety and efficiency of this essential adjunct to Fast Reactor operation. The safety and the environmental protection features of both the PFR and its fuel reprocessing plant have been demonstrated over the last 14 years. 2 refs., 3 figs

  9. Review of fast reactor activities in India

    Paranjpe, S.R.

    1981-01-01

    It may be recalled that In the presentation at the last meeting of the IWGFR (13th Annual meeting), a broad outline of India's nuclear energy programme and the role of fast breeders in the programme has been provided. The steps taken to enable the fast breeders to fulfil their role have also been described. In brief, fast breeder reactors are considered as an essential and integral part of the programme of nuclear energy and constitute the second step in the programme, the first being the construction of natural uranium heavy water moderated reactors which will consume natural uranium but will produce plutonium to fuel fast breeder reactors. This basic position has remained unchanged and the Government is now taking steps to build a large number of heavy water reactors, say 10 million Kw capacity in the next 20 years. This defines the time frame for developing the fast breeder technology in the country. It has therefore been decided to mobilise the efforts towards design, construction and operation of a medium sized (about 500 M We) reactor by mid-nineties. Thus, the climate for fast breeder reactors is good and there is a good deal of enthusiasm amongst the scientists and engineers working in the field although the actual implementation of the programme during the year had to face certain difficulties

  10. Advanced liquid metal fast breeder reactor designs

    Sayles, C.W.

    1978-01-01

    Fast Breeder reactor power plants in the 1000-1200 MW(e) range are being built overseas and are being designed in this country. While these reactors have many characteristics in common, a variety of different approaches have been adopted for some of the major features. Some of those alternatives are discussed

  11. A glossary of terms for fast reactors

    Wheeler, R.C.

    1979-04-01

    The glossary aims to provide definitions of technical terms likely to be used in a fast reactor enquiry and to encourage the use of the same set of consistent terms in any documents intended for such an inquiry. In some cases definitions are formulated in the limited context of LMFBRS rather than applying to all types of reactors. A brief guide is presented to the different reactor types. (author)

  12. The fast breeder reactor Rapsodie (1962)

    Vautrey, L.; Zaleski, C.P.

    1962-01-01

    In this report, the authors describe the Rapsodie project, the French fast breeder reactor, as it stands at construction actual start-up. The paper provides informations about: the principal neutronic and thermal characteristics, the reactor and its cooling circuits, the main handling devices of radioactive or contaminated assemblies, the principles and means governing reactor operation, the purposes and locations of miscellaneous buildings. Rapsodie is expected to be critical by 1964. (authors) [fr

  13. EVOLUTION OF FAST MAGNETOACOUSTIC PULSES IN RANDOMLY STRUCTURED CORONAL PLASMAS

    Yuan, D.; Li, B.; Pascoe, D. J.; Nakariakov, V. M.; Keppens, R.

    2015-01-01

    We investigate the evolution of fast magnetoacoustic pulses in randomly structured plasmas, in the context of large-scale propagating waves in the solar atmosphere. We perform one-dimensional numerical simulations of fast wave pulses propagating perpendicular to a constant magnetic field in a low-β plasma with a random density profile across the field. Both linear and nonlinear regimes are considered. We study how the evolution of the pulse amplitude and width depends on their initial values and the parameters of the random structuring. Acting as a dispersive medium, a randomly structured plasma causes amplitude attenuation and width broadening of the fast wave pulses. After the passage of the main pulse, secondary propagating and standing fast waves appear. Width evolution of both linear and nonlinear pulses can be well approximated by linear functions; however, narrow pulses may have zero or negative broadening. This arises because narrow pulses are prone to splitting, while broad pulses usually deviate less from their initial Gaussian shape and form ripple structures on top of the main pulse. Linear pulses decay at an almost constant rate, while nonlinear pulses decay exponentially. A pulse interacts most efficiently with a random medium with a correlation length of about half of the initial pulse width. This detailed model of fast wave pulses propagating in highly structured media substantiates the interpretation of EIT waves as fast magnetoacoustic waves. Evolution of a fast pulse provides us with a novel method to diagnose the sub-resolution filamentation of the solar atmosphere

  14. Review of Fast Reactor Activities, March 1980

    Balz, W.

    1980-01-01

    As in previous years, a short outline of the major achievements made since the last IWGFR meeting is given in the following. On 18 February 1980 the Council of Ministers has approved a resolution in which they recognise the strategic importance of fast breeder reactors and the need to continue the efforts towards maintaining an effective fast breeder option in the Member States

  15. The dismantling of fast reactors: sodium processing

    Rodriguez, G.; Berte, M.; Serpante, J.P.

    1999-01-01

    Fast reactors require a coolant that does not slow down neutrons so water can not be used. Metallic sodium has been chosen because of its outstanding neutronic and thermal properties but sodium reacts easily with air and water and this implies that sodium-smeary components can not be considered as usual nuclear wastes. A stage of sodium neutralizing is necessary in the processing of wastes from fast reactors. Metallic sodium is turned into a chemically stable compound: soda, carbonates or sodium salts. This article presents several methods used by Framatome in an industrial way when dismantling sodium-cooled reactors. (A.C.)

  16. Fast reactor research activities in Brazil

    Menezes, A.

    1998-01-01

    Fast reactor activities in Brazil have the objective of establishing a consistent knowledge basis which can serve as a support for a future transitions to the activities more directly related to design, construction and operation of an experimental fast reactor, although its materialization is still far from being decided. Due to the present economic difficulties and uncertainties, the program is modest and all efforts have been directed towards its consolidation, based on the understanding that this class of reactors will play an important role in the future and Brazil needs to be minimally prepared. The text describes the present status of those activities, emphasizing the main progress made in 1996. (author)

  17. Stationary Liquid Fuel Fast Reactor

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-01-01

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  18. Stationary Liquid Fuel Fast Reactor

    Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  19. Calculation of the neutron parameters of fast thermal reactor

    Kukuleanu, V.; Mocioiu, D.; Drutse, E.; Konstantinesku, E.

    1975-01-01

    The system of neutron calculation for fast reactors is given. This system was used for estimation of physical parameters of fast thermal reactors investigated. The results obtained and different specific problems of the reactors of this type are described. (author)

  20. Strategies for minority actinides transmutation in fast reactors

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  1. Fabrication and quality assurance of some important components and sub-assemblies for Prototype Fast Breeder Reactor (PFBR) project

    Dutta, N.G.; More, S.S.

    2010-01-01

    Bharatiya Nabhikiya Vidyut Nigam (BHAVINI) is engaged in construction of 500 MWe prototype fast breeder reactor (PFBR) at Kalpakkam, Chennai. In this very important and prestigious national programmed M/s Kay Bouvet Engg. Pvt. Ltd. (M/s KBEPL) Satara is contributing in a major way by supplying many important sub-assemblies. M/s KBEPL is engaged in manufacturing, quality assurance and supply of many subassemblies of PFBR like under water trolley (UWT), shielding door, container and container storage rack (CSR), vessel in fuel transfer cell (FTC), personnel air lock (PAL), emergency air lock (EAL) and material air lock (MAL), absorber rod drive mechanism (ARDM) flask assembly and carriage in MAL etc. Two partition doors and four nos. of embedded parts (SS 304L) have already been supplied to Bhavini. The paper deals with manufacturing and Q.A. activities being carried out for supply of these important assemblies to PFBR projects. (author)

  2. Actinides burnup in a sodium fast reactor

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  3. A worldwide survey of fast breeder reactors

    Hennies, H.H.

    1986-01-01

    While the completion of the SNR 300 was accompanied by manifold discussions on questions relevant to safety and energy policies in the Federal Republic of Germany and as a result considerable scheduling delays and exceeding of budgets were recorded, breeder reactor technology has been progressing worldwide. The transition from the development phase with small trial reactors to the construction and operation of large performance reactors was completed systematically, in particular in France and the Soviet Union. Even though the uranium supply situation does not make a short-term and comprehensive employment of fast breeder reactors essential, technology has meanwhile been advanced to such a level and extensive operating experience is on hand to enable the construction and safe operation of fast breeder reactors. A positive answer has long been found to the question of the realization of a breeding rate to guarantee the breeding effect. There remain now the endeavors to achieve a reduction in investment and fuel cycle costs. (orig.) [de

  4. Nuclear Burning Wave Modular Fast Reactor Concept

    Kodochigov, N.G.; Sukharev, Yu.P.

    2014-01-01

    The necessity to provide nuclear power industry, comparable in a scope with power industry based on a traditional fuel, inspired studies of an open-cycle fast reactor aimed at: - solution of the problem of fuel provision by implementing the highest breeding characteristics of new fissile materials of raw isotopes in a fast reactor and applying accumulated fissile isotopes in the same reactor, independently on a spent fuel reprocessing rate in the external fuel cycle; - application of natural or depleted uranium for makeup fuel, which, with no spent fuel reprocessing, forms the most favorable non-proliferation conditions; - application of inherent properties of the core and reactor for safety provision. The present report, based on previously published papers, gives the theoretical backgrounds of the concept of the reactor with a nuclear burning wave, in which an enriched-fuel core (driver) is replaced by a blanket, and basic conditions for nuclear burning wave initiating and keeping are shown. (author)

  5. Fast reactor programme in India

    2015-09-04

    , mainly pressurized heavy water reactors (PHWRs) to .... plug housing 12 absorber rod drive mechanisms is supported on ... state-of-art erection equipments and construction methodologies and .... This decision is taken after.

  6. Fast reactors and problems in their development. Chapter 6

    Dombey, N.

    1980-01-01

    The main differences between fast reactors, in particular the liquid-metal fast breeder reactor (LMFBR), and thermal reactors are discussed. The view is taken, based on the intrinsic physics of the systems, that fast reactors should be considered as a different genus from thermal reactors. Some conclusions are drawn for fast reactor development generally and for the British programme in particular. Physics, economics and safety aspects are covered. (U.K.)

  7. Characterization of graphite-matrix pulsed reactor fuels

    Karnes, C.H.; Marion, R.H.

    1976-01-01

    The performance of the Annular Core Pulsed Reactor (ACPR) is being upgraded in order to accommodate higher fluence experiments for fast reactor fuel element transient and safety studies. The increased fluence requires a two-zone core with the inner zone containing fuel having a high enthalpy and the capability of withstanding very high temperatures during both pulsed and steady state operation. Because the fuel is subjected to a temperature risetime of 2 to 5 ms and to a large temperature difference across the diameter, fracture due to thermal stresses is the primary failure mode. One of the fuels considered for the high enthalpy inner region is a graphite-matrix fuel containing a dispersion of uranium--zirconium carbide solid solution particles. A program was initiated to optimize the development of this class of fuel. This summary presents results on formulations of fuel which have been fabricated by the Materials Technology Group of the Los Alamos Scientific Laboratory

  8. Fast neutron spectrometer with pulse shape discrimination

    Verbitsky, S.S.

    1978-01-01

    A fast neutron spectrometer with a stilbene single crystal designed to operate at high pulsed count rate has been described. Making use of identification and rejection of events, accompanied by pile-up, allowed to increase permissible count rates by an order of magnitude. The results of energy dependence of signal amplitude and shape relative anisotropy in stilbene in the range 4-10 and 2-8 MeV respectively have been presented. Taking into account anisotropy of the detector-scintillation properties allowed to improve particle discrimination. (Auth.)

  9. The safety of the fast reactor

    Matthews, R.R.

    1977-01-01

    Verbatim of an address by R.R. Matthews, Chief Nuclear Health and Safety Officer, UK Central Electricity Generating Board given on January 15th 1977. The object of this address was to give some opinions on the safety issues of fast reactors as seen from an operational point of view. An outline of the basic responsibilities for nuclear safety is first given, and it is emphasized that the Central Electricity Generating Board has a statutory responsibility for the safe operation of its nuclear plant. The Nuclear Installations Act places absolute responsibility on the operator for ensuring that injury to persons and damage to property do not occur, and the new Health and Safety at Work Act does likewise. In addition the Board has a Nuclear Health and Safety Department that has to ensure that adequate provision for safety is made in the design, construction, and operation of nuclear plant, and safety at operational stations is monitored continuously by inspectors. In addition the requirements of the Nuclear Installations Inspectorate, laid down in the site licence conditions, must be satisfied. All these requirements are here discussed in the light of application to commercial fast reactors. It is considered that the hazards to fast reactor operating personnel are small and little different from those of other types of reactor, and in some respects the fast reactor has advantages, particularly in regard to the use of a Na coolant. The possibility of various types of accident is considered. Radioactive effluent discharge is also considered. The fast reactor as an international problem is discussed, including security matters. The extensive experience gained in operation of the experimental and prototype fast reactors at Dounreay is emphasized. (U.K.)

  10. Real Time Computer for Plugging Indicator Control of Prototype Fast Breeder Reactor

    Manimaran, M.; Manoj, P.; Shanmugam, A.; Murali, N.; Satya Murty, S.A.V.

    2013-06-01

    Prototype Fast Breeder Reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Liquid sodium is used as coolant to transfer the heat produced in the reactor core to steam water circuit. Impurities present in the sodium are removed using purification circuit. Plugging indicator is a device used to measure the purity of the sodium. Versa Module Europa bus based Real Time Computer (RTC) system is used for plugging indicator control. Hot standby architecture consisting of dual redundant RTC system with switch over logic system is the configuration adopted to achieve fault tolerance. Plugging indicator can be controlled in two modes namely continuous and discontinuous mode. Software based Proportional-Integral-Derivative (PID) algorithms are developed for plugging indicator control wherein the set point changes dynamically for every scan interval of the RTC system. Set points and PID constants are kept as configurable in runtime in order to control the process in very efficient manner, which calls for reliable communication between RTC system and control station, hence TCP/IP protocol is adopted. Performance of the RTC system for plugging indicator control was thoroughly studied in the laboratory by simulating the inputs and monitored the control outputs. The control outputs were also monitored for different PID constants. Continuous and discontinuous mode plots were generated. (authors)

  11. Status of fast reactor development in India. April 1998 - March 1999

    Lee, S.M.

    1999-01-01

    Electricity growth rate in India in 1998-99 improved compared to the previous year and the installed electric capacity reached 93.25 GWe. The thermal nuclear power plants performed very well with average capacity factor of over 72%. The Kalpakkam Reprocessing Plant was commissioned. FBTR was operated at various power levels and a peak fuel burn-up of 49000 MWd/t achieved. Test irradiation of Zr-Nb was undertaken in FBTR for the PHWR programme. Refurbishing of the plant included new state of the art neutronic channels. Detailed design of PFBR was continued. The review of the chapters of the PSAR by an IGCAR Internal Safety Committee and by the AERB PFBR-Project Design Safety Committee was continued. Work on Environmental Impact Assessment Report, for obtaining clearance from the concerned environmental authorities, for the project has been started Technology development for PFBR included core subassemblies, main vessel, inner vessel, IHX, steam generator, roof slab, drive mechanism, control plug etc. Indigenous manufacture of raw materials has been also taken up. R and D in reactor physics, shielding, engineering development, instrumentation, thermal hydraulics, structural mechanics, metallurgy, non-destructive examination, chemistry, reprocessing and safety was continued. These include cover gas heat and mass transfer, SA hydraulic tests, thermal striping studies, fuel development for PFBR, corrosion and material property studies on steels, PIE of FBTR fuel and developments for the pilot plant for fast reactor fuel reprocessing. (author)

  12. Status of fast reactor development in India. April 1998 - March 1999

    Lee, S M [Safety Research, Health Physics, Information Services, Instrumentation and Electronics Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)

    1999-07-01

    Electricity growth rate in India in 1998-99 improved compared to the previous year and the installed electric capacity reached 93.25 GWe. The thermal nuclear power plants performed very well with average capacity factor of over 72%. The Kalpakkam Reprocessing Plant was commissioned. FBTR was operated at various power levels and a peak fuel burn-up of 49000 MWd/t achieved. Test irradiation of Zr-Nb was undertaken in FBTR for the PHWR programme. Refurbishing of the plant included new state of the art neutronic channels. Detailed design of PFBR was continued. The review of the chapters of the PSAR by an IGCAR Internal Safety Committee and by the AERB PFBR-Project Design Safety Committee was continued. Work on Environmental Impact Assessment Report, for obtaining clearance from the concerned environmental authorities, for the project has been started Technology development for PFBR included core subassemblies, main vessel, inner vessel, IHX, steam generator, roof slab, drive mechanism, control plug etc. Indigenous manufacture of raw materials has been also taken up. R and D in reactor physics, shielding, engineering development, instrumentation, thermal hydraulics, structural mechanics, metallurgy, non-destructive examination, chemistry, reprocessing and safety was continued. These include cover gas heat and mass transfer, SA hydraulic tests, thermal striping studies, fuel development for PFBR, corrosion and material property studies on steels, PIE of FBTR fuel and developments for the pilot plant for fast reactor fuel reprocessing. (author)

  13. A new physics design of control safety rods for prototype fast breeder reactor

    Devan, K.; Riyas, A.; Alagan, M.; Mohanakrishnan, P.

    2008-01-01

    The absorber rods of 500 MWe prototype fast breeder reactor (PFBR), which is under construction at Kalpakkam, have been designed to provide sufficient shutdown margin during normal and accidental conditions for ensuring the safe shut down. There are nine control and safety rods (CSR) and 3 diverse safety rods (DSR). Absorber material used is initially 65% enriched B 4 C. Based on the reported experiments in PHENIX reactor and design of absorber rods in SUPERPHENIX, the design of CSR is modified by introducing 20 cm length natural B 4 C at the top and bottom of absorber column and maintaining the remaining portion with 65% enriched B 4 C. This design ensures sufficient shutdown margin (SDM) during normal operation and also during the one stuck rod condition. For comparison of the above two designs, a CSR of 57% of enrichment was considered which gives the same worth as the revised CSR design with natural B 4 C sections in top and bottom. There is significant savings in the initial inventory of enriched B 4 C for CSR. The annual requirement of enriched boron also reduces. This new CSR can last for about 5 cycles, based on its clad life. But, it is planned to be replaced after every 3 cycles (1 cycle equals 180 efpd) of operation due to radiation damage effects in hexcan D9 steel. Use of ferritic steel for hexcan can extend the life of CSR to 5 cycles

  14. Overview of the fast reactors fuels program

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides

  15. Design considerations for epithermal pulse reactors

    Ostensen, R.W.

    1978-01-01

    Simplified design criteria were developed for scoping analyses of epithermal pulse reactors for use in LMFBR safety testing. By using these criteria, materials and designs were investigated to determine performance limits of moderately sized reactor cores. Several designs are suggested for further study. These are a gas-cooled core fueled with a heterogeneous mixture of Fe-UO 2 cermet and BeO-UO 2 ceramic fuels, and a heavy-water-cooled core fueled with an Fe-UO 2 cermet

  16. Fast-acting nuclear reactor control device

    Kotlyar, O.M.; West, P.B.

    1993-01-01

    A fast-acting nuclear reactor control device is described for controlling a safety control rod within the core of a nuclear reactor, the reactor controlled by a reactor control system, the device comprising: a safety control rod drive shaft and an electromagnetic clutch co-axial with the drive shaft operatively connected to the safety control rod for driving and positioning the safety control rod within or without the reactor core during reactor operation, the safety rod being oriented in a substantially vertical position to allow the rod to fall into the reactor core under the influence of gravity during shutdown of the reactor; the safety control rod drive shaft further operatively connected to a hydraulic pump such that operation of the drive shaft simultaneously drives and positions the safety control rod and operates the hydraulic pump such that a hydraulic fluid is forced into an accumulator, filling the accumulator with oil for the storage and supply of primary potential energy for safety control rod insertion such that the release of potential energy in the accumulator causes hydraulic fluid to flow through the hydraulic pump, converting the hydraulic pump to a hydraulic motor having speed and power capable of full length insertion and high speed driving of the safety control rod into the reactor core; a solenoid valve interposed between the hydraulic pump and the accumulator, said solenoid valve being a normally open valve, actuated to close when the safety control rod is out of the reactor during reactor operation; and further wherein said solenoid opens in response to a signal from the reactor control system calling for shutdown of the reactor and rapid insertion of the safety control rod into the reactor core, such that the opening of the solenoid releases the potential energy in the accumulator to place the safety control rod in a safe shutdown position

  17. Investigation of molten salt fast reactor

    Kubota, Kenichi; Konomura, Mamoru

    2002-01-01

    On survey research for practicability strategy of fast reactor (FR) (phase 1), to extract future practicability image candidates of FR from wide options, in addition to their survey and investigation objects of not only solid fuel reactors of conventional research object but also molten salt reactor as a flowing fuel reactor, investigation on concept of molten salt FR plant was carried out. As a part of the first step of the survey research for practicability strategy, a basic concept on plant centered at nuclear reactor facility using chloride molten salt reactor capable of carrying out U-Pu cycle was examined, to perform a base construction to evaluate economical potential for a practical FBR. As a result, a result could be obtained that because of inferior fuel inventory and heat transmission to those in Na cooling reactor in present knowledge, mass of reactor vessel and intermediate heat exchanger were to widely increased to expect reduction of power generation unit price even on considering cheapness of its fuel cycle cost. Therefore, at present step further investigation on concept design of the chloride molten salt reactor plant system is too early in time, and it is at a condition where basic and elementary researches aiming at upgrading of economical efficiency such as wide reduction of fuel inventory, a measure expectable for remarkable rationalization effect of reprocessing system integrating a reactor to a processing facility, and so on. (G.K.)

  18. Expert system for fast reactor diagnostic

    Parcy, J.P.

    1982-09-01

    A general description of expert systems is given. The operation of a fast reactor is reviewed. The expert system to the diagnosis of breakdowns limited to the reactor core. The structure of the system is described: specification of the diagnostics; structure of the data bank and evaluation of the rules; specification of the prediagnostics and evaluation; explanation of the diagnostics; time evolution of the system; comparison with other expert systems. Applications to some cases of faults are finally presented [fr

  19. Fast reactor development programme in France

    Le Rigoleur, C [Direction des Reacteurs Nucleaires, CEA Centre d` Etudes de Cadarache, Saint-Paul-lez-Durance (France)

    1998-04-01

    First the general situation regarding production of electricity in France is briefly described. Then in the field of Fast Reactors, the main events of 1996 are presented. At the end of February 1996, the PHENIX reactor was ready for operation. After review meetings, the Safety Authority has requested safety improvements and technical demonstrations, before it examines the possibility of authorizing a new start-up of PHENIX. The year 1996 was devoted to this work. In 1996, SUPERPHENIX was characterized by excellent operation throughout the year. The reactor was restarted at the end of 1995 after a number of minor incidents. The reactor power was increased by successive steps: 30% Pn up to February 6, followed by 50% Pn up to May then 60% up to October and 90% Pn during the last months. A programmed shutdown period occurred during May, June and mid-July 1996. The reactor has been shutdown at the end of 1996 for the decenial control of the steam generators. The status of the CAPRA project, aimed at demonstrating the feasibility of a fast reactor to burn plutonium at as high a rate as possible and the status of the European Fast Reactor are presented as well as their evolution. Finally the R and D in support of the operation of PHENIX and SUPERPHENIX, in support of the ````knowledge-acquisition```` programme, and CAPRA and EFR programmes is presented, as well as the present status of the stage 2 dismantling of the RAPSODIE experimental fast reactor. (author). 4 refs, figs, 2 tabs.

  20. Current status of fast reactor physics

    Hummel, H.H.

    1979-01-01

    The subject of calculation of reactivity coefficients for fast reactors is developed, starting with a discussion of the status of relevant nuclear data and proceeding to the subjects of group cross section generation and of methods of obtaining reactivity coefficients from group cross sections. Reactivity coefficients measured in critical experiments are compared with calculated values. Dependence of reactivity coefficients on reactor design is discussed. Finally, results of the recent international comparison of calculated reactivity coefficients are presented

  1. Fast Reactor Knowledge Management at IGCAR, India

    Kuriakose, K.K.

    2013-01-01

    The Process Architecture: → Acquire: Solicitation; Voluntary submission; Mandatory requirements; Interview/Observation; → Quality Control: Review/Editing; Certification; Quality index; → Disseminate: Publish through the Technology architecture; Formal/Informal Meetings; COPs; → Utilize: Projects; Day-to-day activities; → Maintenance; → Retirement. Mission: To conduct a broad based multidisciplinary programme of scientific research and advanced engineering development, directed towards the establishment of the technology of Sodium Cooled Fast Breeder Reactors (FBR) and associated fuel cycle facilities in the Country. The mission includes the development and applications of new and improved materials, techniques, equipment and systems for FBRs, pursue basic research to achieve breakthroughs in Fast Reactor technology

  2. Slow clean-up for fast reactor

    Banks, Michael

    2008-05-01

    The year 2300 is so distant that one may be forgiven for thinking of it only in terms of science fiction. But this is the year that workers at the Dounreay power station in Northern Scotland - the UK's only centre for research into "fast" nuclear reactors - term as the "end point" by which time the site will be completely clear of radioactive material. More than 180 facilities - including the iconic dome that housed the Dounreay Fast Reactor (DFR) - were built at at the site since it opened in 1959, with almost 50 having been used to handle radioactive material.

  3. Discharges from a fast reactor reprocessing plant

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  4. A review of the UK fast reactor programme

    Smith, R.D.

    1982-01-01

    A review of the United Kingdom Fast Reactor Programme is introduced. Operational experience with the Prototype Fast Reactor (PFR) is briefly summarized. The design concept of the Commercial Demonstration Fast Reactor (CDFR) is given in some detail. The emphasis is on materials development, chemical engineering/sodium technology, fuel reprocessing and fuel cycle, engineering component development and reactor safety

  5. Universal Fast Breeder Reactor Subassembly Counter manual

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications

  6. The behaviour of materials in fast reactors

    Matthews, J.R.

    1977-01-01

    Fast neutron damage in fast reactors can limit the life of structural components through the growth voids. The main features of the current theory of point defect production and condensation are surveyed. The role of metallurgical structures and radiation produced extended defects is outlined and used to demonstrate the development of volume swelling and radiation hardening. Mechanisms of radiation creep are described in the context of the preceding treatment of point defect behaviour. Finally, future trends in the field are briefly explored. (author)

  7. Universal Fast Breeder Reactor Subassembly Counter manual

    Menlove, H.O.; Eccleston, G.W.; Swansen, J.E.; Goris, P.; Abedin-Zadeh, R.; Ramalho, A.

    1984-08-01

    A neutron coincidence counter has been designed for the measurement of fast breeder reactor fuel assemblies. This assay system can accommodate the full range of geometries and masses found in fast breeder subassemblies under IAEA safeguards. The system's high-performance capability accommodates high plutonium loadings of up to 16 kg. This manual describes the system and its operation and gives performance and calibration parameters for typical applications.

  8. Integral fast reactor concept inherent safety features

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1987-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFT development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: 1) a liquid metal (sodium) coolant, 2) a pool-type reactor primary system configuration, 3) an advanced ternary alloy metallic fuel, and 4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  9. Integral Fast Reactor concept inherent safety features

    Marchaterre, J.F.; Sevy, R.H.; Cahalan, J.E.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative liquid-metal-cooled reactor concept being developed at Argonne National Laboratory. The two major goals of the IFR development effort are improved economics and enhanced safety. The design features that together fulfill these goals are: (1) a liquid metal (sodium) coolant, (2) a pool-type reactor primary system configuration, (3) an advanced ternary alloy metallic fuel, and (4) an integral fuel cycle. This paper reviews the design features that contribute to the safety margins inherent to the IFR concept. Special emphasis is placed on the ability of the IFR design to accommodate anticipated transients without scram (ATWS)

  10. The Integral Fast Reactor (IFR) concept

    Till, C.E.; Chang, Y.I.

    1989-01-01

    In addition to maintaining the viability of its present commercial nuclear technology, a principal challenge in the US in the 1990s and beyond will be to regain and maintain a position among the world leadership in advanced reactor research and development. In this paper we'll discuss factors which we believe should today provide the rationale and focus for advanced reactor R and D, and we will then review the status of the major US effort, the Integral Fast Reactor (IFR) program

  11. Fast pulse beam generation systems for electron accelerators

    Koontz, R.F.

    1977-01-01

    The fast pulse beam generation system to supply the SLAC storage ring, SPEAR, by the two one nanosecond bunch electron beam pulses is described. Generation of these pulses is accomplished with a combination of a fast pulsed grided gun and a synchronized transverse beam chopper. Fast gun based on spherical cathode-grid assembly has output current up to 2As. Fast pulse amplifier system can handle trains of short pulses with repetition rates up to 40 MHz during the 1.6 μs normal accelerating time. Chopping deflector system consists of a resonant coaxial line with the deflecting plates. The resonator frequency is 39.667 MHz. A schematic diagram of the resonant system is shown. The fast beam pickup system has a one hundred picosecond rise time overrall. Fast beam generation and chopper systems permit to generate almost any short or single bunch beam profile needed for experiments

  12. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  13. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    Neil Todreas; Pavel Hejzlar

    2008-01-01

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores treated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcome the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better thermal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor

  14. Report of the Panel on Kinetics and Applications of Pulsed Research Reactors

    1966-03-01

    The question of the dynamic behaviour of a reactor subjected to a highly supercritical condition has had special interest for reactor physicists because of the reactor safety implications involved. The large amount of experimental and theoretical work done during the past dozen years or sc to understand fast transient behaviour and the inherent safety characteristics of reactors has not only helped to ease the concern of reactor designers about the consequences of a prompt critical excursion, but, by demonstrating the feasibility of operating certain types of reactors in a pulsed fashion has led to the development of an extremely useful research tool. Pulsed research reactors of a number of different kinds are in operation, while newer, higher performance systems are presently being designed and constructed. Such devices are being used more and more for research in physics, chemistry and reactor engineering, and with the advent of the newer machines, new research areas will become accessible. Because of the rapidly growing interest in the utilization of pulsed reactors for research, the IAEA convened a panel of experts in this field to review recent progress in the design and application of pulsed reactors to consider the problems of converting an existing pool type research reactor to a pulsing types and to consider future potentialities. The panel met in Vienna from 17 to 21 May 1965. This report of the panel summarizes the discussions

  15. Integral data for fast reactors

    Collins, P.J.; Poenitz, W.P.; McFarlane, H.F.

    1988-01-01

    Requirements at Argonne National Laboratory to establish the best estimates and uncertainties for LMR design parameters have lead to an extensive evaluation of the available critical experiment database. Emphasis has been put upon selection of a wide range of cores, including both benchmark, assemblies covering a range of spectra and compositions and power reactor mock-up assemblies with diverse measured parameters. The integral measurements have been revised, where necessary, using the most recent reference data and a covariance matrix constructed. A sensitivity database has been calculated, embracing all parameters, which enables quantification of the relevance of the integral data to parameters calculated with ENDF/B-V.2 cross sections

  16. Liquid metal fast reactor transient design

    Horak, C.; Purvis, E. III

    2000-01-01

    An examination has been made of how the currently available computing capabilities could be used to reduce Liquid Metal Fast Reactor design, manufacturing, and construction cost. While the examination focused on computer analyses some other promising means to reduce costs were also examined. (author)

  17. Thermophysical properties of fast reactor fuel

    Fink, J.K.

    1984-01-01

    This paper identifies the fuel properties for which more data are needed for fast-reactor safety analysis. In addition, a brief review is given of current research on the vapor pressure over liquid UO 2 and (U,PU)O/sub 2-x/, the solid-solid phase transition in actinide oxides, and the thermal conductivity of molten urania

  18. Charging machine for a fast production reactor

    Artem'ev, L.N.; Kurilkin, V.V.

    1971-01-01

    Charging machine for a fast production reactor is described. The machine contains charging mechanism, mechanism for positioning fresh fuel and spent fuel assemtlies, storage drums with sockets for control rod assemtlies and collet tongs for control rods. Recharging is conducted by means of ramp channel

  19. Fast breeder reactor at Kalkar. Pt. 2

    Degen, G.

    1979-02-01

    After a brief description of the previous development of the case the legal decisions are documented and commented on. The concept of the then FDP-Minister of Economy of North Rhine Westphalia (Riemer, Pu-combustion plant) is presented and the prospects and risk for the fast breeder reactor after the 3. partial construction license are discussed. (orig./HP) [de

  20. Use of fast reactors for actinide transmutation

    1993-03-01

    The management of radioactive waste is one of the key issues in today's discussions on nuclear energy, especially the long term disposal of high level radioactive wastes. The recycling of plutonium in liquid metal fast breeder reactors (LMFBRs) would allow 'burning' of the associated extremely long life transuranic waste, particularly actinides, thus reducing the required isolation time for high level waste from tens of thousands of years to hundreds of years for fission products only. The International Working Group on Fast Reactors (IWGFR) decided to include the topic of actinide transmutation in liquid metal fast breeder reactors in its programme. The IAEA organized the Specialists Meeting on Use of Fast Breeder Reactors for Actinide Transmutation in Obninsk, Russian Federation, from 22 to 24 September 1992. The specialists agree that future progress in solving transmutation problems could be achieved by improvements in: Radiochemical partitioning and extraction of the actinides from the spent fuel (at least 98% for Np and Cm and 99.9% for Pu and Am isotopes); technological research and development on the design, fabrication and irradiation of the minor actinides (MAs) containing fuels; nuclear constants measurement and evaluation (selective cross-sections, fission fragments yields, delayed neutron parameters) especially for MA burners; demonstration of the feasibility of the safe and economic MA burner cores; knowledge of the impact of maximum tolerable amount of rare earths in americium containing fuels. Refs, figs and tabs

  1. Reactor noise analysis of experimental fast reactor 'JOYO'

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  2. Studies on Polonium-210 and Lead-210 aspects in a near shore coastal environment at Kalpakkam, Tamilnadu, India

    Iyengar, M.A.R.

    2013-01-01

    In the present study, an attempt has been made to summarize the findings from a comprehensive research investigation, related to polonium-210 and lead-210 aspects in a confined near shore coastal marine environment at the site of Kalpakkam nuclear complex. The site hosts some major nuclear installations, the main units being a nuclear power station, fast breeder reactor units, reprocessing facilities and supporting facilities. These investigation have been carried out to evaluate the natural radiation exposures of the resident human population in the neighbourhood of the site complex, and compute the additional potential doses to the community, arising from operation of nuclear facilities. An added significance, surfaced during the study, was the presence of a higher natural radiation background in the study area, due to the occurrence of monazite - a thorium mineral - bearing beach sands in vast stretches of the coastal areas

  3. The development of fast reactors in France

    Vautrey, L.

    1982-01-01

    Only minor changes were introduced in the French nuclear programme by the new government in 1981. The operating conditions of Rapsodie were very satisfactory up to January 1982. After a leak in the double primary jacket (nitrogen circuit) the reactor was shut down for investigations. Phenix is continuing to operate smoothly. Construction of Super Phenix (Creys Malville power plant) is proceeding normally though with some delay. The studies for the future (after Creys Malville) are following their way both for the Project 1500 (Super Phenix 2) and for the specific plants of the fuel cycle. Research and development are largely directed toward Super Phenix 1 needs and the prospects of Super Phenix 2. International cooperation remains very intensive. The financial resources devoted to the development of fast reactors are globally stable. Including fuel cycle and safety (but excluding the Phenix operation) about 1300 millions of francs will be devoted to fast reactors by the C.E.A. in 1982. (author)

  4. Status of fast reactor activities in Brazil

    Menezes, Artur

    1996-01-01

    This text describes the present status of fast reactor activities in Brazil, emphasizing the strategies being used to preserve this reactor concept as a viable alternative for future electricity generation in the country. The program is mostly research-oriented and has the objective of establishing a consistent knowledge basis which can serve as a support for the transition to the activities more directly related to design, construction and operation of an experimental fast reactor. Due to the present economic difficulties, the program is still modest but it is gradually growing. A report which has been finalized in December, 1995 and submitted to the authorities indicates the existence of the grounds for enlarging and consolidating the program. (author)

  5. Nuclear data for advanced fast reactors

    Rabotnov, N.S.

    2001-01-01

    Interest revives to fast reactors as the only proven technology obviously able of satisfying human energy needs for the next millennium by using full energy content of both natural uranium resources and of vast stocks of depleted uranium. This interest stimulates revision and improvement of fast reactor ND. Progress in reactor calculations accuracy due to better codes and much faster computers also increases relative importance of the input data uncertainties, especially in case of small reactivity margin and fuels of equilibrium compositions. The main objects of corresponding R and D efforts should be minor actinides and heavy liquid metal coolant. Data error bands and covariance information also gain importance as necessary components of neutron physics calculations. (author)

  6. Irradiation behavior of metallic fast reactor fuels

    Pahl, R.G.; Porter, D.L.; Crawford, D.C.; Walters, L.C.

    1991-01-01

    Metallic fuels were the first fuels chosen for liquid metal cooled fast reactors (LMR's). In the late 1960's world-wide interest turned toward ceramic LMR fuels before the full potential of metallic fuel was realized. However, during the 1970's the performance limitations of metallic fuel were resolved in order to achieve a high plant factor at the Argonne National Laboratory's Experimental Breeder Reactor II. The 1980's spawned renewed interest in metallic fuel when the Integral Fast Reactor (IFR) concept emerged at Argonne National Laboratory. A fuel performance demonstration program was put into place to obtain the data needed for the eventual licensing of metallic fuel. This paper will summarize the results of the irradiation program carried out since 1985

  7. Fast breeder reactor electromagnetic pump

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  8. Breeding description for fast reactors and symbiotic reactor systems

    Hanan, N.A.

    1979-01-01

    A mathematical model was developed to provide a breeding description for fast reactors and symbiotic reactor systems by means of figures of merit type quantities. The model was used to investigate the effect of several parameters and different fuel usage strategies on the figures of merit which provide the breeding description. The integrated fuel cycle model for a single-reactor is reviewed. The excess discharge is automatically used to fuel identical reactors. The resulting model describes the accumulation of fuel in a system of identical reactors. Finite burnup and out-of-pile delays and losses are treated in the model. The model is then extended from fast breeder park to symbiotic reactor systems. The asymptotic behavior of the fuel accumulation is analyzed. The asymptotic growth rate appears as the largest eigenvalue in the solution of the characteristic equations of the time dependent differential balance equations for the system. The eigenvector corresponding to the growth rate is the core equilibrium composition. The analogy of the long-term fuel cycle equations, in the framework of this model, and the neutron balance equations is explored. An eigenvalue problem adjoint to the one generated by the characteristic equations of the system is defined. The eigenvector corresponding to the largest eigenvalue, i.e. to the growth rate, represents the ''isotopic breeding worths.'' Analogously to the neutron adjoint flux it is shown that the isotopic breeding worths represent the importance of an isotope for breeding, i.e. for the growth rate of a system

  9. Scenario for commercialization of fast breeder reactors

    Kumaoka, Yoshio; Sato, Morihiko

    1989-01-01

    To realize the commercialization of fast breeder reactors (FBRs), it is essential to reduce construction costs to the same level as those for the current light water reactors. For this target to be attained, a highly important factor is to reduce to the lowest-levels possible the quantities of materials and volume of the buildings required for the primary and secondary sodium loops of the FBR. In this direction, an innovative compact FBR plant concept which holds promise for commercialization has been developed by introducing the pooltype reactor concept with the shortest possible secondary sodium loops, realized by coupling electromagnetic pumps with the steam generators. In comparison with the French Super Phenix reactor, for example, the construction of this 1,300-MWe FBR plant could be achieved with half the material quantities and plant volume required by the former type. (author)

  10. Conceptual design of reactor assembly of prototype fast breeder reactor

    Selvaraj, A.; Balasubramaniyan, V.; Raghupathy, S.; Elango, D.; Sodhi, B.S.; Chetal, S.C.; Bhoje, S.B.

    1996-01-01

    The conceptual design of Reactor Assembly of 500 MWe Prototype Fast Breeder Reactor (as selected in 1985) was reviewed with the aim of 'simplification of design', 'Compactness of the reactor assembly' and 'ease in construction'. The reduction in size has been possible by incorporating concentric core arrangement, adoption of elastomer seals for Rotatable plugs, fuel handling with one transfer arm type mechanism, incorporation of mechanical sealing arrangement for IHX at the penetration in Inner vessel redan and reduction in number of components. The erection of the components has been made easier by adopting 'hanging' support for roof slab with associated changes in the safety vessel design. This paper presents the conceptual design of the reactor assembly components. (author). 8 figs, 2 tabs

  11. Fast Spectrum Molten Salt Reactor Options

    Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  12. Intrinsically secure fast reactors with dense cores

    Slessarev, Igor

    2007-01-01

    Secure safety, resistance to weapons material proliferation and problems of long-lived wastes remain the most important 'painful points' of nuclear power. Many innovative reactor concepts have been developed aimed at a radical enhancement of safety. The promising potential of innovative nuclear reactors allows for shifting accents in current reactor safety 'strategy' to reveal this worth. Such strategy is elaborated focusing on the priority for intrinsically secure safety features as well as on sure protection being provided by the first barrier of defence. Concerning the potential of fast reactors (i.e. sodium cooled, lead-cooled, etc.), there are no doubts that they are able to possess many favourable intrinsically secure safety features and to lay the proper foundation for a new reactor generation. However, some of their neutronic characteristics have to be radically improved. Among intrinsically secure safety properties, the following core parameters are significantly important: reactivity margin values, reactivity feed-back and coolant void effects. Ways of designing intrinsically secure safety features in fast reactors (titled hereafter as Intrinsically Secure Fast Reactors - ISFR) can be found in the frame of current reactor technologies by radical enhancement of core neutron economy and by optimization of core compositions. Simultaneously, respecting resistance to proliferation, by using non-enriched fuel feed as well as a core breeding gain close to zero, are considered as the important features (long-lived waste problems will be considered in a separate paper). This implies using the following reactor design options as well as closed fuel cycles with natural U as the reactor feed: ·Ultra-plate 'dense cores' of the ordinary (monolithic) type with negative total coolant void effects. ·Modular type cores. Multiple dense modules can be embedded in the common reflector for achieving the desired NPP total power. The modules can be used also independently (as

  13. Thermal hydraulics in the hot pool of Fast Breeder Test Reactor

    Padmakumar, G.; Pandey, G.K.; Vaidyanathan, G.

    2009-01-01

    Sodium cooled Fast Breeder Test Reactor (FBTR) of 40 MWt/13 MWe capacity is in operation at Kalpakkam, near Chennai. Presently it is operating with a core of 10.5 MWt. Knowledge of temperatures and flow pattern in the hot pool of FBTR is essential to assess the thermal stresses in the hot pool. While theoretical analysis of the hot pool has been conducted by a three-dimensional code to access the temperature profile, it involves tuning due to complex geometry, thermal stresses and vibration. With this in view, an experimental model was fabricated in 1/4 scale using acrylic material and tests were conducted in water. Initially hydraulic studies were conducted with ambient water maintaining Froude number similarity. After that thermal studies were conducted using hot and cold water maintaining Richardson similitude. In both cases Euler similarity was also maintained. Studies were conducted simulating both low and full power operating conditions. This paper discusses the model simulation, similarity criteria, the various thermal hydraulic studies that were carried out, the results obtained and the comparison with the prototype measurements.

  14. Power supply for control and instrumentation in Fast Breeder Test Reactor

    Raghavan, K.; Shanmugam, T.K.

    1977-01-01

    The design and operation of the four 'no-break' power supplies for control and instrumentation in the Fast Breeder Test Reactor (FBTR), Kalpakkam, are described. Interruptions in the power supplies are eliminated by redundancy and battery back-up source while voltage dips and transients are taken care by automatic regulation system. The four power supplies are : (1) 24 V D.C. exclusively for neutronic and safety circuits, (2) 48 V D.C. for control logic indication lamps and solenoid valves, (3) 220 V D.C. for switchgear control, control room emergency lighting and D.C. flushing oil pump for the turbine and (4) 220 V A.C. single-phase 50 H/Z for computers and electronics of control and instrumentation. Stationary lead-acid batteries (lead antimony type) in floating mode operation with rectifier/charger are used for emergency back-up. All these power supplies are fed by 415 V, 3-phase, 50 HZ emergency supply buses which are provided with diesel generator back-up. Static energy conversion system (in preference to mechanical rotation system) is used for A.C. to D.C. and also for A.C. to A.C. conversion. (M.G.B.)

  15. Fast breeder reactor fuel reprocessing in France

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  16. Conceptual design of laser fusion reactor KOYO-fast

    Tomabechi, K.; Kozaki, Y.; Norimatsu, T.

    2006-01-01

    A conceptual design of the laser fusion reactor KOYO-F based on the fast ignition scheme is reported including the target design, the laser system and the design for chamber. A Yb-YAG ceramic laser operated at 200 K is the primary candidate for the compression laser and an OPCPA (optical parametric chirped pulse amplification) system is the one for the ignition laser. The chamber is basically a wet wall type but the fire position is vertically off-set to simplify the protection scheme of the ceiling. The target consists of foam insulated, cryogenic DT shells with a LiPb, reentrant guide-cone. (authors)

  17. Integral fast reactor shows its mettle

    Chang, Ya.; Lajnberri, M.; Barris, L.; Uoters, L.

    1988-01-01

    The main aspects of the problem of developing a closed fuel cycle at a NPP built in the so-called integrated version when a fast reactor and the plant for spent fuel regeneration and fuel element production are located in the same site (IFR project), are considered. The technologies of U-Pu-Zr alloy fuel reprocessing and production based on high-temperature metallurgical process and the method of casting under pressure are described. The demonstration of practical feasibility of the fuel cycle on the basis of the IFR reactor is planned for 1990

  18. Coatings for fast breeder reactor components

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  19. Unusual occurrences in fast breeder test reactor

    Kapoor, R.P.; Srinivasan, G.; Ellappan, T.R.; Ramalingam, P.V.; Vasudevan, A.T.; Iyer, M.A.K.; Lee, S.M.; Bhoje, S.B.

    2000-01-01

    Fast Breeder Test Reactor (FBTR) is a 40 MWt/13.2 MWe sodium cooled mixed carbide fuelled reactor. Its main aim is to generate experience in the design, construction and operation of fast reactors including sodium systems and to serve as an irradiation facility for the development of fuel and structural materials for future fast reactors. It achieved first criticality in Oct 85 with Mark I core (70% PuC - 30% UC). Steam generator was put in service in Jan 93 and power was raised to 10.5 MWt in Dec 93. Turbine generator was synchronised to the grid in Jul 97. The indigenously developed mixed carbide fuel has achieved a burnup of 44,000 MW-d/t max at a linear heat rating of 320 W/cm max without any fuel clad failure. The commissioning and operation of sodium systems and components have been smooth and performance of major components, viz., sodium pumps, intermediate heat exchangers and once through sodium heated steam generators (SG) have been excellent. There have been three minor incidents of Na/NaK leaks during the past 14 years, which are described in the paper. There have been no incident of a tube leak in SG. However, three incidents of water leaks from water / steam headers have been detailed. The plant has encountered some unusual occurrences, which were critically analysed and remedial measures, in terms of system and procedural modifications, incorporated to prevent recurrence. This paper describes unusual occurrences of fuel handling incident of May 1987, main boiler feed pump seizure in Apr 1992, reactivity transients in Nov 1994 and Apr 1995, and malfunctioning of the core cover plate mechanism in Jul 1995. These incidents have resulted in long plant shutdowns. During the course of investigation, various theoretical and experimental studies were carried out for better understanding of the phenomena and several inspection techniques and tools were developed resulting in enriching the technology of sodium cooled reactors. FBTR has 36 neutronic and process

  20. Liquid metal cooled fast breeder nuclear reactor

    Scott, D.

    1979-01-01

    A liquid metal cooled fast breeder nuclear reactor has a core comprising a plurality of fuel assemblies supported on a diagrid and submerged in a pool of liquid metal coolant within a containment vessel, the diagrid being of triple component construction and formed of a short cylindrical plenum mounted on a conical undershell and loosely embraced by a fuel store carrier. The plenum merely distributes coolant through the fuel assemblies, the load of the assemblies being carried by the undershell by means of struts which penetrate the plenum. The reactor core, fuel store carrier and undershell provide secondary containment for the plenum. (UK)

  1. EDF research on fast neutron reactors

    In order to make possible the calculation of the temperatures of the sodium, of the sheath and of the fuel in fast reactor assemblies, taking into account the mixing phenomena induced by the helicoidal wires, two design codes have been developed. Those codes have then been adapted for their integration in the Superalcyon system. This system shall constitute the reference tool for the development of those codes that shall manage Phenix, and other reactors of the family. Cooling accidents, thermohydraulic studies, and steam generator studies are also in progress

  2. Fuel management codes for fast reactors

    Sicard, B.; Coulon, P.; Mougniot, J.C.; Gouriou, A.; Pontier, M.; Skok, J.; Carnoy, M.; Martin, J.

    The CAPHE code is used for managing and following up fuel subassemblies in the Phenix fast neutron reactor; the principal experimental results obtained since this reactor was commissioned are analyzed with this code. They are mainly concerned with following up fuel subassembly powers and core reactivity variations observed up to the beginning of the fifth Phenix working cycle (3/75). Characteristics of Phenix irradiated fuel subassemblies calculated by the CAPHE code are detailed as at April 1, 1975 (burn-up steel damage)

  3. Liquid metal cooled experimental fast reactor simulator

    Guimaraes, Lamartine; Braz Filho, Francisco; Borges, Eduardo M.; Rosa, Mauricio A.P.; Rocamora, Francisco; Hirdes, Viviane R.

    1997-01-01

    This paper is a continuation of the work that has been done in the area of fast reactor component dynamic analysis, as part of the REARA project at the IEAv/CTA-Brazil. A couple of preceding papers, presented in other meetings, introduced major concept design components of the REARA reactor. The components are set together in order to represent a full model of the power plant. Full model transient results will be presented, together with several parameters to help us to better establish the REARA experimental plant concept. (author). 8 refs., 6 figs., 3 tabs

  4. A review of the UK fast reactor programme

    Picker, C.; Ainsworth, K.F.

    1996-01-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  5. A review of the UK fast reactor programme

    Picker, C [AEA Technolgy plc, Risley, Warrington, Cheshire (United Kingdom); Ainsworth, K F [British Nuclear Fuels plc, Sellafield, Cumbria (United Kingdom)

    1996-07-01

    The general position with regard to nuclear power and fast reactors in UK during 1995 is described. The status of fast reactor studies made in UK is outlined and a description and statement regarding the conclusions of the programme of studies associated with the closure of the Prototype Fast Reactor is included. (author)

  6. Material choices for the commercial fast reactor steam generators

    Willby, C.; Walters, J.

    1978-01-01

    Experience with fast reactor steam generators has shown them to be critical components in achieving a high availability. This paper presents the designers views on the use of ferritic materials for steam generators and describes the proposed design of the steam generators for the Commercial Fast Reactor (CFR), prototype of which are to be inserted in the Prototype Fast Reactor at Dounreay. (author)

  7. The fast reactor and electricity supply, a utility view

    Wright, J.K.; Hall, R.S.; Kemmish, W.B.; Thorne, R.T.

    1982-01-01

    The significance of the fast reactor is discussed from the viewpoint of the Central Electricity Generating Board. The need for the fast reactor and a possible timescale for its introduction are examined. It is emphasised that demonstration of the commercial and environmental acceptability of the fuel cycle will be needed before any commitment can be made to fast reactors. (U.K.)

  8. What is the future for fast reactor technology?

    Kraev, Kamen

    2017-01-01

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  9. What is the future for fast reactor technology?

    Kraev, Kamen [NucNet, Brussels (Belgium). The Independent Global Nuclear News Agency

    2017-08-15

    NucNet spoke to Vladimir Kriventsev, team leader for fast reactor technology development at the International Atomic Energy Agency (IAEA), about the possibilities and challenges of technology development in the fast reactor sector. Today, the field of fast reactors is vibrant and full of fascinating developments, some which will have an impact in the nearer term and others in the longer term.

  10. Review of fast reactor activities in India (1982-83)

    Paranjpe, S.R.

    1983-01-01

    A review of fast reactor activities in India in 1982-1983 is given. One stage of construction of Fast Breeder Test Reactor (FBTR) is briefly described. The emphasis is on design studies for the 500 MWe Prototype Fast Breeder Reactor (PFBR). The main features of this design are introduced

  11. A Fast Time-to-Pulse Height Converter

    Aspelund, O

    1962-12-15

    A fast time-to-pulse height converter representing a development of Green and Bell's gated beam converter is described. The converter is compatible with 2 input pulses in the stop channel and exhibits excellent linearity and time resolution properties. High stability and large output pulses are obtained by using a large time constant in the converting network.

  12. Delayed gamma power measurement for sodium-cooled fast reactors

    Coulon, R., E-mail: romain.coulon@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Normand, S., E-mail: stephane.normand@cea.f [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Ban, G., E-mail: ban@lpccaen.in2p3.f [ENSICAEN, 6 Boulevard Marechal Juin, F-14050 Caen Cedex 4 (France); Barat, E.; Montagu, T.; Dautremer, T. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Brau, H.-P. [ICSM, Centre de Marcoule, BP 17171 F-30207 Bagnols sur Ceze (France); Dumarcher, V. [AREVA NP, SET, F-84500 Bollene (France); Michel, M.; Barbot, L.; Domenech, T.; Boudergui, K.; Bourbotte, J.-M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France); Jousset, P. [CEA, LIST, Departement des Capteurs, du Signal et de l' Information, F-91191 Gif-sur-Yvette (France); Barouch, G.; Ravaux, S.; Carrel, F. [CEA, LIST, Laboratoire Modelisation Simulation et Systemes, F-91191 Gif-sur-Yvette (France); Saurel, N. [CEA, DAM, Laboratoire Mesure de Dechets et Expertise, F-21120 Is-sur-Tille (France); Frelin-Labalme, A.-M.; Hamrita, H. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, F-91191 Gif-sur-Yvette (France)

    2011-01-15

    Graphical abstract: Display Omitted Research highlights: {sup 20}F and {sup 23}Ne tagging agents are produced by fast neutron flux. {sup 20}F signal has been measured at the SFR Phenix prototype. A random error of only 3% for an integration time of 2 s could be achieved. {sup 20}F and {sup 23}Ne power measurement has a reduced temperature influence. Burn-up impact could be limited by simultaneous {sup 20}F and {sup 23}Ne measurement. - Abstract: Previous works on pressurized water reactors show that the nitrogen 16 activation product can be used to measure thermal power. Power monitoring using a more stable indicator than ex-core neutron measurements is required for operational sodium-cooled fast reactors, in order to improve their economic efficiency at the nominal operating point. The fluorine 20 and neon 23 produced by (n,{alpha}) and (n,p) capture in the sodium coolant have this type of convenient characteristic, suitable for power measurements with low build-up effects and a potentially limited temperature, flow rate, burn-up and breeding dependence. This method was tested for the first time during the final tests program of the French Phenix sodium-cooled fast reactor at CEA Marcoule, using the ADONIS gamma pulse analyzer. Despite a non-optimal experimental configuration for this application, the delayed gamma power measurement was pre-validated, and found to provide promising results.

  13. Fast reactor versions: elements of choice

    Tassart, J.; Zerbib, J.C.

    1984-01-01

    This paper has the objective of explaining in detail the economical, political, social and technical elements on which the CFDT (French Trade Union) bases its opposition to the commercial development of the version of fast reactors. An examination of the different choices which were investigated does not point to any legitimate grounds for this choice. What has to be done is to present the facts which enable the greatest possible number of workers or civilians to take up a position on the choices concerning them. A technical comparison of the fast neutron reactor with those operating at present is put forward (France and United Kingdom). It covers the different radioactive waste products and the results of the individual and collective monitoring of the workmen [fr

  14. 3 Investment Scenarios for Fast Reactors

    Shoai Tehrani, Bianka; Da Costa, Pascal

    2013-01-01

    Results: • 4 families of scenarios: – In each of them, 3 options for national nuclear policy → 12 scenarios; – 3 favorable to FRs: - “climate constraint” with strong pro-nuclear policy - “climate constraint” with moderate pro-nuclear policy - “totally green” with strong pro-nuclear policy. • Business As Usual is not favorable to Fast Reactors; Fast reactors deployment: - Needs strong climate policy - Is viable in case of important renewable progress as long as climate policy is strong. International perspective: • Results are valid for Europe, other drivers being likely to be more important in other countries : high growth and demand (Asia); • With strong contrasts between European countries. Further research: • Finer modeling of drivers with unclear influence (clustered and excluded variables): Influence of weak signals

  15. The integral fast reactor fuel cycle

    Chang, Y.I.

    1990-01-01

    The liquid-metal reactor (LMR) has the potential to extend the uranium resource by a factor of 50 to 100 over current commercial light water reactors (LWRs). In the integral fast reactor (IFR) development program, the entire reactor system - reactor, fuel cycle, and waste process - is being developed and optimized at the same time as a single integral entity. A key feature of the IFR concept is the metallic fuel. The lead irradiation tests on the new U-Pu-Zr metallic fuel in the Experimental Breeder Reactor II have surpassed 185000 MWd/t burnup, and its high burnup capability has now been fully demonstrated. The metallic fuel also allows a radically improved fuel cycle technology. Pyroprocessing, which utilizes high temperatures and molten salt and molten metal solvents, can be advantageously utilized for processing metal fuels because the product is metal suitable for fabrication into new fuel elements. Direct production of a metal product avoids expensive and cumbersome chemical conversion steps that would result from use of the conventional Purex solvent extraction process. The key step in the IFR process is electrorefining, which provides for recovery of the valuable fuel constituents, uranium and plutonium, and for removal of fission products. A notable feature of the IFR process is that the actinide elements accompany plutonium through the process. This results in a major advantage in the high-level waste management

  16. Liquid metal cooled fast breeder nuclear reactors

    Gatley, J.A.

    1979-01-01

    Breeder fuel sub-assemblies with electromagnetic brakes and fluidic valves for liquid metal cooled fast breeder reactors are described. The electromagnetic brakes are of relatively small proportions and the valves are of the controlled vortex type. The outlet coolant temperature of at least some of the breeder sub-assemblies are maintained by these means substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (UK)

  17. Non-electric Applications of Fast Reactors

    Safa, Henri; Borgard, Jean-Marc

    2013-01-01

    Conclusions: → Most of industrial applications (80%) require low temperature heat below 540°C; → Fast Reactors are technically suitable to provide industrial steam at temperatures not accessible by standard LWRs; → As an illustrative example, the application at an oil refinery site has been studied showing the economic benefits; → Nuclear Cogeneration enhances the overall energy efficiency of the power plant; • Nuclear Cogeneration allows massive cut in CO 2 emissions

  18. Liquid metal cooled fast breeder nuclear reactors

    Thatcher, G.; Mitchell, A.J.

    1981-01-01

    Fuel sub-assemblies for liquid metal-cooled fast breeder reactors are described which each incorporate a fluid flow control valve for regulating the rate of flow through the sub-assembly. These small electro-magnetic valves seek to maintain the outlet coolant temperature of at least some of the breeder sub-assemblies substantially constant throughout the life of the fuel assembly without severely pressurising the sub-assembly. (U.K.)

  19. An evaluation of fast reactor blankets

    Oosterkamp, W.J.

    1974-01-01

    A comparative study of different types of fast reactor radial blankets is presented. Included are blankets of fertile material UO 2 , THO 2 and Th-metal blankets of pure reflectors C, BeO, Ni and combinations of reflecting and fertile blankets. The results for 1000MWe cores indicate that there is no incentive to use other than fertile blankets. The most favorable fertile material is thorium due to the prospective higher price of U-233

  20. Nodal method for fast reactor analysis

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  1. Some aspects of fast reactor economics

    Kazachkovskij, O.D.

    1996-01-01

    Expedient approach to evaluation of economic efficiency of fast reactors is discussed. It is concluded that determination of electric power generation cost should be based on the fact, that plutonium cost is dictated only by expenses for its extraction from the spent fuel. The cost of the first critical load is not included into capital investments, and investment charges should be sufficiently lower, than standard ones. 5 refs

  2. An Economical Fast Discriminator for Nuclear Pulse Counting

    Issarachai, Opas; Punnachaiya, Suvit

    2009-07-01

    Full text: This research work was aimed to develop a fast discriminator at low cost but high capability for discrimination a nanosecond nuclear pulse. The fast discriminator can be used in association with fast photon counting system. The designed structure consisted of the ultra-fast voltage comparator using ADCMP601 integrated circuit, the monostable multivibrator with controllable pulse width output by propagation delay of logic gate, and the fast response buffer amplifier. The tested results of pulse height discrimination of 0-5 V nuclear pulse with 20 ns (FWHM) pulse width showed the correlation coefficient (R 2 ) between discrimination level and pulse height was 0.998, while the pulse rate more than 10 MHz could be counted. The 30 ns logic pulse width output revealed high stable and could be smoothly driven to low impedance load at 50 Ω. For pulse signal transmission to the counter, it was also found that the termination of reflected signal must be considered because it may cause pulse counting error

  3. Thermal baffle for fast-breeder reactor

    Rylatt, J.A.

    1977-01-01

    A liquid-metal-cooled fast-breeder reactor includes a bridge structure for separating hot outlet coolant from relatively cool inlet coolant consisting of an annular stainless steel baffle plate extending between the core barrel surrounding the core and the thermal liner associated with the reactor vessel and resting on ledges thereon, there being inner and outer circumferential webs on the lower surface of the baffle plate and radial webs extending between the circumferential webs, a stainless steel insulating plate completely covering the upper surface of the baffle plate and flex seals between the baffle plate and the ledges on which the baffle plate rests to prevent coolant from washing through the gaps therebetween. The baffle plate is keyed to the core barrel for movement therewith and floating with respect to the thermal liner and reactor vessel. 3 claims, 2 figures

  4. Fast reactor operation in the United States

    Smith, R.R.; Cissel, D.W.

    1978-01-01

    Of the many American facilities dedicated to fast reactor technology, six qualify as liquid-metal-cooled fast reactors. All of these satisfy the following criteria: an unmoderated neutron spectrum, highly enriched fuel material, substantial heat production, and the use of a liquid metal coolant. These include the following: EBR-I Clementine, LAMPRE, EBR-II, EFFBR, and SEFOR. Collectively, these facilities encompassed all of the more important features of liquid-metal-cooled fast reactor technology. Coolant types ranged from mercury in Clementine, to NaK in EBR-I, and sodium in the others. Fuels included enriched-uranium metallic alloys in EBR-I, EBR-II, and EFFBR; metallic plutonium in Clementine; molten plutonium alloy in LAMPRE; and a mixed UO 2 -PuO 2 ceramic in SEFOR. Heat removal techniques ranged from air-blast cooling in LAMPRE and SEFOR; steam-electrical generation in EBR-I, EBR-II, and EFFBR; to a mercury-to-water heat dump in Clementine. Operational experience with such diverse systems has contributed heavily to the U.S. Each of the six systems is described from the viewpoints of purpose, history, design, and operation. Attempts are made to limit descriptive material to the most important features and to refer the reader to a few select references if additional information is needed

  5. The integral fast reactor - an overview

    Till, C.E.; Chang, Y.I.; Hannum, W.H.

    1997-01-01

    The Integral Fast Reactor (IFR) is a system that consists of a fast-spectrum nuclear reactor that uses metallic fuel and liquid-metal (sodium) cooling, coupled with technology for high-temperature electrochemical recycling, and with processes for preparing wastes for disposition. The concept is based on decades of experience with fast reactors, adapted to priorities that have evolved markedly from those of the early days of nuclear power. It has four essential, distinguishing features: efficient use of natural resources, inherent safety characteristics, reduced burdens of nuclear waste, and unique proliferation resistance. These fundamental characteristics offer benefits in economics and environmental protection. The fuel cycle never involves separated plutonium, immediately simplifying the safeguarding task. Initiated in 1984 in response to proliferation concerns identified in the International Nuclear Fuel Cycle Evaluation (INFCE, 1980), the project has made substantial technical progress, with new potential applications coming to light as nuclear weapons stockpiles are reduced and concerns about waste disposal increase. A breakthrough technology, the IFR has the characteristics necessary for the next nuclear age. (author)

  6. Sodium fast reactor power monitoring using gamma spectrometry

    Coulon, R.; Normand, S.; Barbot, L.; Domenech, T.; Kondrasovs, V.; Corre, G.; Frelin, A.M. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, CEA - Saclay DRT/LIST/DETECS/SSTM, Batiment 516 - P.C. no 72, Gif sur Yvette, F-91191 (France); Montagu, T.; Dautremer, T.; Barat, E. [CEA, LIST, Laboratoire Processus Stochastiques et Spectres (France); Ban, G. [ENSICAEN (France)

    2009-06-15

    This work deals with the use of high flux gamma spectrometry to monitor the fourth generation of sodium fast reactor (SFR) power. The simulation study part of this work has shown that power monitoring in a short time response and with a good accuracy is possible. An experimental test is under preparation at the French SFR Phenix experimental reactor to validate simulation studies. First, physical calculations have been done to correlate gamma activity to the released thermal power. Gamma emitter production rate in the reactor core was calculated with technical and nuclear data as the sodium velocity, the atomic densities, Phenix neutron spectrum and incident neutron cross-sections of reactions producing gamma emitters. A thermal hydraulic transfer function was used for modeling primary sodium flow in our calculations. For the power monitoring problematic, use of a short decay period gamma emitter will allow to have a very fast response system without cumulative effect. We have determined that the best tagging agent is 20F which emits 1634 keV energy photons with a decay period of 11 s. The gamma spectrum was determined by flux point and a pulse high tally MCNP5.1.40 simulation and shown the possibility to measure the signal of this radionuclide. The experiment will be set during the reactor 'end life testing'. The Delayed Neutron Detection (DND) room has been chosen as the best available location on Phenix reactor to measure this kind of radionuclide due to a short transit time from reactor core to measurement sample. This location is optimum for global power measurement because homogenized sampling in the reactor hot pool. The main spectrometer is composed of a coaxial high purity germanium diode (HPGe) coupled with a transistor reset preamplifier. The HPGe diode signal will be processed by the Adonis digital signal processing due to high flux and fast activity measurement. Post-processing softwares will be used to limit statistical problems of the

  7. Web-enabled work permit system for fast breeder test reactor

    Madurai Meenachi, N.; Vinolia, K.; Ramanathan, V.

    2003-01-01

    The objective of this project is to computerize and web-enable the Work Permit System for the Fast Breeder Test Reactor (FBTR) at IGCAR, Kalpakkam. The existing Work Permit System at FBTR was studied in detail. Since all the formalities were paper-based, the risk of human error in scrutinizing all permits before reactor start-up was high. Compilation of reports (daily, monthly, yearly etc.) was tedious. The work permit system was therefore automated in order to enable the operation group manage the maintenance work carried out in the plant systematically with entries. The entire project was classified into five permit modules -maintenance, transfer, return, cancellation and reissue. Each module takes care of the entry and maintenance of data in their respective fields in their respective tables. The user is also provided with an option to take a hard copy of the report of his/her choice. A client/server based system was designed to web-enable the entire project. The server program was designed using VB 6.0 as the front-end and MS Access database as the back end to store the data. The client software was developed using Active Server Pages and published using personal web server in the Intranet. A number of administrative tools have been incorporated in the software to ensure access security and integrity of the database. An online help feature with search facilities was added to the software. The work permit system software is now already being used at FBTR and has been deemed to be an invaluable aid in empowering the availability of the reactor and determining the performance history of the equipment. (author)

  8. Universal pulse generator with a nanosecond fast responce

    Basiladze, S.G.; Nguen Kuang Min'.

    1977-01-01

    A pulse generator with nanosecond action is described; it is mainly designed for testing and tuning fast electronic devices operating with pulses in the N/1/M standard. The generator is principally based on integral circuits and has wide functional potentialities: it includes a main-pulse channel, a delayed-pulse channel, and an overall output, which sums up these pulses; in addition to the logic pulse outputs it includes a linear pulse output with an amplitude smoothly regulated in the range from 0.3 to 6.0 V; it can operate in the self-oscillation mode, in the pulse series formation mode, in the starting mode, and in the single-start mode. Two generators are placed in a double-width CAMAC cell. The generation frequency is from 3 Hz to 75 MHz, pulse duration from 8 to 320 ns, and pulse front duration 2 ns

  9. Detection of steam leaks into sodium in fast reactor steam generators by acoustic techniques - An overview of Indian programme

    Prabhakar, R.; Vyjayanthi, R.K.; Kale, R.D.

    1990-01-01

    Realising the potential of acoustic leak detection technique, an experimental programme was initiated a few years back at Indira Gandhi Centre for Atomic Research (IGCAR) to develop this technique. The first phase of this programme consists of experiments to measure background noise characteristics on the steam generator modules of the 40 MW (thermal) Fast Breeder Test Reactor (FBTR) at Kalpakkam and experiments to establish leak noise characteristics with the help of a leak simulation set up. By subjecting the measured data from these experiments to signal analysis techniques, a criterion for acoustic leak detection for FBTR steam generator will be evolved. Second phase of this programme will be devoted to developing an acoustic leak detection system suitable for installation in the 500 MWe Prototype Fast Breeder Reactor (PFBR). This paper discusses the first phase of the experimental programme, results obtained from measurements carried out on FBTR steam generators and results obtained from leak simulation experiments. Acoustic leak detection system being considered for PFBR is also briefly described. 4 refs, 8 figs, 1 tab

  10. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  11. Liquid metal tribology in fast breeder reactors

    Wild, E.; Mack, K.J.; Gegenheimer, M.

    1984-11-01

    Liquid Metal Cooled Fast Breeder Reactors (LMFBR) require mechanisms operating in various sodium liquid and sodium vapor environments for extended periods of time up to temperatures of 900 K under different chemical properties of the fluid. The design of tribological systems in those reactors cannot be based on data and past experience of so-called conventional tribology. Although basic tribological phenomena and their scientific interpretation apply in this field, operating conditions specific to nuclear reactors and prevailing especially in the nuclear part of such facilities pose special problems. Therefore, in the framework of the R and D-program accompanying the construction phase of SNR 300 experiments were carried out to provide data and knowledge necessary for the lay-out of friction systems between mating surfaces of contacting components. Initially, screening tests isolated material pairs with good slipping properties and maximum wear resistance. Those materials were subjected to comprehensive parameter investigations. A multitude of laboratory scale tests have been performed under largely reactor specific conditions. Unusual superimpositions of parameters were analyzed and separated to find their individual influence on the friction process. The results of these experiments were made available to the reactor industry as well as to factories producing special tribo-materials. (orig.) [de

  12. Risk Management for Sodium Fast Reactors.

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wheeler, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self - correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the syste m's design to manage the accident. While inherently and passively safe designs are laudable, extreme boundary conditions can interfere with the design attributes which facilitate inherent safety , thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayes ian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The author s would like to acknowledge the U.S. Department of E nergy's Office of Nuclear Energy for funding this research through Work Package SR - 14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at A rgonne N ational L aborator y , O ak R idge N ational L aborator y , and I daho N ational L aborator y for their continue d contributions to the advanced reactor PRA mission area.

  13. Today's attitudes and future prospects of fast reactors in Italy

    Barabaschi, S.; Cicognani, G.; Pierantoni, F.

    1982-01-01

    The Italian fast reactor programme is reviewed. The 15 year collaboration with France has resulted in the construction of the PEC reactor, development of the Superphenix-1 and a common R and D programme for future large fast reactors. The CNEN 4th five year (1980-84) plan is outlined. The budget breakdown for different areas shows the importance attached to the fast reactor. (U.K.)

  14. Status of Fast Reactor Research and Technology Development

    NONE

    2013-04-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  15. Status of Fast Reactor Research and Technology Development

    NONE

    2012-07-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  16. Status of Fast Reactor Research and Technology Development

    2012-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  17. Status of Fast Reactor Research and Technology Development

    2013-01-01

    In 1985, the International Atomic Energy Agency (IAEA) published a report titled 'Status of Liquid Metal Cooled Fast Breeder Reactors' (Technical Reports Series No. 246). The report was a general review of the status of fast reactor development at that time, covering some aspects of design and operation and reviewing experience from the earliest days. It summarized the programmes and plans in all countries which were pursuing the development of fast reactors. In 1999, the IAEA published a follow-up report titled 'Status of Liquid Metal Cooled Fast Reactor Technology' (IAEA-TECDOC-1083), necessitated by the substantial advances in fast reactor technology development and changes in the economic and regulatory environment which took place during the period of 1985-1998. Chief among these were the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at a high burnup and the launch of new fast reactor programmes by some additional Member States. In 2006, the Technical Working Group on Fast Reactors (TWG-FR) identified the need to update its past publications and recommended the preparation of a new status report on fast reactor technology. The present status report intends to provide comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction, operation and decommissioning; various areas of research and development; engineering; safety; and national strategies and public acceptance of fast reactors.

  18. Materials development for fast reactor applications

    Jayakumar, T.; Mathew, M.D.; Laha, K.; Sandhya, R., E-mail: san@igcar.gov.in

    2013-12-15

    Highlights: • A modified version of alloy D9 designated as IFAC-1 has been developed. • Oxide dispersion strengthened Grade 91 steel with good creep strength developed. • 0.14 wt% nitrogen in 316LN stainless steel leads to improved mechanical properties. • Type IV cracking resistant Grade 91 steel with boron addition developed. • Mechanical properties of SFR materials evaluated in sodium environment. -- Abstract: Materials play a crucial role in the economic competitiveness of electricity produced from fast reactors. It is necessary to increase the fuel burn-up and design life in order to realize this objective. The burnup is largely limited by the void swelling and creep resistance of the fuel cladding and wrapping materials. India's 500 MWe Prototype Fast Breeder Reactor (PFBR) is in advanced stage of construction. The major structural materials chosen for PFBR with MOX fuel are D9 austenitic stainless steel as fuel clad and wrapper material, 316LN austenitic stainless steel for reactor components and piping and modified 9Cr-1Mo steel for steam generator. In order to improve the burnup, titanium, phosphorous and silicon contents in alloy D9 have been optimized for decreased void swelling and increased creep strength and this has led to the development of a modified version of alloy D9 as IFAC-1. Ferritic steels are inherently resistant to void swelling. The disadvantage is their poor creep strength. Creep resistance of 9Cr-ferritic steel has been improved with the dispersion of nano-size yttria to develop oxide dispersion strengthened (ODS) steel clad tube with long-term creep strength, comparable to alloy D9 so as to achieve higher fuel burnup. Improved versions of 316LN stainless steel with nitrogen content of about 0.14 wt% having higher creep strength to increase the life of fast reactors and modified 9Cr-1Mo steel with reduced nitrogen content and controlled addition of boron to improve type IV cracking resistance for steam generator

  19. An evaluation on environment radiation impact of pulsed reactor

    Gao Yingwei; Pu Gongxu; Li Jian

    1991-01-01

    The dose regulation, assessment scope and assessment method adopted by the environment impact evaluation for the pulsed reactor are discussed. The compute model, the compute programme and the compute result of the dose adopted for the model pulsed reactor are introduced. The probable environment radiation impact under normal status and accident status are also appraised

  20. Fast differential pulse discriminator-counter

    Shelevoj, K.D.

    1985-01-01

    The flowsheet of a differential pulse discriminator counter is described; the result of discrimination here is independent from the shape of the input pulse. Rate of the analysis of input pulses with minimum amplitude up to 0.3 mV coming out from the photomultiplier makes up 220 MHz. The flowsheet of the discriminator used in the system of photon counting for atmosphere probing is presented

  1. A review of the UK fast reactor programme, March 1979

    Smith, R.D.

    1979-01-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments

  2. A review of the UK fast reactor programme, March 1979

    Smith, R D

    1979-07-01

    The Status report of the UK activities related to fast-breeder reactor activities includes the following: summary of the operating experience of the prototype Fast Reactor (PFR) during 1978; design studies of the commercial demonstration fast reactor (CDFR); design studies of later advanced LMFBR; engineering developments of high temperature sodium loop, steam generators and instrumentation; materials development; corrosion problems; sodium technology; fuel elements development; PFR fuel reprocessing; safety issues molten fuel-coolant interaction; core structure test; accident analysis; reactor performance studies; experimental reactor physics; fuel management and general neutronics calculation for CDFR; reactor instruments.

  3. Status of the DEBENE fast breeder reactor development, March 1979

    Daeunert, U.; Kessler, G.

    1979-01-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests

  4. Status of the DEBENE fast breeder reactor development, March 1979

    Daeunert, U; Kessler, G

    1979-07-01

    Status report of the Fast-breeder reactor development in Germany covers the following: description of the political situation in Federal republic of germany during 1978; international cooperation in the field of fast reactor technology development; operation description of the KNK-II fast core experimental power plant; status of construction of the SNR-300; results of the research and development programs concerned with fuel element, cladding, absorber rods and core structural materials development; sodium effects; neutron irradiation effects on SS properties; reactor physics related to experiments in fast critical assemblies; fast reactor safety issues; core disruption accidents; sodium boiling experiments, measuring methods developed; component tests.

  5. Thermo-hydraulic simulations of the experimental fast reactor core

    Silveira Luz, M. da; Braz Filho, F.A.; Borges, E.M.

    1985-01-01

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author) [pt

  6. Fast Reactor Programme. Third Quarter 1969. Progress Report

    Hoekstra, E.K.

    1970-02-01

    The RCN research programme on fast spectrum nuclear reactors comprises reactor physics, fuel performance, radiation damage in canning materials, corrosion behaviour in canning materials, aerosol research and heat transfer and hydraulics. An overview is given of the fast reactor experiments at the STEK critical facility in Petten, the Netherlands, in the third quarter of 1969

  7. Superalloy applications in the fast breeder reactor

    Powell, R.W.

    1976-01-01

    The economics of the LMFBR are dependent on the breeding of new fuel in the reactor core and this can be improved by the use of advanced alloys as core structural components. The environment of the core makes superalloys a natural choice for these components, but phenomena related directly to neutron irradiation necessitate extensive testing. Consequently, commercially-available superalloys, together with a number of developmental alloys are being tested in existing LMFBR's and by simulation techniques to determine the best alloy for use in the LMFBR core. It presently appears that such materials will indeed be capable of the performance required, and will greatly facilitate the commercial realization of the fast breeder reactor

  8. Actinide behavior in the integral fast reactor

    Courtney, J.C.

    1993-05-01

    Goal of this project is to determine the consumption of Np-237, Pu-240, Am-241, and Am-243 in the Integral Fast Reactor (IFR) fuel cycle. These four actinides set the long term waste management criteria for spent nuclear fuel; if it can be demonstrated that they can be efficiently consumed in the IFR, then requirements for nuclear waste repositories can be much less demanding. Irradiations in the Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory's site near Idaho Falls, Idaho, will be conducted to determine fission and transmutation rates for the four nuclides. The experimental effort involves target package design, fabrication, quality assurance, and irradiation. Post irradiation analyses are required to determine the fission rates and neutron spectra in the EBR-II core

  9. The economics of fast breeder reactors

    Rapin, M.

    1990-01-01

    The overall status of the fast breeder reactor (FBR) system is periodically reviewed in France. In 1983, a report was prepared on the status and prospects of the FBR system at the request of the then Minister of Industry. Five years later, Electricite de France (EdF) and the French Atomic Energy Commission (CEA) jointly updated this report. The FBR reactor system economic considerations mentioned here are taken from the work performed in 1987-88 for this updating. The position in 1983 is reviewed to highlight concrete developments. Developments that have occurred since then are presented, along with the prospects that today enable us to define better the technical and economic potential of the FBR system. In conclusion, the effects of these findings on desirable directions are discussed, in particular with regard to European FBR cooperation. (author)

  10. Gas cooled fast reactor research in Europe

    Stainsby, Richard; Peers, Karen; Mitchell, Colin; Poette, Christian; Mikityuk, Konstantin; Somers, Joe

    2011-01-01

    Research on the gas-cooled fast reactor system is directed towards fulfilling the ambitious long term goals of Generation IV (Gen IV), i.e., to develop a safe, sustainable, reliable, proliferation-resistant and economic nuclear energy system. In common with other fast reactors, gas-cooled fast reactors (GFRs) have exceptional potential as sustainable energy sources, for both the utilisation of fissile material and minimisation of nuclear waste through transmutation of minor actinides. The primary goal of GFR research is to develop the system primarily to be a reliable and economic electricity generator, with good safety and sustainability characteristics. However, for the longer term, GFR retains the potential for hydrogen production and other process heat applications facilitated through a high core outlet temperature which, in this case, is not limited by the characteristics of the coolant. In this respect, GFR can inherit the non-electricity applications of the thermal HTRs in a sustainable manner in a future in which natural uranium becomes scarce. GFR research within Europe is performed directly by those states who have signed the 'System Arrangement' document within the Generation IV International Forum (the GIF), specifically France and Switzerland and Euratom. Importantly, Euratom provides a route by which researchers in other European states, and other non-European affiliates, can contribute to the work of the GIF, even when these states are not signatories to the GFR System Arrangement in their own right. This paper is written from the perspective of Euratom's involvement in research on the GFR system, starting with the 5th Framework Programme (FP5) GCFR project in 2000, through the FP6 project between 2005 and 2009 and looking ahead to the proposed activities within the current 7th Framework Programme (FP7). The evolution of the GFR concept from the 1960s onwards is discussed briefly, followed by the current perceived role, objectives and progress with

  11. Safe Management Of Fast Reactors: Towards Sustainability

    Dreimanis, Andrejs

    2015-01-01

    An interdisciplinary systemic approach to socio-technical optimization of nuclear energy management is proposed, by recognizing a) the rising requirements to nuclear safety being realized using fast reactors (FR), b) the actuality to maintain and educate qualified workforce for fast reactors, c) the reactor safety and public awareness as the keystones for improving attitude to implement novel reactors. Knowledge management and informational support firstly is needed in: 1) technical issues: a) nuclear energy safety and reliability, b) to develop safe and economic technologies; 2) societal issues: a) general nuclear awareness, b) personnel education and training, c) reliable staff renascence, public education, stakeholder involvement, e).risk management. The key methodology - the principles being capable to manage knowledge and information issues: 1) a self-organization concept, 2) the principle of the requisite variety. As a primary source of growth of internal variety is considered information and knowledge. Following questions are analyzed indicating the ways of further development: a) threats in peaceful use of nuclear energy, b) basic features of nuclear risks, including terrorism, c) human resource development: basic tasks and instruments, d) safety improvements in technologies, e) advanced research and nuclear awareness improvement There is shown: public education, social learning and the use of mass media are efficient mechanisms forming a knowledge-creating community thereby reasoning to facilitate solution of key socio-technical nuclear issues: a) public acceptance of novel nuclear objects, b) promotion of adequate risk perception, and c) elevation of nuclear safety level and adequate risk management resulting in energetic and ecological sustainability. (author)

  12. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-10-15

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored.

  13. Software development methodology for computer based I&C systems of prototype fast breeder reactor

    Manimaran, M.; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2015-01-01

    Highlights: • Software development methodology adopted for computer based I&C systems of PFBR is detailed. • Constraints imposed as part of software requirements and coding phase are elaborated. • Compliance to safety and security requirements are described. • Usage of CASE (Computer Aided Software Engineering) tools during software design, analysis and testing phase are explained. - Abstract: Prototype Fast Breeder Reactor (PFBR) is sodium cooled reactor which is in the advanced stage of construction in Kalpakkam, India. Versa Module Europa bus based Real Time Computer (RTC) systems are deployed for Instrumentation & Control of PFBR. RTC systems have to perform safety functions within the stipulated time which calls for highly dependable software. Hence, well defined software development methodology is adopted for RTC systems starting from the requirement capture phase till the final validation of the software product. V-model is used for software development. IEC 60880 standard and AERB SG D-25 guideline are followed at each phase of software development. Requirements documents and design documents are prepared as per IEEE standards. Defensive programming strategies are followed for software development using C language. Verification and validation (V&V) of documents and software are carried out at each phase by independent V&V committee. Computer aided software engineering tools are used for software modelling, checking for MISRA C compliance and to carry out static and dynamic analysis. Various software metrics such as cyclomatic complexity, nesting depth and comment to code are checked. Test cases are generated using equivalence class partitioning, boundary value analysis and cause and effect graphing techniques. System integration testing is carried out wherein functional and performance requirements of the system are monitored

  14. GENIUS & the Swedish Fast Reactor programme

    Wallenius, Janne

    2012-01-01

    Concluding remarks: Sweden’s growing fast reactor programme focuses on LFR technology, but we also participate in ASTRID. • An innovative facility for UN fabrication, an LBE thermal hydraulics loop and a lead corrosion facility are operational. • A plutonium fuel fabrication lab is is under installation (this week!) • The government is assessing the construction of ELECTRA-FCC, a centre for Gen IV-system R&D, at a tentative cost of ~ 140±20 M€. • Location: Oskarshamn (adjacent to intermediate repository) • Date of criticality: 2023 (best case) • Swedish participation in IAEA TWG-FR should intensify

  15. Integral Fast Reactor fuel pin processor

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  16. Heterogeneous cores for fast breeder reactor

    Schroeder, R.; Spenke, H.

    1980-01-01

    Firstly, the motivation for heterogeneous cores is discussed. This is followed by an outline of two reactor designs, both of which are variants of the combined ring and island core. These designs are presented by means of figures and detailed tables. Subsequently, a description of two international projects at fast critical zero energy facilities is given. Both of them support the nuclear design of heterogeneous cores. In addition to a survey of these projects, a typical experiment is discussed: the measurement of rate distributions. (orig.) [de

  17. Core of a fast neutron nuclear reactor

    Giacometti, Christian; Mougniot, J.-C.; Ravier, Jean.

    1974-01-01

    The fast neutron nuclear reactor described includes an internal area in fissile material completely enclosed in an area of fertile material forming the outside blanket. The internal fissile area is provided with housings exclusively filled with fertile material forming one or more inside blankets. In this core the internal blankets are shaped like rings vertically separating superimposed rings of fissile material. The blanket of material nearest to the periphery is circumscribed externally by a contour having an indented shape on its straight section so as to increase the contact area between this blanket and the external blanket [fr

  18. Nuclear fuel assembly for fast neutron reactors

    Ilyunin, V.G.; Murogov, V.M.; Troyanov, M.F.; Rinejskij, A.A.; Ustinov, G.G.; Shmelev, A.N.

    1982-01-01

    The fuel assembly of a fast reactor consists of fuel elements comprising sections with fissionable and breeding material and tubes with hollows designed for entrapping gaseous fission products. Tubes joining up to the said sections are divided in a middle and a peripheral group such that at least one of the tube groups is placed in the space behind the coolant inlet ports. The configuration above allows reducing internal overpressure in the fuel assembly, thus reducing the volume of necessary structural elements in the core. (J.B.)

  19. The Argentine-Brazilian fast reactor programme

    Gho, C.J.; Mauricio, A.

    1989-01-01

    This paper summarizes the Argentine-Brazilian Fast Reactor Programme and gives reasons for the decision of a binational venture. The work carried out by both countries is described, showing how they complement each other, with the corresponding saving of resources. The main objectives of the Programme and tentative schedules in three progressing integrating stages are given and the present nuclear know-how in each country is identified as a good starting point. The paper also gives some details regarding the economical and human resources involved. (author). 1 graph

  20. Accident analysis for US fast burst reactors

    Paternoster, R.; Flanders, M.; Kazi, H.

    1994-01-01

    In the US fast burst reactor (FBR) community there has been increasing emphasis and scrutiny on safety analysis and understanding of possible accident scenarios. This paper summarizes recent work in these areas that is going on at the different US FBR sites. At this time, all of the FBR facilities have or in the process of updating and refining their accident analyses. This effort is driven by two objectives: to obtain a more realistic scenario for emergency response procedures and contingency plans, and to determine compliance with changing regulatory standards

  1. Pulse Star inertial confinement fusion reactor

    Blink, J.A.; Hogan, W.J.

    1985-01-01

    Pulse Star is a pool-type ICF reactor that emphasizes low cost and high safety levels. The reactor consists of a vacuum chamber (belljar) submerged in a compact liquid metal (Li 17 Pb 83 or lithium) pool which also contains the heat exchangers and liquid metal pumps. The shielding efficiency of the liquid metal pool is high enough to allow hands-on maintenance of (removed) pumps and heat exchangers. Liquid metal is allowed to spray through the 5.5 m radius belljar at a controlled rate, but is prohibited from the target region by a 4 m radius mesh first wall. The wetted first wall absorbs the fusion x-rays and debris while the spray region absorbs the fusion neutrons. The mesh allows vaporized liquid metal to blow through to the spray region where it can quickly cool and condense. Preliminary calculations show that a 2 m thick first wall could handle the mechanical (support, buckling, and x-ray-induced hoop) loads. Wetting and gas flow issues are in an initial investigation stage

  2. Reprocessing of fast neutron reactor fuel

    Bourgeois, M.

    1981-05-01

    A PUREX process specially adapted to fast neutron reactor fuels is employed. The results obtained indicate that the aqueous process can be applied to this type of fuel: almost 10 years operation at the AT 1 plant which processes fuel from RAPSODIE; the good results obtained at the MARCOULE pilot plant on large batches of reference fuels. The CEA is continuing its work to transfer this technology onto an industrial scale. Industrial prototypes and the launching of the TOR (traitement d'oxydes rapides) project will facilitate this transfer. In 1984, it is expected that fast fuels will be able to be processed on a significant scale and that supplementary R and D facilities will be available [fr

  3. Fast Heat Pulse Propagation by Turbulence Spreading

    Naulin, Volker; Juul Rasmussen, Jens; Mantica, Paola

    2009-01-01

    The propagation of a cold pulse initiated by edge cooling in JET is compared to propagation of the heat wave originating from a modulation of the heating source roughly at mid radius. It is found that the propagation of the cold pulse is by far faster than what could be predicted on the basis of ...

  4. Structural dynamics in fast reactor accident analysis

    Fistedis, S.H.

    1975-01-01

    Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code

  5. Method for integrating a train of fast, nanosecond wide pulses

    Rose, C.R.

    1987-01-01

    This paper describes a method used to integrate a train of fast, nanosecond wide pulses. The pulses come from current transformers in a RF LINAC beamline. Because they are ac signals and have no dc component, true mathematical integration would yield zero over the pulse train period or an equally erroneous value because of a dc baseline shift. The circuit used to integrate the pulse train first stretches the pulses to 35 ns FWHM. The signals are then fed into a high-speed, precision rectifier which restores a true dc baseline for the following stage - a fast, gated integrator. The rectifier is linear over 55dB in excess of 25 MHz, and the gated integrator is linear over a 60 dB range with input pulse widths as short as 16 ns. The assembled system is linear over 30 dB with a 6 MHz input signal

  6. Fast pulse discriminator for photon counting at high photon densities

    Benoit, R.; Pedrini, A.

    1977-03-01

    A fast tunnel diode discriminator for photon counting up to 200MHz count frequency is described. The tunnel diode is operated on its apparent I.V. characteristics displayed when the diode is driven into its oscillating region. The pulse shaper-discriminator is completely D.C. coupled in order to avoid base-line shift at high pulse rates

  7. Pulsed TRIGA reactor as substitute for long pulse spallation neutron source

    Whittemore, W.L.

    1999-01-01

    TRIGA reactor cores have been used to demonstrate various pulsing applications. The TRIGA reactor fuel (U-ZrH x ) is very robust especially in pulsing applications. The features required to produce 50 pulses per second have been successfully demonstrated individually, including pulse tests with small diameter fuel rods. A partially optimized core has been evaluated for pulses at 50 Hz with peak pulsed power up to 100 MW and an average power up to 10 MW. Depending on the design, the full width at half power of the individual pulses can range between 2000 μsec to 3000 μsec. Until recently, the relatively long pulses (2000 μsec to 3000 μsec) from a pulsed thermal reactor or a long pulse spallation source (LPSS) have been considered unsuitable for time-of-flight measurements of neutron scattering. More recently considerable attention has been devoted to evaluating the performance of long pulse (1000 to 4000 μs) spallation sources for the same type of neutron measurements originally performed only with short pulses from spallation sources (SPSS). Adequate information is available to permit meaningful comparisons between CW, SPSS, and LPSS neutron sources. Except where extremely high resolution is required (fraction of a percent), which does require short pulses, it is demonstrated that the LPSS source with a 1000 msec or longer pulse length and a repetition rate of 50 to 60 Hz gives results comparable to those from the 60 MW ILL (CW) source. For many of these applications the shorter pulse is not necessarily a disadvantage, but it is not an advantage over the long pulse system. In one study, the conclusion is that a 5 MW 2000 μsec LPSS source improves the capability for structural biology studies of macromolecules by at least a factor of 5 over that achievable with a high flux reactor. Recent studies have identified the advantages and usefulness of long pulse neutron sources. It is evident that the multiple pulse TRIGA reactor can produce pulses comparable to

  8. Status of liquid metal cooled fast reactor technology

    NONE

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants Refs, figs, tabs

  9. Status of liquid metal cooled fast reactor technology

    1999-04-01

    During the period 1985-1998, there have been substantial advances in fast reactor technology development. Chief among these has been the demonstration of reliable operation by several prototypes and experimental reactors, the reliable operation of fuel at high burnup. At the IAEA meetings on liquid metal cooled fast reactor technology (LMFR), it became evident that there have been significant technological advances as well as changes in the economic and regulatory environment since 1985. Therefore the International working group on Fast Reactors has recommended the preparation of a new status report on fast reactors. The present report intends to provide comprehensive and detailed information on LMFR technology. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors, on the following topics: experience in construction and operation, reactor physics and safety, sore structural material and fuel technology, fast reactor engineering and activities in progress on LMFR plants

  10. Review of fast reactor activities in Italy, April 1978

    Pierantoni, F [CNEN Fast Reactor Programme, Bologna (Italy)

    1978-07-01

    In summary, the Italian fast reactor programme was developing in the following directions: PEC reactor, SUPEPHENIX reactor and long-term research and development work. Research was related to sodium technology, steam generators development, pumps, tests on mechanics and thermal insulation, core fluid dynamics, noise analysis, studies of oxide and carbide fuels, reactor safety, CABRI and SCARABEE experiments.

  11. Review of fast reactor activities in Italy, April 1978

    Pierantoni, F.

    1978-01-01

    In summary, the Italian fast reactor programme was developing in the following directions: PEC reactor, SUPEPHENIX reactor and long-term research and development work. Research was related to sodium technology, steam generators development, pumps, tests on mechanics and thermal insulation, core fluid dynamics, noise analysis, studies of oxide and carbide fuels, reactor safety, CABRI and SCARABEE experiments

  12. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  13. Research activities on fast reactors in Switzerland

    Brogli, R.; Dones, R.; Hudina, M.; Pelloni, S.

    1996-01-01

    The current domestic Swiss electricity supply is primarily based on hydro power (approximately 61%) and nuclear power (about 37%). The contribution of fossil systems is, consequently, minimal (the remaining 2%). In addition, long-term (but limited in time) contracts exist, securing imports of electricity of nuclear origin from France. During the last two years, the electricity consumption has been almost stagnant, although the 80s recorded an average annual increase rate of 2.7%. The future development of the electricity demand is a complex function of several factors with possibly competing effects, like increased efficiency of applications, changes in the industrial structure of the country, increase of population, further automation of industrial processes and services. Due to decommissioning of the currently operating nuclear power plants and expiration of long-term electricity import contracts there will eventually open a gap between the postulated electricity demand and the base supply. The assumed projected demand cases, high and low, as well as the secured yearly electric energy supply are shown. The physics aspects of plutonium burning fast reactor configurations are described including first results of the CIRANO experimental program. Swiss research related to residual heat removal in fast breeder reactors is presented. It consists of experimental ana analytic investigations on the mixing between two horizontal fluid layers of different velocities and temperatures. Development of suitable computer codes for mixing layer calculation are aimed to accurately predict the flow and temperature distribution in the pools. A satisfactory codes validation based on experimental data should be done

  14. Study of the fast inversion recovery pulse sequence. With reference to fast fluid attenuated inversion recovery and fast short TI inversion recovery pulse sequence

    Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi

    1997-01-01

    The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)

  15. A small modular fast reactor as starting point for industrial deployment of fast reactors

    Chang, Yoon I.; Lo Pinto, Pierre; Konomura, Mamoru

    2006-01-01

    The current commercial reactors based on light water technology provide 17% of the electricity worldwide owing to their reliability, safety and competitive economics. In the near term, next generation reactors are expected to be evolutionary type, taking benefits of extensive LWR experience feedbacks and further improved economics and safety provisions. For the long term, however, sustainable energy production will be required due to continuous increase of the human activities, environmental concerns such as greenhouse effect and the need of alternatives to fossil fuels as long term energy resources. Therefore, future generation commercial reactors should meet some criteria of sustainability that the current generation cannot fully satisfy. In addition to the current objectives of economics and safety, waste management, resource extension and public acceptance become other major objectives among the sustainability criteria. From this perspective, two questions can be raised: what reactor type can meet the sustainability criteria, and how to proceed to an effective deployment in harmony with the high reliability and availability of the current nuclear reactor fleet. There seems to be an international consensus that the fast spectrum reactor, notably the sodium-cooled system is most promising to meet all of the long term sustainability criteria. As for the latter, we propose a small modular fast reactor project could become a base to prepare the industrial infrastructure. The paper has the following contents: - Introduction; - SMFR project; - Core design; - Supercritical CO 2 Brayton cycle; - Near-term reference plant; - Advanced designs; - Conclusions. To summarize, the sodium-cooled fast reactor is currently recognized as the technology of choice for the long term nuclear energy expansion, but some research and development are required to optimize and validate advanced design solutions. A small modular fast reactor can satisfy some existing near-term market niche

  16. A resting bottom sodium cooled fast reactor

    Costes, D.

    2012-01-01

    This follows ICAPP 2011 paper 11059 'Fast Reactor with a Cold Bottom Vessel', on sodium cooled reactor vessels in thermal gradient, resting on soil. Sodium is frozen on vessel bottom plate, temperature increasing to the top. The vault cover rests on the safety vessel, the core diagrid welded to a toric collector forms a slab, supported by skirts resting on the bottom plate. Intermediate exchangers and pumps, fixed on the cover, plunge on the collector. At the vessel top, a skirt hanging from the cover plunges into sodium, leaving a thin circular slit partially filled by sodium covered by argon, providing leak-tightness and allowing vessel dilatation, as well as a radial relative holding due to sodium inertia. No 'air conditioning' at 400 deg. C is needed as for hanging vessels, and this allows a large economy. The sodium volume below the slab contains isolating refractory elements, stopping a hypothetical corium flow. The small gas volume around the vessel limits any LOCA. The liner cooling system of the concrete safety vessel may contribute to reactor cooling. The cold resting bottom vessel, proposed by the author for many years, could avoid the complete visual inspection required for hanging vessels. However, a double vessel, containing support skirts, would allow introduction of inspecting devices. Stress limiting thermal gradient is obtained by filling secondary sodium in the intermediate space. (authors)

  17. Status of National Programmes on Fast Breeder Reactors. International Working Group on Fast Reactors Twenty-First Annual Meeting, Seattle, USA, 9-12 May 1988

    1988-11-01

    The following papers on the status of national programmes on fast breeder reactors are presented in this report: Fast breeder reactor development in France during 1987; Status of fast breeder reactor development in the Federal Republic of Germany, Belgium and the Netherlands; A review of the Indian fast reactor programme; A review of the Italian fast reactor programme; A review of the fast reactor programme in Japan; Status of fast reactor activities in the USSR; A review of the United Kingdom fast reactor programme; Status of liquid metal reactor development in the United States of America; Review of activities of the Commission of European Communities relating to fast reactors in 1987; European co-operation in the field of fast reactor research and development — 1987 progress report; A review of fast reactor activities in Switzerland

  18. Seminar on Heat-transfer fluids for fast neutron reactors

    Brechet, Yves; Dautray, Robert; Friedel, Jacques; Brezin, Edouard; Martin, Georges; Pineau, Andre; Carre, Francois; Gauche, Francois; Rodriguez, Guillaume; Latge, Christian; Cabet, Celine; Garnier, Jean-Claude; Bamberger, Yves; Sauvage, Jean-Francois; Buisine, Denis; Agostini, Pietro; Ulyanov, Vladimir; Auger, Thierry; Heuer, Daniel; Ghetta, Veronique; Bubelis, Evaldas; Charlaix, Elisabeth; Barrat, Jean-Louis; Boquet, Lyderic; Glickman, Evgueny; Escaravage, Claude

    2014-03-01

    This book reports the content of a two-day meeting held by the Academy of Sciences on the use of heat-transfer fluids in fast neutron reactors. After a first part which proposes an overview of scientific and technical problems related to these heat-transfer fluids (heat transfer process, nuclear properties, chemistry, materials, risks), a contribution proposes a return on experience on the use of heat-transfer fluids in the different design options of reactors of fourth generation: from mercury to NaK in the first fast neutron reactor projects, specific assets and constraints of sodium used as heat-transfer fluid, concepts of fast neutron reactors cooled by something else than sodium, perspectives for projects and research in fast neutron reactors. The next contribution discusses the specifications of future fast-neutron reactors: expectations for fourth-generation reactors, expectations in terms of performance and of safety, specific challenges. The last contribution addresses actions to be undertaken in the field of research and development: actions regarding all reactor types or specific types as sodium-cooled reactors, lead cooled reactors, molten salt reactors, and gas-cooled fast reactors

  19. Design and research of fuel element for pulsed reactor

    Tian Sheng

    1994-05-01

    The fuel element is the key component for pulsed reactor and its design is one of kernel techniques for pulsed reactor. Following the GA Company of US the NPIC (Nuclear Power Institute of China) has mastered this technique. Up to now, the first pulsed reactor in China (PRC-1) has been safely operated for about 3 years. The design and research of fuel element undertaken by NPIC is summarized. The verification and evaluation of this design has been carried out by using the results of measured parameters during operation and test of PRC-1 as well as comparing the design parameters published by others

  20. Pulsed irradiation of enriched UO{sub 2} in the Annular Core Pulse Reactor (ACPR)

    Schmidt, T R; Lucoff, D M; Reil, K O; Croucher, D W [Sandia Laboratories (United States)

    1974-07-01

    A series of experiments have been conducted in the Annular Core Pulse Reactor (ACPR) to determine the energy deposition and behavior of enriched UO{sub 2} under pulse conditions. In the experiment single unirradiated pellets with enrichments up to 25 percent were pulse heated to melt temperatures. Temperature and fission product inventory measurements were made and compared with neutron transport calculations. (author)

  1. Performance of metallic fuels in liquid-metal fast reactors

    Seidel, B.R.; Walters, L.C.; Kittel, J.H.

    1984-01-01

    Interest in metallic fuels for liquid-metal fast reactors has come full circle. Metallic fuels are once again a viable alternative for fast reactors because reactor outlet temperature of interest to industry are well within the range where metallic fuels have demonstrated high burnup and reliable performance. In addition, metallic fuel is very tolerant of off-normal events of its high thermal conductivity and fuel behavior. Futhermore, metallic fuels lend themselves to compact and simplified reprocessing and refabrication technologies, a key feature in a new concept for deployment of fast reactors called the Integral Fast Reactor (IFR). The IFR concept is a metallic-fueled pool reactor(s) coupled to an integral-remote reprocessing and fabrication facility. The purpose of this paper is to review recent metallic fuel performance, much of which was tested and proven during the twenty years of EBR-II operation

  2. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors - 202

    Recktenwald, G.D.; Bronk, L.A.; Deinert, M.R.

    2010-01-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks. (authors)

  3. Fast reactor knowledge preservation system: Taxonomy and basic requirements

    2008-01-01

    The IAEA has taken the initiative to coordinate efforts of Member States in the preservation of knowledge in the area of fast reactors. In the framework of this initiative, the IAEA intends to create an international database compiling information from different Member States on fast reactors through a web portal. Other activities related to this initiative are being designed to accumulate and exchange information on the fast reactor area, to facilitate access to this information by users in different countries and to assist Member States in preserving the experience gained in their countries. The purpose of this publication is to develop a taxonomy of the Fast Reactor Knowledge Preservation System (FRKPS) that will facilitate the preservation of the world's fast reactor knowledge base, to identify basic requirements of this taxonomy on the basis of the experience gained in the fast reactor area, as well as results of previous IAEA activities on fast reactor knowledge preservation. The need for such taxonomy arises from the fact that during the past 15 years there has been stagnation in the development of fast reactors in the industrialized countries that were involved, earlier, in intensive development of this area. All studies on fast reactors have been stopped in countries such as Germany, Italy, the United Kingdom and the United States of America and the only work being carried out is related to the decommissioning of fast reactors. Many specialists who were involved in the studies and development work in this area in these countries have already retired or are close to retirement. In countries such as France, Japan and the Russian Federation that are still actively pursuing the evolution of fast reactor technology, the situation is aggravated by the lack of young scientists and engineers moving into this branch of nuclear power

  4. Liquid metal cooled fast breeder nuclear reactors

    Duncombe, E.; Thatcher, G.

    1979-01-01

    The invention described relates to a liquid metal cooled fast breeder nuclear reactor in which the fuel assembly has an inner zone comprised mainly of fissile material and a surrounding outer zone comprised mainly of breeder material. According to the invention the sub-assemblies in the outer zone include electro-magnetic braking devices (magnets, pole pieces and armature) for regulating the flow of coolant through the sub-assemblies. The magnetic fields of the electro-magnetic breaking devices are temperature sensitive so that as the power output of the breeder sub-assemblies increases the electro-magnetic resistance to coolant flow is reduced thereby maintaining the temperature of the coolant outlets from the sub-assemblies substantially constant. (UK)

  5. Analysis of fast reactor steam generator performance

    Hulme, G.; Curzon, A.F.

    1992-01-01

    A computer model for the prediction of flow and temperature fields within a fast reactor steam generator unit is described. The model combines a commercially available computational fluid dynamics (CFD) solver (PHOENICS) with a steam-tube calculation and provides solutions for the fully coupled flow and temperature fields on both the shell side and the tube side. The model includes the inlet and outlet headers and the bottom end stagnant zone. It also accounts for the effects of support grids and edge-gaps. Two and three dimensional and transient calculations have been performed for both straight tube and J-tube units. Examples of the application of the model are presented. (7 figures) (Author)

  6. Improvement of covariance data for fast reactors

    Shibata, Keiichi; Hasegawa, Akira

    2000-02-01

    We estimated covariances of the JENDL-3.2 data on the nuclides and reactions needed to analyze fast-reactor cores for the past three years, and produced covariance files. The present work was undertaken to re-examine the covariance files and to make some improvements. The covariances improved are the ones for the inelastic scattering cross section of 16 O, the total cross section of 23 Na, the fission cross section of 235 U, the capture cross section of 238 U, and the resolved resonance parameters for 238 U. Moreover, the covariances of 233 U data were newly estimated by the present work. The covariances obtained were compiled in the ENDF-6 format. (author)

  7. Trial visualization of fast reactor design knowledge

    Yoshikawa, Shinji; Minami, Masaki; Takahashi, Tadao

    2011-01-01

    In design problems of large-scale systems like fast breeder reactors, inter-relations among design specifications are very important where a selected specification option is transferred to other specification selections as a premise to be taken account in engineering judgments. These inter-relations are also important in design case studies with the hypothetical adoption of rejected design options for the evaluation of deviation propagations among design specifications. Some of these rejected options have potential worth for future reconsideration by some circumstance changes (e.g., advanced simulations to exclude needs for mock-up tests, etc.), to contribute to flexibility in system designs. In this study, a computer software is built to visualize a design problem structure by representing engineering knowledge nodes on individual specification selections along with inter-relations of design specifications, to validate the knowledge representation method and to derive open problems. (author)

  8. Liquid metal cooled fast breeder nuclear reactors

    Barnes, S.

    1976-01-01

    Reference is made to liquid metal cooled fast breeder reactors of the 'pool' kind. In this type of reactor the irradiated fuel is lowered into a transfer rotor for removal to storage facilities, this rotor normally having provision for the temporary storage of 20 irradiated fuel assemblies, each within a stainless steel bucket. For insertion or withdrawal of a fuel assembly the rotor is rotated to bring the fuel assembly to a loading or discharging station. The irradiated fuel assembly is withdrawn from the rotor within its bucket and the total weight is approximately 1000 kg, which is lifted about 27 m. In the event of malfunction the combination falls back into the rotor with considerable force. In order to prevent damage to the rotor fracture pins are provided, and to prevent damage to the reactor vessel and other parts of the reactor structure deformable energy absorbing devices are provided. After a malfunction the fractured pins and the energy absorbing devices must be replaced by remote control means operated from outside the reactor vault - a complex operation. The object of the arrangement described is to provide improved energy absorbing means for fuel assemblies falling into a fuel transfer rotor. The fuel assemblies are supported in the rotor by elastic means during transfer to storage and a hydraulic dash pot is provided in at least one position below the rotor for absorbing the energy of a falling fuel assembly. It is preferable to provide dash pots immediately below a receiving station for irradiated fuel assemblies and immediately below a discharge station. Each bucket is carried in a container that is elastically supported in the transfer rotor on a helical coil compression spring, so that, in the event of a malfunction the container and bucket are returned to their normal operating position after the force of the falling load has been absorbed by the dash pot. The transfer rotor may also be provided with recoil springs to absorb the recoil energy

  9. Atmospheric studies with SODAR at Kalpakkam

    Somayaji, K.M.

    1991-01-01

    A doppler SODAR for measurement of wind characteristics at different heights has been installed at HASL, IGCAR, Kalpakkam and is in operation since January 1990. The technical specifications and the basic aspects of SODAR, siting considerations and installation details are given. The report also discusses some observations regarding the site selection, installation and operation of SODARs. The basic theory of SODARs, some aspects of turbulence and dispersion in atmosphere and the various stability classification schemes are outlined. Some details regarding land/sea-breeze circulations and inversions are also given. (author). 6 refs., 10 figs., 8 annextures

  10. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  11. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  12. The investigation of enviromental radioactivity background around a pulsed reactor

    Xiao Tenghui; Zhao Zhongli

    1990-01-01

    The radioactivity background level of enviromental medium around a pulsed reactor for 5 km and external penetrating radioactivity dose level for 10 km are given. mediums measured include air, water, soil, organisms, fallout, etc

  13. The investigation of enviromental radioactivity background around a pulsed reactor

    Tenghui, Xiao; Zhongli, Zhao [Southwest Inst. of Nuclear Reactor Engineering, Sichuan, SC (China)

    1990-06-01

    The radioactivity background level of enviromental medium around a pulsed reactor for 5 km and external penetrating radioactivity dose level for 10 km are given. mediums measured include air, water, soil, organisms, fallout, etc.

  14. Fabrication of cermet fuel for fast reactor

    Mishra, Sudhir; Kumar, Arun; Kutty, T.R.G.; Kamath, H.S.

    2011-01-01

    Mixed oxide (MOX) (U,Pu)O 2 , and metallic (U,Pu ,Zr) fuels are considered promising fuels for the fast reactor. The fuel cycle of MOX is well established. The advantages of the oxide fuel are its easy fabricability, good performance in the reactor and a well established reprocessing technology. However the problems lie in low thermal conductivity , low density of the fuel leading to low breeding ratio and consequently longer doubling time. The metallic fuel has the advantages of high thermal conductivity, higher metal density and higher coefficient of linear expansion. The higher coefficient of linear expansion is good from the safety consideration (negative reactivity factor). Because of higher metal density it offers highest breeding ratio and shortest doubling time. Metallic fuel disadvantages comprise large swelling at high burnup, fuel cladding interaction and lower margin between operating and melting temperature. The optimal solution may lie in cermet fuel (U, PuO 2 ), where PuO 2 is dispersed in U metal matrix and combines the favorable features of both the fuel types. The advantages of this fuel include high thermal conductivity, larger margin between melting and operating temperature, ability to retain fission product etc. The matrix being of high density metal the advantage of high breeding ratio is also maintained. In this report some results of fabrication of cermet pellet comprising of UO 2 /PuO 2 dispersed in U metal powder through classical powder metallurgy route and characterization are presented. (author)

  15. Advanced sodium fast reactor accident source terms :

    Powers, Dana Auburn; Clement, Bernard; Denning, Richard; Ohno, Shuji; Zeyen, Roland

    2010-09-01

    An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic event Energetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolant Entrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached cladding Rates of radionuclide leaching from fuel by liquid sodium Surface enrichment of sodium pools by dissolved and suspended radionuclides Thermal decomposition of sodium iodide in the containment atmosphere Reactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

  16. Fault tolerant distributed real time computer systems for I and C of prototype fast breeder reactor

    Manimaran, M., E-mail: maran@igcar.gov.in; Shanmugam, A.; Parimalam, P.; Murali, N.; Satya Murty, S.A.V.

    2014-03-15

    Highlights: • Architecture of distributed real time computer system (DRTCS) used in I and C of PFBR is explained. • Fault tolerant (hot standby) architecture, fault detection and switch over are detailed. • Scaled down model was used to study functional and performance requirements of DRTCS. • Quality of service parameters for scaled down model was critically studied. - Abstract: Prototype fast breeder reactor (PFBR) is in the advanced stage of construction at Kalpakkam, India. Three-tier architecture is adopted for instrumentation and control (I and C) of PFBR wherein bottom tier consists of real time computer (RTC) systems, middle tier consists of process computers and top tier constitutes of display stations. These RTC systems are geographically distributed and networked together with process computers and display stations. Hot standby architecture comprising of dual redundant RTC systems with switch over logic system is deployed in order to achieve fault tolerance. Fault tolerant dual redundant network connectivity is provided in each RTC system and TCP/IP protocol is selected for network communication. In order to assess the performance of distributed RTC systems, scaled down model was developed with 9 representative systems and nearly 15% of I and C signals of PFBR were connected and monitored. Functional and performance testing were carried out for each RTC system and the fault tolerant characteristics were studied by creating various faults into the system and observed the performance. Various quality of service parameters like connection establishment delay, priority parameter, transit delay, throughput, residual error ratio, etc., are critically studied for the network.

  17. Plant experience of experimental fast reactor 'Joyo'

    1982-01-01

    The experimental fast reactor ''JOYO'' installed in Power Reactor and Nuclear Fuel Development Corp. (PNC) of Japan completed its operation using the first core (called MK-I core) in December, 1981, and the works to transfer to MK-2 core have been performed since January, 1982. In this report, the experiences obtained through the construction, test and operation of ''JOYO'' over 12 years from the start of erection in 1970 to the termination of operation in 1981 are described. The contents of the report are divided into design, construction, the outline of facilities, testing, operating and maintenance experiences, and the topics on MK-I operation. As for the construction, the design changes performed before the start of manufacture or construction and the improvement and trouble restoring works implemented at the start of overall functional tests are reported. As for testing, overall functional tests, criticality test, low power test and power increasing test are described in detail. The number of test items of overall functional testing reached 266. The rated output operation of the reactor at 75 MW was performed six times in 1980 and 1981 until the termination of operation. No fuel failure was detected in MK-I operation, and the stable operation performance of the FBR was proved through MK-I operation. The topics on the MK-I operation includes natural circulation test, the measurement of total leakage rate for the containment vessel, and wear-marks which are the trace of wear due to the contact of fuel pins with the wires wound around the adjacent fuel pins, found in the post irradiation examination of fuel. (Wakatsuki, Y.)

  18. Actinide burning in the integral fast reactor

    Chang, Y.I.

    1993-01-01

    During the past few years, Argonne National Laboratory has been developing the integral fast reactor (IFR), an advanced liquid-metal reactor concept. In the IFR, the inherent properties of liquid-metal cooling are combined with a new metallic fuel and a radically different refining process to allow breakthroughs in passive safety, fuel cycle economics, and waste management. A key feature of the IFR concept is its unique pyroprocessing. Pyroprocessing has the potential to radically improve long-term waste management strategies by exploiting the following attributes: 1. Minor actinides accompany plutonium product stream; therefore, actinide recycling occurs naturally. Actinides, the primary source of long-term radiological toxicity, are removed from the waste stream and returned to the reactor for in situ burning, generating useful energy. 2. High-level waste volume from pyroprocessing call be reduced substantially as compared with direct disposal of spent fuel. 3. Decay heat loading in the repository can be reduced by a large factor, especially for the long-term burden. 4. Low-level waste generation is minimal. 5. Troublesome fission products, such as 99 Tc, 129 I, and 14 C, are contained and immobilized. Singly or in combination, the foregoing attributes provide important improvements in long-term waste management in terms of the ease in meeting technical performance requirements (perhaps even the feasibility of demonstrating that technical performance requirements can be met) and perhaps also in ultimate public acceptance. Actinide recycling, if successfully developed, could well help the current repository program by providing an opportunity to enhance capacity utilization and by deferring the need for future repositories. It also represents a viable technical backup option in the event unforeseen difficulties arise in the repository licensing process

  19. Fast reactor cooled by supercritical light water

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  20. History of fast reactor fuel development

    Kittel, J.H. (Argonne National Lab., IL (United States)); Frost, B.R.T. (Argonne National Lab., IL (United States)); Mustelier, J.P. (COGEMA, Velizy-Villacoublay (France)); Bagley, K.Q. (AEA Reactor Services, Risley (United Kingdom)); Crittenden, G.C. (AEA Reactor Services, Dounreay (United Kingdom)); Dievoet, J. van (Belgonucleaire, Brussels (Belgium))

    1993-09-01

    The first fast breeder eactors, constructed in the 1945-1960 time period, used metallic fuels composed of uranium, plutonium, or their alloys. They were chosen because most existing reactor operating experience had been obtained on metallic fuels and because they provided the highest breeding ratios. Difficulties in obtaining adequate dimensional stability in metallic fuel elements under conditions of high fuel burnup led in the 1960s to the virtual worldwide choice of ceramic fuels. Although ceramic fuels provide lower breeding performance, this objective is no longer an important consideration in most national programs. Mixed uranium and plutonium dioxide became the ceramic fuel that has received the widest use. The more advanced ceramic fuels, mixed uranium and plutonium carbides and nitrides, continue under development. More recently, metal fuel elements of improved design have joined ceramic fuels in achieving goal burnups of 15 to 20 percent. Low-swelling fuel cladding alloys have also been continuously developed to deal with the unexpected problem of void formation in stainless steels subjected to fast neutron irradiation, a phenomenon first observed in the 1960s. (orig.)

  1. Fast reactor physics at CEA: present studies and future prospects

    Hammer, P.

    1980-09-01

    This paper aims at giving a general survey of the fast reactor core physics and shielding studies wich are in progress at CEA (1979-1983) in order to solve the neutronic problems related to: - core design optimization, - reactor operation and fuel management, - safety, for the development of fast commercial breeders in France after the SUPER-PHENIX 1 construction is achieved

  2. The problems of thermohydraulics of prospective fast reactor concepts

    Sedov, A.A.

    2000-01-01

    In this report the main requirements to fast reactors in system of future multicomponent Nuclear Power with closed U-Pu fuel cycle are regarded. The peculiarities of different liquid-metal (sodium and lead-alloyed) coolants as well as the thermohydraulics problems of prospective fast reactors (FR) concepts are discussed. (author)

  3. Recent operational history of the new Sandia Pulsed Reactor III (SPR III)

    Schmidt, T.R.; Estes, B.F.; Reuscher, J.A.

    1977-01-01

    The Sandia Pulsed Reactor III (SPR III) is a fast-pulse research reactor which was designed and built at Sandia Laboratories and achieved criticality in August 1975. The reactor is now characterized and is in an operational configuration. The core consists of 18 fuel plates (258 kg fuel mass) of fully enriched uranium alloyed with 10 wt.% molybdenum. It is arranged in an annular configuration with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a height of 35.9 cm. The reactor core uses reflectors of copper and aluminum for control and an external bolting arrangement to secure the fuel plates. SPR III and SPR II are operated on an interchangeable basis using the same facility and control system. As of June 1977, SPR III has had over 240 operations with core temperatures up to 541 0 C

  4. A review of fast reactor progress in Japan

    Tomabechi, K [Power Reactor and Nuclear Fuel Development Corporation, Tokyo (Japan)

    1978-07-01

    The fast reactor development project in Japan is continuing at a slightly increased scale of effort in budget. The total budget for LMFBR development for fiscal year 1978 was 24 billion yen. In August 1977 major industries engaged in LMFBR have set up an office where design work can be jointly conducted. Highlights and topics of the fast reactor development activities cover description of JOYO reactor, its first criticality experiment, and the prototype fast breeder MONJU. Research and development programmes dealt with fission products release and its possible interaction with the soodium coolant, inspection of reactor components, experiments simulating sodium leakage, development of steam generator.

  5. Simulating the Behaviour of the Fast Reactor Joyo (Draft)

    Juutilainen, Pauli

    2008-01-01

    Motivated by the development of fast reactors the behaviour of the Japanese experimental fast reactor Joyo is simulated with two Monte Carlo codes: Monte Carlo NParticle (MCNP) and Probabilistic Scattering Game (PSG). The simulations are based on the benchmark study 'Japan's Experimental Fast Reactor Joyo MKI core: Sodium-Cooled Uranium-Plutonium Mixed Oxide Fueled Fast Core Surrounded by UO 2 Blanket'. The study is focused on the criticality of the reactor, control rod worth, sodium void reactivity and isothermal temperature coefficient of the reactor. These features are calculated by applying both homogeneous and heterogeneous reactor core models that are built according to the benchmark instructions. The results of the two models obtained by the two codes are compared with each other and especially with the experimental results presented in the benchmark. (author)

  6. The design and fabrication of an optical periscope for core viewing of fast breeder test reactor (FBTR)

    Das, N.C.; Sanjiva Kumar; Udupa, D.V.; Shukla, R.P.; Kadu, A.M.; Modi, R.K.

    2004-08-01

    A FBTR (Fast Breeder Test Reactor) periscope has been designed and fabricated indigenously for viewing and photography/ video recording the objects in the reactor core. The periscope consists of a scanning prism mechanism, zoom lens objective, a system of relay lenses and an eyepiece sub-assembly for viewing the objects. The objective of the periscope is a zoom lens system for obtaining a continuously varying magnification from 2X to 5X. Zoom lens objective system has a variable focal length from 100 mm to 250 mm with an aperture varying from 10 mm to 25 mm respectively. This covers a semi- field angle of 3 deg for the objective lens of focal length of 250 mrn and 4 deg for the objective of focal length of l00 mm. Two prisms of 45 deg -90 deg -45 deg types are used for scanning the object space in vertical direction. One prism is fixed, whereas the prism facing the object can be rotated about the horizontal axis through an angle of 110 deg. The rotation of the entire periscope assembly along the vertical axis scans the object space on the horizontal plane. The combination of these two rotations is used to scan the field of interest. It may be noted here that it is absolutely essential to introduce a Pechan prism before each eyepiece. Pechan prism is used for the rotation of the image, which is produced due to the rotation of the scanning prisms. The measured value of the linear resolution of the instrument is 0.7 mm at an object distance of 2.5 meter from the zoom lens objective system. The periscope has two arm labeled I and II. The arm I is used for visual inspection, while the arm II is used for video recording/photography. The periscope will be used as an in-service instrument for Fast Breeder Test Reactor, IGCAR, Kalpakkam. (author)

  7. Logistical and economic obstacles to a fast reactor programme

    Sweet, C.

    1982-01-01

    Fast reactor studies used to place great emphasis on its role as a breeder of plutonium, thereby raising the prospect of a nuclear power system free from the constraint of uranium supplies. Today, not only the timing of fast reactor introduction has slipped (by two or three decades) but the perspective which was central to energy policy has changed dramatically. This article first examines the fast reactor as a system and looks at the interaction of four key variables in its logistics. It then looks at the rise in real costs, especially capital costs. Given the parameters that determine the plutonium balance and the economics of the fast reactor system, the author questions whether there is a sound basis for its introduction, and concludes by suggesting that the most pressing requirement is a study of the opportunity costs of fast reactor R and D expenditures. (author)

  8. A review of the UK fast reactor programme

    Picker, C.; Ainsworth, K.F.

    1998-01-01

    The general position with regard to nuclear power and fast reactors in the UK during 1996 is described. The main UK Government-funded fast reactor research and development programme was concluded in 1993, to be replaced by a smaller programme which is mainly funded and managed by British Nuclear Fuels plc. The main focus of this programme sustains the UK participation in the European Fast Reactor (EFR) collaboration and the broader international links built-up over the previous decades. The status of fast reactor studies made in the UK in 1996 is outlined and, with respect to the Prototype Fast Reactor at Dounreay, a report of progress with the closure studies, fuel reprocessing and decommissioning activities is provided. (author)

  9. LTFR-4, Library Generated for Fast Reactor Design Program from JAERI Fast-Set Multigroup Constant

    Suzuki, Tomoo

    1971-01-01

    Nature of physical problem solved: The program processes JAERI-Fast group constants sets of less than 30-group and prepares a binary library tape for efficient usage by a series of related fast reactor design calculation programmes

  10. Fast neutron activating detectors for pulsed flow measurements

    Dyatlov, V.D.; Kunaev, G.T.; Popytaev, A.N.; Cheremukhov, B.V.

    1979-01-01

    The requirements to the activation detectors of the pulsed flows of the fast neutrons are considered; the criteria of optimum measurement time, geometrical moderator sizes and radioactive detector element properties have been obtained. On their analysis parameter selection has been carried out. The neutron detector to register the short pulses has been designed and calibrated. The ways of further increase of sensitivity and efficiency of such detectors are discussed

  11. Safety Analysis Of Actinide Recycled Fast Power Reactor

    Taufik, Mohammad

    2001-01-01

    Simulation for safety analysis of actinide recycled fast power reactor has been performed. The objective is to know reactor response about ULOF and ULOF and UTOP simultaneous accident. From parameter result such reactivity feedback, power, temperature, and cooled flow rate can conclusion that reactor have inherent safety system, which can back to new Equilibrium State

  12. Fast-reactor fuel reprocessing in the United Kingdom

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  13. Fast neutron nuclear reactor with lightened internal structure

    Artaud, R.; Aubert, M.; Renaux, C.

    1984-01-01

    The invention concerns an integrated type fast reactor. The inner vessel comprises two truncated shells, of which the large bases are connected either directly, or by a cylindrical shell of large diameter. The small base of the upper truncated shell is prolongated by a shell of small diameter and the small base of the lower truncated shell supports the reactor core. The invention allows the construction of simpler and less expansive fast reactors [fr

  14. Pulsed lower-hybrid wave penetration in reactor plasmas

    Cohen, R.H.; Bonoli, P.T.; Porkolab, M.; Rognlien, T.D.

    1989-01-01

    Providing lower-hybrid power in short, intense (GW) pulses allows enhanced wave penetration in reactor-grade plasmas. We examine nonlinear absorption, ray propagation, and parametric instability of the intense pulses. We find that simultaneously achieving good penetration while avoiding parametric instabilities is possible, but imposes restrictions on the peak power density, pulse duration, and/or r.f. spot shape. In particular, power launched in narrow strips, elongated along the field direction, is desired

  15. Fast quadrupole pulsed power supply in the AGS

    Nawrocky, R.J.; Halama, H.J.; Lambiase, R.F.; Montemurro, P.A.

    1984-01-01

    As part of the Polarized Proton Project at the AGS, a pulsed power supply system has been developed to energize a set of twelve fast quadrupoles which are symmetrically distributed around the 1/2-mile circumference of the machine. During a typical acceleration cycle, which is normally repeated every 2.4 s, these magnets are energized with bursts of triangular current pulses. The rise-time of each pulse is less than 2 μs and the width at the base varies from 1 to 3.5 ms depending on the pulse. Within a burst, pulses alternate in polarity and vary in amplitude from 160 A to 2700 A peak. Pulse separation is on the order of 40 ms. Due to the distributed nature of the load and high di/dt, each magnet is powered by a separate modulator. Magnets are driven via coaxial pulse transmission cables up to 200 ft long. In the modulators, the high power pulses are switched with thyratron/ignitron switch pairs. All modulators are charged in parallel with a common system of programmable high voltage power supplies. The overall system is controlled with a distributed network of microcomputers. This paper describes the development, construction and initial performance of the pulsed power supply system

  16. Implications of Fast Reactor Transuranic Conversion Ratio

    Piet, Steven J.; Hoffman, Edward A.; Bays, Samuel E.

    2010-01-01

    Theoretically, the transuranic conversion ratio (CR), i.e. the transuranic production divided by transuranic destruction, in a fast reactor can range from near zero to about 1.9, which is the average neutron yield from Pu239 minus 1. In practice, the possible range will be somewhat less. We have studied the implications of transuranic conversion ratio of 0.0 to 1.7 using the fresh and discharge fuel compositions calculated elsewhere. The corresponding fissile breeding ratio ranges from 0.2 to 1.6. The cases below CR=1 ('burners') do not have blankets; the cases above CR=1 ('breeders') have breeding blankets. The burnup was allowed to float while holding the maximum fluence to the cladding constant. We graph the fuel burnup and composition change. As a function of transuranic conversion ratio, we calculate and graph the heat, gamma, and neutron emission of fresh fuel; whether the material is 'attractive' for direct weapon use using published criteria; the uranium utilization and rate of consumption of natural uranium; and the long-term radiotoxicity after fuel discharge. For context, other cases and analyses are included, primarily once-through light water reactor (LWR) uranium oxide fuel at 51 MWth-day/kg-iHM burnup (UOX-51). For CR 1, heat, gamma, and neutron emission decrease with recycling. The uranium utilization exceeds 1%, especially as all the transuranic elements are recycled. exceeds 1%, especially as all the transuranic elements are recycled. At the system equilibrium, heat and gamma vary by somewhat over an order of magnitude as a function of CR. Isotopes that dominate heat and gamma emission are scattered throughout the actinide chain, so the modest impact of CR is unsurprising. Neutron emitters are preferentially found among the higher actinides, so the neutron emission varies much stronger with CR, about three orders of magnitude.

  17. Design characteristics of zero power fast reactor Lasta

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Popovic, D.; Nikolic, D.; Antic, D.; Zavaljevski, N.

    1987-01-01

    The concept, purpose and preliminary design of a zero power fast reactor LASTA are described. The methods of computing the reactor core parameters and reactor kinetics are presented with the basic calculated results and analysis for one selected LASTA configuration. The nominal parameters are determined according to the selected reactor safety criteria and results of calculations. Important aspects related to the overall safety are examined in detail. (author)

  18. A fast spectrum dual path flow cermet reactor

    Anghaie, S.; Feller, G.J.; Peery, S.D.; Parsley, R.C.

    1993-01-01

    A cermet fueled, dual path fast reactor for space nuclear propulsion applications is conceptually designed. The reactor utilizes an outer annulus core and an inner cylindrical core with radial and axial reflector. The dual path flow minimizes the impact of power peaking near the radial reflector. Basic neutronics and core design aspects of the reactor are discussed. The dual path reactor is integrated into a 25000 lbf thrust nuclear rocket

  19. Environmental gamma radiation measurements over the Bay of Bengal around Kalpakkam and in Chennai Harbor

    Surya Prakash, G.; Baskaran, R.; Venkatraman, B.; Rajagopal, V.; Mohanty, Ajit Kumar

    2012-01-01

    DAE site Kalpakkam, encompassing several operating nuclear facilitates is enclosed in a strip of land between the Bay of Bengal on the east and Buckingham Canal on the west. Approximately about 50% of the Emergency Prone Zone (EPZ) area around the plant lies in the Bay of Bengal. The radiation levels around Kalpakkam nuclear complex is monitored by Environmental Survey Laboratory (ESL) at Kalpakkam. The survey has been carried out up to 16 km in the land areas. Though radioactivity levels in the seawater and the food produce derived from the sea are monitored and reported by ESL, data on the ambient radiation levels over the sea has not been reported. The paper describes the campaign based ambient gamma radiation level measurements done during the past few years. The radiation level measurements done at selected locations varied between 8 and 115 nGyh -1 (0.8 and 11.5 μRh -1 ) during the first campaign and 14 and 170 nGyh -1 (1.4 and 17 μRh -1 ) during the second campaign. The average dose rate observed from both the campaigns was 62 nGyh 1 (6.2 μRh -1 ). During the campaign period we are looked in to any interference from the 41 Ar released from the MAPS reactor also. The third campaign at the Chennai harbor (∼ 60 km north of Kalpakkam) the observed radiation levels were between 15 nGyh -1 (1.5 μRh -1 ) and 12.2 nGyh -1 (12.2 μRh -1 ). This paper discussed the details of the techniques and the measurement

  20. Pulse shape discrimination based on fast signals from silicon photomultipliers

    Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng

    2018-06-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.

  1. A review of the U.K. fast reactor programme: March 1978

    Smith, R.D.

    1978-01-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies

  2. A review of the U.K. fast reactor programme: March 1978

    Smith, R D [United Kingdom Atomic Energy Authority, Risley (United Kingdom)

    1978-07-01

    The review of the UK fast reactor programme covers the description of Dounreay Fast Reactor shut down after seventeen years of successful operation; description of prototype fast reactor (PFR); core design parameters safety features and plant design for commercial demonstration fast reactor (CDFR). Engineering development is related to large sodium rigs, coolant circuit hydraulics and vibration, instrumentation and components. The subjects of interest are material development, sodium technology, fast reactor fuel, fuel cycle, reactor safety, reactor performance studies.

  3. Sodium fast reactor safety and licensing research plan. Volume II.

    Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d' %C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  4. Sodium fast reactor safety and licensing research plan - Volume II

    Ludewig, H.; Powers, D.A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.

    2012-01-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  5. Vibrations measurement in fast and PWR reactor study

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  6. Status of fast reactor activities in the USSR

    Troyanov, M.F.; Rinejskij, A.A.

    1990-01-01

    Four fast reactors are in operation in the USSR now: BR-10, BOR-60, BN-350 and BN-600. Load factor of BN-600 reactor was in 1989 about 76%. On the basis of operational experience of running reactors design of more powerful commercial size BN-800 power reactor has been completed recently and construction work has started at two sites. The BN-1600 reactor is considered to be the prototype of future commercial reactors. In 1990, it was decided to extend its design approach with the aim to find some additional solutions to provide higher safety and better economics. (author). Figs and tabs

  7. The development of fast simulation program for marine reactor parameters

    Chen Zhiyun; Hao Jianli; Chen Wenzhen

    2012-01-01

    Highlights: ► The simplified physical and mathematical models are proposed for a marine reactor system. ► A program is developed with Simulink module and Matlab file. ► The program developed has the merit of easy input preparation, output processing and fast running. ► The program can be used for the fast simulation of marine reactor parameters on the operating field. - Abstract: The fast simulation program for marine reactor parameters is developed based on the Simulink simulating software according to the characteristics of marine reactor with requirement of maneuverability and acute and fast response. The simplified core physical and thermal model, pressurizer model, steam generator model, control rod model, reactivity model and the corresponding Simulink modules are established. The whole program is developed by coupling all the Simulink modules. Two typical transient processes of marine reactor with fast load increase at low power level and load rejection at high power level are adopted to verify the program. The results are compared with those of Relap5/Mod3.2 with good consistency, and the program runs very fast. It is shown that the program is correct and suitable for the fast and accurate simulation of marine reactor parameters on the operating field, which is significant to the marine reactor safe operation.

  8. Code system for fast reactor neutronics analysis

    Nakagawa, Masayuki; Abe, Junji; Sato, Wakaei.

    1983-04-01

    A code system for analysis of fast reactor neutronics has been developed for the purpose of handy use and error reduction. The JOINT code produces the input data file to be used in the neutronics calculation code and also prepares the cross section library file with an assigned format. The effective cross sections are saved in the PDS file with an unified format. At the present stage, this code system includes the following codes; SLAROM, ESELEM5, EXPANDA-G for the production of effective cross sections and CITATION-FBR, ANISN-JR, TWOTRAN2, PHENIX, 3DB, MORSE, CIPER and SNPERT. In the course of the development, some utility programs and service programs have been additionaly developed. These are used for access of PDS file, edit of the cross sections and graphic display. Included in this report are a description of input data format of the JOINT and other programs, and of the function of each subroutine and utility programs. The usage of PDS file is also explained. In Appendix A, the input formats are described for the revised version of the CIPER code. (author)

  9. Creep buckling problems in fast reactor components

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  10. Construction schedule management of China Experimental Fast Reactor

    Wang Yue

    2012-01-01

    China Experimental Fast Reactor (CEFR) in the first Fast Reactor in China, which is one of large project of the National High Technology Research and Development Program ('863' Program). On 21 st July 2011, CEFR had succeeded to connect to power grid, the target of construction had come true. To a large item, schedule management is one of the most important management, this paper a overall discussion about CEFR item. It has proved that the management of CEFR project is scientific, normative and high-efficiency, it will be valuable for lager Fast Reactor item and designers in interrelated field. (author)

  11. Upgrading program of the experimental fast reactor Joyo

    Yoshida, A.; Yogo, S.

    2001-01-01

    The experimental fast reactor Joyo finished its operation as an irradiation core in June, 2000. Throughout the operation of MK-I (breeder core) and MK-II (irradiation core), the net operation time has exceeded 60,000 hours. During these operations there were no fuel failures or serious plant problems. The MK-III modification program will improve irradiation capability to demonstrate advanced technologies for commercial Fast Breeder Reactor (FBR). When the MK-III core is started, it will support irradiation tests in feasibility studies for fast reactor and related fuel cycle research and development in Japan. (authors)

  12. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-03-01

    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  13. A new safety approach in the design of fast reactors

    Neuhold, R.J.; Marchaterre, J.F.; Waltar, A.E.

    1987-01-01

    A new approach to achieving fast reactor safety goals is becoming really apparent in the US Fast Reactor Program. Whereas the ''defense is best'' philosophy still prevails, there has been a tangible shift toward emphasizing passive mechanisms to protect the reactor and provide public safety---rather than relying on add-on active, engineered safety systems. This paper reviews the technical basis for this new safety approach and provides discussion on its implementation in current US liquid metal-cooled reactor designs. 4 refs., 4 figs

  14. Study of startup conditions of a pulsed annular reactor

    Silva, Mario Augusto Bezerra da

    2003-10-01

    A new concept of reactor, which combines features of pulsed and stationary reactors, was proposed so as to produce intense neutronic fluxes. Such a reactor, known as VICHFPR (Very Intense Continuous High Flux Pulsed Reactor), consists of a subcritical core with an annular geometry and pulsed by a rotating reflector which acts as a reactivity modulator as it produces a short pulse (approximately equal to 1 ms) of high intensity, guiding the region near the pulser to super-prompt critical state. This dissertation intends to analyze the startup conditions of a Pulsed Annular Reactor. The evolution of the neutron pulse intensity is analyzed when the reactivity modulator is brought upwards according to a helicoidal path from its initial position (far away from the core), when the multiplication factor has a subcritical value, up to the final position (near the core), in which a super-prompt critical state is reached. Part of the analysis is based on the variation of neutron reflection, which is a uniform function of the exit and reflection angles between the core and the modulator. It must be emphasized that this work is an approximation of the real situation. As the initial and final reactor parameters are known, a programming code in Fortran is worked out to provide the multiplication factor and the flux intensity evolution. According to the results obtained with this code, the conditions under which the modulator must be lifted up during the startup are established. Basically, these conditions are related to the analysis of the rising and the rotation velocities, the reflector saving and the initial distance between the reactor and the modulator. The Pulsed Annular Reactor startup was divided into three stages. Because of its negative reactivity in the first two stages, the neutron multiplication is not large, while the last one, having a positive reactivity, shows an intense multiplication as is usually expected when handling pulsed systems. This last stage is quite

  15. Modelling thermal plume impacts - Kalpakkam approach

    Rao, T.S.; Anup Kumar, B.; Narasimhan, S.V.

    2002-01-01

    A good understanding of temperature patterns in the receiving waters is essential to know the heat dissipation from thermal plumes originating from coastal power plants. The seasonal temperature profiles of the Kalpakkam coast near Madras Atomic Power Station (MAPS) thermal out fall site are determined and analysed. It is observed that the seasonal current reversal in the near shore zone is one of the major mechanisms for the transport of effluents away from the point of mixing. To further refine our understanding of the mixing and dilution processes, it is necessary to numerically simulate the coastal ocean processes by parameterising the key factors concerned. In this paper, we outline the experimental approach to achieve this objective. (author)

  16. Fast reactors fuel Cycle: State in Europe

    1991-01-01

    In this SFEN day we treat all aspects (economics-reactor cores, reprocessing, experience return) of the LMFBR fuel cycle in Europe and we discuss about the development of this type of reactor (EFR project) [fr

  17. A review of fast reactor programme in Japan

    Matsuno, Y.; Bando, S.

    1981-03-01

    The fast breeder reactor development project in Japan made progress in the past year, and will be continued in the next fiscal 1981. The scale of efforts both in budget and personnel will be similar to those in fiscal 1980. The budget for R and D works and for the construction of the fast breeder prototype reactor ''Monju'' will be approximately 20 billion yen and 27 billion yen, respectively, excluding the wage of the personnel concerned. The number of the technical personnel currently engaging in fast breeder reactor development in the Power Reactor and Nuclear Fuel Development Corp. is about 530. As for the experimental fast reactor ''Joyo'', three operational cycles at 75 MWt have been completed in August, 1980, and the fourth cycle has started in March, 1981. As for the prototype reactor ''Monju'', progress was made toward the construction, and the environmental impact statement on the reactor was approved by the authorities concerned. The studies on the preliminary design of large LMFBRs have been made by the PNC and also by power companies. The design study carried out by the PNC is concerned with a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of the commissioning of ''Monju''. The highlights and topics in the development activities for fast breeder reactors in the past twelve months are summarized in this report. (Kako, I.)

  18. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  19. Coupled hydro-neutronic calculations for fast burst reactor accidents

    Paternoster, R.; Kimpland, R.; Jaegers, P.; McGhee, J.

    1994-01-01

    Methods are described for determining the fully coupled neutronic/hydrodynamic response of fast burst reactors (FBR) under disruptive accident conditions. Two code systems, PAD (1 -D Lagrangian) and NIKE-PAGOSA (3-D Eulerian) were used to accomplish this. This is in contrast to the typical methodology that computes these responses by either single point kinetics or in a decoupled manner. This methodology is enabled by the use of modem supercomputers (CM-200). Two examples of this capability are presented: an unreflected metal fast burst assembly, and a reflected fast burst assembly typical of the Skua or SPR-III class of fast burst reactor

  20. Philosophy of safety evaluation on fast breeder reactor

    1981-01-01

    This is the report submitted from the special subcommittee on reactor safety standard to the Nuclear Safety Commission on October 14, 1980, and it was decided to temporarily apply this concept to the safety examination on fast breeder reactors. The examination and discussion of this report were performed by taking the prototype reactor ''Monju'' into consideration, which is to be the present target, referring to the philosophy of the safety evaluation on fast breeder reactors in foreign countries and based on the experiences in the fast experimental reactor ''Joyo''. The items applicable to the safety evaluation for liquid metal-cooled fast breeder reactors (LMFBR) as they are among the existing safety examination guidelines are applied. In addition to the existing guidelines, the report describes the matters to be considered specifically for core, fuel, sodium, sodium void, reactor shut-down system, reactor coolant boundary, cover gas boundary and others, intermediate cooling system, removal of decay heat, containment vessels, high temperature structures, and aseismatic property in the safety design of LMFBR's. For the safety evaluation for LMFBR's, the abnormal transient changes in operation and the phenomena to be evaluated as accidents are enumerated. In order to judge the propriety of the criteria of locating LMFBR facilities, the serious and hypothetical accidents are decided to be evaluated in accordance with the guideline for reactor location investigation. (Wakatsuki, Y.)

  1. 3D core burnup studies in 500 MWe Indian prototype fast breeder reactor to attain enhanced core burnup

    Choudhry, Nakul; Riyas, A.; Devan, K.; Mohanakrishnan, P.

    2013-01-01

    Highlights: ► Enhanced burnup potential of existing prototype fast breeder reactor core is studied. ► By increasing the Pu enrichment, fuel burnup can be increased in existing PFBR core. ► Enhanced burnup increase economy and reduce load of fuel fabrication and reprocessing. ► Beginning of life reactivity is suppressed by increasing the number of diluents. ► Absorber rod worth requirements can be achieved by increasing 10 B enrichment. -- Abstract: Fast breeder reactors are capable of producing high fuel burnup because of higher internal breeding of fissile material and lesser parasitic capture of neutrons in the core. As these reactors need high fissile enrichment, high fuel burnup is desirable to be cost effective and to reduce the load on fuel reprocessing and fabrication plants. A pool type, liquid sodium cooled, mixed (Pu–U) oxide fueled 500 MWe prototype fast breeder reactor (PFBR), under construction at Kalpakkam is designed for a peak burnup of 100 GWd/t. This limitation on burnup is purely due to metallurgical properties of structural materials like clad and hexcan to withstand high neutron fluence, and not by the limitation on the excess reactivity available in the core. The 3D core burnup studies performed earlier for approach to equilibrium core of PFBR is continued to demonstrate the burnup potential of existing PFBR core. To increase the fuel burnup of PFBR, plutonium oxide enrichment is increased from 20.7%/27.7% to 22.1%/29.4% of core-1/core-2 which resulted in cycle length increase from 180 to 250 effective full power days (efpd), so that the peak fuel burnup increases from 100 to 134 GWd/t, keeping all the core parameters under allowed safety limits. Number of diluents subassemblies is increased from eight to twelve at beginning of life core to bring down the initial core excess reactivity. PFBR refueling is revised to accommodate twelve diluents. Increase of 10 B enrichment in control safety rods (CSRs) and diverse safety rods (DSRs

  2. Liquid metal cooled fast breeder nuclear reactors

    Durston, J.G.

    1976-01-01

    It is stated that in a liquid metal cooled fast breeder reactor wherein the core, intermediate heat exchangers and liquid metal pumps are immersed in a pool of coolant such as Na, the intermediate heat exchangers are suspended from the roof, and ducting is provided in the form of a core tank or shroud interconnected with 'pods' housing the intermediate exchangers for directing coolant from the core over the heat exchanger tubes and thence back to the main pool of liquid metal. Seals are provided between the intermediate heat exchanger shells and the walls of their 'pods' to prevent liquid metal flow by-passing the heat exchanger tube bundles. As the heat exchangers must be withdrawable for servicing, and because linear differential thermal expansion of the heat exchanger and its 'pod' must be accommodated the seals hitherto have been of the sliding kind, generally known as 'piston ring type seals'. These present several disadvantages; for example sealing is not absolute, and the metal to metal seal gives rise to wear and fretting by rubbing and vibration. This could lead to seizure or jamming by the deposition of impurities in the coolant. Another difficulty arises in the need to accommodate lateral thermal expansion of the ducting, including the core tank and 'pods'. Hitherto some expansion has been allowed for by the use of expansible bellow pairs in the interconnections, or alternatively by allowing local deformations of the core tank 'pods'. Such bellows must be very flexible and hence constitute a weak section of the ducting, and local deformations give rise to high stress levels that could lead to premature failure. The arrangement described seeks to overcome these difficulties by use of a gas pocket trapping means to effect a seal against vertical liquid flow between the heat exchanger shell and the wall of the heat exchanger housing. Full details of the arrangement are described. (U.K.)

  3. Review of fast reactor operating experience gained in 1998 in Russia. General trends of future fast reactor development

    Poplavski, V.M.; Ashurko, Y.M.; Zverev, K.V.; Sarayev, O.M.; Oshkanov, N.N.; Korol'kov, A.S.

    1999-01-01

    Review of the general state of nuclear power in Russia as for 1998 is given in brief in the paper. Results of operation of BR-10, BOR-60 and BN-600 fast reactors are presented as well as of scientific and technological escort of the BN-350 reactor. The paper outlines the current status and prospects of South-Urals and Beloyarskaya power unit projects with the BN-800 reactors. The main planned development trends on fast reactors are described concerning both new projects and R and D works. (author)

  4. Radioisotopes in the primary circuit of a fast reactor

    Berlin, M.; Cauvin, M.

    1976-01-01

    In the frame of the research performed to understand the behaviour of the radioactive isotopes of iodine in the primary coolant circuit of fast reactor, a simple theoretical model is proposed. Results concerning PHENIX and RAPSODIE are given

  5. Review of fast reactor activities at OECD (NEA)

    Stephens, M.

    1981-01-01

    The Committee on the Safety of Nuclear Installations initiated several reports in 1979. Status reports are published on: the role of fission gas release in case of fuel element failure; reactivity monitoring in a LMFBR at shutdown; increasing the reliability of fast reactor shutdown systems. A report is planned on the interactions between sodium and concrete. LMFBR safety issue that were studied are concerned with containment R and D; natural circulation cooling; and fuel failure modelling. Nuclear Development Division was concerned with Gas cooled fast reactors technology. Nuclear Science Division dealt with fast reactor physics and nuclear data for fast reactors. NEA Data Bank provides technical support and acts as a computer code library and nuclear data centre

  6. A review of the UK fast reactor programme

    Wheeler, R.C.; Bramman, J.I.

    1988-04-01

    The fast reactor programme in the United Kindom is reviewed under the following headings: Progress with PFR; Reprocessing: Commercial Design Studies; Structural Integrity; Engineering and Components; Materials; Sodium Chemistry; Core and Fuel; Safety; Plant Performance. (author)

  7. Fast wave current drive in reactor scale tokamaks

    Moreau, D.

    1992-01-01

    The IAEA Technical Committee Meeting on Fast Wave Current Drive in Reactor Scale Tokamaks, hosted by the Commissariat a l'Energie Atomique (CEA), Departement de Recherches sur la Fusion Controlee (Centres d'Etudes de Cadarache, under the Euratom-CEA Association for fusion) aimed at discussing the physics and the efficiency of non-inductive current drive by fast waves. Relevance to reactor size tokamaks and comparison between theory and experiment were emphasized. The following topics are described in the summary report: (i) theory and modelling of radiofrequency current drive (theory, full wave modelling, ray tracing and Fokker-Planck calculations, helicity injection and ponderomotive effects, and alternative radio-frequency current drive effects), (ii) present experiments, (iii) reactor applications (reactor scenarios including fast wave current drive; and fast wave current drive antennas); (iv) discussion and summary. 32 refs

  8. Slovakia: Proposal of movable reflector for fast reactor design

    Vrban, B.

    2015-01-01

    In fast reactors a larger migration area leading to a significant leak of neutrons can be observed because especially the transport cross-sections are in general smaller as compared to light water reactors. The utilization of a moveable reflector system in conjunction with dedicated safety control rods can increase the ability of accident managing due to enhanced escaping neutrons which otherwise would be reflected back into the fuel zone. The paper demonstrates the possibility of better controlling the transient reactor by additionally moving selected reflector subassemblies equipped with the neutron trap. The main purpose of the analysis of the Gas-cooled Fast Reactor (GFR) presented in the full paper is investigation of the kinetic parameters and of the control and reflector rod worth, as well as optimization of the parts used for partial reflector withdrawal. The results found in this study may serve for future design improvements of other designs such as the liquid metal cooled fast reactors

  9. Physics design of an ultra-long pulsed tokamak reactor

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  10. Intermediate and fast neutron absorbed doses in fast neutron field at the RB reactor

    Sokcic-Kostic, M.; Pesic, M.; Antic, D.

    1987-10-01

    The experimental fuel channel EFC is created as one of the fast neutron fields at the RB reactor. The intermediate and fast neutron spectra in EFC are measured by activation technique. The intermediate and fast neutron absorbed doses are computed on the basis of these experimental results. At the end the obtained doses are compared. (author)

  11. Heat pulse propagation studies on DIII-D and the Tokamak Fusion Test Reactor

    Fredrickson, E. D.; Austin, M. E.; Groebner, R.; Manickam, J.; Rice, B.; Schmidt, G.; Snider, R.

    2000-12-01

    Sawtooth phenomena have been studied on DIII-D and the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24]. In the experiments the sawtooth characteristics were studied with fast electron temperature (ECE) and soft x-ray diagnostics. For the first time, measurements of a strong ballistic electron heat pulse were made in a shaped tokamak (DIII-D) [J. Luxon and DIII-D Group, in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Kyoto (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] and the "ballistic effect" was stronger than was previously reported on TFTR. Evidence is presented in this paper that the ballistic effect is related to the fast growth phase of the sawtooth precursor. Fast, 2 ms interval, measurements on DIII-D were made of the ion temperature evolution following sawteeth and partial sawteeth to document the ion heat pulse characteristics. It is found that the ion heat pulse does not exhibit the very fast, "ballistic" behavior seen for the electrons. Further, for the first time it is shown that the electron heat pulses from partial sawtooth crashes (on DIII-D and TFTR) are seen to propagate at speeds close to those expected from the power balance calculations of the thermal diffusivities whereas heat pulses from fishbones propagate at rates more consistent with sawtooth induced heat pulses. These results suggest that the fast propagation of sawtooth-induced heat pulses is not a feature of nonlinear transport models, but that magnetohydrodynamic events can have a strong effect on electron thermal transport.

  12. Safety Design Criteria of Indian Sodium Cooled Fast Reactors

    Pillai, P.; Chellapandi, P.; Chetal, S.C.; Vasudeva Rao, P.R.

    2013-01-01

    • Important feedback has been gained through the design and safety review of PFBR. • The safety criteria document prepared by AERB and IGCAR would provide important input to prepare the dedicated document for the Sodium cooled Fast Reactors at the national and international level. • A common approach with regard to safety, among countries pursuing fast reactor program, is desirable. • Sharing knowledge and experimental facilities on collaborative basis. • Evolution of strong safety criteria – fundamental to assure safety

  13. Some basic concepts of fast breeder reactor safeguards

    Tkharev, E.; Walford, F.J.

    1987-04-01

    The range of discussion topics of this report is restricted to a few key areas of safeguards importance at Fast Breeder Reactors (FBR) only. The differences between thermal and fast reactors that may have safeguards significance in the case of FBRs are listed. The FBR principles of design are mentioned. The relevant safeguards objectives and criteria are given. The fundamental issues for safeguarding FBR are treated. An outline safeguards approach is presented. Model inspection activities are mentioned. 4 figs

  14. Integral test of JENDL-3.3 for fast reactors

    Chiba, Gou

    2003-01-01

    An integral test of JENDL-3.3 was performed for fast reactors. Various types of fast reactors were analyzed. Calculation values of the nuclear characteristics were greatly especially affected by the revisions of the cross sections of U-235 capture and elastic scattering reactions. The C/E values were improved for ZPPR cross where plutonium is mainly fueled, but not for BFS cores where uranium is mainly fueled. (author)

  15. Status of national programmes on fast breeder reactors

    1989-07-01

    The twenty-second Annual Meeting of the International Working Group on Fast Reactors took place in Vienna, 18-21 April 1989. Nineteen representatives from twelve Member States and International Organizations attended the Meeting. This publication is a collection of presentations in which the participants reported the status of their national programmes on fast breeder reactors. A separate abstract was prepared for each of the twelve papers from this collections. Refs, figs, tabs and 1 graph

  16. Technology development of fast reactor fuel reprocessing technology in India

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  17. Materials science research for sodium cooled fast reactors

    The paper gives an insight into basic as well as applied research being carried out at the Indira Gandhi Centre for Atomic Research for the development of advanced materials for sodium cooled fast reactors towards extending the life of reactors to nearly 100 years and the burnup of fuel to 2,00,000 MWd/t with an objective ...

  18. Gas cooled fast reactor research and development program

    Markoczy, G.; Hudina, M.; Richmond, R.; Wydler, P.; Stratton, R.W.; Burgsmueller, P.

    1980-03-01

    The research and development work in the field of core thermal-hydraulics, steam generator research and development, experimental and analytical physics and carbide fuel development carried out 1979 for the Gas Cooled Fast Breeder Reactor at the Swiss Federal Institute for Reactor Research is described. (Auth.)

  19. Design characteristics of research zero power fast reactor Lasta

    Milosevic, M.; Stefanovic, D.; Pesic, M.; Nikolic, D.; Antic, D.; Zavaljevski, N.; Popovic, D.

    1990-01-01

    LASTA is a flexible zero power reactor with uranium and plutonium fuel designed for research in the neutron physics and in the fast reactor physics. Safety considerations and experimental flexibility led to the choice of a fixed vertical assembly with two safety blocks as the main safety elements, so that safety devices would be operated by gravity. The neutron and reactor physics, the control and safety philosophy adopted in our design, are described in this paper. Developed computer programs are presented. (author)

  20. Fast breeder reactors: can we learn from experience

    Keck, O.

    1981-01-01

    An economic analysis of FBRs, in particular the long-term benefits to be expected, with reference to the experience of the West German fast breeder reactor programme suggests ways of bringing more realism into governmental decisions on the development of new reactor types. It is suggested that if reactor manufacturers and utilities financed commercial-size demonstration plants from their own funds, then the government would get more realistic advice. (U.K.)

  1. Conceptual design of the fast ignition laser fusion power plant (KOYO-Fast). 6. Design of chamber and reactor system

    Kozaki, Yasuji; Norimatsu, Takayoshi; Furukawa, Hiroyuki; Hayashi, Takumi; Souman, Yoshihito; Nishikawa, Masabumi; Tomabechi, Ken

    2007-01-01

    A conceptual design of the reactor chamber system with LiPb liquid wall based on the fast ignition cone target design and the related reactor systems with exhaust system, laser beam shutter, blanket and cooling system are summarized. The multi overflow fall method was investigated as the structure of chamber and repeating 4 Hz pulse potential. The ablation depth of LiPb liquid wall was estimated and the conditions of repeat of operation were evaluated. The basic design of chamber, selection and conditions of liquid wall chamber, recycle type multi overflow fall (MOF) wall, LiPb two layers blanket structure, basic specification of reactor system, laser beam line shutter, design of chamber exhaust system, cooling system, tritium recovery system, power plant total design and arrangement of chamber and laser beam, and issues are stated. (S.Y.)

  2. Linear and nonlinear stability analysis, associated to experimental fast reactors

    Amorim, E.S. do; Moura Neto, C. de; Rosa, M.A.P.

    1980-07-01

    Phenomena associated to the physics of fast neutrons were analysed by linear and nonlinear Kinetics with arbitrary feedback. The theoretical foundations of linear kinetics and transfer functions aiming at the analysis of fast reactors stability, are established. These stability conditions were analitically proposed and investigated by digital and analogic programs. (E.G.) [pt

  3. A review of fast reactor programme in Japan

    Masuno, Y [Experimental Fast Reactor Division, O-arai Engineering Center, PNC (Japan); Bando, S [Project Planning and Management Division, PNC, Minato-ku, Tokyo (Japan)

    1981-05-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report.

  4. A review of fast reactor programme in Japan

    Masuno, Y.; Bando, S.

    1981-01-01

    The fast breeder reactor development project in Japan has been in progress in the past twelve months and will be continued in the next fiscal year, from April 1981 through March 1982, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1980. The 1981 year budget for P and D work and for construction of a prototype fast breeder reactor, Monju, will be approximately 20 and 27 billion Yen respectively, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor, Joyo, power increase from 50 MWt to 75 MWt was made in July 1979 and three operational cycles at 75 MWt have been completed in August 1980 and the forth cycle has started in the middle of March 1981. With respect to the prototype reactor Monju, progress toward construction has been made and an environmental impact statement of the reactor was approved by the concerned authorities. Preliminary design studies of large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MW e plant of loop type by extrapolating the technology to be developed by the time of commissioning of Monju. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor Monju. Highlights and topics of the fast breeder reactor development activities in the past twelve months are summarized in this report

  5. Chemical surveillance of commercial fast breeder reactors

    Stamm, H.H.; Stade, K.Ch.

    1988-01-01

    After BN-600 (USSR) and SUPERPHENIX (France) were started succesfully, the international development of LMFBRs is standing at the doorstep of commercial use. For commercial use of LMFBRs cost reductions for construction and operation are highly desirable and necessary. Several nations developing breeder reactors have joined in a common effort in order to reach this aim by standardization and harmonization. On the base of more than 20 years of operation experience of experimental reactors (EBR-II, FFTF, RAPSODIE, DFR, BR-5/BR-10, BOR-60, JOYO, KNK-II) and demonstration plants (PHENIX, PFR, BN-350), possibilities for standardization in chemical surveillance of commercial breeder reactors without any loss of availability, reliability and reactor safety will be discussed in the following chapters. Loop-type reactors will be considered as well as pool-type reactors, although all commercial plants under consideration so far (SUPERPHENIX II, BN-800, BN-1600, CFBR, SNR-2, EFR) include pool-type reactors only. Table 1 gives a comparison of the Na inventories of test reactors, prototype plants and commercial LMFBRs

  6. Fast reactors: the future of nuclear energy

    Carvalho, H.G. de.

    1988-08-01

    The main problems to be solved for FBR type reactors become viable economically, presenting the research programs of Europe, United States of America, Japan and Brazil are described. The cooperations between interested countries for improving FBR type reactors, and the financial and human resources necessaries for the development of programs, are evaluated. The fuel cycle is also analysed. (M.C.K.) [pt

  7. Fast Thorium Molten Salt Reactors Started with Plutonium

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.; Mathieu, L.

    2006-01-01

    One of the pending questions concerning Molten Salt Reactors based on the 232 Th/ 233 U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233 U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233 U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233 U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/ 233 U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233 U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with 233 U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233 U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  8. Sodium fires at fast reactors: RF status report

    Bagdasarov, Yu.E.; Buksha, Yu.K.; Drobyshev, A.V.; Zybin, V.A.; Ivanenko, V.N.; Kardash, D.Yu.; Kulikov, E.V.; Yagodkin, I.V.

    1996-01-01

    Scientific and engineering studies carried out in Russian Federation since 1992 up to 1996 in the sodium fire area and their main results are described. A review of activities on modification of the computer codes BOX and AERO developed at IPPE for calculating sodium fire consequences is given. Results of analysis of possible accidental situations at currently designed BN-800 reactor NPP with the use of these codes are presented. Sodium leaks occurring at our domestic fast reactors are briefly analyzed. Experimental work performed are described. Results of comparative analysis of common-cause and sodium fire hazards for fast reactor NPP are presented. (author)

  9. U.S. Status of Fast Reactor Research and Technology

    Hill, Robert

    2012-01-01

    Summary: • Fast reactor R&D is focused on key technologies innovations for performance improvement (cost reduction) and safety: 1. System Integration and Concept Development; 2. Safety Technology; 3. Advanced Materials; 4. Ultrasonic Viewing; 5. Advanced Energy Conversion (Supercritical CO 2 Brayton cycle); 6. Reactor Simulation; 7. Nuclear Data; 8. Advanced Fuels. • Fast reactors have flexible capability for actinide management: – A wide variety of fuel cycle options are being considered; • International R&D collaboration pursued in Generation-IV and multilateral arrangements

  10. Water vapor as a perspective coolant for fast reactors

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  11. Status of national programmes on fast reactors in Korea

    Kim, Y.I.; Hahn, D.

    2002-01-01

    The role of nuclear power plants in electricity generation in Korea is expected to become more important in the years to come due to poor natural resources and green house gases. This heavy dependence on nuclear power eventually raises the issues of efficient utilization of uranium resources and of spent fuel storage. Fast reactors can resolve these issues. Korea Atomic Energy Research Institute started development of a Liquid Metal Reactor design in 1997 and completed the Conceptual Design in March of 2002. Efforts are currently directed toward the development of advanced fast reactor concepts and basic key technologies. (author)

  12. Review of the United Kingdom fast reactor programme - March 1986

    Bramman, J.I.; John, C.T.; Wheeler, R.C.

    1986-01-01

    The UK programme in the field of fast reactors has continued successfully towards the following main objectives, details of which are contained in subsequent sections of this report: (2) progress with the prototype fast reactor (PFR) which achieved its design power on 4 March 1985; (3) nuclear fuel reprocessing; (4) commercial design studies; (5) structural integrity of LMFBR during its lifetime; (6) R and D work on components of LMFBR; (7) materials study; (8) sodium chemistry; (9) reactor core and fuel design philosophy; (10) safety problems; (11) plant performance studies

  13. The dissolver paradox as a coupled fast-thermal reactor

    Lutz, H.F.; Webb, P.S.

    1993-05-01

    The dissolver paradox is treated as coupled fast-thermal reactors. Each reactor is sub-critical but the coupling is sufficient to form a critical system. The practical importance of the system occurs when the fast system by itself is mass limited and the thermal system by itself is volume limited. Numerous 1D calculations have been made to calculate the neutron multiplication parameters of the separate fast and thermal systems that occur in the dissolver paradox. A model has been developed to describe the coupling between the systems. Monte Carlo calculations using the MCNP code have tested the model

  14. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  15. Simulator platform for fast reactor operation and safety technology demonstration

    Vilim, R.B.; Park, Y.S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-01-01

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  16. Simulator platform for fast reactor operation and safety technology demonstration

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J. (Nuclear Engineering Division)

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  17. A review of the Italian fast reactor programme

    Pierantoni, F.; Tavoni, R.

    1984-01-01

    This review sums up the Italian situation in the field of the fast reactors on the eve of the fifth five year plan (1985-1989), in which the country undertakes to implement an important activity of research and development in the context of a greater European collaboration. Italian participation in the development of European nuclear power stations together with the completion of the PEC plant which will be used to develop a fuel element with the necessary economic and safety characteristics, remain the two principal goals of the Italian fast reactor programme. In 1983 the sum assigned by ENEA for fast reactors was about 220 billion lire of which 145 billion was for the PEC reactor

  18. Research on the usage of a deep sea fast reactor

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  19. A remote maintenance robot system for a pulsed nuclear reactor

    Thunborg, S.

    1987-01-01

    This paper presents a remote maintenance robot system for use in a hazardous environment. The system consists of turntable, robot and hoist subsystems which operate under the control of a supervisory computer to perform coordinated programmed maintenance operations on a pulsed nuclear reactor. The system is operational

  20. Fast Reactor Programme. Second Quarter 1969. Progress Report. RCN Report

    Hoekstra, E.K.

    1969-12-01

    This progress report covers fast reactor research carried out by RCN during the second quarter 1969 forming part of the integrated fast breeder research and development programme also in progress at the national nuclear research centres Karlsruhe and Mol. The combined effort is based on a memorandum of co-operation in this field signed by the respective governments in 1968 and on a memorandum of understanding signed by the research centres. The RCN contribution is mainly concerned with the core of the fast breeder reactor and related safety aspects and, as such, must be looked upon as being complementary to the industrial research pro- field of fast reactors. The contribution comprises the following six items: - A Æéatîtôr , physics programme to determine the influence of fission products on several main characteristics of the reactor core such as void coefficient, Doppler coefficient and breeding ratio; - A fuel performance programme in which both stationary and transient irradiations are being carried out to establish the temperature and power limits of fuel rods; also the consequences of loss- of-cooling will be investigated; - Investigation into the change in mechanical properties of fuel canning materials due to high fast neutron doses; - A study of the corrosion behaviour of canning materials and their compatibility with the fuel under conditions of high temperature and high pressure; - Investigation into the behaviour of aerosols of fission products which could be formed after a fast reactor accident; a thorough understanding is of utmost importance for the reactor safety assessment ; - Studies on heat transfer in the reactor core. As fast breeders operate at high power densities, an accurate knowledge on the heat transfer phenomena is required

  1. An introduction to the engineering of fast nuclear reactors

    Judd, Anthony M

    2014-01-01

    An invaluable resource for both graduate-level engineering students and practising nuclear engineers who want to expand their knowledge of fast nuclear reactors, the reactors of the future! This book is a concise yet comprehensive introduction to all aspects of fast reactor engineering. It covers topics including neutron physics; neutron flux spectra; flux distribution; Doppler and coolant temperature coefficients; the performance of ceramic and metal fuels under irradiation, structural changes, and fission-product migration; the effects of irradiation and corrosion on structural materials, irradiation swelling; heat transfer in the reactor core and its effect on core design; coolants including sodium and lead-bismuth alloy; coolant circuits; pumps; heat exchangers and steam generators; and plant control. The book includes new discussions on lead-alloy and gas coolants, metal fuel, the use of reactors to consume radioactive waste, and accelerator-driven subcritical systems.

  2. Waste management in IFR [Integral Fast Reactor] fuel cycle

    Johnson, T.R.; Battles, J.E.

    1991-01-01

    The fuel cycle of the Integral Fast Reactor (IFR) has important potential advantage for the management of high-level wastes. This sodium-cooled, fast reactor will use metal fuels that are reprocessed by pyrochemical methods to recover uranium, plutonium, and the minor actinides from spent core and blanket fuel. More than 99% of all transuranic (TRU) elements will be recovered and returned to the reactor, where they are efficiently burned. The pyrochemical processes being developed to treat the high-level process wastes are capable of producing waste forms with low TRU contents, which should be easier to dispose of. However, the IFR waste forms present new licensing issues because they will contain chloride salts and metal alloys rather than glass or ceramic. These fuel processing and waste treatment methods can also handle TRU-rich materials recovered from light-water reactors and offer the possibility of efficiently and productively consuming these fuel materials in future power reactors

  3. Containment atmosphere cooling system for experimental fast reactor 'JOYO'

    Sasaki, Mikio; Hoshi, Akio; Sato, Morihiko; Takeuchi, Kaoru

    1979-01-01

    The experimental fast reactor ''JOYO'', the first sodium-cooled fast reactor in Japan, achieved the initially licensed full power operation (50 MW) in July 1978 and is now under steady operation. Toshiba has participated in the construction of this reactor as a leading manufacturer and supplied various systems. This article outlines the design philosophy, system concepts and the operating experience of the containment atmosphere cooling system which has many design interfaces throughout the whole plant and requires especially high reliability. The successful performance of this system during the reactor full-power operation owes to the spot cooling design philosophy and to the preoperational adjustment of heat load during the preheating period of reactor cooling system peculiar to FBR. (author)

  4. 04 - Sodium cooled fast breeder fourth-generation reactors - The experimental reactor ALLEGRO, the other ways for fast breeder fourth-generation reactors

    2012-12-01

    The authors first present the technology of gas-cooled fast breeder reactors (basic principles, specific innovations, feasibility studies, fuel element, safety) and notably the ALLEGRO project (design options and expected performances, preliminary safety demonstration). Then, they present the lead-cooled fast-breeder reactor technology: interests and obstacles, return on experience, the issue of lead density, neutron assessment, transmutation potential, dosimetry, safety chemical properties and compatibility with the fuel, water, air and steels. The next part addresses the technology of molten-salt fast-breeder reactors: choice of the liquid fuel and geometry, reactor concept (difficulties, lack of past R and D), demonstration and demonstrators, international context

  5. The computerized reactor period measurement system for China fast burst reactor-II

    Zhao Wuwen; Jiang Zhiguo

    1996-01-01

    The article simply introduces the hardware, principle, and software of the computerized reactor period measurement system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between fission yield and pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computerized measurement system makes the reactor period measurement into automatical and intelligent and also improves the speed and precision of period data on-line process

  6. Computer measurement system of reactor period for China fast burst reactor-II

    Zhao Wuwen; Jiang Zhiguo

    1997-01-01

    The author simply introduces the hardware, principle, and software of the reactor period computer measure system for China Fast Burst Reactor-II (CFBR-II). It also gives the relation between Fission yield and Pre-reactivity of CFBR-II reactor system of bared reactor with decoupled-component and system of bared reactor with multiple light-material. The computer measure system makes the reactor period measurement into automation and intellectualization and also improves the speed and precision of period data process on-line

  7. Unconventional liquid metal cooled fast reactors

    Spinrad, B.I.; Rohach, A.F.; Razzaque, M.M.

    1989-06-01

    This report describes the rationale for, design of and analytical studies on an unconventional sodium-cooled power reactor, called the Trench Reactor. It derives its name from the long, narrow sodium pool in which the reactor is placed. Unconventional features include: pool shape; reactor shape (also long and narrow); reflector control; low power density; hot-leg primary pumping; absence of a cold sodium pool; large core boxes rather than a large number of subassemblies; large diameter metal fuel; vessel suspension from cables; and vessel cooling by natural circulation of building atmosphere (nitrogen) at all times. These features all seem feasible. They result in a system that is capable of at least a ten year reload interval and shows good safety through direct physical response to loss-of-heat-sink, loss-of-flow and limited-reactivity nuclear transients. 43 figs., 43 tabs

  8. Metallic uranium as fuel for fast reactors

    Moura Neto, C. de

    1988-01-01

    This paper presents a first overview of the use of metallic uranium and its alloys as an option for fuel for rapid reactors. Aspects are discussed concerning uranium alloys which present high solubility in the gamma phase. (author)

  9. Fast-neutron nuclear reactor vessel

    Presciuttini, L.

    1984-01-01

    The reactor vessel comprises a cylindrical shell, of which axis is vertical, coupled at its lower part with a dished bottom. The reactor core rests on a support plate bearing on the bottom of the vessel. The above dished bottom comprises a spherical sector having the same radius and the same axis as the cylindrical shell and joining the lower part of the shell, and a spherical head of which radius is a little more important than the spherical sector one. A cylindrical support for the reactor core is attached to the vessel at the joint between the two dished sections. The invention applies more particularly to integrated type reactors cooled by liquid sodium [fr

  10. Magnet design approach for pulsed tokamak reactors

    Kim, S.H.; Evans, K. Jr.; Ehst, D.A.

    1983-12-01

    A choice of various operating modes of a tokamak reactor will have considerable impact on the fatigue lives and cost of ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils. OH AND EF coil requirements and their costs, as well as the effects of the fringing fields of the EF coils on the TF coils, have been studied under cyclic operation in the range of N = 10 2 to 10 6 cycles, spanning the range from a noninductively driven reactor (STARFIRE) to a conventional ohmically driven reactor. For a reference design of TF coils the design of the central OH solenoid has been studied as a function of its maximum field, B/sup OH/. Increasing requirements for structural support lead to only negligible increases in volt-seconds for B/sup OH/ greater than or equal to 10.0 T. Fatigue failure of the OH coil is not a concern for N less than or equal to 10 5 ; for N approx. 10 6 fatigue limits the strain to small values, resulting in small increases in structural requirements and modest decreases in volt-seconds. Should noninductive current drive be achievable we note that this not only eliminates the OH coil, but it also permits EF coil placement in the inboard region, which facilitates the creation of highly shaped plasma cross sections (large triangularity, or bean-shaped equilibria). We have computed the stored energy, coil configuration and fringing fields for a number of EF coil design options

  11. A Review of the UK Fast Reactor Programme: March 1980

    Smith, R.D.

    1980-01-01

    Towards the end of 1979 the Government announced a new programme of thermal reactor stations to be built over ten years (totalling 15GW), in addition to the two AGR stations at Torness and Heysham 'B' which had been approved by the previous Government. The first station of the new programme will be based on a Westinghouse PWR, subject to safety clearance and the outcome of a public inquiry, and it is envisaged that the remaining stations of the programme would be split between PWRs and AGRs. The AEA Chairman wrote formally to the Secretary of State for Energy in December 1979, putting forward on behalf of the Electricity Supply Authorities, NNC, BNFL and the AEA a recommended strategy for building the Commercial Demonstration Fast Reactor (CDFR), subject to normal licensing procedure and to public inquiry, so as to ensure that the key options for introducing commercial fast reactors, when required, should remain open. A Government statement is expected during the next few months. Meanwhile the level of effort on fast reactor research and development in the UK has been maintained, the fast reactor remaining the largest of the UKAEA's reactor development projects with expenditure totalling somewhat over £80M per annum. The main feature of the UK fast reactor programme has continued to be the operation of PFR (Sections 2 and 7) which is yielding a wealth of experience and of information relevant to the design of commercial fast reactors. Bum-up of standard driver fuel has reached 6-7% by heavy atoms, while specially enriched lead fuel pins have reached 11 % without failure. An extensive programme of work in the reactor and its associated steam plant was completed in March 1980 and the reactor then started its fifth power run. The fuel reprocessing plant at DNE is being commissioned and has reprocessed some of the spent fuel remaining from the DFR. It will start soon on reprocessing fuel discharged from the PFR. During the year improvements to the design of the future

  12. Status of fast reactor activities in the Russian Federation

    Troyanov, M F; Rinejsjij, A A [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1992-07-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication.

  13. The safety basis of the integral fast reactor program

    Pedersen, D.R.; Seidel, B.R.

    1990-01-01

    The Integral Fast Reactor (IFR) and metallic fuel have emerged as the US Department of Energy reference reactor concept and fuel system for the development of an advanced liquid-metal reactor. This article addresses the basic elements of the IFR reactor concept and focuses on the safety advances achieved by the IFR Program in the areas of (1) fuel performance, (2) superior local faults tolerance, (3) transient fuel performance, (4) fuel-failure mechanisms, (5) performance in anticipated transients without scram, (6) core-melt mitigation, and (7) actinide recycle

  14. Uranium utilization of light water cooled reactors and fast breeders

    Stojadinovic, Timm

    1991-08-01

    The better uranium utilization of fast breeder reactors as compared with water cooled reactors is one argument in favour of the breeder introduction. This report tries to quantify this difference. It gives a generally valid formalism for the uranium utilization as a function of the fuel burnup, the conversion rate, fuel cycle losses and the fuel enrichment. On the basis of realistic assumptions, the ratio between the utilizations of breeder reactors to that of light water cooled reactors (LWR) amounts to 180 for the open LWR cycle and 100 in case of plutonium recycling in LWRs

  15. Status of fast reactor activities in the Russian Federation

    Troyanov, M.F.; Rinejsjij, A.A.

    1992-01-01

    The power production program was developed before the disintegration of the USSR and CIS. This report covers therefore the current status of power production and consumption in in republics of the former USSR with a separate chapter on the status of nuclear power. It covers some general results concerned with fast reactors operational experience and BN-600 power plant operational experience. This includes radiological conditions at the BN-600 and reactor core operating experience. Separate chapters are devoted to BN-350, BOR-60, BR-10 and BN-800 reactors. Work devoted to large-size reactor design are described including research and development and fabrication

  16. Looking to the future with the Integral Fast Reactor

    Till, C.

    1985-01-01

    During the past two years, scientists from Argonne have developed a design for an advanced breeder reactor with a closed, self-contained fuel cycle. This Integral Fast Reactor (IFR) is a pool-type, sodium-cooled reactor. It uses a new metal-alloy fuel design which overcomes the problem of swelling. The possibility of unauthorised diversion of nuclear fuel, and the need to transport plutonium to and from the site, is overcome by using a pyrometallurgical fuel reprocessing technique in a compact facility that is an integral part of the reactor plant. (author)

  17. FAST: An advanced code system for fast reactor transient analysis

    Mikityuk, Konstantin; Pelloni, Sandro; Coddington, Paul; Bubelis, Evaldas; Chawla, Rakesh

    2005-01-01

    One of the main goals of the FAST project at PSI is to establish a unique analytical code capability for the core and safety analysis of advanced critical (and sub-critical) fast-spectrum systems for a wide range of different coolants. Both static and transient core physics, as well as the behaviour and safety of the power plant as a whole, are studied. The paper discusses the structure of the code system, including the organisation of the interfaces and data exchange. Examples of validation and application of the individual programs, as well as of the complete code system, are provided using studies carried out within the context of designs for experimental accelerator-driven, fast-spectrum systems

  18. Argentinean activities related to Fast Reactors

    Azpitarte, Osvaldo

    2012-01-01

    CNEA objectives in the area of Generation IV nuclear reactors: Implement a programme for the monitoring of the global progress of new technologies for Generation IV nuclear reactors and their fuel cycles, in order to generate and assess associated lines of R&D. – Perform studies and evaluations for defining the Generation IV line or lines on which CNEA would be interested; – Promote the participation on specific international projects; – Implementation of experimental facilities

  19. Licensing issues for inherently safe fast reactors

    Kastenberg, W.E.; Lee, S.; Okrent, D.

    1986-01-01

    There has been considerable interest recently in a new generation of liquid metal reactor (LMR) concepts in the US. Some significant changes in regulatory philosophy will be required if the anticipated cost advantages of inherently safe designs are to be achieved. The defense in depth philosophy will need to be significantly re-evaluated in the context of inherently safe reactors. It is the purpose of this paper to begin such a re-evaluation of this regulatory philosophy

  20. Continuous environmental radiation monitoring network at Kalpakkam

    Somayaji, K.M.; Mathiyarasu, R.; Prakash, G.S.; Meenakshisundaram, V.; Rajagopal, V.

    1997-01-01

    The report highlights our experience in the design and installation of monitoring stations as part of continuous environmental radiation monitoring network around the periphery of the nuclear complex at Kalpakkam. Five monitoring stations, one each in south-west sector (Main Gate I) and south-south west (Main Gate II) and the others in North sector (HASL and ESG) and in north-west section (WIP) have been set up. Two independent detector systems, based on high pressure ionisation chamber (HPIC) and energy compensated GM have been installed at each of these locations and the data has been logged continuously using a data logger. The data so gathered at each monitoring station is retrieved every week by means of a hand held terminal (HHT) with a built-in non-volatile memory and transferred to an IBM PC-AT for data analysis and archival. The report discusses in depth the design and developmental efforts undertaken to set up the network, starting from the basic detectors. The work involved the design of suitable electrometer circuits for measuring the low levels of current from HPICs, and the subsequent study of the performance of the highly sensitive preamplifier under diurnal variations of ambient conditions. The report includes, in detail the design aspects and fabrication details of low current measuring electrometer circuits

  1. Status of fast breeder reactors and associated fuel cycle in India

    Chellapandi, P.

    2009-01-01

    Full text: India is the largest democracy with the current population of about 1.05 billion and is on a road to rapid growth in economy. An impressive average domestic product (GDP) growth rate of about 8 % per year has been achieved in 2006-07 and it is targeted to touch 10 % per year for the next 10 years. Towards realizing this targeted growth, development activities are planned based on well-conceived road map and clear vision. Like elsewhere, the energy and electricity growth in India are also closely linked to growth in economy. Indices of socio-economic development like literacy, longevity, GDP and human development are directly dependent upon the per capita energy consumption of a country. India is aiming to reach at least per capita energy consumption equal to the present world average (2200 kWh/a) by 2030 from the current value of (660 kWh/a). The current installed capacity of ∼138 GW(e) needs to be increased to about 600 GWe by 2030 assuming the population of about 1.4 billion. Energy strategists in the country have realized the importance of judicious mix of energy resources to meet this challenge. A large share of nuclear energy is an inevitable choice in this judicious energy mix from resources, sustainability and environment considerations. The nuclear is expected to contribute about 63 GWe by 2030, which will be steadily increased to 275 GWe by 2052, against the total projected capacity of 1344 GWe. The three stage visionary programme of India envisages Water Reactors (first stage), Fast Breeders with high breeding (second stage) and Thorium based Reactors as third stage. Closed fuel cycle in all stages is an essential ingredient. The success of each stage depends upon expeditious maturity of the earlier stage as India has limited indigenous resources of uranium, but vast resources of thorium. India ranks high in nuclear technology scale with strong R and D, high quality human resources, sound infrastructure, unwavering Government support and

  2. Identification of fast power reactivity effect in nuclear power reactor

    Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.

    1987-01-01

    A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics

  3. Materials requirements for liquid metal fast breeder reactors

    Bennett, J.W.; Horton, K.E.

    1978-01-01

    Materials requirements for Liquid Metal Fast Breeder Reactors (LMFBRs) are quite varied with requisite applications ranging from ex-reactor components such as piping, pumps, steam generators and heat exchangers to in-reactor components such as heavy section reactor vessels, core structurals, fuel pin cladding and subassembly flow ducts. Requirements for ex-reactor component materials include: good high temperature tensile, creep and fatigue properties; compatibility with high temperature flowing sodium; resistance to wear, stress corrosion cracking, and crack propagation; and good weldability. Requirements for in-reactor components include most of those cited above for ex-reactor components as supplemented by the following: resistance to radiation embrittlement, swelling and radiation enhanced creep; good neutronics; compatibility with fuel and fission product materials; and resistance to mass transfer via flowing sodium. Extensive programs are currently in place in a number of national laboratories and industrial contractors to address the materials requirements for LMFBRs. These programs are focused on meeting the near term requirements of early LMFBRs such as the Fast Flux Test Facility and the Clinch River Breeder Reactor as well as the longer term requirements of larger near-commercial and fully-commercial reactors

  4. Integral Fast Reactor: A future source of nuclear energy

    Southon, R.

    1993-01-01

    Argonne National Laboratory is developing a reactor concept that would be an important part of the worlds energy future. This report discusses the Integral Fast Reactor (IFR) concept which provides significant improvements over current generation reactors in reactor safety, plant complexity, nuclear proliferation, and waste generation. Two major facilities, a reactor and a fuel cycle facility, make up the IFR concept. The reactor uses fast neutrons and metal fuel in a sodium coolant at atmospheric pressure that relies on laws of physics to keep it safe. The fuel cycle facility is a hot cell using remote handling techniques for fabricating reactor fuel. The fuel feed stock includes spent fuel from the reactor, and potentially, spent light water reactor fuel and plutonium from weapons. This paper discusses the unique features of the IFR concept and the differences the quality assurance program has from current commercial practices. The IFR concept provides an opportunity to design a quality assurance program that makes use of the best contemporary ideas on management and quality

  5. An optimization study of peak thermal neutron flux in moderators of advanced repetitive pulse reactors

    Asaoka, Takumi; Watanabe, N.

    1976-01-01

    In achieving a high peak thermal neutron flux in hydrogenous moderators installed in repetitive pulse reactors, the core-moderator arrangement can play as much an important role as the moderator design itself. However, the effect of the former has not been adequately emphasized to date, while a rather extensive study has been made on the latter. The present study concerns with a core-moderator system parameter optimization for a repetitive accelerator pulsed fast reactor. The results have shown that small differences in the arrangement resulting from the optimizations of various parameters are significant and the effects can be summed up to give an increase in the peak thermal flux by a factor of about two. (auth.)

  6. A review of fast reactor program in Japan

    Matsuno, Y.

    1982-01-01

    The fast breeder reactor development project in Japan has been in progress for the past twelve months and will be continued this fiscal year, from April 1982 through March 1983, at a similar scale of effort both in budget and personnel to those of the fiscal year of 1981. The 1982 year budget for R and D work and for construction of a prototype fast breeder reactor MONJU is approximately 20 and 27 billion yen respectively, excluding wages for the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaged in the fast breeder reactor development in the PNC is approximately 530, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, power increase from 50 MWt to 75 MWt was made in July 1979 and six operational cycles at 75 MWt were completed in December 1981. With respect to the prototype reactor MONJU, progress toward construction has been made and an environmental impact statement of the reactor was approved by the authorities concerned, and the licensing of the first step was completed at the end of 1981. Preliminary design studies of a large LMFBR are being made by PNC and also by utilities. A design study being conducted by PNC is on a 1000 MWe plant of loop type by extrapolating the technology to be developed by the time of commissioning of MONJU. A group of utilities is conducting a similar study, but covering somewhat wider range of parameters and options of design. Close contact between the group and PNC has been kept. In the future, those design efforts will be combined as a single design effort, when a major effort for developing a large demonstration reactor will be initiated at around the commencement of construction of the prototype reactor MONJU

  7. History of fast reactor development in U.S.A.-I

    Ninokata, Hisashi; Sasao, Nobuyki

    2007-01-01

    History and present state of fast reactor was reviewed in series. As a history of fast reactor development in U.S.A. - I, this third lecture presented the dawn of the fast reactor development in the USA. The first fast reactor was the Clementine reactor with plutonium fuels and mercury coolant. The LAMPRE-1 reactor was the first sodium cooled and molten plutonium reactor. Experimental breeder reactor (EBR-1) was the first reactor to produce electricity and four kinds of fuels were loaded. Zero-power reactors were constructed to conduct reactor physics experiments on fast reactors. Today there are renewed interests in fast reactors due to their ability to fission actinides and reduce radioactive wastes. (T. Tanaka)

  8. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  9. Technical feasibility of an Integral Fast Reactor (IFR) as a future option for fast reactor cycles. Integrate a small metal-fueled fast reactor and pyroprocessing facilities

    Tanaka, Nobuo

    2017-01-01

    Integral Fast Reactor that integrated fast reactor and pyrorocessing facilities developed by Argonne National Laboratory in the U.S. is an excellent nuclear fuel cycle system for passive safety, nuclear non-proliferation, and reduction in radioactive waste. In addition, this system can be considered as a technology applicable to the treatment of the fuel debris caused by the Fukushima Daiichi Nuclear Power Station accident. This study assessed the time required for debris processing, safety of the facilities, and construction cost when using this technology, and examined technological possibility including future technological issues. In a small metal-fueled reactor, it is important to design the core that achieves both of reduction in combustion reactivity and reduction in coolant reactivity. In system design, calorimetric analysis, structure soundness assessment, seismic feasibility establishment study, etc. are important. Regarding safety, research and testing are necessary on the capabilities of passive reactor shutdown and reactor core cooling as well as measures for avoiding re-criticality, even when emergency stop has failed. In dry reprocessing system, studies on electrolytic reduction and electrolytic refining process for treating the debris with compositions different from those of normal fuel are necessary. (A.O.)

  10. A review of fast reactor program in Japan

    1996-01-01

    The main R and D results of Japanese activities are summarized as follows: (1) the experimental 140 MW(th) sodium cooled fast reactor 'Joyo' provided abundant experimental data and excellent operational records, attaining more than 50,000 hours of operation since its first criticality in 1977; (2) the prototype 280 MW(e) fast reactor 'Monju' reached initial criticality on 5 April 1994; presently Monju is under the cold shutdown state because of secondary sodium leak on 8 December 1995, and multiple cause investigations of the sodium leak are being performed; (3) the Japan Atomic Power Company is promoting design studies for demonstration fast reactor (DFBR) with a power output of 600 MW(e) and R and D for DFBR are being conducted under the cooperation of governmental and private sectors. (author)

  11. Economic analysis of fast reactor fuel cycle with different modes

    Ding Xiaoming

    2014-01-01

    Because of limitations on the access to technical and economic data and the lack of effective verification, the lack of in-depth study on the economy of fast reactor fuel cycle in China. This paper introduces the analysis and calculation results of the levelized cost of electricity (LCOE) under three different fuel cycle modes including fast reactor fuel cycle carried out by Massachusetts Institute of Technology (MIT). The author used the evaluation method and hypothesis parameters provided by the MIT to carry out the sensitivity analysis for the impact of the overnight cost, the discount rate and changes of uranium price on the LCOE under three fuel cycle modes. Finally, some suggestions are proposed on the study of economy in China's fast reactor fuel cycle. (authors)

  12. Seismic analysis of fast breeder reactor block

    Gantenbein, F.

    1990-01-01

    Seismic analysis of LMFBR reactor block is complex due mainly to the fluid structure interaction and the 3D geometry of the structure. Analytical methods which have been developed for this analysis will be briefly described in the paper and applications to a geometry similar to SPX1 will be shown

  13. Capital cost: gas cooled fast reactor plant

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design

  14. The seismic assessment of fast reactor cores in the UK

    Duthie, J.C.; Dostal, M.

    1988-01-01

    The design of the UK Commercial Demonstration Fast Reactor (CDFR) has evolved over a number of years. The design has to meet two seismic requirements: (i) the reactor must cause no hazard to the public during or after the Safe Shutdown Earthquake (SSE); (ii) there must be no sudden reduction in safety for an earthquake exceeding the SSE. The core is a complicated component in the whole reactor. It is usually represented in a very simplified manner in the seismic assessment of the whole reactor station. From this calculation, a time history or response spectrum can be generated for the diagrid, which supports the core, and for the above core structure, which supports the main absorber rods. These data may then be used to perform a detailed assessment of the reactor core. A new simplified model of the core response may then be made and used in a further calculation of the whole reactor. The calculation of the core response only, is considered in the remainder of this paper. One important feature of the fast reactor core, compared with other reactors, is that the components are relatively thin and flexible to promote neutron economy and heat transfer. A further important feature is that there are very small gaps between the wrapper tubes. This leads to very strong fluid-coupling effects. These effects are likely to be beneficial, but adequate techniques to calculate them are only just being developed. 9 refs, figs

  15. A review of fast reactor activities in Switzerland - April 1985

    Wydler, P.

    1986-01-01

    In the nuclear fission field, there are activities related to many different reactor concepts, including the Light Water Reactor, the Light Water High Converter Reactor, the High Temperature Reactor, the Liquid Metal Fast Breeder Reactor and the recently proposed new concept of a small heating reactor. In 1984 the total expenditure for fast reactor activities remained the same as that in the previous year, but the budget for 1985 has declined. The 6.0 million Swiss Francs expended in 1984 have been allocated to an LMFBR safety progamme (46%) and a fuel development programme (54%). All activities reported below are carried out at the Federal Institute for Reactor Research (EIR). In the natural convection studies described in Section 5, the Nuclear Engineering Laboratory (LKT) of the Federal Institute of Technology at Zuerich is actively participating. In the past twelve months collaboration with foreign research organizations in the Federal Republic of Germany, France, Italy (JRC Ispra) and the U.K. for the LMFBR safety programme, and the Federal Republic of Germany and the U.S.A. for the fuel development programme has proved to be very fruitful. In this context an attachment agreement with CEA-DERS at Cadarache is worth mentioning, since it enabled an EIR staff member to participate in the prediction and analysis of the SCARABEE-APL in-pile tests

  16. Small size modular fast reactors in large scale nuclear power

    Zrodnikov, A.V.; Toshinsky, G.I.; Komlev, O.G.; Dragunov, U.G.; Stepanov, V.S.; Klimov, N.N.; Kopytov, I.I.; Krushelnitsky, V.N.

    2005-01-01

    The report presents an innovative nuclear power technology (NPT) based on usage of modular type fast reactors (FR) (SVBR-75/100) with heavy liquid metal coolant (HLMC) i. e. eutectic lead-bismuth alloy mastered for Russian nuclear submarines' (NS) reactors. Use of this NPT makes it possible to eliminate a conflict between safety and economic requirements peculiar to the traditional reactors. Physical features of FRs, an integral design of the reactor and its small power (100 MWe), as well as natural properties of lead-bismuth coolant assured realization of the inherent safety properties. This made it possible to eliminate a lot of safety systems necessary for the reactor installations (RI) of operating NPPs and to design the modular NPP which technical and economical parameters are competitive not only with those of the NPP based on light water reactors (LWR) but with those of the steam-gas electric power plant. Multipurpose usage of transportable reactor modules SVBR-75/100 of entirely factory manufacture assures their production in large quantities that reduces their fabrication costs. The proposed NPT provides economically expedient change over to the closed nuclear fuel cycle (NFC). When the uranium-plutonium fuel is used, the breeding ratio is over one. Use of proposed NPT makes it possible to considerably increase the investment attractiveness of nuclear power (NP) with fast neutron reactors even today at low costs of natural uranium. (authors)

  17. Fast reactor system factors affecting reprocessing plant design

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  18. Overview of the fast reactors fuels program. [LMFBR

    Evans, E.A.; Cox, C.M.; Hayward, B.R.; Rice, L.H.; Yoshikawa, H.H.

    1980-04-01

    Each nation involved in LMFBR development has its unique energy strategies which consider energy growth projections, uranium resources, capital costs, and plant operational requirements. Common to all of these strategies is a history of fast reactor experience which dates back to the days of the Manhatten Project and includes the CLEMENTINE Reactor, which generated a few watts, LAMPRE, EBR-I, EBR-II, FERMI, SEFOR, FFTF, BR-1, -2, -5, -10, BOR-60, BN-350, BN-600, JOYO, RAPSODIE, Phenix, KNK-II, DFR, and PFR. Fast reactors under design or construction include PEC, CRBR, SuperPhenix, SNR-300, MONJU, and Madras (India). The parallel fuels and materials evolution has fully supported this reactor development. It has involved cermets, molten plutonium alloy, plutonium oxide, uranium metal or alloy, uranium oxide, and mixed uranium-plutonium oxides and carbides.

  19. Fast neutron reactors: the safety point of view

    Laverie, M.; Avenas, M.

    1984-01-01

    All versions of nuclear reactors present favourable and unfavourable characteristics from the point of view of safety. The safety of the installations is obtained by making efforts to utilize in the best possible way those which are favourable and by taking proper steps in the face of those which are unfavourable. The present article shows how this general principle has been applied as regards the fast neutron reactors of integrated design which have been developped in France, taking into account the specific features of this version. A qualitative method to compare the safety of this version with that of pressurized water reactors which has been widely put to the test commercially all over the world is presented. These analyses make, generally speaking, several positive characteristics stand out for these fast neutron reactors from the safety aspects [fr

  20. Preparations for the Integral Fast Reactor fuel cycle demonstration

    Lineberry, M.J.; Phipps, R.D.

    1989-01-01

    Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration

  1. Fast ultrasonic visualisation under sodium. Application to the fast neutron reactors

    Imbert, Ch.

    1997-01-01

    The fast ultrasonic visualization under sodium is in the programme of research and development on the inspection inside the fast neutron reactors. This work is about the development of a such system of fast ultrasonic imaging under sodium, in order to improve the existing visualization systems. This system is based on the principle of orthogonal imaging, it uses two linear antennas with an important dephasing having 128 piezo-composite elements of central frequency equal to 1.6 MHz. (N.C.)

  2. Sodium components cleaning status in the Italian fast reactor program

    De Luca, B [CNEN-RIT/MAT - Laboratorio Sviluppo Processi - C.S.N. Cassacia, Rome (Italy); Labanti, V [CNEN-DRV, Bologna (Italy); Mennucci, M [NIRA, Genoa (Italy)

    1978-08-01

    As a consequence of the Italian Fast Reactor Development, mainly aimed to the PEC project and to the participation in the French Superphenix project, it is of increasing importance to set up a reliable method for specific reactor components and related test loops. The first problem was the cleaning of the PEC fuelling machine. In order to perform the routine maintenance of the machine an alcohol cleaning method based on the use of 2-butoxyethanol-NN dimethylformamide mixture has been proposed.

  3. Coupled fast-thermal system at the 'RB' nuclear reactor

    Pesic, M.

    1987-04-01

    The results of the analyses of the possibility of the coupled fast-thermal system (CFTS) design at the 'RB' nuclear reactor are shown. As the proof of the theoretical analyses the first stage CFTS-1 has been designed, realized, and tested. The excellent agreement between the results of the CFTS-1 studies and the theoretical predictions opens a straight way to the second, the final stage - realization of the designed CFST at the 'RB' nuclear reactor. (author)

  4. Non-linear programming method in optimization of fast reactors

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  5. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing

  6. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Chang, Y.I.

    1992-01-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  7. A next-generation reactor concept: The Integral Fast Reactor (IFR)

    Chang, Y.I.

    1992-07-01

    The Integral Fast Reactor (IFR) is an advanced liquid metal reactor concept being developed at Argonne National Laboratory as reactor technology for the 21st century. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system, in particular passive safety and waste management. The IFR concept consists of four technical features: (1) liquid sodium cooling, (2) pool-type reactor configuration, (3) metallic fuel, and (4) fuel cycle closure based on pyroprocessing.

  8. UK fast reactor components - sodium removal decontamination and requalification

    Donaldson, D.M.; Bray, J.A.; Newson, I.H.

    1978-01-01

    Over the past two decades extensive experience on sodium removal techniques has been gained at the UKAEA's Dounreay Nuclear Establishment from both the Dounreay Fact Reactor (DFR) and the Prototype Fast Reactor (PFR). This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Part 2 of the paper, which describes recent operations associated with the PFR, demonstrates the background to these views. This past and continuing experience is being used in forming the basis of the plant to be provided for sodium removal, decontamination and requalification of components in the UK's future commercial fast reactors. Further improvements in techniques and in component designs can be expected in the course of the next few years. Consequently UK philosophy and approach with respect to maintenance and repair operations is sufficiently flexible to enable relevant improvements to be incorporated into the next scheduled fast reactor - the Commercial Demonstration Fast Reactor (CUR). This paper summarises the factors which are being taken into consideration in this continuously advancing field

  9. The status of fast reactor technology development in China

    Xu Mi

    2000-01-01

    Considering the future clean energy supply in China, a rather consistent opinion is to develop nuclear power step by step with the contribution from a supplementary one up to an important one. The large scale utilization of nuclear energy obviously determines the interest in fast breeders; China right now already has about 300 GWe total electricity capacity using conventional energy resources. As the first step for fast reactor technology development in the country, the China Experimental Fast Reactor (CEFR) project is still under detail design stage, which is a sodium cooled pool type fast reactor with 65 MW thermal power matched with a turbine-generator of 25 MW. The ordering of the components is continuing. The site is ready and the steel works for the 3 m x 69 m x 82.5 m foundation base of reactor building are being arranged layer by layer. The review to the PSAR by the China National Nuclear Safety Administration (CNNSA) is going to the final stage, if everything goes smoothly. The first pouring of the concrete for the reactor building will be in the middle of the year 2000. The brief introduction of the CEFR design, safety characteristics, the main results of the safety analysis and design test demonstration are given in the paper. (author)

  10. International standardization of safety requirements for fast reactors

    2011-06-01

    Japan Atomic Energy Agency (JAEA) is conducting the FaCT (Fast Reactor Cycle Technology Development) project in cooperation with Japan Atomic Power Company (JAPC) and Mitsubishi FBR systems inc. (MFBR), where an advanced loop-type fast reactor named JSFR (Japan Sodium-cooled Fast Reactor) is being developed. It is important to develop software technologies (a safety guideline, safety design criteria, safety design standards etc.) of FBRs as well as hardware ones (a reactor plant itself) in order to address prospective worldwide utilization of FBR technology. Therefore, it is expected to establish a rational safety guideline applicable to the JSFR and harmonized with national nuclear-safety regulations as well, including Japan, the United States and the European Union. This report presents domestic and international status of safety guideline development for sodium-cooled fast reactors (SFRs), results of comparative study for safety requirements provided in existing documents and a proposal for safety requirements of future SFRs with a roadmap for their refinement and worldwide utilization. (author)

  11. UK fast reactor components - sodium removal decontamination and requalification

    Donaldson, D M [FRDD, UKAEA, Risley (United Kingdom); Bray, J A; Newson, I H [UKAEA, Dounreay Nuclear Power Establishment, Thurso (United Kingdom)

    1978-08-01

    Over the past two decades extensive experience on sodium removal techniques has been gained at the UKAEA's Dounreay Nuclear Establishment from both the Dounreay Fact Reactor (DFR) and the Prototype Fast Reactor (PFR). This experience has created confidence that complex components can be cleaned of sodium, maintenance or repair operations carried out, and the components successfully re-used. Part 2 of the paper, which describes recent operations associated with the PFR, demonstrates the background to these views. This past and continuing experience is being used in forming the basis of the plant to be provided for sodium removal, decontamination and requalification of components in the UK's future commercial fast reactors. Further improvements in techniques and in component designs can be expected in the course of the next few years. Consequently UK philosophy and approach with respect to maintenance and repair operations is sufficiently flexible to enable relevant improvements to be incorporated into the next scheduled fast reactor - the Commercial Demonstration Fast Reactor (CUR). This paper summarises the factors which are being taken into consideration in this continuously advancing field.

  12. Proceedings of 'workshop on Pb-alloy cooled fast reactor'

    Kim, Sang Ji; Kim, Yong Hee; Hong, Ser Gi

    2003-06-01

    The objective of 'Workshop on Pb-Alloy Cooled Fast Reactor', held in Taejeon, Korea on May 6, 2003, is to enhance the basic knowledge in this area by facilitating the exchange of information and discussions about problematic area of design aspects. There were five presentations from three different countries and about 25 participants gathered during the workshop. The topics covered in the workshop include benefits and drawbacks of Pb-alloy and Sodium coolant, two Pb-alloy cooled 900 MWt reactor designs using both B4C rods and NSTs, BREST-300 breakeven reactor and transmutation effectiveness of LLFPs in the typical thermal/fast neutron systems. The generic conclusion for the Pb-alloy cooled fast reactor from this workshop is as follows: 1) It has a potential to satisfy the goals established for the Generation-IV reactor concepts, so it has a bright future. 2) As a fast neutron system with a moderate breeding or a conversion, it is flexible in its roles and has superior safety characteristics over sodium coolant because of Pb-alloy's chemical inertness with water/air and high boiling temperature

  13. Non-destructive characterization using pulsed fast-thermal neutrons

    Womble, P.C.

    1995-01-01

    Explosives, illicit drugs, and other contraband materials contain various chemical elements in quantities and ratios that differentiate them from each other and from innocuous substances. Furthermore, the major chemical elements in coal can provide information about various parameters of importance to the coal industry. In both examples, the non-destructive identification of chemical elements can be performed using pulsed fast-thermal neutrons that, through nuclear reactions, excite the nuclei of the various elements. This technique is being currently developed for the dismantling of nuclear weapons classified as trainers, and for the on-line coal bulk analysis. (orig.)

  14. Fast gas spectroscopy using pulsed quantum cascade lasers

    Beyer, T.; Braun, M.; Lambrecht, A.

    2003-03-01

    Laser spectroscopy has found many industrial applications, e.g., control of automotive exhaust and process monitoring. The midinfrared region is of special interest because it has stronger absorption lines compared to the near infrared (NIR). However, in the NIR high quality reliable laser sources, detectors, and passive optical components are available. A quantum cascade laser could change this situation if fundamental advantages can be exploited with compact and reliable systems. It will be shown that, using pulsed lasers and available fast detectors, lower residual sensitivity levels than in corresponding NIR systems can be achieved. The stability is sufficient for industrial applications.

  15. A new neutron noise technique for fast reactors

    Zhuo Fengguan; Jin Manyi; Yao Shigui; Su Zhuting

    1987-12-01

    This paper gives a new neutron noise technique for fast reactors, which is known as thermalization measurement technique of the neutron noise. The theoretical formulas of the technique were developed, and a digital delayed coincidence time analyzer consisted of TTL integrated circuits was constructed for the study of this technique. The technique has been tested and applied practically at Df-VI fast zero power reactor. It was shown that the provided technique in this work has a number of significant advantages in comparison with the conventional neutron noise method

  16. Uranium alloys for using in fast breeder reactors

    Moura Neto, C.; Pires, O.S.

    1988-08-01

    The U-Zr and U-Ti alloys are studied, given emphasis to the high solute solubility in gamma phase of uranium, which is suitable for using as metal fuel in fast breeder reactors. The alloys were prepared in electron beam furnaces and submitted to X-ray diffraction, X-ray fluorescence, microhardness, optical metallography, and chemical analysis. The obtained values are good agreements with the literature data. The study shows that the U-Zr presents better characteristics than the U-Ti for using as fuel in fast breeder reactors. (M.C.K.) [pt

  17. Modeling delayed neutron monitoring systems for fast breeder reactors

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  18. A review of the Indian fast reactor programme

    Chetal, S.C.

    1989-01-01

    Fast Breeder Test Reactor (FBTR) in India is ready for restart. Satisfactory progress has been made in the design of Prototype Fast Breeder Reactor (PFBR). Conceptual design work for the important systems and components has been completed. Cost estimation is in progress. Detailed project report for the financial sanction is under completion stage and is planned to be submitted to the Government this year. Draft Safety criteria prepared by a sub-committee on behalf of the Regulatory Board have been discussed and will be issued shortly. (author)

  19. Gas Cooled Fast Reactors: Recent advances and prospects

    Poette, C.; Guedeney, P.; Stainsby, R.; Mikityuk, K.; Knol, S.

    2013-01-01

    Gas Cooled Fast Reactors: Conclusion - GFR: an attractive longer term option allowing to combine Fast spectrum & Helium coolant benefits; • Innovative SiC fuel cladding solutions were found; • A first design confirming the encouraging potential of the reactor system Design improvements are nevertheless recommended and interesting tracks have been identified (core & system design, DHR system); • The GFR requires large R&D needs to confirm its potential (fuel & core materials, specific Helium technology); • ALLEGRO prototype studies are the first step and are drawing the R&D priorities

  20. Neutron transport. Physics and calculation of nuclear reactors with applications to pressurized water reactors and fast neutron reactors. 2 ed.

    Bussac, J.; Reuss, P.

    1985-01-01

    This book presents the main physical bases of neutron theory and nuclear reactor calculation. 1) Interactions of neutrons with matter and basic principles of neutron transport; 2) Neutron transport in homogeneous medium and the neutron field: kinetic behaviour, slowing-down, resonance absorption, diffusion equation, processing methods; 3) Theory of a reactor constituted with homogeneous zones: critical condition, kinetics, separation of variables, calculation and neutron balance of the fundamental mode, one-group and multigroup theories; 4) Study of heterogeneous cell lattices: fast fission factor, resonance absorption, thermal output factor, diffusion coefficient, computer codes; 5) Operation and control of reactors: perturbation theory, reactivity, fuel properties evolution, poisoning by fission products, calculation of a reactor and fuel management; 6) Study of some types of reactors: PWR and fast breeder reactors, the main reactor types of the present French program [fr

  1. Transient behaviour study program of research reactors fuel elements at the Hydra Pulse Reactor

    Khvostionov, V.E.; Egorenkov, P.M.; Malankin, P.V.

    2004-01-01

    Program on behavior study of research reactor Fuel Elements (FE) under transient regimes initiated by excessive reactivity insertion is being presented. Program would be realized at HYDRA pulse reactor at Russian Research Center 'Kurchatov Institute' (RRC 'K1'). HYDRA uses aqueous solution of uranyl sulfate (UO 2 SO 4 ) as a fuel. Up to 30 MJ of energy can be released inside the core during the single pulse, effective power pulse width varying from 2 to 10 ms. Reactor facility allows to investigate behaviour of FE consisting of different types of fuel composition, being developed according to Russian RERTR. First part of program is aimed at transient behaviour studying of FE MR, IRT-3M, WWR-M5 types containing meats based on dioxide uranium in aluminum matrix. Mentioned FEs use 90% and 36% enriched uranium. (author)

  2. Utilization of MVP for research on fast reactor

    Yokoyama, Kenji

    2001-01-01

    Utilization of the continuous energy Monte-Carlo code, MVP, for research on fast reactor in Power Reactor and Nuclear Fuel Development Corporation(PNC) is described. In this report, three types of utilization are reviewed; (1) a comparison of the eigenvalues calculated by MVP with the results by the deterministic methods, (2) an improvement of U-238 reaction rate evaluation in JUPITER experimental Analysis and (3) an evaluation of heterogeneity effects for Am reaction rates of the moderated subassemblies. Since the results of MVP can be used as references, MVP is very useful code in research on fast reactor. It is one of indispensable tools in order to verify the models in the deterministic methods. Furthermore, it can be used so as to investigate the new concept reactors, such as a reactor aiming to transmute minor actinides(MA). On the other hand, a problem of the variance reduction remains. Especially, a small reactivity cannot be estimated by MVP because of large variances. The development of a Monte-Carlo method for a small reactivity calculation will promote the utilization of MVP for research on fast reactor. (author)

  3. The design rationale of the Integral Fast Reactor (IFR)

    Wade, D.C.; Hill, R.N.

    1997-01-01

    The Integral Fast Reactor (IFR) concept has been developed over the last ten years to provide technical solutions to perceptual concerns associated with nuclear power. Beyond the traditional advanced reactor objectives of increased safety, improved economy and more efficient fuel utilization, the IFR is designed to simplify waste disposal and increase resistance to proliferation. Only a fast reactor with an efficient recycle technology can provide for total consumption of actinides. The basic physics governing reactor design dictates that, for efficient recycle, the fuel form should be limited in burnup only by radiation damage to fuel cladding. The recycle technology must recover essentially all actinides. In a fast reactor, not all fission products need to be removed from the recycled fuel, and there is no need to produce pure plutonium. Recovery, recycle, and ultimate consumption of all actinides resolves several waste-disposal concerns. The IFR can be configured to achieve safe passive response to any of the traditional postulated reactor accident initiators, and can be configured for a variety of power output levels. Passive heat removal is achieved by use of a large inventory sodium coolant and a physical configuration that emphasizes natural circulation. An IFR can be designed to consume excess fissile material, to produce a surplus, or to maintain inventory. It appears that commercial designs should be economically competitive with other available alternatives. (author)

  4. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  5. Structural elements for fast-neutron reactors

    Blin, J.C.; Sainfort, Gerard; Silvent, Alain; Silvestres, Georges.

    1974-01-01

    These elements are characterized in that they are obtained from a nickel-alloy and at least a material M, selected from the group comprising iron and silicon, in proportions, by weight, such that irradiation by fast neutrons leads to the generation of Ni 3 -M with no noticeable swelling of said elements. This can be applied to fuel assembly cladding [fr

  6. Parameter analysis calculation on characteristics of portable FAST reactor

    Otsubo, Akira; Kowata, Yasuki

    1998-06-01

    In this report, we performed a parameter survey analysis by using the analysis program code STEDFAST (Space, TErrestrial and Deep sea FAST reactor-gas turbine system). Concerning the deep sea fast reactor-gas turbine system, calculations with many variable parameters were performed on the base case of a NaK cooled reactor of 40 kWe. We aimed at total equipment weight and surface area necessary to remove heat from the system as important values of the characteristics of the system. Electric generation power and the material of a pressure hull were specially influential for the weight. The electric generation power, reactor outlet/inlet temperatures, a natural convection heat transfer coefficient of sea water were specially influential for the area. Concerning the space reactor-gas turbine system, the calculations with the variable parameters of compressor inlet temperature, reactor outlet/inlet temperatures and turbine inlet pressure were performed on the base case of a Na cooled reactor of 40 kWe. The first and the second variable parameters were influential for the total equipment weight of the important characteristic of the system. Concerning the terrestrial fast reactor-gas turbine system, the calculations with the variable parameters of heat transferred pipe number in a heat exchanger to produce hot water of 100degC for cogeneration, compressor stage number and the kind of primary coolant material were performed on the base case of a Pb cooled reactor of 100 MWt. In the comparison of calculational results for Pb and Na of primary coolant material, the primary coolant weight flow rate was naturally large for the former case compared with for the latter case because density is very different between them. (J.P.N.)

  7. Actinide recycle potential in the integral fast reactor

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  8. Current status and perspective of advanced loop type fast reactor in fast reactor cycle technology development project

    Niwa, Hajime; Aoto, Kazumi; Morishita, Masaki

    2007-01-01

    After selecting the combination of the sodium-cooled fast reactor (SFR) with oxide fuel, the advanced aqueous reprocessing and the simplified pelletizing fuel fabrication as the most promising concept of FR cycle system, 'Feasibility Study on Commercialized Fast Reactor Cycle Systems' was finalized in 2006. Instead, a new project, Fast Reactor Cycle Technology Development Project (FaCT Project) was launched in Japan focusing on development of the selected concepts. This paper describes the current status and perspective of the advanced loop type SFR system in the FaCT Project, especially on the design requirements, current design as well as the related innovative technologies together with the development road-map. Some considerations on advantages of the advanced loop type design are also described. (authors)

  9. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997

  10. Advances in fast reactor technology. Proceedings of the 30. meeting of the International Working Group on Fast Reactors

    NONE

    1998-04-01

    Individual States were largely responsible for early developments in experimental and prototype liquid metal fast reactors (LMFRs). However, for development of advanced LMFRs, international co-operation plays an important role. The IAEA seeks to promote such co-operation. For R and D incorporating innovative features, international co-operation allows pooling of resources and expertise in areas of common interest. Information on experience gained from R and D, and from the operation and construction of fast reactors, has been reviewed periodically by the International Working Group on Fast Reactors (IWGFR). These proceedings contain updated a new information on the status of LMFR development, as reported at the 30th meeting of the IWGFR, held in Beijing, China, from 13 to 16 May 1997. Refs,figs,tabs.

  11. Commission of the European Communities review of fast reactor activities, March 1981

    Balz, W [Commission of the European Communities, Brussels (Belgium)

    1981-05-01

    The Commission of the European Communities continued its activities in the field of fast reactors development essentially in the frame of the Fast Reactor Coordinating Committee (FRCC) and by execution of a Reactor Programme at its Joint Research Center (JRC). The study was concerned with introducing fast reactors into European Community, elaboration of preliminary safety criteria and guidelines for typical fast reactor accidents; codes and standards; LMFBR safety, fuel, fuel cycle safety.

  12. Commission of the European Communities review of fast reactor activities, March 1981

    Balz, W.

    1981-01-01

    The Commission of the European Communities continued its activities in the field of fast reactors development essentially in the frame of the Fast Reactor Coordinating Committee (FRCC) and by execution of a Reactor Programme at its Joint Research Center (JRC). The study was concerned with introducing fast reactors into European Community, elaboration of preliminary safety criteria and guidelines for typical fast reactor accidents; codes and standards; LMFBR safety, fuel, fuel cycle safety

  13. Safety design study of fast breeder reactors in Japan

    Miura, M.; Inagaki, T.

    1992-01-01

    This paper reports on two fast breeder reactor (FBR) concepts, the tank type and the loop type, that have been studied as possible reactor designs to be used for a demonstration FBR (DFBR). The basic principle fo the DFBR design is to ensure plant safety through a defense-in-depth methodology. Improvements in the seismic and thermal stress designs have been attempted for both reactor concepts. The system design study strives to maximize the reliability of the safety-related systems and to rationalize commercialization of the plant

  14. The Integral Fast Reactor: A practical approach to waste management

    Laidler, J.J.

    1993-01-01

    This report discusses development of the method for pyroprocessing of spent fuel from the Integral Fast Reactor (or Advanced Liquid Metal Reactor). The technology demonstration phase, in which recycle will be demonstrated with irradiated fuel from the EBR-II reactor has been reached. Methods for recovering actinides from spent LWR fuel are at an earlier stage of development but appear to be technically feasible at this time, and a large-scale demonstration of this process has begun. The utilization of fully compatible processes for recycling valuable spent fuel materials promises to provide substantial economic incentives for future applications of the pyroprocessing technology

  15. Utility industry evaluation of the Sodium Advanced Fast Reactor

    Burstein, S.; DelGeorge, L.O.; Tramm, T.R.; Gibbons, J.P.; High, M.D.; Neils, G.H.; Pilmer, D.F.; Tomonto, J.R.; Wells, J.T.

    1990-02-01

    A team of utility industry representatives evaluated the Sodium Advanced Fast Reactor plant design, a current liquid metal reactor design created by an industrial team led by Rockwell International under Department of Energy sponsorship. The utility industry team concluded that the plant design offers several attractive characteristics, especially in the safety arena, as well as preserving the traditional attraction of liquid metal reactors, very high fuel utilization. Specific comments and recommendations are provided as a contribution towards improving an already attractive plant design. 18 refs

  16. Challenges and achievements - Prototype Fast Breeder Reactor construction

    Subramani, V.A.; Dhere, S.S.; Manoharan, V.; Subbaraman, P.

    2010-01-01

    Prototype fast breeder reactor presently under construction poses several challenges in materials, design and construction. The civil structure and equipment are of very large size and complex in nature. This paper presents the features of the design and construction of the PFBR excavation, raft, civil structure of the nuclear island connected buildings and reactor vault. This paper also brings out the details of the large size equipment of special stainless steel and handling structure for their lifting and placement inside the reactor vault. The paper is divided into three parts viz. introduction, challenges and achievements during construction of civil structures and erection of large size components. (author)

  17. Review of fast reactor activities in India (1984)

    Paranjpe, S.R.

    1986-01-01

    During the year a number of reviews and construction activities have been practically completed as required for the 1st criticality of FBTR. The reactor is expected to become critical by the middle of 1985. The design studies for 500 MWe prototype fast breeder reactor (PFBR) have been continued. Due to preoccupation with the completion of construction of FBTR, the limited effort has been focussed on the design of key components like the sodium pumps, drivers for sodium pumps, control rod drive mechanism and steam generators. The main programs, which are a continuing activity in RRC, are discussed in this report. They are: reactor physics, radio-chemistry, metallurgy, reprocessing and safety research

  18. Integral measurement of fission products capture in fast breeder reactors

    Martin Deidier, Loick.

    1979-12-01

    For the SUPERPHENIX reactor project, it was necessary to know fission products capture with about 10% accuracy in the fast breeder reactor spectra. In this purpose, integral measurements have been carried out on the main separated products by different experimental technics (oscillation, activation and irradiation methods), but particularly on irradiated fuel pins from RAPSODIE and PHENIX reactors in order to directly obtain total effect of fission products. Same tendencies have been observed for both enriched uranium fuel and LMFBR characteristic plutonium fuel. All experimental results have been introduced in CARNAVAL cross section set [fr

  19. Fast-Mixed Spectrum Reactor. Progress report for 1979

    Fischer, G.J.; Cerbone, R.J.

    1980-05-01

    This report summarizes the progress of the Fast Mixed Spectrum Reactor (FMSR) since the publication of the Interim Report in January 1979. The FMSR program was initiated to determine the feasibility of a breeder reactor concept which operated on a once-through-and-store fuel cycle and for which the only feed would be natural uranium. A first or startup core enriched to a maximum of about eleven percent in uranium-235 would be required. The concept has excellent antiproliferation advantages. In the once-through and store mode, the FMSR has a resource utilization which is a factor of four higher than a light water reactor

  20. Elements for evaluation of fast breeder reactor's potential in Argentina

    Gho, C.J.

    1985-01-01

    Fast Breeder Reactors (FBR) main features are presented in a general form, including their physical principles, the history of their evolution, their relevant technological aspects and the basis for their comparison to other energy sources. This is completed with descriptions of typical reactors and a model of FBR penetration in the Argentine electrical network. It is recommended to form a multidisciplinary board to study which position should be taken with respect to this type of reactors. In the author's opinion a Research activity should be started and gradually increased for passing to Development activities after a short while. (Author) [es

  1. Concept and designs of new-generation fast reactors

    Mitenkov, F.M.

    1993-01-01

    This article discusses the general safety requirements and characteristics for future nuclear power plants. It examines various designs - loop, block, and integrated layouts for reactors. Specifically, the article focuses an integrated design for sodium-cooled fast reactors noting that the BN-600 reactor has operated accident-free over the past 12 years. An obvious advantage of this scheme is that the coolant of the primary loop is localized in one volume (in a vessel), there are no short connections and large-diameter pipes, which of course sharply reduces the probability in coolant leaks. With an integrated scheme the problem of embrittlement of the reactor vessel by neutron irradiation is obviated. The neutron fluence for the vessels of the AST-500 and VPBER-600 reactors, built with an integrated scheme, is less than 10 17 cm -2 . Such a fluence does not cause any appreciable change in the mechanical properties of the vessel steel. The integrated layout of the reactor makes it possible to build a containment vessel. In this case it is possible to eliminate the danger of the reactor core drying out and thus cooling of the reactor in emergency situations can be simplified substantially. In an integrated layout, however, access is more difficult to the equipment inside the reactor, thus limiting or complicating maintenance work. The integrated layout, therefore, requires the use of highly reliable equipment built according to designs that have been proven in operation and have been passed representative service-life tests under laboratory conditions. The integrated layout considerably increases the mass and size characteristics of the reactor. New solutions thus are needed for the organization of work on reactor fabrication and assembly. In the case of the BN-600 and Superphenix reactors the welding of the reactor vessels and the assembly work were done on the building site

  2. THE WHITE SANDS MISSILE RANGE PULSED REACTOR FACILITY, MAY 1963

    Long, Robert L.; Boor, R. A.; Cole, W. M.; Elder, G. E.

    1963-05-15

    A brief statement of the mission of the White Sands Missile Range Nuclear Effects Laboratory is given. The new Nuclear Effects Laboratory Facility is described. This facility consists of two buildings-a laboratory and a reactor building. The White Sands Missile Range bare critical assembly, designated as the MoLLY-G, is described. The MoLLY-G, an unreflected, unmoderated right circular cylinder of uranium-molybdenum alloy designed for pulsed operation, will have a maximum burst capability of approximately 2 x 10/sup 17/ fissions with a burst width of 50 microseconds. The reactor construction and operating procedures are described. As designed, the MoLLY-G will provide an intense source of pulsed neutron and gamma radiation for a great variety of experimental and test arrangements. (auth)

  3. Design considerations for economically competitive sodium cooled fast reactors

    Zhang, Hongbin; Zhao, Haihua; Mousseau, Vincent; Szilard, Ronaldo

    2009-01-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phenix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design. (author)

  4. Review of fast reactor activities in India (1983-84)

    Paranjpe, S.R.

    1984-01-01

    The last year was very significant for the Indian Nuclear Energy Programme as the first indigeneously built heavy water moderated natural uranium reactor called Madras Atomic Power Plant Unit-I was made operational and connected to the grid. The power level has been gradually increased and the reactor has been operating at a power level of 200 MWe (temporarily limited by Plutonium build up during approach to equilibrium core loading). The 'plutonium peak' will be crossed shortly clearing the way for raising the reactor to the full power of 235 MWe gross. The second unit of MAPP, is well advanced and barring unforeseen difficulties, is expected to become operational during this financial year. This has been a big morale booster for the programme in general and the Fast Reactor Programme in particular as plutonium produced in these reactors is expected to be the inventory for Prototype Fast Breeder Reactors. It may be recalled that in the last report to this group, a reference was made to initiation of some preliminary design studies for such a reactor

  5. Fuel Development For Gas-Cooled Fast Reactors

    M. K. Meyer

    2006-06-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High Temperature Reactor (VHTR), as well as actinide burning concepts [ ]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is a dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the U.S. and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic ‘honeycomb’ structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  6. A review of fast reactor progress in Japan, March 1979

    Tomabechi, K

    1979-07-01

    The fast reactor development project in Japan will be continued in the next fiscal year, from April 1979 through March 1980, at a similar scale of effort both in budget and personnel, to those of the fiscal year of 1978. The total budget for LMFBR development for the next fiscal year is approximately 24 billion Yen, excluding wages of the personnel of the Power Reactor and Nuclear Fuel Development Corporation, PNC. The number of the technical people currently engaging in the fast reactor development in the PNC is approximately 500, excluding those working for plutonium fuel fabrication. Concerning the experimental fast reactor JOYO, approval for power increase from presently approved 50 MWt to 75 MWt with the present core and also to 100 MWt with a modified core in the future was granted by the regulatory authority in September 1978. Two operational cycles at 50 MWt have been completed very recently and preparation for power increase to 75 MWt is being made. With respect to the prototype fast breeder reactor MONJU, progress toward construction is being made and an environmental impact statement of MONJU filed last autumn is being reviewed by the concerned authorities. By the new atomic energy law recently made effective in Japan, the tasks of the former Japan Atomic Energy Commission were split into two and the Atomic Energy Safety Commission was newly established on 4th October 1978 in order to deal with nuclear safety problems in the country. All other problems are treated by the Atomic Energy Commission, as before. Highlights and topics of the fast reactor development activities in the past twelve months are summarized in this paper.

  7. Status of national programmes on fast reactors 1997/98. 31. annual meeting of the International Working Group on Fast Reactors

    1998-01-01

    The objective of the meeting was to co-ordinate the exchange of information on the status of fast reactor development and operational experience, including experience with experimental types of reactor; to consider meeting arrangements for 1998 and 1999; and to review the IAEA co-ordinated research activities in the field of fast reactor, as well as co-ordination of the International Working Group on Fast Reactors activities with other organizations

  8. Status of fast reactor technology in China

    Xu Mi

    1992-01-01

    The paper has introduced briefly the recent news about the Chinese nuclear programme on PWR and FBR. Concerning the FFR design, some issues under consideration have been presented, including the matches between thermo-parameters of primary sodium and of steam, the arrangement of control and safety rods which correspond to first and second shut-down systems, the structure of inner vessel and the axial length of subassembly. With regard to the R and D of FBR technology, some results on sodium technology and on the cladding materials have been given in the paper. Finally, some progress and troubles on site selection for this reactor have also been outlined. (author)

  9. Uranium-plutonium fuel for fast reactors

    Antipov, S.A.; Astafiev, V.A.; Clouchenkov, A.E.; Gustchin, K.I.; Menshikova, T.S.

    1996-01-01

    Technology was established for fabrication of MOX fuel pellets from co-precipitated and mechanically blended mixed oxides. Both processes ensure the homogeneous structure of pellets readily dissolvable in nitric acid upon reprocessing. In order to increase the plutonium charge in a reactor-burner a process was tested for producing MOX fuel with higher content of plutonium and an inert diluent. It was shown that it is feasible to produce fuel having homogeneous structure and the content of plutonium up to 45% mass

  10. Very Fast Current Diagnostic for Linear Pulsed Beams

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito

    2018-01-01

    Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  11. Very Fast Current Diagnostic for Linear Pulsed Beams

    Nassisi Vincenzo

    2018-01-01

    Full Text Available Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn’t influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time (~100 ps, The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  12. A laminated-iron fast-pulsed magnet

    Faugeras, Paul E; Mayer, M; Schröder, G H

    1977-01-01

    In the SPS Beam Dumping System , two pairs of fast pulsed magnets deflect the circulating beam vertically and horizontally from its normal closed orbit, and onto a large absorber block. Two MKDV kickers produce a quasi-rectangular field pulse of 23 µs duration (this being the SPS revolution period) causing a vertical deflection of 44 mm at the absorber block, while two MKDH sweepers give a horizontal deflection ramping during 23 µs to a peak of 25 mm. On the 'flat top' of the MKDV pulse, oscillations of ± 10 % of the primary deflection are introduced. The proton beam is thus dumped into the absorber block during one revolution. Dumping may occur at any energy, but the dumping of a 400 GeV/c pencil beam of $10^{13}$ proton would produce thermal shock waves which would ultimately deform any solid absorber. The sweeper's 25 mm horizontal deflection and the kicker's 10 % oscillations were introduced to sweep the dumped beam over an area of about 200 $mm^{2}$ giving a reduction of one to two orders of magnitude...

  13. The detection of sodium vapor bubble collapse in a liquid metal fast breeder reactor

    Carey, W.M.; Gavin, A.P.; Bobis, J.P.; Sheen, S.H.; Anderson, T.T.; Doolittle, R.D.; Albrecht, R.W.

    1977-01-01

    Sodium boiling detection utilizing the sound pressure emanated during the collapse of a sodium vapour bubble in a subcooled media is discussed in terms of the sound characteristic, the reactor ambient noise background, transmission loss considerations and performance criteria. Data obtained in several loss of flow experiments on Fast Test Reactor Fuel Elements indicate that the collapse of the sodium vapour bubble depends on the presence of a subcooled structure or sodium. The collapse pressure pulse was observed in all cases to be on the order of a kPa, indicating a soft type of cavitational collapse. Spectral examination of the pulses indicates the response function of the test structure and geometry is important. The sodium boiling observed in these experiments was observed to occur at a low ( 0 C) liquid superheat with the rate of occurrence of sodium vapor bubble collapse in the 3 to 30 Hz range. Reactor ambient noise data were found to be due to machinery induced vibrations flow induced vibrations, and flow noise. These data were further found to be weakly stationary enhancing the possibility of acoustic surveillance of an operating Liquid Metal Fast Breeder Reactor. Based on these noise characteristics and extrapolating the noise measurements from the Fast Flux Test Facility Pump (FFTP), one would expect a signal to noise ratio of up to 20 dB in the absence of transmission loss. The requirement of a low false alarm probability is shown to necessitate post detection analysis of the collapse event sequence and the cross correlation with the second derivative of the neutronic boiling detection signal. Sodium boiling detection using the sounds emitted during sodium vapor bubble collapse are shown to be feasible but a need for in-reactor demonstration is necessary. (author)

  14. Design and initial performance of the Sandia Pulsed Reactor-III

    Reuscher, J.A.; Estes, B.F.

    1976-01-01

    The Sandia Pulsed Reactor-III (SPR-III) is a new fast pulsed reactor which has recently undergone initial testing at Sandia Laboratories. SPR-III is a uranium-10 weight percent molybdenum fuel assembly with a 17.78 cm irradiation cavity similar in design to SPR-II which has been in operation since 1967. The basic SPR-III design utilizes the same split-core configuration which has been proven with SPR-II; however, SPR-III uses external reflectors for control and external bolts to hold the fuel plates together. The core consists of sixteen fuel plates with an inside diameter of 17.78 cm, an outside diameter of 29.72 cm, and a core height of 31.9 cm. The fuel mass is about 227 kg of fully enriched uranium-10 weight percent molybdenum alloy. SPR III has completed the initial series of startup tests which included the critical experiment, zero and low-power tests, and pulse testing. The reactor design and results from the initial testing program are described in this paper. A portion of the startup experiments with SPR-III have been completed and this paper discusses the more important aspects of the initial testing program

  15. Thermal-hydraulic methods in fast reactor safety

    Weber, D.P.; Briggs, L.L.

    1985-01-01

    Methods for the solution of thermal-hydraulic problems in liquid metal fast breeder reactors (LMFBRs) arising primarily from transient accident analysis are reviewed. Principal emphasis is given to the important phenomenological issues of sodium boiling and fuel motion. Descriptions of representative phenomenological and mathematical models, computational algorithms, advantages and limitations of the approaches, and current research needs and directions are provided

  16. Study of fast reactor safety test facilities. Preliminary report

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  17. Cobalt-60 production in the BN-350 fast power reactor

    Zvonarev, A.V.; Korobejnikov, V.V.; Matveenko, I.P.

    1994-01-01

    A possibility of Co-60 isotope production in the BN-350 fast reactor was considered. A special irradiating device, which is an assembly with a central hole, where a container containing cobalt and zirconium hydride is placed. The irradiating device tested permits generating 60 Co with specific activity of 100 Ci/g

  18. Utilization of large electromagnetic pumps in the fast breeder reactors

    Deverge, C.; Lefrere, J.P.; Peturaud, P.; Sauvage, M.

    1984-04-01

    After an overview concerning the induction annular electromagnetic pumps and the dimensioning methods usually utilized, development of these components for a fast breeder integrated reactor is considered: - utilization of cooled EMP in the intermediate circuit, - utilization of immersed pumps, coupled with the intermediate exchanger, for the primary pumping; dimensioning, energetic aspects, and effects on the power plant geometrical configurations [fr

  19. Symposium on key questions about the fast breeder reactor

    1975-01-01

    Except for several introductions on various aspects of the fast breeder reactor development this paper contains the full texts of the discussions held in the sub-groups panels on resp. technical matters, environment and health, society, politics and economics. The main issues of each discussion are summarized

  20. Integral Fast Reactor Program annual progress report, FY 1991

    1992-06-01

    This report summarizes highlights of the technical progress made in the Integral Fast Reactor (IFR) Program in FY 1991. Technical accomplishments are presented in the following areas of the IFR technology development activities: (1) metal fuel performance, (2) pyroprocess development, (3) safety experiments and analyses, (4) core design development, (5) fuel cycle demonstration, and (6) LMR technology R ampersand D