WorldWideScience

Sample records for kale brassica oleracea

  1. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    Science.gov (United States)

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  3. Diversity of Kale (Brassica oleracea var. sabellica): Glucosinolate Content and Phylogenetic Relationships.

    Science.gov (United States)

    Hahn, Christoph; Müller, Anja; Kuhnert, Nikolai; Albach, Dirk

    2016-04-27

    Recently, kale has become popular due to nutritive components beneficial for human health. It is an important source of phytochemicals such as glucosinolates that trigger associated cancer-preventive activity. However, nutritional value varies among glucosinolates and among cultivars. Here, we start a systematic determination of the content of five glucosinolates in 25 kale varieties and 11 non-kale Brassica oleracea cultivars by HPLC-DAD-ESI-MS(n) and compare the profiles with results from the analysis of SNPs derived from a KASP genotyping assay. Our results demonstrate that the glucosinolate levels differ markedly among varieties of different origin. Comparison of the phytochemical data with phylogenetic relationships revealed that the common name kale refers to at least three different groups. German, American, and Italian kales differ morphologically and phytochemically. Landraces do not show outstanding glucosinolate levels. Our results demonstrate the diversity of kale and the importance of preserving a broad genepool for future breeding purposes.

  4. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement.

    Science.gov (United States)

    Šamec, Dunja; Urlić, Branimir; Salopek-Sondi, Branka

    2018-03-20

    Kale (Brassica oleracea var. acephala) is a cruciferous vegetable, characterized by leaves along the stem, which, in recent years, have gained a great popularity as a ´superfood´. Consequently, in a popular culture it is listed in many ´lists of the healthiest vegetables´. Without the doubt, a scientific evidences support the fact that cruciferous vegetables included in human diet can positively affect health and well-being, but remains unclear why kale is declared superior in comparison with other cruciferous. It is questionable if this statement about kale is triggered by scientific evidence or by some other factors. Our review aims to bring an overview of kale's botanical characteristics, agronomic requirements, contemporary and traditional use, macronutrient and phytochemical content and biological activity, in order to point out the reasons for tremendous kale popularity.

  5. Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities

    Czech Academy of Sciences Publication Activity Database

    Ayaz, F. A.; Hayirlioglu-Ayaz, S.; Karaoglu, S.A.; Grúz, Jiří; Valentová, K.; Ulrichová, J.; Strnad, Miroslav

    2008-01-01

    Roč. 107, č. 1 (2008), s. 19-25 ISSN 0308-8146 Institutional research plan: CEZ:AV0Z50380511 Keywords : Black cabbage * Kale * Brassica oleraceae var. acephala Subject RIV: CE - Biochemistry Impact factor: 2.696, year: 2008

  6. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked.

    Science.gov (United States)

    Sikora, Elżbieta; Bodziarczyk, Izabela

    2012-01-01

    Cabbage vegetables, like Brassica group, are perceived as very valuable food products. They have a very good nutritive value, high antioxidant activity and pro-healthy potential. Especially, kale (Brassica oleracea L. var. acephala) is characterized by good nutritional and pro-healthy properties, but this vegetable is not popular in Poland. The aim of this work was to assess the chemical composition and antioxidant activity of kale variety Winterbor F(1) and investigation of cooking process on selected characteristics. The chemical composition and antioxidant activity were determined in leaves of kale Winterbor F(1) variety after three subsequent years of growing. In one season, analyses were performed on raw and cooked leaves. The investigated kale was characterized by high average contents of: β-carotene (6.40 mg/100 g f.m.), vitamin C (62.27 mg/100 g f.m.), alimentary fiber (8.39 g/100 g f.m.) and ash (2.11 g/100 g f.m.). The average amounts of nitrites (III) and (V) were 3.36 mg NaNO(2)/kg f.m. and 1206.4 mg NaNO(3)/kg f.m., respectively. The investigated kale contained polyphenolic compounds at average level of 574.9 mg of chlorogenic acid/100 g f.m., and its antioxidant activity measured as ABTS radical scavenging ability was 33.22 μM Trolox/g of fresh vegetable. It was observed a significant lowering of antioxidant compounds as a result of cooking. The losses of vitamin C were at about 89%, polyphenols at the level of 56%, in calculation on dry mass of the product. The highest stability was shown in the case of beta-carotene, for which the losses were at about 5%. Antioxidant activity of cooked vegetable lowered and reached the level of 38%. There were also some losses observed in macro-components from 13% for zinc to 47% for sodium. The contents of harmful nitrites and nitrates in calculation on dry mass were significantly lower as a result of cooking, by 67% and 78%, respectively. Winterbor F(1) variety of kale has a great nutritive value and high

  7. Synchronizing legume residue nutrient release with Kale (Brassica oleracea var. acephala) uptake in a Nitrosol of Kabete, Kenya

    DEFF Research Database (Denmark)

    Onwonga, Richard N.; Chepkoech, Caroline; Wahome, R.G.

    fertility improvement for crop production e.g. kales (Brassica oleracea var. acephala) under organic farming systems. Chickpea (Cicer arietinum) and white lupin (Lupinus albus L.) are leguminous crops commonly intercropped with kales (Genga, 2014) and their influence on crop yield and soil nutrient status...... has been widely studied (Nduku 2014, Genga 2014; Onwonga et al., 2015). There is however a dearth of information with respect to synchronization of nutrient released by legume residues with pattern of nutrient uptake by kales to match their demand. The objective of the current study was therefore...... to assess decomposition and nutrient release rates of chickpea and lupin residues and kale nutrient uptake patterns for better synchrony of nutrient supply and demand....

  8. Bacterial contamination of kale (Brassica oleracea Acephala) along the supply chain in Nairobi and its environment.

    Science.gov (United States)

    Kutto, E K; Ngigi, M W; Karanja, N; Kange'the, E; Bebora, L C; Lagerkvist, C J; Mbuthia, P G; Njagi, L W; Okello, J J

    2011-02-01

    To assess the microbiological safety of kale (Brassica oleracea Acephala) produced from farms and those sold at the markets with special focus on coliforms, E.coli and Salmonella. A cross sectional study. Peri-Urban farms (in Athi River, Ngong and Wangige), wet markets (in Kawangware, Kangemi and Githurai), supermarkets and high-end specialty store both within Nairobi city. Mean coliform count on vegetables from farms were 2.6 x 10(5) +/- 5.0 x 10(5) cfu/g while those from the wet markets were 4.6 x 10(6) +/- 9.1 x 10(6) cfu/g, supermarkets, 2.6 x 10(6) +/- 2.7 x 10(6) and high-end specialty store 4.7 x 10(5) +/- 8.9 x 10 (5). Coliform numbers obtained on kales from the wet markets and supermarkets were significantly higher (p kale samples purchased from high-end specialty store had similar levels of coliform loads as those from the farms. E. coli prevalence in the wet markets, supermarkets and high-end specialty store were: 40, 20 and 20%, respectively. Salmonella was detected on 4.5 and 6.3% of samples collected from the farms in Wangige and wet market in Kawangware, respectively. Fecal coliforms in water used on farms (for irrigation) and in the markets (for washing the vegetables) exceeded levels recommended by World Health Organization (WHO) of 10(3) organisms per 100 milliliter while Salmonella was detected in 12.5% of washing water samples collected from Kangemi market. Poor cultivation practices and poor handling of vegetables along the supply chain could increase the risk of pathogen contamination thus puting the health of the public at risk, therefore good agricultural and handling practices should be observed.

  9. Responses of growing Japanese quails that received selenium from selenium enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chantiratikul, Anut; Chinrasri, Orawan; Pakmaruek, Pornpan; Chantiratikul, Piyanete; Thosaikham, Withpol; Aengwanich, Worapol

    2011-12-01

    The objectives of this study were to determine the effect of selenium (Se) from Se-enriched kale sprout (Brassica oleracea var. alboglabra L.) on the performance and Se concentrations in tissues of growing Japanese quails. Two hundred quails were divided into five treatments. Each treatment consisted of four replicates and each replicate contained ten quails in a completely randomize design. The experiment was conducted for 5 weeks. The treatments were T1, control diet; T2, control diet plus 0.2 mg Se/kg from sodium selenite; T3, T4, and T5, control diet plus 0.2, 0.5, and 1.0 mg Se/kg from Se-enriched kale sprout. The results revealed that Se supplementation had no impact on feed intake, performance, and carcass characteristics of quails (p > 0.05). However, Se supplementation from both sodium selenite and Se-enriched kale sprout increased (p kale sprout. The results indicate that Se from Se-enriched kale sprout offers no advantage over Se from sodium selenite on tissue Se concentration.

  10. Interaction between metabolism of atmospheric H2S in the shoot and sulfate uptake by the roots of curly kale (Brassica oleracea)

    NARCIS (Netherlands)

    Westerman, S; De Kok, LJ; Stulen, I.; Stuiver, C.Elisabeth E.

    Exposure of curly kale (Brassica oleracea L.,) to gaseous H2S resulted in a decreased sulfate uptake by the roots. At 0.2 mu l l(-1) H2S, a level sufficient to meet the sulfur need of plants for growth, the sulfate uptake was maximally decreased by 50% after 3 or 4 days of exposure. Higher levels up

  11. Oviposition behavior and performance aspects of Ascia monuste (Godart, 1919 (Lepidoptera, Pieridae on kale (Brassica oleracea var. acephala

    Directory of Open Access Journals (Sweden)

    Catta-Preta Patrícia Diniz

    2003-01-01

    Full Text Available Host part selection by ovipositing females of Ascia monuste (Godart, 1919 (Lepidoptera, Pieridae on kale (Brassica oleracea var. acephala was determined in greenhouse and field. Performance of offspring (larval period, efficiency of food utilization, number of eggs/female and others was investigated under laboratory conditions. In the field, the number of A. monuste egg clutches on the apical and medium parts of kale leaves was greater than on the basal part. In greenhouse, A. monuste exhibited a strong preference for the apical part of kale leaves for ovipositing. The best results on food utilization indices, pupal mass and female wing size were obtained with the leaf apical part. This part of kale leaves exhibited the highest nitrogen and protein concentration and the smallest water content, when compared to the other leaf parts. However, the apical part of the leaves seems not to provide ovipositing females with enough protection against birds, making them easy preys in the field. We suggest that good relationship between oviposition preference and performance of offspring was hindered by predation in field conditions.

  12. Draft Genome Sequence of a Kale (Brassica oleracea L.) Root Endophyte, Pseudomonas sp. Strain C9.

    Science.gov (United States)

    Laugraud, Aurelie; Young, Sandra; Gerard, Emily; O'Callaghan, Maureen; Wakelin, Steven

    2017-04-13

    Pseudomonas sp. strain C9 is a plant growth-promoting bacterium isolated from the root tissue of Brassica oleracea L. grown in soil from Marlborough, New Zealand. Its draft genome of 6,350,161 bp contains genes associated with plant growth promotion and biological control. Copyright © 2017 Laugraud et al.

  13. Mineral, vitamin C and crude protein contents in kale (Brassica ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-27

    Oct 27, 2011 ... Key words: Kale (Brassica oleracea var. acephala), harvesting stage, vitamin C, crude protein, mineral content. .... L-ascorbic acid (or vitamin C) in plant tissues. .... Cooking methods of Brassica rapa affect the preservation of.

  14. Molecular Cloning, Expression Pattern and Genotypic Effects on Glucoraphanin Biosynthetic Related Genes in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2015-11-11

    Glucoraphanin is a plant secondary metabolite that is involved in plant defense and imparts health-promoting properties to cruciferous vegetables. In this study, three genes involved in glucoraphanin metabolism, branched-chain aminotransferase 4 (BCAT4), methylthioalkylmalate synthase 1 (MAM1) and dihomomethionine N-hydroxylase (CYP79F1), were cloned from Chinese kale (Brassica oleracea var. alboglabra Bailey). Sequence homology and phylogenetic analysis identified these genes and confirmed the evolutionary status of Chinese kale. The transcript levels of BCAT4, MAM1 and CYP79F1 were higher in cotyledon, leaf and stem compared with flower and silique. BCAT4, MAM1 and CYP79F1 were expressed throughout leaf development with lower transcript levels during the younger stages. Glucoraphanin content varied extensively among different varieties, which ranged from 0.25 to 2.73 µmol·g(-1) DW (dry weight). Expression levels of BCAT4 and MAM1 were high at vegetative-reproductive transition phase, while CYP79F1 was expressed high at reproductive phase. BCAT4, MAM1 and CYP79F1 were expressed significantly high in genotypes with high glucoraphanin content. All the results provided a better understanding of the roles of BCAT4, MAM1 and CYP79F1 in the glucoraphanin biosynthesis of Chinese kale.

  15. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    Science.gov (United States)

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Characterization and quantification of flavonoids and hydroxycinnamic acids in curly kale (Brassica oleracea L. Convar. acephala Var. sabellica) by HPLC-DAD-ESI-MSn.

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2009-04-08

    Kale is a leafy green vegetable belonging to the Brassicaceae family, a group of vegetables including cabbage, broccoli, cauliflower, and Brussels sprouts, with a high content of health-promoting phytochemicals. The flavonoids and hydroxycinammic acids of curly kale ( Brassica oleracea L. ssp. oleracea convar. acephala (DC.) Alef. var. sabellica L.), a variety of kale, were characterized and identified primarily through HPLC-DAD-ESI-MS(n) analysis. Thirty-two phenolic compounds including glycosides of quercetin and kaempferol and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid were tentatively identified, providing a more complete identification of phenolic compounds in curly kale than previously reported. Moreover, three hydroxycinnamic acids and one flavonoid with an unusual high grade of glycosylation, quercetin-3-disinapoyl-triglucoside-7-diglucoside, have been tentatively identified for the first time. The influence of different extraction conditions (extraction method, solvent type, solvent/solid ratio, and duration of extraction) was investigated. The total flavonol and hydroxycinnamic acid contents in curly kale determined as rutin equivalents (RE) were 646 and 204 mg of RE/100 g of fresh weight (fw), respectively. The contents of individual flavonoids ranged from 2 to 159 mg of RE/100 g of fw, with main compounds kaempferol-3-sinapoyl-diglucoside-7-diglucoside (18.7%) and quercetin-3-sinapoyl-diglucoside-7-diglucoside (16.5%). After acidic hydrolysis, two flavonol aglycones were identified in curly kale, quercetin and kaempferol, with total contents of 44 and 58 mg/100 g of fw, respectively.

  17. Isolation and characterization of a J domain protein that interacts with ARC1 from ornamental kale (Brassica oleracea var. acephala).

    Science.gov (United States)

    Lan, Xingguo; Yang, Jia; Cao, Mingming; Wang, Yanhong; Kawabata, Saneyuki; Li, Yuhua

    2015-05-01

    A novel J domain protein, JDP1, was isolated from ornamental kale. The C-terminus of JDP1 specifically interacted with ARC1, which has a conserved role in self-incompatibility signaling. Armadillo (ARM)-repeat containing 1 (ARC1) plays a conserved role in self-incompatibility signaling across the Brassicaceae and functions downstream of the S-locus receptor kinase. Here, we identified a J domain protein 1 (JDP1) that interacts with ARC1 using a yeast two-hybrid screen against a stigma cDNA library from ornamental kale (Brassica oleracea var. acephala). JDP1, a 38.4-kDa protein with 344 amino acids, is a member of the Hsp40 family. Fragment JDP1(57-344), originally isolated from a yeast two-hybrid cDNA library, interacted specifically with ARC1 in yeast two-hybrid assays. The N-terminus of JDP1 (JDP1(1-68)) contains a J domain, and the C-terminus of JDP1 (JDP1(69-344)) contains an X domain of unknown function. However, JDP1(69-344) was required and sufficient for interaction with ARC1 in yeast two-hybrid assays and in vitro binding assays. Moreover, JDP1(69-344) regulated the trafficking of ARC1 from the cytoplasm to the plasma membrane by interacting with ARC1 in Arabidopsis mesophyll protoplasts. Finally, Tyr(8) in the JDP1 N-terminal region was identified to be the specific site for regulating the interaction between JDP1 and BoARC1 in yeast two-hybrid assays. Possible roles of JDP1 as an interactor with ARC1 in Brassica are discussed.

  18. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor).

    Science.gov (United States)

    Zhang, Bin; Hu, Zongli; Zhang, Yanjie; Li, Yali; Zhou, Shuang; Chen, Guoping

    2012-02-01

    The purple kale (Brassica Oleracea var. acephala f. tricolor) is a mutation in kales, giving the mutant phenotype of brilliant purple color in the interior. Total anthocyanin analysis showed that the amount of anthocyanins in the purple kale was up to 1.73 mg g(-1) while no anthocyanin was detected in the white kale. To elucidate the molecular mechanism of the anthocyanin biosynthesis in the purple kale, we analyzed the expression of structural genes and some transcription factors associated with anthocyanin biosynthesis in the purple cultivar "Red Dove" and the white cultivar "White Dove". The result showed that nearly all the anthocyanin biosynthetic genes showed higher expression levels in the purple cultivar than in the white cultivar, especially for DFR and ANS, they were barely detected in the white cultivar. Interestingly, the fact that a R2R3 MYB transcription factor named BoPAP1 was extremely up-regulated in the purple kale and induced by low temperature attracted our attention. Further sequence analysis showed that BoPAP1 shared high similarity with AtPAP1 and BoMYB1. In addition, the anthocyanin accumulation in the purple kale is strongly induced by the low temperature stress. The total anthocyanin contents in the purple kale under low temperature were about 50-fold higher than the plants grown in the greenhouse. The expression of anthocyanin biosynthetic genes C4H, F3H, DFR, ANS and UFGT were all enhanced under the low temperature. These evidences strongly suggest that BoPAP1 may play an important role in activating the anthocyanin structural genes for the abundant anthocyanin accumulation in the purple kale.

  19. Characterization, quantification, and yearly variation of the naturally occurring polyphenols in a common red variety of curly kale ( Brassica oleracea L. convar. acephala var. sabellica cv. 'Redbor').

    Science.gov (United States)

    Olsen, Helle; Aaby, Kjersti; Borge, Grethe Iren A

    2010-11-10

    This study focuses on the characterization and quantification of polyphenols in the edible leaves of red curly kale ( Brassica oleracea L. convar. acephala (DC.) Alef. var. sabellica L.), variety 'Redbor F1 hybrid'. The kale was grown at an experimental field (59° 40' N) in the years 2007-2009. The analysis of kale extract by HPLC-DAD-ESI-MS has allowed the determination of 47 different acylated and nonacylated flavonoid glycosides and complex hydroxycinnamic acids. Those compounds included mono- to tetraglycosides of quercetin, kaempferol, and cyanidin and derivatives of p-coumaric, ferulic, sinapic, and caffeic acid. Among the compounds characterized, four flavonols, three anthocyanins, and three phenolic acids were identified in the Brassica family for the first time. Aglycones and conjugated polyphenols were quantified by HPLC-DAD using commercially available standards. The main flavonol, anthocyanin, and phenolic acid were kaempferol-3-sinapoyl-diglucoside-7-diglucoside, cyanidin-3-sinapoyl-feruloyl-diglucoside-5-glucoside, and disinapoyl-diglucoside, respectively, each representing 9.8, 10.3, and 4.9% of the total amount of 872 mg polyphenol equivalents per 100 g of fresh kale. Variations between individual plants and growing seasons were of the same order of magnitude for total phenolics and total monomeric anthocyanins.

  20. Safety assessment and detection method of genetically modified Chinese Kale (Brassica oleracea cv. alboglabra ).

    Science.gov (United States)

    Lin, Chih-Hui; Lu, Chien-Te; Lin, Hsin-Tang; Pan, Tzu-Ming

    2009-03-11

    Sporamins are tuberous storage proteins and account for 80% of soluble protein in sweet potato tubers with trypsin-inhibitory activity. The expression of sporamin protein in transgenic Chinese kale (line BoA 3-1) conferred insecticidal activity toward corn earworm [ Helicoverpa armigera (Hubner)] in a previous report. In this study, we present a preliminary safety assessment of transgenic Chinese kale BoA 3-1. Bioinformatic and simulated gastric fluid (SGF) analyses were performed to evaluate the allergenicity of sporamin protein. The substantial equivalence between transgenic Chinese kale and its wild-type host has been demonstrated by the comparison of important constituents. A reliable real-time polymerase chain reaction (PCR) detection method was also developed to control sample quality. Despite the results of most evaluations in this study being negative, the safety of sporamin in transgenic Chinese kale BoA 3-1 was uncluded because of the allergenic risk revealed by bioinformatic analysis.

  1. Growth and Blood Parameters of Weaned Crossbred Beef Calves Fed Forage Kale (Brassica oleracea spp. acephala

    Directory of Open Access Journals (Sweden)

    Y. Chorfi

    2015-01-01

    Full Text Available Forty lightweight calves (206.4±3.2 kg were randomly distributed to four treatments: (Control low nutritive value pasture and hay plus 1 kg d−1 of rolled barley; (Pasture management intensive pasture; (Haylage timothy haylage; and (Kale 50% timothy haylage −50% kale pasture. Blood samples were analysed for thyroid hormones, liver enzymes, glucose, cholesterol, total proteins (TP, albumin, globulins, and urea-N. At the end of the trial, the Pasture group was the heaviest with 323.6±4.2 kg BW and 1.54 kg ADG. Final BW and ADG were similar for the Kale and Haylage groups. Blood T3 was higher for Kale than for the other groups. The T3/T4 ratio was greater for Control at the end of the experiment. There were no treatment differences for T4, aspartate aminotransferase (AST, gamma glutamyl transferase (GGT, glutamate dehydrogenase (GLDH, cholesterol, and glucose. Blood urea-N was lower for Kale and higher for Pasture; however albumin concentrations were greater for Pasture and similar for other treatments. Except for the Control group, calves had a lower concentration of circulating globulins at the end than at the beginning of the experiment. This study showed that Kale could be fed to backgrounding calves without detrimental effects on performance.

  2. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey

    Directory of Open Access Journals (Sweden)

    Ling Yin

    2017-06-01

    Full Text Available Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28 was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey. Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate

  3. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    Science.gov (United States)

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in

  4. Structural features and complement-fixing activity of pectin from three Brassica oleracea varieties: white cabbage, kale, and red kale.

    Science.gov (United States)

    Samuelsen, Anne Berit; Westereng, Bjørge; Yousif, Osman; Holtekjølen, Ann Katrin; Michaelsen, Terje E; Knutsen, Svein H

    2007-02-01

    Leaves of different cabbage species are used both as food and as wound healing remedies in traditional medicine. This supposed wound healing activity might be connected to presence of immunomodulating water soluble polysaccharides. To study this, three different cabbage varieties, white cabbage (W), kale (K), and red kale (RK), were pretreated with 80% ethanol and then extracted with water at 50 degrees C and 100 degrees C for isolation of polysaccharide-containing fractions. The fractions were analyzed for monosaccharide composition, glycosidic linkages, Mw distribution, protein content, and phenolic compounds and then tested for complement-fixing activity. All fractions contained pectin type polysaccharides with linkages corresponding to homogalacturonan and hairy regions. Those extracted at 50 degrees C contained higher amounts of neutral side chains and were more active in the complement-fixation test than those extracted at 100 degrees C. The fractions can be ranged by decreasing activity: K-50 > RK-50 > W-50 approximately = K-100 > RK100 approximately = W-100. Studies on structure-activity relationships (SAR) employing multivariate statistical analysis strongly suggest that the magnitude of the measured activity is influenced by the content of certain side chains in the polymers. High activity correlates to large neutral side chains with high amounts of (1-->6)- and (1-->3,6)-linked Gal and low amounts of (1-->4)-linked GalA but not on molecular weight distribution of the polymers.

  5. Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Liu, Xiao-Ping; Gao, Bao-Zhen; Han, Feng-Qing; Fang, Zhi-Yuan; Yang, Li-Mei; Zhuang, Mu; Lv, Hong-Hao; Liu, Yu-Mei; Li, Zhan-Sheng; Cai, Cheng-Cheng; Yu, Hai-Long; Li, Zhi-Yuan; Zhang, Yang-Yong

    2017-03-14

    Due to its variegated and colorful leaves, ornamental kale (Brassica oleracea L. var. acephala) has become a popular ornamental plant. In this study, we report the fine mapping and analysis of a candidate purple leaf gene using a backcross population and an F 2 population derived from two parental lines: W1827 (with white leaves) and P1835 (with purple leaves). Genetic analysis indicated that the purple leaf trait is controlled by a single dominant gene, which we named BoPr. Using markers developed based on the reference genome '02-12', the BoPr gene was preliminarily mapped to a 280-kb interval of chromosome C09, with flanking markers M17 and BoID4714 at genetic distances of 4.3 cM and 1.5 cM, respectively. The recombination rate within this interval is almost 12 times higher than the usual level, which could be caused by assembly error for reference genome '02-12' at this interval. Primers were designed based on 'TO1000', another B. oleracea reference genome. Among the newly designed InDel markers, BRID485 and BRID490 were found to be the closest to BoPr, flanking the gene at genetic distances of 0.1 cM and 0.2 cM, respectively; the interval between the two markers is 44.8 kb (reference genome 'TO1000'). Seven annotated genes are located within the 44.8 kb genomic region, of which only Bo9g058630 shows high homology to AT5G42800 (dihydroflavonol reductase), which was identified as a candidate gene for BoPr. Blast analysis revealed that this 44.8 kb interval is located on an unanchored scaffold (Scaffold000035_P2) of '02-12', confirming the existence of assembly error at the interval between M17 and BoID4714 for reference genome '02-12'. This study identified a candidate gene for BoPr and lays a foundation for the cloning and functional analysis of this gene.

  6. Genotypic and climatic influence on the antioxidant activity of flavonoids in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Zietz, Michaela; Weckmüller, Annika; Schmidt, Susanne; Rohn, Sascha; Schreiner, Monika; Krumbein, Angelika; Kroh, Lothar W

    2010-02-24

    The influence of genotype and climatic factors, e.g. mean temperature and mean global radiation level, on the antioxidant activity of kale was investigated. Therefore, eight kale cultivars, hybrid and traditional, old cultivars, were grown in a field experiment and harvested at four different times. In addition to the investigation of the total phenolic content, the overall antioxidant activity was determined by TEAC assay and electron spin resonance spectrometry. A special aim was to characterize the contribution of single flavonoids to the overall antioxidant activity using an HPLC-online TEAC approach. The antioxidant activity and the total phenolic content were influenced by the genotype and the eco-physiological factors. The HPLC-online TEAC results showed that not all flavonol glycosides contribute to the overall antioxidant activity in the same manner. Taking the results of the structural analysis obtained by HPLC-ESI-MS(n) into account, distinct structure-antioxidant relationships have been observed.

  7. Composition of lactic acid bacteria during spontaneous curly kale (Brassica oleracea var. sabellica) fermentation.

    Science.gov (United States)

    Michalak, Magdalena; Gustaw, Klaudia; Waśko, Adam; Polak-Berecka, Magdalena

    2018-01-01

    The present work is the first report on spontaneous fermentation of curly kale and characteristics of autochthonous lactic acid bacteria (LAB). Our results indicate that curly kale fermentation is the new possibility of the technological use of this vegetable. Bacteria representing ten different species were isolated from three phases of curly kale fermentation and identified by MALDI-TOF mass spectrometry and 16S rRNA gene sequencing. Among them, four species were identified as Lactobacillus spp. (Lb. plantarum 332, Lb. paraplantarum G2114, Lb. brevis R413, Lb. curvatus 154), two as Weissella spp. (W. hellenica 152, W. cibaria G44), two as Pediococcus spp. (P. pentosaceus 45AN, P. acidilactici 2211), one as Leuconostoc mesenteroides 153, and one as Lactococcus lactis 37BN. The functional properties of isolates, i.e. acid, NaCl and bile salt tolerance, enzyme activities, adhesion to hydrocarbons, and antibiotic resistance, were examined. Among the tested strains, Lb. plantarum 332, Lb. paraplantarum G2114, P. pentosaceus 2211, and Lb. brevis R413 exhibited the best hydrophobicity value and high tolerance to bile salts, NaCl, and low pH. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Brassica oleracea: the dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  9. Brassica oleracea; The dog of the plant world

    Science.gov (United States)

    The horticultural crop Brassica oleracea L. plays an important role in global food systems. Brassica oleracea is unique in that it has been domesticated into several morphotypes (cultivars), including broccoli, Brussels sprout, cabbage, cauliflower, kale, kohlrabi, and several lesser well known morp...

  10. Effect of different proportion of sulphur treatments on the contents of glucosinolate in kale (Brassica oleracea var. acephala) commonly consumed in Republic of Korea.

    Science.gov (United States)

    Park, Ye-Jin; Lee, Hye-Min; Shin, MinJung; Arasu, Mariadhas Valan; Chung, Doug Young; Al-Dhabi, Naif Abdullah; Kim, Sun-Ju

    2018-02-01

    Kale ( Brassica oleracea L. Acephala Group) is the rich source of medicinal value sulphur compounds, glucosinolates (GLSs). The aim of this study was to investigate the effect of different proportion of sulphur (S) supplementation levels on the accumulation of GLSs in the leaves of the kale cultivar ('TBC'). High performance liquid chromatography (HPLC) separation method guided to identify and quantify six GSLs including three aliphatic (progoitrin, sinigrin and gluconapin) and three indolyl (glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin) respectively. Analysis of these distinct levels of S supplementation revealed that the accumulation of individual and total GLSs was directly proportional to the S concentration. The maximum levels of total GLSs (26.8 µmol/g DW) and glucobrassicin (9.98 µmol/g DW) were found in lower and upper parts of the leaves supplemented with 1 mM and 2 mM S, respectively. Interestingly, aliphatic GSLs were noted predominant in all the parts (50.1, 59.3 and 56% of total GSLs). Among the aliphatic and indolyl GSLs, sinigrin and glucobrassicin account 35.3 and 30.88% of the total GSLs. From this study, it is concluded that supply of S enhance the GSLs accumulation in kale.

  11. Effect of different proportion of sulphur treatments on the contents of glucosinolate in kale (Brassica oleracea var. acephala commonly consumed in Republic of Korea

    Directory of Open Access Journals (Sweden)

    Ye-Jin Park

    2018-02-01

    Full Text Available Kale (Brassica oleracea L. Acephala Group is the rich source of medicinal value sulphur compounds, glucosinolates (GLSs. The aim of this study was to investigate the effect of different proportion of sulphur (S supplementation levels on the accumulation of GLSs in the leaves of the kale cultivar ('TBC'. High performance liquid chromatography (HPLC separation method guided to identify and quantify six GSLs including three aliphatic (progoitrin, sinigrin and gluconapin and three indolyl (glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin respectively. Analysis of these distinct levels of S supplementation revealed that the accumulation of individual and total GLSs was directly proportional to the S concentration. The maximum levels of total GLSs (26.8 µmol/g DW and glucobrassicin (9.98 µmol/g DW were found in lower and upper parts of the leaves supplemented with 1 mM and 2 mM S, respectively. Interestingly, aliphatic GSLs were noted predominant in all the parts (50.1, 59.3 and 56% of total GSLs. Among the aliphatic and indolyl GSLs, sinigrin and glucobrassicin account 35.3 and 30.88% of the total GSLs. From this study, it is concluded that supply of S enhance the GSLs accumulation in kale.

  12. Mineral, vitamin C and crude protein contents in kale ( Brassica ...

    African Journals Online (AJOL)

    This study compares mineral, vitamin C and crude protein contents at different harvesting stages in kale (Brassica oleraceae var. acephala). Three different harvest periods as first harvest stage (at the rosette stage), second harvest stage (at the budding stage) and third harvest stage (at the flowering/blooming stage) were ...

  13. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  14. Effect of chlormequat (cycocel) on the growth of ornamental cabbage and kale (Brassica oleracea) cultivars 'Kamome White' and 'Nagoya Red'.

    Science.gov (United States)

    Gholampour, Abdollah; Hashemabadi, Davood; Sedaghathoor, Shahram; Kaviani, Behzad

    2015-01-01

    The effect of concentration and application method of chlormequat (cycocel), a plant growth retardant, on plant height and some other traits in Brassica oleracea cultivars 'Kamome White' and 'Nagoya Red' was assessed. Plant growth retardants are commonly applied to limit stem elongation and produce a more compact plant. The experiment was done as a factorial in randomized completely blocks design (RCBD) with four replications. Plants (40 days after transplanting) were sprayed and drenched with 500, 1000 and 1500 mg l(-1) cycocel. In each experiment, control untreated plants. Data were recorded the 60 and 90 days after transplanting. Based on analysis of variance (ANOVA), the effect of different treatments and their interaction on all traits was significant at 0.05 or 0.01 level of probability. Treatment of 1500 mg I(-1) cycocel resulted in about 50 and 20% shorter plants than control plants, 60 and 90 days after transplant. The growth of Brassica oleracea cultivar 'Kamome White' and 'Nagoya Red' decreased with increased cycocel concentration. Foliar sprays of cycocel controlled plant height of both cultivars. Results indicated that the shortest plants (9.94 and 11.59 cm) were those sprayed with 1500 mg l(-1) cycocel in cultivar 'Kamome White' after 60 and 90 days, respectively. The largest number of leaves (33.94) and highest leaf diameter (9.39 cm) occurred in cv. 'Nagoya Red', when drench was used. Maximum dry matter (14.31%) accumulated in cv. 'Nagoya Red', treated with spray.

  15. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures.

    Science.gov (United States)

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae populations on kale, Brassica oleracea var. acephala (Brassicaceae plants.

    Directory of Open Access Journals (Sweden)

    Reinildes Silva-Filho

    Full Text Available Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  17. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    Science.gov (United States)

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  18. Phenotypic plasticity of Myzus persicae (Hemíptera: Aphididae raised on Brassica oleracea L. var. acephala (kale and Raphanus sativus L. (radish

    Directory of Open Access Journals (Sweden)

    Peppe Fernanda Borja

    2003-01-01

    Full Text Available The study of variability generated by phenotypic plasticity is crucial for predicting evolutionary patterns in insect-plant systems. Given sufficient variation for plasticity, host race formation can be favored and maintained, even simpatrically. The plasticity of size and performance (assessed by the lifetime fitness index r m of six clones of Myzus persicae was tested, with replicates allowed to develop on two hosts, kale (Brassica oleracea var. acephala and radish (Raphanus sativus. The clones showed significant variability in their plasticity. Reaction norms varied through generations and negative genetic correlation, although not significant, tend to increase with the duration of host use. The lack of plasticity in lifetime fitness among generalist clones occurred as an after-effect of the highly plastic determinants. Significant morphological plasticity in host used was observed, but no variation in the plastic responses (GxE interaction was detected. Strong selection for a larger size occurred among individuals reared on radish, the most unfavorable host. Morphological plasticity in general body size (in a multivariate sense was not linear related to fitness plasticity. These observations suggest that a high potential for the evolution of host divergence favors host race formation.

  19. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica).

    Science.gov (United States)

    Olsen, Helle; Grimmer, Stine; Aaby, Kjersti; Saha, Shikha; Borge, Grethe Iren A

    2012-08-01

    Brassica vegetables contain a diverse range of phytochemicals with biological properties such as antioxidant and anticancer activity. However, knowledge about how biological activities are affected by processing is lacking. A green cultivar and a red cultivar of curly kale were evaluated for water/methanol-soluble phytochemicals before and after processing involving blanching, freeze storage, and boil-in-bag heat treatment. In both kale cultivars, processing resulted in a significant decrease of total phenolics, antioxidant capacity, and content and distribution of flavonols, anthocyanins, hydroxycinnamic acids, glucosinolates, and vitamin C. Interestingly, the red curly kale cultivar had a higher capacity to withstand thermal loss of phytochemicals. The extracts of both green and red curly kale inhibited the cell proliferation of three human colon cancer cell lines (Caco-2, HT-29, and HCT 116). However, extracts from fresh plant material had a significantly stronger antiproliferative effect than extracts from processed plant material.

  20. Heterologous expression of AtMYB12 in kale (Brassica oleracea var. acephala) leads to high flavonol accumulation.

    Science.gov (United States)

    Lännenpää, Mika

    2014-08-01

    Overexpression of Arabidopsis AtMYB12 transcription factor greatly increases the total phenolic and flavonol content in transgenic kale leaves. Flavonoids are a diverse group of plant secondary metabolites exhibiting a number of health-promoting effects. There has been a growing interest to develop biotechnological methods for the enhanced production of flavonoids in crop plants. AtMYB12 is an Arabidopsis transcription factor which specifically activates flavonol synthesis and its overexpression has led to increased flavonol accumulation in several transgenic plants. In the present study, AtMYB12 was overexpressed in a commercial cultivar of kale and the transgenic plants were tested both in in vitro and in semi-field conditions in cages under natural light. Using this method, a severalfold increase in both total phenolics content and flavonol accumulation was achieved. This study provides a reliable and efficient transformation protocol for kale and suggests the potential of this flavonol-enriched vegetable for the production of kaempferol.

  1. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  2. Food safety in Thailand 2: Pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries

    International Nuclear Information System (INIS)

    Wanwimolruk, Sompon; Kanchanamayoon, Onnicha; Phopin, Kamonrat; Prachayasittikul, Virapong

    2015-01-01

    There is increasing public concern over human health risks associated with extensive use of pesticides in agriculture. Regulation of pesticide maximum residue limits (MRLs) in food commodities is established in many developed countries. For Thailand, this regulation exists in law but is not fully enforced. Therefore, pesticide residues in vegetables and fruits have not been well monitored. This study investigated the pesticide residues in Chinese kale, a commonly eaten vegetable among Asians. The Chinese kale samples (N = 117) were purchased from markets in Nakhon Pathom Province, Thailand, and analyzed for the content of 28 pesticides. Analysis was performed by the multiresidual extraction followed by GC–MS/MS. Of pesticides investigated, 12 pesticides were detected in 85% of the Chinese kale samples. Although carbaryl, deltamethrin, diazinon, fenvalerate and malathion were found in some samples, their levels were lower than their MRLs. However, in 34 samples tested, either carbofuran, chlorpyrifos, chlorothalonil, cypermethrin, dimethoate, metalaxyl or profenofos was detected exceeding their MRLs. This represents a 29% rate of pesticide detection above the MRL; a rate much higher than in developed countries. Washing vegetables under running water significantly reduced (p < 0.05) profenofos residues by 55%. The running water method did not significantly decrease cypermethrin residues in the samples but washing with vinegar did. Our research suggests that routine monitoring of pesticide residues is necessary to reduce the public health risks associated with eating contaminated vegetables. Washing vegetables before consumption is advisable as this helps to reduce the level of pesticide residues in our daily intake. - Highlights: • Significant pesticide residues were detected in Chinese kale sold in Thailand. • MRL exceedance was found and this was higher than that seen in developed countries. • Washing vegetables under running water can remove pesticide

  3. Food safety in Thailand 2: Pesticide residues found in Chinese kale (Brassica oleracea), a commonly consumed vegetable in Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    Wanwimolruk, Sompon, E-mail: sompon-999@hotmail.com [Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700 (Thailand); Kanchanamayoon, Onnicha [Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700 (Thailand); Phopin, Kamonrat [Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700 (Thailand); Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700 (Thailand); Prachayasittikul, Virapong [Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700 (Thailand)

    2015-11-01

    There is increasing public concern over human health risks associated with extensive use of pesticides in agriculture. Regulation of pesticide maximum residue limits (MRLs) in food commodities is established in many developed countries. For Thailand, this regulation exists in law but is not fully enforced. Therefore, pesticide residues in vegetables and fruits have not been well monitored. This study investigated the pesticide residues in Chinese kale, a commonly eaten vegetable among Asians. The Chinese kale samples (N = 117) were purchased from markets in Nakhon Pathom Province, Thailand, and analyzed for the content of 28 pesticides. Analysis was performed by the multiresidual extraction followed by GC–MS/MS. Of pesticides investigated, 12 pesticides were detected in 85% of the Chinese kale samples. Although carbaryl, deltamethrin, diazinon, fenvalerate and malathion were found in some samples, their levels were lower than their MRLs. However, in 34 samples tested, either carbofuran, chlorpyrifos, chlorothalonil, cypermethrin, dimethoate, metalaxyl or profenofos was detected exceeding their MRLs. This represents a 29% rate of pesticide detection above the MRL; a rate much higher than in developed countries. Washing vegetables under running water significantly reduced (p < 0.05) profenofos residues by 55%. The running water method did not significantly decrease cypermethrin residues in the samples but washing with vinegar did. Our research suggests that routine monitoring of pesticide residues is necessary to reduce the public health risks associated with eating contaminated vegetables. Washing vegetables before consumption is advisable as this helps to reduce the level of pesticide residues in our daily intake. - Highlights: • Significant pesticide residues were detected in Chinese kale sold in Thailand. • MRL exceedance was found and this was higher than that seen in developed countries. • Washing vegetables under running water can remove pesticide

  4. Efficacy of selenium from hydroponically produced selenium-enriched kale sprout (Brassica oleracea var. alboglabra L.) in broilers.

    Science.gov (United States)

    Chantiratikul, Anut; Pakmaruek, Pornpan; Chinrasri, Orawan; Aengwanich, Worapol; Chookhampaeng, Sumalee; Maneetong, Sarunya; Chantiratikul, Piyanete

    2015-05-01

    An experiment was conducted to determine the efficacy of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on performance, carcass characteristics, tissue Se concentration, and physiological responses of broilers in comparison to that of Se from Se-enriched yeast and sodium selenite. Three hundred and sixty male broilers, 10 days of age, were assigned to 6 groups, 4 replicates of 15 broilers each, according to the completely randomized design. The dietary treatments were the following: T1: control diet; T2: control diet plus 0.3 mg Se/kg from sodium selenite; T3: control diet plus 0.3 mg Se/kg from Se-enriched yeast; and T4, T5, and T6: control diet plus 0.3, 1.0, and 2.0 mg Se/kg from HPSeKS, respectively. The results found that dietary Se supplementation did not (p > 0.05) alter performance and carcass characteristics of broilers. Se supplementation increased (p < 0.05) Se concentrations in the liver and kidney of broilers. Heart tissue Se concentration of broilers fed Se from sodium selenite was lower (p < 0.05) than that of broilers fed Se from HPSeKS and Se-enriched yeast. Selenium from HPSeKS increased higher (p < 0.05) GSH-Px activity when compared to Se from sodium selenite and Se-enriched yeast. The results indicated that the efficacy of Se from HPSeKS was comparable in increasing tissue Se concentration, but higher in improving GSH-Px activity in Rbc when compared to those of Se from Se-enriched yeast.

  5. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population...... structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild...... populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops...

  6. Genetic analisys of a cross of gaillon (Brassica oleracea var. alboglabra) with cauliflower (B.oleracea var. botrytis)

    OpenAIRE

    Spini, Vanessa B.M.G.; Kerr, Warwick Estevam

    2000-01-01

    The cauliflower (Brassica oleracea var. botrytis) is an annual vegetable cultivated in Southern and Southwestern Brazil with limited production in the Northeast and Centralwest. A variety of Chinese kale, "kaai laan" or "gaillon" (Brassica oleracea var. alboglabra), produces seeds at high temperatures and therefore can do so in North and Northeastern Brazil. Gaillon and cauliflower were crossed 55 times using 10 gaillon plants as mothers and 4 cauliflower plants as pollen donors. From these c...

  7. Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica.

    Science.gov (United States)

    Mageney, Vera; Baldermann, Susanne; Albach, Dirk C

    2016-04-27

    Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of ß-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.

  8. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  9. Impact of cadmium on forage kale (Brassica oleracea var. viridis cv "Prover") after 3-,10- and 56-day exposure to a Cd-spiked field soil.

    Science.gov (United States)

    Bernard, Fabien; Dumez, Sylvain; Lemière, Sébastien; Platel, Anne; Nesslany, Fabrice; Deram, Annabelle; Vandenbulcke, Franck; Cuny, Damien

    2018-03-15

    Cadmium (Cd) is a highly toxic element for living organisms and is widespread in metal-contaminated soils. As organisms which can grow up on these polluted areas, plants have some protection mechanisms against Cd issues. Among the plant kingdom, the Brassicaceae family includes species which are known to be able to tolerate and accumulate Cd in their tissues. In this study, Brassica oleracea var. viridis cv "Prover" was exposed to a range of artificially Cd-contaminated soils (from 2.5 up to 20 mg kg -1 ) during 3, 10, and 56 days and the effects on life traits, photosynthesis activity, antioxidant enzymatic activities were studied. Metal accumulation was quantified, as well as DNA damage, by means of the comet assay and immunodetection of 8-OHdG levels. Globally, B. oleracea was relatively tolerant to those Cd exposures. However, comet assay and detection of 8-OHdG revealed some DNA damage but which are not significant. According to metal accumulation analysis, B. oleracea var. viridis cv Prover could be a good candidate for alternative growing in contaminated areas.

  10. Reproductive fitness of outcrossed hybrids between transgenic broccoli (brassica oleracea) carrying the ipt transgene and conventional varieties of kale, broccoli and cauliflower

    International Nuclear Information System (INIS)

    Ting, P.; Tu, Y.; Lin, C.; Chang, H.; Chen, L.; Litfu, A

    2014-01-01

    Pollens are potential carriers for genetically modified crops to transfer genetic materials horizontally to other plants. For phanerogams, pollen viability and cross-compatibility are critical factors for successful outcross hybridization. To evaluate this possibility, this project investigated pollen viability and pod setting rate by comparing broccoli (Brassica oleracea L. var. italica Planck) and broccoli transformed with the isopentenyl transferase (ipt) gene. Both served as pollen donors and four other varieties as pollen receptors to determine outcross rates. For pollen viability, F1 progeny was higher (p?0.05) for the cross of transgenic ipt broccoli with Li Syue significantly by FDA (fluorescein diacetate) assay. Higher successful hybrids were observed for transgenic ipt broccoli with Fu Yue, Li Syue and Green King. As pollen properties, number and grain diameter were significantly larger (p?0.05) in hybrid combinations of transgenic ipt broccoli with Li Syue and Green King significantly (p?0.05). The pod setting rates were higher while transgenic ipt broccoli served as donor plant. These results analyzing pollen properties between transgenic crops with possible outcross candidates would serve as one of those critical strategies for evaluating environmental biosafety issues for transgenic crops. (author)

  11. The effects of kale (Brassica oleracea ssp. acephala), basil (Ocimum basilicum) and thyme (Thymus vulgaris) as forage material in organic egg production on egg quality.

    Science.gov (United States)

    Hammershøj, M; Steenfeldt, S

    2012-01-01

    1. In organic egg production, forage material as part of the diet for laying hens is mandatory. The purpose of the present study was to examine the effect of feeding with forage materials including maize silage, herbs or kale on egg production and various egg quality parameters of the shell, yolk colour, egg albumen, sensory properties, fatty acid and carotenoid composition of the egg yolk. 2. A total of 5 dietary treatments were tested for 5 weeks, consisting of a basal organic feed plus 120 g/hen.d of the following forage materials: 1) maize silage (control), 2) maize silage incl. 15 g/kg basil, 3) maize silage incl. 30 g/kg basil, 4) maize silage incl. 15 g/kg thyme, or 5) fresh kale leaves. Each was supplied to three replicates of 20 hens. A total of 300 hens was used. 3. Feed intake, forage intake and laying rate did not differ with treatment, but egg weight and egg mass produced increased significantly with the kale treatment. 4. The egg shell strength tended to be higher with the kale treatment, and egg yolk colour was significantly more red with the kale treatment and more yellow with basil and kale treatments. The albumen DM content and albumen gel strength were lowest with the thyme treatment. By sensory evaluation, the kale treatment resulted in eggs with less sulphur aroma, higher yolk colour score, and more sweet and less watery albumen taste. Furthermore, the eggs of the kale treatment had significantly higher lutein and β-carotene content. Also, violaxanthin, an orange xanthophyll, tended to be higher in kale and eggs from hens receiving kale. 5. In conclusion, forage material, especially basil and kale, resulted in increased egg production and eggs of high and differentiable quality.

  12. AFLP analysis of genetic diversity in leafy kale (Brassica oleracea L. convar. acephala (DC.) Alef.) landraces, cultivars and wild populations in Europe

    DEFF Research Database (Denmark)

    Christensen, Stina; von Bothmer, Roland; Poulsen, G.

    2011-01-01

    AFLP markers were used to characterize diversity and asses the genetic structure among 17 accessions of kale landraces, cultivars and wild populations from Europe. The range of average gene diversity in accessions was 0.11–0.27. Several landraces showed higher levels of diversity than the wild...... populations and one cultivar had the lowest diversity measures. The landraces that were most genetically diverse were from areas where kales are known to be extensively grown, suggesting in situ conservation in these areas as a supplement to storage of seeds in gene banks. An analysis of molecular variance...... the relationship among them is due to seed dispersal through human interactions. Our results indicate that a kale population found in a natural habitat in Denmark was probably not truly wild but most likely an escape from a cultivated Danish kale that had subsequently become naturalized....

  13. Light influence in the nutritional composition of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Peixoto, V; Carvalho, Rosa; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    Brassica sprouts are considered a healthy food product, whose nutritional quality can be influenced by several factors. The aim of this work was to monitor the nutritional composition changes promoted by different sprouting conditions of four varieties of Brassica oleracea (red cabbage, broccoli, Galega kale and Penca cabbage). Sprouts were grown under light/darkness cycles and complete darkness. Standard AOAC methods were applied for nutritional value evaluation, while chromatographic methods with UV-VIS and FID detection were used to determine the free amino acids and fatty acids, respectively. Mineral content was analyzed by atomic absorption spectrometry. Sprouts composition revealed them as an excellent source of protein and dietary fiber. Selenium content was one of the most distinctive feature of sprouts, being the sprouting conditions determinant for the free amino acid and fatty acids profile. The use of complete darkness was beneficial to the overall nutritional quality of the brassica sprouts studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of technological processing and preservation method on amino acid content and protein quality in kale (Brassica oleracea L. var. acephala) leaves.

    Science.gov (United States)

    Korus, Anna

    2012-02-01

    The aim of the investigation was to evaluate the level of amino acids and quality of protein in raw and processed kale leaves. In all samples the dominant amino acids in g kg⁻¹ raw matter were glutamic acid, aspartic acid and proline. In raw kale leaves the limiting amino acids were lysine, isoleucine and cystine with methionine, and in the remaining products also valine and leucine. Blanched kale leaves contained 88% of the amino acid content in raw leaves, 76% in cooked leaves, and 69-77% and 71-72% of initial levels in frozen and canned products, respectively. In raw, blanched and cooked leaves essential amino acids comprised 44%, 44% and 47%, respectively, of total amino acids; in frozen and canned leaves the proportions were 46% and 44%, respectively. The essential amino acid index was 97 for canned products, 100-109 for frozen leaves, and 117 for raw kale leaves. Raw and processed (blanched or cooked) kale leaves are a good source of amino acids. Copyright © 2011 Society of Chemical Industry.

  15. Screening and identification of major phytochemical compounds in seeds, sprouts and leaves of Tuscan black kale Brassica oleracea (L.) ssp acephala (DC) var. sabellica L.

    Science.gov (United States)

    Giorgetti, Lucia; Giorgi, Gianluca; Cherubini, Edoardo; Gervasi, Pier Giovanni; Della Croce, Clara Maria; Longo, Vincenzo; Bellani, Lorenza

    2018-07-01

    We report the spectrophotometric determination of total polyphenols, flavonoids, glucosinolates and antioxidant activity in seeds, seedlings and leaves of Tuscan black kale. The highest content of phytochemicals was observed in 10 days sprouts and antioxidant activity was maximum in 2, 4 days seedlings. Identification and characterisation of phytochemicals were performed by mass spectrometry (MS), high resolution and tandem MS with electrospray ionisation mode. Low-molecular-weight metabolites were evidenced in seeds while metabolites at high m/z range were detected in cotyledons and leaves. MS spectra evidenced different phenolic compounds (flavonoid caffeoyl glucose, hydroxycinnamic acid sinapine) and glucosinolates (glucoerucin, glucobrassicin and glucoraphanin) in function of developmental stage; galactolipids ω3 and ω6 were observed in leaves. Identification of stages with the highest phytochemicals content encourages the consumption of black kale sprouts and young leaves. Our research can support food and pharmaceutical industries for production of health promoting products from black kale.

  16. The effects of kale (Brassica oleracea ssp. acephala), basil (Ocimum basilicum) and thyme (Thymus vulgaris) as forage material in organic egg production on egg quality

    DEFF Research Database (Denmark)

    Hammershøj, Marianne; Steenfeldt, Sanna

    2012-01-01

    1. In organic egg production, forage material as part of the diet for laying hens is mandatory. The purpose of the present study was to examine the effect of feeding with forage materials including maize silage, herbs or kale on egg production and various egg quality parameters of the shell, yolk...

  17. Evaluation of genetic diversity in Chinese kale (Brassica oleracea L. var. alboglabra Bailey) by using rapid amplified polymorphic DNA and sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Zhang, J; Zhang, L G

    2014-02-14

    Chinese kale is an original Chinese vegetable of the Cruciferae family. To select suitable parents for hybrid breeding, we thoroughly analyzed the genetic diversity of Chinese kale. Random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) molecular markers were used to evaluate the genetic diversity across 21 Chinese kale accessions from AVRDC and Guangzhou in China. A total of 104 bands were detected by 11 RAPD primers, of which 66 (63.5%) were polymorphic, and 229 polymorphic bands (68.4%) were observed in 335 bands amplified by 17 SRAP primer combinations. The dendrogram showed the grouping of the 21 accessions into 4 main clusters based on RAPD data, and into 6 clusters based on SRAP and combined data (RAPD + SRAP). The clustering of accessions based on SRAP data was consistent with petal colors. The Mantel test indicated a poor fit for the RAPD and SRAP data (r = 0.16). These results have an important implication for Chinese kale germplasm characterization and improvement.

  18. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    Science.gov (United States)

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Overexpression of AtEDT1/HDG11 in Chinese Kale (Brassica oleracea var. alboglabra) Enhances Drought and Osmotic Stress Tolerance.

    Science.gov (United States)

    Zhu, Zhangsheng; Sun, Binmei; Xu, Xiaoxia; Chen, Hao; Zou, Lifang; Chen, Guoju; Cao, Bihao; Chen, Changming; Lei, Jianjun

    2016-01-01

    Plants are constantly challenged by environmental stresses, including drought and high salinity. Improvement of drought and osmotic stress tolerance without yield decrease has been a great challenge in crop improvement. The Arabidopsis ENHANCED DROUGHT TOLERANCE1/HOMEODOMAIN GLABROUS11 (AtEDT1/HDG11), a protein of the class IV HD-Zip family, has been demonstrated to significantly improve drought tolerance in Arabidopsis, rice, and pepper. Here, we report that AtEDT1/HDG11 confers drought and osmotic stress tolerance in the Chinese kale. AtEDT1/HDG11-overexpression lines exhibit auxin-overproduction phenotypes, such as long hypocotyls, tall stems, more root hairs, and a larger root system architecture. Compared with the untransformed control, transgenic lines have significantly reduced stomatal density. In the leaves of transgenic Chinese kale plants, proline (Pro) content and reactive oxygen species-scavenging enzyme activity was significantly increased after drought and osmotic stress, particularly compared to wild kale. More importantly, AtEDT1/HDG11-overexpression leads to abscisic acid (ABA) hypersensitivity, resulting in ABA inhibitor germination and induced stomatal closure. Consistent with observed phenotypes, the expression levels of auxin, ABA, and stress-related genes were also altered under both normal and/or stress conditions. Further analysis showed that AtEDT1/HDG11, as a transcription factor, can target the auxin biosynthesis gene YUCC6 and ABA response genes ABI3 and ABI5. Collectively, our results provide a new insight into the role of AtEDT1/HDG11 in enhancing abiotic stress resistance through auxin- and ABA-mediated signaling response in Chinese kale.

  20. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  1. Interaction of moderate UV-B exposure and temperature on the formation of structurally different flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2014-05-07

    Kale has a high number of structurally different flavonol glycosides and hydroxycinnamic acid derivatives. In this study we investigated the interaction of moderate UV-B radiation and temperature on these compounds. Kale plants were grown at daily mean temperatures of 5 or 15 °C and were exposed to five subsequent daily doses (each 0.25 kJ m(-2) d(-1)) of moderate UV-B radiation at 1 d intervals. Of 20 phenolic compounds, 11 were influenced by an interaction of UV-B radiation and temperature, e.g., monoacylated quercetin glycosides. Concomitantly, enhanced mRNA expression of flavonol 3'- hydroxylase showed an interaction of UV-B and temperature, highest at 0.75 kJ m(-2) and 15 °C. Kaempferol glycosides responded diversely and dependent on, e.g., the hydroxycinnamic acid residue. Compounds containing a catechol structure seem to be favored in the response to UV-B. Taken together, subsequent exposure to moderate UV-B radiation is a successful tool for enhancing the flavonoid profile of plants, and temperature should be considered.

  2. Influence of cultivar and fertilizer approach on curly kale (Brassica oleracea L. var. sabellica). 1. Genetic diversity reflected in agronomic characteristics and phytochemical concentration.

    Science.gov (United States)

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne Lakkenborg

    2014-11-26

    The objectives were to investigate if genetic diversity among field-grown traditional and F1 hybrid kale cultivars was reflected in different agronomic characteristics and consequently glucosinolate (GLS) and flavonoid glycoside concentration. This study evaluated how nitrogen and sulfur supply and biomass allocation modified phytochemicals in two experiments with combinations of three cultivars and four N and two S application levels. Results showed less growth, and higher N concentration in the traditional cultivar 'Tiara' was associated with increased indole and total GLSs compared to traditional 'Høj Amager Toftø' and F1 hybrid 'Reflex' cultivars, which exhibited higher yield, lower N concentration, and different biomass allocation. S application increased total GLS concentration, whereas aliphatic GLS percentage decreased when N application increased. Decrease of six 'Reflex' GLSs besides quercetin glycosides and total flavonoid glycosides with increased N indicated higher N responsiveness for 'Reflex'. In conclusion, differences in agronomic characteristics were reflected in diverse phytochemical composition.

  3. Productivity and selenium concentrations in egg and tissue of laying quails fed selenium from hydroponically produced selenium-enriched kale sprout (Brassica oleracea var. alboglabra L.).

    Science.gov (United States)

    Chinrasri, Orawan; Chantiratikul, Piyanete; Maneetong, Sarunya; Chookhampaeng, Sumalee; Chantiratikul, Anut

    2013-12-01

    This study aimed to determine the effectiveness of Se from hydroponically produced Se-enriched kale sprout (HPSeKS) on productive performance, egg quality, and Se concentrations in egg and tissue of laying quails. Two-hundred quails, 63 days of age, were divided into four groups. Each group consisted of five replicates and each replicate had ten birds, according to a completely randomized design. The experiment lasted for 6 weeks. The dietary treatments were T1 (control diet), T2 (control diet plus 0.2 mg Se/kg from sodium selenite), T3 (control diet plus 0.2 mg Se/kg from Se-enriched yeast), T4 (control diet plus 0.2 mg Se/kg from HPSeKS). The findings revealed that productive performance and egg quality of quails were not altered (p > 0.05) by Se sources. Whole egg Se concentrations of quails fed Se from HPSeKS and Se-enriched yeast were higher (p  0.05), but higher (p < 0.05) than that of quails fed Se from sodium selenite. The results reveal that Se from HPSeKS did not change the performance and egg quality of quails. The effectiveness of Se from HPSeKS was comparable to that of Se-enriched yeast, which was higher than that of Se from sodium selenite.

  4. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895) Dowson 1939, on brassicas in Montenegro

    OpenAIRE

    Radunović Dragana; Balaž Jelica

    2012-01-01

    Brassicas form the most important group of vegetable crops in Montenegro. The cabbage (Brassica oleracea var. capitata) is most commonly grown, although other brassicas, particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly produced since recently. One of the specialties of vegetable production in Montenegro is growing of collard (Brassica oleracea var. acephala), which is the simplest variety of the Brassica oleracea species ...

  5. Investigation on the Fate of Some Pesticides and Their Effects on the Microbial Environment in Cultivation of Green gram (Vigna radiata), Mustard green (Brassica rapa) and Kale (Brassica oleracea)

    International Nuclear Information System (INIS)

    Theingi Nwe; Khin Maung Saing

    2010-12-01

    The main aim of the present work was to find out the persistence of some pesticide residues in some vegetable crops and to investigate the effect of pesticide on soil count. Edible parts of green gram, Mustard green and Kale were extracted and analyzed for the presence and degradation of applied pesticide residuse in relation to time. The pesticide residue concentration in plant samples were analyzed by UV spectrometry. According to UV result data, Acephate pesticide in stored green gram seeds was rapidly declined from 2.91mg/kg (two weeks after application) to 0.96mg/kg (three weeks after application). But, four weeks after application, Acephate residues were not detected in the seeds of green gram. In the seeds of green gram, Dimethoate pesticide residues were detected from 1.26mg/kg (one week after application) to 0.89mg/kg (four weeks after treatment). In Mustard green and Kale, Malathion pesticide residues were detected at day seven after application. But Chlorpyrifos pesticide residues were detected in both mustard green and kale at day three after application. Beyond day three, chlorpyrifos pesticide residues were not detected. The respective chemical residues have been partially identified by IR Spectrometry. These can be confirmed with IR absorption peaks that the residues are the utilized chemicals. According to IR data, it can be predicted whether pesticide residues remained or not in the samples.

  6. AFLP analysis of genetic diversity and phylogenetic relationships of Brassica oleracea in Ireland.

    Science.gov (United States)

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    Brassica oleracea L. is one of the most economically important vegetable crop species of the genus Brassica L. This species is threatened in Ireland, without any prior reported genetic studies. The use of this species is being very limited due to its imprecise phylogeny and uncompleted genetic characterisation. The main objective of this study was to assess the genetic diversity and phylogenetic relationships of a set of 25 Irish B. oleracea accessions using the powerful amplified fragment length polymorphism (AFLP) technique. A total of 471 fragments were scored across all the 11 AFLP primer sets used, out of which 423 (89.8%) were polymorphic and could differentiate the accessions analysed. The dendrogram showed that cauliflowers were more closely related to cabbages than kales were, and accessions of some cabbage types were distributed among different clusters within cabbage subgroups. Approximately 33.7% of the total genetic variation was found among accessions, and 66.3% of the variation resided within accessions. The total genetic diversity (HT) and the intra-accessional genetic diversity (HS) were 0.251 and 0.156, respectively. This high level of variation demonstrates that the Irish B. oleracea accessions studied should be managed and conserved for future utilisation and exploitation in food and agriculture. In conclusion, this study addressed important phylogenetic questions within this species, and provided a new insight into the inclusion of four accessions of cabbages and kales in future breeding programs for improving varieties. AFLP markers were efficient for assessing genetic diversity and phylogenetic relationships in Irish B. oleracea species. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. Characterization of phenolics, glucosinolates and antioxidant activity of beverages based on apple juice with addition of frozen and freeze-dried curly kale leaves (Brassica oleracea L. var. acephala L.).

    Science.gov (United States)

    Biegańska-Marecik, Róża; Radziejewska-Kubzdela, Elżbieta; Marecik, Roman

    2017-09-01

    The aim of this study was to determine the polyphenols, glucosinolates and ascorbic acid content as well as antioxidant activity of beverages on the base of apple juice with addition of frozen and freeze-dried curly kale leaves. Upon enrichment with frozen (13%) and freeze-dried curly kale (3%), the naturally cloudy apple juice was characterized by an increase in phenolic compounds by 2.7 and 3.3-times, accordingly. The antioxidant activity of beverages with the addition of curly kale ranged from 6.6 to 9.4μmol Trolox/mL. The obtained beverages were characterized glucosinolates content at 117.6-167.6mg/L and ascorbic acid content at 4,1-31,9mg/L. The results of sensory evaluation of colour, taste and consistency of apple juice and beverages with the addition of kale did not differ significantly prior to pasteurization (P≤0.05), whereas after the pasteurization the evaluated factors decreased significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effects of glutathione s-transferase (GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice (Brassica oleracea acephala) supplementation.

    Science.gov (United States)

    Lee, Hye-Jin; Han, Jeong-Hwa; Park, Yoo Kyoung; Kang, Myung-Hee

    2018-04-01

    Glutathione s-transferase ( GST ) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of β-carotene, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.

  9. The broccoli (Brassica oleracea) phloem tissue proteome.

    Science.gov (United States)

    Anstead, James A; Hartson, Steven D; Thompson, Gary A

    2013-11-07

    The transport of sugars, hormones, amino acids, proteins, sugar alcohols, and other organic compounds from the sites of synthesis to the sites of use or storage occurs through the conducting cells of the phloem. To better understand these processes a comprehensive understanding of the proteins involved is required. While a considerable amount of data has been obtained from proteomic analyses of phloem sap, this has mainly served to identify the soluble proteins that are translocated through the phloem network. In order to obtain more comprehensive proteomic data from phloem tissue we developed a simple dissection procedure to isolate phloem tissue from Brassica oleracea. The presence of a high density of phloem sieve elements was confirmed using light microscopy and fluorescently labeled sieve element-specific antibodies. To increase the depth of the proteomic analysis for membrane bound and associated proteins, soluble proteins were extracted first and subsequent extractions were carried out using two different detergents (SDS and CHAPSO). Across all three extractions almost four hundred proteins were identified and each extraction method added to the analysis demonstrating the utility of an approach combining several extraction protocols. The phloem was found to be enriched in proteins associated with biotic and abiotic stress responses and structural proteins. Subsequent expression analysis identified a number of genes that appear to be expressed exclusively or at very high levels in phloem tissue, including genes that are known to express specifically in the phloem as well as novel phloem genes.

  10. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    Science.gov (United States)

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides. Copyright 2010 John Wiley & Sons, Ltd.

  11. The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients.

    Science.gov (United States)

    Han, Jeong-Hwa; Lee, Hye-Jin; Kim, Tae-Seok; Kang, Myung-Hee

    2015-02-01

    Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

  12. Kale BoRACK1 is involved in the plant response to salt stress and Peronospora brassicae Gaumann.

    Science.gov (United States)

    Li, Da-Hong; Shen, Fu-Jia; Li, Hong-Yan; Li, Wei

    2017-06-01

    The receptor for activated C kinase 1 (RACK1) belongs to a protein subfamily containing a tryptophan-aspartic acid-domain (WD) repeat structure. Compelling evidence indicates that RACK1 can interact with many signal molecules and affect different signal transduction pathways. In this study, a kale (Brassica oleracea var. acephala f.tricolor) RACK1 gene (BoRACK1) was cloned by RT-PCR. The amino acid sequence of BoRACK1 had seven WD repeats in which there were typical GH (glycine-histidine) and WD dipeptides. Comparison with AtRACK1 from Arabidopsis revealed 87.1% identity at the amino acid level. Expression pattern analysis by RT-PCR showed that BoRACK1 was expressed in all analyzed tissues of kale and that its transcription in leaves was down-regulated by salt, abscisic acid, and H 2 O 2 at a high concentration. Overexpression of BoRACK1 in kale led to a reduction in symptoms caused by Peronospora brassicae Gaumann on kale leaves. The expression levels of the pathogenesis-related protein genes, PR-1 and PRB-1, increased 2.5-4-fold in transgenic kale, and reactive oxygen species production was more active than in the wild-type. They also exhibited increased tolerance to salt stress in seed germination. H 2 O 2 may also be involved in the regulation of BoRACK1 during seed germination under salt stress. Quantitative real-time PCR analyses showed that the transcript levels of BoRbohs genes were significantly higher in overexpression of BoRACK1 transgenic lines. Yeast two-hybrid assays showed that BoRACK1 could interact with WNK8, eIF6, RAR1, and SGT1. This study and previous work lead us to believe that BoRACK1 may form a complex with regulators of plant salt and disease resistance to coordinate kale reactions to pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Plant regeneration of Brassica oleracea subsp. italica (Broccoli) CV ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul. Ehsan, Malaysia. Accepted 20 March, 2009. Hypocotyls and shoot tips were used as explants in in vitro plant regeneration of broccoli (Brassica oleracea subsp.italica) cv. Green Marvel.

  14. Local cabbage ( Brassica oleracea var. capitata L.) populations from ...

    African Journals Online (AJOL)

    In previous experiments, we were able to augment cabbages (Brassica oleracea L. var. capitata L.) with two new local open pollinated (OP) populations and one cultivar. The type of use indicated that these are cabbages with thinner and juicier leaves, which predisposes their heads for fine grating and also makes their ...

  15. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea

    NARCIS (Netherlands)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R.; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-01-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea

  16. Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers.

    Science.gov (United States)

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    The most economically important Brassica oleracea species is endangered in Ireland, with no prior reported genetic characterization studies. This study assesses the genetic diversity, population structure and relationships of B. oleracea germplasm in Ireland using microsatellite (SSRs) markers. A total of 118 individuals from 25 accessions of Irish B. oleracea were genotyped. The SSR loci used revealed a total of 47 alleles. The observed heterozygosity (0.699) was higher than the expected one (0.417). Moreover, the average values of fixation indices (F) were negative, indicating excess of heterozygotes in all accessions. Polymorphic information content (PIC) values of SSR loci ranged from 0.27 to 0.66, with an average of 0.571, and classified 10 loci as informative markers (PIC>0.5) to differentiate among the accessions studied. The genetic differentiation among accessions showed that 27.1% of the total genetic variation was found among accessions, and 72.9% of the variation resided within accessions. The averages of total heterozygosity (H(T)) and intra-accession genetic diversity (H(S)) were 0.577 and 0.442, respectively. Cluster analysis of SSR data distinguished among kale and Brussels sprouts cultivars. This study provided a new insight into the exploitation of the genetically diverse spring cabbages accessions, revealing a high genetic variation, as potential resources for future breeding programs. SSR loci were effective for differentiation among the accessions studied. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. NEW ACCESSIONS OF BRASSICA OLERACEA L. IN VIR PLANT COLLECTION

    Directory of Open Access Journals (Sweden)

    A. M. Artemieva

    2017-01-01

    Full Text Available Varieties of Brassica oleracea L. are widespread and favorite crops, where among them the head cabbage and cauliflower are the most economically important. Russia takes third place after India and Chine among countries with largest production areas and gross yield for the crop. In Russia, the area sown to cabbage is about 27 thousand hectares. 728 cultivars and hybrids of eight cabbage crops including 528 hybrids have been added in State Register of Breeding Achievements of Russian Federation in 2017. The collection of Brassica oleracea L. totally contains of 2421 accessions and takes first place at number of collected items among the world’s plant genbanks. The phenotyping, genotyping, passportization, development of core collection and trait collection as well as initial breeding accessions, covering all genetic diversity have been carried out at department of genetic resources of vegetables and melons at VIR. Selection of most promising accessions is performed to find genes and sources for economically valuable traits to develop proper lines and hybrids. There are the enrichment of the collection by means of ordering and gathering in expeditions, the improvement of methods of phenotyping and development of database for all biological accessions studied at the department. In 2007-2016, 255 accessions of Brassica oleracea L. have been included into collection to be used in different national breeding programs.

  18. Database derived microsatellite markers (SSRs) for cultivar differentiation in Brassica oleracea

    DEFF Research Database (Denmark)

    Louarn, Sébastien Jean Yves; Torp, Anna Maria; Holme, I.B.

    2007-01-01

     Fifty-nine Brassica oleracea cultivars, belonging to five botanical varieties, were evaluated for microsatellite (SSR) polymorphisms using 11 database sequence derived primer pairs. The cultivars represented 12 broccoli (Brassica oleracea var. italica), ten Brussels sprouts (B. o. var. gemmifera...

  19. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana.

    I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and

  20. Genetic analisys of a cross of gaillon (Brassica oleracea var. alboglabra with cauliflower (B.oleracea var. botrytis

    Directory of Open Access Journals (Sweden)

    Vanessa B.M.G. Spini

    2000-03-01

    Full Text Available The cauliflower (Brassica oleracea var. botrytis is an annual vegetable cultivated in Southern and Southwestern Brazil with limited production in the Northeast and Centralwest. A variety of Chinese kale, "kaai laan" or "gaillon" (Brassica oleracea var. alboglabra, produces seeds at high temperatures and therefore can do so in North and Northeastern Brazil. Gaillon and cauliflower were crossed 55 times using 10 gaillon plants as mothers and 4 cauliflower plants as pollen donors. From these crosses, in the F2 generation, 612 plants with inflorescence like gaillon and 48 plants with inflorescence like cauliflower were obtained, in a proportion similar to 15:1, implying that 2 pairs of genes entered into formation of the cauliflower inflorescence type. In order to study flower color, 339 plants were analyzed: 274 presented white flowers and 65, yellow flowers, denoting that this caracter is determined by 1 pair of genes, white being dominant over yellow; white flowers had a slighly higher adaptive value in our population. The characteristic waxy leaf showed a proportion of 3 waxy plants for 1 not waxy, indicating the action of one pair of genes.A couve-flor (Brassica oleracea var. botrytis é um vegetal anual e tem seu cultivo no Brasil limitado às regiões Sul e Sudeste, com pequena produção no Nordeste e Centro-Oeste. Uma variedade de couve da China, "kaai laan" ou "gaillon" (Brassica oleracea var. alboglabra, produz sementes em altas temperaturas e, portanto, é apta a produzir sementes no Norte e Nordeste do Brasil. Gaillon e couve-flor foram cruzados. Foram feitos 55 cruzamentos usando 10 plantas de gaillon como mãe e 4 plantas de couve-flor como doadores de pólen. Desses cruzamentos, na geração F2, 612 plantas com inflorescência tipo gaillon e 48 plantas com inflorescência tipo couve-flor foram obtidas, em proporção similar a 15:1, demonstrando que 2 pares de genes estão envolvidos na formação da inflorescência em couve

  1. Red Cabbage (Brassica oleracea Ameliorates Diabetic Nephropathy in Rats

    Directory of Open Access Journals (Sweden)

    Hazem A. H. Kataya

    2008-01-01

    Full Text Available The protective action against oxidative stress of red cabbage (Brassica oleracea extract was investigated. Diabetes was induced in male Wistar rats using streptozotocin (60 mg/kg body weight. Throughout the experimental period (60 days, diabetic rats exhibited many symptoms including loss of body weight, hyperglycemia, polyuria, polydipsia, renal enlargement and renal dysfunction. Significant increase in malondialdehyde, a lipid peroxidation marker, was observed in diabetic kidney. This was accompanied by a significant increase in reduced glutathione and superoxide dismutase activity and a decrease in catalase activity and in the total antioxidant capacity of the kidneys. Daily oral ingestion (1 g/kg body weight of B. oleracea extract for 60 days reversed the adverse effect of diabetes in rats. B. oleracea extract lowered blood glucose levels and restored renal function and body weight loss. In addition, B. oleracea extract attenuated the adverse effect of diabetes on malondialdehyde, glutathione and superoxide dismutase activity as well as catalase activity and total antioxidant capacity of diabetic kidneys. In conclusion, the antioxidant and antihyperglycemic properties of B. oleracea extract may offer a potential therapeutic source for the treatment of diabetes.

  2. rDNA-based characterization of a new binucleate Rhizoctonia spp. causing root rot on kale in Brazil

    NARCIS (Netherlands)

    Kuramae, E.E.; Buzeto, A.L.; Nakatani, A.K.; Souza, N.L.

    2007-01-01

    In this paper we present the first report of the occurrence of a binucleate Rhizoctonia spp. causing hypocotyl and root rot in kale in Brazil. Rhizoctonia spp. were isolated from kale (Brassica oleracea var. acephala) with symptoms of hypocotyl and root rot. The isolates, characterized as binucleate

  3. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  4. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  5. Exogenous Methyl Jasmonate and Salicylic Acid Induce Subspecies-Specific Patterns of Glucosinolate Accumulation and Gene Expression in Brassica oleracea L.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Hwang, Byung Ho; Nou, Ill-Sup

    2016-10-24

    Glucosinolates have anti-carcinogenic properties. In the recent decades, the genetics of glucosinolate biosynthesis has been widely studied, however, the expression of specific genes involved in glucosinolate biosynthesis under exogenous phytohormone treatment has not been explored at the subspecies level in Brassica oleracea . Such data are vital for strategies aimed at selective exploitation of glucosinolate profiles. This study quantified the expression of 38 glucosinolate biosynthesis-related genes in three B. oleracea subspecies, namely cabbage, broccoli and kale, and catalogued associations between gene expression and increased contents of individual glucosinolates under methyl jasmonate (MeJA) and salicylic acid (SA) treatments. Glucosinolate accumulation and gene expression in response to phytohormone elicitation was subspecies specific. For instance, cabbage leaves showed enhanced accumulation of the aliphatic glucoiberin, progoitrin, sinigrin and indolic neoglucobrassicin under both MeJA and SA treatment. MeJA treatment induced strikingly higher accumulation of glucobrassicin (GBS) in cabbage and kale and of neoglucobrassicin (NGBS) in broccoli compared to controls. Notably higher expression of ST5a (Bol026200), CYP81F1 (Bol028913, Bol028914) and CYP81F4 genes was associated with significantly higher GBS accumulation under MeJA treatment compared to controls in all three subspecies. CYP81F4 genes, trans-activated by MYB34 genes, were expressed at remarkably high levels in all three subspecies under MeJA treatment, which also induced in higher indolic NGBS accumulation in all three subspecies. Remarkably higher expression of MYB28 (Bol036286), ST5b , ST5c , AOP2 , FMOGS-OX5 (Bol031350) and GSL-OH (Bol033373) was associated with much higher contents of aliphatic glucosinolates in kale leaves compared to the other two subspecies. The genes expressed highly could be utilized in strategies to selectively increase glucosinolate compounds in B. oleracea

  6. Variation and Distribution of Glucosinolates in 42 Cultivars of Brassica oleracea Vegetable Crops

    NARCIS (Netherlands)

    Verkerk, R.; Tebbenhoff, S.; Dekker, M.

    2010-01-01

    Brassica vegetables are known to contain glucosinolates that are precursors for bioactive compounds like isothiocyanates that have been shown to play an important role in human health. This study reports the results of a screening of 11 Brassica oleracea crops consisting of 42 cultivars (6 white

  7. The Effect of Organic and Inorganic Sources of Fertiliser on Growth and Yield of Brassica Oleraceae var. Acephala D.C

    International Nuclear Information System (INIS)

    Onyango, M.O.A.; Onyango, J.C.

    1999-01-01

    Kale (Brassica oleraceae var. Acephala D.C.) cultivar, collard green was planted in the field between October 1997 and March 1998 in the experimental plots at Maseno University college in Western Kenya. The experiment was set up to study the effect of organic and inorganic sources of fertiliser on growth and yield of kale. The kale seedlings were first raised in a nursery and transplanted 8 weeks after sowing. The treatments included farm yard manure (150 kg N.ha -1 , 8kgP.ha -1 ), Tithonia Diversifolia (Tithonia) Leaf biomass incorporated in combination with Diammonium phosphate (DAP) (150kgN.ha -1 and 30kgP.ha -1 ), TSithonia leaf biomass incorporated, DAP in combination with Urea, DAP in combination with calcium Ammonium nitrate (CAN) at the rate of 150kgP.ha -1 and the control. Non-destructive measurements on plant height, leaf number and stem thickness were taken regularly commencing 6 weeks after transplanting. Leaf yield was assessed by both cumulative leaf weight per given area and leaf number per plant. Both organic and inorganic sources of fertiliser significantly increased growth and leaf yield of kale. In all parameters measured farm yard manure gave the best response. Tithonia leaf biomass incorporated in the soil either on its own or in combination with DAP gave leaf yields comparable increasing, organic sources which are locally available to the farmer can be alternative sources of fertiliser without compromising the yields

  8. Identification and expression analysis of glucosinolate biosynthetic genes and estimation of glucosinolate contents in edible organs of Brassica oleracea subspecies.

    Science.gov (United States)

    Yi, Go-Eun; Robin, Arif Hasan Khan; Yang, Kiwoung; Park, Jong-In; Kang, Jong-Goo; Yang, Tae-Jin; Nou, Ill-Sup

    2015-07-20

    Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28) and one indolic transcription factor-related gene, Bol030761 (MYB51), were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  9. Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies

    Directory of Open Access Journals (Sweden)

    Go-Eun Yi

    2015-07-01

    Full Text Available Glucosinolates are anti-carcinogenic, anti-oxidative biochemical compounds that defend plants from insect and microbial attack. Glucosinolates are abundant in all cruciferous crops, including all vegetable and oilseed Brassica species. Here, we studied the expression of glucosinolate biosynthesis genes and determined glucosinolate contents in the edible organs of a total of 12 genotypes of Brassica oleracea: three genotypes each from cabbage, kale, kohlrabi and cauliflower subspecies. Among the 81 genes analyzed by RT-PCR, 19 are transcription factor-related, two different sets of 25 genes are involved in aliphatic and indolic biosynthesis pathways and the rest are breakdown-related. The expression of glucosinolate-related genes in the stems of kohlrabi was remarkably different compared to leaves of cabbage and kale and florets of cauliflower as only eight genes out of 81 were expressed in the stem tissues of kohlrabi. In the stem tissue of kohlrabi, only one aliphatic transcription factor-related gene, Bol036286 (MYB28 and one indolic transcription factor-related gene, Bol030761 (MYB51, were expressed. The results indicated the expression of all genes is not essential for glucosinolate biosynthesis. Using HPLC analysis, a total of 16 different types of glucosinolates were identified in four subspecies, nine of them were aliphatic, four of them were indolic and one was aromatic. Cauliflower florets measured the highest number of 14 glucosinolates. Among the aliphatic glucosinolates, only gluconapin was found in the florets of cauliflower. Glucoiberverin and glucobrassicanapin contents were the highest in the stems of kohlrabi. The indolic methoxyglucobrassicin and aromatic gluconasturtiin accounted for the highest content in the florets of cauliflower. A further detailed investigation and analyses is required to discern the precise roles of each of the genes for aliphatic and indolic glucosinolate biosynthesis in the edible organs.

  10. Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress.

    Science.gov (United States)

    Beacham, Andrew M; Hand, Paul; Pink, David Ac; Monaghan, James M

    2017-12-01

    Brassica oleracea includes a number of important crop types such as cabbage, cauliflower, broccoli and kale. Current climate conditions and weather patterns are causing significant losses in these crops, meaning that new cultivars with improved tolerance of one or more abiotic stress types must be sought. In this study, genetically fixed B. oleracea lines belonging to a Diversity Fixed Foundation Set (DFFS) were assayed for their response to seedling stage-imposed drought, flood, salinity, heat and cold stress. Significant (P ≤ 0.05) variation in stress tolerance response was found for each stress, for each of four measured variables (relative fresh weight, relative dry weight, relative leaf number and relative plant height). Lines tolerant to multiple stresses were found to belong to several different crop types. There was no overall correlation between the responses to the different stresses. Abiotic stress tolerance was identified in multiple B. oleracea crop types, with some lines exhibiting resistance to multiple stresses. For each stress, no one crop type appeared significantly more or less tolerant than others. The results are promising for the development of more environmentally robust lines of different B. oleracea crops by identifying tolerant material and highlighting the relationship between responses to different stresses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. A novel and exploitable antifungal peptide from kale (Brassica alboglabra) seeds.

    Science.gov (United States)

    Lin, Peng; Ng, Tzi Bun

    2008-10-01

    The aim of this study was to purify and characterize antifungal peptides from kale seeds in view of the paucity of information on antifungal peptides from the family Brassicaceae, and to compare its characteristics with those of published Brassica antifungal peptides. A 5907-Da antifungal peptide was isolated from kale seeds. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and Mono S, and gel filtration on Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali, with an IC(50) of 4.3microM, 2.1microM, 2.4microM, and 0.15microM, respectively and exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells with an IC(50) of 2.7microM and 3.4microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 4.9microM. Its N-terminal sequence differed from those of antifungal proteins which have been reported to date.

  12. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts.

    Science.gov (United States)

    Vale, A P; Santos, J; Brito, N V; Fernandes, D; Rosa, E; Oliveira, M Beatriz P P

    2015-07-01

    The glucosinolates content of brassica plants is a distinctive characteristic, representing a healthy advantage as many of these compounds are associated to antioxidant and anti-carcinogenic properties. Brassica sprouts are still an underutilized source of these bioactive compounds. In this work, four varieties of brassica sprouts (red cabbage, broccoli, Galega kale and Penca cabbage), including two local varieties from the North of Portugal, were grown to evaluate the glucosinolate profile and myrosinase activity during the sprouting. Also the influence of light/darkness exposure during sprouting on the glucosinolate content was assessed. Glucosinolate content and myrosinase activity of the sprouts was evaluated by HPLC methods. All sprouts revealed a higher content of aliphatic glucosinolates than of indole glucosinolates, contrary to the profile described for most of brassica mature plants. Galega kale sprouts had the highest glucosinolate content, mainly sinigrin and glucoiberin, which are recognized for their beneficial health effects. Penca cabbage sprouts were particularly richer in glucoraphanin, who was also one of the major compounds in broccoli sprouts. Red cabbage showed a higher content of progoitrin. Regarding myrosinase activity, Galega kale sprouts showed the highest values, revealing that the use of light/dark cycles and a sprouting phase of 7-9 days could be beneficial to preserve the glucosinolate content of this variety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparative analysis of peroxidase profiles in Chinese kale (Brassica alboglabra L.): evaluation of leaf growth related isozymes.

    Science.gov (United States)

    Tang, Lei; Wang, Chenchen; Huang, Jiabao; Zhang, Jianhua; Mao, Zhonggui; Wang, Haiou

    2013-01-15

    Plant peroxidases (EC 1.11.1.7) with different isoforms catalyze various reactions in plant growth and development. However, it is difficult to elucidate the function of each isozyme in one plant. Here, we compared profiles of entire isozyme in young seedling and mature leaves of Chinese kale (Brassica alboglabra L.) on zymogram and ion exchange chromatography in order to investigate leaf growth related peroxidase isozymes. The results showed that four isozymes were constitutively expressed in kale leaves, whereas other two isozymes were induced in the mature leaves. The Mono Q ion exchange chromatography separated the six isozymes into two major groups due to the difference in their isoelectric points. The results suggested that although there were several isozymes in the leaves of Chinese kale, one isozyme functioned mainly through the leaf development. Two anionic isozymes with molecular weights lower than 32 kDa were considered mature related. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Metabolism of the insecticide metofluthrin in cabbage (Brassica oleracea).

    Science.gov (United States)

    Ando, Daisuke; Fukushima, Masao; Fujisawa, Takuo; Katagi, Toshiyuki

    2012-03-14

    The metabolic fate of metofluthrin [2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl (E,Z)-(1R,3R)-2,2-dimethyl-3-(prop-1-enyl)cyclopropanecarboxylate] separately labeled with (14)C at the carbonyl carbon and the α-position of the 4-methoxymethylbenzyl ring was studied in cabbage ( Brassica oleracea ). An acetonitrile solution of (14)C-metofluthrin at 431 g ai ha(-1) was once applied topically to cabbage leaves at head-forming stage, and the plants were grown for up to 14 days. Each isomer of metofluthrin applied onto the leaf surface rapidly volatilized into the air and was scarcely translocated to the untreated portion. On the leaf surface, metofluthrin was primarily degraded through ozonolysis of the propenyl side chain to produce the secondary ozonide, which further decomposed to the corresponding aldehyde and carboxylic acid derivatives. In the leaf tissues, the 1R-trans-Z isomer was mainly metabolized to its dihydrodiol derivative probably via an epoxy intermediate followed by saccharide conjugation in parallel with the ester cleavage, whereas no specific metabolite was dominant for the 1R-trans-E isomer. Isomerization of metofluthrin at the cyclopropyl ring was negligible for both isomers. In this study, the chemical structure of each secondary ozonide derivative was fully elucidated by the various modes of liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy together with cochromatography with the synthetic standard, and their cis/trans configuration was examined by the nuclear Overhauser effect (NOE) difference NMR spectrum.

  15. Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Oliviero, T.; Sman, van der R.G.M.; Verkerk, R.; Dekker, M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the degradation of the nutritional compounds glucoraphanin (GR) and vitamin C (Vc), and the inactivation of the enzyme myrosinase (MYR) in broccoli (Brassica oleracea var. italica) during drying with air temperatures in the range of 30e60 C. Dynamic optimization is applied to find

  16. Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea

    NARCIS (Netherlands)

    Wang, X.; Lou, P.; Bonnema, A.B.; Yang, Boujun; He, H.; Zhang, Y.; Fang, Z.

    2005-01-01

    The dominant male sterility gene Ms-cd1 (c, cabbage; d, dominant) was identified as a spontaneous mutation in the spring cabbage line 79-399-3. The Ms-cd1 gene is successfully applied in hybrid seed production of several Brassica oleracea cultivars in China. Amplified fragment length polymorphism

  17. Response of yield and quality of cauliflower varieties (Brassica oleracea var. botrytis) to nitrogen supply

    NARCIS (Netherlands)

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    1999-01-01

    The fertilizer nitrogen (N) inputs to some vegetables such as cauliflower (Brassica oleracea var. botrytis) can be large. One approach to decreasing the input of N may be to select for cultivars efficient in the use of nitrogen. The objective of this investigation was to identify a cultivar which

  18. A seed treatment to prevent shoot apical meristem arrest in Brassica oleracea

    NARCIS (Netherlands)

    Jonge, de J.; Goffman, Fernando D.; Kodde, J.; Angenent, G.C.; Groot, S.P.C.

    2018-01-01

    Brassica oleracea plants can suffer from shoot apical meristem arrest, when sown at cold temperatures, giving rise to so-called blind seedlings that stop development and the formation of new leaves. We developed a seed treatment that strongly reduces the occurrence of this meristem arrest in

  19. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  20. Gene expression programs during Brassica oleracea seed maturation, osmopriming and germination process and the stress tolerance level

    NARCIS (Netherlands)

    Soeda, Y.; Konings, M.C.J.M.; Vorst, O.F.J.; Houwelingen, van A.M.M.L.; Stoopen, G.M.; Maliepaard, C.A.; Kodde, J.; Bino, R.J.; Groot, S.P.C.; Geest, van der A.H.M.

    2005-01-01

    During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were

  1. Comparative Analysis of Disease-Linked Single Nucleotide Polymorphic Markers from Brassica rapa for Their Applicability to Brassica oleracea

    Science.gov (United States)

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH—developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP—based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS—derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species. PMID:25790283

  2. Sequential light programs shape kale (Brassica napus) sprout appearance and alter metabolic and nutrient content

    Science.gov (United States)

    Carvalho, Sofia D; Folta, Kevin M

    2014-01-01

    Different light wavelengths have specific effects on plant growth and development. Narrow-bandwidth light-emitting diode (LED) lighting may be used to directionally manipulate size, color and metabolites in high-value fruits and vegetables. In this report, Red Russian kale (Brassica napus) seedlings were grown under specific light conditions and analyzed for photomorphogenic responses, pigment accumulation and nutraceutical content. The results showed that this genotype responds predictably to darkness, blue and red light, with suppression of hypocotyl elongation, development of pigments and changes in specific metabolites. However, these seedlings were relatively hypersensitive to far-red light, leading to uncharacteristically short hypocotyls and high pigment accumulation, even after growth under very low fluence rates (<1 μmol m−2 s−1). General antioxidant levels and aliphatic glucosinolates are elevated by far-red light treatments. Sequential treatments of darkness, blue light, red light and far-red light were applied throughout sprout development to alter final product quality. These results indicate that sequential treatment with narrow-bandwidth light may be used to affect key economically important traits in high-value crops. PMID:26504531

  3. Genome-wide identification of aquaporin encoding genes in Brassica oleracea and their phylogenetic sequence comparison to Brassica crops and Arabidopsis

    Science.gov (United States)

    Diehn, Till A.; Pommerrenig, Benjamin; Bernhardt, Nadine; Hartmann, Anja; Bienert, Gerd P.

    2015-01-01

    Aquaporins (AQPs) are essential channel proteins that regulate plant water homeostasis and the uptake and distribution of uncharged solutes such as metalloids, urea, ammonia, and carbon dioxide. Despite their importance as crop plants, little is known about AQP gene and protein function in cabbage (Brassica oleracea) and other Brassica species. The recent releases of the genome sequences of B. oleracea and Brassica rapa allow comparative genomic studies in these species to investigate the evolution and features of Brassica genes and proteins. In this study, we identified all AQP genes in B. oleracea by a genome-wide survey. In total, 67 genes of four plant AQP subfamilies were identified. Their full-length gene sequences and locations on chromosomes and scaffolds were manually curated. The identification of six additional full-length AQP sequences in the B. rapa genome added to the recently published AQP protein family of this species. A phylogenetic analysis of AQPs of Arabidopsis thaliana, B. oleracea, B. rapa allowed us to follow AQP evolution in closely related species and to systematically classify and (re-) name these isoforms. Thirty-three groups of AQP-orthologous genes were identified between B. oleracea and Arabidopsis and their expression was analyzed in different organs. The two selectivity filters, gene structure and coding sequences were highly conserved within each AQP subfamily while sequence variations in some introns and untranslated regions were frequent. These data suggest a similar substrate selectivity and function of Brassica AQPs compared to Arabidopsis orthologs. The comparative analyses of all AQP subfamilies in three Brassicaceae species give initial insights into AQP evolution in these taxa. Based on the genome-wide AQP identification in B. oleracea and the sequence analysis and reprocessing of Brassica AQP information, our dataset provides a sequence resource for further investigations of the physiological and molecular functions of

  4. Histological Evaluation of Radioprotection by Silymarin and Brassica Oleracea Extract on Eye of Albino Rat

    International Nuclear Information System (INIS)

    Naguib, N.I.

    2011-01-01

    The present study was performed to evaluate the effects of two different antioxidant agents (an ethanolic seed extract of cabbage B rassica oleracea a nd silymarin) on irradiated rat eye tissues. Silymarin, known for its potent antioxidant activity, was used as a reference. Rats were divided into 6 groups; group I contained control rats, group II rats received gamma radiation (6 Gy) in three fractionated doses for 3 consecutive days, group III rats received silymarin orally through the experiment , group IV rats received ethanolic extract of brassica seeds orally through the experiment, group V rats received silymarin one week before radiation, during radiation and one week after radiation, and group VI rats received brassica extract one week before radiation, during radiation and one week after radiation . The histological study revealed that ethanolic extract of brassica seeds alleviated the manifestations of radiation injury in the eye tissues as compared with the untreated animals and also with those who received the silymarin.

  5. The role of plant processing for the cancer preventive potential of Ethiopian kale (Brassica carinata).

    Science.gov (United States)

    Odongo, Grace Akinyi; Schlotz, Nina; Herz, Corinna; Hanschen, Franziska S; Baldermann, Susanne; Neugart, Susanne; Trierweiler, Bernhard; Frommherz, Lara; Franz, Charles M A P; Ngwene, Benard; Luvonga, Abraham Wahid; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2017-01-01

    Background : Ethiopian kale ( Brassica carinata ) is a horticulturally important crop used as leafy vegetable in large parts of East and Southern Africa. The leaves are reported to contain high concentrations of health-promoting secondary plant metabolites. However, scientific knowledge on their health benefits is scarce. Objective : This study aimed to determine the cancer preventive potential of B. carinata using a human liver in vitro model focusing on processing effects on the pattern of secondary plant metabolites and bioactivity. Design : B. carinata was cultivated under controlled conditions and differentially processed (raw, fermented, or cooked) after harvesting. Human liver cancer cells (HepG2) were treated with ethanolic extracts of raw or processed B. carinata leaves and analyzed for their anti-genotoxic, anti-oxidant, and cytostatic potential. Chemical analyses were carried out on glucosinolates including breakdown products, phenolic compounds, carotenoids, and chlorophyll content. Results : Pre-treatment with B. carinata extracts concentration dependently reduced aflatoxin-induced DNA damage in the Comet assay, reduced the production of reactive oxygen species as determined by electron paramagnetic resonance spectroscopy, and induced Nrf2-mediated gene expression. Increasing extract concentrations also promoted cytostasis. Processing had a significant effect on the content of secondary plant metabolites. However, different processing methodologies did not dramatically decrease bioactivity, but enhanced the protective effect in some of the endpoints studied. Conclusion : Our findings highlight the cancer preventive potential of B. carinata as indicated by the protection of human liver cells against aflatoxin in vitro . In general, consumption of B. carinata should be encouraged as part of chemopreventive measures to combat prevalence of aflatoxin-induced diseases.

  6. Development of Brassica oleracea-nigra monosomic alien addition lines: genotypic, cytological and morphological analyses.

    Science.gov (United States)

    Tan, Chen; Cui, Cheng; Xiang, Yi; Ge, Xianhong; Li, Zaiyun

    2017-12-01

    We report the development and characterization of Brassica oleracea - nigra monosomic alien addition lines (MAALs) to dissect the Brassica B genome. Brassica nigra (2n = 16, BB) represents the diploid Brassica B genome which carries many useful genes and traits for breeding but received limited studies. To dissect the B genome from B. nigra, the triploid F 1 hybrid (2n = 26, CCB) obtained previously from the cross B. oleracea var. alboglabra (2n = 18, CC) × B. nigra was used as the maternal parent and backcrossed successively to parental B. oleracea. The progenies in BC 1 to BC 3 generations were analyzed by the methods of FISH and SSR markers to screen the monosomic alien addition lines (MAALs) with each of eight different B-genome chromosomes added to C genome (2n = 19, CC + 1B 1-8 ), and seven different MAALs were established, except for the one with chromosome B2 which existed in one triple addition. Most of these MAALs were distinguishable morphologically from each other, as they expressed the characters from B. nigra differently and at variable extents. The alien chromosome remained unpaired as a univalent in 86.24% pollen mother cells at diakinesis or metaphase I, and formed a trivalent with two C-genome chromosomes in 13.76% cells. Transmission frequency of all the added chromosomes was far higher through the ovules (averagely 14.40%) than the pollen (2.64%). The B1, B4 and B5 chromosomes were transmitted by female at much higher rates (22.38-30.00%) than the other four (B3, B6, B7, B8) (5.04-8.42%). The MAALs should be valuable for exploiting the genome structure and evolution of B. nigra.

  7. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    Science.gov (United States)

    Isa, Mohd Hafez Mohd; Yasir, Muhamad Samudi; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  8. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    International Nuclear Information System (INIS)

    Isa, Mohd Hafez Mohd; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman; Yasir, Muhamad Samudi

    2016-01-01

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically

  9. The effect of gamma irradiation on chitosan and its application as a plant growth promoter in Chinese kale (Brassica alboglabra)

    Energy Technology Data Exchange (ETDEWEB)

    Isa, Mohd Hafez Mohd, E-mail: m.hafez@usim.edu.my; Hasan, Abu Bakar; Fadilah, Nur Izzah Md; Hassan, Abdul Rahman [Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan (Malaysia); Yasir, Muhamad Samudi [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-22

    This research project was conducted to study the effects of irradiation on chitosan and its potential application as a plant growth promoter. Chitosan in the form of flakes was irradiated with gamma rays at irradiation dosage of 50 kGy, 100 kGy, 200 kGy and 400 kGy. The effect of irradiation on chitosan in terms of intrinsic viscosity and average molecular weight was measured using Ubbelohde capillary viscometry technique and the results obtained showed irradiation at doses of up to 50 kGy had caused an extremely significant reduction of both parameters and this trend continued at higher irradiation doses, although the decrease were not significant. The effect of various concentrations of chitosan and irradiated chitosan on growth promotion of Chinese kale (Brassica alboglabra) was hydroponically grown and cultivated for 50 days. Statistical analysis showed addition of 10 ppm of irradiated chitosan of 200 kGy and 400 kGy, respectively, resulted in an extremely significant increase in the percentage weight gain of Chinese kale (Brassica alboglabra). Results obtained in this study showed the potential use of irradiated chitosan as a plant growth promoter for plants grown hydroponically.

  10. Chicken manure enhanced yield and quality of field-grown kale and collard greens.

    Science.gov (United States)

    Antonious, George F; Turley, Eric T; Hill, Regina R; Snyder, John C

    2014-01-01

    Organic matter and nutrients in municipal sewage sludge (SS) and chicken manure (CM) could be recycled and used for land farming to enhance fertility and physical properties of soils. Three soil management practices were used at Kentucky State University Research Farm, Franklin County, to study the impact of soil amendments on kale (Brassica oleracea cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) yields and quality. The three soil management practices were: (i) SS mixed with native soil at 15 t acre(-1), (ii) CM mixed with native soil at 15 t acre(-1), and (iii) no-mulch (NM) native soil for comparison purposes. At harvest, collard and kale green plants were graded according to USDA standards. Plants grown in CM and SS amended soil produced the greatest number of U.S. No. 1 grade of collard and kale greens compared to NM native soil. Across all treatments, concentrations of ascorbic acid and phenols were generally greater in kale than in collards. Overall, CM and SS enhanced total phenols and ascorbic acid contents of kale and collard compared to NM native soil. We investigated the chemical and physical properties of each of the three soil treatments that might explain variability among treatments and the impact of soil amendments on yield, phenols, and ascorbic acid contents of kale and collard green grown under this practice.

  11. Bioinformatics analysis of the ς-carotene desaturase gene in cabbage (Brassica oleracea var. capitata)

    Science.gov (United States)

    Sun, Bo; Zheng, Aihong; Jiang, Min; Xue, Shengling; Zhang, Fen; Tang, Haoru

    2018-04-01

    ς-carotene desaturase (ZDS) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata ZDS (BocZDS) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocZDS gene mapped to Scaffold000363, and contains an open reading frame of 1,686 bp that encodes a 561-amino acid protein with a calculated molecular mass of 62.00 kD and an isoelectric point (pI) of 8.2. Subcellular localization predicted the BocZDS gene was in the chloroplast. The conserved domain of the BocZDS protein is PLN02487, indicating that it belongs the member of zeta-carotene desaturase. Homology analysis indicates that the ZDS protein is apparently conserved during plant evolution and is most closely related to B. oleracea var. oleracea, B. napus, and B. rapa. The findings of the present study provide a molecular basis for the elucidation of ZDS gene function in cabbage.

  12. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea

    International Nuclear Information System (INIS)

    Castro, Ana; Stulen, Ineke; De Kok, Luit J.

    2008-01-01

    Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 μl l -1 NH 3 (2.8 mg m -3 ), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH 3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH 3 . NH 3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH 3 exposure. In sulfate-deprived plants an inhibitory effect of NH 3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH 3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed. - Atmospheric NH 3 can serve as sole N source for Brassica oleracea, but does not change root biomass allocation in nitrate-deprived plants

  13. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue

    Science.gov (United States)

    Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959

  14. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group through Embryo Rescue

    Directory of Open Access Journals (Sweden)

    Brij B. Sharma

    2017-07-01

    Full Text Available Black rot caused by Xanthomonas campestris pv. campestris (Xcc is a very important disease of cauliflower (Brassica oleracea botrytis group resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome, therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1 were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC primers. Meiosis in the di-genomic (BCC interspecific hybrid of B. oleracea botrytis group (2n = 18, CC × B. carinata (2n = 4x = 34, BBCC was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  15. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue.

    Science.gov (United States)

    Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  16. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Science.gov (United States)

    2011-01-01

    Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123

  17. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Directory of Open Access Journals (Sweden)

    Giattina Emily

    2011-09-01

    Full Text Available Abstract Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF of Bacterial Artificial Chromosome (BAC clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account

  18. In vtro adventitious shoot regeneration from cotyledon explant of brassica oleracea subsp. Italica and brassica oleracea subsp. capitata using tdz and naa

    International Nuclear Information System (INIS)

    Salim, S.; Rashid, A.

    2014-01-01

    Broccoli(Brassica oleracea subsp. italica) cv. Green Dragon King and cabbage (Brassica oleracea subsp. capitata) cv. Gianty are important vegetable crops grown in Cameron Highlands, Malaysia. The cotyledons of both cultivars were used as explant source for in vitro shoot regeneration. The objective of this research was to examine the influence of the growth regulators thidiazuron (TDZ) and naphthaleneacetic acid (NAA) on adventitious shoot formation in these cultivars. This system of adventitious shoot regeneration from cotyledon explants could be useful as a tool for genetic transformation of the subspecies. Cotyledon explants of both cultivars excised from 5-day-old in vitro germinated seedlings were placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of TDZ and NAA. The highest percentage of cotyledon explant of broccoli cv. Green Dragon King producing shoot (76.66%) and the highest mean number of shoots produced per explant (0.9) were obtained on 0.1 mg/l TDZ with 0.1 mg/l NAA. Meanwhile, the highest percentage of cotyledon explant of cabbage cv. Gianty producing shoots (86.67%) and highest number of shoots produced per explant (1.1) were recorded on 0.5 mg/l TDZ with 0.1 mg/l NAA. Therefore, 0.1 mg/l TDZ with 0.1 mg/l NAA and 0.5 mg/l TDZ with 0.1mg/l NAA are the recommended combinations for adventitious shoot regeneration from cotyledonary explants of broccoli cv. Dragon King and cabbage cv. Gianty respectively. (author)

  19. Chromosome Doubling of Microspore-Derived Plants from Cabbage (Brassica oleracea var. capitata L.) and Broccoli (Brassica oleracea var. italica L.).

    Science.gov (United States)

    Yuan, Suxia; Su, Yanbin; Liu, Yumei; Li, Zhansheng; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian

    2015-01-01

    Chromosome doubling of microspore-derived plants is an important factor in the practical application of microspore culture technology because breeding programs require a large number of genetically stable, homozygous doubled haploid plants with a high level of fertility. In the present paper, 29 populations of microspore-derived plantlets from cabbage (Brassica oleracea var. capitata) and broccoli (Brassica oleracea var. italica) were used to study the ploidy level and spontaneous chromosome doubling of these populations, the artificial chromosome doubling induced by colchicine, and the influence of tissue culture duration on the chromosomal ploidy of the microspore-derived regenerants. Spontaneous chromosome doubling occurred randomly and was genotype dependent. In the plant populations derived from microspores, there were haploids, diploids, and even a low frequency of polyploids and mixed-ploidy plantlets. The total spontaneous doubling in the 14 cabbage populations ranged from 0 to 76.9%, compared with 52.2 to 100% in the 15 broccoli populations. To improve the rate of chromosome doubling, an efficient and reliable artificial chromosome doubling protocol (i.e., the immersion of haploid plantlet roots in a colchicine solution) was developed for cabbage and broccoli microspore-derived haploids. The optimal chromosome doubling of the haploids was obtained with a solution of 0.2% colchicine for 9-12 h or 0.4% colchicine for 3-9 h for cabbage and 0.05% colchicine for 6-12 h for broccoli. This protocol produced chromosome doubling in over 50% of the haploid genotypes for most of the populations derived from cabbage and broccoli. Notably, after 1 or more years in tissue culture, the chromosomes of the haploids were doubled, and most of the haploids turned into doubled haploid or mixed-ploidy plants. This is the first report indicating that tissue culture duration can change the chromosomal ploidy of microspore-derived regenerants.

  20. Phytotoxic Effects of Cinnamic Acid on Cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Singh, N. B.

    2013-04-01

    Full Text Available The present study deals with the effects of exogenous application of cinnamic acid (CA on growth and metabolism in growing seedlings of Brassica oleracea var. capitata (cabbage in hydroponic culture. CA was added at 0.5, 1.0 and 1.5 mM concentrations. CA has shown inhibitory effects on shoot and root length, fresh and dry weight of seedlings. CA significantly decreased the photosynthetic pigments, nitrate reductase activity and protein content. Graded concentrations of CA increased lipid peroxidation and sugar content. The increasing concentrations of CA significantly increased the antioxidative enzyme activities viz. superoxide dismutase, catalase, peroxidase against the oxidative stress caused by CA.

  1. Phenolic compounds in external leaves of tronchuda cabbage (Brassica oleracea L. var. costata DC)

    OpenAIRE

    Ferreres, F.; Valentão, P.; Llorach, R.; Pinheiro, C.; Cardoso, L.; Pereira, J.A.; Seabra, R.M.; Andrade, P.B.

    2005-01-01

    Glycosylated kaempferol derivatives from the external leaves of tronchuda cabbage ( Brassica oleracea L. var. costataDC) characterized by reversed-phase HPLC-DAD-MS/MS-ESI were kaempferol 3- Osophorotrioside- 7-O-glucoside, kaempferol 3-O- (methoxycaffeoyl/caffeoyl)sophoroside-7- O-glucoside, kaempferol 3-O-sophoroside-7-O-glucoside, kaempferol 3-O-sophorotrioside-7-O-sophoroside, kaempferol 3- O-sophoroside-7- O-sophoroside, kaempferol 3- O-tetraglucoside-7- O-sophoroside, kaempf...

  2. Bioinformatics analysis of the phytoene synthase gene in cabbage (Brassica oleracea var. capitata)

    Science.gov (United States)

    Sun, Bo; Jiang, Min; Xue, Shengling; Zheng, Aihong; Zhang, Fen; Tang, Haoru

    2018-04-01

    Phytoene Synthase (PSY) is an important enzyme in carotenoid biosynthesis. Here, the Brassica oleracea var. capitata PSY (BocPSY) gene sequences were obtained from Brassica database (BRAD), and preformed for bioinformatics analysis. The BocPSY1, BocPSY2 and BocPSY3 genes mapped to chromosomes 2,3 and 9, and contains an open reading frame of 1,248 bp, 1,266 bp and 1,275 bp that encodes a 415, 421, 424 amino acid protein, respectively. Subcellular localization predicted all BocPSY genes were in the chloroplast. The conserved domain of the BocPSY protein is PLN02632. Homology analysis indicates that the levels of identity among BocPSYs were all more than 85%, and the PSY protein is apparently conserved during plant evolution. The findings of the present study provide a molecular basis for the elucidation of PSY gene function in cabbage.

  3. Colorless chlorophyll catabolites in senescent florets of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Roiser, Matthias H; Müller, Thomas; Kräutler, Bernhard

    2015-02-11

    Typical postharvest storage of broccoli (Brassica oleracea var. italica) causes degreening of this common vegetable with visible loss of chlorophyll (Chl). As shown here, colorless Chl-catabolites are generated. In fresh extracts of degreening florets of broccoli, three colorless tetrapyrrolic Chl-catabolites accumulated and were detected by high performance liquid chromatography (HPLC): two "nonfluorescent" Chl-catabolites (NCCs), provisionally named Bo-NCC-1 and Bo-NCC-2, and a colorless 1,19-dioxobilin-type "nonfluorescent" Chl-catabolite (DNCC), named Bo-DNCC. Analysis by nuclear magnetic resonance spectroscopy and mass spectrometry of these three linear tetrapyrroles revealed their structures. In combination with a comparison of their HPL-chromatographic properties, this allowed their identification with three known catabolites from two other brassicacea, namely two NCCs from oil seed rape (Brassica napus) and a DNCC from degreened leaves of Arabidopsis thaliana.

  4. Changes in the Proteome of Xylem Sap in Brassica oleracea in Response to Fusarium oxysporum Stress.

    Science.gov (United States)

    Pu, Zijing; Ino, Yoko; Kimura, Yayoi; Tago, Asumi; Shimizu, Motoki; Natsume, Satoshi; Sano, Yoshitaka; Fujimoto, Ryo; Kaneko, Kentaro; Shea, Daniel J; Fukai, Eigo; Fuji, Shin-Ichi; Hirano, Hisashi; Okazaki, Keiichi

    2016-01-01

    Fusarium oxysporum f.sp. conlutinans (Foc) is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS) after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change > = 2-fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and 10 of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  5. Changes in the proteome of xylem sap in Brassica oleracea in response to Fusarium oxysporum stress

    Directory of Open Access Journals (Sweden)

    Zijing ePu

    2016-02-01

    Full Text Available Fusarium oxysporum f. sp. conlutinans (Foc is a serious root-invading and xylem-colonizing fungus that causes yellowing in Brassica oleracea. To comprehensively understand the interaction between F. oxysporum and B. oleracea, composition of the xylem sap proteome of the non-infected and Foc-infected plants was investigated in both resistant and susceptible cultivars using liquid chromatography-tandem mass spectrometry (LC-MS/MS after in-solution digestion of xylem sap proteins. Whole genome sequencing of Foc was carried out and generated a predicted Foc protein database. The predicted Foc protein database was then combined with the public B. oleracea and B. rapa protein databases downloaded from Uniprot and used for protein identification. About 200 plant proteins were identified in the xylem sap of susceptible and resistant plants. Comparison between the non-infected and Foc-infected samples revealed that Foc infection causes changes to the protein composition in B. oleracea xylem sap where repressed proteins accounted for a greater proportion than those of induced in both the susceptible and resistant reactions. The analysis on the proteins with concentration change >=2 fold indicated a large portion of up- and down-regulated proteins were those acting on carbohydrates. Proteins with leucine-rich repeats and legume lectin domains were mainly induced in both resistant and susceptible system, so was the case of thaumatins. Twenty-five Foc proteins were identified in the infected xylem sap and ten of them were cysteine-containing secreted small proteins that are good candidates for virulence and/or avirulence effectors. The findings of differential response of protein contents in the xylem sap between the non-infected and Foc-infected samples as well as the Foc candidate effectors secreted in xylem provide valuable insights into B. oleracea-Foc interactions.

  6. Identification and expression analysis of cold and freezing stress responsive genes of Brassica oleracea.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Jung, Hee-Jeong; Park, Jong-In; Cho, Yong-Gu; Hur, Yoonkang; Nou, Ill-Sup

    2015-01-10

    Cold and freezing stress is a major environmental constraint to the production of Brassica crops. Enhancement of tolerance by exploiting cold and freezing tolerance related genes offers the most efficient approach to address this problem. Cold-induced transcriptional profiling is a promising approach to the identification of potential genes related to cold and freezing stress tolerance. In this study, 99 highly expressed genes were identified from a whole genome microarray dataset of Brassica rapa. Blast search analysis of the Brassica oleracea database revealed the corresponding homologous genes. To validate their expression, pre-selected cold tolerant and susceptible cabbage lines were analyzed. Out of 99 BoCRGs, 43 were differentially expressed in response to varying degrees of cold and freezing stress in the contrasting cabbage lines. Among the differentially expressed genes, 18 were highly up-regulated in the tolerant lines, which is consistent with their microarray expression. Additionally, 12 BoCRGs were expressed differentially after cold stress treatment in two contrasting cabbage lines, and BoCRG54, 56, 59, 62, 70, 72 and 99 were predicted to be involved in cold regulatory pathways. Taken together, the cold-responsive genes identified in this study provide additional direction for elucidating the regulatory network of low temperature stress tolerance and developing cold and freezing stress resistant Brassica crops. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains.

    Science.gov (United States)

    Oguntoyinbo, Folarin A; Cho, Gyu-Sung; Trierweiler, Bernhard; Kabisch, Jan; Rösch, Niels; Neve, Horst; Bockelmann, Wilhelm; Frommherz, Lara; Nielsen, Dennis S; Krych, Lukasz; Franz, Charles M A P

    2016-12-05

    Vegetables produced in Africa are sources of much needed micronutrients and fermentation is one way to enhance the shelf life of these perishable products. To prevent post-harvest losses and preserve African leafy vegetables, Lactobacillus plantarum BFE 5092 and Lactobacillus fermentum BFE 6620 starter strains were investigated for their application in fermentation of African kale (Brassica carinata) leaves. They were inoculated at 1×10 7 cfu/ml and grew to a maximum level of 10 8 cfu/ml during 24h submerged fermentation. The strains utilized simple sugars (i.e., glucose, fructose, and sucrose) in the kale to quickly reduce the pH from pH6.0 to pH3.6 within 24h. The strains continued to produce both d and l lactic acid up to 144h, reaching a maximum concentration of 4.0g/l. Fermentations with pathogens inoculated at 10 4 cfu/ml showed that the quick growth of the starters inhibited the growth of Listeria monocytogenes and Salmonella Enteritidis, as well as other enterobacteria. Denaturing gradient gel electrophoresis and 16S rRNA gene (V3-V4-region) amplicon sequencing showed that in the spontaneous fermentations a microbial succession took place, though with marked differences in biodiversity from fermentation to fermentation. The fermentations inoculated with starters however were clearly dominated by both the inoculated strains throughout the fermentations. RAPD-PCR fingerprinting showed that the strains established themselves at approx. equal proportions. Although vitamins C, B 1 and B 2 decreased during the fermentation, the final level of vitamin C in the product was an appreciable concentration of 35mg/100g. In conclusion, controlled fermentation of kale offers a promising avenue to prevent spoilage and improve the shelf life and safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [Characterization of kale (Brassica oberacea var acephala) under thallium stress by in situ attenuated total reflection FTIR].

    Science.gov (United States)

    Yao, Yan; Zhang, Ping; Wang, Zhen-Chun; Chen, Yong-Heng

    2009-01-01

    The experiment was designed based on consumption of carbon dioxide through the photosynthesis of Brassica oberacea var acephala leaf, and the photosynthesis of kale leaf under thallium stress was investigated by in situ attenuated total reflection FTIR (in situ ATR-FTIR). The ATR-FTIR showed that the absorption peaks of leaves had no obvious difference between plants growing in thallium stress soil and plants growing in non-thallium pollution soil, and the strong peaks at 3,380 cm(-1) could be assigned to the absorption of water, carbohydrate, protein or amide; the strong peaks at 2,916 and 2,850 cm(-1) assigned to the absorption of carbohydrate or aliphatic compound; the peaks at 1,640 cm(-1) assigned to the absorption of water. However, as detected by the in situ ATR-FTIR, the double peaks (negative peaks) at 2,360 and 2,340 cm(-1) that are assigned to the absorption of CO2 appeared and became high gradually. It was showed that kale was carrying photosynthesis. At the same time, the carbon dioxide consumption speed of leaf under thallium stress was obviously larger than that of the blank It was expressed that photosynthesis under thallium stress was stronger than the blank All these represented that kale had certain tolerance to the heavy metal thallium. Meanwhile, the carbon dioxide consumption of grown-up leaf was more than that of young leaf whether or not under thallium stress. It was also indicated that the intensity of photosynthesis in grown-up leaf is higher than that in young leaf.

  9. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; Loon, van J.J.A.; Dam, van N.M.; Vet, L.E.M.; Dicke, M.

    2010-01-01

    2. Here we studied the effect of early-season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to

  10. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains

    DEFF Research Database (Denmark)

    Oguntoyinbo, Folarin A; Cho, Gyu-Sung; Trierweiler, Bernhard

    2016-01-01

    Vegetables produced in Africa are sources of much needed micronutrients and fermentation is one way to enhance the shelf life of these perishable products. To prevent post-harvest losses and preserve African leafy vegetables, Lactobacillus plantarum BFE 5092 and Lactobacillus fermentum BFE 6620...... starter strains were investigated for their application in fermentation of African kale (Brassica carinata) leaves. They were inoculated at 1×10(7)cfu/ml and grew to a maximum level of 10(8)cfu/ml during 24h submerged fermentation. The strains utilized simple sugars (i.e., glucose, fructose, and sucrose......) in the kale to quickly reduce the pH from pH6.0 to pH3.6 within 24h. The strains continued to produce both d and l lactic acid up to 144h, reaching a maximum concentration of 4.0g/l. Fermentations with pathogens inoculated at 10(4)cfu/ml showed that the quick growth of the starters inhibited the growth...

  11. Molecular mapping of QTL alleles of Brassica oleracea affecting days to flowering and photosensitivity in spring Brassica napus.

    Science.gov (United States)

    Rahman, Habibur; Bennett, Rick A; Kebede, Berisso

    2018-01-01

    Earliness of flowering and maturity are important traits in spring Brassica napus canola-whether grown under long- or short-day condition. By use of a spring B. napus mapping population carrying the genome content of B. oleracea and testing this population under 10 to 18 h photoperiod and 18 to 20 0C (day) temperature conditions, we identified a major QTL on the chromosome C1 affecting flowering time without being influenced by photoperiod and temperature, and a major QTL on C9 affecting flowering time under a short photoperiod (10 h); in both cases, the QTL alleles reducing the number of days to flowering in B. napus were introgressed from the late flowering species B. oleracea. Additive effect of the C1 QTL allele at 14 to18 h photoperiod was 1.1 to 2.9 days; however, the same QTL allele exerted an additive effect of 6.2 days at 10 h photoperiod. Additive effect of the C9 QTL at 10 h photoperiod was 2.8 days. These two QTL also showed significant interaction in the control of flowering only under a short-day (10 h photoperiod) condition with an effect of 2.3 days. A few additional QTL were also detected on the chromosomes C2 and C8; however, none of these QTL could be detected under all photoperiod and temperature conditions. BLASTn search identified several putative flowering time genes on the chromosomes C1 and C9 and located the physical position of the QTL markers in the Brassica genome; however, only a few of these genes were found within the QTL region. Thus, the molecular markers and the genomic regions identified in this research could potentially be used in breeding for the development of early flowering photoinsensitive B. napus canola cultivars, as well as for identification of candidate genes involved in flowering time variation and photosensitivity.

  12. Role of phi cells and the endodermis under salt stress in Brassica oleracea.

    Science.gov (United States)

    Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E

    2009-01-01

    Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.

  13. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Harshavardhanan Vijayakumar

    2016-07-01

    Full Text Available Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18 are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS. Currently, understanding of their function(s during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT and cold susceptible (CS lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.

  14. High-throughput multiplex cpDNA resequencing clarifies the genetic diversity and genetic relationships among Brassica napus, Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Qiao, Jiangwei; Cai, Mengxian; Yan, Guixin; Wang, Nian; Li, Feng; Chen, Binyun; Gao, Guizhen; Xu, Kun; Li, Jun; Wu, Xiaoming

    2016-01-01

    Brassica napus (rapeseed) is a recent allotetraploid plant and the second most important oilseed crop worldwide. The origin of B. napus and the genetic relationships with its diploid ancestor species remain largely unresolved. Here, chloroplast DNA (cpDNA) from 488 B. napus accessions of global origin, 139 B. rapa accessions and 49 B. oleracea accessions were populationally resequenced using Illumina Solexa sequencing technologies. The intraspecific cpDNA variants and their allelic frequencies were called genomewide and further validated via EcoTILLING analyses of the rpo region. The cpDNA of the current global B. napus population comprises more than 400 variants (SNPs and short InDels) and maintains one predominant haplotype (Bncp1). Whole-genome resequencing of the cpDNA of Bncp1 haplotype eliminated its direct inheritance from any accession of the B. rapa or B. oleracea species. The distribution of the polymorphism information content (PIC) values for each variant demonstrated that B. napus has much lower cpDNA diversity than B. rapa; however, a vast majority of the wild and cultivated B. oleracea specimens appeared to share one same distinct cpDNA haplotype, in contrast to its wild C-genome relatives. This finding suggests that the cpDNA of the three Brassica species is well differentiated. The predominant B. napus cpDNA haplotype may have originated from uninvestigated relatives or from interactions between cpDNA mutations and natural/artificial selection during speciation and evolution. These exhaustive data on variation in cpDNA would provide fundamental data for research on cpDNA and chloroplasts. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Changes in mouse gastrointestinal microbial ecology with ingestion of kale.

    Science.gov (United States)

    Uyeno, Y; Katayama, S; Nakamura, S

    2014-09-01

    Kale, a cultivar of Brassica oleracea, has attracted a great deal of attention because of its health-promoting effects, which are thought to be exerted through modulation of the intestinal microbiota. The present study was performed to investigate the effects of kale ingestion on the gastrointestinal microbial ecology of mice. 21 male C57BL/6J mice were divided into three groups and housed in a specific pathogen-free facility. The animals were fed either a control diet or experimental diets supplemented with different commercial kale products for 12 weeks. Contents of the caecum and colon of the mice were processed for the determination of active bacterial populations by a bacterial rRNA-based quantification method and short-chain fatty acids by HPLC. rRNAs of Bacteroides-Prevotella, the Clostridium coccoides-Eubacterium rectale group, and Clostridium leptum subgroup constituted the major fraction of microbiota regardless of the composition of the diet. The ratio of Firmicutes to Bacteroidetes was higher in the colon samples of one of the kale diet groups than in the control. The colonic butyrate level was also higher with the kale-supplemented diet. Overall, the ingestion of kale tended to either increase or decrease the activity of specific bacterial groups in the mouse gastrointestinal tract, however, the effect might vary depending on the nutritional composition.

  16. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Lee, Kyeong-Ryeol; In Sohn, Soo; Jung, Jin Hee; Kim, Sun Hee; Roh, Kyung Hee; Kim, Jong-Bum; Suh, Mi Chung; Kim, Hyun Uk

    2013-12-01

    Fatty acid desaturase 2 (FAD2), which resides in the endoplasmic reticulum (ER), plays a crucial role in producing linoleic acid (18:2) through catalyzing the desaturation of oleic acid (18:1) by double bond formation at the delta 12 position. FAD2 catalyzes the first step needed for the production of polyunsaturated fatty acids found in the glycerolipids of cell membranes and the triacylglycerols in seeds. In this study, four FAD2 genes from amphidiploid Brassica napus genome were isolated by PCR amplification, with their enzymatic functions predicted by sequence analysis of the cDNAs. Fatty acid analysis of budding yeast transformed with each of the FAD2 genes showed that whereas BnFAD2-1, BnFAD2-2, and BnFAD2-4 are functional enzymes, and BnFAD2-3 is nonfunctional. The four FAD2 genes of B. napus originated from synthetic hybridization of its diploid progenitors Brassica rapa and Brassica oleracea, each of which has two FAD2 genes identical to those of B. napus. The BnFAD2-3 gene of B. napus, a nonfunctional pseudogene mutated by multiple nucleotide deletions and insertions, was inherited from B. rapa. All BnFAD2 isozymes except BnFAD2-3 localized to the ER. Nonfunctional BnFAD2-3 localized to the nucleus and chloroplasts. Four BnFAD2 genes can be classified on the basis of their expression patterns. © 2013.

  17. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Jonathan P Green

    Full Text Available Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates and abundance of specialist lepidopteran (Pieris rapae and hemipteran (Brevicoryne brassicae herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour.

  18. Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea.

    Directory of Open Access Journals (Sweden)

    Perumal Sampath

    Full Text Available Miniature inverted-repeat transposable elements (MITEs are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5 were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1 were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.

  19. Antioxidant potency of white (Brassica oleracea L. var. capitata) and Chinese (Brassica rapa L. var. pekinensis (Lour.)) cabbage: The influence of development stage, cultivar choice and seed selection

    Czech Academy of Sciences Publication Activity Database

    Šamec, D.; Piljac-Žegarac, J.; Bogovic, M.; Habjanic, K.; Grúz, Jiří

    2011-01-01

    Roč. 128, č. 2 (2011), s. 78-83 ISSN 0304-4238 R&D Projects: GA AV ČR KAN200380801; GA ČR GA301/08/1649 Institutional research plan: CEZ:AV0Z50380511 Keywords : Antimicrobial activity * Antioxidant capacity * Brassica oleracea L. var. capitata * rapa L. var. pekinensis Lour * Cabbage Subject RIV: EF - Botanics Impact factor: 1.527, year: 2011

  20. EFFECTS OF INORGANIC AND ORGANIC FERTILIZERS ON GROWTH AND PRODUCTION OF BROCOLI (BRASSICA OLERACEA L.

    Directory of Open Access Journals (Sweden)

    Hala Kandil

    2009-10-01

    Full Text Available A field experiment was conducted in research and production station, El- Nubaria location, National Research Centre, Egypt during winter season, 2008, to study the effect of different solution fertilizers formula and organic manure on vegetative growth, heads yield quantity and quality as well as nutrient composition of broccoli (Brassica oleracea var. italica.The obtained results showed that all mineral solution fertilizers gave a significant synergistic effect for broccoli growth, yield quantity and quality as well as nutrients composition compared the control (mineral N, P, K recommended fertilizers. The mineral formula 19: 19: 19 recorded the highest growth heads, yield and quality along with mineral content in broccoli. Using farmyard manure plus inorganic fertilizers enhanced all growth and yield parameters. Applying farmyard manure plus the mineral solution fertilizer formula 19: 19: 19 caused the superior and optimum figures of broccoli growth, mineral composition as well as heads yield quantity and quality. Organic manure alone recorded the lowest one.

  1. Effect of Deinococcus radiodurans on uptake of 134Cs by Brassica oleracea

    International Nuclear Information System (INIS)

    Zhu Cong; Guo Jiangfeng

    2008-01-01

    Deinococcus radiodurans was inoculated into the soil which was spiked with 134 Cs to investigate its effect on chemical speciation of 134 Cs. The relationship between chemical speciation of 134 Cs and its absorbtion capacity by cabbage (Brassica oleracea) in the presence of D. radiodurans was also investigated. The results showed that an increase of 28.64%-38.17 % in content of 134 Cs in residual phase was observed with presence of D. radiodurans in comparison with the aseptic control. The amounts of radiocesium uptaken by cabbage were about 12100Bq/g under aseptic conditions, however, which were about 8500Bq/g with the presence of D. radiodurans. The proportion of 134 Cs taken up by cabbage decreased about 29% in comparison with the aseptic control. The chemical speciation could be influenced by D. radiodurans so that its uptake by plants could be reduced. (authors)

  2. Structural analysis of an innate immunostimulant from broccoli, Brassica oleracea var. italica.

    Science.gov (United States)

    Urai, Makoto; Kataoka, Keiko; Nishida, Satoshi; Sekimizu, Kazuhisa

    2017-11-22

    Vegetables are eaten as part of a healthy diet throughout the world, and some are also applied topically as a traditional medicine. We evaluated the innate immunostimulating activities of hot water extracts of various vegetables using the silkworm muscle contraction assay system, and found that broccoli, Brassica oleracea var. italica, contains a strong innate immunostimulant. We purified the innate immunostimulant from broccoli, and characterized the chemical structure by chemical analyses and NMR spectroscopy. The innate immunostimulant comprised galacturonic acid, galactose, glucose, arabinose, and rhamnose, and had a pectic-like polysaccharide structure. To determine the structural motif involved in the innate immunostimulating activity, we modified the structure by chemical and enzymatic treatment, and found that the activity was attenuated by pectinase digestion. These findings suggest that a pectic-like polysaccharide purified from broccoli has innate immune-stimulating activity, for which the polygalacturonic acid structure is necessary.

  3. Identification of a novel MLPK homologous gene MLPKn1 and its expression analysis in Brassica oleracea.

    Science.gov (United States)

    Gao, Qiguo; Shi, Songmei; Liu, Yudong; Pu, Quanming; Liu, Xiaohuan; Zhang, Ying; Zhu, Liquan

    2016-09-01

    M locus protein kinase, one of the SRK-interacting proteins, is a necessary positive regulator for the self-incompatibility response in Brassica. In B. rapa, MLPK is expressed as two different transcripts, MLPKf1 and MLPKf2, and either isoform can complement the mlpk/mlpk mutation. The AtAPK1B gene has been considered to be the ortholog of BrMLPK, and AtAPK1B has no role in self-incompatibility (SI) response in A. thaliana SRK-SCR plants. Until now, what causes the MLPK and APK1B function difference during SI response in Brassica and A. thaliana SRKb-SCRb plants has remained unknown. Here, in addition to the reported MLPKf1/2, we identified the new MLPKf1 homologous gene MLPKn1 from B. oleracea. BoMLPKn1 and BoMLPKf1 shared nucleotide sequence identity as high as 84.3 %, and the most striking difference consisted in two fragment insertions in BoMLPKn1. BoMLPKn1 and BoMLPKf1 had a similar gene structure; both their deduced amino acid sequences contained a typical plant myristoylation consensus sequence and a Ser/Thr protein kinase domain. BoMLPKn1 was widely expressed in petal, sepal, anther, stigma and leaf. Genome-wide survey revealed that the B. oleracea genome contained three MLPK homologous genes: BoMLPKf1/2, BoMLPKn1 and Bol008343n. The B. rapa genome also contained three MLPK homologous genes, BrMLPKf1/2, BraMLPKn1 and Bra040929. Phylogenetic analysis revealed that BoMLPKf1/2 and BrMLPKf1/2 were phylogenetically more distant from AtAPK1A than Bol008343n, Bra040929, BraMLPKn1 and BoMLPKn1, Synteny analysis revealed that the B. oleracea chromosomal region containing BoMLPKn1 displayed high synteny with the A. thaliana chromosomal region containing APK1B, whereas the B. rapa chromosomal region containing BraMLPKn1 showed high synteny with the A. thaliana chromosomal region containing APK1B. Together, these results revealed that BoMLPKn1/BraMLPKn1, and not the formerly reported BoMLPKf1/2 (BrMLPKf1/2), was the orthologous genes of AtAPK1B, and no ortholog of Bo

  4. Phylogeny-dominant classification of J-proteins in Arabidopsis thaliana and Brassica oleracea.

    Science.gov (United States)

    Zhang, Bin; Qiu, Han-Lin; Qu, Dong-Hai; Ruan, Ying; Chen, Dong-Hong

    2018-04-05

    Hsp40s or DnaJ/J-proteins are evolutionarily conserved in all organisms as co-chaperones of molecular chaperone HSP70s that mainly participate in maintaining cellular protein homeostasis, such as protein folding, assembly, stabilization, and translocation under normal conditions as well as refolding and degradation under environmental stresses. It has been reported that Arabidopsis J-proteins are classified into four classes (types A-D) according to domain organization, but their phylogenetic relationships are unknown. Here, we identified 129 J-proteins in the world-wide popular vegetable Brassica oleracea, a close relative of the model plant Arabidopsis, and also revised the information of Arabidopsis J-proteins based on the latest online bioresources. According to phylogenetic analysis with domain organization and gene structure as references, the J-proteins from Arabidopsis and B. oleracea were classified into 15 main clades (I-XV) separated by a number of undefined small branches with remote relationship. Based on the number of members, they respectively belong to multigene clades, oligo-gene clades, and mono-gene clades. The J-protein genes from different clades may function together or separately to constitute a complicated regulatory network. This study provides a constructive viewpoint for J-protein classification and an informative platform for further functional dissection and resistant genes discovery related to genetic improvement of crop plants.

  5. Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency.

    Science.gov (United States)

    Navarro-León, Eloy; Albacete, Alfonso; Torre-González, Alejandro de la; Ruiz, Juan M; Blasco, Begoña

    2016-10-01

    Phytohormones, structurally diverse compounds, are involved in multiple processes within plants, such as controlling plant growth and stress response. Zn is an essential micronutrient for plants and its deficiency causes large economic losses in crops. Therefore, the purpose of this study was to analyse the role of phytohormones in the Zn-deficiency response of two economically important species, i.e. Lactuca sativa and Brassica oleracea. For this, these two species were grown hydroponically with different Zn-application rates: 10 μM Zn as control and 0.1 μM Zn as deficiency treatment and phytohormone concentration was determined by U-HPLC-MS. Zn deficiency resulted in a substantial loss of biomass in L. sativa plants that was correlated with a decline in growth-promoting hormones such as indole-3-acetic acid (IAA), cytokinins (CKs), and gibberellins (GAs). However these hormones increased or stabilized their concentrations in B. oleracea and could help to maintain the biomass in this species. A lower concentration of stress-signaling hormones such as ethylene precursor aminocyclopropane-1-carboxylic acid (ACC), abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) and also CKs might be involved in Zn uptake in L. sativa while a rise in GA4, isopentenyl adenine (iP), and ACC and a fall in JA and SA might contribute to a better Zn-utilization efficiency (ZnUtE), as observed in B. oleracea plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Antioxidant Enzyme Activities of some Brassica Species

    Directory of Open Access Journals (Sweden)

    Rodica SOARE

    2017-11-01

    Full Text Available This paper set out to comparatively study five species: white cabbage (Brassica oleracea L. var. capitata alba Alef., red cabbage (Brassica oleracea L. var. capitata f. rubra Alef., Kale (Brassica oleracea L. var. Acephala, cauliflower (Brassica oleracea var. botrytis and broccoli (Brassica oleracea var. cymosa in order to identify those with high enzymatic and antioxidant activities. The enzymatic activity of superoxide dismutase (SOD, catalase (CAT and soluble peroxidase (POX as well as the antioxidant activity against 2.2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS radical cation were determined. Total superoxide dismutase activity was measured spectrophotometrically based on inhibition in the photochemical reduction of nitroblue tetrazolium. Total soluble peroxidase was assayed by measuring the increase in A436 due to the guaiacol oxidation and the catalase activity was assayed through the colorimetric method. The capacity of extracts to scavenge the ABTS radical cation was assessed colorimetric using Trolox as a standard. The obtained results show that studied enzymatic activities and the antioxidant activity against ABTS vary depending on the analyzed species. So, among the studied Brassicaceae species, it emphasize red cabbage with the highest enzymatic activity (CAT 22.54 mM H2O2/min/g and POX 187.2 mM ΔA/1min/1g f.w. and kale with highest antioxidant activity, of 767 μmol TE/100g f.w. The results of this study recommendintroducing the studied varieties in diet due to the rich antioxidant properties.

  7. Effect of Calcium Chloride and Cooling on Post-Harvest Brussels Cabbage (Brassica Oleracea L.

    Directory of Open Access Journals (Sweden)

    Alfonso Rincón Pérez

    2014-11-01

    Full Text Available In recent years, the demand of crucifers has increased and particularly of Brussels sprouts (Brassica genus, species Brassica oleracea L.; mainly due to their functional properties; however, this vegetable is perishable and with inadequate techniques in postharvest handling, considerable losses are generated. The objective of this research was to determine the effect of calcium chloride and cooling on postharvest behavior of Brussels sprouts. A completely randomized design was performed, treatments corresponded to three storage temperatures (4°C, 8°C and temperature (18°C and three concentrations of calcium chloride (0%, 2% and 4% were used. Sprouts were harvested at commercial maturity on a farm irrigation district in Usochicamocha, Boyacá Department; of uniform size, excellent plant health and free from mechanical damage conditions. For 19 days of storage, weight loss, respiratory rate and total chlorophyll were measured. Sprouts stored at room temperature lasted 11days postharvest, while cooled lasted for 19 days. A significant effect in reducing weight loss between those sprouts which were stored at 4°C and 8°C and treated with calcium chloride solution at 4% was observed. For the respiratory rate was observed a significant reduction insprouts stored at 4°C. Therefore the most favorable temperature for the storage of Brussels sprouts is 4°C and calcium chloride solution 4%,useful information for producers and marketers.

  8. BoS: a large and diverse family of short interspersed elements (SINEs) in Brassica oleracea.

    Science.gov (United States)

    Zhang, Xiaoyu; Wessler, Susan R

    2005-05-01

    Short interspersed elements (SINEs) are nonautonomous non-LTR retrotransposons that populate eukaryotic genomes. Numerous SINE families have been identified in animals, whereas only a few have been described in plants. Here we describe a new family of SINEs, named BoS, that is widespread in Brassicaceae and present at approximately 2000 copies in Brassica oleracea. In addition to sharing a modular structure and target site preference with previously described SINEs, BoS elements have several unusual features. First, the head regions of BoS RNAs can adopt a distinct hairpin-like secondary structure. Second, with 15 distinct subfamilies, BoS represents one of the most diverse SINE families described to date. Third, several of the subfamilies have a mosaic structure that has arisen through the exchange of sequences between existing subfamilies, possibly during retrotransposition. Analysis of BoS subfamilies indicate that they were active during various time periods through the evolution of Brassicaceae and that active elements may still reside in some Brassica species. As such, BoS elements may be a valuable tool as phylogenetic makers for resolving outstanding issues in the evolution of species in the Brassicaceae family.

  9. Inhibitory effects of kale ingestion on metabolism by cytochrome P450 enzymes in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Yamada, Masayoshi; Uotsu, Nobuo; Teramoto, Sachiyuki; Takayanagi, Risa; Yamada, Yasuhiko

    2012-01-01

    Kale (Brassica oleracea L. var acephala DC) is a leafy green vegetable belonging to the cabbage family (Brassicaceae) that contains a large amount of health-promoting phytochemicals. There are any reports about the effects of kale ingestion on the chemoprevention function and mechanism, but the interactions between kale and drugs have not been researched. We investigated the effects of kale intake on cytochrome P450 (CYP) metabolism by using cocktail probe drugs, including midazolam (for CYP3A4), caffeine (for CYP1A2), dextromethorphan (for CYP2D6), tolbutamide (for CYP2C9), omeprazole (for CYP2C19), and chlorzoxazone (for CYP2E1). Cocktail drugs were administered into rats treated with kale and cabbage (2000 mg/kg) for a week. The results showed that kale intake induced a significant increase in plasma levels and the AUC of midazolam, caffeine, and dextromethorphan. In addition, the plasma concentration and AUC of omeprazole tended to increase. Additionally, no almost differences in the mRNA expression levels of CYP enzymes in the liver were observed. In conclusion, kale ingestion was considered to have an inhibitory effect on the activities of CYP3A4, 1A2, 2D6, and 2C19 for a reason competitive inhibition than inhibitory changes in the mRNA expressions.

  10. Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata

    Directory of Open Access Journals (Sweden)

    Wang Wanxing

    2012-10-01

    Full Text Available Abstract Background Brassica oleracea encompass a family of vegetables and cabbage that are among the most widely cultivated crops. In 2009, the B. oleracea Genome Sequencing Project was launched using next generation sequencing technology. None of the available maps were detailed enough to anchor the sequence scaffolds for the Genome Sequencing Project. This report describes the development of a large number of SSR and SNP markers from the whole genome shotgun sequence data of B. oleracea, and the construction of a high-density genetic linkage map using a double haploid mapping population. Results The B. oleracea high-density genetic linkage map that was constructed includes 1,227 markers in nine linkage groups spanning a total of 1197.9 cM with an average of 0.98 cM between adjacent loci. There were 602 SSR markers and 625 SNP markers on the map. The chromosome with the highest number of markers (186 was C03, and the chromosome with smallest number of markers (99 was C09. Conclusions This first high-density map allowed the assembled scaffolds to be anchored to pseudochromosomes. The map also provides useful information for positional cloning, molecular breeding, and integration of information of genes and traits in B. oleracea. All the markers on the map will be transferable and could be used for the construction of other genetic maps.

  11. Evaluation of the effects of gamma radiation in minimally processed vegetables of Brassica oleracea species

    International Nuclear Information System (INIS)

    Nunes, Thaise Cristine Fernandes

    2009-01-01

    The consumption of collard greens (Brassica oleracea cv. acephala) and broccoli (Brassica oleracea L. var. italica) has been inversely associated with morbidity and mortality caused by degenerative diseases. These species are highly consumed in Brazil, which enables its use as minimally processed (MP). The growing worldwide concern with the storage, nutritional quality and microbiological safety of food has led to many studies aimed at microbiological analysis, vitamin and shelf life. To improve the quality of these products, radiation processing can be effective in maintaining the quality of the product, rather compromising their nutritional values and sensory. The aim of this study was to evaluate the effectiveness of gamma radiation from 60 Co at doses of 0, 1.0 and 1.5 kGy on the reduction of microbiota in these plants, and analyze their nutritional and sensory characteristics. The methodology used in this study was microbiological analysis, colorimetric analysis, analysis of phenolic compounds, antioxidant analysis and sensory analysis. The microbiological analysis showed a decrease in the development of populations of aerobic microorganisms, psychotropic and yeast and mold with increasing doses of radiation. The sensory analysis showed no significant difference between different times of cooking analyzed. The analysis of phenolic compounds, significant differences between the samples, suggesting that with increasing dose of irradiation was an increase in the amount of phenolic compounds found in broccoli and collard greens MP. It can be observed that the sample of control collard greens showed high antioxidant activity and for the samples treated by irradiation was a decrease of percentage. In contrast the samples of broccoli show an increase in the rate of scavenging DPPH with increase of the dose of radiation. The colorimetric analysis revealed that for samples of MP collard greens and broccoli foil of no significant differences, but for samples of stems of

  12. Transcriptome Profiling of Resistance to Fusarium oxysporum f. sp. conglutinans in Cabbage (Brassica oleracea Roots.

    Directory of Open Access Journals (Sweden)

    Miaomiao Xing

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans (FOC is a destructive disease of Brassica crops, which results in severe yield losses. There is little information available about the mechanism of disease resistance. To obtain an overview of the transcriptome profiles in roots of R4P1, a Brassica oleracea variety that is highly resistant to fusarium wilt, we compared the transcriptomes of samples inoculated with FOC and samples inoculated with distilled water. RNA-seq analysis generated more than 136 million 100-bp clean reads, which were assembled into 62,506 unigenes (mean size = 741 bp. Among them, 49,959 (79.92% genes were identified based on sequence similarity searches, including SwissProt (29,050, 46.47%, Gene Ontology (GO (33,767, 54.02%, Clusters of Orthologous Groups (KOG (14,721, 23.55% and Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG (12,974, 20.76% searches; digital gene expression analysis revealed 885 differentially expressed genes (DEGs between infected and control samples at 4, 12, 24 and 48 hours after inoculation. The DEGs were assigned to 31 KEGG pathways. Early defense systems, including the MAPK signaling pathway, calcium signaling and salicylic acid-mediated hypersensitive response (SA-mediated HR were activated after pathogen infection. SA-dependent systemic acquired resistance (SAR, ethylene (ET- and jasmonic (JA-mediated pathways and the lignin biosynthesis pathway play important roles in plant resistance. We also analyzed the expression of defense-related genes, such as genes encoding pathogenesis-related (PR proteins, UDP-glycosyltransferase (UDPG, pleiotropic drug resistance, ATP-binding cassette transporters (PDR-ABC transporters, myrosinase, transcription factors and kinases, which were differentially expressed. The results of this study may contribute to efforts to identify and clone candidate genes associated with disease resistance and to uncover the molecular mechanism underlying

  13. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics.

    Science.gov (United States)

    Ali, Sajid; Shahbaz, Muhammad; Shahzad, Ahmad Naeem; Khan, Hafiz Azhar Ali; Anees, Moazzam; Haider, Muhammad Saleem; Fatima, Ammara

    2015-01-01

    Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata) to elevated Cu(2+) levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu(2+) levels, although it was substantially decreased at ≥5 µ M Cu(2+) in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu(2+) indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu(2+) the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins).

  14. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata in hydroponics

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2015-08-01

    Full Text Available Arable soils are frequently subjected to contamination with copper as the consequence of imbalanced fertilization with manure and organic fertilizers and/or extensive use of copper-containing fungicides. In the present study, the exposure of stone-head cabbage (Brassica oleracea var. capitata to elevated Cu2+ levels resulted in leaf chlorosis and lesser biomass yield at ≥2 µ M. Root nitrate content was not statistically affected by Cu2+ levels, although it was substantially decreased at ≥5 µ M Cu2+ in the shoot. The decrease in nitrate contents can be related to lower nitrate uptake rates because of growth inhibition by Cu-toxicity. Shoot sulfate content increased strongly at ≥2 µ M Cu2+ indicating an increase in demand for sulfur under Cu stress. Furthermore, at ≥2 µM concentration, concentration of water-soluble non-protein thiol increased markedly in the roots and to a smaller level in the shoot. When exposed to elevated concentrations of Cu2+ the improved sulfate and water-soluble non-protein thiols need further studies for the evaluation of their direct relation with the synthesis of metal-chelating compounds (i.e., phytochelatins.

  15. Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-07-01

    With the advent of molecular biotechnology, plant genetic engineering techniques have opened an avenue for the genetic improvement of important vegetable crops. Vegetable crop productivity and quality are seriously affected by various biotic and abiotic stresses which destabilize rural economies in many countries. Moreover, absence of proper post-harvest storage and processing facilities leads to qualitative and quantitative losses. In the past four decades, conventional breeding has significantly contributed to the improvement of vegetable yields, quality, post-harvest life, and resistance to biotic and abiotic stresses. However, there are many constraints in conventional breeding, which can only be overcome by advancements made in modern biology. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop, of the family Brassicaceae; however, various biotic and abiotic stresses cause enormous crop yield losses during the commercial cultivation of broccoli. Thus, genetic engineering can be used as a tool to add specific characteristics to existing cultivars. However, a pre-requisite for transferring genes into plants is the availability of efficient regeneration and transformation techniques. Recent advances in plant genetic engineering provide an opportunity to improve broccoli in many aspects. The goal of this review is to summarize genetic transformation studies on broccoli to draw the attention of researchers and scientists for its further genetic advancement.

  16. Molecular Modeling of Myrosinase from Brassica oleracea: A Structural Investigation of Sinigrin Interaction

    Directory of Open Access Journals (Sweden)

    Sathishkumar Natarajan

    2015-12-01

    Full Text Available Myrosinase, which is present in cruciferous plant species, plays an important role in the hydrolysis of glycosides such as glucosinolates and is involved in plant defense. Brassicaceae myrosinases are diverse although they share common ancestry, and structural knowledge about myrosinases from cabbage (Brassica oleracea was needed. To address this, we constructed a three-dimensional model structure of myrosinase based on Sinapis alba structures using Iterative Threading ASSEmbly Refinement server (I-TASSER webserver, and refined model coordinates were evaluated with ProQ and Verify3D. The resulting model was predicted with β/α fold, ten conserved N-glycosylation sites, and three disulfide bridges. In addition, this model shared features with the known Sinapis alba myrosinase structure. To obtain a better understanding of myrosinase–sinigrin interaction, the refined model was docked using Autodock Vina with crucial key amino acids. The key nucleophile residues GLN207 and GLU427 were found to interact with sinigrin to form a hydrogen bond. Further, 20-ns molecular dynamics simulation was performed to examine myrosinase–sinigrin complex stability, revealing that residue GLU207 maintained its hydrogen bond stability throughout the entire simulation and structural orientation was similar to that of the docked state. This conceptual model should be useful for understanding the structural features of myrosinase and their binding orientation with sinigrin.

  17. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis).

    Science.gov (United States)

    Paolillo, D J; Garvin, D F; Parthasarathy, M V

    2004-12-01

    The Or mutation in cauliflower (Brassica oleracea L. var. botrytis) leads to abnormal accumulations of beta-carotene in orange chromoplasts, in tissues in which leucoplasts are characteristic of wild-type plants. Or chromoplasts were investigated by light microscopy of fresh materials and electron microscopy of glutaraldehyde- and potassium permanganate-fixed materials. Carotenoid inclusions in Or chromoplasts resemble those found in carrot root chromoplasts in their optical activity and angular shape. Electron microscopy revealed that the inclusions are made up of parallel, membrane-bound compartments. These stacks of membranes are variously rolled and folded into three-dimensional objects. We classify Or chromoplasts as "membranous" chromoplasts. The Or mutation also limits plastid replication so that a single chromoplast constitutes the plastidome in most of the affected cells. There are one to two chromoplasts in each cell of a shoot apex. The ability of differentiated chromoplasts to divide in the apical meristems of Or mutant plants resembles the ability of proplastids to maintain plastid continuity from cell to cell in meristems of Arabidopsis thaliana mutants in which plastid replication is drastically limited. The findings are used to discuss the number of levels of regulation involved in plastid replication.

  18. Purification and characterization of broccoli (Brassica oleracea var. italica) myrosinase (β-thioglucosidase glucohydrolase).

    Science.gov (United States)

    Mahn, Andrea; Angulo, Alejandro; Cabañas, Fernanda

    2014-12-03

    Myrosinase (β-thioglucosidase glucohydrolase, EC 3.2.1.147) from broccoli (Brassica oleracea var. italica) was purified by ammonium sulfate precipitation followed by concanavalin A affinity chromatography, with an intermediate dialysis step, resulting in 88% recovery and 1318-fold purification. These are the highest values reported for the purification of any myrosinase. The subunits of broccoli myrosinase have a molecular mass of 50-55 kDa. The native molecular mass of myrosinase was 157 kDa, and accordingly, it is composed of three subunits. The maximum activity was observed at 40 °C and at pH below 5.0. Kinetic assays demonstrated that broccoli myrosinase is subjected to substrate (sinigrin) inhibition. The Michaelis-Menten model, considering substrate inhibition, gave Vmax equal to 0.246 μmol min(-1), Km equal to 0.086 mM, and K(I) equal to 0.368 mM. This is the first study about purification and characterization of broccoli myrosinase.

  19. Evaluation of genotypic variation of broccoli (Brassica oleracea var. italic) in response to selenium treatment.

    Science.gov (United States)

    Ramos, Silvio J; Yuan, Youxi; Faquin, Valdemar; Guilherme, Luiz Roberto G; Li, Li

    2011-04-27

    Broccoli (Brassica oleracea var. italic) fortified with selenium (Se) has been promoted as a functional food. Here, we evaluated 38 broccoli accessions for their capacity to accumulate Se and for their responses to selenate treatment in terms of nutritional qualities and sulfur gene expresion. We found that the total Se content varied with over 2-fold difference among the leaf tissues of broccoli accessions when the plants were treated with 20 μM Na(2)SeO(4). Approximately half of total Se accumulated in leaves was Se-methylselenocysteine and selenomethionine. Transcriptional regulation of adenosine 5'-phosphosulfate sulfurylase and selenocysteine Se-methyltransferase gene expression might contribute to the different levels of Se accumulation in broccoli. Total glucosinolate contents were not affected by the concentration of selenate application for the majority of broccoli accessions. Essential micronutrients (i.e., Fe, Zn, Cu, and Mn) remained unchanged among half of the germplasm. Moreover, the total antioxidant capacity was greatly stimulated by selenate in over half of the accessions. The diverse genotypic variation in Se, glucosinolate, and antioxidant contents among accessions provides the opportunity to breed broccoli cultivars that simultaneously accumulate Se and other health benefit compounds.

  20. Proteomic analysis of broccoli (Brassica oleracea) under high temperature and waterlogging stresses.

    Science.gov (United States)

    Lin, Hsin-Hung; Lin, Kuan-Hung; Chen, Su-Ching; Shen, Yu-Hsing; Lo, Hsiao-Feng

    2015-12-01

    The production of broccoli (Brassica oleracea) is largely reduced by waterlogging and high temperature stresses. Heat-tolerant and heat-susceptible broccoli cultivars TSS-AVRDC-2 and B-75, respectively, were used for physiological and proteomic analyses. The objective of this study was to identify TSS-AVRDC-2 and B-75 proteins differentially regulated at different time periods in response to waterlogging at 40 °C for three days. TSS-AVRDC-2 exhibited significantly higher chlorophyll content, lower stomatal conductance, and better H 2 O 2 scavenging under stress in comparison to B-75. Two-dimensional liquid phase fractionation analyses revealed that Rubisco proteins in both varieties were regulated under stressing treatments, and that TSS-AVRDC-2 had higher levels of both Rubisco large and small subunit transcripts than B-75 when subjected to high temperature and/or waterlogging. This report utilizes physiological and proteomic approaches to discover changes in the protein expression profiles of broccoli in response to heat and waterlogging stresses. Higher levels of Rubisco proteins in TSS-AVRDC-2 could lead to increased carbon fixation efficiency to provide sufficient energy to enable stress tolerance under waterlogging at 40 °C.

  1. Compositional and proteomic analyses of genetically modified broccoli (Brassica oleracea var. italica) harboring an agrobacterial gene.

    Science.gov (United States)

    Liu, Mao-Sen; Ko, Miau-Hwa; Li, Hui-Chun; Tsai, Shwu-Jene; Lai, Ying-Mi; Chang, You-Ming; Wu, Min-Tze; Chen, Long-Fang O

    2014-08-28

    Previously, we showed improved shelf life for agrobacterial isopentenyltransferase (ipt) transgenic broccoli (Brassica oleracea var. italica), with yield comparable to commercial varieties, because of the protection mechanism offered by molecular chaperones and stress-related proteins. Here, we used proximate analysis to examine macronutrients, chemical and mineral constituents as well as anti-nutrient and protein changes of ipt-transgenic broccoli and corresponding controls. We also preliminarily assessed safety in mice. Most aspects were comparable between ipt-transgenic broccoli and controls, except for a significant increase in carbohydrate level and a decrease in magnesium content in ipt-transgenic lines 101, 102 and 103, as compared with non-transgenic controls. In addition, the anti-nutrient glucosinolate content was increased and crude fat content decreased in inbred control 104 and transgenic lines as compared with the parental control, "Green King". Gel-based proteomics detected more than 50 protein spots specifically found in ipt-transgenic broccoli at harvest and after cooking; one-third of these proteins showed homology to potential allergens that also play an important role in plant defense against stresses and senescence. Mice fed levels of ipt-transgenic broccoli mimicking the 120 g/day of broccoli eaten by a 60-kg human adult showed normal growth and immune function. In conclusion, the compositional and proteomic changes attributed to the transgenic ipt gene did not affect the growth and immune response of mice under the feeding regimes examined.

  2. Analysis and Antioxidant Activity of Extracts from Broccoli (Brassica oleracea L.) Sprouts.

    Science.gov (United States)

    Jang, Hae Won; Moon, Joon-Kwan; Shibamoto, Takayuki

    2015-02-04

    Samples prepared from fresh broccoli (Brassica oleracea L.) sprouts by water distillation or freeze-drying were examined for antioxidant activity using three assays. All samples exhibited dose-dependent antioxidant activity. The antioxidant activity ranged from 74.48 ± 0.46% (less volatile sample) to 93.2 ± 0.2% (dichloromethane extract sample) at the level of 500 μg/mL. Both dichloromethane extract samples from a water distillate of broccoli sprouts and freeze-dried broccoli sprouts showed potent antioxidant activity, which was comparable to that of BHT. Among the 43 compounds positively identified by gas chromatography-mass spectrometry, 5-methylthiopentylnitrile (31.64 μg/g) was found in the greatest concentration, followed by 4-methylthiobutylisothiocyanate (14.55 μg/g), 4-methylthiobutylnitrile (10.63 μg/g), 3-methylthiopropylisothiocyanate (3.00 μg/g), and 4-methylpentylisothiocyanate (2.48 μg/g). These isothiocyanates are known to possess antioxidant properties. Possible phenolic antioxidants found are 4-(1-methylpropyl)phenol (0.012 μg/g), 4-methylphenol (0.159 μg/g), and 2-methoxy-4-vinylphenol (0.009 μg/g). The present study demonstrates that broccoli sprouts are a good source of natural antioxidants.

  3. Effect of visible light treatments on postharvest senescence of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    Büchert, Agustin M; Gómez Lobato, Maria E; Villarreal, Natalia M; Civello, Pedro M; Martínez, Gustavo A

    2011-01-30

    Broccoli (Brassica oleracea L.) is a rapidly perishable vegetable crop. Several postharvest treatments have been applied in order to delay de-greening. Since light has been shown to have an effect on pigment accumulation during development and darkness is known to induce senescence, the effect of continuous and periodic exposure to low-intensity white light at 22 °C on postharvest senescence of broccoli heads was assayed. Exposure to a constant dose of 12 micromol m(-2) s(-1) was selected as the most suitable treatment and was employed for subsequent experiments. During the course of the treatments, hue and L* values as well as chlorophyll content and visual observation of florets indicated an evident delay in yellowing in treated samples compared with controls. No statistically significant differences in total protein content were found, but soluble protein content was higher in treated samples. Total and reducing sugar as well as starch levels decreased during postharvest senescence, with lower values in control samples. The results of this study indicate that storage under continuous low-intensity light is an efficient and low-cost treatment that delays postharvest senescence while maintaining the quality of harvested broccoli florets. 2010 Society of Chemical Industry.

  4. In vivo examination of the anticoagulant effect of the Brassica oleracea methanol extract

    Directory of Open Access Journals (Sweden)

    Khan Rafeeq Alam

    2015-01-01

    Full Text Available The anticoagulant effect of the methanol extract of Brassica oleracea var. capitata (MEB was examined in rabbits. The animals were divided into five groups, each comprising seven animals. Three groups were administered increasing doses of MEB (200, 300, and 500 mg/kg, respectively; one group received warfarin (0.54 mg/kg; animals in the control group received saline (1 ml/day equivalent to the volume of doses applied to the treated and standard animals. Biochemical tests were performed on the 16th and 31st days of dosing. Animals that were administered MEB (500 mg MEB/kg 30 days displayed increases of 24.07 s, 28.79 s and 4.08 s in activated partial thromboplastin (aPTT, fibrinogen (Fg and thrombin time (TT. Compared to the control, the increase in aPTT and Fg was highly significant and the increase in TT was significant. The anticoagulant effect exhibited by MEB in rabbits may be due to inactivation or inhibition of factors affecting coagulation.

  5. Purification and characterization of peroxidase from cauliflower (Brassica oleracea L. var. botrytis) buds.

    Science.gov (United States)

    Köksal, Ekrem; Gülçin, Ilhami

    2008-01-01

    Peroxidases (EC 1.11.1.7; donor: hydrogen peroxide oxidoreductase) are part of a large group of enzymes. In this study, peroxidase, a primer antioxidant enzyme, was purified with 19.3 fold and 0.2% efficiency from cauliflower (Brassica oleracea L.) by ammonium sulphate precipitation, dialysis, CM-Sephadex ion-exchange chromatography and Sephadex G-25 purification steps. The substrate specificity of peroxidase was investigated using 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) (ABTS), 2-methoxyphenol (guaiacol), 1,2-dihydroxybenzene (catechol), 1,2,3-trihyidroxybenzene (pyrogallol) and 4-methylcatechol. Also, optimum pH, optimum temperature, optimum ionic strength, stable pH, stable temperature, thermal inactivation conditions were determined for guaiacol/H(2)O(2), pyrogallol/H(2)O(2), ABTS/H(2)O(2), catechol/H(2)O(2) and 4-methyl catechol/H(2)O(2) substrate patterns. The molecular weight (M(w)) of this enzyme was found to be 44 kDa by gel filtration chromatography method. Native polyacrylamide gel electrophoresis (PAGE) was performed for isoenzyme determination and a single band was observed. K(m) and V(max) values were calculated from Lineweaver-Burk graph for each substrate patterns.

  6. Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia

    2007-01-01

    Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.

  7. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics.

    Science.gov (United States)

    Wang, Ya-Qin; Hu, Li-Ping; Liu, Guang-Min; Zhang, De-Shuang; He, Hong-Ju

    2017-07-27

    Chinese kale ( Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.

  8. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    Science.gov (United States)

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  9. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables.

    Science.gov (United States)

    Zhang, Xiaohui; Liu, Tongjin; Li, Xixiang; Duan, Mengmeng; Wang, Jinglei; Qiu, Yang; Wang, Haiping; Song, Jiangping; Shen, Di

    2016-01-04

    Brassica oleracea and B. rapa are two important vegetable crops. Both are composed of dozens of subspecies encompassing hundreds of varieties and cultivars. Synthetic B. napus with these two plants has been used extensively as a research model for the investigation of allopolyploid evolution. However, the mechanism underlying the explosive evolution of hundreds of varieties of B. oleracea and B. rapa within a short period is poorly understood. In the present study, interspecific hybridization between B. oleracea var. alboglabra and B. rapa var. purpurea was performed. The backcross progeny displayed extensive morphological variation, including some individuals that phenocopied subspecies other than their progenitors. Numerous interesting novel phenotypes and mutants were identified among the backcross progeny. The chromosomal recombination between the A and C genomes and the chromosomal asymmetric segregation were revealed using Simple Sequence Repeats (SSR) markers. These findings provide direct evidence in support of the hypothesis that interspecific hybridization and backcrossing have played roles in the evolution of the vast variety of vegetables among these species and suggest that combination of interspecific hybridization and backcrossing may facilitate the development of new mutants and novel phenotypes for both basic research and the breeding of new vegetable crops.

  10. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Waksmundzka-Hajnos, Monika; Nowak, Renata; Polak, Renata

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale (Brassica oleracea L. var. sabellica)—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity. PMID:29507816

  11. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale

    Directory of Open Access Journals (Sweden)

    Kamila Kasprzak

    2018-01-01

    Full Text Available Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8% of kale (Brassica oleracea L. var. sabellica—a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans-caffeic, cis-caffeic, trans-p-coumaric, cis-p-coumaric, trans-ferulic, cis-ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans-sinapic, and cis-sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea. Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol’s activity.

  12. Phenolic Acid Content and Antioxidant Properties of Extruded Corn Snacks Enriched with Kale.

    Science.gov (United States)

    Kasprzak, Kamila; Oniszczuk, Tomasz; Wójtowicz, Agnieszka; Waksmundzka-Hajnos, Monika; Olech, Marta; Nowak, Renata; Polak, Renata; Oniszczuk, Anna

    2018-01-01

    Prohealth food contains specific components which have positive influence on the health and well-being of the consumer. An important position among bioactive compounds occurs for polyphenols. Many results have indicated that an increased intake of phenolic compounds may reduce the risk of cardiovascular diseases and type 2 diabetes. The objective of the study was production of extruded corn snacks with addition (0, 2, 4, 6, and 8%) of kale ( Brassica oleracea L. var. sabellica )-a polyphenol-rich plant. Afterwards, high-performance liquid chromatography-mass spectrometry (LC-ESI-MS/MS) and antioxidant activity analyses of snack extracts were performed. In the corn snacks enriched with kale, fifteen phenolic acids were indicated. These were protocatechuic, 4-OH-benzoic, vanillic, trans -caffeic, cis -caffeic, trans -p-coumaric, cis -p-coumaric, trans -ferulic, cis -ferulic, salicylic, gentisic, syringic, 3-OH-cinnamic, trans -sinapic, and cis -sinapic acids. Both the qualitative and quantitative content of polyphenols increased with the addition of B. oleracea . Data from spectrophotometric analyses of the samples showed high DPPH radical scavenging potential of snacks enriched with 4, 6, and 8% of kale. Snacks enriched with kale contain high level of phenolic acids and, therefore, have great potential to make a valuable source of natural antioxidants. High-temperature short-time extrusion-cooking process had no negative impact on polyphenol's activity.

  13. Fine Mapping and Transcriptome Analysis Reveal Candidate Genes Associated with Hybrid Lethality in Cabbage (Brassica Oleracea).

    Science.gov (United States)

    Xiao, Zhiliang; Hu, Yang; Zhang, Xiaoli; Xue, Yuqian; Fang, Zhiyuan; Yang, Limei; Zhang, Yangyong; Liu, Yumei; Li, Zhansheng; Liu, Xing; Liu, Zezhou; Lv, Honghao; Zhuang, Mu

    2017-06-05

    Hybrid lethality is a deleterious phenotype that is vital to species evolution. We previously reported hybrid lethality in cabbage ( Brassica oleracea ) and performed preliminary mapping of related genes. In the present study, the fine mapping of hybrid lethal genes revealed that BoHL1 was located on chromosome C1 between BoHLTO124 and BoHLTO130, with an interval of 101 kb. BoHL2 was confirmed to be between insertion-deletion (InDels) markers HL234 and HL235 on C4, with a marker interval of 70 kb. Twenty-eight and nine annotated genes were found within the two intervals of BoHL1 and BoHL2 , respectively. We also applied RNA-Seq to analyze hybrid lethality in cabbage. In the region of BoHL1 , seven differentially expressed genes (DEGs) and five resistance (R)-related genes (two in common, i.e., Bo1g153320 and Bo1g153380 ) were found, whereas in the region of BoHL2 , two DEGs and four R-related genes (two in common, i.e., Bo4g173780 and Bo4g173810 ) were found. Along with studies in which R genes were frequently involved in hybrid lethality in other plants, these interesting R-DEGs may be good candidates associated with hybrid lethality. We also used SNP/InDel analyses and quantitative real-time PCR to confirm the results. This work provides new insight into the mechanisms of hybrid lethality in cabbage.

  14. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Tian, Ming; Hui, Maixia; Thannhauser, Theodore W; Pan, Siyi; Li, Li

    2017-01-01

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S) and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli ( Brassica oleracea L. var. italica ) growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  15. Antioxidative and antitumor properties of in vitro-cultivated broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Cakar, Jasmina; Parić, Adisa; Maksimović, Milka; Bajrović, Kasim

    2012-02-01

    Broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)] contains substantial quantities of bioactive compounds, which are good free radical scavengers and thus might have strong antitumor properties. Enhancing production of plant secondary metabolites could be obtained with phytohormones that have significant effects on the metabolism of secondary metabolites. In that manner, in vitro culture presents good model for manipulation with plant tissues in order to affect secondary metabolite production and thus enhance bioactive properties of plants. Estimation of the antioxidative and antitumor properties of broccoli cultivated in different in vitro conditions. In vitro germinated and cultivated broccoli seedlings, as well as spontaneously developed calli, were subjected to Soxhlet extraction. Antioxidative activity of the herbal extracts was determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)) radical method. Antitumor properties of the extracts were determined using crown-gall tumor inhibition (potato disc) assay. Three, 10, 20, and 30 days old broccoli seedlings, cultivated in vitro on three different Murashige-Skoog media, two types of callus, and seedlings from sterile filter paper were used for extraction. In total, 15 aqueous extracts were tested for antioxidative and antitumor potential. Three day-old seedlings showed the highest antioxidative activity. Eleven out of 15 aqueous extracts demonstrated above 50% of crown-gall tumor inhibition in comparison with the control. Tumor inhibition was in association with types and concentrations of phytohormones presented in growing media. It is demonstrated that phytohormones in plant-growing media could affect the bioactive properties of broccoli either through increasing or decreasing their antioxidative and antitumor potential.

  16. Broccoli (Brassica oleracea) Reduces Oxidative Damage to Pancreatic Tissue and Combats Hyperglycaemia in Diabetic Rats.

    Science.gov (United States)

    Suresh, Sithara; Waly, Mostafa Ibrahim; Rahman, Mohammad Shafiur; Guizani, Nejib; Al-Kindi, Mohamed Abdullah Badar; Al-Issaei, Halima Khalfan Ahmed; Al-Maskari, Sultan Nasser Mohd; Al-Ruqaishi, Bader Rashid Said; Al-Salami, Ahmed

    2017-12-01

    Oxidative stress plays a pivotal role in the development of diabetes and hyperglycaemia. The protective effects of natural extracts against diabetes are mainly dependent on their antioxidant and hypoglycaemic properties. Broccoli ( Brassica oleracea ) exerts beneficial health effects in several diseases including diabetes; however, the mechanism has not been elucidated yet. The present study was carried out to evaluate the potential hypoglycaemic and antioxidant properties of aqueous broccoli extracts (BEs) in diabetic rats. Streptozotocin (STZ) drug was used as a diabetogenic agent in a single intraperitoneal injection dose of 50 mg/kg body weight. The blood glucose level for each rat was measured twice a week. After 8 weeks, all animals were fasted overnight and sacrificed; pancreatic tissues were homogenized and used for measuring oxidative DNA damage, biochemical assessment of glutathione (GSH), and total antioxidant capacity (TAC) as well as histopathological examination for pancreatic tissues was examined. Diabetic rats showed significantly higher levels of DNA damage, GSH depletion, and impaired TAC levels in comparison to non-diabetics ( P <0.05). The treatment of diabetic rats with BE significantly reduced DNA damage and conserved GSH and TAC values ( P <0.01). BE attenuated pancreatic histopathological changes in diabetic rats. The results of this study indicated that BE reduced the STZ mediated hyperglycaemia and the STZ-induced oxidative injury to pancreas tissue. The used in vivo model confirmed the efficacy of BE as an anti-diabetic herbal medicine and provided insights into the capacity of BE to be used for phytoremediation purposes for human type 2 diabetes.

  17. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    Science.gov (United States)

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  18. Two novel bioactive glucosinolates from Broccoli (Brassica oleracea L. var. italica) florets.

    Science.gov (United States)

    Survay, Nazneen Shaik; Kumar, Brajesh; Jang, Mi; Yoon, Do-Young; Jung, Yi-Sook; Yang, Deok-Chun; Park, Se Won

    2012-09-01

    Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20 mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5 mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625 μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625 μg/mL and <1250 μg/mL, respectively, when compared to ampicillin (IC(50) ≤ 39 μg/mL) as a positive control. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Selenium-Induced Toxicity Is Counteracted by Sulfur in Broccoli (Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2017-08-01

    Full Text Available Selenium (Se is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se is an analog of sulfur (S and can be toxic to plants, its effect on plant growth is expected to be greatly affected by S nutrition. However, this remains to be further understood. Here, we evaluated the influence of Se treatments on broccoli (Brassica oleracea L. var. italica growth when S was withheld from the growth nutrient solution. We found that Se was highly toxic to plants when S nutrition was poor. In contrast to Se treatments with adequate S nutrition that slightly reduced broccoli growth, the same concentration of Se treatments without S supplementation dramatically reduced plant sizes. Higher Se toxicity was observed with selenate than selenite under low S nutrition. We examined the bases underlying the toxicity. We discovered that the high Se toxicity in low S nutrition was specifically associated with an increased ratio of Se in proteins verse total Se level, enhanced generation of reactive oxygen species, elevated lipid peroxidation causing increased cell membrane damage, and reduced antioxidant enzyme activities. Se toxicity could be counteracted with increased supplementation of S, which is likely through decreasing non-specific integration of Se into proteins and altering the redox system. The present study provides information for better understanding of Se toxicity and shows that adequate S nutrition is important to prevent Se toxicity during biofortification of crops by Se fertilization.

  20. Ultrastructural response of cabbage outer leaf mesophyll cells (Brassica oleracea L. to excess of nickel

    Directory of Open Access Journals (Sweden)

    Jolanta Molas

    2014-01-01

    Full Text Available Changes in the structure and in the ultrastructure of cabbage outer leaf mesophyll cells [Brassica oleracea L.] cv. Sława from Enkhouizen were examined by means of light and electron microscopy. The examined plants were grown on the basic Murashige and Skoog medium with addition of excesive concentrations of nickel (added as NiSO4 x 7H2O,i.e. Ni 5, Ni 10 and Ni 20 mg/dm3. In Ni 5 mg samples mainly adaptation changes to the conditions of stress were observed. These changes were manifested by the increase of cytoplasm content and by cytoplasm vacuolization, by the increase of nucleus and nucleous volume, nucleolus vacuolization, the increase of plasmalemma invaginations and of the amount of rough ER, by the central arrangement of smooth ER and of the thylakoids of chloroplasts; it was also shown by the growth of the number of mitochondria and of peroxisomes in the cell. In Ni 10 mg samples, apart from adaptation changes, such as the increase of the nucleus volume, increase of plasmalemma invaginations, cytoplasm and nucleolus vacuolization, degeneration changes were also observed. They concerned mainly the nucleus (the increasing amount of condensed chromatin, ER (swelling and fragmentation of rER and sER, mitochondrium (swelling and reduction of cristae, Golgi apparatus (disintegration and decay and chloroplasts (changes of shape, swelling and reduction of thylakoids, disappearance of starch and presence of big plastoglobuli. In Ni 20 mg samples cell protoplasts were in different stages of degeneration and the cell organelles that were identifiable, were usually damaged.

  1. Preliminary Study of the Characteristics of Several Glossy Cabbage (Brassica oleracea var. capitata L. Mutants

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-09-01

    Full Text Available To determine the characteristics and potential practical applications of glossy cabbage (Brassica oleracea var. capitata L. mutants, five different glossy mutants were studied. The amount of epicuticular wax covering the mutant leaves was only approximately 30% that of the wild-type (WT leaves. The wax crystals of WT plants were columnar and linear, while they were granular and rod-shaped in the mutants. Additionally, in WT cabbage, the primary wax components were alkanes, alcohols, fatty acids, ketones, and aldehydes. There was a significant decrease in the abundance of alkanes and ketones in the wax of the mutants. The glossy-green trait of the mutants may be the result of an inhibited alkane-forming pathway. Higher rates of chlorophyll leaching and water loss demonstrate that the mutant leaves were more permeable and sensitive to drought stress than the WT leaves. Growth curve results indicated that the growth rate of mutant-1 and mutant-3 was slower than that of the corresponding WT cabbage, resulting in shorter plants. However, the growth rate of mutant-2 was not influenced by the lack of coating wax. An investigation of the agronomic traits and heterosis of the glossy cabbage mutants indicated that all five mutants had glossy-green leaves, which was a favorable characteristic. The F1 plants derived from crosses involving mutant-2 exhibited obvious heterosis, suggesting the observed glossy-green trait is controlled by a dominant gene. Therefore, mutant-2 may be useful as a source of genetic material for future cabbage breeding experiments.

  2. The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Everaarts, A.P.; Willigen, de P.

    1999-01-01

    The effect of the rate and method of nitrogen application on nitrogen uptake and utilization by broccoli (Brassica oleracea var. italica) was studied in four field experiments. The methods of application were broadcast application vs band placement and split application. Maximum uptake of nitrogen

  3. Assessing the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (brassica oleracea L. var. italica) sprouts and florets

    Science.gov (United States)

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se ...

  4. PENERAPAN PANJANG TALANG DAN JARAK TANAM DENGAN SISTEM HIDROPONIK NFT (Nutrient Film Technique PADA TANAMAN KAILAN (Brassica oleraceae var. alboglabra

    Directory of Open Access Journals (Sweden)

    Daviv Zali Vidianto

    2013-09-01

    Full Text Available Kailan vegetables is one kind of high economic value that can be grown in hydroponic NFT (Nutrient Film Technique. The purpose of this study to determine the effect of chamfer length and spacing of the system hydroponic NFT (Nutrient Film Technique on the growth and yield kailan (Brassica oleraceae var. Alboglabra. The research has been done in the greenhouse of the Faculty of Agriculture, University Department Agroekoteknologi Trunojoyo Madura District Kamal village Telang Bangkalan. Tat is was conducted in February-May 2012. Research using methods completely randomized design (CRD with non factorial treatment chamfer length 2 m with spacing of 15 cm (P1J1, chamfer length 2 m with spacing of 20 cm (P1J2, chamfer length of 4 m with spacing of 15 cm (P2J1 and chamfer length of 4 m with spacing of 20 cm (P2J2. The materials used are kailan seeds, fertilizers and hydroponics Goodplant acetic acid (CH3COOH. Observations were analyzed using analysis of variance and Duncan continued Test Distance (UJD level of 5%. P1J1 (chamfer length of 2 meters and 15 cm plant spacing gives the best effect on the variable root length, number of leaves and plant canopy wet weight. The treatment does’n effect to variable leaf area, root wet weight, dry weight, and root dry weight of the plant canopyKeyword : Brassica oleraceae var. Alboglabra, hydroponik NFT, chamfer length and spacing

  5. In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.

    Science.gov (United States)

    Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda

    2018-02-21

    Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.

  6. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.).

    Science.gov (United States)

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-06-01

    The effects of CO(2) enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO(2) concentration was elevated from 350 to 800 microl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO(2) concentration, N concentration, and CO(2)xN interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO(2). However, at 20 mmol N/L, elevated CO(2) had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO(2) concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO(2) concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO(2) condition.

  7. Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinese kale (Brassica alboglabra L.)*

    Science.gov (United States)

    La, Gui-xiao; Fang, Ping; Teng, Yi-bo; Li, Ya-juan; Lin, Xian-yong

    2009-01-01

    The effects of CO2 enrichment on the growth and glucosinolate (GS) concentrations in the bolting stem of Chinese kale (Brassica alboglabra L.) treated with three nitrogen (N) concentrations (5, 10, and 20 mmol/L) were investigated. Height, stem thickness, and dry weights of the total aerial parts, bolting stems, and roots, as well as the root to shoot ratio, significantly increased as CO2 concentration was elevated from 350 to 800 μl/L at each N concentration. In the edible part of the bolting stem, 11 individual GSs were identified, including 7 aliphatic and 4 indolyl GSs. GS concentration was affected by the elevated CO2 concentration, N concentration, and CO2×N interaction. At 5 and 10 mmol N/L, the concentrations of aliphatic GSs and total GSs significantly increased, whereas those of indolyl GSs were not affected, by elevated atmospheric CO2. However, at 20 mmol N/L, elevated CO2 had no significant effects on the concentrations of total GSs and total indolyl GSs, but the concentrations of total aliphatic GSs significantly increased. Moreover, the bolting stem carbon (C) content increased, whereas the N and sulfur (S) contents decreased under elevated CO2 concentration in the three N treatments, resulting in changes in the C/N and N/S ratios. Also the C/N ratio is not a reliable predictor of change of GS concentration, while the changes in N and S contents and the N/S ratio at the elevated CO2 concentration may influence the GS concentration in Chinese kale bolting stems. The results demonstrate that high nitrogen supply is beneficial for the growth of Chinese kale, but not for the GS concentration in bolting stems, under elevated CO2 condition. PMID:19489111

  8. Simulation of the process kinetics and analysis of physicochemical properties in the freeze drying of kale

    Science.gov (United States)

    Dziki, Dariusz; Polak, Renata; Rudy, Stanisław; Krzykowski, Andrzej; Gawlik-Dziki, Urszula; Różyło, Renata; Miś, Antoni; Combrzyński, Maciej

    2018-01-01

    Investigations were performed to study the freeze-drying process of kale (Brassica oleracea L. var acephala). The process of freeze-drying was performed at temperatures of 20, 40, and 60°C for whole pieces of leaves and for pulped leaves. The kinetics of the freeze-drying of both kale leaves and kale pulp were best described by the Page model. The increasing freeze-drying temperature from 20 to 60°C induced an approximately two-fold decrease in the drying time. Freeze-drying significantly increased the value of the lightness, delta Chroma, and browning index of kale, and had little influence on the hue angle. The highest increase in the lightness and delta Chroma was observed for whole leaves freeze-dried at 20°C. An increase in the drying temperature brought about a slight decrease in the lightness, delta Chroma and the total colour difference. Pulping decreased the lightness and hue angle, and increased browning index. Freeze-drying engendered a slight decrease in the total phenolics content and antioxidant activity, in comparison to fresh leaves. The temperature of the process and pulping had little influence on the total phenolics content and antioxidant activity of dried kale, but significantly decreased the contents of chlorophyll a and chlorophyll b.

  9. Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes.

    Science.gov (United States)

    Shen, Dan; Suhrkamp, Ina; Wang, Yu; Liu, Shenyi; Menkhaus, Jan; Verreet, Joseph-Alexander; Fan, Longjiang; Cai, Daguang

    2014-11-01

    Verticillium longisporum, a soil-borne pathogenic fungus, causes vascular disease in oilseed rape (Brassica napus). We proposed that plant microRNAs (miRNAs) are involved in the plant-V. longisporum interaction. To identify oilseed rape miRNAs, we deep-sequenced two small RNA libraries made from V. longisporum infected/noninfected roots and employed Brassica rapa and Brassica oleracea genomes as references for miRNA prediction and characterization. We identified 893 B. napus miRNAs representing 360 conserved and 533 novel miRNAs, and mapped 429 and 464 miRNAs to the AA and CC genomes, respectively. Microsynteny analysis with the conserved miRNAs and their flanking protein coding sequences revealed 137 AA-CC genome syntenic miRNA pairs and 61 AA and 42 CC genome-unique miRNAs. Sixty-two miRNAs were responsive to the V. longisporum infection. We present data for specific interactions and simultaneously reciprocal changes in the expression levels of the miRNAs and their targets in the infected roots. We demonstrate that miRNAs are involved in the plant-fungus interaction and that miRNA168-Argonaute 1 (AGO1) expression modulation might act as a key regulatory module in a compatible plant-V. longisporum interaction. Our results suggest that V. longisporum may have evolved a virulence mechanism by interference with plant miRNAs to reprogram plant gene expression and achieve infection. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests

    NARCIS (Netherlands)

    Ester, A.; Putter, de H.; Bilsen, van J.G.P.M.

    2003-01-01

    Four field experiments were carried out between 1999 and 2001, to assess the protection against cabbage root fly larvae (Delia radicum), flea beetle (Phyllotreta nemorum and P. undulata), cabbage aphid (Brevicoryne brassicae) and caterpillars achieved in white cabbage and cauliflower crops by

  11. Comparative evolution history of SINEs in Arabidopsis thaliana and Brassica oleracea: evidence for a high rate of SINE loss.

    Science.gov (United States)

    Lenoir, A; Pélissier, T; Bousquet-Antonelli, C; Deragon, J M

    2005-01-01

    Brassica oleracea and Arabidopsis thaliana belong to the Brassicaceae(Cruciferae) family and diverged 16 to 19 million years ago. Although the genome size of B. oleracea (approximately 600 million base pairs) is more than four times that of A. thaliana (approximately 130 million base pairs), their gene content is believed to be very similar with more than 85% sequence identity in the coding region. Therefore, this important difference in genome size is likely to reflect a different rate of non-coding DNA accumulation. Transposable elements (TEs) constitute a major fraction of non-coding DNA in plant species. A different rate in TE accumulation between two closely related species can result in significant genome size variations in a short evolutionary period. Short interspersed elements (SINEs) are non-autonomous retroposons that have invaded the genome of most eukaryote species. Several SINE families are present in B. oleracea and A. thaliana and we found that two of them (called RathE1 and RathE2) are present in both species. In this study, the tempo of evolution of RathE1 and RathE2 SINE families in both species was compared. We observed that most B. oleracea RathE2 SINEs are "young" (close to the consensus sequence) and abundant while elements from this family are more degenerated and much less abundant in A. thaliana. However, the situation is different for the RathE1 SINE family for which the youngest elements are found in A. thaliana. Surprisingly, no SINE was found to occupy the same (orthologous) genomic locus in both species suggesting that either these SINE families were not amplified at a significant rate in the common ancestor of the two species or that older elements were lost and only the recent (lineage-specific) insertions remain. To test this latter hypothesis, loci containing a recently inserted SINE in the A. thaliana col-0 ecotype were selected and characterized in several other A. thaliana ecotypes. In addition to the expected SINE containing

  12. Accumulation of strontium and cesium by kale as a function of age of plant

    International Nuclear Information System (INIS)

    Weaver, C.M.; Harris, N.D.; Fox, L.R.

    1981-01-01

    The accumulation of Sr and Cs throughout the growth cycle of a hydroponically grown vegetable crop (Brassica oleracea var. acephala D.C. Blue Curl) was studied. The cumulative effect of supplying the radionuclides through the nutrient solution to kale throughout the growth cycle, simulating a continuous discharge, was compared to exposure at each stage of the growth cycle to a single dose of radioactivity, simulating an accidental release. The time course of accumulation of 137 Cs supplied continuously through the nutrient solution resembled the sigmoidal dry weight growth curve of the vegetable. Accumulation of this nuclide after exposure of kale to radioactivity for 48 hours at each stage of growth decreased with age of the plant. The time course of 90 Sr supplied continuously resembled the pattern of the periodic 48-hour accumulation for this radionuclide, although there was a 1- to 2-week lag period between the two uptake patterns

  13. Les principaux ravageurs des choux pommés [Brassica oleracea var capitata subs sabouda à Bukavu et ses environs

    Directory of Open Access Journals (Sweden)

    Walangululu, JM.

    2000-01-01

    Full Text Available The Major Pests of Cabbage (Brassica oleracea var. capitata subs sabouda in Bukavu and Around. As stated by farmers growing vegetables and as observed on local markets, cabbage in Bukavu and around is damaged by pests. The present work was intended to identify pests damaging this crop, which is now a cash crop in this region, in order to design control methods. Results revealed that one aphid species (Brevicoryne brassicaej, the common cutworm (Agrotis segetum and some Caterpillar species (Plutella xylostella, Hellula undalis, Spodoptera exempta and Trichoplusia ni are major pests causing a loss of plantlets estimated from 0 to 53.8 %, mainly one month after planting. Damage on the first five leaves of the head of cabbage, estimated from 3.5 to 55.8 % of plants were attributed to sporadic pests as the tobacco cricket (Brachytrupes mem-branaceus, the common cutworm (Agrotis segetum, chickens, some grasshoppers, snails and a tortoise beetle species (Henosepilachna elateris.

  14. Purple head broccoli (Brassica oleracea L. var. italica Plenck), a functional food crop for antioxidant and anticancer potential.

    Science.gov (United States)

    Chaudhary, Ashun; Choudhary, Sonika; Sharma, Upendra; Vig, Adarsh Pal; Singh, Bikram; Arora, Saroj

    2018-05-01

    Natural foods are used in many folks and household treatments and have immense potential to treat a serious complication and health benefits, in addition to the basic nutritional values. These food products improve health, delay the aging process, increase life expectancy, and possibly prevent chronic diseases. Purple head Brassica oleracea L. var. italica Plenck is one of such foods and in current studies was explored for chemical compounds at different development stages by gas chromatography-mass spectrometry. Antioxidant potential was explored employing different assays like molybdate ion reduction, DPPH, superoxide anion radical scavenging and plasmid nicking assay. Inspired by antioxidant activity results, we further explored these extracts for antiproliferative potential by morphological changes, cell cycle analysis, measurement of intracellular peroxides and mitochondrial membrane potential changes. Current study provides the scientific basis for the use of broccoli as easily affordable potent functional food.

  15. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis).

    Science.gov (United States)

    Park, Soo-Yun; Lim, Sun-Hyung; Ha, Sun-Hwa; Yeo, Yunsoo; Park, Woo Tae; Kwon, Do Yeon; Park, Sang Un; Kim, Jae Kwang

    2013-07-17

    In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.

  16. UTILIZACIÓN DEL SUBPRODUCTO DE FIQUE: LICOR VERDE, COMO CONTROLADOR DE PLAGAS EN EL CULTIVO DE REPOLLO (Brassica oleracea DO FIQUE SUBPRODUTOS UTILIZAÇÃO: LICOR VERDE COMO UM CONTROLADOR DE PRAGAS NA CULTURA DO REPOLHO (Brassica oleracea FIQUE SUBPRODUCT UTILIZATION: GREEN LIQUOR AS A PEST CONTROL IN THE CULTURE OFCABBAGE (Brassica oleracea

    Directory of Open Access Journals (Sweden)

    JHON F. IMBACHÍ-HOYOS

    2012-06-01

    Full Text Available En el vivero forestal 'La Florida' de la Corporación Autónoma Regional del Cauca CRC, se evaluó el efecto del extracto de fique (Furcraea sp como controlador de plagas en el cultivo de repollo (Brassica oleracea. Se utilizaron cuatro tratamientos (blanco, solución extracto de fique al 30% v/v, 20% v/v, 10% v/v. Las mediciones se hicieron durante seis semanas para vigor, altura, diámetro, daño por plagas y daño por enfermedades. La aplicación fue de una vez durante las tres primeras semanas; y las tres siguientes la aplicación fue de dos por semana. Los resultados se analizaron utilizando el paquete estadístico SPSS 11.5, se realizó una ANOVA con un nivel de confianza del 95% (p = 0,05 y una prueba de Tuckey. El análisis muestra que la aplicación del extracto dos veces por semana (extracto de fique al 30% v/v, presentó el mejor control de plagas, disminuyendo la presencia de daños por las plagas: mariposa blanca (Pieris sp. palomilla (Plutella xylostella y áfidos (Brevicoryne brassicae y Myzus persicae.No viveiro floresta 'La Florida' da Corporação Autônoma Regional do Cauca (CRC se abalizou o efeito do extrato de fique (Furcraea sp como controlador de plagas no cultivo de repolho (Brassica oleracea. Utilizarão- se quatro tratamentos (Branco, solução extrato de fique a 30% v/v, 20% v/v e 10% v/v. As medições fizeram-se durante seis semanas para vigor, altura, diâmetro, dano por pragas y dano por enfermidades. A aplicação foi de uma vez durante as três primeiras semanas; y as três seguintes a aplicação foi de duas por semanas. Os resultados analisaram-se utilizando o paquete estadístico SPSS 11.5, realizaram-se uma ANOVA com um nível de confiança dos 95% (p = 0,05 e uma proba de Tuckey. A análise mostra que a aplicação do extrato duas vezes por semana (extrato de fique a 30% v/v, apresentou o melhor controle de pragas reduzindo a presencia de danos por as pragas: Borboleta branca (Pieris sp, mariposa (Plutella

  17. Neofunctionalization of Duplicated Tic40 Genes Caused a Gain-of-Function Variation Related to Male Fertility in Brassica oleracea Lineages1[W][OPEN

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-01-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. PMID:25185122

  18. Neofunctionalization of duplicated Tic40 genes caused a gain-of-function variation related to male fertility in Brassica oleracea lineages.

    Science.gov (United States)

    Dun, Xiaoling; Shen, Wenhao; Hu, Kaining; Zhou, Zhengfu; Xia, Shengqian; Wen, Jing; Yi, Bin; Shen, Jinxiong; Ma, Chaozhi; Tu, Jinxing; Fu, Tingdong; Lagercrantz, Ulf

    2014-11-01

    Gene duplication followed by functional divergence in the event of polyploidization is a major contributor to evolutionary novelties. The Brassica genus evolved from a common ancestor after whole-genome triplication. Here, we studied the evolutionary and functional features of Brassica spp. homologs to Tic40 (for translocon at the inner membrane of chloroplasts with 40 kDa). Four Tic40 loci were identified in allotetraploid Brassica napus and two loci in each of three basic diploid Brassica spp. Although these Tic40 homologs share high sequence identities and similar expression patterns, they exhibit altered functional features. Complementation assays conducted on Arabidopsis thaliana tic40 and the B. napus male-sterile line 7365A suggested that all Brassica spp. Tic40 homologs retain an ancestral function similar to that of AtTic40, whereas BolC9.Tic40 in Brassica oleracea and its ortholog in B. napus, BnaC9.Tic40, in addition, evolved a novel function that can rescue the fertility of 7365A. A homologous chromosomal rearrangement placed bnac9.tic40 originating from the A genome (BraA10.Tic40) as an allele of BnaC9.Tic40 in the C genome, resulting in phenotypic variation for male sterility in the B. napus near-isogenic two-type line 7365AB. Assessment of the complementation activity of chimeric B. napus Tic40 domain-swapping constructs in 7365A suggested that amino acid replacements in the carboxyl terminus of BnaC9.Tic40 cause this functional divergence. The distribution of these amino acid replacements in 59 diverse Brassica spp. accessions demonstrated that the neofunctionalization of Tic40 is restricted to B. oleracea and its derivatives and thus occurred after the divergence of the Brassica spp. A, B, and C genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Identification of metabolic QTLs and candidate genes for glucosinolate synthesis in Brassica oleracea leaves, seeds and flower buds.

    Directory of Open Access Journals (Sweden)

    Tamara Sotelo

    Full Text Available Glucosinolates are major secondary metabolites found in the Brassicaceae family. These compounds play an essential role in plant defense against biotic and abiotic stresses, but more interestingly they have beneficial effects on human health. We performed a genetic analysis in order to identify the genome regions regulating glucosinolates biosynthesis in a DH mapping population of Brassica oleracea. In order to obtain a general overview of regulation in the whole plant, analyses were performed in the three major organs where glucosinolates are synthesized (leaves, seeds and flower buds. Eighty two significant QTLs were detected, which explained a broad range of variability in terms of individual and total glucosinolate (GSL content. A meta-analysis rendered eighteen consensus QTLs. Thirteen of them regulated more than one glucosinolate and its content. In spite of the considerable variability of glucosinolate content and profiles across the organ, some of these consensus QTLs were identified in more than one tissue. Consensus QTLs control the GSL content by interacting epistatically in complex networks. Based on in silico analysis within the B. oleracea genome along with synteny with Arabidopsis, we propose seven major candidate loci that regulate GSL biosynthesis in the Brassicaceae family. Three of these loci control the content of aliphatic GSL and four of them control the content of indolic glucosinolates. GSL-ALK plays a central role in determining aliphatic GSL variation directly and by interacting epistatically with other loci, thus suggesting its regulatory effect.

  20. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties.

    Science.gov (United States)

    Hanschen, Franziska S; Schreiner, Monika

    2017-01-01

    Vegetables of the Brassica oleracea group, such as broccoli, cauliflower, and cabbage, play an important role for glucosinolate consumption in the human diet. Upon maceration of the vegetable tissue, glucosinolates are degraded enzymatically to form volatile isothiocyanates, nitriles, and epithionitriles. However, only the uptake of isothiocyanates is linked to the cancer-preventive effects. Thus, it is of great interest to evaluate especially the isothiocyanate formation. Here, we studied the formation of glucosinolates and their respective hydrolysis products in sprouts and fully developed vegetable heads of different genotypes of the five B. oleracea varieties: broccoli, cauliflower as well as white, red, and savoy cabbages. Further, the effect of ontogeny (developmental stages) during the head development on the formation of glucosinolates and their respective hydrolysis products was evaluated at three different developmental stages (mini, fully developed, and over-mature head). Broccoli and red cabbage were mainly rich in 4-(methylsulfinyl)butyl glucosinolate (glucoraphanin), whereas cauliflower, savoy cabbage and white cabbage contained mainly 2-propenyl (sinigrin) and 3-(methylsulfinyl)propyl glucosinolate (glucoiberin). Upon hydrolysis, epithionitriles or nitriles were often observed to be the main hydrolysis products, with 1-cyano-2,3-epithiopropane being most abundant with up to 5.7 μmol/g fresh weight in white cabbage sprouts. Notably, sprouts often contained more than 10 times more glucosinolates or their hydrolysis products compared to fully developed vegetables. Moreover, during head development, both glucosinolate concentrations as well as hydrolysis product concentrations changed and mini heads contained the highest isothiocyanate concentrations. Thus, from a cancer-preventive point of view, consumption of mini heads of the B. oleracea varieties is recommended.

  1. Overcoming interspecific incompatibility in the cross Brassica campestris ssp. japonica x Brassica oleracea var. botrytis using irradiated mentor pollen page

    International Nuclear Information System (INIS)

    Sarla, N.

    1988-01-01

    The cross B. campestris ssp. japonica x B. oleracea var. botrytis fails due to incompatibility barrier at the stigma. To realize this cross, irradiated compatible pollen (mentor pollen) was used before the incompatible pollination. The presence of mentor pollen stimulated the incompatible pollen to germinate and effect fertilization and seed set. One hybrid was thus obtained. Most of the seeds were inviable. Of the 5 plants raised one was a hybrid and 4 resembled the female parent. 1 tab., 7 refs

  2. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea.

    Science.gov (United States)

    Lyu, Meiling; Liang, Ying; Yu, Youjian; Ma, Zhiming; Song, Limin; Yue, Xiaoyan; Cao, Jiashu

    2015-06-01

    BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea. BoMF25 is the homologous gene of At4g35670, a PG gene in Arabidopsis thaliana with a high expression level at the tricellular pollen stage. Collinear analysis revealed that the orthologous gene of BoMF25 in Brassica campestris (syn. B. rapa) genome was probably lost because of genome deletion and reshuffling. Sequence analysis indicated that BoMF25 contained four classical conserved domains (I, II, III, and IV) of PG protein. Homology and phylogenetic analyses showed that BoMF25 was clustered in Clade F. The putative promoter sequence, containing classical cis-acting elements and pollen-specific motifs, could drive green fluorescence protein expression in onion epidermal cells. Quantitative RT-PCR analysis suggested that BoMF25 was mainly expressed in the anther at the late stage of pollen development. In situ hybridization analysis also indicated that the strong and specific expression signal of BoMF25 existed in pollen grains at the mature pollen stage. Subcellular localization showed that the fluorescence signal was observed in the cell wall of onion epidermal cells, which suggested that BoMF25 may be a secreted protein localized in the pollen wall.

  3. Cgl2 plays an essential role in cuticular wax biosynthesis in cabbage (Brassica oleracea L. var. capitata).

    Science.gov (United States)

    Liu, Dongming; Tang, Jun; Liu, Zezhou; Dong, Xin; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Sun, Peitian; Liu, Yumei; Li, Zhansheng; Ye, Zhibiao; Fang, Zhiyuan; Yang, Limei

    2017-11-28

    The aerial parts of most land plants are covered with cuticular wax which is important for plants to avoid harmful factors. There is still no cloning study about wax synthesis gene of the alcohol-forming pathway in Brassica species. Scanning electron microscopy (SEM) showed that, compared with wild type (WT), wax crystal are severely reduced in both the adaxial and abaxial sides of cabbage (Brassica oleracea L. var. capitata L.) leaves from the LD10GL mutant. Genetic analysis results revealed that the glossy trait of LD10GL is controlled by a single recessive gene, and fine mapping results revealed that the target gene Cgl2 (Cabbage glossy 2) is located within a physical region of 170 kb on chromosome 1. Based on sequence analysis of the genes in the mapped region, the gene designated Bol013612 was speculated to be the candidate gene. Gene Bol013612 is homologous to Arabidopsis CER4, which encodes fatty acyl-coenzyme A reductase. Sequencing identified a single nucleotide substitution at an intron/exon boundary that results in an insertion of six nucleotides in the cDNA of Bol013612 in LD10GL. The phenotypic defect of LD10GL was confirmed by a functional complementation test with Arabidopsis mutant cer4. Our results indicated that wax crystals of cabbage mutant LD10GL are severely reduced and mutation of gene Bol013612 causes a glossy phenotype in the LD10GL mutant.

  4. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system.

    Science.gov (United States)

    Dos Reis, Luzia Caroline Ramos; de Oliveira, Viviani Ruffo; Hagen, Martine Elisabeth Kienzle; Jablonski, André; Flôres, Simone Hickmann; de Oliveira Rios, Alessandro

    2015-04-01

    Brassica vegetables have been shown to have antioxidant capacities due to the presence of carotenoids, flavonoids and vitamins. This study evaluates the influence of different processing conditions (boiling, steaming, microwaving and sous vide) on the stability of flavonoids, carotenoids and vitamin A in broccoli and cauliflower inflorescences grown in an organic system. Results indicated that sous vide processing resulted in greater antioxidant capacity and that all processes contributed in some way to an increased content of antioxidant compounds in both cauliflower and broccoli. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Survival of pathogens of Brussels sprouts (Brassica oleracea Gemifera group) in crop residues

    NARCIS (Netherlands)

    Köhl, J.; Vlaswinkel, M.E.T.; Groenenboom-de Haas, B.H.; Kastelein, P.; Hoof, van R.A.; Wolf, van der J.M.; Krijger, M.C.

    2011-01-01

    Mycosphaerella brassicicola (ringspot), Alternaria brassicicola and A. brassicae (dark leaf spot) and Xanthomonas campestris pv. campestris (black spot) can infect leaves of Brussels sprouts resulting in yield losses. Infections of outer leaves of sprouts cause severe losses in quality. Crop

  6. Evaluation of the effects of gamma radiation in minimally processed vegetables of Brassica oleracea species; Avaliacao dos efeitos da radiacao gama em vegetais da especie Brassica oleracea minimamente processados

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Thaise Cristine Fernandes

    2009-07-01

    The consumption of collard greens (Brassica oleracea cv. acephala) and broccoli (Brassica oleracea L. var. italica) has been inversely associated with morbidity and mortality caused by degenerative diseases. These species are highly consumed in Brazil, which enables its use as minimally processed (MP). The growing worldwide concern with the storage, nutritional quality and microbiological safety of food has led to many studies aimed at microbiological analysis, vitamin and shelf life. To improve the quality of these products, radiation processing can be effective in maintaining the quality of the product, rather compromising their nutritional values and sensory. The aim of this study was to evaluate the effectiveness of gamma radiation from {sup 60}Co at doses of 0, 1.0 and 1.5 kGy on the reduction of microbiota in these plants, and analyze their nutritional and sensory characteristics. The methodology used in this study was microbiological analysis, colorimetric analysis, analysis of phenolic compounds, antioxidant analysis and sensory analysis. The microbiological analysis showed a decrease in the development of populations of aerobic microorganisms, psychotropic and yeast and mold with increasing doses of radiation. The sensory analysis showed no significant difference between different times of cooking analyzed. The analysis of phenolic compounds, significant differences between the samples, suggesting that with increasing dose of irradiation was an increase in the amount of phenolic compounds found in broccoli and collard greens MP. It can be observed that the sample of control collard greens showed high antioxidant activity and for the samples treated by irradiation was a decrease of percentage. In contrast the samples of broccoli show an increase in the rate of scavenging DPPH with increase of the dose of radiation. The colorimetric analysis revealed that for samples of MP collard greens and broccoli foil of no significant differences, but for samples of

  7. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  8. Comparative Transcriptome Analysis between Broccoli (Brassica oleracea var. italica) and Wild Cabbage (Brassica macrocarpa Guss.) in Response to Plasmodiophora brassicae during Different Infection Stages.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, Yumei; Fang, Zhiyuan; Li, Zhansheng; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Clubroot, one of the most devastating diseases to the Brassicaceae family, is caused by the obligate biotrophic pathogen Plasmodiophora brassicae . However, studies of the molecular basis of disease resistance are still poor especially in quantitative resistance. In the present paper, two previously identified genotypes, a clubroot-resistant genotype (wild cabbage, B2013) and a clubroot-susceptible genotype (broccoli, 90196) were inoculated by P. brassicae for 0 (T0), 7 (T7), and 14 (T14) day after inoculation (DAI). Gene expression pattern analysis suggested that response changes in transcript level of two genotypes under P. brassicae infection were mainly activated at the primary stage (T7). Based on the results of DEGs functional enrichments from two infection stages, genes associated with cell wall biosynthesis, glucosinolate biosynthesis, and plant hormone signal transduction showed down-regulated at T14 compared to T7, indicating that defense responses to P. brassicae were induced earlier, and related pathways were repressed at T14. In addition, the genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca 2+ signals and RBOH proteins were mainly up-regulated in B2013 by comparing those of 90196, indicating the pathways of response defense to clubroot were activated in the resistant genotype. This is the first report about comparative transcriptome analysis for broccoli and its wild relative during the different stages of P. brassicae infection and the results should be useful for molecular assisted screening and breeding of clubroot-resistant genotypes.

  9. Effect of Cycocel and Salisilic acid on Morphologic Traits of Brassica Oleracea, Pink Type

    Directory of Open Access Journals (Sweden)

    S.N. Mortazavi

    2017-08-01

    Full Text Available Introduction: Brassica Oleracea L. is biennial of cabbages family. This plant is valuable for its leaves and resistivity against cold weather. Cabbages are resistant to cold and suitable for landscape in cold areas. In some ornamental plants, the control of plant size, vegetative growth and size reduction is necessary to enhance sale. Salicylic acid is a phenolic compound that is produced naturally in plants and on multiple factors affect. Cycocel is one of the retarder material to the growth. This research was performed in order to best retarder concentration of growth factors to improve the quantity and quality of ornamental cabbage landscape. Materials and Methods: This study was done as factorial experiment in a randomized complete block design with three replications. Experiment was performed with two factors of cycocel with four levels (0, 50, 100, 150 mg.lit-1 and salicylic acid with four levels ( 0, 50, 100, 200 mg.lit-1 by spraying and every of them with three replications. In this experiment, traits such as plant height, antocianin, resistivity against cold weather, electrolyte leakage, rational component of water, chlorophyll, wet and dry weight of leaves, wet and dry weight of roots and the number of leaves were investigated. 80 numbers of uniform seedlings of ornamental cauliflower varieties of purple were prepared and after the reached the stage of 5 and 4 leaves to the pot of 10 to 15 cm and then after a short growing period for the the main land (bed in loam soil with distance of 30 cm they were transferred. The treatment of salicylic acid and CCC two times and as foliar application on the leaves of cabbage was performed them with an interval 24 to 48 hours. The first stage of treatment on 18 and 19 November and after a few days of planting cabbage and establish them in the land, was performed. Statistical analysis using software MSTATC and comparing the average results using Duncan's multiple range test was performed. Results

  10. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering.

    Science.gov (United States)

    Qian, Hongmei; Sun, Bo; Miao, Huiying; Cai, Congxi; Xu, Chaojiong; Wang, Qiaomei

    2015-02-01

    The variation of glucosinolates and quinone reductase (QR) activity in fourteen varieties of Chinese kale (Brassica oleracea var. alboglabra Bailey) was investigated in the present study. Results showed that gluconapin (GNA), instead of glucoraphanin (GRA), was the most predominant glucosinolate in all varieties, and QR activity was remarkably positively correlated with the glucoraphanin level. AOP2, a tandem 2-oxoglutarate-dependent dioxygenase, catalyzes the conversion of glucoraphanin to gluconapin in glucosinolate biosynthesis. Here, antisense AOP2 was transformed into Gailan-04, the variety with the highest gluconapin content and ratio of GNA/GRA. The glucoraphanin content and corresponding QR activity were notably increased in transgenic plants, while no significant difference at the level of other main nutritional compounds (total phenolics, vitamin C, carotenoids and chlorophyll) was observed between the transgenic lines and the wide-type plants. Taken together, metabolic engineering is a good practice for improvement of glucoraphanin in Chinese kale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Eduardo A.S. Rosa

    2011-08-01

    Full Text Available Research on natural and bioactive compounds is increasingly focused on their effects on human health, but there are unexpectedly few studies evaluating the relationship between climate and natural antioxidants. The aim of this study was analyze the biological role of six different Brassica vegetables (Brassica oleracea L. and Brassica rapa L. as a natural source of antioxidant compounds. The antioxidant activity may be assigned to high levels of L-ascorbic acid, total phenolics and total flavonoids of each sample. The climate seasons affected directly the concentration of bioactive components and the antioxidant activity. Broccoli inflorescences and Portuguese kale showed high antioxidant activity in Spring-Summer whilst turnip leaves did so in Summer-Winter. The Brassica vegetables can provide considerable amounts of bioactive compounds and thus may constitute an important natural source of dietary antioxidants.

  12. Healthy food trends - kale

    Science.gov (United States)

    Healthy food trends - borecole; Healthy snacks - kale; Weight loss - kale; Healthy diet - kale; Wellness - kale ... Kale is full of vitamins and minerals, including: Vitamin A Vitamin C Vitamin K If you take ...

  13. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea.

    Directory of Open Access Journals (Sweden)

    Tom O G Tytgat

    Full Text Available Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA. Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.

  14. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    Science.gov (United States)

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  15. Spent Mushroom Waste as a Media Replacement for Peat Moss in Kai-Lan (Brassica oleracea var. Alboglabra Production

    Directory of Open Access Journals (Sweden)

    H. Sendi

    2013-01-01

    Full Text Available Peat moss (PM is the most widely used growing substrate for the pot culture. Due to diminishing availability and increasing price of PM, researchers are looking for viable alternatives for peat as a growth media component for potted plants. A pot study was conducted with a view to investigate the possibility of using spent mushroom waste (SMW for Kai-lan (Brassica oleracea var. Alboglabra production replacing peat moss (PM in growth media. The treatments evaluated were 100% PM (control, 100% SMW, and mixtures of SMW and PM in different ratios like 1 : 1, 1 : 2, and 2 : 1 (v/v with/without NPK amendment. The experiment was arranged in a completely randomized design with five replications per treatment. Chemical properties like pH and salinity level (EC of SMW were within the acceptable range of crop production but, nutrient content, especially nitrogen content was not enough to provide sufficient nutrition to plant for normal growth. Only PM (100% and SMW and PM mixture in 1 : 1 ratio with NPK amendment performed equally in terms of Kai-lan growth. This study confirms the feasibility of replacing PM by SMW up to a maximum of 50% in the growth media and suggests that NPK supplementation from inorganic sources is to ensure a higher productivity of Kai-lan.

  16. RESIDU PESTISIDA PADA SAYURAN KUBIS (Brassica oleracea L. DAN KACANG PANJANG ( Vigna sinensis L. YANG DIPASARKAN DI PASAR BADUNG DENPASAR

    Directory of Open Access Journals (Sweden)

    K Agung Sudewa

    2012-11-01

    Full Text Available Pesticides residue of organophosphate and carbamate i.e. diazinon, chlorpyriphos, fentoate, carbaril and BPMC were tested on cabbage (Brassica oleracea L. and long bean (Vigna sinensis L.. The purpose of this study was to know the level of pesticides residue remaining on cabbage and long bean marketed in Badung Market, Denpasar.The samples were determined proportionally based on purposive sampling method. The proportion of sample was 10% of the total cabbage and snake bean sold in Badung market.Result of present study showed that residue of insecticides such as diazinon, chlorpyriphos, fentoate, carbaril, and BPMC remaining on the head of cabbage and snake bean marketed in Badung market was affected by the frequencies of their use in the field, in which chlorpyriphos was used by 60-65% of the farmers and carbaril by 40% of the farmers. Their residues on cabbage anf snake bean were 0.525 ppm and 1.296 ppm for chlorpyriphos (organophosphate; 0.303 ppm and 0.471 ppm for carbaril (carbamate. These result suggested that residue of chlorpyriphos on cabbage and snake bean were higher than MRL (Maximum Residue Limit for vegetable crops, i.e. 0.5 ppm.

  17. Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris

    Science.gov (United States)

    Moyo, Mack; Amoo, Stephen O.; Aremu, Adeyemi O.; Gruz, Jiri; Šubrtová, Michaela; Jarošová, Monika; Tarkowski, Petr; Doležal, Karel

    2017-12-01

    The study compared mineral, chemical and antioxidant qualities of Cleome gynandra, a wild leafy vegetable, with two widely consumed commercial vegetables; Brassica oleracea and Beta vulgaris. Mineral nutrients were quantified with inductively coupled plasma mass spectrometry (ICP-MS), phenolic compounds using ultra-high performance liquid chromatography coupled to a mass spectrometer (UHPLC-MS) and β-carotene and vitamin C using high performance liquid chromatography with a photodiode array detector (HPLC-PDA). The antioxidant potential was evaluated using 2,2–diphenyl–1–picryl hydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC). Cleome gynandra had highest concentrations of phosphorus, potassium, calcium, iron, zinc, ascorbic acid, total phenolics and flavonoids; whereas sodium, magnesium, manganese, copper and β-carotene were higher in Beta vulgaris. The significantly higher antioxidant activity (P ≤ 0.05) exhibited by Cleome gynandra in comparison to the two commercial vegetables may be due to its significantly high levels of vitamin C and phenolic acids. These findings on the mineral, chemical and antioxidant properties of Cleome gynandra provide compelling scientific evidence of its potential in adding diversity to our diet and contributing towards the daily nutritional requirements of millions of people for food and nutritional security.

  18. Selenium treatment differentially affects sulfur metabolism in high and low glucosinolate producing cultivars of broccoli (Brassica oleracea L.).

    Science.gov (United States)

    McKenzie, Marian J; Chen, Ronan K Y; Leung, Susanna; Joshi, Srishti; Rippon, Paula E; Joyce, Nigel I; McManus, Michael T

    2017-12-01

    The effect of selenium (Se) application on the sulfur (S)-rich glucosinolate (GSL)-containing plant, broccoli (Brassica oleracea L. var. italica) was examined with a view to producing germplasm with increased Se and GSL content for human health, and to understanding the influence of Se on the regulation of GSL production. Two cultivars differing in GSL content were compared. Increased Se application resulted in an increase in Se uptake in planta, but no significant change in total S or total GSL content in either cultivar. Also no significant change was observed in the activity of ATP sulfurylase (ATPS, EC 2.7.7.4) or O-acetylserine(thiol) lyase (OASTL, EC 2.5.1.47) with increased Se application. However, in the first investigation of APS kinase (APSK, EC 2.7.1.25) expression in response to Se fertilisation, an increase in transcript abundance of one variant of APS kinase 1 (BoAPSK1A) was observed in both cultivars, and an increase in BoAPSK2 transcript abundance was observed in the low GSL producing cultivar. A mechanism by which increased APSK transcription may provide a means of controlling the content of S-containing compounds, including GSLs, following Se uptake is proposed. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italica

    Directory of Open Access Journals (Sweden)

    Renata Wojciechowska

    2013-09-01

    Full Text Available The study was designed to determine the possible relationship between Brassica oleracea var. italica seedlings stored at 2°C in the dark for seven and fourteen days, respectively, and the level of certain antioxidant parameters in particular organs. A parallel objective of the experiment was to determine if the reaction of seedlings to low temperature might be persistent in fully developed plants until harvest time. After 14 days of chilling a significant increase in the glutathione content was observed in the seedling leaves in comparison to the non-chilled plants. During vegetation in field conditions this effect was maintained in leaves up to the stage of formation of flower buds. At harvest the highest content of glutathione was demonstrated in broccoli heads, obtained from plants, which were previously chilled in the seedling phase for two weeks. Peroxidase activity in broccoli seedlings increased each year of the three-year study due to the duration of the cooling time, whereas in the case of catalase the changes were not so distinct. At harvest time the activity of both enzymes in the leaves and flower buds fluctuated according to the particular year of study.

  20. Differential Responses of Two Broccoli (Brassica oleracea L. var Italica Cultivars to Salinity and Nutritional Quality Improvement

    Directory of Open Access Journals (Sweden)

    Chokri Zaghdoud

    2012-01-01

    Full Text Available The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na+ and Cl− ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots—that varied with the cultivar and salt concentration—and decreases in the osmotic potential (Ψπ, root hydraulic conductance (L0, and stomatal conductance (Gs. The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  1. Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, Dinesh Kumar

    2016-04-01

    Biotechnology holds promise for genetic improvement of important vegetable crops. Broccoli (Brassica oleracea L. var. italica) is an important vegetable crop of the family Brassicaceae. However, various biotic and abiotic stresses cause enormous crop yield losses during commercial cultivation of broccoli. Establishment of a reliable, reproducible and efficient in vitro plant regeneration system with cell and tissue culture is a vital prerequisite for biotechnological application of crop improvement programme. An in vitro plant regeneration technique refers to culturing, cell division, cell multiplication, de-differentiation and differentiation of cells, protoplasts, tissues and organs on defined liquid/solid medium under aseptic and controlled environment. Recent progress in the field of plant tissue culture has made this area one of the most dynamic and promising in experimental biology. There are many published reports on in vitro plant regeneration studies in broccoli including direct organogenesis, indirect organogenesis and somatic embryogenesis. This review summarizes those plant regeneration studies in broccoli that could be helpful in drawing the attention of the researchers and scientists to work on it to produce healthy, biotic and abiotic stress resistant plant material and to carry out genetic transformation studies for the production of transgenic plants.

  2. Differential responses of two broccoli (Brassica oleracea L. var Italica) cultivars to salinity and nutritional quality improvement.

    Science.gov (United States)

    Zaghdoud, Chokri; Alcaraz-López, Carlos; Mota-Cadenas, César; Martínez-Ballesta, María del Carmen; Moreno, Diego A; Ferchichi, Ali; Carvajal, Micaela

    2012-01-01

    The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.

  3. Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi

    Science.gov (United States)

    Piruthiviraj, Prakash; Margret, Anita; Krishnamurthy, Poornima Priyadharsani

    2016-04-01

    Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 µg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.

  4. Temperature and light conditions at different latitudes affect sensory quality of broccoli florets (Brassica oleracea L. var. italica).

    Science.gov (United States)

    Johansen, Tor J; Mølmann, Jørgen Ab; Bengtsson, Gunnar B; Schreiner, Monica; Velasco, Pablo; Hykkerud, Anne L; Cartea, Elena; Lea, Per; Skaret, Josefine; Seljåsen, Randi

    2017-08-01

    Broccoli (Brassica oleracea L. var. italica) is a popular vegetable grown at a wide range of latitudes. Plants were grown in 2009-2011 in pots with standardized soil, irrigation and nutrient supply under natural temperature and light conditions at four locations (42-70° N). A descriptive sensory analysis of broccoli florets was performed by a trained panel to examine any differences along the latitudinal gradient for 30 attributes within appearance, odour, taste/flavour and texture. Average results over three summer seasons in Germany, southern Norway and northern Norway showed that the northernmost location with low temperatures and long days had highest scores for bud coarseness and uniform colour, while broccoli from the German location, with high temperatures and shorter days, had highest intensity of colour hue, whiteness, bitter taste, cabbage flavour, stale flavour and watery flavour. Results from two autumn seasons at the fourth location (42° N, Spain), with low temperatures and short days, tended toward results from the two northernmost locations, with an exception for most texture attributes. Results clearly demonstrate that temperature and light conditions related to latitude and season affect the sensory quality of broccoli florets. Results may be used in marketing special quality regional or seasonal products. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Determination of Mineral Constituents, Phytochemicals and Antioxidant Qualities of Cleome gynandra, Compared to Brassica oleracea and Beta vulgaris

    Directory of Open Access Journals (Sweden)

    Mack Moyo

    2018-01-01

    Full Text Available The study compared mineral, chemical and antioxidant qualities of Cleome gynandra, a wild leafy vegetable, with two widely consumed commercial vegetables, Brassica oleracea and Beta vulgaris. Mineral nutrients were quantified with inductively coupled plasma mass spectrometry (ICP-MS, phenolic compounds using ultra-high performance liquid chromatography coupled to a mass spectrometer (UHPLC-MS and β-carotene and vitamin C using high performance liquid chromatography with a photodiode array detector (HPLC-PDA. The antioxidant potential was evaluated using 2,2–diphenyl−1–picryl hydrazyl (DPPH and oxygen radical absorbance capacity (ORAC assays. Cleome gynandra had highest concentrations of phosphorus, potassium, calcium, iron, zinc, ascorbic acid, total phenolics, and flavonoids; whereas sodium, magnesium, manganese, copper and β-carotene were higher for B. vulgaris. The significantly higher antioxidant activity (P ≤ 0.05 exhibited by C. gynandra in comparison to the two commercial vegetables may be due to its significantly high levels of vitamin C and phenolic acids. These findings on the mineral, chemical and antioxidant properties of C. gynandra provide compelling scientific evidence of its potential in adding diversity to the diet and contributing toward the daily nutritional requirements of millions of people for food and nutritional security.

  6. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks.

    Science.gov (United States)

    Yousef, Eltohamy A A; Müller, Thomas; Börner, Andreas; Schmid, Karl J

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.

  7. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation.

    Science.gov (United States)

    Men, Xiao; Dong, Kang

    2013-11-01

    The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.

  8. Enzyme-assisted extraction enhancing the phenolic release from cauliflower (Brassica oleracea L. var. botrytis) outer leaves.

    Science.gov (United States)

    Huynh, Nguyen Thai; Smagghe, Guy; Gonzales, Gerard Bryan; Van Camp, John; Raes, Katleen

    2014-07-30

    Phenolic compounds are highly present in byproducts from the cauliflower (Brassica oleracea L. var. botrytis) harvest and are thus a valuable source for valorization toward phenolic-rich extracts. In this study, we aimed to optimize and characterize the release of individual phenolic compounds from outer leaves of cauliflower, using two commercially available polysaccharide-degrading enzymes, Viscozyme L and Rapidase. As major results, the optimal conditions for the enzyme treatment were: enzyme/substrate ratio of 0.2% for Viscozyme L and 0.5% for Rapidase, temperature 35 °C, and pH 4.0. Using a UPLC-HD-TOF-MS setup, the main phenolic compounds in the extracts were identified as kaempferol glycosides and their combinations with different hydroxycinnamic acids. The most abundant components were kaempferol-3-feruloyldiglucoside and kaempferol-3-glucoside (respectively, 37.8 and 58.4 mg rutin equiv/100 g dry weight). Incubation of the cauliflower outer leaves with the enzyme mixtures resulted in a significantly higher extraction yield of kaempferol-glucosides as compared to the control treatment.

  9. Interaction of light quality and fertility on biomass, shoot pigmentation and xanthophyll cycle flux in Chinese kale.

    Science.gov (United States)

    Kopsell, Dean A; Sams, Carl E; Morrow, Robert C

    2017-02-01

    Nutritionally important carotenoids in 21-day-old brassica microgreens increase following short and long-term exposure to narrow-band wavelengths from light-emitting diodes (LED). The present study aimed to measure the impact of: (1) fluorescent/incandescent light and different percentages of blue/red LED light and (2) different levels of nutrient fertility on biomass and pigment concentrations in 30-day-old 'Green Lance' Chinese kale (Brassica oleracea var. alboglabra). Kale plants were exposed to four light treatments and two fertility levels and were harvested 30 days after seeding and analyzed for nutritionally important shoot pigments. Kale under the fluorescent/incandescent light treatment had a significantly higher shoot fresh and dry mass. The shoot tissue concentrations of most pigment were significantly higher under blue/red LED light treatments. The higher fertility level resulted in higher concentrations for most pigments. Interestingly, the pool of xanthophyll cycle pigments and de-epoxidized xanthophylls was higher under all LED treatments. The results obtained in the present study support previous data demonstrating the stimulation of nutritionally important shoot tissue pigment concentrations following exposure to sole source blue/red LEDs compared to traditional lighting. Xanthophyll cycle flux was impacted by LEDs and this may support the role of zeaxanthin in blue light perception in leafy specialty crops. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Aditi Kale

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Aditi Kale. Articles written in Resonance – Journal of Science Education. Volume 20 Issue 10 October 2015 pp 919-930 General Article. The Diatoms: Big Significance of Tiny Glass Houses · Aditi Kale Balasubramanian Karthick · More Details Fulltext PDF ...

  11. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Czech Academy of Sciences Publication Activity Database

    Loza-Muller, L.; Rodriguez-Corona, U.; Sobol, Margaryta; Rodriguez-Zapata, L.C.; Hozák, Pavel; Castano, E.

    2015-01-01

    Roč. 6, Nov 6 (2015) ISSN 1664-462X R&D Projects: GA ČR GAP305/11/2232; GA ČR GA15-08738S; GA MPO FR-TI3/588; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:68378050 Keywords : histones * methylation * RNA polymerase I * Brassica * phosphoinositide Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.495, year: 2015

  12. Small RNA Sequencing Reveals Differential miRNA Expression in the Early Development of Broccoli (Brassica oleracea var. italica) Pollen.

    Science.gov (United States)

    Li, Hui; Wang, Yu; Wu, Mei; Li, Lihong; Jin, Chuan; Zhang, Qingli; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    Pollen development is an important and complex biological process in the sexual reproduction of flowering plants. Although the cytological characteristics of pollen development are well defined, the regulation of its early stages remains largely unknown. In the present study, miRNAs were explored in the early development of broccoli ( Brassica oleracea var. italica ) pollen. A total of 333 known miRNAs that originated from 235 miRNA families were detected. Fifty-five novel miRNA candidates were identified. Sixty of the 333 known miRNAs and 49 of the 55 predicted novel miRNAs exhibited significantly differential expression profiling in the three distinct developmental stages of broccoli pollen. Among these differentially expressed miRNAs, miRNAs that would be involved in the developmental phase transition from uninucleate microspores to binucleate pollen grains or from binucleate to trinucleate pollen grains were identified. miRNAs that showed significantly enriched expression in a specific early stage of broccoli pollen development were also observed. In addition, 552 targets for 127 known miRNAs and 69 targets for 40 predicted novel miRNAs were bioinformatically identified. Functional annotation and GO (Gene Ontology) analysis indicated that the putative miRNA targets showed significant enrichment in GO terms that were related to plant organ formation and morphogenesis. Some of enriched GO terms were detected for the targets directly involved in plant male reproduction development. These findings provided new insights into the functions of miRNA-mediated regulatory networks in broccoli pollen development.

  13. Behavioral responses of the diamondback moth, Plutella xylostella, to green leaf volatiles of Brassica oleracea subsp. capitata.

    Science.gov (United States)

    Reddy, G V; Guerrero, A

    2000-12-01

    Green leaf volatiles (GLVs) from Brassica oleracea subsp. capitata L. have been identified as 1-hexanol, (Z)-3-hexen-1-ol, 1-hexen-3-ol, hexanal, (E)-2-hexenal, hexyl acetate, and (Z)-3-hexenyl acetate, by their mass spectra and retention times in comparison with authentic samples. No isothiocyanates were found in the extract. The activity of these chemicals has been determined on mated and unmated males and females of the diamondback moth (DBM) Plutella xylostella in the laboratory (wind tunnel) and in the field. On unmated males, mixtures of (Z)-3-hexenyl acetate, (E)-2-hexenal, and (Z)-3-hexen-1-ol with the pheromone induced attractant/arresting behavior in 80-100% of the males tested, significantly higher than the effect induced by the pheromone alone. On mated males and unmated females the effect of the GLVs alone or in combination with the pheromone was poor, while on mated females these compounds elicited upwind flight and arresting behavior in 40-60% of the females assayed. There was no synergism when these chemicals were mixed with the pheromone. In the field, (Z)-3-hexenyl acetate, the most active GLV in laboratory tests, when mixed with the pheromone in 1:1 ratio, enhanced 6-7-fold the number of females and 20-30% the number of males caught by traps over those baited with the pheromone alone. Our results indicate that the enhancement of the attraction of both males and females of the DBM to traps baited with pheromone blended with the relatively inexpensive and environmentally safe (Z)-3-hexenyl acetate may be important for future control strategies of the pest.

  14. RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic).

    Science.gov (United States)

    Gao, Jinjun; Yu, Xinxin; Ma, Fengming; Li, Jing

    2014-01-01

    Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide

  15. Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil.

    Science.gov (United States)

    Manna, Koushik; Kundu, Manik Chandra; Saha, Biplab; Ghosh, Goutam Kumar

    2018-01-16

    A field experiment was conducted in winter season of 2015-2016 in the dry lateritic soil of Eastern India to study the effect of different thicknesses of nonwoven jute agrotextile mulches (NJATM) along with other mulches on soil health, growth and productivity of broccoli (Brassica oleracea L.). The experiment was conducted in randomized block design with six treatments viz., T 1 (control, i.e. no mulching), T 2 (300 gsm NJATM), T 3 (350 gsm NJATM), T 4 (400 gsm NJATM), T 5 (rice straw) and T 6 (black polythene mulch), each of which was replicated four times. The highest average curd weight (355.25 g) and yield (8.53 t ha -1 ) of broccoli were recorded in T 3 treatment. The lowest density of broad leaved weed, sedges and grasses were recorded in T 6 treatment which was statistically at par with T 4 . All the treatments composing of NJATM increased the population of all the soil microbes except bacteria in the root rhizosphere of broccoli from their initial population. On average, the highest population of fungi (54.0 × 10 3  cfu per g) and actinomycetes (134.75 × 10 3  cfu per g) was recorded with T 3 and T 4 treatments respectively in the post-harvest soil. The soil moisture was conserved in all treatments compared to control showing highest moisture content in T 4 treatment. Organic carbon and available N, P and K contents of soil were increased in all mulch treated plots compared to control, and their initial value and their highest value were recorded in T 3 . The NJATM of 350 gsm thickness was very effective compared to other mulches in increasing the growth and productivity of broccoli by suppressing weeds, increasing moisture, microbial population and nutrient content of the lateritic soil.

  16. Detection of the Diversity of Cytoplasmic Male Sterility Sources in Broccoli (Brassica Oleracea var. Italica) Using Mitochondrial Markers.

    Science.gov (United States)

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2016-01-01

    Broccoli (Brassica oleracea var. italica) is an important commercial vegetable crop. As part of an efficient pollination system, cytoplasmic male sterility (CMS) has been widely used for broccoli hybrid production. Identifying the original sources of CMS in broccoli accessions has become an important part of broccoli breeding. In this study, the diversity of the CMS sources of 39 broccoli accessions, including 19 CMS lines and 20 hybrids, were analyzed using mitochondrial markers. All CMS accessions contained the ogu orf138-related DNA fragment and the key genes of nap CMS, pol CMS, and tour CMS were not detected. The 39 CMS accessions were divided into five groups using six orf138-related and two simple sequence repeat markers. We observed that ogu CMS R3 constituted 79.49% of the CMS sources. CMS6 and CMS26 were differentiated from the other accessions using a specific primer. CMS32 was distinguished from the other accessions based on a 78-nucleotide deletion at the same locus as the orf138-related sequence. When the coefficient was about 0.90, five CMS accessions (13CMS6, 13CMS23, 13CMS24, 13CMS37, and 13CMS39) exhibiting abnormal floral organs with poor seed setting were grouped together. The polymerase chain reaction amplification profiles for these five accessions differed from those of the other accessions. We identified eight useful molecular markers that can be used to detect CMS types during broccoli breeding. Our data also provide important information relevant to future studies on the possible origins and molecular mechanisms of CMS in broccoli.

  17. Evaluation of various soaking agents as a novel tool for pesticide residues mitigation from cauliflower (Brassica oleracea var. botrytis).

    Science.gov (United States)

    Abdullah; Randhawa, Muhammad Atif; Asghar, Ali; Pasha, Imran; Usman, Rabia; Shamoon, Muhammad; Bhatti, Muhammad Arslan; Irshad, Muhammad Asim; Ahmad, Naveed

    2016-08-01

    The increasing use of pesticides for boosting the yield of agricultural crops also impart toxic residues which ultimately extend to numerous physiological disorders upon consumption. The present study was designed as an effort to assess the reduction potential of various chemical solutions and to minimize the pesticide residues in cauliflower ( Brassica oleracea var. botrytis ). The samples were soaked in various solutions along with tap water to mitigate pesticide residues. Afterwards, the extracted supernatant was passed through column containing anhydrous sodium sulfate trailed by activated carbon for clean-up. Eluents were first evaporated and then completely dried under gentle stream of Nitrogen. Finally, the residues were determined using gas chromatography equipped with electron capture detector (GC-ECD). Results revealed the highest reduction of endosulfan, bifenthrin and cypermethrin residues with acetic acid (10 %) was 1.133 ± 0.007 (41 %), 0.870 ± 0.022 (60 %) and 0.403 ± 0.003 (75 %), respectively among the tested solutions. However, simple tap water treatment also resulted in 0.990 ± 0.02 (12 %), 1.323 ± 0.015 (14 %) and 1.274 ± 0.002 (21 %) elimination of endosulfan, bifenthrin and cypermethrin residues, respectively. Moreover, among various solutions, acetic acid depicted maximum reduction potential followed by citric acid, hydrogen peroxide, sodium chloride and sodium carbonate solutions. The percent reduction by various solutions ranged from 12 to 41, 14 to 60 and 21 to 75 % for the elimination of endosulfan, bifenthrin and cypermethrin residues, respectively.

  18. Intake of kale suppresses postprandial increases in plasma glucose: A randomized, double-blind, placebo-controlled, crossover study.

    Science.gov (United States)

    Kondo, Sumio; Suzuki, Asahi; Kurokawa, Mihoko; Hasumi, Keiji

    2016-11-01

    Kale ( Brassica oleracea var. acephala ), a vegetable in the family Brassicaceae, has beneficial effects on health, including hypoglycemic effects. In our previous study with a limited number of subjects, intake of kale-containing food at a dose of 14 g decreased postprandial plasma glucose levels. In the present study, the effective dose of kale-containing food was investigated in a randomized, double-blind, placebo-controlled, crossover trial. The trial was conducted on 42 Japanese subjects aged 21-64 years with fasting plasma glucose levels of ≤125 mg/dl and 30-min postprandial plasma glucose levels of 140-187 mg/dl. The subjects consumed placebo or kale-containing food [7 or 14 g; low-dose (active-L) or high-dose (active-H) kale, respectively] together with a high-carbohydrate meal. At 30-120 min after the test meal intake, the plasma levels of glucose and insulin were determined. The postprandial plasma glucose levels in subjects with intake of active-L or active-H were significantly lower than those in subjects with intake of placebo, with the maximum plasma concentration (C max ; 163±24 mg/dl for active-L and 162±23 mg/dl for active-H compared with 176±26 mg/dl for placebo [values presented as means ± standard deviation (SD); Pkale were observed. Our findings suggest that intake of kale suppresses postprandial increases in plasma glucose levels at a single dose of 7 g, and that a dose as high as 14 g is safe.

  19. A study on the GC-MS analysis of bioactive components and pancreato-protective effect of methanolic extract of Brassica oleracea L. var. botrytis.

    Science.gov (United States)

    Rajapriya, Sadanandan; Geetha, Arumugam; Ganesan Kripa, Kavasseri

    2017-09-01

    The ever-increasing problem of pancreatitis due to alcohol abuse demands evaluation of novel drugs of plant origin. This study explores the therapeutic effects of the methanolic extract of Brassica oleraceae (MEBO) on ethanol and cerulein induced pancreatitis in rats. The MEBO was subjected to GC-MS and HPLC analysis. Male albino Wistar rats were divided into various groups, fed with alcohol (36% of total calories for 5 weeks) and cerulein (20 μg/kg b.wt i.p, weekly thrice for last three weeks) with or without MEBO (40 mg/kg b.wt). Serum lipase, amylase, IL-1β, IL-18, caspase-1, lipid peroxides, oxidative stress index and antioxidant status were assessed in pancreas. Six compounds were identified in GC-MS analysis. Co-administration of MEBO reduced the pancreatic marker enzymes in serum, IL-1β, IL-18 and caspase-1 and increased the antioxidant status of pancreas. The pancreato-protective effect of Brassica oleraceae may be attributed to well-known anti-inflammatory flavonoids, luteolin, quercetin and myricetin.

  20. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development.

    Science.gov (United States)

    Ridge, Stephen; Brown, Philip H; Hecht, Valérie; Driessen, Ronald G; Weller, James L

    2015-01-01

    In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the environmental control of cauliflower reproductive development at the molecular level. A functional allele of BoFLC2 was identified for the first time in an annual brassica, along with an allele disrupted by a frameshift mutation (boflc2). In a segregating F₂ population derived from a cross between late-flowering (BoFLC2) and early-flowering (boflc2) lines, this gene behaved in a dosage-dependent manner and accounted for up to 65% of flowering time variation. Transcription of BoFLC genes was reduced by vernalization, with the floral integrator BoFT responding inversely. Overall expression of BoFT was significantly higher in early-flowering boflc2 lines, supporting the idea that BoFLC2 plays a key role in maintaining the vegetative state. A homologue of Arabidopsis VIN3 was isolated for the first time in a brassica crop species and was up-regulated by two days of vernalization, in contrast to findings in Arabidopsis where prolonged exposure to cold was required to elicit up-regulation. The correlations observed between gene expression and flowering time in controlled-environment experiments were validated with gene expression analyses of cauliflowers grown outdoors under 'natural' vernalizing conditions, indicating potential for transcript levels of flowering genes to form the basis of predictive assays for curd initiation and flowering time. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition

    Directory of Open Access Journals (Sweden)

    Megan Migliozzi

    2015-11-01

    Full Text Available Lentil (Lens culinaris Medik. is a nutritious food and a staple for millions of people. Not only are lentils a good source of energy, they also contain a range of micronutrients and prebiotic carbohydrates. Kale (Brassica oleracea v. acephala has been considered as a health food, but its full range of benefits and composition has not been extensively studied. Recent studies suggest that foods are enrich in prebiotic carbohydrates and dietary fiber that can potentially reduce risks of non-communicable diseases, including obesity, cancer, heart disease, and diabetes. Lentil and kale added to a cereal-based diet would enhance intakes of essential minerals and vitamins to combat micronutrient malnutrition. This review provides an overview of lentil and kale as a complementary nutrient-rich whole food source to combat global malnutrition and calorie issues. In addition, prebiotic carbohydrate profiles and the genetic potential of these crops for further micronutrient enrichment are briefly discussed with respect to developing sustainable and nutritious food systems.

  2. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition.

    Science.gov (United States)

    Migliozzi, Megan; Thavarajah, Dil; Thavarajah, Pushparajah; Smith, Powell

    2015-11-11

    Lentil (Lens culinaris Medik.) is a nutritious food and a staple for millions of people. Not only are lentils a good source of energy, they also contain a range of micronutrients and prebiotic carbohydrates. Kale (Brassica oleracea v. acephala) has been considered as a health food, but its full range of benefits and composition has not been extensively studied. Recent studies suggest that foods are enrich in prebiotic carbohydrates and dietary fiber that can potentially reduce risks of non-communicable diseases, including obesity, cancer, heart disease, and diabetes. Lentil and kale added to a cereal-based diet would enhance intakes of essential minerals and vitamins to combat micronutrient malnutrition. This review provides an overview of lentil and kale as a complementary nutrient-rich whole food source to combat global malnutrition and calorie issues. In addition, prebiotic carbohydrate profiles and the genetic potential of these crops for further micronutrient enrichment are briefly discussed with respect to developing sustainable and nutritious food systems.

  3. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica).

    Science.gov (United States)

    Kim, Sun-Ju; Park, Woo Tae; Uddin, Md Romij; Kim, Yeon Bok; Nam, Sang-Yong; Jho, Kwang Hyun; Park, Sang Un

    2013-02-01

    Here we present previously unreported glucosinolate production by hairy root cultures of broccoli (B. oleracea var. italica). Growth media greatly influenced the growth and glucosinolate content of hairy root cultures of broccoli. Seven glucosinolates, glucoraphanin, gluconapin, glucoerucin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin, were identified by analysis of the broccoli hairy root cultures. Both half and full strength B5 and SH media enabled the highest accumulation of glucosinolates. In most cases, the levels of glucosinolates were higher in SH and BS media. Among the 7 glucosinolates, the accumulation of neoglucobrassicin was very high, irrespective of growth medium. The neoglucobrassicin content was 7.4-fold higher in SH medium than 1/2 MS, in which its level was the lowest. The 1/2 B5 medium supported the production of the highest amounts of glucobrassicin and 4-methoxyglucobrassicin, the levels for which were 36.2- and 7.9- fold higher, respectively, than their lowest content in 1/2 MS medium. The 1/2 SH medium enabled the highest accumulation of glucoraphanin and gluconapin in the broccoli hairy root cultures, whose levels were 1.8- and 4.6-fold higher, respectively, than their lowest content in 1/2 MS medium. Our results suggest that hairy root cultures of broccoli could be a valuable alternative approach for the production of glucosinolate compounds.

  4. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

    Directory of Open Access Journals (Sweden)

    lloyd eLoza-Muller

    2015-11-01

    Full Text Available Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58 and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

  5. Occurrence of Xanthomonas campestris pv. campestris (Pammel, 1895 Dowson 1939, on Brassicas in Montenegro

    Directory of Open Access Journals (Sweden)

    Dragana Radunović

    2012-01-01

    Full Text Available Brassicas form the most important group of vegetable crops in Montenegro. The cabbage(Brassica oleracea var. capitata is most commonly grown, although other brassicas,particularly kale, Brussels sprout, cauliflower and broccoli, have been increasingly producedsince recently. One of the specialties of vegetable production in Montenegro is growing ofcollard (Brassica oleracea var. acephala, which is the simplest variety of the Brassica oleraceaspecies and in the nearest relation with their wild ancestor – the sylvestris variety.Diseases are the main restrictive factors for successful production of these vegetables.Susceptibility of the cultivars and inadequate control often result in more or less damagedcrops in some plots.Causal agents of brassica diseases, especially bacterial, have not been investigated inMontenegro until 2009. Since the symptoms observed in 2009 were „V” shaped leaf edgenecrosis and black rot of vascular tissue, it was assumed that they were caused by plantpathogenic bacterium Xanthomonas campestris pv. campestris.Samples of the infected plants were collected from different localities in Montenegro.Isolation and identification of the bacterium were performed using laboratory methodsaccording to Schaad (1980, Lelliott and Stead (1987 and Arsenijević (1997. Examinationof chosen bacterial isolates was conducted using both, classical bacteriological methods(examination of their pathogenic, morphological, cultivation and biochemical and physiologicalcharacteristics, and ELISA test.The obtained results confirmed the presence of X.campestris pv. campestris (Pammel,1895 Dowson 1939, on cabbage, kale, broccoli and collard in Montenegro. This is the firstexperimental evidence that collard is the host of X. campestris pv. campestris in Montenegro.

  6. EFFECT OF HIGH INTENSITY LED LIGHT ON THE GERMINATION AND GROWTH OF BROCCOLI SEEDLINGS (BRASSICA OLERACEA L.

    Directory of Open Access Journals (Sweden)

    Guillermo Paniagua-Pardo

    2015-11-01

    Full Text Available Dado su alto valor nutricional y los beneficios a la salud por los compuestos anticancerígenos que posee, el brócoli (Brassica oleraceaL. se ha convertido en un cultivo de importancia dentro de las hortalizas, por lo que es necesario incrementar su consumo y producción por la sociedad mexicana. Esta investigación planteó como objetivo evaluar el efecto de la luz LED de alta intensidad de distinta longitud de onda (rojo, azul y verde, en germinación y crecimiento de plántulas de brócoli, evaluando las variables velocidad de germinación (VG, porcentaje de germinación (PGF, longitud media de hipocótilo (LMH, peso fresco (PF y seco (PS de las plántulas, en busca de alternativas de iluminación para la producción en ambiente controlado. Los tiempos de exposición con luz roja, azul y verde, proveniente de LEDs de alta intensidad fueron de 12, seis y tres horas, con un complemento de tiempo para los últimos dos tratamientos con luz LED blanca. Se utilizó un diseño experimental completamente al azar, con cuatro repeticiones de 30 semillas por unidad experimental. Se obtuvieron diferencias estadísticas significativas entre los tratamientos de las variables evaluadas. Los tratamientos con luz roja presentaron los mayores valores de VG, donde el rojo por 12 horas fue el mejor con incrementos del 25% contra el control. La variable LMH en el tratamiento verde por 12 horas tuvo incremento del 39% respecto al control, convirtiéndose en el mejor. Por otro lado, en la variable PF, el mayor peso se presentó en el tratamiento verde por 12 horas con un incremento contra el control del 16%. Finalmente en la variable PS, el mayor peso se presentó en el tratamiento rojo por 12 horas con un incremento contra el control del 6%. Estos resultados mostraron que las respuestas fisiológicas producidas por la exposición a distintas longitudes de onda de luz LED de alta intensidad en semilla de brócoli variaron de acuerdo con el tiempo de exposición y

  7. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis accessions from two ex situ genebanks.

    Directory of Open Access Journals (Sweden)

    Eltohamy A A Yousef

    Full Text Available Cauliflower (Brassica oleracea var. botrytis is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS. They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1% of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower

  8. Age-related macular degeneration: Effects of a short-term intervention with an oleaginous kale extract--a pilot study.

    Science.gov (United States)

    Arnold, Christin; Jentsch, Susanne; Dawczynski, Jens; Böhm, Volker

    2013-01-01

    Age-related macular degeneration (AMD) is a multifactorial degenerative disease of the retina, which accounts for slowly progressive visual impairment in the elderly. An increased dietary intake of xanthophylls is suggested to be inversely related to the risk of macular disease. The present study was designed as a randomized, double-blind, placebo-controlled, parallel trial examining the influence of a short-term intervention with an oleaginous extract of Brassica oleracea var. sabellica L. (kale) on plasma xanthophyll concentrations and the optical density of the macular pigment xanthophylls (MPOD). Twenty patients with non-exudative AMD were recruited for a 10-wk study period (2-wk run-in, 4-wk intervention, 4-wk washout). All participants received 50 mL of a beverage containing either an oleaginous extract of kale (kale) or refined rapeseed oil (placebo). The verum product provides 10 mg lutein and 3 mg zeaxanthin per day. The concentrations of the xanthophylls in plasma and the MPOD increased significantly in the kale group after 4 wk of intervention. The successive washout period resulted in a significant decline of the values in plasma and macula. The values at the end of the study were still significantly higher than the initial values. Nevertheless, the improvements did not persist over 4 wk of washout. The distribution of the xanthophylls in the macula seems to be more dynamic than originally assumed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop.

    Science.gov (United States)

    Kumar, Pankaj; Srivastava, D K

    2015-04-01

    Broccoli (Brassica oleracea L. var. italica) is an important, nutritionally rich vegetable crop, but severely affected by environmental stresses, pests and diseases which cause massive yield and quality losses. Genetic manipulation is becoming an important method for broccoli improvement. In the present study, a reproducible and highly efficient protocol for obtaining organogenesis from hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica cv. Solan green head) has been developed. Hypocotyl and cotyledon explants were used from 10 to 12 days old aseptically grown seedlings whereas leaf and petiole explants were excised from 18 to 20 days old green house grown seedlings and surface sterilized. These explants were cultured on shoot induction medium containing different concentration and combination of BAP and NAA. High efficiency shoot regeneration has been achieved in hypocotyl (83.33 %), cotyledon (90.11 %), leaf (62.96 %) and petiole (91.10 %) explants on MS medium supplemented with 3.5 mg/l BAP + 0.019 mg/l NAA 2.5 mg/l BAP + 0.5 mg/l NAA, 4.0 mg/l BAP + 0.5 mg/l NAA and 4.5 mg/l BAP + 0.019 mg/l NAA respectively. Petiole explants showed maximum shoot regeneration response as compared to other explants. MS medium supplemented with 0.10 mg/l NAA was found best for root regeneration (100 %) from in vitro developed shoots. The regenerated complete plantlets were transferred to the pots containing cocopeat and successfully acclimatized. This optimized regeneration protocol can be efficiently used for genetic transformation in broccoli. This is the first comparative report on multiple shoot induction using four different types of explants viz. hypocotyl, cotyledon, leaf and petiole.

  10. Kale Extract Increases Glutathione Levels in V79 Cells, but Does not Protect Them against Acute Toxicity Induced by Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Paula B. Andrade

    2012-05-01

    Full Text Available This study aims to evaluate the antioxidant potential of extracts of Brassica oleracea L. var. acephala DC. (kale and several materials of Pieris brassicae L., a common pest of Brassica cultures using a cellular model with hamster lung fibroblast (V79 cells under quiescent conditions and subjected to H2O2-induced oxidative stress. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and glutathione was determined by the 5,5'-dithiobis(2-nitrobenzoic acid (DTNB-oxidized glutathione (GSSG reductase recycling assay. The phenolic composition of the extracts was also established by HPLC-DAD. They presented acylated and non acylated flavonoid glycosides, some of them sulfated, and hydroxycinnamic acyl gentiobiosides. All extracts were cytotoxic by themselves at high concentrations and failed to protect V79 cells against H2O2 acute toxicity. No relationship between phenolic composition and cytotoxicity of the extracts was found. Rather, a significant increase in glutathione was observed in cells exposed to kale extract, which contained the highest amount and variety of flavonoids. It can be concluded that although flavonoids-rich extracts have the ability to increase cellular antioxidant defenses, the use of extracts of kale and P. brassicae materials by pharmaceutical or food industries, may constitute an insult to health, especially to debilitated individuals, if high doses are consumed.

  11. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. var. capitata subvar. alba) Grown under Different Nitrogen Regimens.

    Science.gov (United States)

    Agati, Giovanni; Tuccio, Lorenza; Kusznierewicz, Barbara; Chmiel, Tomasz; Bartoszek, Agnieszka; Kowalski, Artur; Grzegorzewska, Maria; Kosson, Ryszard; Kaniszewski, Stanislaw

    2016-01-13

    A multiparametric optical sensor was used to nondestructively estimate phytochemical compounds in white cabbage leaves directly in the field. An experimental site of 1980 white cabbages (Brassica oleracea L. var. capitata subvar. alba), under different nitrogen (N) treatments, was mapped by measuring leaf transmittance and chlorophyll fluorescence screening in one leaf/cabbage head. The provided indices of flavonols (FLAV) and chlorophyll (CHL) displayed the opposite response to applied N rates, decreasing and increasing, respectively. The combined nitrogen balance index (NBI = CHL/FLAV) calculated was able to discriminate all of the plots under four N regimens (0, 100, 200, and 400 kg/ha) and was correlated with the leaf N content determined destructively. CHL and FLAV were properly calibrated against chlorophyll (R(2) = 0.945) and flavonol (R(2) = 0.932) leaf contents, respectively, by using a homographic fit function. The proposed optical sensing of cabbage crops can be used to estimate the N status of plants and perform precision fertilization to maintain acceptable crop yield levels and, additionally, to rapidly detect health-promoting flavonol antioxidants in Brassica plants.

  12. PERTUMBUHAN VEGETATIF DAN PRODUKTIVITAS BERBAGAI KULTIVAR BROKOLI (Brassica oleracea L. var. italica Plenck. INTRODUKSI DI DESA BATUR, KECAMATAN KINTAMANI, KABUPATEN BANGLI, BALI

    Directory of Open Access Journals (Sweden)

    Ni Kadek Raleni

    2015-11-01

    Full Text Available Broccoli (Brassica oleracea L. var. italica Plenck. is a vegetable crop belongs to Brassicaceae family.  Broccoli has high nutrition, high in fiber and contains isotiacyanate that has anticancer activity.  Broccoli market in Indonesia, particularly in modern supermarkets, increases 15-20% per year, however, productivity was still low, therefore effort to increase broccoli production in Indonesia need to be investigated. Field trial was conducted at Batur Village, Kintamani District, Bangli Regency, Bali, to find out cultivars that were adapted in tropical region. Introduced cultivars being trialed were ‘Alborada’,‘Belstar’, ‘Fiesta’, ‘Sarasota’, ‘Bay Meadows’, ‘Castle Dome’, ‘Liutenant’, ‘Iron Man’, ‘Marathon’, ‘Green Gold’, ‘Imperial’, ‘Green Magic’ and ‘Lucky’ as control.  Variable observed were vegetative growth, curding period, and productivity of each cultivar.  This study employed Randomized Completely Block Design with 3 replicates (plots and 8 plants each plot.  Data were analyzed using ANOVA (Analysis of variance on Costat program, followed by Duncan’s Multiple Range Test (DMRT on 1% level.  Results show that each cultivar varied in adaptability in tropical region. ‘Castle Dome’ has the highest productivity, while ‘Fiesta’ was the lowest. Keywords: Brassica, field trial, cultivar

  13. Plant growth regulator-mediated anti-herbivore responses of cabbage (Brassica oleracea) against cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Scott, Ian M; Samara, R; Renaud, J B; Sumarah, M W

    2017-09-01

    Plant elicitors can be biological or chemical-derived stimulators of jasmonic acid (JA) or salicylic acid (SA) pathways shown to prime the defenses in many crops. Examples of chemical elicitors of the JA and SA pathways include methyl-jasmonate and 1,2,3-benzothiadiazole-7-carbothioate (BTH or the commercial plant activator Actigard 50WG, respectively). The use of specific elicitors has been observed to affect the normal interaction between JA and SA pathways causing one to be upregulated and the other to be suppressed, often, but not always, at the expense of the plant's herbivore or pathogen defenses. The objective of this study was to determine whether insects feeding on Brassica crops might be negatively affected by SA inducible defenses combined with an inhibitor of detoxification and anti-oxidant enzymes that regulate the insect response to the plant's defenses. The relative growth rate of cabbage looper Trichoplusia ni Hübner (Lepidoptera: Noctuidae) fed induced cabbage Brassica oleraceae leaves with the inhibitor, quercetin, was significantly less than those fed control cabbage with and without the inhibitor. The reduced growth was related to the reduction of glutathione S-transferases (GSTs) by the combination of quercetin and increased levels of indole glucosinolates in the cabbage treated with BTH at 2.6× the recommended application rate. These findings may offer a novel combination of elicitor and synergist that can provide protection from plant disease and herbivores in cabbage and other Brassica crops. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  14. Seleção e produção de sementes em hortaliças: com referência especial ao gênero Brassica

    Directory of Open Access Journals (Sweden)

    F. G. Brieger

    1942-01-01

    Full Text Available The preliminary work with vegetables was described and special reference was-made to the group Brassica oleracea. a Plants flowering easily in Piracicaba and probably in the whole State of São Paulo. To this group belongs the lettuce, endive, chichory, carrot, radish, kale, brocoli and cauliflower. b Plants where special treatment is necessary for flowering, as cabbage. c Plants that did not flower up to this moment, as Svisschard beet and beet. Three main factors contribute for the seedless condition in the group cabbage : lack of flowering, anormalities of the flowers and self-sterility. The preliminary experiments in controling these factors seem to indicate the possibility of seed production in this group. The systematics of the two species Brassica oleracea (Europe and Brassica juncea (Oriental Asia was discussed. The economical differences in the group Brassica oleracea are controled by Mendelian factors with complicate types of interaction. It is not necessary to look for special places in the State of São Paulo for vegetable experiments but the possibility of better results in the future, with appropriate conditions, is emphasized.

  15. Conserved microstructure of the Brassica B Genome of Brassica nigra in relation to homologous regions of Arabidopsis thaliana, B. rapa and B. oleracea

    Science.gov (United States)

    2013-01-01

    Background The Brassica B genome is known to carry several important traits, yet there has been limited analyses of its underlying genome structure, especially in comparison to the closely related A and C genomes. A bacterial artificial chromosome (BAC) library of Brassica nigra was developed and screened with 17 genes from a 222 kb region of A. thaliana that had been well characterised in both the Brassica A and C genomes. Results Fingerprinting of 483 apparently non-redundant clones defined physical contigs for the corresponding regions in B. nigra. The target region is duplicated in A. thaliana and six homologous contigs were found in B. nigra resulting from the whole genome triplication event shared by the Brassiceae tribe. BACs representative of each region were sequenced to elucidate the level of microscale rearrangements across the Brassica species divide. Conclusions Although the B genome species separated from the A/C lineage some 6 Mya, comparisons between the three paleopolyploid Brassica genomes revealed extensive conservation of gene content and sequence identity. The level of fractionation or gene loss varied across genomes and genomic regions; however, the greatest loss of genes was observed to be common to all three genomes. One large-scale chromosomal rearrangement differentiated the B genome suggesting such events could contribute to the lack of recombination observed between B genome species and those of the closely related A/C lineage. PMID:23586706

  16. brassica oleracea l

    African Journals Online (AJOL)

    pc

    2012-09-11

    Sep 11, 2012 ... investigated in this study, the data obtained promotes the utilization of AgNO3 in a concentration of 50. µM for the ... Due to the fact that all the processes of plant cells and tissue culture in ... The mother plants were grown in.

  17. Effects of p-chlorophenoxyisobutyric acid, arabinogalactan, and activated charcoal on microspore embryogenesis in kale.

    Science.gov (United States)

    Niu, R Q; Zhang, Y; Tong, Y; Liu, Z Y; Wang, Y H; Feng, H

    2015-04-27

    To improve embryogenesis in microspore cultures of kale (Brassica oleracea L. var. acephala DC.), 6-benzylaminopurine (6-BA), naphthaleneacetic acid (NAA), arabinogalactan (AG), p-chlorophenoxyisobutyric acid (PCIB), and activated charcoal (AC) were added to the medium using four varieties of kale. The results showed that the addition of AG (0.1-0.2 g/L), AC (0.1-0.2 g/L) or a combination of 6-BA (0.1-0.2 mg/L) and NAA (0.1-0.2 mg/L) promoted embryo-genesis. Adding 40 μM PCIB or a combination of 40 μM PCIB and 0.2 g/L AC to NLN-13 medium at pH 5.8 effectively enhanced embryogenesis. Treatment with a combination of 40 μM PCIB and 10 mg/L AG gave the highest rate of embryonic induction, especially in genotype "Y007," which showed a twelve-fold increase in yield.

  18. Obtenção de corante do repolho roxo (Brassica oleracea por dois métodos de extração

    Directory of Open Access Journals (Sweden)

    J. C. Almeida

    2015-12-01

    Full Text Available O repolho é uma hortaliça folhosa, com grande versatilidade, não somente pelo seu valor nutritivo. Além de colorir a mistura, destaca-se pelo elevado teor de antocianinas e compostos fenólicos, contribuindo para a prevenção de doenças cardiovasculares, bem como de alguns tipos de câncer. As antocianinas são largamente encontradas na natureza e responsáveis pela maioria das colorações azuis, violeta e vermelhas de flores e frutos, sendo sua principal utilização como corante natural na indústria. O presente trabalho tem como objetivo a obtenção de um corante, antocianina, de repolho roxo (Brassica oleracea por dois métodos distintos de extração. No corrente estudo, o extrato foi obtido por meio de procedimento alcoólico e aquoso. As características avaliadas foram: pH; acidez total titulável; Teor de sólidos solúveis (°Brix; umidade; cinzas; proteínas; extração e quantificação de antocianinas totais; Vitamina C. O resultado encontrado para antocianina no repolho roxo in natura foi de 6,58 mg/100g, para o extrato por método alcoólico foi de 4,58 mg/100g e 5,33 mg/100g para o extrato aquoso. Observou-se que a extração pelo método aquoso teve um rendimento melhor, correspondente a 50% do seu valor inicial, a extração alcoólica foi de 30% do seu volume inicial.Red cabbage dye obtaining (Brassica oleracea by two extraction methodsAbstract: Cabbage is avegetable crop with great versatility, not limited to its nutritional value. Besides coloring the mixture, it stands out for its high quantity of anthocyanin and phenolic compounds, which contribute to prevention of cardiovascular diseases and some types of cancer. Anthocyanins are widely found in nature and are responsible for the majority of blue, violet and red present in flowers and fruits. Thus, its main utilization is in industries as a natural dye. This study aims to obtain a colorant, anthocyanin, the red cabbage (Brassica oleracea by two different

  19. Flower infection of Brassica oleracea with Xanthomonas campestris pv. campestris results in high levels of seed infection

    NARCIS (Netherlands)

    Wolf, van der J.M.; Zouwen, van der P.S.; Heijden, van der L.

    2013-01-01

    During seed production, Brassica seed may become infected with Xanthomonas campestris pv. campestris after systemic colonization of plants upon leaf infection, or alternatively, after flower infection. Polytunnel experiments were conducted in 2007 and 2008 to study the relative importance of these

  20. Changes in SeMSC, glucosinolates and sulforaphane levels, and in proteome profile in broccoli (Brassica oleracea var. Italica) fertilized with sodium selenate.

    Science.gov (United States)

    Sepúlveda, Ignacio; Barrientos, Herna; Mahn, Andrea; Moenne, Alejandra

    2013-05-07

    The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC), total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica). Two experimental groups were considered: plants treated with 100 μmol/L sodium selenate (final concentration in the pot) and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  1. Characterization of fermented broccoli (Brassica oleracea L. and spinach (Amaranthus sp. produced using microfiltration membrane as folic acid source for smart food formula

    Directory of Open Access Journals (Sweden)

    Susilowati Agustine

    2017-01-01

    Full Text Available Purifying and drying both fermented biomasses of broccoli (Brassica oleracea L. and spinach (Amaranthus sp. by Kombucha culture has been conducted to recover concentrate and powder of folic acid. The aims of this study is to determine the differences of particles characteristics and compositions of concentrate and powder from both mentioned folic acid source through Micro Filtration (MF membrane and without MF membrane. The best folic acid produced by MF membrane process (room temperature, stirrer rotation speed 400 rpm, pressure 40 psia and 30 minutes and drying (30 °C, 22 cm Hg and 24 hours were resulted in biomass of the concentrate and powder with compositions of total solids 6.29 % and 96.91 %, total polyphenol 0.25 % and 0.06 %, folic acid 58.8 μg/mL and 54.33 μg/mL, reducing sugar 105.34 mg/mL and 441.39 mg/mL, and total acids 0.57 % and 2.33 %, respectively. In optimum condition, fermented spinach concentrate contributed to particles distribution with diameter size (Ø between 0,4 and 100 μm (75.45 %, and with Ø between 100 and 1000 μm (26.3 %, otherwise, the process without MF membrane was resulted the particles distribution respectively 74.1 % and 25.9% by each interval of Ø.

  2. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  3. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    Science.gov (United States)

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Changes in SeMSC, Glucosinolates and Sulforaphane Levels, and in Proteome Profile in Broccoli (Brassica oleracea var. Italica Fertilized with Sodium Selenate

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2013-05-01

    Full Text Available The aim of this work was to analyze the effect of sodium selenate fortification on the content of selenomethyl selenocysteine (SeMSC, total glucosinolates and sulforaphane, as well as the changes in protein profile of the inflorescences of broccoli (Brassica oleracea var. Italica. Two experimental groups were considered: plants treated with 100 mmol/L sodium selenate (final concentration in the pot and control plants treated with water. Fortification began 2 weeks after transplantation and was repeated once a week during 10 weeks. Broccoli florets were harvested when they reached appropriate size. SeMSC content in broccoli florets increased significantly with sodium selenate fortification; but total glucosinolates and sulforaphane content as well as myrosinase activity were not affected. The protein profile of broccoli florets changed due to fortification with sodium selenate. Some proteins involved in general stress-responses were up-regulated, whereas down-regulated proteins were identified as proteins involved in protection against pathogens. This is the first attempt to evaluate the physiological effect of fortification with sodium selenate on broccoli at protein level. The results of this work will contribute to better understanding the metabolic processes related with selenium uptake and accumulation in broccoli.

  5. Assessment of the anticancer compounds Se-methylselenocysteine and glucosinolates in Se-biofortified broccoli (Brassica oleracea L. var. italica) sprouts and florets.

    Science.gov (United States)

    Ávila, Fabricio William; Faquin, Valdemar; Yang, Yong; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2013-07-03

    Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.

  6. Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods.

    Science.gov (United States)

    Thomas, Minty; Badr, Ashraf; Desjardins, Yves; Gosselin, Andre; Angers, Paul

    2018-04-15

    The agrifood industry produces tons of waste and substandard products that are discarded at great expense. Valorization of industrial residues curbs issues related to food security and environmental problems. Broccoli (Brassica oleracea var. italica) is associated with varied beneficial health effects, but its production yields greater than 25% rejects. We aimed to characterize and quantify industrial broccoli by-products for their glucosinolate and polyphenol contents as a first step towards industrial bio-refining. Broccoli segments and rejected lots of 10 seed cultivars were analyzed using UPLC MS/MS. Variability in the contents of bioactive molecules was observed within and between the cultivars. Broccoli by-products were rich in glucosinolates (0.2-2% dry weight sample), predominantly glucoraphanin (32-64% of the total glucosinolates), whereas the polyphenolic content was less than 0.02% dry weight sample. Valorization of industrial residues facilitates the production of high value functional food ingredients along with socio-economic sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Degradation kinetics of peroxidase enzyme, phenolic content, and physical and sensorial characteristics in broccoli (Brassica oleracea L. ssp. Italica) during blanching.

    Science.gov (United States)

    Gonçalves, Elsa M; Pinheiro, Joaquina; Alegria, Carla; Abreu, Marta; Brandão, Teresa R S; Silva, Cristina L M

    2009-06-24

    The effects of water blanching treatment on peroxidase inactivation, total phenolic content, color parameters [-a*/b* and hue (h degrees*)], texture (maximum shear force), and sensory attributes (color and texture, evaluated by a trained panel) of broccoli (Brassica oleracea L. ssp. Italica) were studied at five temperatures (70, 75, 80, 85, and 90 degrees C). Experimental results showed that all studied broccoli quality parameters suffered significative changes due to blanching treatments. The vegetal total phenolic content showed a marked decline. Degradation on objective color and texture measurements and alterations in sensorial attributes were detected. Correlations between sensory and instrumental measurements have been found. Under the conditions 70 degrees C and 6.5 min or 90 degrees C and 0.4 min, 90% of the initial peroxidase activity was reduced. At these conditions, no significant alterations were detected by panelists, and a small amount of phenolic content was lost (ca. 16 and 10%, respectively). The peroxidase inactivation and phenolic content degradation were found to follow first-order reaction models. The zero-order reaction model showed a good fit to the broccoli color (-a*/b* and h degrees*), texture, and sensory parameters changes. The temperature effect was well-described by the Arrhenius law.

  8. Effects of the 3D-clinorotation on endogenous substances of broccoli sprout (Brassica oleracea var. italica) and its food safety

    Science.gov (United States)

    Hiraishi, K.; Tomita-Yokotani, K.; Wakabayashi, K.; Hashimoto, H.; Miyagawa, T.; Yamashita, M.

    Habitation in outer space is one of our challenges in this century We are studying on space agriculture to provide foods for space living people However careful assessment should be made on the effects of exotic environment on the endogenous production of biologically active substances and food safety of plants cultivated in space Broccoli sprout Brassica oleracea var italica is known to produce sulforaphane 4-methylsulfinybutyl isothiocyanate which is effective to function as an antioxidant and enhance immunity Because of such substance it is recognized to be good food materials Broccoli sprouts were then cultivated for 3 days under the 3D-clinorotation The amount of sulforaphane produced by this treatment showed no significant difference compared to the ground control Secondly we examined population of microorganisms adhered on the surface of sprout cultivated under the 3D-clinorotation Number of the microorganisms colony formed was statistically higher than the control Mold species was identified to penicillium sp based on the microscopic observation Poor construction of plant cell wall elements cellulose lignin etc is well known effects of microgravity Defense function of the broccoli plant cells might be weakened against microorganism We also speculate other possible causes for the high rate of contamination such as photosynthetic activity of the plant or microclimate air flow heat transport and humidity around the seedling affected by pseudo-microgravity or the 3D-clinorotation Those factors may relate to the difference in proliferation

  9. New strategy for determination of anthocyanins, polyphenols and antioxidant capacity of Brassica oleracea liquid extract using infrared spectroscopies and multivariate regression

    Science.gov (United States)

    de Oliveira, Isadora R. N.; Roque, Jussara V.; Maia, Mariza P.; Stringheta, Paulo C.; Teófilo, Reinaldo F.

    2018-04-01

    A new method was developed to determine the antioxidant properties of red cabbage extract (Brassica oleracea) by mid (MID) and near (NIR) infrared spectroscopies and partial least squares (PLS) regression. A 70% (v/v) ethanolic extract of red cabbage was concentrated to 9° Brix and further diluted (12 to 100%) in water. The dilutions were used as external standards for the building of PLS models. For the first time, this strategy was applied for building multivariate regression models. Reference analyses and spectral data were obtained from diluted extracts. The determinate properties were total and monomeric anthocyanins, total polyphenols and antioxidant capacity by ABTS (2,2-azino-bis(3-ethyl-benzothiazoline-6-sulfonate)) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods. Ordered predictors selection (OPS) and genetic algorithm (GA) were used for feature selection before PLS regression (PLS-1). In addition, a PLS-2 regression was applied to all properties simultaneously. PLS-1 models provided more predictive models than did PLS-2 regression. PLS-OPS and PLS-GA models presented excellent prediction results with a correlation coefficient higher than 0.98. However, the best models were obtained using PLS and variable selection with the OPS algorithm and the models based on NIR spectra were considered more predictive for all properties. Then, these models provided a simple, rapid and accurate method for determination of red cabbage extract antioxidant properties and its suitability for use in the food industry.

  10. Curd development associated gene (CDAG1) in cauliflower (Brassica oleracea L. var. botrytis) could result in enlarged organ size and increased biomass.

    Science.gov (United States)

    Li, Hui; Liu, Qian; Zhang, Qingli; Qin, Erjun; Jin, Chuan; Wang, Yu; Wu, Mei; Shen, Guangshuang; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2017-01-01

    The curd is a specialized organ and the most important product organ of cauliflower (Brassica oleracea L. var. botrytis). However, the mechanism underlying the regulation of curd formation and development remains largely unknown. In the present study, a novel homologous gene containing the Organ Size Related (OSR) domain, namely, CDAG1 (Curd Development Associated Gene 1) was identified in cauliflower. Quantitative analysis indicated that CDAG1 showed significantly higher transcript levels in young tissues. Functional analysis demonstrated that the ectopic overexpression of CDAG1 in Arabidopsis and cauliflower could significantly promote organ growth and result in larger organ size and increased biomass. Organ enlargement was predominantly due to increased cell number. In addition, 228 genes involved in the CDAG1-mediated regulatory network were discovered by transcriptome analysis. Among these genes, CDAG1 was confirmed to inhibit the transcriptional expression of the endogenous OSR genes, ARGOS and ARL, while a series of ethylene-responsive transcription factors (ERFs) were found to increased expression in 35S:CDAG1 transgenic Arabidopsis plants. This implies that CDAG1 may function in the ethylene-mediated signal pathway. These findings provide new insight into the function of OSR genes, and suggest potential applications of CDAG1 in breeding high-yielding crops. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleracea botrytis L.).

    Science.gov (United States)

    Ahmad, Rehan; Ali, Shafaqat; Hannan, Fakhir; Rizwan, Muhammad; Iqbal, Muhammad; Hassan, Zaidul; Akram, Nudrat Aisha; Maqbool, Saliha; Abbas, Farhat

    2017-03-01

    Chromium (Cr) is among the most toxic pollutants in the environment that adversely affect the living organisms and physiological processes in different plants. The present study investigated the effect of 15 mg L -1 of 5-aminolevulinic acid (ALA) on morpho-physiological attributes of cauliflower (Brassica oleracea botrytis L.) under different Cr concentrations (0, 10, 100, and 200 μM) in the growth medium. The results showed that Cr stress decreased the growth, biomass, photosynthetic, and gas exchange parameters. Chromium stress enhanced the activities of enzymatic antioxidants, catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in response to oxidative stress caused by the elevated levels of malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), and electrolyte leakage (EL) in both roots and leaves of cauliflower. Chromium concentrations and total Cr uptake were increased in leaves, stems, and roots with increasing Cr levels in the culture medium. Foliar application of ALA increased the plant growth parameters, biomass, gas exchange parameters, and photosynthetic pigments under Cr stress compared to the treatments without ALA. Foliar application ALA decreased the levels of MDA, EL, and H 2 O 2 while further improved the performance of antioxidant in both leaves and roots compared to only Cr-stressed plant. Chromium concentrations and total Cr uptake were decreased by the ALA application compared to treatments without ALA application. The results of the present study indicated that foliar application of ALA might be beneficial in minimizing Cr uptake and its toxic effects in cauliflower.

  12. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    Science.gov (United States)

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of Biofertilizer Containing Microbial of N-fixer, P Solubilizer and Plant Growth Factor Producer on Cabbage (Brassica oleraceae var. Capitata Growth And Soil Enzymatic Activities: A Greenhouse Trial

    Directory of Open Access Journals (Sweden)

    Sarjiya Antonius

    2012-05-01

    Full Text Available The objective of this greenhouse study was to evaluate the effects of four different concentrations of biofertilizers containing Pseudomonas sp., Bacillus sp. and Streptomyces sp. on soil properties and to evaluate the growth of Brassica oleraceae var. capitata. The application treatments included control (no fertilizer and four concentration of diluted biofertilizer per pot (20 ml, 40 ml, 60 mland 80 ml. The application of biofertilizer containing benefi cial bacteria signifi cantly increased the growth of B. oleraceae. The useof biofertilizer resulted higher biomass weight and length as well as root length. This greenhouse study also indicated that differentamount of biofertilizer application had almost similar effects. Microbial inoculum not only increased plant harvest, but also improvedsoil properties, such as number of microorganisms, respiration and urease activities.

  14. B. oleracea var. capitata monosomic and disomic alien

    Indian Academy of Sciences (India)

    Five monosomic alien addition lines (MAALs) of Brassica rapa ssp. pekinensis – B. oleracea var. capitata were obtained by hybridization and backcrossing between B. rapa ssp. pekinensis (female parent) and B. oleracea var. capitata. The alien linkage groups were identified using 42 B. oleracea var. capitata linkage ...

  15. Caracterización y optimización de las operaciones de procesado y conservación de la berza gallega ("Brassica oleracea" L. var. "acephala" cv. Galega)

    OpenAIRE

    Armesto Barge, Jorge

    2017-01-01

    El cultivo de la berza gallega (Brassica oleracea var. acephala cv. Galega) está ampliamente distribuido por todo el noroeste de España, formando esta hortaliza parte importante de la dieta tradicional de la población. Se cultivan y comercializan dos fenotipos diferenciados, uno de hoja rizada y otro de hoja lisa, cuyas características y diferencias composicionales se encuentran todavía por estudiar. Este vegetal se consume siempre tras un proceso de cocción que repercute de forma directa o i...

  16. Clonación del cDNA del gen de la insulina humana en raíces aéreas de Brassica oleracea var italica (brócoli)

    OpenAIRE

    Berenice García Reyes; María del Carmen Montes Horcasitas; Emma Gloria Ramos Ramírez; Armando Ariza Castolo; Josefina Pérez Vargas; Octavio Gómez Guzmán; Graciano Calva Calva

    2010-01-01

    La insulina humana es una proteína de actividad hormonal que regula los niveles de glucosa en sangre. Cuando la insulina falla se desarrolla el padecimiento conocido como diabetes. La insulina se ha expresado en bacterias, levaduras, hongos, células animales y sistemas vegetales por biotecnología vegetal. En este trabajo presentamos los resultados del uso de raíces transformadas de Brassica oleracea var italica (Brocoli) para producir insulina humana. Materiales y Métodos: El cDNA del corresp...

  17. Water balance and N-metabolism in broccoli (Brassica oleracea L. var. Italica) plants depending on nitrogen source under salt stress and elevated CO2.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-11-15

    Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. INFLUÊNCIA DA ESPESSURA E INTEGRIDADE DE COBERTURA PLÁSTICA NA GERMINAÇÃO DE Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Amanda Duim Ferreira

    2017-02-01

    Full Text Available Objetivou-se avaliar a influência da espessura e integridade de coberturas plásticas na germinação de sementes de repolho (Brassica oleracea var. capitata cultivadas principalmente na região serrana do Espírito Santo.  O experimento foi conduzido no Laboratório de Tecnologia de Sementes no Campus São Mateus da Universidade Federal do Espírito Santo (UFES, em esquema fatorial 2 x 2, com quatro repetições em delineamento inteiramente casualizado. Os tratamentos consistiram de duas espessuras de cobertura dos recipientes (0,06 mm - plástico fino; 0,10 mm - plástico grosso e a ausência ou presença de furos centralizados na secção superior dos recipientes. As contagens foram feitas do primeiro ao sétimo dia, sendo avaliados os seguintes parâmetros: porcentagem de germinação, índice de velocidade de germinação, tempo médio de germinação, coeficiente de velocidade de germinação e perda de água diária. Verificou-se que não há influência significativa da integridade da cobertura plástica sobre a germinação e é preferível o uso de coberturas plásticas com menor espessura de modo a possibilitar as trocas gasosas.

  19. Microbiological analysis and evaluation of Good Manufacturing Practices during the processing of raw white cabbage (Brassica oleracea var. capitata f. alba served in a self-service restaurant

    Directory of Open Access Journals (Sweden)

    Jhonathan Campos do Couto Beltrão

    2017-11-01

    Full Text Available Introduction: The consumption of meals outside the home has become an increasingly common practice in the life of the Brazilian population and of everyone. Objective: The aim of this work was to evaluate the microbiological quality of raw white cabbage (Brassica oleracea var. capitata f. alba, served in an institutional self-service restaurant, in the different stages of processing (reception, sanitation, slicing, cooling and distribution. In addition, Good Manufacturing Practices (GMP were evaluated through a checklist. Method: Total coliform, Escherichia coli and total aerobic bacteria were counted and Salmonella spp. was searched. Results: A sample collected at the reception stage showed Salmonella spp. Sanitization eliminated Salmonella spp. and reduced total coliforms and E. coli to undetectable numbers. The environment, the equipment and the manipulation strongly influenced the microbiological quality of food. Samples collected on day 4, after slicing, showed 3.2 log CFU of E. coli per g and at distribution 4.1 log CFU/g, which indicates unsatisfactory hygienic conditions. The restaurant had 55.75% compliance with GMP items, being classified as regular (Group 2, in accordance with RDC n° 275/2002. Conclusions: The non-conformities (37.00% observed in the exposure to prepared food consumption may be influencing the microbiological quality of raw white cabbage salad served. In this way we highlight the importance of the application of GMP in the production process to obtain a safe food and the compliance with the four POP required by RDC n° 216/2004.

  20. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  1. Health-promoting compounds of broccoli (Brassica oleracea L. var. italica) plants as affected by nitrogen fertilisation in projected future climatic change environments.

    Science.gov (United States)

    Zaghdoud, Chokri; Carvajal, Micaela; Moreno, Diego A; Ferchichi, Ali; Del Carmen Martínez-Ballesta, María

    2016-01-30

    The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions. Three different decreased N fertilisation regimes (NO3(-)/NH4(+) ratios of 100:0, 50:50 and 0:100 respectively) were combined with ambient (380 ppm) and elevated (800 ppm) [CO2 ] under non-saline (0 mmol L(-1) NaCl) and saline (80 mmol L(-1) NaCl) conditions. Nutrients (minerals, soluble protein and total amino acids) and natural antioxidants (glucosinolates, phenolic acids, flavonoids and vitamin C) were determined. In NH4(+) -fed broccoli plants, a marked growth reduction was shown and a redistribution of amino acids to cope with NH4(+) toxicity resulted in higher levels of indolic glucosinolate and total phenolic compounds. However, the positive effect of the higher [CO2] - ameliorating adverse effects of salinity--was only observed when N was supplied as NO3(-). Under reduced N fertilisation, the total glucosinolates were increased by a decreased NO3(-)/NH4 (+) ratio and elevated [CO2] but were unaffected by salinity. Under future climatic challenges, such as increased salinity and elevated [CO2], a clear genotypic dependence of S metabolism was observed in broccoli plants. In addition, an influence of the form in which N was supplied on plant nutritional quality was observed; a combined NO3(-)/NH4(+) (50:50) supply allowed broccoli plants not only to deal with NH4(+) toxicity but also to modify their glucosinolate content and profile. Thus, for different modes of N fertilisation, the interaction with climatic factors must be considered in the search for an optimal balance between yield and nutritional quality. © 2015 Society of Chemical Industry.

  2. Concentrating biomass of fermented broccoli (Brassica oleracea) and spinach (Amaranthus sp.) by ultrafiltration for source of organic acids and natural antioxidant

    Science.gov (United States)

    Aspiyanto, Susilowati, Agustine; Lotulung, Puspa D.; Maryati, Yati

    2017-11-01

    Organic acids and polyphenol from fermentation of green vegetables by Kombucha culture are novelty functional food to achieve prebiotic and natural antioxidant. Ultrafiltration (UF) mode was performed to concentrate biomass of fermented broccoli (Brassica oleracea L.) and spinach (Amaranthus spp.) at stirrer rotation speed of 200, 300 and 400 rpm, room temperature and trans membrane pressure 40 psia for 30 minutes. Based on total organic acids, experiment activity showed that the best treatment on biomass of fermented broccoli and spinach were reached at stirrer rotation speed of 400 rpm and 300 rpm, respectively. In this condition, fermented broccoli and spinach concentrates gave total acids 0.83 % and 0.81 %, total polyphenol 0.06 % and 0.11 %, reducing sugar 63.95 mg/mL and 20.54 mg/mL, total sugars 2.43 ug/mL and 2.28 ug/mL, total solids 6.42 % and 7.17 %, respectively. Compared with feed, the optimum condition on fermented spinach and broccoli concentrates increased total acids 13.33 % and 10 %, however decreased total polyphenol 34.1 % and 41 %. Identification on monomer from fermented spinach and broccoli at optimum condition on lactic acid were dominated by monomers with molecular weights (MWs) 252.19 and 252.36 Dalton (Da.), and monomer of polyphenol dominated by monomer with MWs 193.17 and 193.22 Da. and relative intensity 100 %. Fermented broccoli has potency as prebiotic, meanwhile fermented spinach has potency as anti oxidant.

  3. Brassica oleracea L. var. Italica Plenck and Cassia absus L. extracts reduce oxidative stress, alloxan induced hyperglycemia and indices of diabetic complications

    International Nuclear Information System (INIS)

    Khalid, S.; Tipu, M.K.; Ali, H.

    2018-01-01

    The nature's endowment of medicinal plants in successful management of diabetes necessitates their further exploration. Therefore, the present study was designed to comprehend ameliorating role of Brassica oleracea var. italic (BO) and Cassia absus (CA) in oxidative stress, hyperglycemia and indices of diabetic complications. Among all the extracts of BO and CA, aqueous extract was the most proficient in terms of extract recovery (9.0 and 10.2%) and DPPH radical scavenging efficiency (IC50 = 11.90 +- 1.70 and 8.26 +- 1.20 mu g/ml) respectively. Maximum phenolic content [BO = 184.0 +- 0.17 and CA = 406.7 +- 0.08 mu g gallic acid equivalent/mg extract (E)], flavonoid content (BO = 160.9 +- 0.1 and CA = 361.9 +- 0.09 mu g quercetin equivalent/mg E) and total antioxidant capacity (BO = 223.7 +- 0.20 and CA = 257.2 +- 3.30 mu g ascorbic acid equivalent/mg E) was recorded in their ethanol extract. Highest reducing power potential was quantified in BO ethanol and CA aqueous extractsas 427.9 +- 0.10 and 480.0 +- 2.10mu g ascorbic acid equivalent/mg E respectively. Brine shrimp assay expounded petroleum ether extract of BO and CA to have some cytotoxicity (LC50 = 200+- 2.3 and 86.6 +- 3.1 mu g/ml respectively). In vivo studies established their aqueous extract as proficient in reducing the serum glucose (BO = 142.3 +- 7.10 and CA = 161.5 +- 4.40 mg/dl at day 21) as well as blood cholesterol, ALT and urea levels. Findings of the present study prospects BO and CA a useful treatment of diabetes and its escorting complications. (author)

  4. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis.

    Science.gov (United States)

    Singh, Ajey; Singh, N B; Hussain, Imtiyaz; Singh, Himani

    2017-11-20

    Study on the ecological effect of metal oxide nanomaterials (NMs) has quickly amplified over the precedent years because it is assumed that these NMs will sooner or later be released into the environment. The present study deals with biologically oriented process for the green synthesis of copper oxide nanoparticles (CuO NPs) by using Morus alba leaf extract as reducing agent. Powder X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed the monoclinic phase and 20-40nm size respectively. The presence of reducing and capping agents revealed by Fourier transform infrared (FTIR) spectroscopy. The seedlings of Brassica oleracea var. botrytis and Solanum lycopersicum were exposed to 10, 50, 100, and 500mgL -1 concentrations of CuO NPs in the sand medium. Bioaccumulation of Cu was also investigated by atomic absorption spectroscopy (AAS). Plant exposure to 100 and 500mgL -1 of CuO NPs has resulted in significant reduction of total chlorophyll and sugar content in the two test plants while 10mgL -1 of NPs slightly increased the pigment and sugar content in tomato plants only. Augmentation of lipid peroxidation, electrolyte leakage, and antioxidant enzyme activity was observed in a dose dependent manner upon plants exposure to CuO NPs. Deposition of lignin in roots of both plants treated with the highest concentration of CuO NPs was observed. Histochemical analysis of leaves of treated plant with nitroblue tetrazolium and 3 ' 3 ' diaminobenzidine showed a concentration dependent increase in superoxide and hydrogen peroxide formation in leaves. The green synthesis of CuO NPs was carried out by using Morus alba leaf extract. Accumulation of NPs more actively by tomato plants as compared to cauliflower was possibly due to the difference in root morphology. The histochemical visualization highlights the spatial organization of oxidant biochemistry occurring in response to metal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    Science.gov (United States)

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  6. [Construction of genetic linkage map and localization of NBS-LRR like resistance gene analogues in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Gu, Yu; Zhao, Qian-Cheng; Sun, De-Ling; Song, Wen-Qin

    2007-06-01

    Nucleotide binding site (NBS) profiling, a new method was used to map resistance gene analogues (RGAs) in cauliflower (Brassica oleracea var. botrytis). This method allows amplification and the mapping of genetic markers anchored in the conserved NBS encoding domain of plant disease resistance genes. AFLP was also performed to construct the cauliflower intervarietal genetic map. The aim of constructing genetic map was to identify potential molecular markers linked to important agronomic traits that would be particularly useful for development and improving the species. Using 17 AFLP primer combinations and two degeneration primer/enzyme combinations, a total of 234 AFLP markers and 21 NBS markers were mapped in the F2 population derived from self-pollinating a single F1 plant of the cross AD White Flower x C-8. The markers were mapped in 9 of major linkage groups spanning 668.4 cM, with an average distance of 2.9 cM between adjacent mapped markers. The AFLP markers were well distributed throughout the linkage groups. The linkage groups contained from 12 to 47 loci each and the distance between two consecutive loci ranged from 0 to 14.9 cM. NBS markers were mapped on 8 of the 9 linkage groups of the genetic map. Most of these markers were organized in clusters. This result demonstrates the feasibility of the NBS-profiling method for generating NBS markers for resistance loci in cauliflower. The clustering of the markers mapped in this study adds to the evidence that most of them could be real RGAs.

  7. Diverse accumulation of several dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress.

    Science.gov (United States)

    Rurek, Michal

    2010-08-18

    Dehydrins represent hydrophilic proteins acting mainly during cell dehydration and stress response. Dehydrins are generally thermostable; however, the so-called dehydrin-like (dehydrin-related) proteins show variable thermolability. Both groups immunoreact with antibodies directed against the K-segment of dehydrins. Plant mitochondrial dehydrin-like proteins are poorly characterized. The purpose of this study was to extend previous reports on plant dehydrins by comparing the level of immunoprecipitated dehydrin-like proteins in cauliflower (Brassica oleracea var. botrytis), Arabidopsis thaliana and yellow lupin (Lupinus luteus) mitochondria under cold and heat stress. All the analyzed plant species showed constitutive accumulation of thermostable mitochondrial putative dehydrins ranging from 50 to 70 kDa. The mitochondrial dehydrin-like proteins observed in cauliflower and Arabidopsis ranged from 10 to 100 kDa and in lupin imbibed seeds and hypocotyls--from 20 to 90 kDa. Cold treatment increased mainly the accumulation of 10-100 kDa cauliflower and Arabidopsis dehydrin-like proteins, in the patterns different in cauliflower leaf and inflorescence mitochondria. However, in lupin mitochondria, cold affected mainly 25-50 kDa proteins and seemed to induce the appearance of some novel dehydrin-like proteins. The influence of frost stress on cauliflower leaf mitochondrial dehydrin- like proteins was less significant. The impact of heat stress was less significant in lupin and Arabidopsis than in cauliflower inflorescence mitochondria. Cauliflower mitochondrial dehydrin-like proteins are localized mostly in the mitochondrial matrix; it seems that some of them may interact with mitochondrial membranes. All the results reveal an unexpectedly broad spectrum of dehydrin-like proteins accumulated during some abiotic stress in the mitochondria of the plant species analyzed. They display only limited similarity in size to those reported previously in maize, wheat and rye

  8. Agronomic parameters in broccoli ( Brassica oleraceae L. var. Italica in convencional, organic and natural crop systems/ Parâmetros agronômicos em couve-brócolos ( Brassica oleraceae L. var. Italica em sistema convencional, orgânico e natural

    Directory of Open Access Journals (Sweden)

    Pedro Manoel Oliveira Janeiro Neves

    2001-05-01

    Full Text Available Agronomic parameters were assessed in broccoli ( Brassica oleraceae L. var. italica, cv. Legacy, in different cultivation systems: Natural 1 [incorporation of elephant grass Pennisetum purpureum Schumacher cv. “Napier” (50 ton/ha, Bokashi compost (1,5 ton/ ha and EM-4 spraying (20 l/ha]; Natural 2 [Bokashi compost (1,5 ton/ ha and EM-4 spraying (20 l/ha]; Conventional (NPK in the planting + bórax + dressing N]; Organic [organic compost (1 kg/plant]. Plants high were assessed 30, 45 and 60 days after planting; cycle; fresh weight; shelf life and dried weight were also evaluated. Fresh weight of leaves and stems in conventional was higher then in organic treatment. Inflorescence fresh weight, leaves and stems dried weight and shelf life were similar among treatments. The inflorescence fresh and dried weight from conventional were higher than those from Organic and Natural 1. Cycle found in Natural 1 was longer than the other treatments.Parâmetros agronômicos foram avaliados em couve-brócolos ( Brassica oleraceae L . var. italica, cv. Legacy, em quatro sistemas de cultivo: Natural 1 [incorporação de capim elefante Pennisetum purpureum Schumacher cv. “Napier” (50 ton/ha, composto Bokashi (1,5 ton/ ha e pulverização de EM-4 (20 l/ha]; Natural 2 [incorporação de composto Bokashi (1,5 ton/ ha e pulverização de EM-4 (20 l/ha]; Convencional [NPK no plantio + bórax + N em cobertura]; Orgânico [aplicação de composto (1 kg/planta]. Avaliou-se a altura das plantas aos 30, 45 e 60 dias após o transplantio; duração do ciclo, peso fresco, período de conservação pós-colheita e peso seco. O peso fresco da parte vegetativa obtido no sistema convencional foi superior ao sistema orgânico. O peso fresco e seco da inflorescência obtido no sistema convencional, foi superior àquele obtido nos sistemas Orgânico e Natural 1. O ciclo no sistema Natural 1 foi mais longo do que nos outros tratamentos.

  9. [Isolation and identification of specific sequences correlated to cytoplasmic male sterility and fertile maintenance in cauliflower (Brassica oleracea var. botrytis)].

    Science.gov (United States)

    Wang, Chun Guo; Chen, Xiao Qiang; Li, Hui; Zhao, Qian Cheng; Sun, De Ling; Song, Wen Qin

    2008-02-01

    Analysis of ISSR (Inter-Simple Sequence Repeat) and DDRT-PCR (Differential Display Reverse Transcriptase Polymerase Chain Reaction) was performed between cytoplasmic male sterility cauliflower ogura-A and its corresponding maintainer line ogura-B. Totally, 306 detectable bands were obtained by ISSR using thirty oligonucleotide primers. Commonly, six to twelve bands were produced per primer. Among all these primers only the amplification of primer ISSR3 was polymorphic, an 1100 bp specific band was only detected in maintainer line, named ISSR3(1100). Analysis of this sequence indicated that ISSR3(1100) was high homologous with the corresponding sequences of mitochondrial genome in Brassica napus and Arabidopsis thaliana,which suggested that ISSR3(1100) may derive from mitochondrial genome in cauliflower. To carry out DDRT-PCR analysis, three anchor primers and fifteen random primers were selected to combine. Totally, 1122 bands from 1 000 bp to 50 bp were detected. However, only four bands, named ogura-A 205, ogura-A383, ogura-B307 and ogura-B352, were confirmed to be different display in both lines. This result was further identified by reverse Northern dot blotting analysis. Among these four bands, ogura-A205 and ogura-A383 only express in cytoplasmic male sterility line, while ogura-B307 and ogura-B352 were only detected in maintainer line. Analysis of these sequences indicated that it was the first time that these four sequences were reported in cauliflower. Interestingly, ogura-A205 and ogura-B307 did not exhibit any similarities to other reported sequences in other species, more investigations were required to obtain further information. ogura-A383 and ogura-B352 were also two new sequences, they showed high similarities to corresponding chloroplast sequences of Arabidopsis thaliana and Brassica rapa subsp. pekinensis. So we speculated that these two sequences may derive from chloroplast genome. All these results obtained in this study offer new and

  10. Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata) and African Nightshade (Solanum scabrum) under Controlled Conditions.

    Science.gov (United States)

    Ngwene, Benard; Neugart, Susanne; Baldermann, Susanne; Ravi, Beena; Schreiner, Monika

    2017-01-01

    Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum , two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm 3 volume) were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono) or one of each plant species (mixed). A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65% WHC) or low (30% WHC) irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata , while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum . Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum , but not in B. carinata , while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is

  11. Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata and African Nightshade (Solanum scabrum under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Benard Ngwene

    2017-09-01

    Full Text Available Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum, two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm3 volume were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono or one of each plant species (mixed. A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65% WHC or low (30% WHC irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata, while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum. Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum, but not in B. carinata, while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is

  12. A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U

    NARCIS (Netherlands)

    Li, Peirong; Zhang, Shujiang; Li, Fei; Zhang, Shifan; Zhang, Hui; Wang, Xiaowu; Sun, Rifei; Bonnema, Guusje; Borm, Theo J.A.

    2017-01-01

    The Brassica genus comprises many economically important worldwide cultivated crops. The well-established model of the Brassica genus, U’s triangle, consists of three basic diploid plant species (Brassica rapa, Brassica oleracea, and Brassica nigra) and three amphidiploid species (Brassica napus,

  13. Influência de genótipos de couve (Brassica oleracea L. var. acephala DC. na biologia de Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae Influence of cabbage genotypes (Brassica oleracea L. var. acephala DC. on the biology of Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae

    Directory of Open Access Journals (Sweden)

    Arlindo Leal Boiça Junior

    2011-08-01

    Full Text Available Objetivou-se, com este trabalho, avaliar a influência de alguns genótipos de couve (Brassica oleracea L. var. acephala DC. no desenvolvimento de Plutella xylostella (L., 1758 (Lepidoptera: Plutellidae. Os genótipos avaliados foram: Manteiga de Ribeirão Pires I-2620, Roxa I-919, Manteiga de São José, Manteiga de Monte Alegre, Pires 2 de Campinas, Couve Comum, Couve de Arthur Nogueira 2, Couve de Arthur Nogueira 1. Lagartas recém-eclodidas foram mantida em discos foliares de 8 cm de diâmetro para cada genótipo. Foram analisados os seguintes parâmetros: duração e viabilidade das fases larval e pupal, longevidade e fecundidade de adultos, utilizando análises paramétricas e de agrupamentos para interpretação dos dados. Observou-se um prolongamento em dias no ciclo de P. xylostella, aumento no peso de pupa e maiores valores de viabilidade e fecundidade, durante a segunda geração. O genótipo Couve de Arthur Nogueira 2 foi menos favorável ao desenvolvimento de P. xylostella nas duas gerações, e Couve Comum demonstrou maior influência negativa ao inseto na segunda geração. Manteiga de Ribeirão Pires I-2620 foi o mais suscetível nas duas gerações, agrupando com este na segunda geração Pires 2 de Campinas e Manteiga de São José.The purpose of this study was to evaluate the effect of cabbage genotypes (Brassica oleracea L. var. acephala DC. on growth of Plutella xylostella (Lepidoptera: Plutellidae. The genotypes evaluated were: Manteiga of Ribeirão Pires I-2620, Roxa I919, Manteiga of São José, Manteiga of Monte Alegre, Pires 2 of Campinas, Couve Comum, Couve of Arthur Nogueira 2, Couve of Arthur Nogueira 1. Neonate larvae were reared in 8 cm leaf discs of each genotype. The parameters evaluated were: period and viability of the larval and pupal stages, sex ratio, longevity and fecundity of adults. Parametric and Cluster analyses were used for data analysis. Overall, it was observed a developmental delay in the P

  14. Plant uptake of MBOCA (4,4'-methylene-bis (2-chloroaniline)). [Brassica oleracea L. ; Phaseolus vulgaris L. ; Beta vulgaris L. ; Sorghum vulgare Pers. ; Dactylis glomerata L. ; Daucus carrota L

    Energy Technology Data Exchange (ETDEWEB)

    Voorman, R; Penner, D

    1986-09-01

    (/sup 14/C)-MBOCA was absorbed by cabbage (Brassica oleracea L.), bean (Phaseolus vulgaris L.), and sugar beet (Beta vulgaris L.) leaves, but did not move beyond the absorption point. Radio autographs of bean, sorghum (Sorghum vulgare Pers.), orchard grass (Dactylis glomerata L.) and carrot (Daucus carrota L.) plants exposed to (/sup 14/C)-MBOCA via hydroponic culture showed considerable radioactivity associated with the roots with only limited translocation of (/sup 14/C) into upper plant parts. Bean and cucumber (Cucumis sativa L.) plants grown in (/sup 14/C)-MBOCA amended soil translocated virtually no (/sup 14/C) into aerial parts, but again considerable radioactivity was found on roots. Radioactivity could not be rinsed off roots with water or acetone, and a small amount of radioactivity was observed in the xylem-phloem layer of the carrot root.

  15. Estudo comparativo das alterações de processamento no brócoli (Brassica oleracea L. var. Itálica) submetido a diferentes processos de congelamento e períodos de estocagem

    OpenAIRE

    Damian, Andréa Clara Spoladore

    2000-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Agrárias. Amostras de brócoli (Brassica oleracea L. var. Itálica) foram congeladas por 3 métodos diferentes e armazenadas com a finalidade de analisar a textura e a microestrutura (rompimento da parede celular) do brócoli. O brócoli foi selecionado e separado de acordo com o diâmetro de caule (@ 5 mm), branqueado e congelado em freezer a -18°C pelo método lento, a -50°C em congelador de placas pelo método r...

  16. Effect of Different Culture Media on Broccoli (Brassica oleracea var. italica Yield Components and Mineral Elements Concentration in Soilless Culture

    Directory of Open Access Journals (Sweden)

    Kamran Ghasemi

    2018-03-01

    Full Text Available Introduction: Broccoli is one of the valuable vegetables among brassicas which has received great attention throughout the world and is cultivated both in soil and soilless culture. Currently, we face restriction in high quality of the soils and water resources as two essential inputs in agriculture. Like other parts of the world, Iran is losing hundred hectares of its arable and fertile land annually due to salinity, alkalinity and waterlogging. One of the important strategies to overcome these adverse conditions is soilless culture systems. Among the different methods of soilless culture, substrate culture is more common and cheaper than others. Different kinds of organic and inorganic substances are used in soilless culture system, but the optimum mixture of growing medium is still a challenging issue. Physical and chemical characteristics of growing media can potentially affect the yield and product quality in direct and indirect ways. A good medium for soilless culture should have easy drainage, appropriate aeration, high water holding capacity and low price, as well as no weed seeds and pathogens. Therefore, this research was aimed to evaluate different prevalent growing media in broccoli soilless culture system. Materials and Methods: This experiment was conducted as an outdoor soilless culture system in outdoor hydroponic site in Sari Agricultural Sciences and Natural Recourses University (SANRU. To begin with, broccoli seeds were sown in transplanting tray, and after five weeks, the developed transplants were cultivated in growing bags in a soilless system. In this work, different mixtures of culture media were evaluated for yield component and mineral elements of broccoli. Ten kinds of different media comprising of cocopeat, perlite, sand, sawdust, sand+sawdust, sand+vermicompost, cocopeat+perlite, cocopeat+LECA, cocopeat+ pumice, and cocopeat+perlite+ vermicompost were compared in completely randomized design with tree replications

  17. Genetic diversity and relationships among cabbage ( Brassica ...

    African Journals Online (AJOL)

    The integration of our data with historical documents confirmed that traditional cabbage landraces cultivated in North of China were first introduced from Russia. Key words: Amplified fragment length polymorphism (AFLP), genetic diversity, cabbage (Brassica oleracea var. capitata), landraces, population structure.

  18. The influence of NO3- and NH4+ on the sites of nitrogen assimilation of F1 hybrid cauliflower (Brassica oleracea. L. botrytis)

    International Nuclear Information System (INIS)

    Asiah Ahmad; Parsons, R.; Md Razi Ismail

    2002-01-01

    The sites of Nitrogen assimilation of Fl hybrid cauliflower (Brassica oleracea L.) grown in vermiculite: pearlite on either NO 3 or NH 4 nutrition was investigated using 15 N techniques. Labelling studies using 15 NO 3 Or 15 NH 4 alone to follow a time course of 15 NO 3 or 15 NH 4 incorporated into amino compounds in Fl hybrid cauliflower was conducted over periods of up to 24 hours. The 15 N enrichment of amino compounds in various plant parts was measured using GC-MS and isotopic abundance mass spectrometry techniques. In roots of 15 NH 4 -N fed plant, the 15 N label rapidly appears in glutamate at high enrichment within 30 minutes and increased substantially up to 6 hours after feeding. The labelled glutamate appears to decrease slowly after 6 hours. In leaves, the glutamate shows much lower labelling within 30 minutes than in the roots and became slowly enriched 6 hours after feeding. Labelled glutamate was only detected in the curd 6 hours later. This may indicate that in NH 4 -N fed plants, most NH 4 is assimilated in the roots and translocated as amino acids to the leaves and curd. In contrast to 15 NO 3 -N fed plant, both the roots and leaves showed significant label in glutamate within 30 minutes and subsequently increased in labelled enrichment over the time period of 6 hours. The leaves contained higher labelled glutamate than the roots. The labelled glutamate in the leaves decreased significantly at 24 hours after feeding. Label was incorporated in glutamate at low level in the curd after 2 hours and became highly enriched at 6 and 24 hours after feeding. Thus in NO 3 -N fed plants, NO 3 reduction and assimilation occurred both in root and leaf which mainly occur in the leaf. Therefore differences in the response of plant growth to NO3 - and NH 4 + nutrition observed in other studies could be due to the fact that NO 3 is primarily assimilated in the leaf whereas NH 4 is root based. No significant labelling was found in serine in both roots of 15 NH 4 -N

  19. In vitro propagation of Ethiopian mustard ( Brassica carinata A ...

    African Journals Online (AJOL)

    Brassica carinata (A. Braun) is an amphi-diploid species that originated from interspecific hybridization between Brassica nigra and Brassica oleracea in the highlands of Ethiopia. The crop has many desirable agronomic traits but with oil quality constraints like high erucic acid and glucosinolate contents. In this study, two ...

  20. Epidemiological studies on Brassica vegetables and cancer risk

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Goldbohm, R.A.; Poppel, G. van; Verhagen, H.; Brandt, P.A. van den

    1996-01-01

    This paper gives an overview of the epidemiological data concerning the cancer-preventive effect of brassica vegetables, including cabbage, kale, broccoli, Brussels sprouts, and cauliflower. The protective effect of brassicas against cancer may be due to their relatively high content of

  1. Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica).

    Science.gov (United States)

    Sahamishirazi, Samira; Zikeli, Sabine; Fleck, Michael; Claupein, Wilhelm; Graeff-Hoenninger, Simone

    2017-10-01

    This study describes the development of near-infrared spectroscopy (NIRS) calibration to determine individual and total glucosinolates (GSLs) content of 12 new-bred open-pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica). Six individual GSLs were identified using high-performance-liquid chromatography (HPLC). The NIRS calibration was established based on modified partial least squares regression with reference values of HPLC. The calibration was analyzed using coefficient of determination in prediction (R 2 ) and ratio of preference of determination (RPD). Large variation occurred in the calibrations, R 2 and RPD due to the variability of the samples. Derived calibrations for total-GSLs, aliphatic-GSLs, glucoraphanin and 4-methoxyglucobrassicin were quantitative with a high accuracy (RPD=1.36, 1.65, 1.63, 1.11) while, for indole-GSLs, glucosinigrin, glucoiberin, glucobrassicin and 1-methoxyglucobrassicin were more qualitative (RPD=0.95, 0.62, 0.67, 0.81, 0.56). Overall, the results indicated NIRS has a good potential to determine different GSLs in a large sample pool of broccoli quantitatively and qualitatively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel

    2010-01-01

    Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. EFEITO DE DIFERENTES NÍVEIS DE BORO, NA PRESENÇA E AUSÊNCIA DE MATÉRIA ORGÂNICA, NA CULTURA DO REPOLHO (Brassica oleraceae var. capitata EFFECTS OF DIFFERENT BORAX RATES AND MANURE ON CABBAGE (Brassica oleraceae var. Capitata Crop

    Directory of Open Access Journals (Sweden)

    Lázaro José Chaves

    2007-09-01

    Full Text Available

    Com o objetivo de verificar o efeito de diferentes níveis de boro na cultura do repolho, na presença e ausência de matéria orgânica, foi instalado na Escola de Agronomia da UFG um experimento em blocos casualizados, com parcelas subdivididas, com 3 repetições. A cultivar utilizada foi Matsukase. Os tratamentos com boro constaram da aplicação de 0, 20, 40, 80, 160 e 320 kg/ha de Bórax comercial, combinadas com doses de 0 e 75 t/ha de esterco de curral. A adubação orgânica aumentou o diâmetro, a altura e o peso de cabeça, mas as relações peso de cabeça/peso total e diâmetro/altura de cabeça não apresentaram diferenças significativas. A aplicação de boro apresentou respostas significativas, na ausência de adubação orgânica, para peso de cabeça, altura de cabeça e relação peso/diâmetro de cabeça. A produção física máxima foi estimada para uma dosagem de 101 kg/ha de bórax. Na presença de adubação orgânica, não houve efeito significativo da adubação com Bórax sobre a produção do repolho.

    PALAVRAS-CHAVE: Adubação orgânica; boro; Brassica oleraceae var. captata; repolho.

    The experiment was carried out at Goiás Federal University (UFG, Brazil, in order to verify the effect of different borax levels in presence or absence of manure, for cabbage cv. Matsukase crop. Boron was applied at 0, 20, 40, 80, 160 and 320 kg/ha of commercial Borax, combined to doses of 0 or 75 ton/ha corral manure. Organic fertilization increased head diameter, height and weight, but did not interfere on head weight/total weight nor head diameter/head height ratios. Boron application showed significant responses when organic fertilization was absent, regarding to head weight, head height and weight/head diameter ratio. The highest

  4. Comparative analysis of vitamin C, crude protein, elemental nitrogen ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... greens (Brassica napus L.) and kale (Brassica oleracea var. acephala) ... Nitrogen is essential for protein production, for proper growth of ... Brassica crops. ..... the effect of trace element-amended fertilizers on their Co, Se, and.

  5. EFICIÊNCIA DE INSETICIDAS PARA O CONTROLE DE Plutella xylostella (LEPIDOPTERA: PLUTELLIDAE NA CULTURA DO REPOLHO (Brassica oleracea var. capitata COMPARISON OF INSECTICIDE CONTROL EFFECTIVENESS OF Plutella xylostella (LEPIDOPTERA: PLUTELLIDAE IN CABBAGE

    Directory of Open Access Journals (Sweden)

    Fábio Shigeo Takatsuka

    2007-09-01

    Full Text Available

    O presente trabalho foi conduzido em uma área sob plantio contínuo de repolho (Brassica oleracea var. capitata em Goianápolis - GO, no período de setembro a novembro de 1996, visando comparar inseticidas para o controle da traça-das-crucíferas (Plutella xylostella. O delineamento experimental foi em blocos ao acaso com oito tratamentos e quatro repetições. Os tratamentos utilizados foram: teflubenzuron, nas doses de 25 mL, 30 mL e 40 mL de produto comercial (p.c./100 L de água; chlorfenapyr, nas doses de 30 mL, 50 mL e 100 mL de p.c./100 L de água; deltamethrin, na dose de 30 mL de p.c./100 L de água; e testemunha. Para cada tratamento realizaram-se aplicações semanais após o transplantio. As avaliações foram realizadas na colheita, contando-se o número de furos causados pela traça, em cinco cabeças comerciais de repolho, tomadas ao acaso, por parcela. Pôde-se concluir que os inseticidas teflubenzuron e chlorfenapyr foram mais eficientes que deltamethrin no controle da traça-das-crucíferas P. xylostella nas doses testadas.

    PALAVRAS-CHAVE: Inseticida; traça; controle químico.

    The research was carried out in an area under continuous cabbage cropping (Brassica oleracea var. capitata in Goianápolis, Goiás State, Brazil, from September to November 1996. The aim was to compare insecticides for diamondback moth (Plutella xylostella control. The experimental design was randomized blocks with eight treatments and four replications. The treatments were teflubenzuron in the doses of 25 mL, 30 mL and 40 mL of commercial product (c.p. / 100 L of water; chlorfenapyr in the doses of 30 mL, 50 mL and 100 mL of c.p./ 100 L of water; deltamethrin in the dose of 30 mL of c.p. / 100 L of water; and control. Treatments were applied weekly

  6. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    Science.gov (United States)

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Atividade antioxidante e teor de fenólicos em couve-manteiga (brassica oleracea l. var. acephala submetida a diferentes sistemas de cultivo e métodos de preparo

    Directory of Open Access Journals (Sweden)

    Geysa Duarte Junger Rigueira

    2017-01-01

    Full Text Available O estudo avaliou a influência de sistemas de cultivo e de métodos de preparo na atividade antioxidante e no teor de fenólicos de folhas e talos da couve manteiga (Brassica Oleracea L. var. acephala. Amostras de couve cultivadas pelo sistema convencional e orgânico foram pesadas, higienizadas e os talos separados das folhas. Foram submetidas aos modos de preparo: cru (couve in natura; calor seco (refogada e calor úmido (imersa em água fervente. Avaliou-se à atividade antioxidante e os compostos fenólicos pelo método espectrofotométrico. A verificação de compostos fenólicos e compostos com atividade antioxidante foi realizada por Cromatografia em Camada Delgada (CCD. O sistema de cultivo orgânico e o preparo em calor seco foram os tratamentos que obtiveram os maiores percentuais de antioxidantes e teores de compostos fenólicos, principalmente, em folhas de couve.  A atividade antioxidante variou de 38 a 87% nas folhas e de 13 a 56% nos talos de couve. Quanto aos compostos fenólicos os teores médios estiveram entre 173 e 244 mg EAG/100g nas folhas e 86 e 180 mg EAG/100g nos talos. As análises por CCD revelaram que todos os extratos de folhas e talos de couve apresentaram compostos fenólicos bem como componentes com ação antioxidante, mas nem todos com correlação. Conclui-se que a combinação de sistema de cultivo orgânico e cocção em calor seco pode ser eficiente para preservação e ou aumento do teor de compostos fenólicos e da atividade antioxidante em talos e, principalmente, em folhas de couve.

  8. The effect of nitrogen and sulphur fertilization on yield and quality of kohlrabi (Brassica oleracea, L. Efeito da adubagem com o nitrogénio e enxofre ao rédito e à qualidade das couves-rábanos (Brassica oleracea, L.

    Directory of Open Access Journals (Sweden)

    Tomáš Losák

    2008-04-01

    Full Text Available In a greenhouse pot experiment with kohlrabi, variety Luna, we explored the joint effect of N (0.6 g N per pot = 6 kg of soil and S in the soil (25-35-45 mg kg-1 of S on yields, on N, S and NO3- content in tubers and leaves, and on alterations in the amino acids concentration in the tubers. S fertilisation had no effect on tuber yields. The ranges of N content in tubers and leaves were narrow (between 1.42-1.48 % N and 1.21-1.35 % N, respectively and the effect of S fertilisation was insignificant. S concentration in the tubers ranged between 0.59 and 0.64 % S. S fertilisation had a more pronounced effect on the S concentration in leaf tissues where it increased from 0.50 to 0.58 or to 0.76 % S under the applied dose. The NO3- content was higher in tubers than in leaves. Increasing the S level in the soil significantly reduced NO3- concentrations in the tubers by 42.2-53.6 % and in the leaves by 8.8-21.7 %. Increasing the S content in the soil reduced the concentration of cysteine + methionine by 16-28 %. The values of valine, tyrosine, aspartic acid and serine were constant. In the S0, S1, and S2 treatments the levels of threonine, isoleucine, leucine, arginine, the sum of essential amino acids and alanine decreased from 37 to 9 %. The histidine concentration increased with increasing S fertilisation. S fertilisation of kohlrabi can be recommended to stabilize the yield and reduce the undesirable NO3- contained in the parts used for consumption.Deficiência aguda de S no solo tem sido observada na Europa desde os anos 1980. O couve-rábano é uma das plantas com maior exigência nesse nutriente e sua interação com o N é frequentemente relatada na literatura. Este trabalho foi conduzido em casa de vegetação visando testar o efeito da aplicação de S, na presença de N, na produção e qualidade de couve-rábano (Brassica oleracea, L., variedade Lua. As plantas foram cultivadas em vasos contendo 6 kg de solo, aos quais foram aplicados 0

  9. Proposed Method for Estimating Health-Promoting Glucosinolates and Hydrolysis Products in Broccoli (Brassica oleracea var. italica) Using Relative Transcript Abundance.

    Science.gov (United States)

    Becker, Talon M; Jeffery, Elizabeth H; Juvik, John A

    2017-01-18

    Due to the importance of glucosinolates and their hydrolysis products in human nutrition and plant defense, optimizing the content of these compounds is a frequent breeding objective for Brassica crops. Toward this goal, we investigated the feasibility of using models built from relative transcript abundance data for the prediction of glucosinolate and hydrolysis product concentrations in broccoli. We report that predictive models explaining at least 50% of the variation for a number of glucosinolates and their hydrolysis products can be built for prediction within the same season, but prediction accuracy decreased when using models built from one season's data for prediction of an opposing season. This method of phytochemical profile prediction could potentially allow for lower phytochemical phenotyping costs and larger breeding populations. This, in turn, could improve selection efficiency for phase II induction potential, a type of chemopreventive bioactivity, by allowing for the quick and relatively cheap content estimation of phytochemicals known to influence the trait.

  10. Enhancement of phenolic and flavonoid compounds in cabbage (Brassica oleraceae following application of commercial seaweed extracts of the brown seaweed, (Ascophyllum nodosum

    Directory of Open Access Journals (Sweden)

    Theodora Lola-Luz

    2013-06-01

    Full Text Available Brassica crops are rich is phytochemical compounds and frequent consumption of these vegetables has been associated with a lower risk in cancer, heart disease, hypertension and stroke. The effect of three commercial extracts of the brown seaweed, Ascophyllum nodosum, on phytochemical content and yield in cabbage plants was tested under field conditions in two consecutive crops. Total phenolic content was higher in all seaweed treated plants, with the highest increase recorded with AlgaeGreenTM (3.5 l ha-1 with a 2 fold increase relative to the control. The other commercial seaweed extract, XT achieved a lower increases of 1.3 fold (3.5 l ha-1. Similar increases were recorded in total flavonoid content. No statistically significant increases in yield were recorded with any of the seaweed extracts tested. The results suggest that seaweed extracts stimulated an increased accumulation of phytochemicals in cabbage but had no significant effect in yield under these experimental conditions.

  11. Selection for Cd Pollution-Safe Cultivars of Chinese Kale (Brassica alboglabra L. H. Bailey) and Biochemical Mechanisms of the Cultivar-Dependent Cd Accumulation Involving in Cd Subcellular Distribution.

    Science.gov (United States)

    Guo, Jing-Jie; Tan, Xiao; Fu, Hui-Ling; Chen, Jing-Xin; Lin, Xiao-Xia; Ma, Yuan; Yang, Zhong-Yi

    2018-02-28

    Two pot experiments were conducted to compare and verify Cd accumulation capacities of different cultivars under Cd exposures (0.215, 0.543, and 0.925 mg kg -1 in Exp-1 and 0.143, 0.619, and 1.407 mg kg -1 in Exp-2) and Cd subcellular distributions between low- and high-Cd cultivars. Shoot Cd concentrations between the selected low- and high-Cd cultivars were 1.4-fold different and the results were reproducible. The proportions of Cd-in-cell-wall of shoots and roots were all higher in a typical low-Cd cultivar (DX102) than in a typical high-Cd cultivar (HJK), while those of Cd-in-chloroplast or Cd-in-trophoplast and Cd-in-membrane-and-organelle were opposite. The proportions of Cd-in-vacuoles-and-cytoplasm of roots in DX102 were always higher than in HJK under Cd stresses, while there was no clear pattern in those of shoots. These findings may help to reduce health risk of Cd from Chinese kale consumption and explained biochemical mechanisms of cultivar-dependent Cd accumulation among the species.

  12. Characterization of biomasses, concentrates, and permeates of dried powder of Kombucha fermentation of spinach (Amaranthus sp.) and broccoli (Brassica oleracea) with membrane microfiltration and freeze drying techniques for natural sources of folic acid

    Science.gov (United States)

    Nugraha, Tutun; Susilowati, Agustine; Aspiyanto, Lotulung, Puspa Dewi; Maryati, Yati

    2017-11-01

    Fermentation of spinach (Amaranthus sp) and Broccoli (Brassica oleracea) using Kombucha Culture has been shown to produce biomass that has the potential to become natural sources of folic acid. To produce the materials, following the fermentation, the biomass was filtered using membrane microfiltration (0.15 µm) at a pressure of 40 psia, at room temperature, yielding the concentrate and the permeate fractions. Following this step, freeze drying process was done on the biomass feeds, as well as on the concentrate and permeate fractions. For the freeze drying stage, the samples were frozen, and the condenser was kept at -50°C for 40 hours, while the pressure in the chamber was set at 200 Pa. Freeze drying results showed that the final products, have differences in compositions, as well as differences in the dominat monomers of folates. After water content was driven out, freeze drying increased the concentrations of folic acid in the dried products, and was found to be the highest in the concentrate fractions. Freeze drying has been shown to be capable of protecting the folates from heat and oxidative damages that typicaly occur with other types of drying. The final freeze dried concentrates of fermentation of spinach and broccoli were found to contain folic acid at 2531.88 µg/mL and 1626.94 µg/mL, total solids at 87.23% and 88.65 %, total sugar at 22.66 µg/mL and 25.13 µg/mL, total reducing sugar at 34.46 mg/mL and 15.22 mg/mL, as well as disolved protein concentrations at 0.93 mg/mL and 1.45 mg/mL. Liquid Chromatography Mass Spectometry (LC-MS) identification of the folates in the freeze dried concentrates of fermented spinach and broccoli was done using folic acid and glutamic acid standard solutions as the reference materials. The results showed the presence of folic acid and showed that the dominant monomers of molecules of folates with molecular weights of 441.44 Da. and 441.54 Da. for spinach and broccoli respectively. Moreover, the monomers of glutamic

  13. Molecular mapping of MS-cd 1 gene in Chinese kale | Zhang ...

    African Journals Online (AJOL)

    A dominant male sterility (DGMS) line 79-399-3 was developed from spontaneous mutation in Brassica oleracea var. capitata and has been widely used in the production of hybrid cultivar in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, primary mapping of Ms-cd1 was ...

  14. BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species.

    Science.gov (United States)

    Murukarthick, Jayakodi; Sampath, Perumal; Lee, Sang Choon; Choi, Beom-Soon; Senthil, Natesan; Liu, Shengyi; Yang, Tae-Jin

    2014-06-20

    MITE, TRIM and SINEs are miniature form transposable elements (mTEs) that are ubiquitous and dispersed throughout entire plant genomes. Tens of thousands of members cause insertion polymorphism at both the inter- and intra- species level. Therefore, mTEs are valuable targets and resources for development of markers that can be utilized for breeding, genetic diversity and genome evolution studies. Taking advantage of the completely sequenced genomes of Brassica rapa and B. oleracea, characterization of mTEs and building a curated database are prerequisite to extending their utilization for genomics and applied fields in Brassica crops. We have developed BrassicaTED as a unique web portal containing detailed characterization information for mTEs of Brassica species. At present, BrassicaTED has datasets for 41 mTE families, including 5894 and 6026 members from 20 MITE families, 1393 and 1639 members from 5 TRIM families, 1270 and 2364 members from 16 SINE families in B. rapa and B. oleracea, respectively. BrassicaTED offers different sections to browse structural and positional characteristics for every mTE family. In addition, we have added data on 289 MITE insertion polymorphisms from a survey of seven Brassica relatives. Genes with internal mTE insertions are shown with detailed gene annotation and microarray-based comparative gene expression data in comparison with their paralogs in the triplicated B. rapa genome. This database also includes a novel tool, K BLAST (Karyotype BLAST), for clear visualization of the locations for each member in the B. rapa and B. oleracea pseudo-genome sequences. BrassicaTED is a newly developed database of information regarding the characteristics and potential utility of mTEs including MITE, TRIM and SINEs in B. rapa and B. oleracea. The database will promote the development of desirable mTE-based markers, which can be utilized for genomics and breeding in Brassica species. BrassicaTED will be a valuable repository for scientists

  15. NUTRITIVE EFFECT OF CABBAGE (Brassica oleracea) ON ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Pullets) were randomly assigned to groups of eight genotype-matched birds in a 2-factor layout within a Completely ... cause health problems to the human consumers (Stoker, .... Effects of Genotype, Diet, and their Interaction GxED were.

  16. Multiple, concentration-dependent effects of sucrose, auxins and cytokinins in explant cultures of kale and tobacco

    Czech Academy of Sciences Publication Activity Database

    Luštinec, Jiří; Cvrčková, F.; Čížková, Jana; Doležel, Jaroslav; Kamínek, Miroslav; Žárský, Viktor

    2014-01-01

    Roč. 36, č. 8 (2014), s. 1981-1991 ISSN 0137-5881 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassica oleracea * Nicotiana tabacum * Absorption Subject RIV: ED - Physiology Impact factor: 1.584, year: 2014

  17. Resposta da couve Tronchuda (Brassica oleracea var. costata à aplicação de azoto e boro e de um fertilizante orgânico autorizado em Agricultura Biológica Tall cabbage (Brassica oleracea var. costata response to the application of nitrogen, boron and an organic amendment permitted in organic farming

    Directory of Open Access Journals (Sweden)

    M. A. Rodrigues

    2009-01-01

    .The Portuguese are one of the greatest brassica consumers in the entire world. Tall cabbage is grown in Portugal over an area greater than 1000 ha. Tall cabbage consumption is very popular at Christmas time. In this work, results from nitrogen and boron application, as conventional fertilisers, and from the use of Dix10, an organic amendment (˜ 10 % total N permitted in organic farming, are reported. Young cabbage plants were prepared in a greenhouse in micro-pots and transplanted with protected roots on August 29, 2005, spaced at 0.8x0.5 m between and within rows. The soil was loamy textured with 0.83 % organic matter, pH(H2O 5.2, and with median P and high K content levels. Six treatments were established: SAd treatment, without any fertilization; Dix10, applied in a rate equivalent to 80 kg N/ha; NB and N+, with 80 and 160 kg N/ha as urea, respectively; and B-and B+ treatments, without B and with 4.4 kg B/ha as borax. Boron treatments were fertilised with 80 kg N/ha and N treatments with 2.2 kg B/ha. Thus, NB is a median treatment with 80 kg N/ha and 2.2 kg B/ha. SAd plants yielded 13.7 Mg biomass/ha and took up 33.9 kg N/ha and 40.9 g B/ha, which are values significantly lower than that obtained on fertilised plots. In Dix10 treatment, cabbage yielded 18 Mg biomass/ha and took up 45.1 and 51.3 g B/ha. NB treatment produced higher biomass (38.6 Mg/ha and N uptake (107.9 kg/ha than SAd and Dix10 treatments. N+ treatment did not increase the yield, neither N uptake if compared with NB. B+ treatment has not any influence in biomass yield but increased tissue B content and B uptake. In N+ treatment there was a significant decrease in tissue B concentration and B uptake, which suggests antagonism of N over the uptake of B. The biomass yields and the apparent N and B recoveries showed that the lower biomass yielded in SAd and Dix10 treatments were due to a shortage of soil N availability in these treatments during the growing season.

  18. Molecular phylogenetic implications in Brassica napus based on ...

    Indian Academy of Sciences (India)

    Brassica napus L. (canola, rapeseed) is one of the most important oil crops in many countries (Abdelmigid 2012;. Fayyaz et al. 2014), and thought to have originated from a cross where the maternal donor was closely related to two diploid species, B. oleracea (CC, 2n = 18) and B. rapa (AA, 2n = 20). Here, molecular ...

  19. Evaluating the Antibacterial Properties of Polyacetylene and Glucosinolate Compounds with Further Identification of Their Presence within Various Carrot (Daucus carota) and Broccoli (Brassica oleracea) Cultivars Using High-Performance Liquid Chromatography with a Diode Array Detector and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry Analyses.

    Science.gov (United States)

    Hinds, L; Kenny, O; Hossain, M B; Walsh, D; Sheehy, E; Evans, P; Gaffney, M; Rai, D K

    2017-08-23

    Ongoing consumer concerns over using synthetic additives in foods has strongly influenced efforts worldwide to source suitable natural alternatives. In this study, the antibacterial efficacy of polyacetylene and glucosinolate compounds was evaluated against both Gram positive and Gram negative bacterial strains. Falcarinol [minimum inhibitory concentration (MIC) = 18.8-37.6 μg/mL] demonstrated the best overall antibacterial activity, while sinigrin (MIC = 46.9-62.5 μg/mL) was the most active glucosinolate compound. High-performance liquid chromatography with a diode array detector analysis showed falcarinol [85.13-244.85 μg/g of dry weight (DW)] to be the most abundant polyacetylene within six of the eight carrot (Daucus carota) cultivars investigated. Meanwhile, sinigrin (100.2-244.3 μg/g of DW) was the most abundant glucosinolate present within the majority of broccoli (Brassica oleracea) cultivars investigated using ultra performance liquid chromatography-tandem mass spectrometry analysis. The high abundance of both falcarinol and sinigrin within these respective species suggests that they could serve as potential sources of natural antibacterial agents for use as such in food products.

  20. Mineral, vitamin C and crude protein contents in kale (Brassica ...

    African Journals Online (AJOL)

    ajl yemi

    2011-10-27

    Oct 27, 2011 ... open as the plant continued to grow and develop new buds at this stage). This cultural ..... The Scientific and Technical. Research ... Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in ...

  1. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids.

    Science.gov (United States)

    Thakur, Ajay Kumar; Singh, Kunwar Harendra; Singh, Lal; Nanjundan, Joghee; Khan, Yasin Jeshima; Singh, Dhiraj

    2018-01-01

    Oilseed Brassica represents an important group of oilseed crops with a long history of evolution and cultivation. To understand the origin and evolution of Brassica amphidiploids, simple sequence repeat (SSR) markers were used to unravel genetic variations in three diploids and three amphidiploid Brassica species of U's triangle along with Eruca sativa as an outlier. Of 124 Brassica-derived SSR loci assayed, 100% cross-transferability was obtained for B. juncea and three subspecies of B. rapa , while lowest cross-transferability (91.93%) was obtained for Eruca sativa . The average % age of cross-transferability across all the seven species was 98.15%. The number of alleles detected at each locus ranged from one to six with an average of 3.41 alleles per primer pair. Neighbor-Joining-based dendrogram divided all the 40 accessions into two main groups composed of B. juncea / B. nigra/B. rapa and B. carinata/B. napus/B. oleracea . C-genome of oilseed Brassica species remained relatively more conserved than A- and B-genome. A- genome present in B. juncea and B. napus seems distinct from each other and hence provides great opportunity for generating diversity through synthesizing amphidiploids from different sources of A- genome. B. juncea had least intra-specific distance indicating narrow genetic base. B. rapa appears to be more primitive species from which other two diploid species might have evolved. The SSR marker set developed in this study will assist in DNA fingerprinting of various Brassica species cultivars, evaluating the genetic diversity in Brassica germplasm, genome mapping and construction of linkage maps, gene tagging and various other genomics-related studies in Brassica species. Further, the evolutionary relationship established among various Brassica species would assist in formulating suitable breeding strategies for widening the genetic base of Brassica amphidiploids by exploiting the genetic diversity present in diploid progenitor gene pools.

  2. Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Zhang, Fengqi; Tong, Chaobo; Huang, Junyan; Cheng, Xiaohui; Dong, Caihua; Zhou, Yanqiu; Qin, Rui; Hua, Wei; Liu, Shengyi

    2014-01-03

    Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana. Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species. This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome

  3. Effect of H2S exposure on S-35-sulfate uptake, transport and utilization in curly kale

    NARCIS (Netherlands)

    Westerman, S; Weidner, W; De Kok, LJ; Stulen, I.

    2000-01-01

    When Brassica oleracea L. was exposed to 0.2 mul l(-1) H2S the sulfate uptake measured during a dark or light period was decreased to the same extent. Both the xylem loading and the net sulfate uptake rate were decreased by 42% after 6 days of exposure to 0.4 mul l(-1) H2S. This suggested that the

  4. PATTERNS OF SEVEN AND COMPLICATED MALARIA IN CHILDREN

    African Journals Online (AJOL)

    GB

    As a result, high ... numbers between 1 and the sampling interval, a ... During training of data ... good sources of carotene; kale (Brassica oleracea) .... low fat consumption and plant matrix could ... body (24) and consumption of vitamin A rich.

  5. Water extracts of cabbage and kale inhibit ex vivo H2O2-induced DNA damage but not rat hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    M.A. Horst

    2010-03-01

    Full Text Available The chemopreventive potential of water extracts of the Brassica vegetables cabbage and kale was evaluated by administering their aqueous extracts in drinking water ad libitum to Wistar rats submitted to Ito’s hepatocarcinogenesis model (CB group and K group, respectively - 14 rats per group. Animals submitted to this same model and treated with water were used as controls (W group - 15 rats. Treatment with the vegetable extracts did not inhibit (P > 0.05 placental glutathione S-transferase-positive preneoplastic lesions (PNL. The number of apoptotic bodies did not differ (P > 0.05 among the experimental groups. Ex vivo hydrogen peroxide treatment of rat livers resulted in lower (P < 0.05 DNA strand breakage in cabbage- (107.6 ± 7.8 µm and kale- (110.8 ± 10.0 µm treated animals compared with control (120.9 ± 12.7 µm, as evaluated by the single cell gel (comet assay. Treatment with cabbage (2 ± 0.3 µg/g or kale (4 ± 0.2 µg/g resulted in increased (P < 0.05 hepatic lutein concentration compared with control (0.5 ± 0.07 µg/g. Despite the absence of inhibitory effects of cabbage and kale aqueous extracts on PNL, these Brassica vegetables presented protection against DNA damage, an effect possibly related to increased hepatic lutein concentrations. However, it must be pointed out that the cause-effect relationship between lutein levels and protection is hypothetical and remains to be demonstrated.

  6. Effect of aqueous vegetal extratcts application on larva feeding behavior of Ascia monuste orseis at kale

    OpenAIRE

    Medeiros, Cesar Augusto Manfré; Boiça Júnior, Arlindo Leal

    2005-01-01

    Os efeitos de extratos aquosos de amêndoas de Azadirachta indica e frutos de Sapindus saponaria, aplicados em discos de folhas de couve (Brassica oleracea var. acephala) nas concentrações de 0,0117% e 1,0342% (p/v), respectivamente, foram estudados sobre a alimentação das lagartas de Ascia monuste orseis. Avaliou-se a atratividade e o consumo de área foliar de lagartas de primeiro e terceiro ínstar durante 24 horas, em condições de laboratório (T = 25 ± 2ºC, UR = 60 ± 10% e fotofase = 12 hora...

  7. Kajian Hubungan Populasi Tanaman dengan Neraca Unsur Hara Nitrogen dan Fosfor pada Sistem Vertikultur Sawi Hijau (Brassica juncea L dan Kangkung (Ipomea reptana

    Directory of Open Access Journals (Sweden)

    I MADE PURNA WIDANA

    2016-05-01

    Full Text Available Analysis of Relationship Between Crop Density and The Balancing of Both Soil Nitrogenand Phosporus in Verticulture System of Mustard Green (Brassica juncea L and Kale(Ipomea reptana. The relationship between crops density and the balancing of both soilnitrogen and phosphorus in verticulture system remained to be important issue. A glasshouseexperiment had carried out from October 2014 to March 2015 in order to determine (1 theoptimum population density of both mustard greens (Brassica juncea L and kale (Ipomeareptana, (2 soil total-N or available-P balance, and (3 the relatiohships between plantspopulations and soil nutrients balance. A split plot experiment under complete block designwas applied to examine the effect of the main plot (crops type i.e. mustard green and kale andsub plot (crops population i.e 10, 15, 20,25, and 30 crops per planting container 0,12 m2 insize. The results showed that no optimal crops population density had achieved. Themaximum crops population was 30 for both mustard greens and kale. The soil total-N balancewas negative while these was positive for soil available-P balance of P and N negative. Alogarithmic relationships was calculated between soil total-N balance with mustard green,while linier patterns were significant for soil-N balance with kale and available-P balancewith both mustard greens and kale.

  8. Catalytic properties of three catalases from Kohlrabi ( Brassica ...

    African Journals Online (AJOL)

    Catalase (EC 1.11.1.6) was extracted from kohlrabi bulbs (Brassica oleracea gongylodes) with 0.05 M phosphate buffer, pH 7.0. On the basis of kinetic studies and activity stain for catalase, only three isoenzymes of catalases were detected in kohlrabi bulbs extract with pH optima at 4.5, 6.5 and 10. Highest catalytic ...

  9. Expression analysis of four flower-specific promoters of Brassica spp ...

    African Journals Online (AJOL)

    The 5'-flanking region of ca. 1200 bp upstream of the translation start site (TSS) of a putative cell wall protein gene was cloned from Brassica campestris, B. chinensis, B. napus and B. oleracea, and transferred to tobacco via Agrobacterium-mediation after fused to promoter-less beta-glucuronidase (GUS) reporter gene.

  10. Transgenic tobacco plants expressing BoRS1 gene from Brassica ...

    Indian Academy of Sciences (India)

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through ...

  11. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    Science.gov (United States)

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  12. INFLUÊNCIA DE DIFERENTES TIPOS DE EMBALAGENS NAS CARACTERÍSTICAS FÍSICO-QUÍMICAS E COMPOSIÇÃO GASOSA DE BRÓCOLIS (Brassica oleracea L. var Itálica ORGÂNICOS MINIMAMENTE PROCESSADOS E ARMAZENADOS SOB REFRIGERAÇÃO

    Directory of Open Access Journals (Sweden)

    M. L. PADULA

    2009-01-01

    Full Text Available

    Este trabalho teve como objetivo avaliar os efeitos dos diferentes tipos de embalagens na vida útil de brócolis (Brassica oleracea orgânicos minimamente processados e armazenados sob refrigeração. As amostras foram selecionadas e higienizadas, centrifugadas e acondicionados em embalagens de polipropileno (PP, câmara de acrílico hermeticamente selada e com canais abertos à 10ºC por doze dias. Para avaliar a vida útil do produto foram realizadas análises físico-químicas a cada três dias e de composição gasosa, em função de O2 e CO2, diariamente durante dez dias, por cromatografia gasosa. Os resultados mostraram que a umidade das amostras não foi afetada significativamente pelo período de armazenamento. O pH, acidez total titulável e o conteúdo de sólidos solúveis aumentaram ao longo do período de armazenamento. A perda de massa durante o armazenamento foi inferior a 1% em todas as amostras analisadas. A embalagem que melhor preservou a textura dos brócolis ao longo do período de armazenamento foi a de acrílico selado. A degradação das clorofilas a e b, e a síntese de carotenóides foram mais acentuadas nas flores das amostras acondicionadas em acrílico com canais abertos. A composição gasosa apresentou comportamento similar ao observado na literatura. Os dados experimentais de concentração apresentaram bom ajuste aos dados da literatura.

  13. Germplasm Diversity of Chinese Kale in China

    Directory of Open Access Journals (Sweden)

    Jianjun LEI

    2017-05-01

    Full Text Available Chinese kale is an important vegetable crop in China, especially in South China where the majority of varieties are grown. It originated in South China and spread throughout Southeast Asia thereafter. Chinese kale can be classified into two types according to whether the petals are white or yellow. There are also three main cultivated types based on the edible organs, including the stalk and leaf type, the stalk type, and the leaf type. Two primary types have also been defined based on stalk color, including green stalks and red stalks. They are also cultivated based on the type of stalk, including main stalk and lateral stalk types. Significant differences have also been observed in glucosinolate content among the varieties, and a 40-fold difference in neoindle-3-methyl glucosinolate was detected across the cultivars.

  14. Efeito da aplicação de extratos aquosos em couve na alimentação de largatas de Ascia monuste orseis Effect of aqueous vegetal extratcts application on larva feeding behavior of Ascia monuste orseis at kale

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Manfré Medeiros

    2005-01-01

    Full Text Available Os efeitos de extratos aquosos de amêndoas de Azadirachta indica e frutos de Sapindus saponaria, aplicados em discos de folhas de couve (Brassica oleracea var. acephala nas concentrações de 0,0117% e 1,0342% (p/v, respectivamente, foram estudados sobre a alimentação das lagartas de Ascia monuste orseis. Avaliou-se a atratividade e o consumo de área foliar de lagartas de primeiro e terceiro ínstar durante 24 horas, em condições de laboratório (T = 25 ± 2ºC, UR = 60 ± 10% e fotofase = 12 horas. Nos testes com e sem chance de escolha, para lagartas de primeiro ínstar e teste sem chance de escolha para lagartas de terceiro ínstar, não houve diferença quanto à atratividade das lagartas. No teste com chance de escolha para lagartas de terceiro ínstar, houve menor atratividade das lagartas pelos discos de folhas tratadas com S. saponaria, diferindo da testemunha. No decorrer de 24 horas de avaliações, pode-se observar 58,3% de lagartas atraídas na testemunha, não diferindo de A. indica e diferindo de S. saponaria, com 39,3% e 2,4% das lagartas atraídas, respectivamente. Quanto ao consumo de área foliar, o extrato de S. saponaria diminuiu o consumo de lagartas, em todos os testes realizados. Quando não tinham opção de escolha para se alimentar de folhas sem os extratos, as lagartas consumiram as folhas tratadas nas concentrações testadas, porém em menor quantidade. Os extratos testados neste experimento demonstram ter efeitos sobre a alimentação das lagartas de A. monuste orseis, possivelmente com propriedades deterrentes e/ou supressoras de alimentação.The effects of aqueous extracts of Azadirachta indica almonds and of Sapindus saponaria fruits, applied on disks of kale leaves (Brassica oleracea var. acephala at concentrations of 0.0117% and 1.0342% (w/v, respectively, were studied on larval feeding behavior of Ascia monuste orseis. Data on leaves attractiveness and consumption at first and third larval instar were

  15. Efeito de extratos aquosos de plantas na oviposição da traça-das-crucíferas, em couve Effect of plants aqueous extracts on oviposition of the diamondback, in kale

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Manfré Medeiros

    2005-01-01

    L. (leaves, Plumbago capensis Thunb. (leaves e branches, Pothomorphe umbellata L. (leaves, Sapindus saponaria L. (leaves, S. saponaria (fruits, Solanum cernuum Vell. (leaves, Stryphnodendron adstringens (Mart Coville (bark, Symphytum officinale L. (leaves, Trichilia catigua A. Juss. (leaves, T. catigua (branches, Trichilia pallida Sw. (leaves e T. pallida (branches, was evaluated in relation to oviposition preference of Plutella xylostella. Disks of kale leaves (Brassica oleracea var. acephala, cultivar Georgia were immersed in each extract at a concentration of 10% (weight/volume for one minute, and afterwards, divided in four equal parts, and two parts were placed alternately with other two parts treated with distilled water, in each cage. The counting of the eggs was made after 24 hours. The results showed deterrent effect on oviposition of the pest, except for the extract of S. adstringens, which didn't differed from the water treated control. The extracts of E. contortisilliquum, S. saponaria (fruits and T. pallida (leaves were the most efficient, presenting 100% of deterrence.

  16. Effects of kale ingestion on pharmacokinetics of acetaminophen in rats.

    Science.gov (United States)

    Yamasaki, Izumi; Uotsu, Nobuo; Yamaguchi, Kohji; Takayanagi, Risa; Yamada, Yasuhiko

    2011-12-01

    Kale is a cruciferous vegetable (Brassicaceae) that contains a large amount of health-promoting phytochemicals. The chronic ingestion of cabbage of the same family is known to accelerate conjugating acetaminophen (AA) and decrease the plasma AA level. Therefore, we examined to clarify the effects of kale on the pharmacokinetics of AA, its glucuronide (AA-G) and sulfate (AA-S). AA was orally administered to rats pre-treated with kale or cabbage (2000 mg/kg/day) for one week. Blood samples were collected from the jugular vein, and the concentrations of AA, AA-G and AA-S were determined. In results, kale ingestion induced an increase in the area under the concentration-time curve (AUC) and a decrease in the clearance of AA, whereas cabbage had almost no influence. In addition, there were significant differences in the AUC of AA-G between the control and kale groups. mRNA expression levels of UDP-glucuronosyltransferases, the enzymes involved in glucuronidation, in the kale group were significantly higher than those in the control group. In conclusion, kale ingestion increased the plasma concentrations of both AA and AA-G. The results suggest that kale ingestion accelerates the glucuronidation of AA, but an increase of plasma AA levels has a different cause than the cause of glucuronidation.

  17. Impact of selenium supply on Se-methylselenocysteine and glucosinolate accumulation in selenium-biofortified Brassica sprouts.

    Science.gov (United States)

    Avila, Fabricio William; Yang, Yong; Faquin, Valdemar; Ramos, Silvio Junio; Guilherme, Luiz Roberto G; Thannhauser, Theodore W; Li, Li

    2014-12-15

    Brassica sprouts are widely marketed as functional foods. Here we examined the effects of Se treatment on the accumulation of anticancer compound Se-methylselenocysteine (SeMSCys) and glucosinolates in Brassica sprouts. Cultivars from the six most extensively consumed Brassica vegetables (broccoli, cauliflower, green cabbage, Chinese cabbage, kale, and Brussels sprouts) were used. We found that Se-biofortified Brassica sprouts all were able to synthesize significant amounts of SeMSCys. Analysis of glucosinolate profiles revealed that each Brassica crop accumulated different types and amounts of glucosinolates. Cauliflower sprouts had high total glucosinolate content. Broccoli sprouts contained high levels of glucoraphanin, a precursor for potent anticancer compound. Although studies have reported an inverse relationship between accumulation of Se and glucosinolates in mature Brassica plants, Se supply generally did not affect glucosinolate accumulation in Brassica sprouts. Thus, Brassica vegetable sprouts can be biofortified with Se for the accumulation of SeMSCys without negative effects on chemopreventive glucosinolate contents. Published by Elsevier Ltd.

  18. Aplicação de esterco bovino e uréia na couve e seus reflexos nos teores de nitrato e na qualidade Cattle manure and urea use on kale and their influence on the quality and nitrate content

    Directory of Open Access Journals (Sweden)

    Valéria Cristina P. Zago

    1999-11-01

    . Devido aos menores teores de nitrato encontrados na couve adubada exclusivamente com esterco, conclui-se que este adubo proporcionou um produto de melhor qualidade para consumo.High levels of nitrate in food is undesirable, as it may be easily converted to nitrite, which is a well known carcinogenic compound that can also interfere with hemoglobin activity. The objective of this study was to evaluate the influence of different forms of N-fertilizer (cattle manure, urea and a mixture of both on the N-NO3- concentration observed on leaf tissues of kale (Brassica oleracea var. acephala. A field experiment was conducted from March until August 1995, at the Embrapa-Agrobiology Research Center. The experiment was laid out in a randomized block design, with six treatments: cattle manure addition (20 t/ha, urea addition (900 kg/ha, mixtures of cattle manure (20 t/ha with increasing urea levels (225, 450 and 900 kg/ha and a control. A total of four replicates was used. The distance between plants in a row and between single rows was 0.6 m, and 0.8 m was the distance between double rows. A total of 24 plots with 9.6 m² each was used. Plants growing solely on cattle manure showed lower nitrate contents on leaf blades than those receiving additional urea (17.6 mg/g F. M. and 303 mg/g F. M., respectively. Petiole N-NO3- contents for all treatments were three times higher than the ones observed in leaf blades (1830 and 561 mg/g F. M., respectively. According to WHO, the Daily Acceptable Intake (DAI for an adult weighting 65 kg is 53.3 mg of N-NO3-, which represents the maximum quantity this compound that can be swallowed daily, through food and water. From the results obtained, the DAI would be reached after consumption of 2.67 kg of kale (leaf blade cultivated under cattle manure fertilization, or just 0.18 kg of kale cultivated under cattle manure and urea (111 kg/ha fertilization, which approximates to the urea dosage recommended in the "Manual de Adubação de Rio de Janeiro". As

  19. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  20. Survey of cabbage experimental hybrids (Brassica oleracea var. capitata L.

    Directory of Open Access Journals (Sweden)

    Červenski Janko

    2006-01-01

    Full Text Available Cabbage takes up significant area in vegetable sowing structure, and one of the factors of improving this production is adequate varieties selection. During the breeding process, experimental hybrids are tested in relation to currently grown varieties and hybrids in production. In this paper the characteristics of 18 cabbage genotypes are presented, out of which there are 9 experimental hybrids, 4 varieties and 5 hybrids from broader production. Cabbage genotypes in the trial are of differing length of growing season, as well as differing head weight. Properties variability analysis was performed using PCA method, where two main components were chosen based on screen test, and these were used to define 57.7%. Head weight and head diameter are properties based on which the tested hybrids were graded into quantitatively different groups.

  1. Stability of head weight in cabbage accessions (Brassica oleracea ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... issue, evaluate accessions in multi-environment trials inclusive of ... better and yield higher across different locations. Stability indices are either based on regression analysis or principal component analysis (Bernardo, 2002). Some of .... RESULTS. Our analysis of variance of the cabbage accessions.

  2. Local cabbage (Brassica oleracea var. capitata L.) populations from ...

    African Journals Online (AJOL)

    Administrator

    2011-06-15

    Jun 15, 2011 ... kraut is one of the best known traditional foods (Jevšnik et al, 2009). As in other ... harvested, stored in barrels of salt water, and left to ferment. On the ... In order to determine the genetic variability of cabbage grown in Serbia ...

  3. Effects of dietary inclusion of discarded cabbage (Brassica oleracea ...

    African Journals Online (AJOL)

    Douglas Nkosi

    2016-02-16

    Feb 16, 2016 ... unaffordable feed costs in this country, resource-poor farmers are resorting to ... that i) derive from processing food for human consumption; ii) are discarded for human food consumption ..... Proceedings of the Animal Waste Management Symposium, October 5-7, ... In: Animal Nutrition, 7th ed., Chapter 11.

  4. Broccoli (Brassica oleracea var. italica head initiation under field conditions

    Directory of Open Access Journals (Sweden)

    Alina Kałużewicz

    2012-12-01

    Full Text Available A two–year study on the influence of temperature on broccoli head initiation was carried out at the ''Marcelin'' experimental station of the Poznań University of Life Sciences. In each year of the study, plants were planted in the field at four dates. The evaluation of the developmental phase of the broccoli shoot apex was based on the analysis of microscope slides. The date of head initiation was assumed as the day on which the first of the examined apices were found to be at the early generative phase. The plant characteristics (number of leaves, leaf area and stem diameter on the date of initiation were also determined. Variation in length of the period from planting to head initiation was found both between dates of planting and between experimental years. The shortest period from planting to initiation was when the plants were planted in April and June (17-18 days in the first year and the longest one for planting in April in the first year of the study (29 days. The length of the period from planting to head initiation depended on mean daily air temperature. The higher the temperature was, the shorter was the period.

  5. Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores

    NARCIS (Netherlands)

    Poelman, E.H.; Dam, van N.M.; Loon, van J.J.A.; Vet, L.E.M.; Dicke, M.

    2009-01-01

    Intraspecific variation in plants plays a major role in the composition and diversity of the associated insect community. Resistance traits of plants are likely candidates mediating community composition. However, it is debated whether total concentrations of chemical compounds or specific compounds

  6. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  7. Comparative mitochondrial genome analysis reveals the evolutionary rearrangement mechanism in Brassica.

    Science.gov (United States)

    Yang, J; Liu, G; Zhao, N; Chen, S; Liu, D; Ma, W; Hu, Z; Zhang, M

    2016-05-01

    The genus Brassica has many species that are important for oil, vegetable and other food products. Three mitochondrial genome types (mitotype) originated from its common ancestor. In this paper, a B. nigra mitochondrial main circle genome with 232,407 bp was generated through de novo assembly. Synteny analysis showed that the mitochondrial genomes of B. rapa and B. oleracea had a better syntenic relationship than B. nigra. Principal components analysis and development of a phylogenetic tree indicated maternal ancestors of three allotetraploid species in Us triangle of Brassica. Diversified mitotypes were found in allotetraploid B. napus, in which napus-type B. napus was derived from B. oleracea, while polima-type B. napus was inherited from B. rapa. In addition, the mitochondrial genome of napus-type B. napus was closer to botrytis-type than capitata-type B. oleracea. The sub-stoichiometric shifting of several mitochondrial genes suggested that mitochondrial genome rearrangement underwent evolutionary selection during domestication and/or plant breeding. Our findings clarify the role of diploid species in the maternal origin of allotetraploid species in Brassica and suggest the possibility of breeding selection of the mitochondrial genome. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism.

    Science.gov (United States)

    Felker, Peter; Bunch, Ronald; Leung, Angela M

    2016-04-01

    Brassica vegetables are common components of the diet and have beneficial as well as potentially adverse health effects. Following enzymatic breakdown, some glucosinolates in brassica vegetables produce sulforaphane, phenethyl, and indolylic isothiocyanates that possess anticarcinogenic activity. In contrast, progoitrin and indolylic glucosinolates degrade to goitrin and thiocyanate, respectively, and may decrease thyroid hormone production. Radioiodine uptake to the thyroid is inhibited by 194 μmol of goitrin, but not by 77 μmol of goitrin. Collards, Brussels sprouts, and some Russian kale (Brassica napus) contain sufficient goitrin to potentially decrease iodine uptake by the thyroid. However, turnip tops, commercial broccoli, broccoli rabe, and kale belonging to Brassica oleracae contain less than 10 μmol of goitrin per 100-g serving and can be considered of minimal risk. Using sulforaphane plasma levels following glucoraphanin ingestion as a surrogate for thiocyanate plasma concentrations after indole glucosinolate ingestion, the maximum thiocyanate contribution from indole glucosinolate degradation is estimated to be 10 μM, which is significantly lower than background plasma thiocyanate concentrations (40-69 μM). Thiocyanate generated from consumption of indole glucosinolate can be assumed to have minimal adverse risks for thyroid health. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida state

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2014-04-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  10. Effects of Trichoderma harzianum Rifai over Plasmodiophora brassicae Woronin in broccoli, in Escagüey, municipality of Rangel, Mérida State

    Directory of Open Access Journals (Sweden)

    Mirna Labrador Morales

    2016-03-01

    Full Text Available The effectiveness of Trichoderma harzianum in suppressing clubroot of brassicas, which is caused by Plasmodiophora brassicae, was tested on broccoli (Brassica oleracea var. italica Plenck, in field conditions, in Escagüey, municipality of Rangel, Merida State, Venezuela. The experiment showed that the applications of a biopesticide based on this antagonist had a significant effect on the percentage of health plants and the crop yields, in dependence of the dose used. In addition, the relation benefits/cost was also favorable. These results showed that, for these particular conditions, P. brassicae is an adequate biological alternative to control the clubroot of brassicas, no aggressive to environment and human beings, useful for the transition phase toward a sustainable agriculture, without chemical pesticides.

  11. 76 FR 48898 - Robert Leigh Kale, M.D., Decision and Order

    Science.gov (United States)

    2011-08-09

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration Robert Leigh Kale, M.D., Decision and Order... Enforcement Administration, issued an Order to Show Cause to Robert Leigh Kale, M.D. (Registrant), of Fort... Certificate of Registration, BK9514375, issued to Robert Leigh Kale, M.D., be, and it hereby is, revoked. I...

  12. Determinants of the place of sell and price of kale for Kiambu, Kenya

    NARCIS (Netherlands)

    Salasya, B.D.S.; Burger, C.P.J.

    2010-01-01

    Kale is a major source of cash for many households in Kenya. A study of households in Kiambu district revealed that kale made the highest contribution to household income among the crops. The farmers of Kiambu sell their kale either in Nairobi, at farm gate, or at the local market and fetch

  13. Agronomic viability of New Zealand spinach and kale intercropping.

    Science.gov (United States)

    Cecílio, Arthur B; Bianco, Matheus S; Tardivo, Caroline F; Pugina, Gabriel C M

    2017-01-01

    The intercropping is a production system that aims to provide increased yield with less environmental impact, due to greater efficiency in the use of natural resources and inputs involved in the production process. An experiment was carried out to evaluate the agronomic viability of kale and New Zealand spinach intercropping as a function of the spinach transplanting time. (0, 14, 28, 42, 56, 70, 84 and 98 days after transplanting of the kale). The total yield (TY) and yield per harvest (YH) of the kale in intercropping did not differ from those obtained in monoculture. The spinach TY was influenced by the transplanting time, the earlier the transplanting, the higher the TY. The spinach YH was not influenced by the transplanting time, but rather by the cultivation system. In intercropping, the spinach YH was 13.5% lower than in monoculture. The intercropping was agronomically feasible, since the land use efficiency index, which was not influenced by the transplanting time, had an average value of 1.71, indicating that the intercropping produced 71% more kale and spinach than the same area in monoculture. Competitiveness coefficient, aggressiveness and yield loss values showed that kale is the dominating species and spinach is the dominated.

  14. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  15. Reference material for trace analysis by radioanalytical methods: Bowen's Kale

    International Nuclear Information System (INIS)

    Wainerdi, R.E.

    1979-01-01

    A fairly large volume of published data on 'Bowen's Kale' has been examined critically in order to develop recommendations for the use of this preparation as a 'reference material' in the standardisation and evaluation of the reliability of analytical procedures. Values are now recommended for the contents of twelve elements present in major to trace concentrations in 'Bowen's Kale'. 'Indicated values' for another 16 elements are provided. Values for 15 more elements are listed with no recommendation. The criteria adopted in categorising elements into these groups are discussed. (author)

  16. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Directory of Open Access Journals (Sweden)

    Gupta Vibha

    2008-03-01

    Full Text Available Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome and A. thaliana and analyzed the arrangement of 24 (previously described genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study with the A and B genomes of B. napus and B. nigra respectively (described earlier, revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements

  17. Role of water source in the growth of kale

    Science.gov (United States)

    Coates, M.

    2017-12-01

    Over the course of 2 months we watered Kale with tap water, water from turtle bayou, rain water, water from university lake, and deionized water. We found little difference between height and number of seedlings with different water treatments even though nutrient levels were different between these water sources.

  18. Pharmacognostical studies of Portulaca oleracea Linn

    Directory of Open Access Journals (Sweden)

    Bagepalli Srinivasa Ashok Kumar

    Full Text Available Portulaca oleracea Linn, belongs to family Portulaceae and is a widely distributed weed. It has been used as a folk medicine in many countries as diuretics, febrifuge, antiseptic, antispasmodic and vermifuge. This paper deals with the microscopic study of leaf; stem and root of Portulaca oleracea, along with the physico-chemical and preliminary phytochemical analyses that were also studied.

  19. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  20. Beslenme ve Halk Sağlığı Yönünden Önemli Bazı Sebzeler I: Sarımsak (Allium sativum L., Enginar (Cynara scolymus L., Kereviz (Apium graveolens L. ve Lahana (Brassica oleraceae

    Directory of Open Access Journals (Sweden)

    Nejat Altıniğne

    2015-02-01

    Full Text Available Karbonhidrat, mineral madde ve vitamin gibi önemli bazı besin ögelerini çok miktarda içeren sebzeler, beslenme amacıyla kullanıldıkları gibi, içerdikleri bazı ilaç etken maddeleri nedeniyle halk sağlığında tedavi amacıylada kullanılmaktadırlar. Bu makalede genel özellikleri, besin içerikleri ve halk sağlığında kullanılma amaçları yönünden sarımsak (A. sativum, enginar (C. scolymus, kereviz (A. graveolens ve lahana (B. oleraceae sebzeleri ele alınarak incelenmiştir.

  1. Brassica database (BRAD) version 2.0: integrating and mining Brassicaceae species genomic resources.

    Science.gov (United States)

    Wang, Xiaobo; Wu, Jian; Liang, Jianli; Cheng, Feng; Wang, Xiaowu

    2015-01-01

    The Brassica database (BRAD) was built initially to assist users apply Brassica rapa and Arabidopsis thaliana genomic data efficiently to their research. However, many Brassicaceae genomes have been sequenced and released after its construction. These genomes are rich resources for comparative genomics, gene annotation and functional evolutionary studies of Brassica crops. Therefore, we have updated BRAD to version 2.0 (V2.0). In BRAD V2.0, 11 more Brassicaceae genomes have been integrated into the database, namely those of Arabidopsis lyrata, Aethionema arabicum, Brassica oleracea, Brassica napus, Camelina sativa, Capsella rubella, Leavenworthia alabamica, Sisymbrium irio and three extremophiles Schrenkiella parvula, Thellungiella halophila and Thellungiella salsuginea. BRAD V2.0 provides plots of syntenic genomic fragments between pairs of Brassicaceae species, from the level of chromosomes to genomic blocks. The Generic Synteny Browser (GBrowse_syn), a module of the Genome Browser (GBrowse), is used to show syntenic relationships between multiple genomes. Search functions for retrieving syntenic and non-syntenic orthologs, as well as their annotation and sequences are also provided. Furthermore, genome and annotation information have been imported into GBrowse so that all functional elements can be visualized in one frame. We plan to continually update BRAD by integrating more Brassicaceae genomes into the database. Database URL: http://brassicadb.org/brad/. © The Author(s) 2015. Published by Oxford University Press.

  2. Franjas marginales de Brassica campestris L. (nabo) en cultivo de repollo. Efecto sobre pulgones y sus parasitoides: Título abreviado: Franjas marginales de Brassica campestris L. ....

    OpenAIRE

    Curis, M. C; Saravia Steudtner, F; Favaro, J. C; Sánchez, D; Bertolaccini, I

    2014-01-01

    La diversidad vegetal en los agroecosistemas afecta la dinámica poblacional de las plagas y de sus enemigos naturales, siendo una alternativa de control el uso de franjas trampa en algunos cultivos. El objetivo del trabajo fue determinar como una franja marginal de Brassicas campestris L. (Brassicales, Brassicaceae), afecta a la población de los pulgones de B. oleracea var. capitata y de sus parasitoides. El estudio se llevó a cabo en Santa Fe, a partir de febrero de 2012. Se estableció en un...

  3. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.

    Science.gov (United States)

    Zhan, Zongxiang; Nwafor, Chinedu Charles; Hou, Zhaoke; Gong, Jianfang; Zhu, Bin; Jiang, Yingfen; Zhou, Yongming; Wu, Jiangsheng; Piao, Zhongyun; Tong, Yue; Liu, Chao; Zhang, Chunyu

    2017-01-01

    Interspecific hybridization is a powerful tool for improvement of crop species, it has the potential to broaden the genetic base and create new plant forms for breeding programs. Synthetic allopolyploid is a widely-used model for the study of genetic recombination and fixed heterosis in Brassica. In Brassica napus breeding, identification and introgression of new sources of clubroot resistance trait from wild or related species into it by hybridization is a long-term crop management strategy for clubroot disease. Radish (Raphanus sativus L.) is a close relative of the Brassica and most radish accessions are immune to the clubroot disease. A synthesized allotetraploid Brassicoraphanus (RRCC, 2n = 36) between R. sativus cv. HQ-04 (2n = 18, RR) and Brassica oleracea var. alboglabra (L.H Bailey) (2n = 18, CC) proved resistant of multiple clubroot disease pathogen P. brassicae. To predict the possibility to transfer the clubroot resistance trait from the RR subgenome of allotetraploid Brassicoraphanus (RRCC, 2n = 36) into Brassica napus (AACC, 2n = 38), we analyzed the frequency of chromosome pairings in the F1 hybrids produced from a cross between B. napus cv. HS5 and the allotetraploid, characterize the genomic composition of some backcrossed progeny (BC1) using GISH, BAC-FISH and AFLP techniques. The level of intergenomic pairing between A and R genomes in the F1 hybrid was high, allosyndetic bivalents formed in 73.53% PMCs indicative of significant level of homeologous recombination between two genomes and high probability of incorporating chromosomal segments/genes from R-genome into A/C-genomes. The BC1 plants inherited variant extra R chromosomes or fragments from allotetraploid as revealed by GISH and AFLP analysis. 13.51% BC2 individuals were resistant to clubroot disease, and several resistance lines had high pollen fertility, Overall, the genetic material presented in this work represents a potential new genetic resource for practical use in breeding B. napus

  4. Nuclides from Chinese nuclear weapons tests in German kale

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1979-01-01

    Fission products (Be-7, Ce-141, Ce-137, J-131, Nd-147, Ru-103, Zr-95) of two atmospheric nuclear explosions in the People's Republic of China (September 17, 1977 and March 15, 1978) were detected in kale in the Federal Republic of Germany 12 days after the detonations. The slight increase of radioactivity was negligible with respect to the radiation exposure of man even if large amounts of vegetables were consumed. (orig.) [de

  5. Nuclides from Chinese nuclear weapons in German kale

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1979-01-01

    Fission products (Be-7, Ce-141, Cs-137, J-131, Nd-147, Ru-103, Zr-95) of two atmospheric nuclear explosions in the People's Republic of China (September 17, 1977 and March 15, 1978) were detected in kale in the Federal Republic of Germany 12 days after the detonations. The slight increase of radio activity was negligible with respect to the radiation exposure of man even if large amounts of vegetables were consumed. (RW) [de

  6. Nuclides from Chinese nuclear weapons tests in German kale

    International Nuclear Information System (INIS)

    Schelenz, R.; Fischer, E.

    1979-01-01

    Fission products of two atmospheric nuclear explosions in the People's Republic of China (September 17, 1977 and March 15, 1978) were detected in kale in the Federal Republick of Germany 12 days after the detonations. The slight increase of radio activity was negligible with respect to the radiation exposure of man even if large amounts of vegetables were consumed. (orig.) 891 AJ/orig. 892 MB [de

  7. Multiple Evolutionary Events Involved in Maintaining Homologs of Resistance to Powdery Mildew 8 in Brassica napus.

    Science.gov (United States)

    Li, Qin; Li, Jing; Sun, Jin-Long; Ma, Xian-Feng; Wang, Ting-Ting; Berkey, Robert; Yang, Hui; Niu, Ying-Ze; Fan, Jing; Li, Yan; Xiao, Shunyuan; Wang, Wen-Ming

    2016-01-01

    The Resistance to Powdery Mildew 8 (RPW8) locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs) in Brassica rapa and three in Brassica oleracea (BoHRs). Brassica napus (Bn) is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs). It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here, we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion, and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  8. Effects of gamma radiation in cauliflower (Brassica spp) minimally processed

    International Nuclear Information System (INIS)

    Nunes, Thaise C.F.; Rogovschi, Vladimir D.; Thomaz, Fernanda S.; Trindade, Reginaldo A.; Villavicencio, Anna L.C.H.; Alencar, Severino M.

    2007-01-01

    Consumers demand for health interests and the latest diet trends. The consumption of vegetables worldwide has increased every year over the past decade, consequently, less extreme treatments or additives are being required. Minimally processed foods have fresh-like characteristics and satisfy the new consumer demand. Food irradiation is an exposure process of the product to controlled sources of gamma radiation with the intention to destroy pathogens and to extend the shelf life. Minimally processed cauliflower (Brassica oleraceae) exposed to low dose of gamma radiation does not show any change in sensory attributes. The aim of this study was to analyze the effects of the low doses of gamma radiation on sensorial aspects like appearance, texture and flavor of minimally processed cauliflower. (author)

  9. Mineral content of traditional leafy vegetables from western Kenya

    DEFF Research Database (Denmark)

    Orech, F.O.; Christensen, Dirk Lund; Larsen, T.

    2007-01-01

    and diseases. This paper describes the mineral (calcium, iron and zinc) contents in some 54 traditional vegetable species collected from Nyang'oma area of Bondo district, western Kenya. Atomic absorption spectroscopy was used to determine the mineral content. We found that most traditional leafy vegetables......, domesticated and wild, generally contain higher levels of calcium, iron and zinc compared with the introduced varieties such as spinach (Spanacia oleracea), kale (Brassica oleracea var. acephala) and cabbage (Brassica oleracea var. capitata). The results of this study could contribute towards identification...

  10. Portulaca oleracea Linn seed extract ameliorates hydrogen ...

    African Journals Online (AJOL)

    Portulaca oleracea Linn seed extract ameliorates hydrogen ... induced cell death by inhibiting oxidative stress and ROS generation. Keywords: ... culture medium; therefore the stock solutions of ... acetic acid (1 %) and ethanol (50 %) to extract.

  11. Characterization of a new high copy Stowaway family MITE, BRAMI-1 in Brassica genome

    Science.gov (United States)

    2013-01-01

    Background Miniature inverted-repeat transposable elements (MITEs) are expected to play important roles in evolution of genes and genome in plants, especially in the highly duplicated plant genomes. Various MITE families and their roles in plants have been characterized. However, there have been fewer studies of MITE families and their potential roles in evolution of the recently triplicated Brassica genome. Results We identified a new MITE family, BRAMI-1, belonging to the Stowaway super-family in the Brassica genome. In silico mapping revealed that 697 members are dispersed throughout the euchromatic regions of the B. rapa pseudo-chromosomes. Among them, 548 members (78.6%) are located in gene-rich regions, less than 3 kb from genes. In addition, we identified 516 and 15 members in the 470 Mb and 15 Mb genomic shotgun sequences currently available for B. oleracea and B. napus, respectively. The resulting estimated copy numbers for the entire genomes were 1440, 1464 and 2490 in B. rapa, B. oleracea and B. napus, respectively. Concurrently, only 70 members of the related Arabidopsis ATTIRTA-1 MITE family were identified in the Arabidopsis genome. Phylogenetic analysis revealed that BRAMI-1 elements proliferated in the Brassica genus after divergence from the Arabidopsis lineage. MITE insertion polymorphism (MIP) was inspected for 50 BRAMI-1 members, revealing high levels of insertion polymorphism between and within species of Brassica that clarify BRAMI-1 activation periods up to the present. Comparative analysis of the 71 genes harbouring the BRAMI-1 elements with their non-insertion paralogs (NIPs) showed that the BRAMI-1 insertions mainly reside in non-coding sequences and that the expression levels of genes with the elements differ from those of their NIPs. Conclusion A Stowaway family MITE, named as BRAMI-1, was gradually amplified and remained present in over than 1400 copies in each of three Brassica species. Overall, 78% of the members were identified in

  12. Browse Title Index

    African Journals Online (AJOL)

    Items 51 - 90 of 90 ... ... intercrop productivity and profitability in maize-based cropping system of ... Compost and its Effect on the Yield of Kale (Brassica oleracea) in Bahir Dar, ... A Potential Bio fertilizer for Paddy Rice Production in Fogera Plain, ...

  13. Selective modes determine evolutionary rates, gene compactness and expression patterns in Brassica.

    Science.gov (United States)

    Guo, Yue; Liu, Jing; Zhang, Jiefu; Liu, Shengyi; Du, Jianchang

    2017-07-01

    It has been well documented that most nuclear protein-coding genes in organisms can be classified into two categories: positively selected genes (PSGs) and negatively selected genes (NSGs). The characteristics and evolutionary fates of different types of genes, however, have been poorly understood. In this study, the rates of nonsynonymous substitution (K a ) and the rates of synonymous substitution (K s ) were investigated by comparing the orthologs between the two sequenced Brassica species, Brassica rapa and Brassica oleracea, and the evolutionary rates, gene structures, expression patterns, and codon bias were compared between PSGs and NSGs. The resulting data show that PSGs have higher protein evolutionary rates, lower synonymous substitution rates, shorter gene length, fewer exons, higher functional specificity, lower expression level, higher tissue-specific expression and stronger codon bias than NSGs. Although the quantities and values are different, the relative features of PSGs and NSGs have been largely verified in the model species Arabidopsis. These data suggest that PSGs and NSGs differ not only under selective pressure (K a /K s ), but also in their evolutionary, structural and functional properties, indicating that selective modes may serve as a determinant factor for measuring evolutionary rates, gene compactness and expression patterns in Brassica. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  15. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  16. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.

    Science.gov (United States)

    Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S

    2015-12-01

    Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.

  17. A novel method for efficient and abundant production of Phytophthora brassicae zoospores on Brussels sprout leaf discs

    Directory of Open Access Journals (Sweden)

    Govers Francine

    2009-08-01

    Full Text Available Abstract Background Phytophthora species are notorious oomycete pathogens that cause diseases on a wide range of plants. Our understanding how these pathogens are able to infect their host plants will benefit greatly from information obtained from model systems representative for plant-Phytophthora interactions. One attractive model system is the interaction between Arabidopsis and Phytophthora brassicae. Under laboratory conditions, Arabidopsis can be easily infected with mycelial plugs as inoculum. In the disease cycle, however, sporangia or zoospores are the infectious propagules. Since the current P. brassicae zoospore isolation methods are generally regarded as inefficient, we aimed at developing an alternative method for obtaining high concentrations of P. brassicae zoospores. Results P. brassicae isolates were tested for pathogenicity on Brussels sprout plants (Brassica oleracea var. gemmifera. Microscopic examination of leaves, stems and roots infected with a GFP-tagged transformant of P. brassicae clearly demonstrated the susceptibility of the various tissues. Leaf discs were cut from infected Brussels sprout leaves, transferred to microwell plates and submerged in small amounts of water. In the leaf discs the hyphae proliferated and abundant formation of zoosporangia was observed. Upon maturation the zoosporangia released zoospores in high amounts and zoospore production continued during a period of at least four weeks. The zoospores were shown to be infectious on Brussels sprouts and Arabidopsis. Conclusion The in vitro leaf disc method established from P. brassicae infected Brussels sprout leaves facilitates convenient and high-throughput production of infectious zoospores and is thus suitable to drive small and large scale inoculation experiments. The system has the advantage that zoospores are produced continuously over a period of at least one month.

  18. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  19. Comparison of Five Major Trichome Regulatory Genes in Brassica villosa with Orthologues within the Brassicaceae

    Science.gov (United States)

    Nayidu, Naghabushana K.; Kagale, Sateesh; Taheri, Ali; Withana-Gamage, Thushan S.; Parkin, Isobel A. P.; Sharpe, Andrew G.; Gruber, Margaret Y.

    2014-01-01

    Coding sequences for major trichome regulatory genes, including the positive regulators GLABRA 1(GL1), GLABRA 2 (GL2), ENHANCER OF GLABRA 3 (EGL3), and TRANSPARENT TESTA GLABRA 1 (TTG1) and the negative regulator TRIPTYCHON (TRY), were cloned from wild Brassica villosa, which is characterized by dense trichome coverage over most of the plant. Transcript (FPKM) levels from RNA sequencing indicated much higher expression of the GL2 and TTG1 regulatory genes in B. villosa leaves compared with expression levels of GL1 and EGL3 genes in either B. villosa or the reference genome species, glabrous B. oleracea; however, cotyledon TTG1 expression was high in both species. RNA sequencing and Q-PCR also revealed an unusual expression pattern for the negative regulators TRY and CPC, which were much more highly expressed in trichome-rich B. villosa leaves than in glabrous B. oleracea leaves and in glabrous cotyledons from both species. The B. villosa TRY expression pattern also contrasted with TRY expression patterns in two diploid Brassica species, and with the Arabidopsis model for expression of negative regulators of trichome development. Further unique sequence polymorphisms, protein characteristics, and gene evolution studies highlighted specific amino acids in GL1 and GL2 coding sequences that distinguished glabrous species from hairy species and several variants that were specific for each B. villosa gene. Positive selection was observed for GL1 between hairy and non-hairy plants, and as expected the origin of the four expressed positive trichome regulatory genes in B. villosa was predicted to be from B. oleracea. In particular the unpredicted expression patterns for TRY and CPC in B. villosa suggest additional characterization is needed to determine the function of the expanded families of trichome regulatory genes in more complex polyploid species within the Brassicaceae. PMID:24755905

  20. Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.

    Science.gov (United States)

    Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri

    2013-10-01

    Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Brassica ASTRA: an integrated database for Brassica genomic research.

    Science.gov (United States)

    Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David

    2005-01-01

    Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.

  2. Amides and an alkaloid from Portulaca oleracea.

    Science.gov (United States)

    Kokubun, Tetsuo; Kite, Geoffrey C; Veitch, Nigel C; Simmonds, Monique S J

    2012-08-01

    A total of 16 phenolic compounds, including one new and five known N-cinnamoyl phenylethylamides, one new pyrrole alkaloid named portulacaldehyde, five phenylpropanoid acids and amides, and derivatives of benzaldehyde and benzoic acid, were isolated and identified from a polar fraction of an extract of Portulaca oleracea. Their structures were determined through spectroscopic analyses.

  3. A comparison of two stomatal conductance models for ozone flux modelling using data from two Brassica species

    International Nuclear Information System (INIS)

    Op de Beeck, M.; De Bock, M.; Vandermeiren, K.; Temmerman, L. de; Ceulemans, R.

    2010-01-01

    In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g st ) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g st variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g st variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O 3 flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.

  4. Glucosinolates, Carotenoids, and Vitamins E and K Variation from Selected Kale and Collard Cultivars

    Directory of Open Access Journals (Sweden)

    Moo Jung Kim

    2017-01-01

    Full Text Available Glucosinolates, carotenoids, and fat-soluble vitamins E and K contents were analyzed from various kale and collard cultivars at mature stage. We found a significant difference in these phytonutrients among cultivars. Among kale cultivars, “Beira” and “Olympic Red” were the highest in the total glucosinolate and “Toscano” kale was the highest in total carotenoid content. “Scarlet” kale was highest in tocopherols. For collard, total glucosinolate was the highest in “Top Bunch” while carotenoids were the highest in “Green Glaze.” An accession PI261597 was the highest in phylloquinone. In addition to the total content of each phytonutrient class, their composition differed among cultivars, indicating that each cultivar may have differential regulatory mechanisms for biosynthesis of these phytonutrients. Our result indicates that cultivar selection may play an important role in consumption of kale and collard with greater nutritional benefit. Therefore, the result of this study will provide a more thorough profile of essential and nonessential phytonutrients of kale and collard cultivars for consumers’ choice and for future research on nutritional value of these crops.

  5. Re-exploration of U's Triangle Brassica Species Based on Chloroplast Genomes and 45S nrDNA Sequences.

    Science.gov (United States)

    Kim, Chang-Kug; Seol, Young-Joo; Perumal, Sampath; Lee, Jonghoon; Waminal, Nomar Espinosa; Jayakodi, Murukarthick; Lee, Sang-Choon; Jin, Seungwoo; Choi, Beom-Soon; Yu, Yeisoo; Ko, Ho-Cheol; Choi, Ji-Weon; Ryu, Kyoung-Yul; Sohn, Seong-Han; Parkin, Isobel; Yang, Tae-Jin

    2018-05-09

    The concept of U's triangle, which revealed the importance of polyploidization in plant genome evolution, described natural allopolyploidization events in Brassica using three diploids [B. rapa (A genome), B. nigra (B), and B. oleracea (C)] and derived allotetraploids [B. juncea (AB genome), B. napus (AC), and B. carinata (BC)]. However, comprehensive understanding of Brassica genome evolution has not been fully achieved. Here, we performed low-coverage (2-6×) whole-genome sequencing of 28 accessions of Brassica as well as of Raphanus sativus [R genome] to explore the evolution of six Brassica species based on chloroplast genome and ribosomal DNA variations. Our phylogenomic analyses led to two main conclusions. (1) Intra-species-level chloroplast genome variations are low in the three allotetraploids (2~7 SNPs), but rich and variable in each diploid species (7~193 SNPs). (2) Three allotetraploids maintain two 45SnrDNA types derived from both ancestral species with maternal dominance. Furthermore, this study sheds light on the maternal origin of the AC chloroplast genome. Overall, this study clarifies the genetic relationships of U's triangle species based on a comprehensive genomics approach and provides important genomic resources for correlative and evolutionary studies.

  6. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies.

    Science.gov (United States)

    Shen, Yue; Liu, Mingzhe; Wang, Lili; Li, Zhuowei; Taylor, David C; Li, Zhixi; Zhang, Meng

    2016-04-01

    Caleosins are a class of Ca(2+) binding proteins that appear to be ubiquitous in plants. Some of the main proteins embedded in the lipid monolayer of lipid droplets, caleosins, play critical roles in the degradation of storage lipids during germination and in lipid trafficking. Some of them have been shown to have histidine-dependent peroxygenase activity, which is believed to participate in stress responses in Arabidopsis. In the model plant Arabidopsis thaliana, caleosins have been examined extensively. However, little is known on a genome-wide scale about these proteins in other members of the Brassicaceae. In this study, 51 caleosins in Brassica plants and Arabidopsis lyrata were investigated and analyzed in silico. Among them, 31 caleosins, including 7 in A. lyrata, 11 in Brassica oleracea and 13 in Brassica napus, are herein identified for the first time. Segmental duplication was the main form of gene expansion. Alignment, motif and phylogenetic analyses showed that Brassica caleosins belong to either the H-family or the L-family with different motif structures and physicochemical properties. Our findings strongly suggest that L-caleosins are evolved from H-caleosins. Predicted phosphorylation sites were differentially conserved in H-caleosin and L-caleosins, respectively. 'RY-repeat' elements and phytohormone-related cis-elements were identified in different caleosins, which suggest diverse physiological functions. Gene structure analysis indicated that most caleosins (38 out of 44) contained six exons and five introns and their intron phases were highly conserved. Structurally integrated caleosins, such as BrCLO3-3 and BrCLO4-2, showed high expression levels and may have important roles. Some caleosins, such as BrCLO2 and BoCLO8-2, lost motifs of the calcium binding domain, proline knot, potential phosphorylation sites and haem-binding sites. Combined with their low expression, it is suggested that these caleosins may have lost function.

  7. A survey of brassica vegetable smallholder farmers in the Gauteng and Limpopo provinces of South Africa

    Directory of Open Access Journals (Sweden)

    Gloria Mandiriza-Mukwirimba

    2016-02-01

    Full Text Available A study was taken to investigate the types of brassica vegetables mostly grown by smallholder farmers in two provinces of South Africa. Thirty-one smallholder vegetable farmers in the Gauteng province and Waterberg district in the Limpopo province were surveyed. In addition, the study also sought to establish the common diseases, the management strategies used and problems encountered by the farmers. Farmers were interviewed using a questionnaire with closed and open–ended questions. The results indicated that the smallholder farmers mostly grew cabbage (93.6% as their main brassica crop followed by rape (41.2%. Thirty percent of farmers could not identify or name the predominant disease/s encountered in their fields. Major diseases encountered by farmers surveyed were an unknown disease/s (33.3%, black rot (26.7%, Alternaria leaf spot (6.7% and white rust (6.7%. Smallholder farmers have inadequate technical information available especially relating to crop diseases, their identification and control. Farmers encountered challenges with black rot disease especially on cabbage, rape and kale and the disease was a problem during winter and summer. Generally, the smallholder farmers used crop rotation (74.2% as a major practice to manage the diseases experienced. They rotated their brassica vegetables with other crops/vegetables like tomatoes, onions, beetroots and maize. Most of the farmers interviewed (61.3% did not use chemicals to control diseases, whereas 38.7% of them used chemicals. This was mostly because they lacked information and knowledge, high costs associated with use of chemical fungicides and some were shifting towards organic farming. From the study it was noted that there was a need for technical support to improve farmers’ knowledge on disease identification and control within the surveyed areas.

  8. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  9. Production of Fermented Kale Juices with Lactobacillus Strains and Nutritional Composition

    Science.gov (United States)

    Kim, Seong Yeong

    2017-01-01

    Fermented kale juices using four types of lactobacilli were produced in the present study. After 48 h of fermentation time, viable cell counts of all ferments reached an above 109 CFU/mL. The viability of the ferments after cold storage in the refrigerator for 4 weeks showed 108 CFU/mL in all ferments. Among four types of fermented kale juices, the ferment of Lactobacillus acidophilus IFO 3025 indicated a good nutritional composition, including neutral sugar (1,909.76 μg/mL), reducing sugar (564.00 μg/mL, Pkale juices may be suggested as a healthy fermented beverage with essential nutrients. However, the acceptability of the fermented kale juice to the Korean taste should be further investigated with a trained taste panel to determine whether inoculated fermentation could be an option for the consumers. PMID:29043222

  10. Effect of green juice and their bioactive compounds on genotoxicity induced by alkylating agents in mice.

    Science.gov (United States)

    Fagundes, Gabriela Elibio; Damiani, Adriani Paganini; Borges, Gabriela Daminelli; Teixeira, Karina Oliveira; Jesus, Maiellen Martins; Daumann, Francine; Ramlov, Fernanda; Carvalho, Tiago; Leffa, Daniela Dimer; Rohr, Paula; Moraes De Andrade, Vanessa

    2017-01-01

    Kale juice (Brassica oleracea L. var. acephala D.C.) is a reliable source of dietary carotenoids and typically contains the highest concentrations of lutein (LT) and beta-carotene (BC) among green leafy vegetables. As a result of their antioxidant properties, dietary carotenoids are postulated to decrease the risk of disease occurrence, particularly certain cancers. The present study aimed to (1) examine the genotoxic and antigenotoxic activity of natural and commercially available juices derived from Brassica oleracea and (2) assess influence of LT or BC against DNA damage induced by alkylating agents such as methyl methanesulfonate (MS) or cyclophosphamide (CP) in vivo in mice. Male Swiss mice were divided into groups of 6 animals, which were treated with water, natural, or commercial Brassica oleraceae juices (kale), LT, BC, MMS, or CP. After treatment, DNA damage was determined in peripheral blood lymphocytes using the comet assay. Results demonstrated that none of the Brassica oleraceae juices or carotenoids produced genotoxic effects. In all examined cell types, kale juices or carotenoids inhibited DNA damage induced by MMS or CP administered either pre- or posttreatment by 50 and 20%, respectively. Under our experimental conditions, kale leaf juices alone exerted no marked genotoxic or clastogenic effects. However, a significant decrease in DNA damage induced by MMS or CP was noted. This effect was most pronounced in groups that received juices, rather than carotenoids, suggesting that the synergy among constituents present in the food matrix may be more beneficial than the action of single compounds. Data suggest that the antigenotoxic properties of kale juices may be of therapeutic importance.

  11. Identification and insertion polymorphisms of short interspersed nuclear elements (SINEs) in Brassica genomes

    International Nuclear Information System (INIS)

    Nouroz, F.; Naveed, M.

    2018-01-01

    The non-LTR retrotransposons (retroposons) are abundant in plant genomes including members of Brassicaceae. Of the retroposons, long interspersed nuclear elements (LINEs) are more copious followed by short interspersed nuclear elements (SINEs) in sequenced eukaryotic genomes. The SINEs are short elements and ranged from 100-500 bps flanked by variable sized target site duplications, 5' tRNA region with polymerase III promoter, internal tRNA unrelated region, 3' LINEs derived region and a poly adenosine tail. Different computational approaches were used for the identification and characterization of SINEs, while PCR was used to detect the SINEs insertion polymorphisms in various Brassica genotypes. Ten previously unidentified families of SINEs were identified and characterized from Brassica genomes. The structural features of these SINEs were studied in detail, which showed typical SINE features displaying small sizes, target site duplications, head regions, internal regions (body) of variable sizes and a poly (A) tail at the 3' terminus. The elements from various families ranged from 206-558 bp, where BoSINE2 family displayed smallest SINE element (206 bp), while larger members belonged to BoSINE9 family (524-558 bp). The distribution and abundance of SINEs in various Brassica species and genotypes (40) at a particular site/locus were investigated by SINEs based PCR markers. Various SINE insertion polymorphisms were detected from different genotypes, where higher PCR bands amplified the SINE insertions, while lower bands amplified the pre-insertion sites (flanking regions). The analysis of Brassica SINEs copy numbers from 10 identified families revealed that around 860 and 1712 copies of SINEs were calculated from B. rapa and B. oleracea Whole-genome shotgun contigs (WGS) respectively. Analysis of insertion sites of Brassica SINEs revealed that the members from all 10 SINE families had shown an insertion preference in AT rich regions. The present

  12. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops

    Directory of Open Access Journals (Sweden)

    Sandra E. Pelc

    2015-11-01

    Full Text Available Landraces have the potential to provide a reservoir of genetic diversity for crop improvement to combat the genetic erosion of the food supply. A landrace collection of the vitamin-rich specialty crop collard ( L. var. was genetically characterized to assess its potential for improving the diverse crop varieties of . We used the Illumina 60K SNP BeadChip array with 52,157 single nucleotide polymorphisms (SNPs to (i clarify the relationship of collard to the most economically important crop types, (ii evaluate genetic diversity and population structure of 75 collard landraces, and (iii assess the potential of the collection for genome-wide association studies (GWAS through characterization of genomic patterns of linkage disequilibrium. Confirming the collection as a valuable genetic resource, the collard landraces had twice the polymorphic markers (11,322 SNPs and 10 times the variety-specific alleles (521 alleles of the remaining crop types examined in this study. On average, linkage disequilibrium decayed to background levels within 600 kilobase (kb, allowing for sufficient coverage of the genome for GWAS using the physical positions of the 8273 SNPs polymorphic among the landraces. Although other relationships varied, the previous placement of collard with the cabbage family was confirmed through phylogenetic analysis and principal coordinates analysis (PCoA.

  13. Energy efficient drying strategies to retain nutritional components in broccoli broccoli (Brassica oleracea var. italica)

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Straten, van G.; Boom, R.M.; Boxtel, van A.J.B.

    2014-01-01

    This work concerns the combined optimization of the retention of bioactive components and energy efficiency during drying of broccoli. Kinetics for the degradation of glucosinolates, vitamin C and drying of broccoli are used to calculate optimal drying trajectories for the control variables air flow

  14. Brassica oleracea como fuente de compuestos biosaludables: aproximación genética

    OpenAIRE

    Sotelo Pérez, Tamara

    2015-01-01

    Fecha de lectura de tesis 2015-03-04.-- 253 páginas.-- Dña. Mª Elena Cartea González, Investigadora Científica del Consejo Superior de Investigaciones Científicas y Dña. Pilar Soengas Fernández, Científica titular del Consejo Superior de Investigaciones Científicas, ambas investigadoras de la Misión Biológica de Galicia, en Pontevedra.-- Memoria presentada por Tamara Sotelo Pérez para la obtención del grado de Doctor con Mención Internacional por la Universidad de Vigo

  15. Rooting pattern and nitrogen uptake of three cauliflower (Brassica oleracea var. botrytis) F1-hbrids

    NARCIS (Netherlands)

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    2000-01-01

    In a two-year field trial at the sites Ruthe (Germany, loess soil, Orthic Luvisol) and Schermer (The Netherlands, marine clay soil, Eutric Fluvisol) the cauliflower F1-hybrids Marine, Lindurian and Linford were compared in their efficiency of N use from limiting and optimum supplies of N. Limiting N

  16. Radiation preservation of cut cabbage (Brassica oleracea): a case study in the Greater Accra Region

    International Nuclear Information System (INIS)

    Frimpong, K.G.

    2011-01-01

    Low fruit and vegetable intake is estimated to cause about 31% of ischaemic heart disease and 11% of stroke worldwide. It is estimated that up to 2.7 million lives could potentially be saved each year if fresh fruits and vegetables such as cabbage consumption was sufficiently increased. However, fresh or ready-to-eat vegetables have been found to be a potential cause of foodborne diseases due to their association with human pathogens. More so, some of these pathogens are resident in the vegetables. The application of ionizing irradiation has been identified as a promising technology that may be used to control spoilage or pathogenic microorganisms in order to increase shelf life, improve the safety of ready-to-eat fruits and vegetables and as a substitute for the use of chemical sterilants. The main objective of this research was to assess impact of gamma radiation in reducing microbial load on cut cabbage and how it helps to extend shelf life. Standard plate count method was used in the determination of total viable and coliform counts (TVC and TCC). Redox titration with iodine method was used in determining the total ascorbic acid content while antioxidant activity, total flavonoid and phenolic content were determined by DPPH, Folin-Ciocalteu and Aluminium chloride colorimetric method respectively. Nine-point Hedonic scale was also used for the sensory evaluation. The studies revealed that microbial numbers of E.coli, total viable and coliform counts on 'ready-to-eat' cut cabbage in most supermarkets in the Accra metropolitan area were beyond the acceptable national food legislations. Total viable and coliform counts record showed a combination treatment of irradiation doses (1 to 3kGy) and refrigeration temperature (8 ± 2degrees Celcius) reduced microbial growth by 3 to 5 log cycles. Fungal species like Mucor spp, Penicillium digitatum, and Rhizopus spp. Which are spoilage organisms were isolated from all unirradiated control samples but not irradiated (1-3kGy). Even though irradiation affected microbial load, it showed no significant differences (p≤0.05) in phytochemical content such as ascorbic acid, phenolics, flavonoids as well as antioxidant activity in the irradiated cut cabbage. Panelists' scores for colour, texture and aroma from sensory evaluation showed significant differences (p>0.05) in irradiated cut cabbage samples. (au)

  17. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  18. CARACTERIZAÇÃO FÍSICO-QUÍMICA DO REPOLHO ROXO (Brassica oleracea

    Directory of Open Access Journals (Sweden)

    Gilcenir dos Santos

    2014-07-01

    Full Text Available O repolho roxo é uma planta herbácea, originária do mediterrâneo, encontrada em todos os períodos do ano, contemplador de poucas calorias e rico em antocianina, um pigmento natural, de fácil extração, solúvel em água que confere a coloração vermelha a alimentos, podendo ser utilizado na indústria alimentícia em substituição aos corantes sintéticos. O presente trabalho teve como objetivo realizar a caracterização físico-química do repolho roxo e do seu extrato obtido por maceração em etanol 70% acidificado com HCl 1N e concentrado em evaporador rotatório com intuito de ser utilizado para a obtenção de um corante natural, possuidor de substância promissora na prevenção de doenças degenerativas como o câncer e doenças cardiovasculares. Foram determinados pH, acidez total titulável (ATT, sólidos solúveis(°Brix, atividade de água, umidade e cor . Tanto repolho roxo in natura quanto o seu extrato concentrado apresentou um elevado teor de água e baixa acidez, condições favorável ao desenvolvimento de microorganismo, houve perda na coloração vermelha na produção do extrato concentrado.

  19. The utilization of Vallisneria aethiopica, Brassica oleracea and Pennisetum clandestinum by Tilapia rendalli

    Science.gov (United States)

    Hlophe, S. N.; Moyo, N. A. G.

    A common lawn grass; kikuyu grass, an abundant vegetable; cabbage and vallisneria a common macrophyte were tested for utilisation by two size classes of a herbivorous fish, Tilapia rendalli held in glass aquarium tanks. The test feeds were given to sub-adult T. rendalli for 133 days at 8% body weight and juvenile fish for 84 days at 15% body weight. Sub-adult and juvenile fish fed kikuyu grass attained a higher specific growth rate, higher protein efficiency ratio and better food conversion ratio than those fed cabbage and vallisneria. This is explained by the differences in the protein content, higher levels of lysine and the sulphur-containing amino acid, methionine in kikuyu grass. Palatability studies of the juveniles also showed that kikuyu was most preferred. However, sub-adults preferred vallisneria, kikuyu and cabbage respectively. The possible reasons for the selection are discussed.

  20. Ultrasound assisted immersion freezing of broccoli (Brassica oleracea L. var. botrytis L.).

    Science.gov (United States)

    Xin, Ying; Zhang, Min; Adhikari, Benu

    2014-09-01

    The aim of this study was to research the ultrasound-assisted freezing (UAF) of broccoli. CaCl2 solution was used as freezing medium. The comparative advantage of using UAF over normal freezing on the freezing time, cell-wall bound calcium to total calcium ratio, textural properties, color, drip loss and L-ascorbic acid contents was evaluated. The application of UAF at selected acoustic intensity with a range of 0.250-0.412 W/cm(2) decreased the freezing time and the loss of cell-wall bound calcium content. Compared to normal freezing, the values of textural properties, color, L-ascorbic acid content were better preserved and the drip loss was significantly minimized by the application of UAF. However, when outside that range of acoustic intensity, the quality of the ultrasound-assisted frozen broccoli was inferior compared to that of the normally frozen samples. Selected the appropriate acoustic intensity was very important for the application of UAF. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium.

    Science.gov (United States)

    Bachiega, Patricia; Salgado, Jocelem Mastrodi; de Carvalho, João Ernesto; Ruiz, Ana Lúcia T G; Schwarz, Kélin; Tezotto, Tiago; Morzelle, Maressa Caldeira

    2016-01-01

    In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Selenium-induced toxicity is counteracted by sulfur in broccoli (Brassica oleracea L. var. italic)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for humans. Increasing Se content in food crops offers an effective approach to enhance the consumption of Se in human diets. A thoroughly understanding of the effects of Se on plant growth is important for Se biofortification in food crops. Given that Se ...

  3. Impact of thermal processing on sulforaphane yield from broccoli ( Brassica oleracea L. ssp. italica).

    Science.gov (United States)

    Wang, Grace C; Farnham, Mark; Jeffery, Elizabeth H

    2012-07-11

    In broccoli, sulforaphane forms when the glucosinolate glucoraphanin is hydrolyzed by the endogenous plant thiohydrolase myrosinase. A myrosinase cofactor directs hydrolysis away from the formation of bioactive sulforaphane and toward an inactive product, sulforaphane nitrile. The cofactor is more heat sensitive than myrosinase, presenting an opportunity to preferentially direct hydrolysis toward sulforaphane formation through regulation of thermal processing. Four broccoli cultivars were microwave heated, boiled, or steamed for various lengths of time. Production of nitrile during hydrolysis of unheated broccoli varied among cultivars from 91 to 52% of hydrolysis products (Pinnacle > Marathon > Patriot > Brigadier). Boiling and microwave heating caused an initial loss of nitrile, with a concomitant increase in sulforaphane, followed by loss of sulforaphane, all within 1 min. In contrast, steaming enhanced sulforaphane yield between 1.0 and 3.0 min in all but Brigadier. These data are proof of concept that steaming for 1.0-3.0 min provides less nitrile and more sulforaphane yield from a broccoli meal.

  4. Glucosinolates in broccoli sprouts (Brassica oleracea var. italica) as conditioned by sulphate supply during germination.

    Science.gov (United States)

    Pérez-Balibrea, Santiago; Moreno, Diego A; García-Viguera, Cristina

    2010-10-01

    Sulphur (S) fertilization is essential for primary and secondary metabolism in cruciferous foods. Deficient, suboptimal, or excessive S affects the growth and biosynthesis of secondary metabolites in adult plants. Nevertheless, there is little information regarding the influence of S fertilization on sprouts and seedlings. An experiment was set up to evaluate the effect of S fertilization, supplied as K(2)SO(4) at 0, 15, 30, and 60 mg/L, on the glucosinolate content of broccoli sprouts during the germination course of 3, 6, 9, and 12 d after sowing. Glucosinolate concentration was strongly influenced by germination, causing a rapid increase during the first 3 d after sowing, and decreasing afterwards. The S supply increased aliphatic and total glucosinolate content at the end of the monitored sprouting period. S-treated sprouts, with S(15), S(30), and S(60) at 9 and 12 d after sowing presented enhanced glucosinolate content. Overall, both germination time and S fertilization were key factors in maximizing the bioactive health-promoting phytochemicals of broccoli. Practical Application: Germination with sulphate is a simple and inexpensive way to obtain sprouts that contain much higher levels of glucosinolates (health promoting compounds), than the corresponding florets from the same seeds.

  5. Effects of intraspecific variation in white cabbage (Brassica oleracea var. Capitata) on soil ogranisms

    NARCIS (Netherlands)

    Kabouw, P.; Putten, van der W.H.; Dam, van N.M.; Biere, A.

    2010-01-01

    Intraspecific variation in plants can affect soil organisms. However, little is known about whether the magnitude of the effect depends on the degree of interaction with the roots. We analyzed effects of plant intraspecific variation on root herbivores and other soil organisms that interact directly

  6. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  7. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis).

    Science.gov (United States)

    Zhou, Xiangjun; Fei, Zhangjun; Thannhauser, Theodore W; Li, Li

    2011-11-23

    Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5) was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  8. Purification and characterization of polyphenol oxidase from cauliflower (Brassica oleracea L.).

    Science.gov (United States)

    Rahman, Andi Nur Faidah; Ohta, Mayumi; Nakatani, Kazuya; Hayashi, Nobuyuki; Fujita, Shuji

    2012-04-11

    Polyphenol oxidase (PPO) of cauliflower was purified to 282-fold with a recovery rate of 8.1%, using phloroglucinol as a substrate. The enzyme appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The estimated molecular weight of the enzyme was 60 and 54 kDa by SDS-PAGE and gel filtration, respectively. The purified enzyme, called phloroglucinol oxidase (PhO), oxidized phloroglucinol (K(m) = 3.3 mM) and phloroglucinolcarboxylic acid. The enzyme also had peroxidase (POD) activity. At the final step, the activity of purified cauliflower POD was 110-fold with a recovery rate of 3.2%. The PhO and POD showed the highest activity at pH 8.0 and 4.0 and were stable in the pH range of 3.0-11.0 and 5.0-8.0 at 5 °C for 20 h, respectively. The optimum temperature was 55 °C for PhO and 20 °C for POD. The most effective inhibitor for PhO was sodium diethyldithiocarbamate at 10 mM (IC(50) = 0.64 and K(i) = 0.15 mM), and the most effective inhibitor for POD was potassium cyanide at 1.0 mM (IC(50) = 0.03 and K(i) = 29 μM).

  9. A novel biochar derived from cauliflower (Brassica oleracea L.) roots could remove norfloxacin and chlortetracycline efficiently.

    Science.gov (United States)

    Qin, Tingting; Wang, Zhaowei; Xie, Xiaoyun; Xie, Chaoran; Zhu, Junmin; Li, Yan

    2017-12-01

    The biochar was prepared by pyrolyzing the roots of cauliflowers, at a temperature of 500 °C under oxygen-limited conditions. The structure and characteristics of the biochar were examined using scanning electron microscopy, an energy dispersive spectrometer, a zeta potential analyzer, and Fourier transform infrared spectroscopy. The effects of the temperature, the initial pH, antibiotic concentration, and contact time on the adsorption of norfloxacin (NOR) and chlortetracycline (CTC) onto the biochar were investigated. The adsorption kinetics of NOR and CTC onto the biochar followed the pseudo-second-order kinetic and intra-particle diffusion models. The adsorption isotherm experimental data were well fitted to the Langmuir and Freundlich isotherm models. The maximum adsorption capacities of NOR and CTC were 31.15 and 81.30 mg/g, respectively. There was little difference between the effects of initial solution pH (4.0-10.0) on the adsorption of NOR or CTC onto the biochar because of the buffering effect. The biochar could remove NOR and CTC efficiently in aqueous solutions because of its large specific surface area, abundant surface functional groups, and particular porous structure. Therefore, it could be used as an excellent adsorbent material because of its low cost and high efficiency and the extensive availability of the raw materials.

  10. Wasted cabbage (Brassica oleracea silages treated with different levels of ground corn andsilage inoculant

    Directory of Open Access Journals (Sweden)

    Adauton Vilela de Rezende

    2015-08-01

    Full Text Available Our objective was to evaluate the chemical composition, fermentation profile, and aerobic stability of cabbage silages treated with ground corn and inoculant. The evaluated treatments were: addition of 200, 300, 400, 500, and 600 g of ground corn per kilogram of cabbage (fresh matter basis, with or without a bacterial inoculant composed of Lactobacillus plantarumand Pediococcus pentosaceus. As expected, ground corn additions increased the dry matter (DM content of cabbage silage, and high values were observed for the highest level of addition (540 g kg−1. Conversely, the crude protein, neutral detergent fiber, acid detergent fiber, and lignin contents decreased with ground corn additions. The in vitro dry matter digestibility coefficients increased slightly with ground corn additions, but all cabbage silages had digestibility higher than 740 g kg−1 of DM. In the fermentation process, the pH values of cabbage silages increased linearly because of the high levels of ground corn addition. Cabbage ensiled with 200 and 300 g kg−1 of ground corn had high ammonia N production and fermentative losses (effluent and gas. Cabbage silage treated with 600 g kg−1 of ground corn had lower maximum pH values during aerobic exposure, but all silages had constant temperature during aerobic exposure. The ensiling of wasted cabbage is possible and we recommend the application of 400 g kg−1ground corn to improve the silage quality, whereas the use of the inoculant is unnecessary.

  11. Different myrosinase and idioblast distribution in Arabidopsis and Brassica napus

    DEFF Research Database (Denmark)

    Andreasson, Erik; Jørgensen, Lise Bolt; Höglund, Anna-Stina

    2001-01-01

    Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry......Arabidopsis, Brassica napus, Myrosinase, Myrosinase Binding Protein, Glucosinolates, Myrosin Cell, Immunocytochemistry...

  12. Survival of embryo irradiated with gamma rays by embryo culture in Brassica pekinensis Rupr

    International Nuclear Information System (INIS)

    Moue, T.

    1984-01-01

    The effect of irradiation on the survival rates and embryonic development of Brassica pekinensis RUPR. (Varieties; Kashin, Kohai 65 nichi and kairyochitose) was investigated. The purpose of this study was to seek ways of increasing the survival rates of embryos such as B.oleracea obtained through embryo culture techniques after irradiation doses affecting seed fertility and germination, for the purpose of increasing mutation rates. Embryos at different developmental stages ranging from the globular to the early heart stages were irradiated with 20 KR of gamma rays at the daily rate 0L 20 KR or 10 KR (Fig.1 and Table 1). The embryos were excised from ovules 4 to 10 days after irradiation and cultured on White's medium. The shooting and rooting rates on the 34th day of culture were higher at the dose of 10 KR/day than 20 KR/day and were lower when the materials were irradiated at the young embryonic stage (Table 3). Varietal differences in the shooting and rooting rates were also observed. The irradiated embryos survived mainly in the state of callus. It was concluded that the embryo culture technique was successful when applied to irradiated embryos excised at the young embryonic stage and that the technique affected B.pekinensis less than B.oleracea

  13. Multiple evolutionary events involved in maintaining homologs of Resistance to Powdery Mildew 8 in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qin Li

    2016-07-01

    Full Text Available The Resistance to Powdery Mildew 8 (RPW8 locus confers broad-spectrum resistance to powdery mildew in Arabidopsis thaliana. There are four Homologous to RPW8s (BrHRs in Brassica rapa and three in B. oleracea (BoHRs. B. napus (Bn is derived from diploidization of a hybrid between B. rapa and B. oleracea, thus should have seven homologs of RPW8 (BnHRs. It is unclear whether these genes are still maintained or lost in B. napus after diploidization and how they might have been evolved. Here we reported the identification and sequence polymorphisms of BnHRs from a set of B. napus accessions. Our data indicated that while the BoHR copy from B. oleracea is highly conserved, the BrHR copy from B. rapa is relatively variable in the B. napus genome owing to multiple evolutionary events, such as gene loss, point mutation, insertion, deletion and intragenic recombination. Given the overall high sequence homology of BnHR genes, it is not surprising that both intragenic recombination between two orthologs and two paralogs were detected in B. napus, which may explain the loss of BoHR genes in some B. napus accessions. When ectopically expressed in Arabidopsis, a C-terminally truncated version of BnHRa and BnHRb, as well as the full length BnHRd fused with YFP at their C-termini could trigger cell death in the absence of pathogens and enhanced resistance to powdery mildew disease. Moreover, subcellular localization analysis showed that both BnHRa-YFP and BnHRb-YFP were mainly localized to the extra-haustorial membrane (EHM encasing the haustorium of powdery mildew. Taken together, our data suggest that the duplicated BnHR genes might have been subjected to differential selection and at least some may play a role in defense and could serve as resistance resource in engineering disease-resistant plants.

  14. User Guidelines for the Brassica Database: BRAD.

    Science.gov (United States)

    Wang, Xiaobo; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    The genome sequence of Brassica rapa was first released in 2011. Since then, further Brassica genomes have been sequenced or are undergoing sequencing. It is therefore necessary to develop tools that help users to mine information from genomic data efficiently. This will greatly aid scientific exploration and breeding application, especially for those with low levels of bioinformatic training. Therefore, the Brassica database (BRAD) was built to collect, integrate, illustrate, and visualize Brassica genomic datasets. BRAD provides useful searching and data mining tools, and facilitates the search of gene annotation datasets, syntenic or non-syntenic orthologs, and flanking regions of functional genomic elements. It also includes genome-analysis tools such as BLAST and GBrowse. One of the important aims of BRAD is to build a bridge between Brassica crop genomes with the genome of the model species Arabidopsis thaliana, thus transferring the bulk of A. thaliana gene study information for use with newly sequenced Brassica crops.

  15. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Chromium in kale, wheat, and eggs: intrinsic labeling and bioavailability to rats

    International Nuclear Information System (INIS)

    Johnson, C.D.; Weaver, C.M.

    1986-01-01

    Retention of 51 Cr was measured in rats fed 3-g test meals containing 63% sucrose, 10% corn oil, and 27% of a test food radiolabeled intrinsically or extrinsically. The test foods were egg yolk, kale, and wheat radiolabeled intrinsically and egg yolk, kale, wheat, and casein radiolabeled extrinsically. Five-week-old male rats were fed a Cr-deficient semisynthetic diet for 2 weeks prior to and 9 days following the 3-g test meals containing 51 Cr-labeled foods. By day 9, only 1.1-2.3% of the 51 Cr in the test meal remained in the animal. Retention of 51 Cr from casein (2.3%) was not significantly different from retention from egg yolk (1.7%) but was significantly higher than that from kale (1.1%) and from wheat (1.5%). These differences may have reflected dietary Cr content rather than a difference in form. There were no significant differences in the retention of 51 Cr due to method of labeling. Preparation of foods intrinsically labeled with 51 Cr was difficult because of a root-shoot barrier in the case of plants and poor absorption or tissue retention by animals. Several approaches to endogenous labeling were attempted. An aqueous extract of kale subjected to gel permeation chromatography showed a low molecular weight chromium complex similar to that found in alfalfa. (M/sub r/ 2900)

  17. The quantitative analysis of Bowen's kale by PIXE using the internal standard

    International Nuclear Information System (INIS)

    Navarrete, V.R.; Izawa, G.; Shiokawa, T.; Kamiya, M.; Morita, S.

    1978-01-01

    The internal standard method was used for non-destructive quantitative determination of trace elements by PIXE. The uniform distribution of the internal standard element in the Bowen's kale powder sample was obtained by using homogenization technique. Eleven elements are determined quantitatively for the sample prepared into self-supporting targets having lower relative standard deviations than non-self-supporting targets. (author)

  18. Het optreden van spruitvorming en kale uien tijdens de bewaring : literatuurstudie

    NARCIS (Netherlands)

    Brink, van den L.; Broek, van den R.C.F.M.

    2006-01-01

    In de praktijk valt de bewaring van uien regelmatig tegen. Een belangrijk probleem is dat de spruitrust onvoldoende blijkt te zijn. Dit ondanks het feit dat de uien behandeld zijn met een spruitremmer. Een ander probleem is het optreden van kale uien op het moment dat de uien uit de bewaring gehaald

  19. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species.

    Science.gov (United States)

    Zhang, Bao; Liu, Chao; Wang, Yaqin; Yao, Xuan; Wang, Fang; Wu, Jiangsheng; King, Graham J; Liu, Kede

    2015-06-01

    In Brassica napus, yellow petals had a much higher content of carotenoids than white petals present in a small number of lines, with violaxanthin identified as the major carotenoid compound in yellow petals of rapeseed lines. Using positional cloning we identified a carotenoid cleavage dioxygenase 4 gene, BnaC3.CCD4, responsible for the formation of flower colour, with preferential expression in petals of white-flowered B. napus lines. Insertion of a CACTA-like transposable element 1 (TE1) into the coding region of BnaC3.CCD4 had disrupted its expression in yellow-flowered rapeseed lines. α-Ionone was identified as the major volatile apocarotenoid released from white petals but not from yellow petals. We speculate that BnaC3.CCD4 may use δ- and/or α-carotene as substrates. Four variations, including two CACTA-like TEs (alleles M1 and M4) and two insertion/deletions (INDELs, alleles M2 and M3), were identified in yellow-flowered Brassica oleracea lines. The two CACTA-like TEs were also identified in the coding region of BcaC3.CCD4 in Brassica carinata. However, the two INDELs were not detected in B. napus and B. carinata. We demonstrate that the insertions of TEs in BolC3.CCD4 predated the formation of the two allotetraploids. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  20. A rich TILLING resource for studying gene function in Brassica rapa

    Directory of Open Access Journals (Sweden)

    Amoah Stephen

    2010-04-01

    Full Text Available Abstract Background The Brassicaceae family includes the model plant Arabidopsis thaliana as well as a number of agronomically important species such as oilseed crops (in particular Brassica napus, B. juncea and B. rapa and vegetables (eg. B. rapa and B. oleracea. Separated by only 10-20 million years, Brassica species and Arabidopsis thaliana are closely related, and it is expected that knowledge obtained relating to Arabidopsis growth and development can be translated into Brassicas for crop improvement. Moreover, certain aspects of plant development are sufficiently different between Brassica and Arabidopsis to warrant studies to be carried out directly in the crop species. However, mutating individual genes in the amphidiploid Brassicas such as B. napus and B. juncea may, on the other hand, not give rise to expected phenotypes as the genomes of these species can contain up to six orthologues per single-copy Arabidopsis gene. In order to elucidate and possibly exploit the function of redundant genes for oilseed rape crop improvement, it may therefore be more efficient to study the effects in one of the diploid Brassica species such as B. rapa. Moreover, the ongoing sequencing of the B. rapa genome makes this species a highly attractive model for Brassica research and genetic resource development. Results Seeds from the diploid Brassica A genome species, B. rapa were treated with ethyl methane sulfonate (EMS to produce a TILLING (Targeting Induced Local Lesions In Genomes population for reverse genetics studies. We used the B. rapa genotype, R-o-18, which has a similar developmental ontogeny to an oilseed rape crop. Hence this resource is expected to be well suited for studying traits with relevance to yield and quality of oilseed rape. DNA was isolated from a total of 9,216 M2 plants and pooled to form the basis of the TILLING platform. Analysis of six genes revealed a high level of mutations with a density of about one per 60 kb. This

  1. Biology and life table parameters of Brevicoryne brassicae (Hemiptera: Aphididae) on cauliflower cultivars.

    Science.gov (United States)

    Jahan, Fatemeh; Abbasipour, Habib; Askarianzadeh, Alireza; Hassanshahi, Golamhossein; Saeedizadeh, Ayatallah

    2014-01-01

    In this article, the biology and fertility life table parameters of the cabbage aphid, Brevicoryne brassicae (L.) (Hemiptera: Aphididae), were studied on cauliflower leaves, Brassica oleracea var. botrytis (Brassicales: Brassicaceae), of the cultivars Smilla, Snow mystique, White cloud, Buris, Galiblanka, Snow crown, SG, and Tokita. This study was conducted under controlled conditions: 25 ± 2°C, 65 ± 5% relative humidity (RH), and 16:8 (L:D) h photoperiods. Statistical analysis showed that there was a significant difference (P < 0.05) between the different growth stages and the mean number of laid nymphs. Further, the maximum and minimum growth periods were observed on Galiblanka and Buris cultivars, respectively. The shortest nymphal instar growth period was observed on the Smilla cultivar (6.70 d), and the longest lifespan was seen on the White cloud (8.10 d). The Smilla cultivar (39%), in an adult emergence stage, and the SG (88%) revealed the lowest and highest rates of survival, respectively. Aphids reared on the Smilla cultivar were found to have increased due to the high intrinsic (r(m)) and finite (λ) rate of increase and the low doubling time (DT). The results indicated that the application of cultivars affecting adult reproductive parameters could be a good solution to cabbage aphid control management. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  2. [Studies on the chemical constituents of Portulaca oleracea].

    Science.gov (United States)

    Liu, Ce-jia; Liu, Dian-yu; Xiang, Lan; Zhou, Wen; Shao, Ning-ning

    2009-11-01

    To study the chemical constituents of Portulaca oleracea. The constituents were isolated by column chromatography and identified on the basis of physicochemical and spectral data. Five compounds were isolated from 70% ethanol extract of this plant and their structures were elucidated as cyclo (Phe-Ile) (1), cycle (Tyr-Ala) (2), adenine (3), friedelin (4) and isoselachoceric acid (5). Compounds 1-5 are isolated from Portulaca oleracea for the first time.

  3. A novel alkaloid from Portulaca oleracea L.

    Science.gov (United States)

    Xu, Liang; Ying, Zheming; Wei, Wenjuan; Hao, Dong; Wang, Haibo; Zhang, Wenjie; Li, Cuiyu; Jiang, Mingyue; Ying, Xixiang; Liu, Jing

    2017-04-01

    A novel alkaloid named oleraciamide C (1), with six known compounds, hydroxydihydrobovolide (2), uracil (3), catechol (4), 4-aminophenol (5), vanillic acid (6) as well as 3-hydroxypyridine (7), were isolated from Portulaca oleracea L. Additionally, hydroxydihydrobovolide (2), 4-aminophenol (5), 3-hydroxypyridine (7) were obtained from the plant for the first time. Structure of the new compound was determined using spectroscopic methods including HR-ESI-TOF-MS, 1D and 2D NMR. Others were elucidated through 1 H NMR, 13 C NMR spectra and comparison with literature data. Notably, Compound 1 possessed an unusual bis-substituted eight-membered ring linked with the β-glucopyranose moiety. The cytotoxicity of compound 1 was evaluated against human adipose-derived stem cells (hADSCs) by CCK-8 method.

  4. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication.

    Science.gov (United States)

    Zhao, Meixia; Du, Jianchang; Lin, Feng; Tong, Chaobo; Yu, Jingyin; Huang, Shunmou; Wang, Xiaowu; Liu, Shengyi; Ma, Jianxin

    2013-10-01

    Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR-retrotransposons, the rates of synonymous and non-synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non-synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter-specific asymmetric evolution. © 2013 Purdue University The Plant Journal © 2013 John Wiley & Sons Ltd.

  5. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  7. Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale.

    Science.gov (United States)

    Steindal, Anne Linn Hykkerud; Rødven, Rolf; Hansen, Espen; Mølmann, Jørgen

    2015-05-01

    Curly kale is a robust, cold tolerant plant with a high content of health-promoting compounds, grown at a range of latitudes. To assess the effects of temperature, photoperiod and cold acclimatisation on levels of glucosinolates, fatty acids and soluble sugars in kale, an experiment was set up under controlled conditions. Treatments consisted of combinations of the temperatures 15/9 or 21/15 °C, and photoperiods of 12 or 24h, followed by a cold acclimatisation period. Levels of glucosinolates and fatty acid types in leaves were affected by growth conditions and cold acclimatisation, being generally highest before acclimatisation. The effects of growth temperature and photoperiod on freezing tolerance were most pronounced in plants grown without cold acclimatisation. The results indicate that cold acclimatisation can increase the content of soluble sugar and can thereby improve the taste, whilst the content of unsaturated fatty and glucosinolates acids may decrease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effect of gamma irradiation on microbiological, chemical, and sensory properties of fresh ashitaba and kale juices

    International Nuclear Information System (INIS)

    Jo, Cheorun; Ahn, Dong Uk; Lee, Kyung Haeng

    2012-01-01

    Due to the popularity of health effects upon intake of fresh fruits and vegetables, the demand for fresh vegetables and fruit juices has rapidly increased. However, currently, washing is the only procedure for reducing contaminated microorganisms, which obviously limits the shelf-life of fresh vegetable juice (less than 3 days). In this study, we examined the effects of irradiation on the microbiological, chemical and sensory properties of ashitaba and kale juices for industrial application and possible shelf-life extension. Freshly made ashitaba and kale juices already had 2.3×10 5 and 9.5×10 4 CFU/mL, respectively. Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level, which was consistently maintained during storage for 7 days under refrigerated conditions. Total content of ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. However, the content of flavonoids did not change, whereas that of polyphenols increased upon irradiation. In sensory evaluation, the ashitaba and kale juices without irradiation (control) scored lower than the irradiated samples after 1 and 3 days, respectively. This study confirms that irradiation is an effective method for sterilizing fresh vegetable juice without compromising sensory property, which cannot be subjected to heat pasteurization due to changes in the bioactivities of the products. - Highlights: ► We examined the effects of irradiation of fresh vegetable juices (ashitaba and kale) for industrial application. ► Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level. ► Ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. ► Content of flavonoids did not change whereas that of polyphenols increased. ► There was no change in sensory properties after irradiation.

  9. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops

    Directory of Open Access Journals (Sweden)

    Shiva Ram Bhandari

    2015-08-01

    Full Text Available Glucosinolate (GSL profiles and concentrations in various tissues (seeds, sprouts, mature root, and shoot were determined and compared across nine Brassica species, including cauliflower, cabbage, broccoli, radish, baemuchae, pakchoi, Chinese cabbage, leaf mustard, and kale. The compositions and concentrations of individual GSLs varied among crops, tissues, and growth stages. Seeds had highest total GSL concentrations in most of crops, whereas shoots had the lowest GSL concentrations. Aliphatic GSL concentrations were the highest in seeds, followed by that in sprouts, shoots, and roots. Indole GSL concentration was the highest in the root or shoot tissues in most of the crops. In contrast, aromatic GSL concentrations were highest in roots. Of the nine crops examined, broccoli exhibited the highest total GSL concentration in seeds (110.76 µmol·g−1 and sprouts (162.19 µmol·g−1, whereas leaf mustard exhibited the highest total GSL concentration in shoots (61.76 µmol·g−1 and roots (73.61 µmol·g−1. The lowest GSL concentrations were observed in radish across all tissues examined.

  10. Effect of gamma irradiation on microbiological, chemical, and sensory properties of fresh ashitaba and kale juices

    Science.gov (United States)

    Jo, Cheorun; Ahn, Dong Uk; Lee, Kyung Haeng

    2012-08-01

    Due to the popularity of health effects upon intake of fresh fruits and vegetables, the demand for fresh vegetables and fruit juices has rapidly increased. However, currently, washing is the only procedure for reducing contaminated microorganisms, which obviously limits the shelf-life of fresh vegetable juice (less than 3 days). In this study, we examined the effects of irradiation on the microbiological, chemical and sensory properties of ashitaba and kale juices for industrial application and possible shelf-life extension. Freshly made ashitaba and kale juices already had 2.3×105 and 9.5×104 CFU/mL, respectively. Irradiation of 5 kGy induced higher than 2 decimal reductions in the microbial level, which was consistently maintained during storage for 7 days under refrigerated conditions. Total content of ascorbic acid in vegetable juice decreased upon irradiation in a dose-dependent manner. However, the content of flavonoids did not change, whereas that of polyphenols increased upon irradiation. In sensory evaluation, the ashitaba and kale juices without irradiation (control) scored lower than the irradiated samples after 1 and 3 days, respectively. This study confirms that irradiation is an effective method for sterilizing fresh vegetable juice without compromising sensory property, which cannot be subjected to heat pasteurization due to changes in the bioactivities of the products.

  11. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects.

    Science.gov (United States)

    Zhou, Yan-Xi; Xin, Hai-Liang; Rahman, Khalid; Wang, Su-Juan; Peng, Cheng; Zhang, Hong

    2015-01-01

    Portulaca oleracea L., belonging to the Portulacaceae family, is commonly known as purslane in English and Ma-Chi-Xian in Chinese. It is a warm-climate, herbaceous succulent annual plant with a cosmopolitan distribution. It is eaten extensively as a potherb and added in soups and salads around the Mediterranean and tropical Asian countries and has been used as a folk medicine in many countries. Diverse compounds have been isolated from Portulaca oleracea, such as flavonoids, alkaloids, polysaccharides, fatty acids, terpenoids, sterols, proteins vitamins and minerals. Portulaca oleracea possesses a wide spectrum of pharmacological properties such as neuroprotective, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, antiulcerogenic, and anticancer activities. However, few molecular mechanisms of action are known. This review provides a summary of phytochemistry and pharmacological effects of this plant.

  12. Utilization of Portulaca Oleracea L. to Improve Quality of Yoghurt

    International Nuclear Information System (INIS)

    Sallam, E.M.; Anwar, M.M.

    2015-01-01

    The present investigation was conducted to study the possibility of using Portulaca Oleracea L. as a source of Omega - 3 and Omega - 6 fatty acids as well as high vitamins and minerals, to improve the quality of yoghurt. Also, the microbial characteristics the treated yoghurt were evaluated. The obtained results showed that the replacement of milk fat by dry leaves of P. Oleracea had no effect on the chemical composition and the sensory properties of the treated yoghurt with 50 and 100% P. Oleracea L. leaves oil as milk fat substitute compared to the untreated one. In conclusion, manufacturing yoghurt is suitable as a rich nutrient food stuff for people suffering from blood hypertension, high blood cholesterol, liver and heart diseases

  13. Homoisoflavonoids from the medicinal plant Portulaca oleracea.

    Science.gov (United States)

    Yan, Jian; Sun, Li-Rong; Zhou, Zhong-Yu; Chen, Yu-Chan; Zhang, Wei-Min; Dai, Hao-Fu; Tan, Jian-Wen

    2012-08-01

    Four homoisoflavonoids named portulacanones A-D, identified as 2'-hydroxy- 5,7-dimethoxy-3-benzyl-chroman-4-one, 2'-hydroxy-5,6,7-trimethoxy-3-benzyl-chroman-4-one, 5,2'-dihydroxy-6,7-dimethoxy-3-benzyl-chroman-4-one, and 5,2'-dihydroxy-7-methoxy-3-benzylidene-chroman-4-one, were isolated from aerial parts of the plant Portulaca oleracea along with nine other known metabolites. Their structures were established on the basis of extensive spectroscopic analyses. Portulacanones A-D is the first group of homoisoflavonoids so far reported from the family Portulacaceae. They represent a rare subclass of homoisoflavonoids in nature with a structural feature of a single hydroxyl group substituted at C-2' rather than at C-4' in ring B of the skeleton. Three homoisoflavonoids and the known compound 2,2'-dihydroxy-4',6'-dimethoxychalcone selectively showed in vitro cytotoxic activities towards four human cancer cell lines. Especially 2,2'-dihydroxy-4',6'-dimethoxychalcone showed cytotoxic activity against cell line SGC-7901 with an IC₅₀ value of 1.6 μg/ml, which was more potent than the reference compound mitomycin C (IC₅₀ 13.0 μg/ml). Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    International Nuclear Information System (INIS)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-01-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D 10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D 10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period

  15. Effects of gamma irradiation on the radiation-resistant bacteria and polyphenol oxidase activity in fresh kale juice

    Science.gov (United States)

    Kim, Dongho; Song, Hyunpa; Lim, Sangyong; Yun, Hyejeong; Chung, Jinwoo

    2007-07-01

    Gamma radiation was performed to prolong the shelf life of natural kale juice. The total aerobic bacteria in fresh kale juice, prepared by a general kitchen process, was detected in the range of 10 6 cfu/ml, and about 10 2 cfu/ml of the bacteria survived in the juice in spite of gamma irradiation treatment with a dose of 5 kGy. Two typical radiation-resistant bacteria, Bacillus megaterium and Exiguobacterium acetylicum were isolated and identified from the 5 kGy-irradiated kale juices. The D10 values of the vegetative cell and endospore of the B. megaterium in peptone water were 0.63±0.05 and 1.52±0.05 kGy, respectively. The D10 value of the E. acetylicum was calculated as 0.65±0.06 kGy. In the inoculation test, the growth of the surviving B. megaterium and E. acetylicum in the 3-5 kGy-irradiated kale juice retarded and/or decreased significantly during a 3 d post-irradiation storage period. However, there were no significant differences in the residual polyphenol oxidase activity and browning index between the nonirradiated control and the gamma irradiated kale juice during a post-irradiation period.

  16. Oilseed brassica improvement: through induced mutations

    International Nuclear Information System (INIS)

    Shah, S.A.; Ali, I.; Rehman, K.

    1990-06-01

    The oilseed brassica improvement programme is discussed in this report. Some observations on different plant mutants were made throughout the growth period and results revealed that most of the selected mutants of both the varieties expressed better performance than the parent by showing superior plant traits. A new species named brassica carinata has tremendous untapped potential as an oilseed crop. Efforts for creating maximum variability in rapeseed mustard varieties by means other than gamma radiation continued. (A.B.)

  17. Iron Quadrangle, Brazil. Elemental concentration determined by k0-instrumental neutron activation analysis. Part 2. Kale samples

    International Nuclear Information System (INIS)

    Menezes, M.A.B.C.; Palmieri, H.E.L.; Leonel, L.V.; Nalini, H.A.Jr.; Jacimovic, R.

    2006-01-01

    The objective of this study was to evaluate the influence of mining activity on elemental concentrations in kale grown around a mining area. Two sites studied are in the Iron Quadrangle, Minas Gerais, Brazil, considered one of the richest mineral-bearing regions in the world. One site is near mineral exploration activity and the other is an ecological area. A comparator site outside the Iron Quadrangle was also analyzed. This work focused on the determination of the elemental concentrations in kale applying the k 0 -instrumental neutron activation analysis. As the Brazilian legislation specifies values for soil only, the results for kale were compared to the literature values and it was found that the vegetable does not present any health risks. (author)

  18. Cytoplasmic and Genomic Effects on Meiotic Pairing in Brassica Hybrids and Allotetraploids from Pair Crosses of Three Cultivated Diploids

    Science.gov (United States)

    Cui, Cheng; Ge, Xianhong; Gautam, Mayank; Kang, Lei; Li, Zaiyun

    2012-01-01

    Interspecific hybridization and allopolyploidization contribute to the origin of many important crops. Synthetic Brassica is a widely used model for the study of genetic recombination and “fixed heterosis” in allopolyploids. To investigate the effects of the cytoplasm and genome combinations on meiotic recombination, we produced digenomic diploid and triploid hybrids and trigenomic triploid hybrids from the reciprocal crosses of three Brassica diploids (B. rapa, AA; B. nigra, BB; B. oleracea, CC). The chromosomes in the resultant hybrids were doubled to obtain three allotetraploids (B. juncea, AA.BB; B. napus, AA.CC; B. carinata, BB.CC). Intra- and intergenomic chromosome pairings in these hybrids were quantified using genomic in situ hybridization and BAC-FISH. The level of intra- and intergenomic pairings varied significantly, depending on the genome combinations and the cytoplasmic background and/or their interaction. The extent of intragenomic pairing was less than that of intergenomic pairing within each genome. The extent of pairing variations within the B genome was less than that within the A and C genomes, each of which had a similar extent of pairing. Synthetic allotetraploids exhibited nondiploidized meiotic behavior, and their chromosomal instabilities were correlated with the relationship of the genomes and cytoplasmic background. Our results highlight the specific roles of the cytoplasm and genome to the chromosomal behaviors of hybrids and allopolyploids. PMID:22505621

  19. Plant extracts in the control of aphids Brevicoryne brassicae (L. and Myzus persicae (SulzerExtratos vegetais no controle dos afídeos Brevicoryne brassicae (L. e Myzus persicae (Sulzer

    Directory of Open Access Journals (Sweden)

    Rafael Reginato Ávila

    2011-07-01

    Full Text Available Were accomplished the effect of plant extracts of clove basil (Ocimum gratissimum L., horsetail (Equisetum hyemale L., coriander (Coriandrum sativum L. and tobacco (Nicotiana tabacum L. on Brevicoryne brassicae (L., 1758 and Myzus persicae (Sulzer, 1776 aphids in cabbage Brassica oleracea (L.. The treatments consisted of plant extracts prepared fresh and dry (concentrations of 2.5; 5.0; and 10% and the controls insecticide acephate and water. These solutions were sprayed on cabbage discs placed on agar in Petri dishes, containing twenty adult aphids. In sequence, the Petri dishes were sealed with plastic film and this procedure was repeated for the two aphid species studied. The assessment of the number of live nymphs and adults occurred at 1, 12, 24, and 72 hours after installation. The extracts of coriander and tobacco prepared in a concentration of 10% showed toxic effects similar to the organophosphate insecticide acephate, on adults and nymphs of the aphids Brevicoryne brassicae and Myzus persicae. Coriander revealed a promising alternative that deserves detailed studies regarding the performance of its active ingredients and dosage determination in order to provide a safe herbal product to control insects.Avaliou-se o efeito de extratos vegetais de alfavaca-cravo (Ocimum gratissimum L., cavalinha (Equisetum hyemale L., coentro (Coriandrum sativum L. e fumo (Nicotiana tabacum L. sobre os pulgões Brevicoryne brassicae (L., 1758 e Myzus persicae (Sulzer, 1776 em couve Brassica oleracea (L.. Os tratamentos consistiram de extratos vegetais preparados a fresco e seco (nas concentrações de 2,5; 5,0 e 10%, do padrão inseticida acefato e de água. As soluções assim obtidas foram pulverizadas em discos de couve colocados sobre agar em placas de Petri, contendo vinte pulgões adultos. Na sequência, as placas de Petri foram vedadas com filme plástico transparente, sendo este procedimento repetido para as duas espécies de afídeos. A avalia

  20. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    Science.gov (United States)

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  1. Effects of Crude Extracts of Portulaca oleracea on Haematological ...

    African Journals Online (AJOL)

    The effects of oral administration of aqueous (AEPO) and methanolic (MEPO) extracts of Portulaca oleracea at various doses (25mg/kg BW, 50mg/kgBW and 75mg/kgBW) on haematological and plasma biochemical parameters of albino rats were investigated. The extracts were administered on daily basis for 30 days and ...

  2. Effects of Extracts of Portulaca oleracea on Reproductive Functions ...

    African Journals Online (AJOL)

    The effects of aqueous (AEPO) and methanolic (MEPO) extracts of Portulaca oleracea were investigated on estrous cycle and histopathology of the ovaries and uteri in female albino rats. Treatments of rats for 21 days with 75mg/kg BW AEPO produced no significant (P>0.05) change in the duration of all the phases of ...

  3. Ornithine carbamoyltransferase from Spinacea oleracea: purification and characterization

    Czech Academy of Sciences Publication Activity Database

    Bellocco, E.; Di Salvo, C.; Lagana, G.; Galtieri, A.; Ficarra, S.; Kotyk, Arnošt; Leuzzi, U.

    2002-01-01

    Roč. 45, č. 4 (2002), s. 533-538 ISSN 0006-3134 Institutional research plan: CEZ:AV0Z5011922 Keywords : ornithine carbomoyltransferase * Spinacea oleracea Subject RIV: BE - Theoretical Physics Impact factor: 0.583, year: 2002

  4. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  5. A palynostratigraphic approach to the SW Anatolian molasse basin: Kale-Tavas molasse and Denizli molasse

    Science.gov (United States)

    Akgün, Funda; Sözbilir, Hasan

    The study, explains stratigraphy of the Oligo-Miocene molasse around the Denizli province (SW Anatolia), based on the palynology which is also supported by the detailed mapping and correlation of the measured sections from the coal-bearing sequences of the molasse deposits. For this purpose, two huge depressions named as the Kale-Tavas molasse and Denizli molasse basins were examined. The Kale-Tavas molasse deposits has a basal unconformity with the underlying pre-Oligocene basement and begins with the Chattian Karadere and Mortuma formations which are covered unconformably by the Aquitanian Yenidere formation. An angular unconformity between the Chattian and the Burdigalian is only observed in the middle part of the basin, around Kale. In the Tavas section, the Aquitanian and the Burdigalian are absent. The Denizli molasse is characterized by Chattian-Aquitanian sequence consisting of distinctive sedimentary facies, alluvial fan and deltaic-shallow marine deposits with carbonate patch reefs. Palynostratigraphic studies, which have given the Chattian age, have been carried out from the coal lenses of alluvial fan and delta plain deposits. In addition to the palynological determinations, coral and foraminiferal content of the carbonate patch reefs which rest conformably on the coal-bearing sequences have yielded the Chattian-Aquitanian age. Two different palynomorph associations have been determined from the molasse deposits. The first palynomorph association which is established in the samples from the Sağdere and Mortuma formations, corresponds to the Chattian age, whilst the second is of the Aquitanian age. The Late Oligocene-Early Miocene which is claimed as the time of N-S-extensional tectonics in western Turkey, is related to the depositional time of the molasse sequences in the study area. Thus, the molasse is older than the basal deposits of the Gediz and Büyük Menderes grabens.

  6. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement.

    Science.gov (United States)

    Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan

    2016-01-01

    Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  7. Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra

    International Nuclear Information System (INIS)

    Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H.; Holopainen, Jarmo K.; Albrectsen, Benedicte R.; Blande, James D.

    2015-01-01

    When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. - Highlights: • We examined the effects of ozone on Pieris brassicae performance and preference. • We studied ozone and herbivore induced changes in the metabolome of Brassica nigra. • The performance of P. brassicae did not correlate with preference of ozonated plants. • Ozone and herbivore-feeding stress changes the phytochemical pools of B. nigra. - Ozone indirectly reduces herbivore performance, which is associated with change in phytochemical pools, but does not correlate with host plant preference

  8. Standardized gene nomenclature for the Brassica genus

    Directory of Open Access Journals (Sweden)

    King Graham J

    2008-05-01

    Full Text Available Abstract The genus Brassica (Brassicaceae, Brassiceae is closely related to the model plant Arabidopsis, and includes several important crop plants. Against the background of ongoing genome sequencing, and in line with efforts to standardize and simplify description of genetic entities, we propose a standard systematic gene nomenclature system for the Brassica genus. This is based upon concatenating abbreviated categories, where these are listed in descending order of significance from left to right (i.e. genus – species – genome – gene name – locus – allele. Indicative examples are provided, and the considerations and recommendations for use are discussed, including outlining the relationship with functionally well-characterized Arabidopsis orthologues. A Brassica Gene Registry has been established under the auspices of the Multinational Brassica Genome Project that will enable management of gene names within the research community, and includes provisional allocation of standard names to genes previously described in the literature or in sequence repositories. The proposed standardization of Brassica gene nomenclature has been distributed to editors of plant and genetics journals and curators of sequence repositories, so that it can be adopted universally.

  9. Unleashing the genome of Brassica rapa

    Directory of Open Access Journals (Sweden)

    Haibao eTang

    2012-07-01

    Full Text Available The completion and release of the Brassica rapa genome is of great benefit to researchers of the Brassicas, Arabidopsis, and genome evolution. While its lineage is closely related to the model organism Arabidopsis thaliana, the Brassicas experienced a whole genome triplication subsequent to their divergence. This event contemporaneously created three copies of its ancestral genome, which had diploidized through the process of homeologous gene loss known as fractionation. By the fractionation of homeologous gene content and genetic regulatory binding sites, Brassica’s genome is well placed to use comparative genomic techniques to identify syntenic regions, homeologous gene duplications, and putative regulatory sequences. Here, we use the comparative genomics platform CoGe to perform several different genomic analyses with which to study structural changes of its genome and dynamics of various genetic elements. Starting with whole genome comparisons, the Brassica paleohexaploidy is characterized, syntenic regions with Arabidopsis thaliana are identified, and the TOC1 gene in the circadian rhythm pathway from Arabidopsis thaliana is used to find duplicated orthologs in Brassica rapa. These TOC1 genes are further analyzed to identify conserved noncoding sequences that contain cis-acting regulatory elements and promoter sequences previously implicated in circadian rhythmicity. Each 'cookbook style' analysis includes a step-by-step walkthrough with links to CoGe to quickly reproduce each step of the analytical process.

  10. A REVIEW ON PHYTOCHEMICAL AND PHARMACOLOGICAL PROFILE OF PORTULACA OLERACEA LINN. (PURSLANE

    OpenAIRE

    Cherukuri Vidyullatha Chowdhary; Anusha Meruva; Naresh K; Ranjith Kumar A. Elumalai

    2013-01-01

    Portulaca oleracea belongs to the family of Portulacaceae in the traditional system of medicine and consists of large number of various medicinal and pharmacological importances hence represents a priceless tank of new bioactive molecules. Portulaca oleracea consists of number of pharmacological activities like antimicrobial, antioxidant, antidiabetic, neuronal, antinociceptive and anti-inflammatory activity. This review helps to create an interest in Portulaca oleracea in developing new form...

  11. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    Science.gov (United States)

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  12. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Science.gov (United States)

    Neugart, Susanne; Schreiner, Monika; Wu, Sasa; Poehling, Hans-Michael

    2017-01-01

    Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs) in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica) plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR) and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm), violet (420 nm), blue (470 nm), or green (515 nm). We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates), and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants) over control plants. PMID:29190278

  13. Can narrow-bandwidth light from UV-A to green alter secondary plant metabolism and increase Brassica plant defenses against aphids?

    Directory of Open Access Journals (Sweden)

    Ole Rechner

    Full Text Available Light of different wavelengths is essential for plant growth and development. Short-wavelength radiation such as UV can shift the composition of flavonoids, glucosinolates, and other plant metabolites responsible for enhanced defense against certain herbivorous insects. The intensity of light-induced, metabolite-based resistance is plant- and insect species-specific and depends on herbivore feeding guild and specialization. The increasing use of light-emitting diodes (LEDs in horticultural plant production systems in protected environments enables the creation of tailor-made light scenarios for improved plant cultivation and induced defense against herbivorous insects. In this study, broccoli (Brassica oleracea var. italica plants were grown in a climate chamber under broad spectra photosynthetic active radiation (PAR and were additionally treated with the following narrow-bandwidth light generated with LEDs: UV-A (365 nm, violet (420 nm, blue (470 nm, or green (515 nm. We determined the influence of narrow-bandwidth light on broccoli plant growth, secondary plant metabolism (flavonol glycosides and glucosinolates, and plant-mediated light effects on the performance and behavior of the specialized cabbage aphid Brevicoryne brassicae. Green light increased plant height more than UV-A, violet, or blue LED treatments. Among flavonol glycosides, specific quercetin and kaempferol glycosides were increased under violet light. The concentration of 3-indolylmethyl glucosinolate in plants was increased by UV-A treatment. B. brassicae performance was not influenced by the different light qualities, but in host-choice tests, B. brassicae preferred previously blue-illuminated plants (but not UV-A-, violet-, or green-illuminated plants over control plants.

  14. The hepato-protective effects of Portulaca oleracea L. extract: review.

    Science.gov (United States)

    Farkhondeh, Tahereh; Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Hozeifi, Soroush

    2018-03-30

    Portulaca oleracea L. (Purslane) has been used in traditional medicine against hepatic injury, alt-hough its actual efficacy has not been fully understood. In addition, few studies have indicated that Portulaca oleracea L. possess protective effects against hepatotoxic agents. However, due to lack of information in human, more studies are needed to confirm the efficacy of Portulaca oleracea L. as a hepato-protective agent. The present study aimed to critically review the recent literature data from 1990 to 2017 regarding the hepato-protective effects of Portulaca oleracea L. and its underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Home food preparation techniques impacted the availability of natural antioxidants and bioactivities in kale and broccoli.

    Science.gov (United States)

    Yu, Lu; Gao, Boyan; Li, Yanfang; Wang, Thomas T Y; Luo, Yinghua; Wang, Jing; Yu, Liangli Lucy

    2018-01-24

    This study evaluated the effects of grinding and chopping with/without microwaving on the health-beneficial components, and antioxidant, anti-inflammation and anti-proliferation capacities of commercial kale and broccoli samples. The availability of indole-3-carbinol (I3C) was evaluated using high-performance liquid chromatography. The total phenolic contents, the scavenging activities against DPPH, oxygen, hydroxyl and ABTS cation radicals, and cell-based antioxidant activities were determined for the antioxidant capacities. The results indicated that chopping released the least nutraceutical components and antioxidant compounds. Microwaving had no effect on the I3C release from kale, but resulted in an elevated (more than 2-fold) release of I3C from broccoli. In addition, the choice of a blender affected the availability of the anti-proliferative compounds from the vegetables, while it had no effect on the availability of their anti-inflammatory compounds. In summary, different food preparation methods could strongly impact the availability of bioactive factors in the selected vegetables. These findings suggest that choosing an appropriate food processing method for each vegetable might be critical to obtain desirable health-beneficial effects.

  16. Novel Gram-Scale Production of Enantiopure R-Sulforaphane from Tuscan Black Kale Seeds

    Directory of Open Access Journals (Sweden)

    Gina Rosalinda De Nicola

    2014-05-01

    Full Text Available Dietary R-sulforaphane is a highly potent inducer of the Keap1/Nrf2/ARE pathway. Furthermore, sulforaphane is currently being used in clinical trials to assess its effects against different tumour processes. This study reports an efficient preparation of enantiopure R-sulforaphane based on the enzymatic hydrolysis of its natural precursor glucoraphanin. As an alternative to broccoli seeds, we have exploited Tuscan black kale seeds as a suitable source for gram-scale production of glucoraphanin. The defatted seed meal contained 5.1% (w/w of glucoraphanin that was first isolated through an anion exchange chromatographic process, and then purified by gel filtration. The availability of glucoraphanin (purity ≈ 95%, weight basis has allowed us to develop a novel simple hydrolytic process involving myrosinase (EC 3.2.1.147 in a biphasic system to directly produce R-sulforaphane. In a typical experiment, 1.09 g of enantiopure R-sulforaphane was obtained from 150 g of defatted Tuscan black kale seed meal.

  17. Variation in Carotenoid Content of Kale and Other Vegetables: A Review of Pre- and Post-harvest Effects.

    Science.gov (United States)

    Walsh, Rachel P; Bartlett, Hannah; Eperjesi, Frank

    2015-11-11

    Lutein and zeaxanthin are carotenoids that are selectively taken up into the macula of the eye, where they are thought to protect against the development of age-related macular degeneration. They are obtained from dietary sources, with the highest concentrations found in dark green leafy vegetables, such as kale and spinach. In this Review, compositional variations due to variety/cultivar, stage of maturity, climate or season, farming practice, storage, and processing effects are highlighted. Only data from studies which report on lutein and zeaxanthin content in foods are reported. The main focus is kale; however, other predominantly xanthophyll containing vegetables such as spinach and broccoli are included. A small amount of data about exotic fruits is also referenced for comparison. The qualitative and quantitative composition of carotenoids in fruits and vegetables is known to vary with multiple factors. In kale, lutein and zeaxanthin levels are affected by pre-harvest effects such as maturity, climate, and farming practice. Further research is needed to determine the post-harvest processing and storage effects of lutein and zeaxanthin in kale; this will enable precise suggestions for increasing retinal levels of these nutrients.

  18. Tijdstip van MH-bespuiting in uien en effect van stikstof op kale uien : proeven 2007/2008

    NARCIS (Netherlands)

    Brink, van den L.

    2008-01-01

    In 2007 zijn in Lelystad, als vervolg op de literatuurstudie “Het optreden van spruitvorming en kale uien tijdens de bewaring” twee veldproeven uitgevoerd: 1) een proef waarin bij twee rassen en bij twee verschillende stikstofbemestingsniveaus op verschillende momenten met MH is gespoten.

  19. Tijdstip van MH-bespuiting in uien en het effect van stikstof en oogsttijdstip op kale uien

    NARCIS (Netherlands)

    Brink, van den L.; Broek, van den R.C.F.M.

    2011-01-01

    In de praktijk zijn er in de bewaring regelmatig problemen met spruitlustige en kale uien. In 2007 heeft PPO-agv in Lelystad twee proeven uitgevoerd: een proef waarin op verschillende tijdstippen MH is gespoten met als doel om na te gaan wat het optimale moment van MH-toediening is; een proef waarin

  20. Genetic differentiation among sexually compatible relatives of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Pipan Barbara

    2013-01-01

    Full Text Available Analysis of gene flow between Brassica napus L. and its sexually compatible relatives that could be found in the wild in Slovenia was performed by microsatellite analysis using fifteen selected primer pairs. Genotypes included in the study were obtained from the field survey of sexually compatible relatives of B. napus in natural habitats around Slovenia and from reference collections. Two different wild species of all the presented sexually compatible relatives of B. napus were found in Slovenia, B. rapa and Sinapis arvensis. The reference genotypes included varieties and wild forms from internal collections as marketable seeds or from gene banks. Reference genotypes were represented by the following species and subspecies: B. napus ssp. napobrassica, B. napus ssp. napus, B. nigra, B. oleracea, B. rapa ssp. oleifera, Diplotaxis muralis; D. tenuifolia, Raphanus raphanistrum, R. sativus, R. sativus var. oleiformis, Rapistrum rugosum, S. alba and S. arvensis. Estimation of gene flow described by average number of migrants was 0.72 followed by 0.20 migrants. Due to the observed gene migrations, genetic drift and selection, Hardy-Weinberg equilibrium was not met. The mean number of alleles over all loci was 16.9, the average polymorphic information content was 0.43. We found four highly divergent and polymorphic loci (Na12-C08, Na10-A08, Ni3-G04b and BRMS-050 at statistically significant level (p<0.05 of gene flow detected. Over all gene diversity intra-individual among populations (0.55 was lower than inter-individual among population (0.77. The results of genetic linkages based standard genetic distance and unweighted pair group method with arithmetic mean clustering method, generally divided the genotypes in three divergent groups. Similar results were obtained by principal coordinate analysis where three main groups were constructed according to three factors. A real number of genetic clusters demonstrated a clear separation between populations

  1. Variation in G lucosinolate C ontents of C ruciferous P lants

    Directory of Open Access Journals (Sweden)

    Won Park

    2017-03-01

    Full Text Available Glucosinolates are secondary metabolites of almost all plants of the order Brassicales, and have been known to control nematode populations. In this study, 14 glucosinolates were identified, quantified, and compared in several varieties and cultivars of cruciferous plants including Brassica campestris ssp. pekinensis (Chinese cabbage, Brassica juncea var. crispifolia L. H. Bailey (mustard, Brassica juncea L. Czern. var. juncea (leaf mustard, Brassica oleracea L. var. acephala (kale, Raphanus sativus L. (radish, and Brassica campestris L. ssp. oleifera (winter turnip rape. The most abundant glucosinolate in mustard, leaf mustard, kale, and radish was sinigrin. In leaf mustard, the sinigrin content ranged from 193.05 μmol/g to 215.52 μmol/g, and in mustard, the sinigrin contents of blue mustard and red mustard were 219.08 μmol/g and 215.73 μmol/g, respectively. Kale and radish contained 137.79 μmol/g and 120.25 μmol/g, respectively, of sinigrin. Gluconapin was the most abundant glucosinolate in winter turnip rape, at 121.17 μmol/g. Chinese cabbage contained mostly glucocochlearin (79.88 μmol/g. These results will be useful in the development of environmentally friendly plant-based pesticides by allowing for proper control of glucosinolates based on those present in the chosen plant species.

  2. Potencial inseticida de plantas medicinais encontradas na Amazônia Central contra o pulgão-da-couve Brevicoryne brassicae (L. (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Thamiris Sousa de Alencar Silva

    2017-08-01

    (Vahl Woodson, Syzygium malaccense  (L. Merr. & L.M. Perry, Schnella sp. and Protium sp. - against cabbage aphid [Brevicoryne brassicae (L.]. The extracts were used at a concentration of 10% and the botanical insecticide based on azadirachtin (Azamax® was used as control. For insecticide evaluation, discs of kale leaves with 3.5 cm diameter were individualized in Petri dishes (6 cm ø and infested with 10 nymphs of B. brassicae (up to 48 h old. 1.0 mL of each treatment was sprayed over the discs and after 24 h the mortality was evaluated. For repellence test, discs of kale leaves (3.5 cm ø were divided into 2 parts: 1.0 mL of each treatment was sprayed over a half of the disc, in the same concentrations used for insecticide activity. One hour later, 5 adults of B. brassicae were transferred to the center of the leaf disc and after 24 h the number of adults over the treated and non treatd area of the kale disc was measured. The results were submitted to normality test and analysis of variance (ANOVA. The direct and residual contact of the extracts of C. cujete, H. articulatus and Schnella sp. caused a mortality of nimphs between 97.6 and 100%. These results were more expressive than S. malaccense (54.6% and Azamax® (35.1%.  None repellent action caused by the extracts over B. brassicae was detected.

  3. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2012-01-01

    Full Text Available Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%, 0.15% gave the highest success (86% of chromosome doubling in the hybrids (AC; 2=19. Synthetic B. napus (AACC, 2=38 was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield.

  4. Synthesis of silver nanoparticle using Portulaca oleracea L. extracts

    Directory of Open Access Journals (Sweden)

    Shahbazi Nafeseh

    2013-09-01

    Full Text Available   Objective(s: To evaluate the influences of aqueous extracts of plant parts (stem, leaves, and root of Portulaca oleracea L. on bioformation of silver nanoparticles (AgNPs.   Materials and Methods: Synthesis of silver nanoparticles by different plant part extracts of Portulaca oleracea L. was carried out and formation of nanoparticles were confirmed and evaluated using UV-Visible spectroscopy and AFM. Results: The plant extracts exposed with silver nitrate showed gradual change in color of the extract from yellow to dark brown. Different silver nanoperticles were formed using extracts of different plant parts. Conclusion: It seems that the plant parts differ in their ability to act as a reducing and capping agent.

  5. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas.

    Science.gov (United States)

    Nayidu, Naghabushana K; Tan, Yifang; Taheri, Ali; Li, Xiang; Bjorndahl, Trent C; Nowak, Jacek; Wishart, David S; Hegedus, Dwayne; Gruber, Margaret Y

    2014-07-01

    Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

  6. Portulaca oleracea L.: A Review of Phytochemistry and Pharmacological Effects

    OpenAIRE

    Zhou, Yan-Xi; Xin, Hai-Liang; Rahman, Khalid; Wang, Su-Juan; Peng, Cheng; Zhang, Hong

    2015-01-01

    Portulaca oleracea L., belonging to the Portulacaceae family, is commonly known as purslane in English and Ma-Chi-Xian in Chinese. It is a warm-climate, herbaceous succulent annual plant with a cosmopolitan distribution. It is eaten extensively as a potherb and added in soups and salads around the Mediterranean and tropical Asian countries and has been used as a folk medicine in many countrie...

  7. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  8. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Xia Lei

    2015-09-01

    Full Text Available The Portulaca oleracea L. (P. oleracea has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1–4, portulacerebroside B (1, portulacerebroside C (2, portulacerebroside D (3 and portulaceramide A (4 along with five known compounds (5–9 were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1–4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  9. Separation and Identification of Four New Compounds with Antibacterial Activity from Portulaca oleracea L.

    Science.gov (United States)

    Lei, Xia; Li, Jianmin; Liu, Bin; Zhang, Ning; Liu, Haiyang

    2015-09-10

    The Portulaca oleracea L. (P. oleracea) has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1-4), portulacerebroside B (1), portulacerebroside C (2), portulacerebroside D (3) and portulaceramide A (4) along with five known compounds (5-9) were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1-4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.

  10. Recuperação de azoto de origem orgânica e inorgânica pela cultura da couve repolho (Brassica oleracea var. capitata Organic and inorganic nitrogen recovery by white cabbage (Brassica oleracea var. capitata

    Directory of Open Access Journals (Sweden)

    Luis Miguel Brito

    2011-07-01

    Full Text Available Avaliou-se a resposta da couve repolho à aplicação de um fertilizante mineral nas doses de 0, 90 e 180 kg ha-1 de N em combinações com um fertilizante orgânico, resultante da compostagem durante 182 dias da fracção sólida de chorume, nas doses de 0, 20 e 40 t ha-1, através de uma experiência de arranjos sistemáticos com o objectivo de investigar o efeito da utilização deste composto no crescimento e na absorção de N com e sem aplicação do fertilizante mineral azotado. A produção de couve repolho dependeu fortemente da aplicação do adubo mineral azotado e da aplicação do composto quando não se aplicou adubo. O aumento de aplicação de N mineral de 90 para 180 kg ha-1 aumentou a acumulação de N na couve, mas o correspondente aumento de peso não foi significativo. Recomenda-se a aplicação do composto da FSC até doses de 20 t ha-1, particularmente quando não se aplica adubo mineral.The response of white cabbage to increasing rates of a mineral fertilizer (0, 90 and 180 kg ha-1 of mineral nitrogen combined with increasing rates (0, 20 and 40 t ha-1 of an organic fertilizer resulting from the composting process (182 days of the solid fraction of dairy cattle slurry, was assessed throughout a systematically arranged experiment to investigate the effect of this compost on cabbage growth and N uptake, with and without mineral N application. Cabbage yield was strongly related to mineral N application and to compost application in treatments without mineral N fertilizer. The increase on mineral N application from 90 to 180 kg ha-1 increased cabbage N uptake but not significantly cabbage yield. The application of this compost to cabbage crop is recommended up to 20 t ha-1, particularly when mineral N is not applied.

  11. Soil pH and nutrient uptake in cauliflower (Brassica oleracea L. var. botrytis) and Broccoli (Brassica oleracea L. var. italica) in Northern Sweden. Multielement studies by means of plant and soil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Margareta [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    2000-07-01

    To reveal nutrient element deficiencies or imbalances limiting vegetable production in northern Sweden, multielement soil and plant analyses were performed in cauliflower and broccoli during the period 1989 to 1996. The pH range of the soils was 4.4-8. 1. The results were evaluated with the multivariate statistical methods PCA (Principal Component Analysis) and PLS (Partial Least Squares Projection to Latent Structures). The major yield-limiting elements were Mg, B, Mn, Zn, Fe and Cu. This was a result of high soil pH and large content of Ca in the soil. The reason for B deficiency was also low B content in the soil. Applications of green mulch increased yield on soils with a pH below 6.0. It also increased the uptake and concentration in the plants of B, Ba, Cl, Cu, K, Mg, Mn, N, P, Se and Zn, and decreased the uptake and concentration of Al, Cs and Tl. The mineral fertilizer applied, NPK 11-5-18 micro, decreased soil pH. This has resulted in larger uptake and higher concentrations in the plants of Co and Mn, in comparison to where cattle manure was applied. This fertilizer strongly decreased uptake of Mo, as a result of both the acidifying effect and the large S content. Repeated applications of nitrate of lime in combination with the NPK 11-5-18 strongly increased the uptake of Cs by the plants. The results in this investigation, together with the literature reviews, strongly indicate that a relatively low soil pH (5.0-5.5) is favourable when organic fertilizers are used and that harmful effects of very low soil pH (<5.0), are ameliorated by organic materials but aggravated by mineral fertilizers. The main purpose of lime is to counteract the acidity and increased leaching created by mineral fertilizers. Because of the historical context in which the lime requirements were established, the dangers of acid soils appear to have been strongly overestimated.

  12. Chemical weed control in Spinach (Spiniacia oleracea

    Directory of Open Access Journals (Sweden)

    A. Modhej

    2016-03-01

    Full Text Available Introduction Spinach (Spinacia oleracea is an annual plant of family Chenopodiaceae. It is cultivated in temperate and cold regions in Khouzestan in autumn and winter. Weeds are the main problems that limit the production of vegetables. Competition ability of spinach against weeds is very low and weeds cause the loss of quality and quantity in this plant. Weeds reduce germination and establishment and growth of spinach. Weed management in spinach should be done at the beginning of the season. Hand weeding is the best way to control weeds spinach, although due to the high cost it is not cost effective, but is steel common in large areas. Weed control spinach, using chemical methods, the number of weeds are kept below the threshold of economic damage. Materials and Methods The experiment was conducted in a randomized complete block design with 15 treatments and three replications. Treatments included pre-plant application of EPTC at 5 and 6 lit ha-1, pre-plant application of Trifluralin at 2 lit ha-1, pre-plant and pre-emergence application of Pendimethalin at 3 lit ha-1, pre-emergence and post-emergence application of Meteribouzin at 300 g ha-1, pre-emergence and post-emergence application of Meteribouzin at 400 g ha-1, pre-emergence and post-emergence application of Imazethapyr at 0.7 lit ha-1, pre-emergence and post-emergence application of Imazethapyr at 1 lit ha-1, weedy and weed free checks. Each plot the size of 2.5 × 2 meters and 10 row cultivation with distances between rows of 15 cm and the distance between the plants 25 cm and the sowing depth was 3 cm. The herbicide treatments were applied to the back sprayer with Flat fan nozzle with volume of consumption of 240 lit ha-1 solution. The final harvest was about 50 days after emergence. Sampling of weeds 10 days before harvest was performed with using quadrate 0.5 ×0.5. Results Discussion Important broad-leaf and narrow leaf weeds observed in the field, included field bindweed

  13. Analysis of efficiency and factors affecting the production of cabbage farming (Brassica oleracea L. in Belung village, Poncokusumo, Malang, Indonesia

    Directory of Open Access Journals (Sweden)

    G.M. Ningsih

    2016-06-01

    Full Text Available The purpose of this research was to analyze the efficiency and the factors that affect the production of cabbage farm in the village of Belung, Poncokusumo, Malang, Indonesia. Samples taken by census the number of respondents 36 farmers. The analysis used is descriptive qualitative and quantitative. Quantitative analysis include analysis of costs, revenues, income, efficiency and Cobb-Douglas. Based on the analysis, known that farmer acceptance is Rp. 43,767,361 and generated revenues of Rp. 30,124,372/ ha. Result relevaled that the Cabbage farm in the village of Belung, Poncokusumo, Malang was highly efficient and profitable with an efficiency of 3.2. Factors that effect significantly on cabbage farming production are labors, lands, pesticides and seeds. Input combinations are already efficient and optimal pesticides and seeds.

  14. Pemanfaatan Antosianin dari Ekstrak Kol Merah (Brassica oleracea var sebagai Pewarna Dye-Sensitized Solar Cells (DSSC

    Directory of Open Access Journals (Sweden)

    Dinasti Dwi Pratiwi

    2016-09-01

    Full Text Available A prototype of Dye-Sensitized Solar Cells (DSSC utilizing anthocyanin extract from red cabbage was fabricated. This study aims to determine the wavelength absorption of dye contributed in highest efficiency. The sandwich structure of DSSC consists of TiO2 as working electrode, carbon layer as counter electrode, anthocyanin dye as photosensitizer, and electrolyte as electron transfer media. The absorbance of dye was characterized using UV-Vis spectrophotometer, the efficiency of DSSC was calculated using I-V Meter Keithley, and the quantum efficiency was characterized using IPCE Measurement System. The absorption of dye anthocyanin of red cabbage is 450 nm–580 nm wavelengths, I-V characteristic curves resulted efficiency of 0,029%, and IPCE characteristic resulted highest efficiency at wavelength of 420 nm with efficiency of 0,099%.

  15. Dynamics of Sr90 and its analogs accumulation by the vegetative parts of cabbage (Brassica oleracea l.) during its ontogenesis

    International Nuclear Information System (INIS)

    Nenasheva, M.N.; Timofeev, S.F.

    2003-01-01

    Field experiment demonstrated that the maximal content of Sr90 was observed in assimilative leaves of cabbage while the minimal content of Sr90 was traced in upper leaves. In conductive tissues Sr90 concentration increased insignificantly during the growth season. For assimilative plant parts the discrimination coefficient of Sr90 in relation to calcium was less than 1. It was revealed the positive correlative dependence between the contents of calcium, magnesium, stable strontium and manganese in vegetative tissues on the one hand and accumulation of Sr90 by these tissues on the other hand

  16. Dynamics of Sr 90 and its analogs accumulation by the vegetative parts of cabbage (Brassica oleracea L.) during its ontogenesis

    International Nuclear Information System (INIS)

    Nenasheva, M.N.; Timofeev, S.F.

    2004-01-01

    Field experiment demonstrated that the maximal content of Sr 90 was observed in assimilative leaves of cabbage while the minimal content of Sr 90 was traced in upper leaves. In conductive tissues Sr 90 concentration increased insignificantly during the growth season. For assimilative plant parts the discrimination coefficient of Sr 90 in relation to calcium was less than 1. The authors revealed the positive correlative dependence between the contents of calcium, magnesium, stable strontium and manganese in vegetative tissues on the one hand and accumulation of Sr 90 by these tissues on the other hand. (Authors)

  17. Intra-specific Differences in Root and Shoot Glucosinolate Profiles among White Cabbage (Brassica oleracea var capitata)

    NARCIS (Netherlands)

    Kabouw, P.; Biere, A.; Putten, van der W.H.; Dam, van N.M.

    2010-01-01

    Shoot glucosinolate profiles of Brassicaceae are known to vary within species, across environmental conditions, and between developmental stages. Here we study whether root profiles follow the intra-specific, environmental, and developmental variation observed for aerial parts in white cabbage

  18. Tingkat residu pestisida dalam daging kelinci peranakan New Zealand White yang diberi pakan limbah pertanian kubis (Brassica oleracea

    Directory of Open Access Journals (Sweden)

    S. Sulistyaningsih

    2013-12-01

    Full Text Available ABSTRACT: The study examines fat and water content, and the level of pesticide residues in rabbit’s meat which were fed cabbage leaves waste. The materials used in the study were 12 New Zealand White rabbits raised from 1.5 to 3 months of age. Those rabbits were divided into 3 different groups (large, medium and small based on their initial body weight. The laboratory test shows there were several types of pesticide residues in the cabbage leaves and rabbit’s meat namely endosulfan, profenofos and chlorpyrifos. The lowest pesticide residues were found at small rabbit’s meat groups. In contrast, the fat content as well as the water content was found high at large rabbit’s meat groups. Keywords: rabbits, cabbage, residues, fat content and water content

  19. Storage related changes of cell wall based dietary fiber components of broccoli (Brassica oleracea var. italica) stems.

    Science.gov (United States)

    Schäfer, Judith; Stanojlovic, Luisa; Trierweiler, Bernhard; Bunzel, Mirko

    2017-03-01

    Storage related changes in the cell wall composition potentially affect the texture of plant-based foods and the physiological effects of cell wall based dietary fiber components. Therefore, a detailed characterization of cell wall polysaccharides and lignins from broccoli stems was performed. Freshly harvested broccoli and broccoli stored at 20°C and 1°C for different periods of time were analyzed. Effects on dietary fiber contents, polysaccharide composition, and on lignin contents/composition were much more pronounced during storage at 20°C than at 1°C. During storage, insoluble dietary fiber contents of broccoli stems increased up to 13%. Storage related polysaccharide modifications include an increase of the portions of cellulose, xylans, and homogalacturonans and a decrease of the neutral pectic side-chains arabinans and galactans. Broccoli stem lignins are generally rich in guaiacyl units. Lignins from freshly harvested broccoli stems contain slightly larger amounts of p-hydroxyphenyl units than syringyl units. Syringyl units are predominantly incorporated into the lignin polymers during storage, resulting in increased acetyl bromide soluble lignin contents. NMR-based analysis of the interunit linkage types of broccoli stem lignins revealed comparably large portions of resinol structures for a guaiacyl rich lignin. Incorporation of syringyl units into the polymers over storage predominantly occurs through β-O-4-linkages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack

    NARCIS (Netherlands)

    Poelman, E.H.; van Loon, J.J.A.; Van Dam, N.M.; Dicke, M.; Vet, L.E.M.

    2010-01-01

    1. Plant responses to herbivore attack may have community-wide effects on the composition of the plant-associated insect community. Thereby, plant responses to an early-season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of

  1. QUALIDADE MICROBIOLÓGICA DE COUVE MANTEIGA (BRASSICA OLERACEA MINIMAMENTE PROCESSADA COMERCIALIZADA EM SÃO PAULO, BRASIL

    Directory of Open Access Journals (Sweden)

    Gracielle Gesteira Rocha

    2015-01-01

    Full Text Available O aumento da procura por alimentos prontos para consumo incentiva o desenvolvimento de novas tecnologias para o processamento de alimentos. Dentro desse contexto, alimentos frescos atraem os consumidores, promovendo a ascensão de produtos de conveniência com vida útil prolongada, qualidade sensorial e nutritiva. Os vegetais minimamente processados são aqueles que passaram por modificações físicas, ou seja, foram descascados, picados, torneados e ralados, entre outros processos, mas mantidos na forma fresca e, metabolicamente, ativos. Esses produtos são sensíveis à deterioração, bem como podem ser veículos de micro-organismos patogênicos ao homem. O objetivo deste estudo foi avaliar a qualidade microbiológica de quatro marcas de folhas de couve manteiga, minimamente processadas, declaradas como higienizadas, comercializadas em supermercados localizados na área metropolitana da cidade de São Paulo. A temperatura de conservação foi mensurada nos locais de venda. As análises microbiológicas realizadas foram contagem padrão de mesófilos aeróbios, leveduras e bolores, teste qualitativo para avaliação da presença de coliformes totais e Escherichia coli. Todos os produtos apresentaram temperaturas acima de 10°C (14,3 ± 1,9°C, valor este acima da recomendação do fabricante (8°C e legislação vigente (<10°C por mais que 4 horas. A contagem de mesófilos, leveduras e fungos também apresentou valores acima dos preconizados, 1,0x108±9,5x107; 7,3x107 ± 8,0x107,respectivamente. Foi observada a presença de coliformes totais e Escherichia coli, em todas as amostras, pelo teste qualitativo. Concluiu-se que os produtos analisados, uma vez declarados como higienizados, estavam impróprios para o pronto consumo, sugerindo inadequação no processo de higienização e conservação por parte dos fabricantes e distribuidores, respectivamente. Faz-se necessária a intensificação de ações dos órgãos de fiscalização e saúde.

  2. Determination of Mineral Constituents, Phytochemicals and Antioxidant Qualities of Cleome gynandra, Compared to Brassica oleracea and Beta vulgaris

    Czech Academy of Sciences Publication Activity Database

    Moyo, M.; Amoo, S.O.; Aremu, A.O.; Grúz, Jiří; Šubrtová, Michaela; Jarošová, M.; Tarkowski, P.; Doležal, Karel

    2018-01-01

    Roč. 5, JAN 4 (2018), č. článku 128. ISSN 2296-2646 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA17-06613S Institutional support: RVO:61389030 Keywords : green leafy vegetables * subspecies cycla * nutrient content * capacity * fruits * perspectives * transport * assays * free radicals * indigenous leafy vegetables * minerals * phenolic acids * vitamins Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.994, year: 2016

  3. The activity of myrosinase from broccoli (Brassica oleracea L. cv. Italica): influence of intrinsic and extrinsic factors.

    Science.gov (United States)

    Ludikhuyze, L; Rodrigo, L; Hendrickx, M

    2000-03-01

    The potential of some intrinsic (MgCl2, ascorbic acid, pH) and extrinsic (temperature, pressure) factors for controlling/altering activity of myrosinase from broccoli was investigated in this paper. A combination of MgCl2 and ascorbic acid was found to enhance enzyme activity. Concentrations resulting in optimal activity were determined as 0.1 g/liter and 2 g/liter, respectively. Both in the absence and presence of this enzyme activator, the optimal pH was situated between 6.5 and 7, corresponding to the natural pH of fresh broccoli juice. At atmospheric pressure, the enzyme was optimally active at a temperature about 30 degrees C. Application of low pressure (50 to 100 MPa) slightly enhanced the activity while at higher pressure (300 MPa), the activity was largely reduced. Future work should focus on the extension of this work to real food products in order to take cellular disruption into account. In intact vegetable tissues, the enzyme myrosinase is present in compartments separated from its substrate, the glucosinolates. Hence, enzymatic hydrolysis can merely occur after cellular disruption. In this respect, processes such as cutting, cooking, freezing, or pressurizing of the vegetables will have a large effect on the glucosinolate hydrolysis by myrosinase. This work could then be the basis for controlling glucosinolate hydrolysis in food preparation and processing.

  4. Relative importance of plant-mediated bottom-up and top-down forces on herbivore abundance on Brassica oleracea

    NARCIS (Netherlands)

    Kos, M.; Broekgaarden, C.; Kabouw, P.; Oude Lenferink, K.; Poelman, E.H.; Vet, L.E.M.; Dicke, M.; Loon, van J.J.A.

    2011-01-01

    1. Arthropod communities are structured by complex interactions between bottom-up (resource-based) and top-down (natural enemy-based) forces. Their relative importance in shaping arthropod communities, however, continues to be under debate. Bottom-up and top-down forces can be affected by

  5. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.).

    Science.gov (United States)

    Park, Suhyoung; Valan Arasu, Mariadhas; Lee, Min-Ki; Chun, Jin-Hyuk; Seo, Jeong Min; Lee, Sang-Won; Al-Dhabi, Naif Abdullah; Kim, Sun-Ju

    2014-02-15

    We profiled and quantified glucosinolates (GSLs), anthocyanins, free amino acids, and vitamin C metabolites in forty-five lines of green and red cabbages. Analysis of these distinct cabbages revealed the presence of 11 GSLs, 13 anthocyanins, 22 free amino acids, and vitamin C. GSL contents were varied amongst the different lines of cabbage. The total GSL content was mean 10.6 μmol/g DW, and sinigrin was the predominant GSL accounted mean 4.0 μmol/g DW (37.7% of the total) followed by glucoraphanin (1.9) and glucobrassicin (2.4). Amongst the 13 anthocyanins, cyanidin 3-(sinapoyl) diglucoside-5-glucoside levels were the highest. The amounts of total free amino acids in green cabbage lines ranged 365.9 mg/100g fresh weight (FW) to 1089.1mg/100g FW. Vitamin C levels were much higher in red cabbage line (129.9 mg/100g FW). Thus, the amounts of GSLs, anthocyanins, free amino acids, and vitamin C varied widely, and the variations in these compounds between the lines of cabbage were significant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Expression Profiling of Glucosinolate Biosynthetic Genes in Brassica oleracea L. var. capitata Inbred Lines Reveals Their Association with Glucosinolate Content

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2016-06-01

    Full Text Available Glucosinolates are the biochemical compounds that provide defense to plants against pathogens and herbivores. In this study, the relative expression level of 48 glucosinolate biosynthesis genes was explored in four morphologically-different cabbage inbred lines by qPCR analysis. The content of aliphatic and indolic glucosinolate molecules present in those cabbage lines was also estimated by HPLC analysis. The possible association between glucosinolate acc