WorldWideScience

Sample records for kaempferol quercetin isorhamnetin

  1. Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin.

    Science.gov (United States)

    Wang, Yi; Cao, Jiang; Zeng, Su

    2005-06-01

    Quercetin, kaempferol, and isorhamnetin were the most important flavonoid constituents in extracts from Ginkgo biloba leaves. Transport studies of Ginkgo flavonols were performed in Caco-2 cell mono-layers. Their apparent permeability in absorptive and secretion directions was determined, and quercetin, kaempferol and isorhamnetin displayed polarized transport, with the Papp,B-A being higher than the Papp,A-B (Pisorhamnetin, Student's t-test). Bcap37/MDR1 cells, which were transfected with a P-glycoprotein (P-gp) gene construct, were treated with quercetin, kaempferol or isorhamnetin. The concentrations of Ginkgo flavonol in Bcap37/MDR1 cells were lower than those in parent cells (Pisorhamnetin, Mann-Whitney U test). The concentrations of the flavonol in transfected cells increased when incubated with the P-gp inhibitor verapamil (Pisorhamnetin stimulated the ATPase activity (Pisorhamnetin, Mann Whitney U test). The results indicated that Ginkgo flavonols quercetin, kaempferol and isorhamnetin were substrates of P-gp. The P-gp type efflux pump might limit the bioavailability of Ginkgo flavonols.

  2. Phytic acid enhances the oral absorption of isorhamnetin, quercetin, and kaempferol in total flavones of Hippophae rhamnoides L.

    Science.gov (United States)

    Xie, Yan; Luo, Huilin; Duan, Jingze; Hong, Chao; Ma, Ping; Li, Guowen; Zhang, Tong; Wu, Tao; Ji, Guang

    2014-03-01

    Total flavones of Hippophae rhamnoides L. (TFH) have a clinical use in the treatment of cardiac disease. The pharmacological effects of TFH are attributed to its major flavonoid components, isorhamnetin, kaempferol, and quercetin. However, poor oral bioavailability of these flavonoids limits the clinical applications of TFH. This study explores phytic acid (IP6) enhancement of the oral absorption in rats of isorhamnetin, kaempferol, and quercetin in TFH. In vitro Caco-2 cell experiments and in vivo pharmacokinetic studies were performed to investigate the effects of IP6. The aqueous solubility and lipophilicity of isorhamnetin, quercetin, and kaempferol were determined with and without IP6, and mucosal epithelial damage resulting from IP6 addition was evaluated by MTT assays and morphology observations. The Papp of isorhamnetin, kaempferol, and quercetin was improved 2.03-, 1.69-, and 2.11-fold in the presence of 333 μg/mL of IP6, respectively. Water solubility was increased 22.75-, 15.15-, and 12.86-fold for isorhamnetin, kaempferol, and quercetin, respectively, in the presence of 20mg/mL IP6. The lipophilicity of the three flavonoids was slightly decreased, but their hydrophilicity was increased after the addition of IP6 in the water phase as the logP values of isorhamnetin, kaempferol, and quercetin decreased from 2.38±0.12 to 1.64±0.02, from 2.57±0.20 to 2.01±0.04, and from 2.39±0.12 to 1.15±0.01, respectively. The absorption enhancement ratios were 3.21 for isorhamnetin, 2.98 for kaempferol, and 1.64 for quercetin with co-administration of IP6 (200 mg/kg) in rats. In addition, IP6 (200 mg/kg, oral) caused neither significant irritation to the rat intestines nor cytotoxicity (400 μg/mL) in Caco-2 cells. The oral bioavailability of isorhamnetin, kaempferol, and quercetin in TFH was enhanced by the co-administration of IP6. The main mechanisms are related to their enhanced aqueous solubility and permeability in the presence of IP6. In summary, IP6 is a

  3. Simultaneous determination of quercetin, kaempferol and isorhamnetin accumulated human breast cancer cells, by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Yi; Cao, Jiang; Weng, Jian-Hua; Zeng, Su

    2005-09-01

    Quercetin, kaempferol and isorhamnetin are the most important constituents in ginkgo flavonoids. A simple, rapid and sensitive high-performance liquid chromatography method was developed to simultaneously determine quercetin, kaempferol and isorhamnetin absorped by human breast cancer cells. Cells were treated with ginkgo flavonols and then lysed with Triton-X 100. The flavonols in the samples were measured by RP-HPLC with a C18 column after a simple extraction with a mixture of ether and acetone. The mobile phase contained phosphate buffer (pH 2.0; 10 mM) tetrahydrofuran, methanol and isopropanol (65:15:10:20, v/v/v/v). The ultraviolet detector was operated at 380 nm. The calibration curve was linear from 0.1 to 1.0 microM (r > 0.999) for each flavonol. The mean extraction efficiency was about 70%. The recovery of the assay was between 98.9 and 100.6%. The limit of detection was 0.01 microM for quercetin and kaempferol and 0.05 microM for isorhamnetin. The limit of quantitation was 0.1 microM (R.S.D.isorhamnetin in human breast cancer Bcap37 and Bcap37/MDR1 cells.

  4. Effects of solid dispersion and self-emulsifying formulations on the solubility, dissolution, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in total flavones of Hippophae rhamnoides L.

    Science.gov (United States)

    Zhao, Guoying; Duan, Jingze; Xie, Yan; Lin, Guobei; Luo, Huilin; Li, Guowen; Yuan, Xiurong

    2013-07-01

    The aim of this study was to investigate the effects of solid dispersions (SD) and self-emulsifying (SE) formulations on the solubility and absorption properties of active components in total flavones of Hippophae rhamnoides L. (TFH). The solubility, dissolution rate, permeability and pharmacokinetics of isorhamnetin, quercetin and kaempferol in TFH SD/SE formulations and TFH were compared. The results showed that the solubility and dissolution rate of isorhamnetin, quercetin and kaempferol in SD/SE formulations were significantly enhanced compared to those in TFH, however, their intestinal permeability was comparable. The bioavailability of isorhamnetin, quercetin and kaempferol in rats remarkably increased after oral administration of TFH SD formulations compared to TFH, but there was no significant increase after oral administration of TFH SE formulations. The results of this study indicated the SD formulations on the improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH were much better than those of SE formulations. The improvement of pharmacokinetic properties of isorhamnetin, quercetin and kaempferol in TFH by SD formulations was probably ascribed to the enhancement of the solubility and dissolution of the three components, but was not relevant to the intestinal permeability. Therefore, as for herb extracts containing multiple components, especially for their major components with poor water solubility, solid dispersion formulations might have the better potential to enhance their bioavailability.

  5. Quantitative determination of isorhamnetin, quercetin and kaempferol in rat plasma by liquid chromatography with electrospray ionization tandem mass spectrometry and its application to the pharmacokinetic study of isorhamnetin.

    Science.gov (United States)

    Lan, Ke; Jiang, Xuehua; He, Jianling

    2007-01-01

    A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of quercetin, kaempferol and isorhamnetin in rat plasma. After being treated with beta-glucuronidase and sulfatase, the analytes were extracted by liquid/liquid extraction with the internal standard (IS; baicalein). The chromatographic separation was performed on a Diamonsil C(18) column with a mobile phase consisting of 2% formic acid/methanol (10:90, v/v) at a flow rate of 1.00 mL/min, with a split of 200 microL to the mass spectrometer. Validation results indicated that the lower limit of quantification (LLOQ) was 1 ng . mL(-1). The assay exhibited a linear range of 1-200 ng . mL(-1) and gave a correlation coefficient of 0.9980 or better for each analyte. Quality control samples (1, 5, 20 and 100 ng . mL(-1)) in six replicates from each of three different runs demonstrated an intra-assay precision (RSD) of 1.1-8.9%, an inter-assay precision of 1.6-10.8%, and an overall accuracy (bias) of isorhamnetin after oral application in rats equipped with a jugular catheter. After oral dosing of isorhamnetin, the mean values (n = 10) of C(max) were 57.8, 64.8 and 75.2 ng . mL(-1) which were achieved at a T(max) of 8.0, 6.4 and 7.2 h for oral doses of 0.25, 0.5 and 1.0 mg . kg(-1) body weight, respectively. The corresponding mean values for isorhamnetin area under the curver (AUC) from 0 to 60 h were 838.2, 1262.8, 1623.4 ng . h . mL(-1). Our results further demonstrated that the samples analyzed showed isorhamnetin could not be transformed into quercetin or kaempferol in rats, indicating that the demethylation of the 3'-oxymethyl group of isorhamnetin does not occur in Wistar rats.

  6. Pharmacokinetic properties of isorhamnetin, kaempferol and quercetin after oral gavage of total flavones of Hippophae rhamnoides L. in rats using a UPLC-MS method.

    Science.gov (United States)

    Li, Guowen; Zeng, Xiaoli; Xie, Yan; Cai, Zhenzhen; Moore, Jeffrey C; Yuan, Xiurong; Cheng, Zhihong; Ji, Guang

    2012-01-01

    An ultra performance liquid chromatography-mass spectrometric (UPLC-MS) method was developed to investigate the pharmacokinetic properties of isorhamnetin, kaempferol and quercetin from a total flavone extract of Hippophae rhamnoides L. (TFH) after single dose oral administration. Rat plasma samples were pretreated using liquid-liquid extraction, and chromatographic separation was performed on a C(18) column using a linear gradient of methanol and formic acid (0.1%). The pharmacokinetic parameters of isorhamnetin, kaempferol and quercetin from TFH in rats were quantitatively determined by UPLC with photodiode array detection (PDA). The qualitative detection of the three flavones was accomplished by selected ion monitoring in negative ion mode ESI-MS. Results of the pharmacokinetic study indicate that the three flavones in TFH were absorbed by passive diffusion in rats, and no "double-peak" phenomenon was observed in C-t curves of the three flavones from TFH except for quercetin. Results of this study indicate that the pharmacokinetic behaviors of isorhamnetin, kaempferol and quercetin when administered together in a complex herbal extract might be different than the individual behaviors of the same compounds administered in their pure forms. Results of this study also demonstrate that UPLC-MS is a rapid and practical method to determine the pharmacokinetic parameters of flavones present in an herbal extract.

  7. Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three Sorbus species.

    Science.gov (United States)

    Olszewska, Monika

    2008-11-04

    A reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of four flavonol aglycones (quercetin, QU; sexangularetin, SX; kaempferol, KA; isorhamnetin, IS) in hydrolyzed extracts from different plant parts of Sorbus aucuparia L., Sorbus aria (L.) Crantz. and Sorbus intermedia (Ehrh.) Pers. Separation of the four compounds was accomplished on a C18 Lichrosphere 100 column (5 microm, 250 mm x 4.6mm, i.d.) with a methanol gradient elution and recorded at 370 nm. The high resolution of critical bands - SX, KA and IS - was achieved with retention of the last peak (IS) in 19.5 min. The equilibration of the standard mixture by addition of HCl to an acid concentration equal that of hydrolyzed extracts injected was found to be necessary when minimizing calibration error. The correlation coefficients of all the calibration curves showed good linearity (r>0.9991) over the test range. The relative standard deviation of the method was less than 2.8% for intra- and inter-day assays, and the average recoveries were between 95.5 and 102.5%. High sensitivity was demonstrated with detection limits between 0.050 and 0.085 microg/ml. The level of total aglycones was found to be in the range of 687-1,515 mg/100g of dry weight in the inflorescences, 424-1,078 mg/100g in the leaves and 20-60 mg/100g in the fruits depending on the Sorbus species.

  8. Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats.

    Science.gov (United States)

    Chen, Zhi-peng; Sun, Jun; Chen, Hong-xuan; Xiao, Yan-yu; Liu, Dan; Chen, Jun; Cai, Hao; Cai, Bao-chang

    2010-12-01

    The aim of this study was to improve the oral bioavailability of Ginkgo biloba extract (GBE) through preparing G. biloba extract phospholipid complexes (GBP) and G. biloba extract solid dispersions (GBS). Firstly we prepared the GBP and GBS and studied their physicochemical properties by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD) and dissolution. Then we studied the pharmacokinetic characteristics and bioavailability in rats. The results showed that the bioavailability of quercetin, kaempferol and isorhamnetin in rats was increased remarkably after oral administration of GBP and GBS comparing with GBE. The bioavailabilities of GBP increased more than that of GBS.

  9. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography.

    Science.gov (United States)

    Wei, Yun; Xie, Qianqian; Fisher, Derek; Sutherland, Ian A

    2011-09-09

    Flaveria bidentis (L.) Kuntze is an annual alien weed of Flaveria Juss. (Asteraceae) in China. Bioactive compounds, mainly flavonol glycosides and flavones from F. bidentis (L.) Kuntze, have been studied in order to utilize this invasive weed, Analytical high-performance counter-current chromatography (HPCCC) was successfully used to separate patuletin-3-O-glucoside, a mixture of hyperoside (quercetin-3-O-galactoside) and 6-methoxykaempferol-3-O-galactoside, astragalin, quercetin, kaempferol and isorhamnetin using two runs with different solvent system. Ethyl acetate-methanol-water (10:1:10, v/v) was selected by analytical HPCCC as the optimum phase system for the separation of patuletin-3-O-glucoside, a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside, and astragalin. A Dichloromethane-methanol-water (5:3:2, v/v) was used for the separation of quercetin, kaempferol and isorhamnetin. The separation was then scaled up: the crude extract (ca 1.5 g) was separated by preparative HPCCC, yielding 12 mg of patuletin-3-O-glucoside at a purity of 98.3%, yielding 9 mg of a mixture of hyperoside and 6-methoxykaempferol-3-O-galactoside constituting over 98% of the fraction, and 16 mg of astragalin (kaempferol-3-O-glucoside) at a purity of over 99%. The pump-out peaks are isorhanetin (98% purity), kaemferol (93% purity) and quercitin (99% purity). The chemical structure of patuletin-3-O-glucoside and astragalin were confirmed by MS and ¹H, ¹³C NMR.

  10. HPLC-MS/MS法同时测定Beagle犬血浆中槲皮素、山萘酚和异鼠李素%Simultaneous determination of quercetin, kaempferol and isorhamnetin in dog plasma by HPLC-MS/MS

    Institute of Scientific and Technical Information of China (English)

    黄敏文; 王广基; 李昊; 孙建国

    2008-01-01

    目的:建立同时测定犬血浆中槲皮素、山萘酚和异鼠李素浓度的HPLC-MS/MS方法.方法:血浆样品经酸水解后用乙醚提取,采用选择性反应检测方法测定其血药浓度.仪器为Finni-gan LC-MS/MS二级四极杆质谱检测器,色谱柱为Luna C18(150mm×2.00 mm I.d.,5 μm,Luna,USA);流动相为乙腈-0.1%甲酸,梯度洗脱.结果:槲皮素、山萘酚和异鼠李素的线性范围均为0.5~100.0ng/mL,三种黄酮的最低定量限均为0.5 ng/mL,各自日内日间精密度分别小于7.3%,6.2%和6.4%,回收率分别大于70%,66%和70%.结论:该测定方法经验证符合血浆样品的测定要求,可以应用于临床前药代动力学研究.%AIM: A rapid, sensitive and highly selective liquid chromatography-tandem mass spectrom-etry method was developed and validated for simulta-neous determination of quercetin, kaempferol and isorhanmetin in dog plasma. METHODS: Quercetin, kaempferol and isorhamnetin conjugates were hydrol-ysed chemically. The analytes were extracted from plasma samples by liquid-liquid extraction, separated on a Luna ODS-2 column ( 150 mm×2.1 mm I.D., 5 μm particle size), and detected by tandem mass spec-trometry with a Finnigan lonSpray ionization interface. The mobile phase consisted of 0.1% aqueous formic acid (A) and gradient-grade acetonitri|e (B). RE-SULTS: The calibration curves for quercetin, kaempferol and isorhamnetin were linear in concentra-tion ranges of 0.5- 100.0 ng/mL in dog plasma. The method has a lower limit of quantification (LLOQ) of 0.5 ng/mL for all the three flavonols. The intra- and inter-day precisions, expressed as the R. S. D., were less than 7.3%, 6.2% and 6.4% for quercetin, kaempferol and isorhamnetin, respectively, and the recovery was more than 70%, 66% and 70%, respec-tively. The application of this assay was examined in a preliminary pharmacokinetic study of quercetin, kaempferol and iaorhamnetin in beagle dogs after oral administration of 6 Ginkgo biloba tablets

  11. 昙花中槲皮素、异鼠李素和山奈酚量的测定%Simultaneous determination of quercetin, kaempferol and isorhamnetin in Epiphyllum oxypetalum by HPLC

    Institute of Scientific and Technical Information of China (English)

    邹翔; 盛洁静; 曲中原; 张振国; 徐阳; 季宇彬

    2015-01-01

    A rapid and sensitive HPLC method was developed to detect the content of querce-tin, kaempferol and isorhamnetin in Epiphyllum oxypetalum .Diamond -C18 column was used as chromatographic column , methanol-0.4%phosphoric acid (55∶45) water solution as mobile phase , and the detection wavelength was set at 360 nm, with a flow rate at 1.0 mL/min.There was a good linear relationship when quercetin was in the range of 5.5~88μg/mL, r=0.999 9(n=6), kaempferol was in the range of 4~64 μg/mL, r=0.999 9(n=6) and isorhamnetin was in the range of 6.5~104 μg/mL, r=0.999 9(n=6).The av-erage recoveries were (99.84 ±0.23)% ( RSD=0.24%), (100.20 ±0.52)% ( RSD=0.38%), 99.99 ±0.12% (RSD=0.11%) respectively.The result showed that the con-tent of quercetin, kaempferol and isorhamnetin in Epiphyllum oxypetalum were 0.05, 0. 026, 0.039 mg/g, respectively.The established method was simple , sensitive and repro-ducible to detect the content of quercetin , kaempferol and isorhamnetin in Epiphyllum oxyp-etalum at the same time , which could be applied in the quality control of Epiphyllum oxyp-etalum and its preparations .%建立高效液相法同时测定昙花中含槲皮素、山奈酚和异鼠李素的量.运用Diamonsil C18色谱柱为分析柱,以甲醇-0.4%磷酸水溶液(55∶45)为流动相,流速为1.0 mL/min,检测波长为360 nm.测得槲皮素在5.5~88μg/mL范围内呈良好线性关系,r=0.9999(n=6);山奈酚在4~64μg/mL范围内呈良好线性关系,r=0.9999(n=6);异鼠李素在6.5~104μg/mL范围内呈良好线性关系,r=0.9999(n=6),三者的回收率分别为(99.84±0.23)%(RSD=0.24%)、(100.20±0.52)%(RSD=0.38%)、(99.99±0.12)%(RSD=0.11%).槲皮素、异鼠李素和山奈酚的量分别为0.05、0.026、0.039 mg/g.本方法可同时测定昙花中槲皮素、异鼠李素和山奈酚,操作简单、灵敏、重

  12. Kaempferol and quercetin glycosides from Rubus idaeus L. leaves.

    Science.gov (United States)

    Gudej, Jan

    2003-01-01

    Quercetin 3-0-beta-D-glucoside (I), quercetin and kaempferol 3-0-beta-D-galactosides (II, III), kaempferol 3-0-beta-L-arabinopyranoside (IV), kaempferol 3-0-beta-D-(6''-E-p-coumaroyl)-glucoside (tiliroside) (V) and methyl gallate (VI) were isolated from Rubus idaeus L. subspecies culture of Norna leaves and fully characterized.

  13. 银杏叶提取物注射液中槲皮素、山柰酚、异鼠李素及总黄酮醇苷的HPLC法测定%Determination of Quercetin,Kaempferol,Isorhamnetin and Their Total Flavonol Glycosides in Ginkgo Biloba Extract Injection by HPLC

    Institute of Scientific and Technical Information of China (English)

    林佳媛; 张鹏; 蔡卫民; 马国

    2012-01-01

    An HPLC method was established for the determination of quercetin, kaempferol, isorhamnetin and their total flavonol glycosides in Ginkgo Biloba extract injection and the quality evaluation of two brands. A Diamonsil C18 column was used with the mobile phase of methanol-0.4% phosphoric acid (55 :45) at the detection wavelength of 360 nm. Quercetin, kaempferol and isorhamnetin in the unhydrolyzed and hydrolyzed Ginkgo Biloba extract injection showed good separation and linearity ranges. The average recoveries of quercetin, kaempferol and isorhamnetin in the unhydrolyzed and hydrolyzed samples were 100.2%, 100.3%, 100.2% with RSDs of 0.64%, 1.14%, 0.40%, and 100.0%, 100.7%, 100.3% with RSDs of 0.79%, 0.98%, 1.00%, respectively.%建立了高效液相色谱法测定银杏叶提取物注射液中的槲皮素、山柰酚、异鼠李素及总黄酮醇苷,评价了注射液的质量.色谱柱为Diamonsil C18柱,流动相为甲醇-0.4%磷酸(55∶45),检测波长360 nm.银杏叶提取物注射液水解前后,其主要组分槲皮素、山柰酚和异鼠李素分离良好,线性范围宽,平均加样回收率水解前分别为100.2%、100.3%和100.2%,RSD分别为0.64%、1.14%和0.40%水解后分别为100.0%、100.7%和100.3%,RSD分别为0.79%、0.98%和1.00%.

  14. 三波长HPLC同时测定沙棘颗粒中的槲皮素、山萘酚与异鼠李素%Simultaneous quantitative determination of quercetin, kaempferol and isorhamnetin in Hippohae rhamnoids granules under tri-wave length by RP-HPLC

    Institute of Scientific and Technical Information of China (English)

    甘盛; 韩婷; 施晓光; 吴超权

    2013-01-01

    目的 用HPLC法在3个波长段同时测定沙棘颗粒中槲皮素、山萘酚与异鼠李素的含量.方法 经室温两步提取处理沙棘颗粒中的黄酮类化合物,测定其中的槲皮素、山萘酚与异鼠李素.在反相液相系统中,采用Symmetry C18柱(250 mm×4.6mm,5.0 μm),流动相为乙腈-0.4%磷酸溶液(40∶60),室温,流速1.0 mL· min-1.槲皮素、山萘酚、异鼠李素的检测波长分别为266、360、370 nm.结果 槲皮素、山萘酚与异鼠李素均在0.2~1.6 μg与峰面积线性关系良好,平均回收率分别为99.7%、98.3%、101.0%,r分别为0.9993、0.9996、0.9991.结论 所用方法灵敏度高、专属性强,适用于测定复方沙棘颗粒中的槲皮素、山萘酚与异鼠李素的含量.%OBJECTIVE To assay the content of quercetin, kaempferol and isorhamnetin in Hippohae rhamnoids Linn. granules under tri - wave length by HPLC. METHODS Flavone glycosides were extracted in two steps from hippohae rhamnoids Linn. granules , in which the quercetin, kaempferol and isorhamnetin content were assayed. The RP - HPLC workstation equipped with the Symmetry C18 column (250 mm ×4. 6 mm, 5. 0 μm) at room temperature was used, the mobile phase was composed of acetotrile and 0. 4% of phosphoric acid (4 : 6) with a flow rate of 1. 0 mL·min-1. Quercetin was detected at 266 nm, while kaempferol at 360 nm and isorhamnetin at 370 nm. RESULTS The good linearity was obtained at the concentration of 0. 2 - 1. 6 μg, the average recoveries were 99. 7% ,98. 3% and 101.0% , with the relative coefficients of 0. 9991,0. 9994 and 0. 9990, respectively. CONCLUSION The method is proved to be sensitive and specific, applicable for the determination of quercetin, kaempferol and isorhamnetin in Hippohae rhamnoids Linn, granules.

  15. Simultaneous determination of quercetin, kaempferol and isorhamnetin in Hippophae rhamnoides L.fruit by HPLC%高效液相色谱法同时测定沙棘果中槲皮素、山柰酚和异鼠李素的含量

    Institute of Scientific and Technical Information of China (English)

    樊鑫梅; 申雪丽; 闫丽丽; 王新春; 尹俊涛

    2012-01-01

    OBJECTIVE To develop an HPLC method for simultaneous determination of three flavonoids such as quercetin, kaempferol and isorhamnetin in Hippophae rhamnoides L. fruit. METHODS The column was Kromasil-C18 (250 mm × 4. 6 mm, 5 βm), the mobile phase was acetomtrile(A)-0. 6% phosphoric acid solution(B) with linear gradient elution(0- 15 min, 33%→32% A; 15 - 30 min,32%→31% A) , the flow rate was 1. 0 mL-min-1 , the column temperature was 30 °C and the detection wavelength was 370 ran, RESULTS The method had good linear relationship within the range of 1. 68 - 26. 88 fig· mL-1 for quercetin, 1. 52 - 24. 32βg·mL~1 for kaempferol, and 1. 76-28. 16 ·g-mL-1 for isorhamnetin. The average recoveries of quercetin, kaempferol and isorhamnetin were 98. 55% , 97. 63% and 97. 98% , respectively and the RSD were 1. 48% , 1. 66% and 1. 54%, respectively. CONCLUSION This method is simple, accurate and reliable. It is can be used to determine the contents of quercetin, kaempferol and isorhamnetin in Hippophae rhamnoides L. fruit,%目的:采用高效液相色谱法同时测定沙棘果中槲皮素、山柰酚和异鼠李素的含量.方法:Kromasil-C18 (250 mm×4.6mm,5 μm)色谱柱,流动相为乙腈(A)-0.6%磷酸(B)水溶液,线性梯度洗脱(0~15 min,33%→32%A;15~30 min,32%→31%A),流速1.0 mL·min-1,柱温30℃,检测波长370nm.结果:槲皮素,山柰酚和异鼠李素的质量浓度分别在1.68~26.88,1.52~24.32和1.76~28.16 μg·mL-1范围内线性关系良好,平均回收率分别为98.55%,97.63%0和97.98%,RSD分别为1.48%,1.66%和1.54%.结论:所建立的方法简单易行,准确可靠,可用于沙棘果中槲皮素、山柰酚和异鼠李素的含量测定.

  16. Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-kappaB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-kappaB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages.

    Science.gov (United States)

    Hämäläinen, Mari; Nieminen, Riina; Vuorela, Pia; Heinonen, Marina; Moilanen, Eeva

    2007-01-01

    In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related compounds on NO production in macrophages exposed to an inflammatory stimulus (lipopolysaccharide, LPS), and evaluated the mechanisms of action of the effective compounds. Flavone, the isoflavones daidzein and genistein, the flavonols isorhamnetin, kaempferol and quercetin, the flavanone naringenin, and the anthocyanin pelargonidin inhibited iNOS protein and mRNA expression and also NO production in a dose-dependent manner. All eight active compounds inhibited the activation of nuclear factor-kappaB (NF-kappaB), which is a significant transcription factor for iNOS. Genistein, kaempferol, quercetin, and daidzein also inhibited the activation of the signal transducer and activator of transcription 1 (STAT-1), another important transcription factor for iNOS. The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.

  17. Determination of lobetyolin,scopolin,scopoletin,quercetin,kaempferol and isorhamnetin in Shenqi Jiu by HPLC with gradient elution method%HPLC梯度洗脱法同时测定参杞酒中的党参炔苷、东莨菪苷、东莨菪亭、槲皮素、山柰酚和异鼠李素

    Institute of Scientific and Technical Information of China (English)

    谢婷

    2016-01-01

    Objective To develop an HPLC method with gradient elution for determination of lobetyolin,scopolin,scopole⁃tin,quercetin,kaempferol and isorhamnetin in Shenqi Jiu. Methods A Shiseido C18 column(4.6 mm×250 mm,5μm)was adopted, the mobile phase was acetonitrile(A)-0.5%acetic acid solution(B)with gradient elution at a flow rate of 1.0 ml/min,the column tem⁃perature was set at 30℃,the sample quantity was 20μl,and the detection wavelengths were 269(lobetyolin),346(scopolin and sco⁃poletin)and 360 nm(quercetin,kaempferol and isorhamnetin). Results The linear ranges of above mentioned 6 ingredients in order fell within the range of 4.59-91.80(r=0.9999),2.62-52.40(r=0.9996),1.95-39.00(r=0.9998),3.34-66.80(r=0.9995),2.30-46.00 (r=0.9991),and 2.86-57.20μg/ml(r=0.9999),respectively. The average recoveries and RSD(n=9)were 98.27%(1.33%),97.62%(1.48%),99.17%(0.99%),98.50%(1.37%),97.35%(1.35%),and 98.86%(1.70%),respectively. Conclusion The established HPLC gradient elution method can simultaneously determine the above mentioned 6 ingredients Shenqi Jiu. The method is simple,ac⁃curate,with good reproducibility. The method is helpful for the quality control of Shenqi Jiu.%目的:建立HPLC梯度洗脱法同时测定参杞酒中的党参炔苷、东莨菪苷、东莨菪亭、槲皮素、山柰酚和异鼠李素。方法采用Shiseido C18(4.6 mm×250 mm,5μm)色谱柱;流动相A:乙腈,流动相B:0.5%醋酸水溶液,进行梯度洗脱;进样量为20μl;流速:1.0 ml/min;柱温:30℃;检测波长分别为269 nm(党参炔苷)、346 nm(东莨菪苷和东莨菪亭)和360 nm(槲皮素、山柰酚和异鼠李素)。结果党参炔苷、东莨菪苷、东莨菪素、槲皮素、山柰酚和异鼠李素分别在4.59~91.80(r=0.9999)、2.62~52.40(r=0.9996)、1.95~39.00(r=0.9998)、3.34~66.80(r=0.9995)、2.30~46.00(r=0.9991)、2.86~57.20μg/ml(r=0.9999)范围内与峰面积呈良好的线性关系,

  18. Quercetin, kaempferol, myricetin, and fatty acid content among several Hibiscus sabdariffa accession calyces based on maturity in a greenhouse

    Science.gov (United States)

    Flavonols including quercetin, kaempferol, myricetin, and fatty acids in plants have many useful health attributes including antioxidants, cholesterol lowering, and cancer prevention. Six accessions of roselle, Hibiscus sabdariffa calyces were evaluated for quercetin, kaempferol, and myricetin conte...

  19. Anthocyanin indexes, quercetin, kaempferol, and myricetin concentration in leaves and fruit of Abutilon theophrasti Medik. genetic resources

    Science.gov (United States)

    Anthocyanin indexes, quercetin, kaempferol, and myricetin may provide industry with potential new medicines or nutraceuticals. Velvetleaf (Abutilon theophrasti Medik) leaves from 42 accessions were analyzed for anthocyanin indexes while both leaves and fruit were used for quercetin, kaempferol, and ...

  20. Isorhamnetin and Quercetin Derivatives as Anti-Acetylcholinesterase Principles of Marigold (Calendula officinalis) Flowers and Preparations

    Science.gov (United States)

    Kashchenko, Nina I.; Chirikova, Nadezhda K.; Akobirshoeva, Anzurat; Zilfikarov, Ifrat N.; Vennos, Cecile

    2017-01-01

    Marigold (Calendula officinalis L.) is one of the most common and widespread plants used medicinally all over the world. The present study aimed to evaluate the anti-acetylcholinesterase activity of marigold flowers, detect the compounds responsible and perform chemical analysis of marigold commercial products. Analysis of 23 varieties of C. officinalis flowers introduced into Siberia allowed us to select the Greenheart Orange variety due to the superior content of flavonoids (46.87 mg/g) and the highest inhibitory activity against acetylcholinesterase (IC50 63.52 µg/mL). Flavonoids, isorhamnetin and quercetin derivatives were revealed as potential inhibitors with the application of high-performance liquid chromatography (HPLC) activity-based profiling. Investigation of the inhibitory activity of isorhamnetin glycosides demonstrated the maximal potency for isorhamnetin-3-O-(2′′,6′′-di-acetyl)-glucoside (IC50 51.26 μM) and minimal potency for typhaneoside (isorhamnetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Among quercetin derivatives, the most active compound was quercetin-3-O-(2′′,6′′-di-acetyl)-glucoside (IC50 36.47 µM), and the least active component was manghaslin (quercetin-3-O-(2′′,6′′-di-rhamnosyl)-glucoside; IC50 94.92 µM). Some structure-activity relationships were discussed. Analysis of commercial marigold formulations revealed a reduced flavonoid content (from 7.18–19.85 mg/g) compared with introduced varieties. Liquid extract was the most enriched preparation, characterized by 3.10 mg/mL of total flavonoid content, and infusion was the least enriched formulation (0.41 mg/mL). The presented results suggest that isorhamnetin and quercetin and its glycosides can be considered as potential anti-acetylcholinesterase agents. PMID:28767066

  1. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155.

    Science.gov (United States)

    Boesch-Saadatmandi, Christine; Loboda, Agnieszka; Wagner, Anika E; Stachurska, Anna; Jozkowicz, Alicja; Dulak, Jozef; Döring, Frank; Wolffram, Siegfried; Rimbach, Gerald

    2011-03-01

    In the present study the effect of quercetin and its major metabolites quercetin-3-glucuronide (Q3G) and isorhamnetin on inflammatory gene expression was determined in murine RAW264.7 macrophages stimulated with lipopolysaccharide. Quercetin and isorhamnetin but not Q3G significantly decreased mRNA and protein levels of tumor necrosis factor alpha. Furthermore a significant decrease in mRNA levels of interleukin 1β, interleukin 6, macrophage inflammatory protein 1α and inducible nitric oxide synthase was evident in response to the quercetin treatment. However Q3G did not affect inflammatory gene expression. Anti-inflammatory properties of quercetin and isorhamnetin were accompanied by an increase in heme oxygenase 1 protein levels, a downstream target of the transcription factor Nrf2, known to antagonize chronic inflammation. Furthermore, proinflammatory microRNA-155 was down-regulated by quercetin and isorhamnetin but not by Q3G. Finally, anti-inflammatory properties of quercetin were confirmed in vivo in mice fed quercetin-enriched diets (0.1 mg quercetin/g diet) over 6 weeks.

  2. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake.

    NARCIS (Netherlands)

    Vries, de J.H.M.; Hollman, P.C.H.; Meyboom, S.; Buysman, M.N.C.P.; Zock, P.L.; Staveren, van W.A.; Katan, M.B.

    1998-01-01

    Flavonols are antioxidants that may reduce the risk of heart disease. Two major flavonols in the diet are quercetin and kaempferol, and their main sources in The Netherlands are tea and onions. We investigated whether plasma concentrations and urinary excretion of quercetin and kaempferol in humans

  3. HPLC identification and determination of myricetin, quercetin, kaempferol and total flavonoids in herbal drugs

    Directory of Open Access Journals (Sweden)

    Svetlana Kulevanova

    2003-05-01

    Full Text Available A new and rapid HPLC method for identification and determination of myricetin, quercetin, kaempferol and total flavonoids in ten herbal drugs of Macedonian origin is presented. Preparation of samples (Uvae ursi folim, Pruni spinosae flos, Sambuci flos, Betulae folim, Primulae flos, Herniariae herba, Centaurii herba, Tiliae flos, Robiniae pseudoacaciae flos, Bursae pastoris herba included hydrolysis of glycosides and extraction of total aglycones with ethyl acetate. HPLC analysis with UV-diode array detection was carried out on RP C18 column, using 5% acetic acid and acetonitrile in agradient elution mode and column temperature of 30 o C. The monitoring of the elution is performed in the whole UV-range and the acquisition of data for quantitative analysis at 367 nm. Screening of the extracts showed presence of quercetin in nine, kaempferol in seven and myricetin in only one sample. The quantitative analysis showed that the content of quercetin ranged from 0.026-0.506 % (m/m, while for kaempferol it was from traces to 1.246 %. Uvaeursi folium and Pruni spinosae flos were rich in content of quercetin (0.482 % and 0.506 %, respectively, while Pruni spinosae flos and Robiniae pseudoaccaciae flos contained the highest amounts of kaempferol (1.246 % and 0.892 %, respectively. Myricetin was identified and determined only in Betulae folium (0.102 %. The content of total flavonoids in the investigated samples expressed in terms of quercetin ranged from 0.040 to 1.680 %. The proposed HPLC method is convenient for use in routine analysis of myricetin, quercetin and kaempferol, as well as for estimation of total flavonoids content in herbal drugs.

  4. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations.

  5. Quercetin and isorhamnetin prevent endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II in rat aorta.

    Science.gov (United States)

    Sanchez, Manuel; Lodi, Federica; Vera, Rocio; Villar, Inmaculada C; Cogolludo, Angel; Jimenez, Rosario; Moreno, Laura; Romero, Miguel; Tamargo, Juan; Perez-Vizcaino, Francisco; Duarte, Juan

    2007-04-01

    The dietary flavonoid quercetin reduces blood pressure and improves endothelial function in several rat models of hypertension. We analyzed the effects of quercetin and its methylated metabolite isorhamnetin on the aortic endothelial dysfunction induced by incubation with angiotensin II (AngII) in vitro for 6 h. AngII diminished the relaxant responses to acetylcholine in phenylephrine-contracted aorta. Coincubation with quercetin or isorhamnetin, or addition of superoxide (O(2)(-)) dismutase or apocynin to the assay medium, prevented these inhibitory effects. At 6 h, AngII induced a marked increase in O(2)(-) production as measured by dihydroethidium fluorescence, which was prevented by quercetin and isorhamnetin. AngII also increased the expression of p47(phox), a regulatory subunit of the membrane NADPH oxidase. Immunohistochemical analysis revealed that overexpression of p47(phox) occurred mainly in the medial layer. p47(phox) overexpression was also prevented by quercetin and isorhamnetin. Taken together, these results show for the first time, to our knowledge, that quercetin and isorhamnetin prevent AngII-induced endothelial dysfunction by inhibiting the overexpression of p47(phox) and the subsequent increased O(2)(-) production, resulting in increased nitric oxide bioavailability.

  6. Quercetin and isorhamnetin in sweet and red cultivars of onion (Allium cepa L.) at harvest, after field curing, heat treatment, and storage.

    Science.gov (United States)

    Olsson, Marie E; Gustavsson, Karl-Erik; Vågen, Ingunn M

    2010-02-24

    Effects of heat treatment and storage on quercetin and isorhamnetin content, major and minor components of isorhamnetin, and quercetin glucosides and aglycone, were investigated in onion (Allium cepa L.). The sweet onion 'Recorra' and red onions 'Hyred' and 'Red Baron' were cultivated in the south part of Norway and thereafter stored for eight months. The onions were either not field dried, but stored directly, or field dried and then stored, or field dried and then heat treated before storage. Neither storage nor heat treatment caused any major differences in total flavonol content in the investigated sweet onion as well as in the red onion cultivars. The two major quercetin glucosides differed in their changes in content during storage; quercetin-4'-glucoside did not show any consistent changes during storage in the two red cultivars, independent of treatment, whereas quercetin-3,4'-diglucoside increased significantly by 30 or 51%, respectively, during storage in 'Hyred' and 'Red Baron' in the 24 h heat treated onions. Isorhamnetin-4'-glucoside, which might possibly be of special interest from a human health point of view, was present at 2-3 times higher amount in the sweet onion cultivar than in the two red cultivars. Some of the quercetin glucosides present at lower concentrations, isorhamnetin-3,4'-diglucoside, quercetin-3,7,4'-triglucoside, and quercetin-7,4'-diglucoside, increased during storage in all treatments in both 'Hyred' and 'Red Baron', though sometimes a decrease was found at the end of storage.

  7. ISOLATION AND CHARACTERIZATION OF QUERCETIN AND KAEMPFEROL IN VIVO AND IN VITRO FROM PEDALIUM MUREX

    Directory of Open Access Journals (Sweden)

    Sharma Priyanka

    2012-06-01

    Full Text Available Phytochemical progress has been aided enormously by the development of rapid and accurate methods of screening plants for particular chemicals. The plants are rich in secondary metabolites. Chemical compounds such as carbohydrates, protein, and lipids and a multitude of compounds like glycosides, alkaloids, flavonoids, etc. are used as food and medicines by people in various ways. Some species of family pedaliaceae are widely used in Indian traditional system and selected for various screening. In the present investigation quercetin and kaempferol have been isolated and identified from stem, leaves and unorganized cultures of P. murex and maintained by frequent subculturings on Murashige and Skoog’s medium (1962 supplemented with BAP(1.0 mg/l. The study showed maximum content of quercetin and kaempferol was observed in 6 weeks old calli and minimum in stem of Pedalium murex. The structure of the isolated compound was established on the basis of physical and chemical test and spectroscopic evidences (TLC, IR, UV, mp.

  8. Genetic effects of the flavonols quercetin, kaempferol, and galangin on Chinese hamster ovary cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Carver, J.H. (Lawrence Livermore National Lab., Livermore, CA); Carrano, A.V.; MacGregor, J.T.

    1983-01-01

    The genotoxicity of selected flavonols was evaluated by multiple endpoints in Chinese hamster ovary (CHO) cells. Chromosomal aberrations, sister-chromatid exchange (SCE), and forward mutation at 4 gene loci were measured in a single population of cells exposed to quercetin, kaempferol, or galangin for 15 h with and without metabolic activation. The incidence of chromosomal aberrations was significantly increased by quercetin in the absence of activation and by kaempferol and galangin with and without activation. Flavanol treatment affected SCE and mutation at the hgprt, aprt, or Na/sup +//K/sup +/-ATPase loci only marginally, but significantly increased mutation frequencies at the tk locus. The response at the tk locus suggests that the CHO cells may behave similarly to L5178Y cells, in which the tk locus is thought to reflect chromosomal lesions in addition to point mutation. These results indicate that, at least under the conditions examined, flavonols induce chromosomal aberrations in CHO cells, but have little effect on point mutation or SCE.

  9. Two-electron electrochemical oxidation of quercetin and kaempferol changes only the flavonoid C-ring

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Cornett, Claus; Justesen, Ulla

    1998-01-01

    Bulk electrolysis of the antioxidant flavonoids quercetin and kaempferol in acetonitrile both yield a single oxidation product in two-electron processes. The oxidation products are more polar than their parent compounds, with an increased molecular weight of 16g/mol, and were identified as 2......-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3 (2H)-benzofuranone and 2-(4-hydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone for quercetin and kaempferol, respectively. Two-electron oxidation of the parent flavonoid is suggested to yield a 3,4-flavandione with unchanged substitution pattern in the A- and B-ring, which...... may rearrange to form the substituted 3(2H)-benzofuranone through the chalcan-trione ring-chain tautomer. The acidity of the 3-OH group is suggested to determine the fate of the flavonoid phenoxyl radical originally formed by one-electron oxidation, as no well-defined oxidation product of luteolin...

  10. Simultaneous determination by HPLC of quercetin and kaempferol in three Sedum medicinal plants harvested in different seasons.

    Science.gov (United States)

    Wang, Luyao; Mei, Qing; Wan, Dingrong

    2014-04-01

    A high-performance liquid chromatography method was established for the fast quantification of quercetin and kaempferol in three Sedum crude medicines: Sedi Herba (Sedum sarmentosum Bunge.), Sedi Linearis Herba (Sedum lineare Thunb.) and Sedi Emarginati Herba (Sedum emarginatum Migo.). The column used was a YMC-pack ODS-A (250 × 4.6 mm, 5 µm), the mobile phase was a solution of methanol-0.4% phosphoric acid (47:53) with a flow rate of 1.0 mL/min at 35°C and the detection wavelength was 360 nm. The calibration curves for quercetin and kaempferol were linear over the range of 0.01-0.62 µg for quercetin and 0.02-0.78 µg for kaempferol, and the average recoveries were 99.72% [relative standard deviation (RSD): 1.63% and 99.50% (RSD: 1.16%), respectively]. In conclusion, the method established in this paper is accurate and repeatable. It can be used for the determination of quercetin and kaempferol, controlling the quality of the three crude drugs. Furthermore, the experimental data showed that the best harvest season for the three Sedum medicinal species should be the full-bloom period between the end of April and the beginning of May.

  11. Production of quercetin, kaempferol and their glycosidic derivatives from the aqueous-organic extracted residue of litchi pericarp with Aspergillus awamori.

    Science.gov (United States)

    Lin, Sen; Zhu, Qinqin; Wen, Lingrong; Yang, Bao; Jiang, Guoxiang; Gao, Haiyan; Chen, Feng; Jiang, Yueming

    2014-02-15

    Our previous work exhibited Aspergillus awamori fermentation of the litchi pericarp increased significantly antioxidant activity and DNA protection effect. In this present study, the litchi pericarp and its aqueous-organic extracted residues were fermented by A. awamori in order to elucidate the enhanced beneficial effects. The study identified that rutin which present in litchi pericarp could be deglycosylated to form quercetin and quercetin-3-glucoside after the fermentation. Application the standard compounds (rutin, quercetin 3-glucoside, quercetin, kaempferol-3-glucoside and kaempferol) further revealed the effective biotransformation by A. awamori fermentation. It was hypothesised that rutin was initially dehydroxylated to form kaempferol-3-rutinoside and then deglycosylated to form kaempferol-3-glucoside and kaempferol. To our best knowledge, it is the first report on dehydroxylated effect of polyphenols caused by A. awamori fermentation. Thus, A. awamori fermentation can provide an effective way to produce health benefiting value-added products from litchi pericarp in food industry.

  12. Antiviral effect of methylated flavonol isorhamnetin against influenza.

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    Full Text Available Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3', and 4' positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3'-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1. However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B. Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70-80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.

  13. Antiviral effect of methylated flavonol isorhamnetin against influenza.

    Science.gov (United States)

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Kim, Young Bong; Cho, Ssang-Goo

    2015-01-01

    Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3', and 4' positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3'-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70-80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.

  14. [Determination of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan for Uyghur medicine by high performance liquid chromatography].

    Science.gov (United States)

    Muhetaer, Tu'erhong; Resalat, Yimin; Chu, Ganghui; Yin, Xuebo; Munira, Abudukeremu

    2015-12-01

    Uyghur medicine is one important part of the national medicine system. Uyghur medicine modernization, namely the study of effective components with modern technologies, is the only way for the scientification, standardization, and industrialization of Uyghur medicine. Here we developed a selective extraction method for rutin, quercetin and kaempferol in Althaea rosea (L) Gavan. The three active species were determined by high performance liquid chromatography (HPLC) with HC-C18 column (250 mm x 4.6 mm, 5 μm) and the mobile phase of CH3OH-0.4% H3PO4 (50 :50, v/v). Rutin, quercetin and kaempferol were baseline separated with each other and the interference species with flow rate of 1.0 mL/min and column temperature of 30 degrees C. Under the optimal conditions, linear correlation were obtained in the mass concentration range of 12.5-150 μg/mL (r = 0.999 8) for rutin, 12.5-125 μg/mL (r = 0.999 9) for quercetin, and 12.5-125 μg/mL (r = 0.998 8) for kaempferol. The recoveries (n = 5) of rutin, quercetin and kaempferol were 100.25% ( RSD = 1.1%), 97.60% ( RSD = 0.47%) and 97.75% (RSD = 0.71%), respectively. The method can be used to determine the contents of rutin, quercetin and kaempferol in Althaea rosea (L) Gavan and provide the guidance for the analysis of the flavonoids in other Uyghur medicines.

  15. Physico-chemical and Biological Evaluation of Flavonols: Fisetin, Quercetin and Kaempferol Alone and Incorporated in beta Cyclodextrins.

    Science.gov (United States)

    Corina, Danciu; Bojin, Florina; Ambrus, Rita; Muntean, Delia; Soica, Codruta; Paunescu, Virgil; Cristea, Mirabela; Pinzaru, Iulia; Dehelean, Cristina

    2017-01-01

    Fisetin,quercetin and kaempferol are among the important representatives of flavonols, biological active phytocomounds, with low water solubility. To evaluate the antimicrobial effect, respectively the antiproliferative and pro apoptotic activity on the B164A5 murine melanoma cell line of pure flavonols and their beta cyclodextrins complexes. Incorporation of fisetin, quercetin and kaempferol in beta cyclodextrins was proved by scanning electron microscopy (SEM), differencial scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). Pure compounds and their complexes were tested for antiproliferative (MTT) and pro-apoptotic activity (Annexin V-PI) on the B164A5 murine melanoma cell line and for the antimicrobial properties (Disk Diffusion Method) on the selected strains. The phytocompounds presented in a different manner in vitro chemopreventive activity against B164A5 murine melanoma cell line and weak antimicrobial effect. The three flavonols: fisetin, quercetin and kaempferol were successfully incorporated in beta-cyclodextrin (BCD) and hydroxylpropyl-beta-cyclodextrin (HPBCD). Incorporation in beta cyclodextrins had a mix effect on the biological activity conducing to decrease, increase or consistent effect compared to pure phytocompound, depending on the screened process and on the chosen combination. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Development of Validated High-performance Thin-layer Chromatography Method for Simultaneous Determination of Quercetin and Kaempferol in Thespesia populnea.

    Science.gov (United States)

    Panchal, Hiteksha; Amin, Aeshna; Shah, Mamta

    2017-01-01

    Thespesia populnea L. (Family: Malvaceae) is a well-known medicinal plant distributed in tropical regions of the world and cultivated in South Gujarat and indicated to be useful in cutaneous affections, psoriasis, ringworm, and eczema. Bark and fruits are indicated in the diseases of skin, urethritis, and gonorrhea. The juice of fruits is employed in treating certain hepatic diseases. The plant is reported to contain flavonoids, quercetin, kaempferol, gossypetin, Kaempferol-3-monoglucoside, β-sitosterol, kaempferol-7-glucoside, and gossypol. T. populnea is a common component of many herbal and Ayurvedic formulation such as Kamilari and Liv-52. The present study aimed at developing validated and reliable high-performance thin layer chromatography (HPTLC) method for the analysis of quercetin and kaempferol simultaneously in T. populnea. The method employed thin-layer chromatography aluminum sheets precoated with silica gel as the stationary phase and toluene: ethyl acetate: formic acid (6:4:0.3 v/v/v) as the mobile phase, which gave compact bands of quercetin and kaempferol. Linear regression data for the calibration curves of standard quercetin and kaempferol showed a good linear relationship over a concentration range of 100-600 ng/spot and 500-3000 ng/spot with respect to the area and correlation coefficient (R2) was 0.9955 and 0.9967. The method was evaluated regarding accuracy, precision, selectivity, and robustness. Limits of detection and quantitation were recorded as 32.06 and 85.33 ng/spot and 74.055 and 243.72 ng/spot for quercetin and kaempferol, respectively. We concluded that this method employing HPTLC in the quantitative determination of quercetin and kaempferol is efficient, simple, accurate, and validated.

  17. Analysis of the metabolites of isorhamnetin 3-O-glucoside produced by human intestinal flora in vitro by applying ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Le-yue; Zhao, Min; Xu, Jun; Qian, Da-wei; Jiang, Shu; Shang, Er-xin; Guo, Jian-ming; Duan, Jin-ao

    2014-03-26

    Isorhamnetin 3-O-glucoside, which is widely contained in many vegetables and rice, is expected to be metabolized by intestinal microbiota after digestion, which brings about the profile of its pharmacological effect. However, little is known about the interactions between this active ingredient and the intestinal flora. In this study, the preculture bacteria and GAM (general anaerobic medium) broth with isorhamnetin 3-O-glucoside were mixed for 48 h of incubation. Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for analysis of the metabolites of isorhamnetin 3-O-glucoside in the corresponding supernatants of fermentation. The parent and five metabolites were found and preliminarily identified on the basis of the chromatograms and characteristics of their protonated ions. Four main metabolic pathways, including deglycosylation, demethoxylation, dehydroxylation, and acetylation, were summarized to explain how the metabolites were converted. Acetylated isorhamnetin 3-O-glucoside and kaempferol 3-O-glucoside were detected only in the sample of Escherichia sp. 12, and quercetin existed only in the sample of Escherichia sp. 4. However, the majority of bacteria could metabolize isorhamnetin 3-O-glucoside to its aglycon isorhamnetin, and then isorhamnetin was degraded to kaempferol. The metabolic pathway and the metabolites of isorhamnetin 3-O-glucoside yielded by different isolated human intestinal bacteria were investigated for the first time. The results probably provided useful information for further in vivo metabolism and active mechanism research on isorhamnetin 3-O-glucoside.

  18. Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells.

    Science.gov (United States)

    Kumar, A D Naveen; Bevara, Ganesh Babu; Kaja, Laxmi Koteswaramma; Badana, Anil Kumar; Malla, Rama Rao

    2016-09-29

    Hydrogen peroxide is continuously generated in living cells through metabolic pathways and serves as a source of reactive oxygen species. Beyond the threshold level, it damages cells and causes several human disorders, including cancer. Effect of isolated 3-O-methyl quercetin and kaempferol on H2O2 induced cytotoxicity, ROS formation, plasma membrane damage, loss of mitochondrial membrane potential, DNA damage was evaluated in normal liver and lung cells. The RT-PCR analysis used to determine Nrf 2 gene expression. Calorimetric ELISA was used to determine Nrf2 and p-38 levels. Expression of SOD and catalase was analyzed by Western blot analysis. The present study isolated 3-O-methyl quercetin and kaempferol from the stem bark. They protected normal lung and liver cells from H2O2 induced cytotoxicity, ROS formation, membrane damage and DNA damage. Pre-treatment with 3-O-methyl quercetin and kaempferol caused translocation of Nrf2 from cytosol to nucleus. It also increased expression of p-p38, Nrf2, SOD and catalase in H2O2 treated lung and liver cells. The flavonoids isolated from S. anacardium significantly reduced H2O2 induced stress and increased expression of Nrf2, catalase and superoxide dismutase-2 indicating cytoprotective nature of 3-O-methylquercetin and kaempferol.

  19. Genetic Variation of Flavonols Quercetin, Myricetin, and Kaempferol in the Sri Lankan Tea (Camellia sinensis L.) and Their Health-Promoting Aspects

    Science.gov (United States)

    Jeganathan, Brasathe; Kottawa-Arachchi, J. Dananjaya; Ranatunga, Mahasen A. B.; Abeysinghe, I. Sarath B.; Gunasekare, M. T. Kumudini; Bandara, B. M. Ratnayake

    2016-01-01

    Flavonol glycosides in tea leaves have been quantified as aglycones, quercetin, myricetin, and kaempferol. Occurrence of the said compounds was reported in fruits and vegetable for a long time in association with the antioxidant potential. However, data on flavonols in tea were scanty and, hence, this study aims to envisage the flavonol content in a representative pool of accessions present in the Sri Lankan tea germplasm. Significant amounts of myricetin, quercetin, and kaempferol have been detected in the beverage type tea accessions of the Sri Lankan tea germplasm. This study also revealed that tea is a good source of flavonol glycosides. The Camellia sinensis var. sinensis showed higher content of myricetin, quercetin, and total flavonols than var. assamica and ssp. lasiocalyx. Therefore flavonols and their glycosides can potentially be used in chemotaxonomic studies of tea germplasm. The nonbeverage type cultivars, especially Camellia rosaflora and Camellia japonica Red along with the exotic accessions resembling China type, could be useful in future germplasm studies because they are rich sources of flavonols, namely, quercetin and kaempferol, which are potent antioxidants. The flavonol profiles can be effectively used in choosing parents in tea breeding programmes to generate progenies with a wide range of flavonol glycosides. PMID:27366737

  20. Genetic Variation of Flavonols Quercetin, Myricetin, and Kaempferol in the Sri Lankan Tea (Camellia sinensis L. and Their Health-Promoting Aspects

    Directory of Open Access Journals (Sweden)

    Brasathe Jeganathan

    2016-01-01

    Full Text Available Flavonol glycosides in tea leaves have been quantified as aglycones, quercetin, myricetin, and kaempferol. Occurrence of the said compounds was reported in fruits and vegetable for a long time in association with the antioxidant potential. However, data on flavonols in tea were scanty and, hence, this study aims to envisage the flavonol content in a representative pool of accessions present in the Sri Lankan tea germplasm. Significant amounts of myricetin, quercetin, and kaempferol have been detected in the beverage type tea accessions of the Sri Lankan tea germplasm. This study also revealed that tea is a good source of flavonol glycosides. The Camellia sinensis var. sinensis showed higher content of myricetin, quercetin, and total flavonols than var. assamica and ssp. lasiocalyx. Therefore flavonols and their glycosides can potentially be used in chemotaxonomic studies of tea germplasm. The nonbeverage type cultivars, especially Camellia rosaflora and Camellia japonica Red along with the exotic accessions resembling China type, could be useful in future germplasm studies because they are rich sources of flavonols, namely, quercetin and kaempferol, which are potent antioxidants. The flavonol profiles can be effectively used in choosing parents in tea breeding programmes to generate progenies with a wide range of flavonol glycosides.

  1. Consumption of quercetin and kaempferol in free-living subjects eating a variety of diets.

    NARCIS (Netherlands)

    Vries, de J.H.M.; Janssen, P.L.T.M.K.; Hollman, P.C.H.; Staveren, van W.A.; Katan, M.B.

    1997-01-01

    Quercetin and related flavonoids are anticarcinogenic in rats, but little is known about human intakes. The intake of five major flavonols and flavones was calculated using 1-day dietary records of 17 volunteers from 14 countries, and using both 3-day records and a food frequency questionnaire of ei

  2. [Determination of plasma concentration of quercetin, kaempferid and isorhamnetin in Hippophae rhamnoides extract by HPLC-MS/MS and pharmacokinetics in rats].

    Science.gov (United States)

    Liu, Yu; Yang, Juan; Tuo, Yang-ling; Wei, Ting; Zeng, Yong; Wang, Ping; Meng, Xian-li

    2015-10-01

    To establish an HPLC-MS/MS method for the analysis of quercetin, kaempferid and isorhamnetin in rats plasma and study its pharmamacokinetics after an intragastrical administration of Hippophae rhamnoides extracts. Five healthy male Sprague-Dawley (SD) rats were given single doses of H. rhamnoides extracts (quercetin 26.35 mg x kg(-1), kaempferid 4.040 mg x kg(-1), isorhamnetin 31.37 mg x kg(-1)), and then their orbital sinus blood samples were collected at different time points. The drug plasma concentration of the three flavonoids was determined by HPLC-MS/MS method. After that, the main pharmacokinetics parameters were calculated by using Kinetica 5. 0. 11 software. The methodological test showed that the linear concentration ranges of quercetin, kaempferid and isorhamnetin were 7.500-600.0 μg x L(-1) (R2 = 0.998 5), 1.000-80.00 μg x L(-1) (R2 = 0.998 5 ) and 10.00-800.0 μg x L(-1) (R2 = 0.998 0), respectively. The inner and inter-days precisions were both less than 14.0%. The plasma samples showed a good stability and consistency with the requirement of biological sample analysis after the samples were frozen once and placed at - 20 degrees C for 15 d and room temperature for 6 h and the treated analytes were placed at -20 degrees C for 24 h. For quercetin, the pharmacokinetic parameter t(½β), AUC(0-∞), MRT(0.∞), C.(max) and T(max) were (113.3 ± 19.37) min, (12 542.14 ± 3 504.05) μg x h x L(-1), (119.6 ± 13.29) h, (164.6 ± 27.33) μg x L(-1) and (5.199 ± 0.840 3) h, respectively. For kaempferid, the pharmacokinetic parameters t(½β), AUC(0-t), MRT(0-∞), C(max) and T(max) were (79.85 ± 17.15) min, (934.51 ± 94.59) μg x h x L(-1), (81.50 ± 13.75) h, (80.15 ± 14.24) μg x L(-1) and (3.827 ± 0.902 7) h, respectively. For isorhamnetin, the pharmacokinetic parameters t1,2,, AUC(0-t), MRT(0-∞), C(max) and T(max) were (118.3 ± 20.73) min, (26 067.77 ± 4 124.60) μg x h x L(-1), (129.0 ± 16.30) h, (269.6 ± 29.32) μg x L(-1) and (6.513 ± 1

  3. Characterization of a glucosyltransferase enzyme involved in the formation of kaempferol and quercetin sophorosides in Crocus sativus.

    Science.gov (United States)

    Trapero, Almudena; Ahrazem, Oussama; Rubio-Moraga, Angela; Jimeno, Maria Luisa; Gómez, Maria Dolores; Gómez-Gómez, Lourdes

    2012-08-01

    UGT707B1 is a new glucosyltransferase isolated from saffron (Crocus sativus) that localizes to the cytoplasm and the nucleus of stigma and tepal cells. UGT707B1 transcripts were detected in the stigma tissue of all the Crocus species analyzed, but expression analysis of UGT707B1 in tepals revealed its absence in certain species. The analysis of the glucosylated flavonoids present in Crocus tepals reveals the presence of two major flavonoid compounds in saffron: kaempferol-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside and quercetin-3-O-β-D-glucopyranosyl-(1-2)-β-D-glucopyranoside, both of which were absent from the tepals of those Crocus species that did not express UGT707B1. Transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing UGT707B1 under the control of the cauliflower mosaic virus 35S promoter have been constructed and their phenotype analyzed. The transgenic lines displayed a number of changes that resembled those described previously in lines where flavonoid levels had been altered. The plants showed hyponastic leaves, a reduced number of trichomes, thicker stems, and flowering delay. Levels of flavonoids measured in extracts of the transgenic plants showed changes in the composition of flavonols when compared with wild-type plants. The major differences were observed in the extracts from stems and flowers, with an increase in 3-sophoroside flavonol glucosides. Furthermore, a new compound not detected in ecotype Columbia wild-type plants was detected in all the tissues and identified as kaempferol-3-O-sophoroside-7-O-rhamnoside. These data reveal the involvement of UGT707B1 in the biosynthesis of flavonol-3-O-sophorosides and how significant changes in flavonoid homeostasis can be caused by the overproduction of a flavonoid-conjugating enzyme.

  4. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants.

    Science.gov (United States)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-05

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  5. The application of continuous wavelet transform and least squares support vector machine for the simultaneous quantitative spectrophotometric determination of Myricetin, Kaempferol and Quercetin as flavonoids in pharmaceutical plants

    Science.gov (United States)

    Sohrabi, Mahmoud Reza; Darabi, Golnaz

    2016-01-01

    Flavonoids are γ-benzopyrone derivatives, which are highly regarded in these researchers for their antioxidant property. In this study, two new signals processing methods been coupled with UV spectroscopy for spectral resolution and simultaneous quantitative determination of Myricetin, Kaempferol and Quercetin as flavonoids in Laurel, St. John's Wort and Green Tea without the need for any previous separation procedure. The developed methods are continuous wavelet transform (CWT) and least squares support vector machine (LS-SVM) methods integrated with UV spectroscopy individually. Different wavelet families were tested by CWT method and finally the Daubechies wavelet family (Db4) for Myricetin and the Gaussian wavelet families for Kaempferol (Gaus3) and Quercetin (Gaus7) were selected and applied for simultaneous analysis under the optimal conditions. The LS-SVM was applied to build the flavonoids prediction model based on absorption spectra. The root mean square errors for prediction (RMSEP) of Myricetin, Kaempferol and Quercetin were 0.0552, 0.0275 and 0.0374, respectively. The developed methods were validated by the analysis of the various synthetic mixtures associated with a well- known flavonoid contents. Mean recovery values of Myricetin, Kaempferol and Quercetin, in CWT method were 100.123, 100.253, 100.439 and in LS-SVM method were 99.94, 99.81 and 99.682, respectively. The results achieved by analyzing the real samples from the CWT and LS-SVM methods were compared to the HPLC reference method and the results were very close to the reference method. Meanwhile, the obtained results of the one-way ANOVA (analysis of variance) test revealed that there was no significant difference between the suggested methods.

  6. HPLC Determination of Quercetin and Kaempferol in Ailanthi Fructus%HPLC测定凤眼草中槲皮素与山柰素的含量

    Institute of Scientific and Technical Information of China (English)

    孟宪波

    2013-01-01

    Objective: To establish an HPLC method for the simultaneous determination of quercetin and kaempferol in Ailanthi Fructus. Method: Quercetin and kaempferol were separated on Inertsil ODS-3 (4. 6 mm X 250 mm, 5 μm) column and detected at 360 nm. The mobile phase was methanol-0. 4% phosphate (50: 50) . The flow rate was 1.0 mL·min-1. Result: Quercetin and kaempferol were linear within the range of 11.1-333 μg (r = l), 2.3-69 μg 0 = 1) respectively. The average recovery was 97.82% with RSD of 1. 1% , 96.81% with RSD of 1. 7% respectively. Conclusion: The method is simple, reproducible, and it can be used for the quality control of Ailanthi Fructus.%目的:建立以高效液相色谱法测定凤眼草中槲皮素与山柰素含量的方法.方法:Inertsil ODS-3色谱柱(4.6mrn×250 mm,5μm),流动相甲醇-0.4%磷酸溶液(50∶50),检测波长360 nm,流速1.0 mL· min-1.结果:槲皮素在11.1~333μg(r=1)线性关系良好,平均回收率为97.82%,RSD 1.1%;山柰素在2.3~69 μg (r=1)线性关系良好,平均回收率为96.81%,RSD 1.7%.结论:方法简便、快速、重复性好,可用于凤眼草的质量控制.

  7. Conteúdo de miricetina, quercetina e kaempferol em chás comercializados no Brasil Myciretin, quercetin and kaempterol contents in teas commercialized in Brazil

    Directory of Open Access Journals (Sweden)

    Simara Matsubara

    2006-06-01

    Full Text Available Os teores de miricetina, quercetina e kaempferol foram determinados em uma marca de ban-chá, duas de chá verde e quatro de chá preto. Analisaram-se três lotes para cada marca em duplicata por cromatografia líquida de alta eficiência. Quercetina (2,5-3,4 mg/g folha seca predominou em todas as amostras, seguida por kaempferol (1,0-2,0 mg/g folha seca, com exceção de uma amostra na qual kaempferol e miricetina tiveram teores iguais. Houve variação entre os tipos de chás e mesmo entre marcas do mesmo tipo. Miricetina (traços - 1,9 mg/g folha seca foi o flavonol, que mais variou e que esteve em menor nível nos chás pretos. Outros chás muito consumidos no Brasil também foram investigados. A miricetina não foi encontrada em chás de frutas (maçã e morango e de ervas (erva doce, camomila, erva cidreira, hortelã, boldo, mate e erva mate, enquanto que quercetina foi encontrada em quatro chás (camomila, boldo, morango e erva mate e kaempferol, em dois chás (boldo e erva-mate, em concentrações de 0,4 a 2,5 e 0,4 a 2,6 mg/g de folha seca, respectivamente. Concluiu-se que estes chás são fontes de flavonóis na dieta brasileira, embora com teores menores que em chás verde e preto.The myricetin, quercetin and kaempferol contents of a brand of "ban-chá", two brands of green tea and four brands of black tea were determined. Three lots of each brand were analysed in duplicate by high performance liquid chromatography. Quercetin (2.5-3.4 mg/g of dry leaf predominated in all samples, followed by kaempferol (1.0-2.0 mg/g of dry leaf, with the exception of one sample, in which kaempferol and myricetin had the same levels. There was variation between different types of tea and even between brands of the same type of tea. Myricetin (trace-1.9 mg/g of dry leaf was the flavonol, that varied the most and was present at lower levels in black tea. Other teas widely consumed in Brazil were also investigated. Myricetin was not found in teas of

  8. An Acylated Kaempferol Glycoside from Flowers of Foeniculum vulgare and F. Dulce

    Directory of Open Access Journals (Sweden)

    Shahera M. Ezzat

    2002-02-01

    Full Text Available An acylated kaempferol glycoside, namely kaempferol-3-O-α-L-(2”,3”-di-E-pcoumaroyl-rhamnoside (1 was isolated from the flowers of Foeniculum vulgare Mill. and F. dulce DC. It is thus isolated for the first time from family Apiaceae. In addition, the different organs of both plants afforded six flavonoid glycosides - namely afzelin (kaempferol-3-O-α-L-rhamnoside (2, quercitrin (3, isorhamnetin-3-O-β-D-glucoside (4, isoquercitrin (5, rutin (6, and miquelianin (quercetin-3-O-β-D-glucuronide (7. Structure elucidation of the above mentioned flavonoids was achieved by UV, 1H- and 13C-NMR, 1H-1H COSY, HMQC and EI-MS.

  9. Determination of quercetin and kaempferol in Polygonum aviculare by HPLC%HPLC测定萹蓄中槲皮素和山柰素的含量

    Institute of Scientific and Technical Information of China (English)

    陈娟; 师彦平

    2009-01-01

    目的:建立同时测定中药萹蓄中槲皮素和山柰素含量的高效液相色谱方法.方法:采用Kromasil C_(18)色谱柱(4.6mm×250 mm,5μm),以甲醇-0.1%磷酸溶液(65∶35)为流动相,流速1.0 ml·L·min~(-1),检测波长为366 nm.对样品提取和水解过程中的各个影响因素进行了考察.结果:甲醇是萹蓄中槲皮素和山柰素的最佳提取溶剂,65%甲醇是槲皮素和山柰素及其苷的最佳提取溶剂,优化的水解条件为采用4.0mol·L~(-1)盐酸溶液,80℃水浴上水解1.0h.槲皮素和山柰素分别在0.58~362,0.51~320mg.L~(-1)峰面积与浓度呈良好的线性关系(r=0.999 9),最低检出限分别为0.03,0.02 mg.L~(-1);平均加样回收率分别为99.7%和99.0%,RSD分别为1.7%和3.9%.结论:该方法简便、准确、重现性好,可用于中药蔚蓄的质量控制.%Objective: To develop a high performance liquid chromatographic method for the simultaneous determination of quercetin and kaempferol in Polygonum aviculare. Method: The optimized method was achieved for the separation and detection of quercetin and kaempferol using Kromasil C_(18) column (4.6 mm×250 mm, 5 μm) as the stationary phase, methanol-0.1% aqueous phosphoric acid solution (65:35) as the mobile phase at a flow rate of 1.0 Ml·min~ (-1), 366 nm as the detection wavelength. The main factors, extraction solvent extraction time, hydrolysis tine, temperature and hydrochloric acid concentration, which influenced the sample extraction and hydrolysis procedure, were intensively explored. Result: Methanol and 65% methanol were chosen as the extracting solvent for the free compounds and for the total compounds, respectively. The optimized hydrolysis procedure was that the sample was hydrolyzed 1.0 h with 4.0 mol·L~(-1) hydrochloric acid at 80 ℃. Quercetin and kaempferol showed good relationship at the range of 0.58-362 mg·L~(-1) and 0.51-320 mg·L~(-1), respectively. Both of the correlation coefficients of the calibration curves were

  10. Comparison of Dietary Intakes of Myricetin, Quercetin, Kaempferol, Apigenin and Luteolin from Vegetables and Fruits in Chinese Adults from Four Different Regions

    Institute of Scientific and Technical Information of China (English)

    Wei-na GAO; Ling-ling PU; Jing-yu WEI; Yang LIU; Chang-jiang GUO; Li-ting ZHAO; Ying CAI; Cai-lian WU

    2014-01-01

    Objective To assess the daily flavonoids intakes from vegetables and fruits, and provide an epidemiologic basis for formulating dietary flavonoids intakes in Chinese adults.Methods A total of 932 males aged 16-34 years, from Liaoning, Beijing, Jiangsu and Guangdong, China, participated in this cross-sectional study from April to October 2006. The dietary intakes of total as well as individual of five flavonoids (myricetin, quercetin, kaempferol, apigenin, luteolin) from vegetables and fruits were assessed using the in-home weighting method.Results The mean total daily flavonoids intake was 71.55±21.15 mg/d in Chinese adults. The average intakes of five above flavonoids were 46.43±16.44, 15.09±4.84, 4.85±0.79, 3.23±0.68, and 1.94±0.68 mg/d in order, respectively. The mean total intakes of flavonols (myricetin, quercetin and kaempferol) and flavones (apigenin and luteolin) were 66.37±21.55 and 5.17±1.35 mg/day, respectively. The richest sources of flavonoids were potato, cabbage, and white radish in vegetables, and apple and banana in fruits. The daily intake of luteolin from vegetables in Liaoning was notably higher than that in Jiangsu and Guangdong, while that from all vegetables and fruits was lower in Jiangsu than in Liaoning and Beijing. The daily total intake of myricetin in Guangdong was higher than that in Liaoning. The daily intake of quercetin from vegetables in Guangdong was significantly higher than that in Liaoning and Jiangsu, and the total intake from all vegetables and fruits was the highest among the four regions. The daily intake of total flavonoids in Guangdong was higher than that in Liaoning.Conclusion The daily intakes of flavonoids were significantly different in four regions both in total and individual flavonoids, among which myricetin was the primary contributor.

  11. Antioxidant/prooxidant effects of α-tocopherol, quercetin and isorhamnetin on linoleic acid peroxidation induced by Cu(II) and H2O2.

    Science.gov (United States)

    Bakır, Temelkan; Sönmezoğlu, Inci; Imer, Filiz; Apak, Reşat

    2014-03-01

    The peroxidation of linoleic acid (LA) in the presence of copper(II) (Cu(II)) ions alone and with α-tocopherol (α-TocH) was investigated in aerated and incubated emulsions at 37 °C and pH 7. Additionally, the effects of quercetin (QR) and its O-methylated derivative, isorhamnetin (IR), as potential antioxidant protectors were studied in the (Cu(II) + TocH)-induced LA peroxidation system. Cu(II)-induced LA peroxidation followed pseudo-first-order kinetics with respect to primary (hydroperoxides) and secondary (aldehydes- and ketones-like) oxidation products, which were determined by ferric thiocyanate and thiobarbituric acid-reactive substances methods, respectively. As opposed to the concentration-dependent (at 0.6 and 10.0 µM) prooxidative action of α-TocH in the absence of QR and IR, the latter two compounds showed antioxidant effect over TocH. The peroxidation of LA in the presence of Cu(II)-H(2)O(2) combination alone and with TocH, QR and IR were also investigated in aerated and incubated emulsions, where the latter three compounds exhibited antioxidant effects.

  12. Effects of Parsley (Petroselinum crispum) and its Flavonol Constituents, Kaempferol and Quercetin, on Serum Uric Acid Levels, Biomarkers of Oxidative Stress and Liver Xanthine Oxidoreductase Aactivity inOxonate-Induced Hyperuricemic Rats.

    Science.gov (United States)

    Haidari, Fatemeh; Keshavarz, Seid Ali; Mohammad Shahi, Majid; Mahboob, Soltan-Ali; Rashidi, Mohammad-Reza

    2011-01-01

    Increased serum uric acid is known to be a major risk related to the development of several oxidative stress diseases. The aim of this study was to investigate the effect of parsley, quercetin and kaempferol on serum uric acid levels, liver xanthine oxidoreductase activity and two non-invasive biomarkers of oxidative stress (total antioxidant capacity and malondialdehyde concentration) in normal and oxonate-induced hyperuricemic rats. A total of 60 male Wistar rats were randomly divided into ten equal groups; including 5 normal groups (vehicle, parsley, quercetin, kaempferol and allopurinol) and 5 hyperuricemic groups (vehicle, parsley, quercetin, kaempferol and allopurinol). Parsley (5 g/Kg), quercetin (5 mg/Kg), kaempferol (5 mg/Kg) and allopurinol (5 mg/Kg) were administrated to the corresponding groups by oral gavage once a day for 2 weeks. The results showed that parsley and its flavonol did not cause any significant reduction in the serum uric acid levels in normal rats, but significantly reduced the serum uric acid levels of hyperuricemic rats in a time-dependent manner. All treatments significantly inhibited liver xanthine oxidoreductase activity. Parsley, kaempferol and quercetin treatment led also to a significant increase in total antioxidant capacity and decrease in malondialdehyde concentration in hyperuricemic rats. Although the hypouricemic effect of allopurinol was much higher than that of parsley and its flavonol constituents, it could not significantly change oxidative stress biomarkers. These features of parsley and its flavonols make them as a possible alternative for allopurinol, or at least in combination therapy to minimize the side effects of allopurinol to treat hyperuricemia and oxidative stress diseases.

  13. Cocrystals of kaempferol, quercetin and myricetin with 4,4‧-bipyridine: Crystal structures, analyses of intermolecular interactions and antibacterial properties

    Science.gov (United States)

    Zhang, Yu-Nan; Yin, He-Mei; Zhang, Yu; Zhang, Da-Jun; Su, Xin; Kuang, Hai-Xue

    2017-02-01

    With an aim to explore the interactions of Osbnd H⋯N between hydroxyl moiety of the flavonoids and the pyridyl ring of N-containing aromatic amines, three flavonols with varying B-ring-hydroxyl groups (kaempferol, quercetin, and myricetin) were selected to combine with 4,4‧-bipyridine. As a result, three new cocrystals of flavonols were obtained with a solution evaporation approach. These three cocrystals were characterized by single crystal X-ray diffraction, XPRD, IR and NMR methods. The resulting cocrystals were kaempferol: 4,4‧-bipyridine (2:1) (KAE·BPY·2H2O), quercetin: 4,4‧-bipyridine (1:1.5) (QUE·BPY), and myricetin: 4,4‧-bipyridine (1:2) (MYR·BPY·H2O). Structural analyses show that an array of hydrogen bonds and π-π stacking interactions interconnect the molecules to form a two-dimensional (2D) supramolecular layer in KAE·BPY·2H2O, QUE·BPY, and MYR·BPY·H2O. In the three cocrystals, they present as three different synthons-ⅠR88(58), Ⅳ R44(42) and, Ⅶ R66(29) with 4,4‧-bipyridine, respectively-which may yield a strategy for constructing the supramolecule. Cocrystals of flavonols combined with N-containing aromatic amines, 7-OH, B-ring-hydroxyl number and/or the location of the flavonols to play a significant part in extending the dimensionality of the cocrystals. The resulting motif formation and crystal packing in these flavonols cocrystals has combined with N-containing aromatic amines. Additionally, the antibacterial properties of the three cocrystals against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been investigated.

  14. 桑叶提取物中槲皮素和山萘酚的含量测定%Determination of quercetin and kaempferol in folium mori extract after hydrolysis by hydrochloric acid

    Institute of Scientific and Technical Information of China (English)

    蒋立娣; 宣贵达; 吴好好; 李丽萍

    2009-01-01

    To establish an method to determine the contents of quercetin and kaempferol in folium mori extract by HPLC,the flavones in folium mori extract were hydrolyted into quercetin and kaempferol with the mixed solution of methanol-hydrochloric acid.The contents of quercetin and kaempferol were determined by HPLC method,performed on Diamonsil C_u column with the mobile phase consisted of methanol -0.20% phosphoric acid solution (63·37).The flow rate was 1.0 mL·min~(-1),the UV wavelength was set at 370 nm.The linear ranges of quercetin and kaempferol were 0.84-26.8 μg·mL~(-1),0.44-14.2 μg · mL~(-1),respectively.The average recoveries of quercetin and kaempferol were 101.3%,99.5%.The method was accurate,reliable and with good reappearance for the determination of quercetin and kaempferol in folium mori extract.%建立HPLC法测定桑叶提取物中水解槲皮素和山萘酚的含量.先用甲醇-盐酸混合液(甲醇终浓度50%,盐酸终浓度2.0 mol·L~(-1))水解桑叶提取物中的黄酮类成分成槲皮素和山萘酚,以HPLC法测定槲皮素和山萘酚含量.色谱柱为Diamonsil钻石C18柱,流动相为甲醇-0.2%磷酸(63∶37,体积分数),流速为1.0 mL·min~(-1),检测波长为370 nm.结果表明槲皮素在0.84~26.8 mg·L~(-1)之间,山萘酚在0.44~14.2 mg·L~(-1)之间呈良好的线性关系,平均回收率分别为101.3%和99.5%.该测定方法准确、重复性好,可用于桑叶提取物中槲皮素和山萘酚的含量测定.

  15. 槲皮苷和山奈酚对糖尿病小鼠血糖及血脂水平的影响%Effect of Kaempferol and Quercetin on Blood Sugar and Fat Contents of Diabetic Model Mice

    Institute of Scientific and Technical Information of China (English)

    张家瑞

    2013-01-01

    本研究对黄酮单体山奈酚、槲皮苷对糖尿病小鼠降血糖、血脂效果进行试验,建立了小鼠实验模型,经喂养后测定结果表明,黄酮单体山奈酚、槲皮苷能够有效的降低小鼠的血糖BG、TG、TC和MDA水平,对增加血清SOD、GSH-Px活性也有明显促进作用,其中以10 mg/kg·bw·d为最佳剂量.这表明黄酮单体山奈酚、槲皮苷对糖尿病防治有明显作用.%The Anti-hypoglycemic effect of kaempferol and quercetin on diabetic model mice were studied. Two groups of diabetic model mice induced by alloxan were fed respectively with 2 doses of kaempferol and quercetin for 18 d. A group of non-model mice and a group of model mice fed with the same volume water were taken as the controls, and a group of model mice fed with Xiao ke wan (a Chinese medicine for diabete) was taken as the positive control. Then levels of serum glucose, TG, TC, MDA, and SOD and GSH-Px activities were investigated. The results showed that by kaempferol and quercetin, levels of serum glucose, TG, TC and MDA were significantly reduced, and SOD and GSH-Px activities were apparently enhanced. Among 2 doses of kaempferol and quercetin, 10 mg/kg bw·d was the modest one.

  16. Investigation of pharmacokinetic data of hypericin, pseudohypericin, hyperforin and the flavonoids quercetin and isorhamnetin revealed from single and multiple oral dose studies with a hypericum extract containing tablet in healthy male volunteers.

    Science.gov (United States)

    Schulz, Hans-Ulrich; Schürer, Michael; Bässler, Dagmar; Weiser, Dieter

    2005-01-01

    Hypericins, hyperforin and flavonoids are discussed as the main components contributing to the antidepressant action of St. John's wort (Hypericum perforatum). Therefore, the objective of the two open phase I clinical trials was to obtain pharmacokinetic data of these constituents from a hypericum extract containing tablet: hypericin, pseudohypericin, hyperforin, the flavonoid aglycone quercetin, and its methylated form isorhamnetin. Each trial included 18 healthy male volunteers who received the test preparation, containing 900 mg dry extract of St John's wort (STW 3-VI, Laif 900), either as a single oral dose or as a multiple once daily dose over a period of 14 days. Concentration/time curves were determined for the five constituents, for 48 h after single dosing and for 24 h on day 14 at the end of 2 weeks of continuous daily dosing. After single dose intake, the key pharmacokinetic parameters were determined as follows: Hypericin: Area under the curve (AUC(0-infinity)) = 78.33 h x ng/ml, maximum plasma concentration (Cmax) = 3.8 ng/ml, time to reach Cmax (tmax) = 7.9 h, and elimination half-life (t1/2) = 18.71 h; pseudohypericin: AUC(0-infinity) = 97.28 h x ng/ml, Cmax = 10.2 ng/ml, tmax = 2.7 h, t1/2 = 17.19 h; hyperforin: AUC(0-infinity) = 1550.4 h x ng/ml, Cmax = 122.0 ng/ml, tmax = 4.5 h, t1/2 = 17.47 h. Quercetin and isorhamnetin showed two peaks of maximum plasma concentration separated by about 3-3.5 h. Quercetin: AUC(0-infinity) = 417.38 h x ng/ml, Cmax (1) = 89.5 ng/ml, tmax (1) = 1.0 h, Cma (2) = 79.1 ng/ml, tmax (2) = 4.4 h, t1/2 = 2.6 h; isorhamnetin: AUC(0-infinity) = 155.72 h x ng/ml, Cmax (1) = 12.5 ng/ml, tmax (1) = 1.4 h, Cmax (2) = 14.6 ng/ml, tmax (2) = 4.5 h, t1/2 = 5.61 h. Under steady state conditions reached during multiple dose administration similar results were obtained. Further pharmacokinetic characteristics calculated from the obtained data were the mean residence time (MRT), the lag-time, the peak-trough fluctuation (PTF), the

  17. HPLC 法测定沙枣中槲皮素和异鼠李素的含量%Determination of quercetin and isorhamnetin in Elaeagnus angustifolia L.by HPLC

    Institute of Scientific and Technical Information of China (English)

    宋海龙; 赵璐; 杨海燕

    2015-01-01

    Objective To determine the content of quercetin and isorhamnetin in Elaeagnus angustifolia by high performance liquid chromatography.Methods The separation was performed on C18 column and the mobile phase was methanol-0.1% phosphoric acid solution (58:42),quercetin and isorhanmetin was detec-ted at 370 nm.Results The standard curve was linear within the concentration range of 0.016~0.032 μg for quercetin and 0.025~0.075 μg for isorhamnetin,respectively.The recovery was 99.08% for quercetin and 100.07% for isorhanmetin,respectively.RSD was 1.36% for quercetin and 0.98% for isorhanmetin (n=6).Conclusion This study provides a fast and accurate method to determine the content of flavonoids substances in Elaeagnus angustifolia , provides the reliable basis for the further development of flavonoids substances in Elaeagnus angustifolia .%目的:建立测定沙枣中槲皮素和异鼠李素含量的高效液相色谱法(HPLC 法)。方法色谱条件:C18色谱柱,甲醇-0.1%磷酸溶液(58∶42),检测波长370 nm。结果槲皮素在0.016~0.032μg 范围内线性关系良好(r =0.9999),异鼠李素在0.025~0.075μg (r =0.9999)范围内线性关系良好;槲皮素和异鼠李素的平均加样回收率分别为99.08%和100.07%;RSD 分别为1.36%和0.98%(n =6)。结论 HPLC 法可快速准确地测定沙枣中黄酮类物质的含量,为沙枣黄酮类物质的进一步开发提供了可靠的依据。

  18. Eruca sativa and its flavonoid components, quercetin and isorhamnetin, improve skin barrier function by activation of peroxisome proliferator-activated receptor (PPAR)-α and suppression of inflammatory cytokines.

    Science.gov (United States)

    Kim, Bora; Choi, Yoon-E; Kim, Hyun-Soo

    2014-09-01

    Atopic dermatitis, which is related to dermatologic disorders and is associated with skin barrier dysfunction, represents an epidemic problem demanding effective therapeutic strategies. In the present study, we showed that the treatment with Eruca sativa extract resulted in a significant increase in the transactivation activity of peroxisome proliferator-activated receptor (PPAR) response element such as PPAR-α and suppression in the expression of inflammatory cytokine and antimicrobial peptides. In addition, E. sativa extract promotes the expression of filaggrin related to skin barrier protection. Quercetin and isorhamnetin, flavonoids' constituents of E. sativa, also promoted PPAR-α activity. These results indicate that E. sativa extract may be an appropriate material for improving skin barrier function as a skin therapeutic agent for atopic dermatitis.

  19. 高效液相色谱法同时测定赶黄草中槲皮素和山柰酚含量%Simultaneous Content Determination of Quercetin and Kaempferol in Penthorum Chinense Pursh by HPLC

    Institute of Scientific and Technical Information of China (English)

    罗兴平; 杨玲霞

    2016-01-01

    目的:建立高效液相色谱法同时测定赶黄草中槲皮素和山柰酚含量的方法。方法采用高效液相色谱法,色谱柱为 Kromasil C18柱(4.0 mm×250 mm,5.0µm),流动相为甲醇-0.1%磷酸溶液(50∶50),流速1.0 mL/min,检测波长360 nm,检测温度为室温。结果槲皮素、山柰酚分别在0.1056~2.1120μg 和0.0236~0.472μg 范围内具有良好线性关系,平均回收率分别为98.46%(RSD=2.29%)和98.17%(RSD=1.99%)。结论该法准确、灵敏,可用于赶黄草中槲皮素和山柰酚的含量测定。%Objective To establish an HPLC method for the simultaneous content determination of quercetin and kaempferol in Penthorum Chinense Pursh. Methods The HPLC analysis was carried out on Kromasil C18 (250 mm× 4.0 mm, 5.0 μm) with a mixture of methanol-0.1% phosphate (50:50) as the mobile phase. The determination wavelength was set at 360 nm with the flow rate of 1.0 mL/min. The column temperature was set at room temperature. Results The quercetin and kaempferol showed good linearity in the range of 0.105 6–2.112 0 μg and 0.023 6–0.472 μg respectively. The average recovery rates of quercetin and kaempferol were 98.46% (RSD=2.29%) and 98.17%(RSD=1.99%) respectively. Conclusion The method is accurate and sensitive, which can be used for the content determination of quercetin and kaempferol in Penthorum Chinense Pursh.

  20. HPLC法同时测定土荆芥中槲皮素、山奈素、异鼠李素的含量%SimuItaneous Determination of Quercetin, Kaempferide and Isorhamnetin in Chenopodii ambrosioidis by HPLC

    Institute of Scientific and Technical Information of China (English)

    谢秋情; 衷林清; 王利娜; 潘馨; 王二丽

    2016-01-01

    OBJECTIVE To develop an HPLC method for determination of quercetin ,kaempferide and isorham-netin in Chenopodii ambrosioidis.METHODS The DIKMA Platisil ODS C18 (250mm ×4.6mm,5μm) column was used.The mobile phase was acetonitrile-0.3%phosphoric acid(38∶62) at a flow rate of 1.0mL・ min-1 and at 30℃of column temperature.The detection wavelength was 370nm.RESULTS The linear range for quercetin was 0.0559~3.3552μg,r=0.9999 (n=6).The average recovery was 104.82% and RSD was 1.83%.The linear range for kaempferide was 0.1112 ~6.6720μg, r =0.9999 ( n =6 ) .The average recovery was 100.82% and RSD was 2.43%.The linear range for isorhamnetin was 0.0128~0.7680μg,r=0.9999 (n=6).The average recovery was 99.49%and RSD was 2.55%.CONCLUSION This method is rapid and accurate ,which can be used to deter-mine the contents of quercetin ,kaempferide aod isorhamnetin in Chenopodii ambrosioidis .%目的:建立土荆芥中槲皮素、山奈素、异鼠李素含量的HPLC测定方法。方法采用 DIKMA Platisil ODS C18色谱柱(250mm ×4.6mm,5μm),流动相为乙腈-0.3%磷酸(38∶62),流速为1.0mL・ min -1,检测波长为370nm,柱温为30℃。结果槲皮素进样量在0.0559~3.3552μg与峰面积线性关系良好,r=0.9999,平均回收率为104.82%,RSD为1.83%(n =6);山奈素进样量在0.1112~6.6720μg与峰面积线性关系良好,r=0.9999,平均回收率为100.82%,RSD为2.43%(n=6);异鼠李素进样量在0.0128~0.7680μg与峰面积线性关系良好,r=0.9999,平均回收率为99.49%,RSD为2.55%(n=6)。结论本法准确、重复性好,可用于同时测定土荆芥中槲皮素、山奈素、异鼠李素的含量。

  1. Mitochondria-cytochrome C-caspase-9 cascade mediates isorhamnetin-induced apoptosis.

    Science.gov (United States)

    Lee, Hyo-Jung; Lee, Hyo-Jeong; Lee, Eun-Ok; Ko, Seong-Gyu; Bae, Hyun-Soo; Kim, Cheol-Ho; Ahn, Kyoo-Seok; Lu, Junxuan; Kim, Sung-Hoon

    2008-11-08

    Isorhamnetin is a flavanoid present in plants of the Polygonaceae family and is also an immediate metabolite of quercetin in mammals. Since the plasma level of isorhamnetin is maintained longer than quercetin, isorhamnetin may be a key metabolite to mediate the anti-tumor effect of quercetin. In the present study, we investigated the apoptotic mechanism of isorhamnetin in Lewis lung cancer (LLC) cells in vitro and established its in vivo anti-cancer efficacy. In cell culture, isorhamnetin significantly increased DNA fragmentation, and TUNEL positive apoptotic bodies and sub-G(1) apoptotic population in time- and dose-dependent manners. Western blot analyses revealed increased cleavage of caspase-3, and caspase-9 and PARP and increased cytosolic cytochrome C in isorhamnetin-treated cells. These events were accompanied by a reduced mitochondrial potential. Apoptosis was blocked by a general caspase inhibitor or the specific inhibitor of caspase-3 or -9. These in vitro results support mitochondria-dependent caspase activation to mediate isorhamnetin-induced apoptosis. Furthermore, an animal study revealed for the first time that isorhamnetin given by i.p. injection at a dose that is at least one order of magnitude lower than quercetin significantly suppressed the weights of tumors excised from LLC bearing mice. The in vivo anti-tumor efficacy was accompanied by increased TUNEL-positive and cleaved-caspase-3-positive tumor cells. Our data therefore support isorhamnetin as an active anti-cancer metabolite of quercetin in part through caspase-mediated apoptosis.

  2. Quercetin and isorhamnetin glycosides in onion (Allium cepa L.): varietal comparison, physical distribution, coproduct evaluation, and long-term storage stability.

    Science.gov (United States)

    Lee, Jihyun; Mitchell, Alyson E

    2011-02-09

    During onion processing, the outer dried protective layer (outer paper layer) and first two fleshy leaf layers are removed. This coproduct material is a potential commercial source of flavonoids especially quercetin. In the following study, the flavonoid composition was determined in coproduct materials and the press cake (material generated after juice extraction) in several commercially important onion varieties grown in California. Flavonoids were characterized and quantified using LC-(ESI)MS/MS and HPLC. The long-term stability of quercetin glycosides was assessed in dried coproduct materials stored at 4 and 22 °C over a 12 month period. In all varieties, the predominant forms of quercetin were the quercetin 3,4'-O-glucoside and 4'-O-glucoside. The first layer had significantly higher levels of flavonoids than the outer paper, second, and inner flesh layers on a DW basis (p < 0.05). Allium cepa "Milestone" contained the highest levels (p < 0.05) of flavonoids (1703 mg/100 g on a dry weight basis (DW). Onion press cake had significantly higher levels of total quercetin as compared with fresh onions (p < 0.05). The levels of 4'-O-glucoside significantly decreased during the first month of storage and remained stable for 12 months of storage at either 4 or 22 °C (p < 0.05).

  3. The Metabolic Profiling of Isorhamnetin-3-O-Neohesperidoside Produced by Human Intestinal Flora Employing UPLC-Q-TOF/MS.

    Science.gov (United States)

    Du, Le-Yue; Zhao, Min; Tao, Jin-Hua; Qian, Da-Wei; Jiang, Shu; Shang, Er-Xin; Guo, Jian-Ming; Liu, Pei; Su, Shu-Lan; Duan, Jin-Ao

    2016-11-23

    Isorhamnetin-3-O-neohesperidoside is the major active substance of Puhuang, a traditional herb medicine widely used in clinical practice to tackle many chronic diseases. However, little is known about the interactions between this ingredient and intestinal flora. In this study, ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry together with automated data analysis software (Metabolynx™) was used for analysis of the metabolic profile of isorhamnetin-3-O-neohesperidoside by the isolated human intestinal bacteria. The parent and three metabolites isorhamnetin-3-O-glucoside, isorhamnetin and quercetin were detected and identified based on the characteristics of their deprotonated molecules. These metabolites indicated that isorhamnetin-3-O-neohesperidoside was firstly deglycosylated to isorhamnetin-3-O-glucoside and subsequently to the aglycone isorhamnetin, and the latter was demethylated to quercetin. The majority of bacteria such as Escherichia sp. 23 were capable of converting isorhamnetin-3-O-neohesperidoside to considerable amounts of aglycone isorhamnetin and further to minor amounts of quercetin, while minor amounts of isorhamnetin-3-O-glucoside were detected in minority of bacterial samples such as Enterococcus sp. 30. The metabolic pathway and metabolites of isorhamnetin-3-O-neohesperidoside by the different human intestinal bacteria were firstly investigated. Furthermore, the metabolites of isorhamnetin-3-O-neohesperidoside might influence the effects of traditional herb medicines. Thus, our study is helpful to further unravel how isorhamnetin-3-O-neohesperidoside and Puhuang work in vivo.

  4. 高效液相色谱法同时测定沙枣中槲皮素和异鼠李素的含量%Determination of Quercetin and Isorhamnetin in Fructus Elaeagni. by HPLC

    Institute of Scientific and Technical Information of China (English)

    杜瑞芳; 王雨梅; 刘卫东; 马丽

    2008-01-01

    目的 建立沙枣中槲皮素(Quercetin)和异鼠李素(Isorhamnetin)的高效液相色谱测定方法.方法 采用ODS柱,甲醇-0.1%磷酸溶液(58∶42),检测波长370 nm.结果 槲皮素在0.042~0.84 μg范围内线性关系良好,异鼠李素在0.041 2~0.824 μg范围内线性关系良好;该法回收率槲皮素为98.98%,异鼠李素为99.27%;RSD槲皮素为1.56%,异鼠李素为0.86%(n=6)结论该方法为沙枣的含量测定提供了一种快速和准确的方法,为蒙药植物资源的进一步开发提供了可靠的依据.

  5. HPLC法同时测定黄海棠中山柰酚和槲皮素的含量%Content Determination of Kaempferol and Quercetin in Hypericum ascyron by HPLC

    Institute of Scientific and Technical Information of China (English)

    张伟; 于海林; 宋艳丽; 康文艺

    2011-01-01

    目的:建立同时测定黄海棠中山柰酚和槲皮素含量的方法.方法:采用高效液相色谱法.色谱柱为Purospher Star RPp-C18(250mm×4.6 nm,5 μm),流动相为甲醇-0.025 mol·L-1磷酸水溶液(60:40),流速为1.0 mL·min-1,柱温为25℃,检测波长为370 nm.结果:山柰酚、槲皮素进样量的线性范围分别为0.018 4~0.128 8μg(r=0.999 8)、0.008~0.064μg(r=0.999 9);二者的平均加样回收率分别为97.12%(RSD=1.03%,n=6)、96.51%(RSD=1.32%,n=6).结论:本方法灵敏、准确、重复性好,可用于黄海棠的质量控制.%OBJECITVE: To establish the method for the content determination of kaempferol and quercetin in Hypericum ascyron. METHODS: HPLC method was adopted. The separation was performed on Purospher Star RP-C18(250 min×4.6 mm, 5 μm) column with mobile phase consisted of methanol-0.025 mol· L-1 phosphate (60∶40) at flow rate of 1.0 mL· min-1. The column temperature was 25℃ and determination wavelength was set at 370 nm. RESULTS: The linear ranges of kaempferol and quercetin was 0.018 4~0.128 8 μg(r=0.999 8) and 0.008~0.064 μg(r=0.999 9). The average recoveries were 97.12% (RSD=1.03% ,n=6) and 96.5 1% (RSD = 1.32 %, n =6). CONCLUSION: The method is sensitive, accurate, and reproducible for the simultaneous determination of kaempferol and quercetin in H. ascyron.

  6. Content Determination of Quercetin and Kaempferol in Lidan Xiaoshi Granules by HPLC%HPLC测定利胆消石颗粒中槲皮素和山奈素含量

    Institute of Scientific and Technical Information of China (English)

    刘译

    2015-01-01

    目的:建立利胆消石颗粒中槲皮素和山奈素含量测定方法。方法:色谱柱:DIKMA-C18柱(4.6 mm ×250 mm;5μm),流动相为甲醇-0.4%磷酸(45∶55),流速为1.0 mL/min,检测波长为360 nm,柱温为30℃。结果:利胆消石颗粒中槲皮素和山奈素的线性范围分别为0.988~98.8μg/mL(r=0.9998),0.979~97.9μg/mL(r=0.9997),平均回收率为98.21%,98.18%,RSD值为0.71%,0.56%。结论:该方法简便,结果准确,可作为利胆消石颗粒的质量控制方法。%Objective: To establish a HPLC method for the content determination of quercetin and kaempferol in lidan xiaoshi granules. Methods: DIKMA-C18 (4.6 mm × 250 mm;5 μm)column was used with the mobile phase of methanol-0.4%phosphoric acid solution (45∶55), the flow rate was 1.0 mL/min, the detection wavelength was at 360 nm and the column temperature was at 30 ℃. Results: A good linear relationship of quercetin and kaempferol was within the range of 0.988~98.8μg/mL (r=0.999 8) and 0.979~97.9μg/mL (r=0.999 7) respectively, and the average recovery of quercetin and kaempferol was 98.21%and 98.18% (RSD was 0.71%and 0.56%). Conclusion: The method is simple and accurate, which can be used for the quality control of lidan xiaoshi granules.

  7. HPLC法测定骏枣中芦丁、槲皮素及异鼠李素含量%Simultaneous Determination of Rutin, Quercetin and Isorhamnetin in Zizyphus jujuba cv. Jun by HPLC

    Institute of Scientific and Technical Information of China (English)

    王迎进; 李洁; 张海容

    2013-01-01

      建立高效液相色谱法同时测定骏枣中芦丁、槲皮素和异鼠李素的测定方法.采用Kromasil C18色谱柱;甲醇-0.2%磷酸(60∶40,体积比)为流动相;流速1 mL/min;检测波长370 nm.结果表明:芦丁回归方程y=726083x+1938(r=0.9998),在0.0383滋g~0.612滋g范围内线性关系良好,平均加样回收率99.34%,RSD=1.42%;槲皮素回归方程y=8667980.8x-2869.6(r=0.9999),在0.0058滋g~0.092滋g范围内线性关系良好,平均加样回收率99.82%,RSD=2.27%;异鼠李素回归方程y=325300x+2611.4(r=0.9992),在0.0275滋g~0.440滋g范围内线性关系良好,平均加样回收率98.90%,RSD=2.44%.该法操作简便、准确,重复性好,可用于骏枣中芦丁、槲皮素和异鼠李素含量的测定.%The contents of rutin, quercetin and isorhamnetin in Zizyphus jujuba cv. Jun were determined by high performance liquid chromatography (HPLC)usingKromasilC18 (150mm×4.6mm,5μm)column,Methanol-0.2%phosphoric aicd (60∶40,v∶v)as mobile phase at a flow rate of 1.0 mL/min and detection wavelength of 370 nm. The results showed that the linear range of rutin concentration was from 0.038 3 μg to 0.612μg, the regression equation was y=726 083x+1 938 (r=0.999 8), the average recovery was 99.34%with the RSD of 1.42%. The linear range of quercetin concentration was from 0.005 8 μg to 0.092μg, the regression equation was y=8 667 980.8x-2 869.6 (r=0.999 9), the average recovery was 99.82%with the RSD of 2.27%. The linear range of isorhamnetin concentration wasfrom 0.0275μg to 0.440μg, the regression equation wasy=325300x+2611.4 (r=0.9992), the average recovery was98.90%with the RSD of 2.44%. The proposed method had highly repeatability and selectivity. It was simple,fast andcouldbeusedforthedeteminationofrutin, quercetinandisorhamnetinin Zizyphusjujuba cv.Jun.

  8. HPLC Method in Determining the Content of Quercetin, Kaempferide and Isorhamnetin in Seabuckthorn Flavone Powder%HPLC法测定沙棘黄酮粉中槲皮素、山柰素和异鼠李素的含量

    Institute of Scientific and Technical Information of China (English)

    卫罡; 侯霄

    2014-01-01

    建立同时测定沙棘黄酮粉中槲皮素、山柰素和异鼠李素三种成分含量的HPLC方法,对收集到的7个批次沙棘黄酮粉样品进行质量分析。采用 Kromasil C18(4.6mm ×250mm ,5μm)色谱柱为固定相,甲醇-0.4%磷酸水溶液为流动相,进行梯度洗脱,流速1.0mL/min ,检测波长为370nm ,柱温25℃。结果显示:该方法稳定可靠,重复性强。收集到的7个批次的沙棘黄酮粉样品中三种成分的含量差异较大,即便是同一厂家不同批次的产品差异也较大。%Objective:To set up a RP-HPLC method to determine the content of Quercetin, Kaempfer-ide and Isorhamnetin in Seabuckthorn flavone powder. Method:The optimum HPLC condition was as follows:Kromasil C18 column (4.6mm × 250mm, 5μm)as the stationary phase;Mobile Phase:Metha-nol-0.4% Phosphoric acid, gradient elution, detection wavelength:370nm;Column Temperature:25℃;Flow Rate:1.0mL/min. Results:The HPLC method was reasonable, stable and accurate. Conclusion:The contents of three components in seven batchs of seabuckthorn flavone powder we collected was quite difference, even in different batchs producted by same company.

  9. Isorhamnetin Inhibits Reactive Oxygen Species-Dependent Hypoxia Inducible Factor (HIF)-1α Accumulation.

    Science.gov (United States)

    Seo, Suho; Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2016-01-01

    Isorhamnetin is a flavonoid metabolite of quercetin and isolated from water dropwort (Oenanthe javanica, Umbelliferae). It has been reported that isorhamnetin exerts beneficial effects including antioxidant, anti-inflammatory, and anti-proliferative activities. The present study investigated whether the antioxidant activity of isorhamnetin is correlated with its anti-cancer effects on colorectal cancer cells. Isorhamnetin significantly repressed cobalt chloride (CoCl2)- or hypoxia-induced hypoxia inducible factor-1α (HIF-1α) accumulation in HCT116 and HT29 cells. When compared with quercetin, isorhamnetin showed potent inhibition of HIF-1α. Moreover, it inhibited CoCl2-induced activity of hypoxia response element reporter gene and HIF-1α-dependent transcription of genes such as glucose transporter 1, lactate dehydrogenase A, carbonic anhydrase-IX, and pyruvate dehydrogenase kinase 1. Isorhamnetin also blocked hydrogen peroxide (H2O2)-induced HIF-1α accumulation. The antioxidant effects of isorhamnetin were confirmed by observation of CoCl2- or H2O2-induced reactive oxygen species (ROS) production. Consistently, overexpressed HIF-1α was decreased by isorhamnetin or N-acetyl-L-cysteine in HEK293 cells. In vitro migration and invasion assay further confirmed the inhibitory effects of isorhamnetin on cancer cells. Collectively, these results demonstrate that isorhamnetin inhibits ROS-mediated HIF-1α accumulation, which contributes to its anti-metastatic efficacy.

  10. 高效液相色谱法测定阴地蕨中山奈酚和槲皮素含量∗%Determination of Kaempferol and Quercetin in Botrychium ternatum by HPLC

    Institute of Scientific and Technical Information of China (English)

    何可群

    2015-01-01

    Objective To establish a method for simultaneous determination of kaempferol and quercetin in Botrychium ternatum ( a kind of Ethnic Chinese herbal medicine) by HPLC and HPLC-MS/MS. Methods Agilent 1200 HPLC, API3200 QTRAP MS/MS, Ecilipse XDB-C18 column (15 mm×4.6 mm, 5μm) and the mobile phase consisting of methanol-0.1%formic-water (85��15) were applied to identify kaempferol and quercetin in Botrychium ternatum;Agilent 1260 HPLC and Eclipse plus C18(100 mm×4.6 mm, 5 μm) column were used for determination of the two.The mobile phase was a mixture of methanol and 0.4% phosphoric acid solution (45��55) with a flow rate of 0.8 mL��min-1 and the detection wavelength was 360 nm. Results In mass spectrogram of Botrychium ternatum, characteristic peaks of m/z 287. 1 [ M+H]+ and m/z 301.0 [ M+H]+ were consistent with those of standard sample of kaempferol and quercetin, which confirmed their existence in Botrychium ternatum.The two flavonoids both had a good linearity in the range of 2.500–25.00μg��mL-1(r = 0.999 9 and 0.999 8, respectively).RSD of precision and reproducibility of kaempferol and quercetin were 0.98%,1.89% and 0.79%,2.70%, respectively. Conclusion The method is simple, accurate with high sensitivity and suitable for the determination of kaempferol and quercetin in Botrychium ternatum.%目的:通过高效液相色谱-质谱串联( HPLC-MS/MS)法鉴定阴地蕨中山奈酚成分,并建立HPLC法同时测定阴地蕨中山奈酚和槲皮素含量。方法采用 Agilent 1200 LC高效液相色谱仪及 API3200 QTRAP MS/MS质谱仪, Ecilipse XDB-C18(15 mm×4.6 mm,5μm)色谱柱,甲醇-0.1%甲酸溶液(85��15)为流动相,鉴定阴地蕨中山奈酚及槲皮素;用Agilent 1260 LC高效液相色谱仪,Eclipse plus C18色谱柱(100 mm×4.6 mm,5μm),甲醇-0.4%磷酸溶液(45��55)为流动相,流速0.8 mL��min-1,检测波长360 nm,测定阴地蕨中的山奈酚及槲皮素含量。结果出现m/z 287

  11. Identification of regioisomers of methylated kaempferol and quercetin by ultra high performance liquid chromatography quadrupole time-of-flight (UHPLC–QTOF) tandem mass spectrometry combined with diagnostic fragmentation pattern analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chengying; Lv, Haipeng; Zhang, Xinzhong; Chen, Zongmao; Shi, Jiang [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China); Lu, Meiling, E-mail: meilinglu@hotmail.com [Chemical Analysis Group, Agilent Technologies, No. 3 Wangjing North Road, Chaoyang Distr., Beijing 100102 (China); Lin, Zhi, E-mail: linz@mail.tricaas.com [Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling South Road, Hangzhou, Zhejiang 310008 (China)

    2013-09-17

    Highlights: •Found methane elimination is position-specific for methylated flavonols. •Found retro Diels–Alder fragments retained methoxy at original ring of flavonols. •Proposed a diagnostic pattern for discriminating regioisomers of flavonols. •Identified the specificity of three novel flavonol O-methyltransferases. •Identified six biologically active compounds and four new compounds. -- Abstract: The O-methylation of active flavonoids can enhance their antiallergic, anticancerous, and cardioprotective effects depending on the methylation position. Thus, it is biologically and pharmacologically important to differentiate methylated flavonoid regioisomers. In this study, we examined the regioisomers of methylated kaempferol and quercetin using ultra high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry. The methyl groups on the flavonoids can generally be cleaved as methyl radicals in a position-independent manner. We found that methyl groups can be cleaved as methane. If there are protons adjacent the methoxy on the flavonol rings, intra-molecule proton transfer can occur via collision-induced dissociation, and one molecule of methane can then be eliminated. The remaining charged fragment ([M+H−CH{sub 4}]{sup +}) reflects the adjacent structure and is specific to the methoxy position. Furthermore, the retro Diels–Alder (RDA) fragmentation of methylated flavonols can generate fragments with the methoxy at the original methylated ring. Combining the position-specific [M+H−CH{sub 4}]{sup +} fragment with the RDA fragments provides a diagnostic pattern for rapidly identifying methylated regioisomeric flavonols. Along with their retention behaviour, we have successfully identified ten regioisomers of methylated kaempferol and quercetin, which include six compounds previously reported in plants and shown to be biologically active. The developed approach is sensitive, rapid, reliable, and requires few standard

  12. Quercetin uptake and metabolism by murine peritoneal macrophages in vitro

    Directory of Open Access Journals (Sweden)

    Chieh-Jung Liu

    2015-12-01

    Full Text Available Quercetin (Q, a bioflavonoid ubiquitously distributed in vegetables, fruits, leaves, and grains, can be absorbed, transported, and excreted after oral intake. However, little is known about Q uptake and metabolism by macrophages. To clarify the puzzle, Q at its noncytotoxic concentration (44μM was incubated without or with mouse peritoneal macrophages for different time periods. Medium alone, extracellular, and intracellular fluids of macrophages were collected to detect changes in Q and its possible metabolites using high-performance liquid chromatography. The results showed that Q was unstable and easily oxidized in either the absence or the presence of macrophages. The remaining Q and its metabolites, including isorhamnetin and an unknown Q metabolite [possibly Q– (O-semiquinone], might be absorbed by macrophages. The percentage of maximal Q uptake by macrophages was found to be 2.28% immediately after incubation; however, Q uptake might persist for about 24 hours. Q uptake by macrophages was greater than the uptake of its methylated derivative isorhamnetin. As Q or its metabolites entered macrophages, those compounds were metabolized primarily into isorhamnetin, kaempferol, or unknown endogenous Q metabolites. The present study, which aimed to clarify cellular uptake and metabolism of Q by macrophages, may have great potential for future practical applications for human health and immunopharmacology.

  13. 槲皮素、异鼠李素对HDL氧化修饰的逆转作用%The inhibitory effects of quercetin and isorhamnetin on oxidative modification of HDL already induced by Cu2+ in vitro

    Institute of Scientific and Technical Information of China (English)

    何涛; 李家富; 杨烨; 刘友平; 罗兴林

    2003-01-01

    目的研究槲皮素(Quercetin,Que)、异鼠李素(Isorhamnetin,Iso)在体外对已受到Cu2+、Fe2+氧化修饰的人血浆高密度脂蛋白(high density lipoprotein,HDL)的作用.方法采用一次性密度梯度法分离正常人血浆HDL,用Cu2+、Fe2+进行体外氧化修饰.抗氧化组在修饰后6h加Que或Iso(100μmol/L)作用不同时间(4h、8h、16h).分别检测HDL中脂质过氧化物产物丙二醛(MDA)、维生素E含量及超氧化物歧化酶(SOD)活性.结果 100μmol/L Que和Iso作用4h、8h后可分别明显抑制Fe2+-OX-HDL、Cu2+-OX-HDL中MDA生成(P<0.001).Que和Iso作用8h、16h后可分别提高Cu2+-OX-HDL、Fe2+-OX-HDL中SOD活性(P<0.001);明显延缓维生素E含量降低(P<0.05).结论 Que和Iso均对已受到Cu2+、Fe2+氧化修饰的HDL具有明显的抑制作用,但在对Cu2+、Fe2+氧化修饰的HDL,槲皮素、异鼠李素的作用存在差异.Que和Iso的作用机制可能与其抗自由基氧化有关,提示该类物质是一种良好的抗氧化剂,动脉粥样硬化(As)的防治有一定的运用价值.

  14. The flavonol isorhamnetin exhibits cytotoxic effects on human colon cancer cells.

    Science.gov (United States)

    Jaramillo, Sara; Lopez, Sergio; Varela, Lourdes M; Rodriguez-Arcos, Rocio; Jimenez, Ana; Abia, Rocio; Guillen, Rafael; Muriana, Francisco J G

    2010-10-27

    The aim of this study was to determine whether isorhamnetin, an immediate 3'-O-methylated metabolite of quercetin, affects proliferation, cell death, and the cell cycle of human colon carcinoma (HCT-116) cells. Isorhamnetin was found to be a potent antiproliferative agent in a dose- and time-dependent manner, with an IC50 of 72 μM after 48 h of incubation as estimated by MTT assay. Flow cytometry and fluorescence microscopy analysis showed that isorhamnetin exerted a stimulatory effect on apoptosis and necrosis. Isorhamnetin also increased the number of cells in G2/M phase. Serum deprivation appeared to potentiate the effects of isorhamnetin on cell death and facilitated cell cycle progression to G0/G1 phase. These results suggest that isorhamnetin might mediate inhibition of HCT-116 cell growth through the perturbation of cell cycle progression and are consistent with the notion that G2/M checkpoints could be a conserved target for flavonoids in human colon cancer cells, leading to apoptotic and necrotic death. These antiproliferative, apoptotic, necrotic, and cell cycle effects suggest that isorhamnetin may have clinically significant therapeutic and chemopreventive capabilities. To our knowledge, this is the first report of the effect of isorhamnetin on human colon cancer cells.

  15. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress.

    Science.gov (United States)

    Yang, Ji Hye; Kim, Sang Chan; Kim, Kyu Min; Jang, Chang Ho; Cho, Sam Seok; Kim, Seung Jung; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2016-07-15

    Hepatic fibrosis is considered integral to the progression of chronic liver diseases, leading to the development of cirrhosis and hepatocellular carcinoma. Activation of hepatic stellate cells (HSCs) is the dominant event in hepatic fibrogenesis. We investigated the ability of isorhamnetin, the 3'-O-methylated metabolite of quercetin, to protect against hepatic fibrosis in vitro and in vivo. Isorhamnetin inhibited transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and collagen in primary murine HSCs and LX-2 cells. The TGF-β1- or Smad-induced luciferase reporter activity of Smad binding elements was significantly decreased by isorhamnetin with a concomitant decrease in Smad2/3 phosphorylation. Isorhamnetin increased the nuclear translocation of Nrf2 in HSCs and increased antioxidant response element reporter gene activity. Furthermore, isorhamnetin blocked TGF-β1-induced reactive oxygen species production. The specific role of Nrf2 in isorhamnetin-mediated suppression of PAI-1 and phosphorylated Smad3 was verified using a siRNA against Nrf2. To examine the anti-fibrotic effect of isorhamnetin in vivo, liver fibrosis was induced by CCl4 in mice. Isorhamnetin significantly prevented CCl4-induced increases in serum alanine transaminase and aspartate transaminase levels, and caused histopathological changes characterized by decreases in hepatic degeneration, inflammatory cell infiltration, and collagen accumulation. Moreover, isorhamnetin markedly decreased the expression of phosphorylated Smad3, TGF-β1, α-SMA, and PAI-1. Isorhamnetin attenuated the CCl4-induced increase in the number of 4-hydroxynonenal and nitrotyrosine-positive cells, and prevented glutathione depletion. We propose that isorhamnetin inhibits the TGF-β/Smad signaling pathway and relieves oxidative stress, thus inhibiting HSC activation and preventing liver fibrosis.

  16. Bioavailability of quercetin from its aglycone and its glucorhamnoside rutin in lactating dairy cows after intraduodenal administration.

    Science.gov (United States)

    Gohlke, A; Ingelmann, C J; Nürnberg, G; Starke, A; Wolffram, S; Metges, C C

    2013-04-01

    Because of their health-promoting properties, flavonoids are used in feed supplements for ruminants, although scientific evidence for their efficacy in vivo is limited. It has been shown recently that bioavailability of quercetin is low after ruminal administration in cows because of degradation by the ruminal microbiota. It is unknown whether quercetin could be absorbed from the small intestine in ruminants if degradation is prevented; therefore, we investigated the bioavailability of quercetin after duodenal administration in 6 German Holstein cows. On 88 ± 3 d in milk, each cow received equivalent doses of quercetin [9, 18, or 27 mg of quercetin equivalents (QE)/kg of body weight] either as quercetin aglycone (QA) or as its glucorhamnoside rutin (RU). In addition, 2 control studies with duodenal administration of NaCl solution (0.9%) were conducted per cow to examine concentrations of flavonoids in plasma during regular feeding. Blood samples were collected at defined time intervals over a period of 24h before and after administration of the test compounds. A washout period of 2d was applied between the runs to avoid possible carryover effects. Concentrations of plasma quercetin aglycone and its metabolites isorhamnetin, tamarixetin, and kaempferol were measured after treatment with glucuronidase/sulfatase by HPLC with fluorescence detection. After administration of RU, levels of plasma quercetin did not increase above baseline, irrespective of dose administered. After duodenal administration of QA, the plasma concentration of QA and its methylated metabolites clearly increased above baseline. The maximal plasma concentrations of total flavonols (about 2h after application) increased in a dose-dependent manner but showed high interindividual variability (range 368.8 to 983.3 nmol/L at 27 mg of QE/kg of body weight) but peak time did not differ. Preadministration baseline values of total flavonols were reached again 3 to 4h after QA administration. The

  17. Simultanous Determination of Quercetin and Kaempferol in Melaleuca alternifolia (Maiden et Betehe) Chee 1 by HPLC%高效液相色谱法同时测定互叶白千层中的槲皮素和山奈酚

    Institute of Scientific and Technical Information of China (English)

    林霄; 董晓敏; 陈明生; 黄艳; 刘布鸣

    2012-01-01

    用高效液相色谱法同时测定广西5地互叶白千层中槲皮素和山奈酚含量.样品用盐酸-甲醇(体积比5∶100)混合溶液水浴加热回流提取,C18柱色谱分离,以甲醇-乙腈-0.4%磷酸(体积比21∶21∶58)水溶液为流动相,检测波长370 nm,柱温为室温,流速1 mL/min.测定了不同产地互叶白千层中的槲皮素和山奈酚质量分数,其中邕宁南晓的槲皮素和山奈酚的质量分数最高,分别为5.151和2.530 mg/g,邕宁的槲皮素和山奈酚的质量分数为最低,分别为2.386和1.658 mg/g.%A high-performance liquid chromatography( HPLC) method was developed for simultaneous determination of quercetin and kaempferol in Melaleuca alternifolia ( Maiden et Betehe) Chee 1. The sample was extractd by HCl-MeOH solution(volume ratio 5:100) in water bath, then separated by a C18 column with CH3OH-C2H3N-0. 4% phosphoric acid solution (volume ratio 21 :21 :58) as the mobile phase solution under 370 nm wavelength. The HPLC experiment was performed at room temperature with flow rate 1.0 mL/min. Quercetin and kaempferol contents in M. alternifolia from different area were determined. The result showed that quercetin and kaempferol content in Nanxiao town of Yongning was the highest and that in Yongning was the lowest.

  18. Flavonol 3-O-Glycosides from Three Algerian Bupleurum Species

    Directory of Open Access Journals (Sweden)

    Reguia Bencheraiet

    2012-01-01

    Full Text Available Flavonoids distribution in three algerian Bupleureum (Apiaceae species has been investigated. Quercetin (1, quercetin 3-rutinoside (2 and isorhamnetin 3-rutinoside (3 were found in the endemic species B. plantagineum Desf. Three kaempferol glycosides, kaempferol 3-glucoside (4, kaempferol 3-galactoside (5, kaempferol 3-rutinoside (6 and three quercetin glycosides, quercetin 3-rutinoside (2, quercetin 3-glucoside (7 and quercetin 3-galactoside (8, have been isolated from B. fruticosum L. while isorhamnetin (9, isorhamnetin 3-galactoside (10 and isorhamnetin 3-galactorhamnoside (11 were found in B. spinosum L. Seven flavonols are reported here for the first time from the genus.

  19. Determination of Quercetin and Isorhamnetin in the Medicinal Herb of Sarcopyramis Nepalensis Wall by HPLC%高效液相色谱法测定风柜斗草中槲皮素和异鼠李素的含量

    Institute of Scientific and Technical Information of China (English)

    林艺华; 陈育青

    2011-01-01

    目的:建立闽南草药风柜斗草中槲皮素和异鼠李素含量测定的方法。方法:采用70%甲醇超声提取,HPLC-PDA分析方法测定。色谱条件为色谱柱Ultimate Column TMC18 4.6×150mm×5μm,流动相甲醇∶0.5%磷酸=55∶45,流速:1.0 mL/min,柱温:30℃,检测波长:370nm。结果:闽南草药风柜斗草中槲皮素在10~200μg/mL与峰面积的线性关系良好,回归方程为:Y=38409X-54808(r=0.9998),平均回收率为95.2%,RSD值为0.72%;异鼠李素在5~%Objective:To establish a method for determining the content of quercetin and isorhamnetin in the medicinal herb of Sarcopyramis nepalensis Wall.Methods:With absolute methanol solvent,ultrasonic extraction,UltimateTM C18(4.6*150mm,5μm) column,methanol:0.5%

  20. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Kim, Young Woo; Cho, Il Je; Kim, Sang Chan [Medical Research Center for Globalization of Herbal Formulation, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715 (Korea, Republic of); Shin, Sang Mi [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju, 501-759 (Korea, Republic of)

    2014-01-15

    Isorhamentin is a 3′-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes. - Highlights: • We investigated the effect of isorhamnetin on Nrf2 activation. • Isorhamnetin increased Nrf2

  1. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes.

    Science.gov (United States)

    Yang, Ji Hye; Shin, Bo Yeon; Han, Jae Yun; Kim, Mi Gwang; Wi, Ji Eun; Kim, Young Woo; Cho, Il Je; Kim, Sang Chan; Shin, Sang Mi; Ki, Sung Hwan

    2014-01-15

    Isorhamentin is a 3'-O-methylated metabolite of quercetin, and has been reported to have anti-inflammatory and anti-proliferative effects. However, the effects of isorhamnetin on Nrf2 activation and on the expressions of its downstream genes in hepatocytes have not been elucidated. Here, we investigated whether isorhamnetin has the ability to activate Nrf2 and induce phase II antioxidant enzyme expression, and to determine the protective role of isorhamnetin on oxidative injury in hepatocytes. In HepG2 cells, isorhamnetin increased the nuclear translocation of Nrf2 in a dose- and time-dependent manner, and consistently, increased antioxidant response element (ARE) reporter gene activity and the protein levels of hemeoxygenase (HO-1) and of glutamate cysteine ligase (GCL), which resulted in intracellular GSH level increases. The specific role of Nrf2 in isorhamnetin-induced Nrf2 target gene expression was verified using an ARE-deletion mutant plasmid and Nrf2-knockout MEF cells. Deletion of the ARE in the promoter region of the sestrin2 gene, which is recently identified as the Nrf2 target gene by us, abolished the ability of isorhamnetin to increase luciferase activity. In addition, Nrf2 deficiency completely blocked the ability of isorhamnetin to induce HO-1 and GCL. Furthermore, isorhamnetin pretreatment blocked t-BHP-induced ROS production and reversed GSH depletion by t-BHP and consequently, due to reduced ROS levels, decreased t-BHP-induced cell death. In addition isorhamnetin increased ERK1/2, PKCδ and AMPK phosphorylation. Finally, we showed that Nrf2 deficiency blocked the ability of isorhamnetin to protect cells from injury induced by t-BHP. Taken together, our results demonstrate that isorhamnetin is efficacious in protecting hepatocytes against oxidative stress by Nrf2 activation and in inducing the expressions of its downstream genes.

  2. Intra-herb pharmacokinetics interaction between quercetin and isorhamentin

    Institute of Scientific and Technical Information of China (English)

    Ke LAN; Jian-lin HE; Yang TIAN; Fei TAN; Xue-hua JIANG; Ling WANG; Li-ming YE

    2008-01-01

    Aim: Quercetin and isorhamnetin are common constituents of some herb extracts, such as extracts of gingko leaves and total flavones of Hippophae rhamnoides L. The intra-herb pharmacokinetics interactions between isorhamnetin and quercetin were investigated in the present study. Methods: Human MDR1 cDNA transfected MDCKII cells were used to validate whether isorhamnein interacted with P-gp. Caco-2 transport assays and a randomized, 3-way crossover pharmacokinetics study in rats were used to investigate the pharmacokinetics interactions. HPLC was used to determine cell transport samples. The total plasma concentrations of quercetinand isorhamnetin were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) by treatment with β-glucuronidase and sulfatase. Results: The permeability ratio (absorptive permeability/secretive permeability) of isorhamnetin across human MDR1 cDNA transfected MDCKII cells, Caco-2 cells and wild-type MDCKII cells are 0.25±0.02, 0.74±0.05, and 1.41±0.06, respectively. This result proved the role of P-gp in the cell efflux of isorhamnetin. While co-transporting with each other across Caco-2 cells monolayer, the permeability ratio of isorhamnetin and quercetin increased by 4.3 and 2.2 times. After coadministration with each other to rats,the Cmax, AUC0-72h, and AUC0-∞ of both isorhamnetin and quercetin significantly increased compared with single administration. Conclusion: The above results proved intra-herb pharmacokinetics interaction between quercetin and isorhamentin. P-gp might play an important role, whereas other drug efflux pumps, such as multi-drug resistance associate protein 2 and breast cancer resistance protein, might be involved. Accordingly, besides the drug-herb interactions, intra-herb interaction might be brought into view with the wide use of herbal-based remedies.

  3. Determination of the Content of Haempferol, Isorhamnetin and Quercetin in Folium Ginkgo Pellets Capsules by HPLC%HPLC法测定银杏叶缓释微丸胶囊中山奈素、异鼠李素、槲皮素的含量

    Institute of Scientific and Technical Information of China (English)

    江东波; 马晓鹂; 李朝晖; 蔡伟明; 官堂明

    2014-01-01

    Objective To establish a method for the determination of haempferol, isorhamnetin and quercetin in folium ginkgo pellets capsules Methods HPLC was performed on a C18 column using mathanol-0.4%H3PO4 (45∶55) as the mobile phase at a lfow rate of 1 mL/min. The detection wavelength was at 360 nm. The column temperature was 30℃and the sample size was 10μL. Results The linear range of quercetin was 0.1505-0.9030μg (r=0.9999), the average recovery was 99.86%(RSD=0.4%);the linear range of haempferol was 0.1450-0.8940μg (r=0.9998), the average recovery was 99.79%(RSD=0.5%);the linear range of isorhamnetin was 0.0995-0.5970μg (r=0.9998), the average recovery was 99.80%(RSD=0.3%). Conclusions The method is simple, accurate, and special and can be used for the quality control of folium ginkgo pellets capsules.%目的:建立以高效液相色谱法测定银杏叶缓释微丸胶囊中山奈素、异鼠李素、槲皮素含量的方法。方法以C18为色谱柱,流动相为甲醇-0.4%磷酸溶液(45∶55),检测波长为360nm,流速为1mL/min,柱温为30℃,进样量是10μL。结果槲皮素在0.1505~0.9030μg(r=0.9999)浓度范围内有良好的线性关系,平均回收率为99.86%,RSD=0.4%;山奈素在0.1450~0.8940μg(r=0.9998)浓度范围内有良好的线性关系,平均回收率为99.79%,RSD=0.5%;异鼠李素在0.0995~0.5970μg(r=0.9998)浓度范围内有良好的线性关系,平均回收率为99.80%, RSD=0.3%。结论本方法简便、准确、专属性强,可用于该制剂的质量控制。

  4. Determination of the Content of Haempferol, Isorhamnetin and Quercetin in Folium Ginkgo Pellets Capsules by HPLC%HPLC法测定银杏叶缓释微丸胶囊中山奈素、异鼠李素、槲皮素的含量

    Institute of Scientific and Technical Information of China (English)

    吴杏梅; 谢燕萍; 陈楚裕; 刘金瑶

    2015-01-01

    目的::建立以高效液相色谱法测定银杏叶缓释微丸胶囊中山奈素、异鼠李素、槲皮素含量的方法。方法:以C 18为色谱柱,流动相为甲醇∶0.4%磷酸溶液(45∶55),检测波长为360nm,流速为1ml/min,柱温为30℃,进样量是10μl。结果:槲皮素在0.1505~0.9030μg(r=0.9999)浓度范围内有良好的线性关系,平均回收率为99.86%,RSD=0.4%;山奈素在0.1450~0.8940μg(r=0.9998)浓度范围内有良好的线性关系,平均回收率为99.79%,RSD=0.5%;异鼠李素在0.0995~0.5970μg(r=0.9998)浓度范围内有良好的线性关系,平均回收率为99.80%,RSD=0.3%。结论:本方法简便、准确、专属性强,可用于该制剂的质量控制。%Objective: To establish a method for the determination of haempferol, isorhamnetin and quercetin in folium ginkgo pellets capsules Methods: HPLC was performed on a C18 column using mathanol∶0.4%H3PO4 (45∶55)as the mobile phase at a flow rate of 1ml/min. The detection wavelength was at 360nm. The column temperature was 30℃and the sample size was 10μl. Results:The linear range of quercetin was 0.1505~0.9030μg (r=0.9999), the average recovery was 99.86%(RSD=0.4%); The linear range of haempferol was 0.1450~0.8940μg (r=0.9998), the average recovery was 99.79%(RSD=0.5%);The linear range of isorhamnetin was 0.0995~0.5970μg (r=0.9998), the average recovery was 99.80%(RSD=0.3%);Conclusions:The method is simple, accurate, special and can be used for the quality control of folium ginkgo pellets capsules.

  5. Flavonol 3-O-Glycosides from Three Algerian Bupleurum Species

    OpenAIRE

    Reguia Bencheraiet; Ahmed Kabouche; Zahia Kabouche; Rachid Touzani; Maurice Jay

    2012-01-01

    Flavonoids distribution in three algerian Bupleureum (Apiaceae) species has been investigated. Quercetin (1), quercetin 3-rutinoside (2) and isorhamnetin 3-rutinoside (3) were found in the endemic species B. plantagineum Desf. Three kaempferol glycosides, kaempferol 3-glucoside (4), kaempferol 3-galactoside (5), kaempferol 3-rutinoside (6) and three quercetin glycosides, quercetin 3-rutinoside (2), quercetin 3-glucoside (7) and quercetin 3-galactoside (8), have been isolated from B. fruticosu...

  6. 槲皮素、异鼠李素逆转体外HDL氧化修饰的实验研究%Inhibitory effects of quercetin and isorhamnetin on oxidative modification of HDL induced by Cu2+/Fe2+ in vitro

    Institute of Scientific and Technical Information of China (English)

    李家富; 何涛; 黄维义; 周志远; 罗兴林

    2004-01-01

    目的观察槲皮素(Quercetir,Que)和异鼠李素(Isorhamnetin,Iso)在体外对已受到Cu2+、Fe2+氧化修饰的人血浆高密度脂蛋白(high density liprotein,HDL)的作用.方法采用一次性密度法分离正常人血浆HDL,用Cu2+,Fe2+进行体外氧化修饰.抗氧化组在修饰后6h加Que或Iso(100mol/L)作用不同时间(4,8和16 h).分别检测HDL中脂质过氧化物丙二醛(MDA)、维生素E(VitE)含量及超氧化物歧化酶(SOD)活性.结果100μmol/L Que和Iso作用4,8h后可分别明显抵制Fe2+-Ox-HDL,Cu2+-Ox-HDL中MDA生成(P<0.001).Que和Iso作用8,16 h后可分别提高Cu2+-Ox-HDL,Fe2+-Ox-HDL中SOD活性(P<0.001);明显延缓VitE含量降低(P<0.05).结论Que和Iso均对已受到Cu2+,Fe2+氧化修饰的HDL具有明显的抑制作用,但对Cu2+,Fe2+氧化修饰的HDL,槲皮素、异鼠李素的作用存在差异.Que和Iso的作用机制可能与其抗自由基氧化有关,提示该类物质是一种良好的抗氧化剂,对As的防治有一定的运用价值.%Objective: To observe the effects of quercetin (Que) and isorhamnetin (Iso) on the oxidative modification of high density lipoprotein (HDL) induced by Cu2+ and Fe2+ in vitro. Methods: Human HDL was prepared by one-step ultracentrifuge and oxidized by Cu2+ and Fe2+ in vitro. HDL was incubated with Que or Iso (100 μmol/L) for different time (4, 8 and 16 h) after 6 h oxidation by Cu2+ and Fe2+. The content of the production of lipid peroxide (MDA), vitamin E (vit E) and activity of superoxide dismutase (SOD) in oxidized high density lipoprotein (OX-HDL) were determined. Results: Compared with OX-HDL group, MDA production in Fee2+-OX-HDL, Cu2+-OX-HDL decreased significantly after 4 h and 8 h treatment with Que or Iso respectively (P <0.001). Que and Iso also markedly elevated vite level and SOD activities in Fe2+-OX-HDL,Cue2+-OX-HDL after 8h and 16 h treatment (P <0.001, P <0.05), respectively. Conclusions: Que and Iso obviously inhibit oxidative modification of HDL

  7. Dietary component isorhamnetin is a PPARγ antagonist and ameliorates metabolic disorders induced by diet or leptin deficiency.

    Science.gov (United States)

    Zhang, Yu; Gu, Ming; Cai, Wujie; Yu, Lijing; Feng, Li; Zhang, Lu; Zang, Qingqing; Wang, Yahui; Wang, Dongshan; Chen, Hui; Tong, Qingchun; Ji, Guang; Huang, Cheng

    2016-01-18

    Studies on peroxisome proliferator-activated receptor (PPAR)-γ ligands have been focused on agonists. However, PPARγ activation may induce obesity and nonalcoholic fatty liver disease (NAFLD), one of the most challenging medical conditions. Here, we identified that isorhamnetin, a naturally occurring compound in fruits and vegetables and the metabolite of quercetin, is a novel antagonist of PPARγ. Isorhamnetin treatment inhibited the adipocyte differentiation induced by the PPARγ agonist rosiglitazone, reduced obesity development and ameliorated hepatic steatosis induced by both high-fat diet treatment and leptin deficiency. Our results suggest that dietary supplement of isorhamnetin may be beneficial to prevent obesity and steatosis and PPARγ antagonists may be useful to treat hepatic steatosis.

  8. Kaempferol triosides from Silphium perfoliatum.

    Science.gov (United States)

    el-Sayed, Nabil H; Wojcińska, Małgorzata; Drost-Karbowska, Krystyna; Matławska, Irena; Williams, Jeffrey; Mabry, Tom J

    2002-08-01

    Two apiose-containing kaempferol triosides, together with nine known flavonoids were isolated from the leaves of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic methods including UV, LSI MS, FAB MS, CI MS, (1)H, (13)C and 2D-NMR, DEPT, HMQC and HMBC experiments. The two new compounds were identified as kaempferol 3-O-beta-D-apiofuranoside 7-O-alpha-L-rhamnosyl-(1"-->6"')-O-beta-D-galactopyranoside and kaempferol 3-O-beta-D-apiofuranoside 7-O-alpha-L-rhamnosyl-(1''''--> 6"')-O-beta-D (2"'-O-E-caffeoylgalactopyranoside).

  9. Anticoagulant activities of persicarin and isorhamnetin.

    Science.gov (United States)

    Ku, Sae-Kwang; Kim, Tae Hoon; Bae, Jong-Sup

    2013-04-01

    Persicarin and isorhamnetin were isolated from Oenanthe javanica and their anticoagulant activities were examined by monitoring activated partial thromboplastin time (aPTT), prothrombin time (PT), and the activities of cell-based thrombin and activated factor X (FXa). In addition, the effects of persicarin and isorhamnetin on the expressions of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) were tested in tumor necrosis factor-α (TNF-α) activated human umbilical vein endothelial cells (HUVECs). The data obtained showed that persicarin and isorhamnetin both prolonged aPTT and PT significantly and inhibited the activities of thrombin and FXa. In addition, they both inhibited the generations of thrombin and FXa in HUVECs. In accordance with these anticoagulant activities, persicarin and isorhamnetin prolonged in vivo bleeding time and inhibited TNF-α induced PAI-1 production. Furthermore, PAI-1/t-PA ratio was significantly decreased by persicarin. Interestingly, the anticoagulant and profibrinolytic effects of persicarin were greater than those of isorhamnetin, which suggest that the sulfonate group of persicarin positively regulates its anticoagulatory function. Accordingly, our results suggest that persicarin and isorhamnetin possess antithrombotic activities and that they could provide bases for the development of new anticoagulant agents.

  10. Analysis of the Metabolites of Isorhamnetin-3-O-β-D-Rutinoside in Rat Intestinal Flora in vitro by UPLC-ESI-Q-TOF-MS-MS%UPLC-ESI-Q-TOF-MS/MS分析异鼠李素-3-O-β-D-芸香糖苷大鼠肠道菌群代谢产物的研究

    Institute of Scientific and Technical Information of China (English)

    林文振; 李坤平; 曾玉冰; 周晓锐

    2012-01-01

    Objective; To identify the metabolites of isorhamnetin-3-O-β-Z)-rutinoside bio-transformed by rat intestinal flora in vitro. Method; Isorhamnetin-3-O-β-Z)-rutinoside was incubated with rat anaerobic intestinal flora in vitro with HPLC monitoring the biotransformation course, and a LC-MS method based on the combined use of ultra-performance liquid chromatography, electro-spray ionization, collision-induced dissociation and tandem mass spectrometry has been applied to an investigation of the structural characterization of biotransformation products. The metabolites were identified by accurate molecular weight, CID-MS-MS fragmentation information, combined with reference substance and literature data review. Result; Five metabolites-quercetin, isorhamnetin, kaempferol, quercetin-3-O-glucoside and isorhamnetin-3-O-glucoside were identified though the above method, and another compound, maybe, 5, 7, 3', 4'-tetramethoxy flavonoid-3-O-glucoside, need more information to identify. Conclusion; During the biotransformation by rat intestinal flora in vitro, isorhamnetin-3-O-β-D-rutinoside usually lose its glycosyl ligands, -OH or be adding-CH3 , and which lead to their lipophilicity and chemical diversity increasing.%目的:分析异鼠李素-3-O-β-D-芸香糖苷经体外培养大鼠肠道菌群代谢转化的产物.方法:在离体培养的大鼠肠道菌群中,加入异鼠李素-3-O-β-D-芸香糖苷,采用HPLC检测代谢进程,采用超高效液相色谱串联电喷雾飞行时间质谱( UPLC-ESI-Q-TOF-MS-MS)对转化产物进行分析,结合对照品、化合物精确分子量和CID-MS-MS裂解碎片信息进行化合物结构解析.结果:从异鼠李素-3 -O-β-D-芸香糖苷的大鼠肠道代谢产物中鉴定了槲皮素-3-O-葡萄糖苷、异鼠李素-3-O-葡萄糖苷、槲皮素、山奈酚和异鼠李素,另一化合物是否为5,7,3′,4′-四甲氧基黄酮-3-O-葡萄糖苷还需进一步确证.结论:肠道菌群代谢对异鼠李素-3-O-β-D-芸香糖苷

  11. Simultaneous determination of quercetin, rutin and kaempferol in the leaf extracts of Moringa oleifera Lam.and Raphinus sativus Linn.by liquid chromatographytandem mass spectrometry%液相色谱-串联质谱法测定辣木及萝卜叶的提取物中所含的槲皮素、芦丁及山柰酚

    Institute of Scientific and Technical Information of China (English)

    Venkatapura C. Devaraj; Burdipad G. Krishna; Gollapalle L. Viswanatha

    2011-01-01

    Objective:To develop a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to analyze quercetin (QU),rutin (RU) and kaempferol (KA) simultaneously in the leaf extracts of Moringa oleifera Lam.and Raphinus sativus Linn.Methods:Samples were prepared by extracting the leaves of the M.oleifera and R.sativus by cold-maceration technique using 90% ethanol.Chromatographic separation was operated with a mixture of 0.2% formic acid in water and acetonitrile at a flow rate of 0.4 mL/min on a Phenomenex Gemini C18 column with a total run time of 5.01 min.Results:The MS/MS ion transitions monitored were 303.03 to 153.1 for QU,611.1 to 303.1 for RU,287.1 to 153.2 for KA and 180.1 to 110.1 for internal standard.The lower limit of quantitation achieved for QU,RU and KA was 5 ng/mL and the linearity was observed from 5 to 2 000 ng/mL.The correlation coefficients of linear regression analysis were 0.994 6,0.9951 and 0.9969 for QU,RU and KA,respectively.Conclusion:The results indicate that the LC-MS/MS method is fast and sensitive and may provide excellent specificity for simultaneous determination of QU,RU and KA in leaf extracts of M.oleifera and R.sativus.%目的:通过一种快速、敏感的液相色谱-串联质谱法测定辣木(Moringa olei fera Lam.)及萝卜(Raphinus sativus Linn.)叶的提取物中所含的槲皮素、芦丁及山柰酚.方法:使用冷浸法(90%乙醇)对辣木及萝卜叶进行提取.提取物与0.2%甲酸和氰化甲烷混合后以0.4 mL/min的速度通过Phenomenex Gemini C18色谱层析柱,通过时间为5.01 min.结果:串联质谱法测定的离子转换分别为槲皮素303.03~153.1,芦丁611.1~303.1,山柰酚287.1~153.2,内参180.1~110.1.对槲皮素、芦丁及山柰酚定量测量的最低浓度为5 ng/mL,线性分布为5~2000 ng/mL.槲皮素、芦丁及山柰酚的线性回归系数分别为0.994 6、0.995 1及0.996 9.结论:本研究的结果证明了液相色谱-串联质谱法具有快速

  12. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    Science.gov (United States)

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  13. Effect of Quercetin on Paraoxonase 2 Levels in RAW264.7 Macrophages and in Human Monocytes—Role of Quercetin Metabolism

    Directory of Open Access Journals (Sweden)

    Manfred James Mueller

    2009-09-01

    Full Text Available There is increasing evidence that the intracellular antioxidant enzyme paraoxonase 2 (PON2 may have a protective function in the prevention of atherogenesis. An enhancement of PON2 activity by dietary factors including flavonoids is therefore of interest. In the present study we determined the effect of quercetin on paraoxonase 2 levels in cultured murine macrophages in vitro and in overweight subjects with a high cardiovascular risk phenotype supplemented with 150 mg quercetin/day for 42 days in vivo. Supplementation of murine RAW264.7 macrophages in culture with increasing concentrations of quercetin (1, 10, 20 μmol/L resulted in a significant increase in PON2 mRNA and protein levels, as compared to untreated controls. Unlike quercetin, its glucuronidated metabolite quercetin-3-glucuronide did not affect PON2 gene expression in cultured macrophages. However the methylated quercetin derivative isorhamnetin enhanced PON2 gene expression in RAW264.7 cells to similar extent like quercetin. Although supplementing human volunteers with quercetin was accompanied by a significant increase in plasma quercetin concentration, dietary quercetin supplementation did not change PON2 mRNA levels in human monocytes in vivo. Current data indicate that quercetin supplementation increases PON2 levels in cultured monocytes in vitro but not in human volunteers in vivo.

  14. Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Mari Hämäläinen

    2007-01-01

    The present study characterises the effects and mechanisms of naturally occurring phenolic compounds on iNOS expression and NO production in activated macrophages. The results partially explain the pharmacological efficacy of flavonoids as anti-inflammatory compounds.

  15. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1.

    Science.gov (United States)

    Seo, Kyuhwa; Yang, Ji Hye; Kim, Sang Chan; Ku, Sae Kwang; Ki, Sung Hwan; Shin, Sang Mi

    2014-06-01

    Previously, we reported that isorhamnentin, a 3'-O-methylated metabolite of quercetin, reduced inducible nitric oxide synthase (iNOS) expression and NO production. The present study further investigated the underlying mechanism of anti-inflammatory and antioxidant effects of isorhamnentin. Administration of isorhamnetin decreased the number of cyclooxygenase-2 (COX-2) positive cells in rats with carrageenan-induced paw edema. Isorhamnetin also suppressed lipopolysaccharide (LPS)-induced expression of COX-2 in cells. It is well known that LPS-induced reactive oxygen species (ROS) production leads to COX-2 induction. Isorhamnetin decreased LPS-induced ROS production and apoptosis. In addition, the basal expression of heme oxygenase-1 (HO-1) was increased by isorhamnetin treatment in agreement with the increase in nuclear translocation of NF-E2-related factor-2 (Nrf2), an essential transcription factor for the regulation of HO-1 expression. Moreover, pretreatment of tin protoporphyrin IX (SnPP), a chemical inhibitor of HO-1, reversed the ability of isothamnetin to inhibit COX-2 expression. These results demonstrate that induction of HO-1 by isorhamnetin leads to a reduction in ROS production and its antioxidant property might contribute to the inhibition of COX-2 expression in response to inflammation.

  16. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc.

    Science.gov (United States)

    Pengfei, Liu; Tiansheng, Deng; Xianglin, Hou; Jianguo, Wang

    2009-06-01

    In the present study, the process of separation and purification of isohamnetin from marc of sea buckthorn was obtained. The antioxidant properties of the pure isolated isorhamnetin were evaluated by the scavenging of the diphenylpicrylhydrazyl radical (DPPH), iron (III) to iron (II)-reducing, and iron-chelating assays. High purity isorhamnetin (92.1%) was obtained and the results of antioxidant assays showed that isorhamnetin performed significantly compared with ascorbic acid and BHT, and the linear correlations were good in these assays. In conclusion, isorhamnetin may have potential as a natural antioxidant to alternate synthetic substances as food additive with its antioxidant activity.

  17. Induction of apoptosis in lung cancer cells by isorhamnetin

    Institute of Scientific and Technical Information of China (English)

    LingZHU; Li-mingZHOU; Chun-leiYANG; Zun-zhenZHANG; JingXIAO; Zheng-rongWANG

    2005-01-01

    AIM The aim of the present study was to explore cytotoxic activity and the mechanism of tumor cell killing by isorhamnetin and to investigate the effect of isorhamnetin on tumor growth, cell prolification and apoptosis in transplantation tumor of lung cancer of Lewis cell line in C57BL/6 mice. METHODS Human A549 cells were treated with 10-320(g/ml isorhamnetin, C57BL/6 mice were subcutaneously inoculated Lewis cells 0.2ml/each (1×107cells/ml) below the right forelimb armpit and were treated with 50 (g/ml isorhamnetin isorhamnetin.The results were observed and analyzed under light-microscope, electronic microscopy, growth inhibition was analyzed by MTT, clonogenic asssays and growth curve;the apoptosis and the expression-associated genes peaks were detected with flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay,

  18. Kaempferol inhibits thrombosis and platelet activation.

    Science.gov (United States)

    Choi, Jun-Hui; Park, Se-Eun; Kim, Sung-Jun; Kim, Seung

    2015-08-01

    The objectives of the present study were to investigate whether kaempferol affects pro-coagulant proteinase activity, fibrin clot formation, blood clot and thrombin (or collagen/epinephrine)-stimulated platelet activation, thrombosis, and coagulation in ICR (Imprinting Control Region) mice and SD (Sprague-Dawley) rats. Kaempferol significantly inhibited the enzymatic activities of thrombin and FXa by 68 ± 1.6% and 52 ± 2.4%, respectively. Kaempferol also inhibited fibrin polymer formation in turbidity. Microscopic analysis was performed using a fluorescent conjugate. Kaempferol completely attenuated phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and phosphoinositide 3-kinase (PI3K)/PKB (AKT) in thrombin-stimulated platelets and delayed aggregation time (clotting) by 34.6% in an assay of collagen/epinephrine-stimulated platelet activation. Moreover, kaempferol protected against thrombosis development in 3 animal models, including collagen/epinephrine- and thrombin-induced acute thromboembolism models and an FeCl3-induced carotid arterial thrombus model. The ex vivo anticoagulant effect of kaempferol was further confirmed in ICR mice. This study demonstrated that kaempferol may be clinically useful due to its ability to reduce or prevent thrombotic challenge.

  19. A review on the dietary flavonoid kaempferol.

    Science.gov (United States)

    Calderón-Montaño, J M; Burgos-Morón, E; Pérez-Guerrero, C; López-Lázaro, M

    2011-04-01

    Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.

  20. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates

    OpenAIRE

    Qinggang Mei; Chun Wang; Weicheng Yuan; Guolin Zhang

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4′,5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4′5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight...

  1. Simultaneous ingestion of high-methoxy pectin from apple can enhance absorption of quercetin in human subjects.

    Science.gov (United States)

    Nishijima, Tomohiko; Takida, Yoshiki; Saito, Yasuo; Ikeda, Takayuki; Iwai, Kunihisa

    2015-05-28

    Chronic ingestion of apple pectin has been shown to increase the absorption of quercetin in rats. The present study was designed to elucidate whether the simultaneous ingestion of quercetin with apple pectin could enhance the absorption of quercetin in humans, and the effects of dose dependency and degree of pectin methylation on quercetin absorption were also investigated. Healthy volunteers (n 19) received 200 ml of 0.5 mg/ml of quercetin drinks with or without 10 mg/ml of pectin each in a randomised cross-over design study with over 1-week intervals; urine samples from all the subjects were collected within 24 h after ingestion of the test drinks, and urinary deconjugated quercetin and its metabolites were determined using HPLC. The sum of urinary quercetin and its metabolites excreted was increased by 2.5-fold by the simultaneous ingestion of pectin. The metabolism of methylated quercetin (isorhamnetin and tamarixetin) was not affected by pectin ingestion. In six volunteers, who received quercetin drinks containing 0, 3 and 10 mg/ml of pectin, the sum of urinary quercetin and its metabolites excreted also increased in a pectin dose-dependent manner. Furthermore, the simultaneous ingestion of quercetin with low-methoxy and high-methoxy pectin, respectively, increased the sum of urinary excretion of quercetin and its metabolites by 1.69-fold and significantly by 2.13-fold compared with the ingestion of quercetin without pectin. These results elucidated that apple pectin immediately enhanced quercetin absorption in human subjects, and that its enhancing effect was dependent on the dose and degree of pectin methylation. The results also suggested that the viscosity of pectin may play a role in the enhancement of quercetin absorption.

  2. Isorhamnetin represses adipogenesis in 3T3-L1 cells.

    Science.gov (United States)

    Lee, Jongsung; Jung, Eunsun; Lee, Jienny; Kim, Saebom; Huh, Sungran; Kim, Youngsoo; Kim, Yongwoo; Byun, Sang Yo; Kim, Yeong-Shik; Park, Deokhoon

    2009-02-01

    Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders including diabetes, hypertension, and heart disease. It is generally accepted that the regulation of adipogenesis or adipokines expression prevents obesity. In this study, we show that isorhamnetin inhibits adipocyte differentiation, as evidenced by reduced triglyceride (TG) accumulation and glycerol-3-phosphate dehydrogenase (GPDH) activity. At the molecular level, the mRNA expression levels of peroxidase proliferator-activated receptor-gamma (PPAR-gamma) and CCAAT/enhancer-binding protein-alpha (C/EBP-alpha), which are the major adipogenic transcription factors, were markedly reduced by isorhamnetin. However, the mRNA levels of C/EBP-beta and -delta, the upstream regulators of PPAR-gamma and C/EBP-alpha, were not reduced by isorhamnetin. Moreover, the mRNA levels of PPAR-gamma target genes such as lipoprotein lipase (LPL), CD36, aP2, and liver X receptor-alpha (LXR-alpha) were downregulated by isorhamnetin. We also showed that isorhamnetin inhibits the expression and secretion of adiponectin, and the results of adiponectin promoter assays suggest the inhibition of PPAR-gamma expression as a possible mechanism underlying the isorhamnetin-mediated effects. Taken together, these results indicate that isorhamnetin inhibits adipogenesis through downregulation of PPAR-gamma and C/EBP-alpha.

  3. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.

    Science.gov (United States)

    Liao, Wenzhen; Chen, Luying; Ma, Xiang; Jiao, Rui; Li, Xiaofeng; Wang, Yong

    2016-05-23

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction.

  4. Quercetin- A Flavanoid

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2010-01-01

    Full Text Available Quercetin is the most abundant form of the flavonoids. It gain attention when quercetin was found to cause DNA mutations which can then contribute to cancer treatment. Quercitrin is present in the bark of Quercus tinctoria (American Oak. It is generally available in natural sources. In this article we have tried to simplify the basic un-derstanding of quercetin, its synthesis, structure activity relationship, chemical reaction etc. It will help students to understand basic concept and chemistry of quercetin.

  5. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties

    Directory of Open Access Journals (Sweden)

    Jae Youl Cho

    2011-04-01

    Full Text Available The objective of this study was to examine the biological activity of kaempferol and its rhamnosides. We isolated kaempferol (1, a-rhamnoisorobin (2, afzelin (3, and kaempferitrin (4 as pure compounds by far-infrared (FIR irradiation of kenaf (Hibiscus cannabinus L. leaves. The depigmenting and anti-inflammatory activity of the compounds was evaluated by analyzing their structure-activity relationships. The order of the inhibitory activity with regard to depigmentation and nitric oxide (NO production was kaempferol (1 > a-rhamnoisorobin (2 > afzelin (3 > kaempferitrin (4. However, a-rhamnoisorobin (2 was more potent than kaempferol (1 in NF-kB-mediated luciferase assays. From these results, we conclude that the 3-hydroxyl group of kaempferol is an important pharmacophore and that additional rhamnose moieties affect the biological activity negatively.

  6. Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation.

    Directory of Open Access Journals (Sweden)

    Pilar Galindo

    Full Text Available BACKGROUND: Chronic oral quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone is usually not present in plasma, because it is rapidly metabolized into conjugated, mostly inactive, metabolites. The aim of the study is to analyze whether deconjugation of these metabolites is involved in the blood pressure lowering effect of quercetin. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the effects on blood pressure and vascular function in vitro of the conjugated metabolites of quercetin (quercetin-3-glucuronide, Q3GA; isorhamnetin-3-glucuronide, I3GA; and quercetin-3'-sulfate, Q3'S in spontaneously hypertensive rats (SHR. Q3GA and I3GA (1 mg/kg i.v., but not Q3'S, progressively reduced mean blood pressure (MBP, measured in conscious SHR. The hypotensive effect of Q3GA was abolished in SHR treated with the specific inhibitor of β-glucuronidase, saccharic acid 1,4-lactone (SAL, 10 mg/ml. In mesenteric arteries, unlike quercetin, Q3GA had no inhibitory effect in the contractile response to phenylephrine after 30 min of incubation. However, after 1 hour of incubation Q3GA strongly reduced this contractile response and this effect was prevented by SAL. Oral administration of quercetin (10 mg/Kg induced a progressive decrease in MBP, which was also suppressed by SAL. CONCLUSIONS: Conjugated metabolites are involved in the in vivo antihypertensive effect of quercetin, acting as molecules for the plasmatic transport of quercetin to the target tissues. Quercetin released from its glucuronidated metabolites could be responsible for its vasorelaxant and hypotensive effect.

  7. Quercetin, Inflammation and Immunity.

    Science.gov (United States)

    Li, Yao; Yao, Jiaying; Han, Chunyan; Yang, Jiaxin; Chaudhry, Maria Tabassum; Wang, Shengnan; Liu, Hongnan; Yin, Yulong

    2016-03-15

    In vitro and some animal models have shown that quercetin, a polyphenol derived from plants, has a wide range of biological actions including anti-carcinogenic, anti-inflammatory and antiviral activities; as well as attenuating lipid peroxidation, platelet aggregation and capillary permeability. This review focuses on the physicochemical properties, dietary sources, absorption, bioavailability and metabolism of quercetin, especially main effects of quercetin on inflammation and immune function. According to the results obtained both in vitro and in vivo, good perspectives have been opened for quercetin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of quercetin on inflammation and immunity.

  8. Effects of isorhamnetin on tyrosinase: inhibition kinetics and computational simulation.

    Science.gov (United States)

    Si, Yue-Xiu; Wang, Zhi-Jiang; Park, Daeui; Jeong, Hyoung Oh; Ye, Sen; Chung, Hae Young; Yang, Jun-Mo; Yin, Shang-Jun; Qian, Guo-Ying

    2012-01-01

    We studied the inhibitory effects of isorhamnetin on mushroom tyrosinase by inhibition kinetics and computational simulation. Isorhamnetin reversibly inhibited tyrosinase in a mixed-type manner at Ki=0.235±0.013 mM. Measurements of intrinsic and 1-anilinonaphthalene-8-sulfonate(ANS)-binding fluorescence showed that isorhamnetin did not induce significant changes in the tertiary structure of tyrosinase. To gain insight into the inactivation process, the kinetics were computed via time-interval measurements and continuous substrate reactions. The results indicated that inactivation induced by isorhamnetin was a first-order reaction with biphasic processes. To gain further insight, we simulated docking between tyrosinase and isorhamnetin. Simulation was successful (binding energies for Dock6.3: -32.58 kcal/mol, for AutoDock4.2: -5.66 kcal/mol, and for Fred2.2: -48.86 kcal/mol), suggesting that isorhamnetin interacts with several residues, such as HIS244 and MET280. This strategy of predicting tyrosinase interaction in combination with kinetics based on a flavanone compound might prove useful in screening for potential natural tyrosinase inhibitors.

  9. Isorhamnetin protects rat ventricular myocytes from ischemia and reperfusion injury.

    Science.gov (United States)

    Zhang, Najuan; Pei, Fei; Wei, Huaying; Zhang, Tongtong; Yang, Chao; Ma, Gang; Yang, Chunlei

    2011-01-01

    Ischemia/reperfusion (I/R) has been known to cause damages to ventricular myocytes. Isorhamnetin, one member of flavonoid compounds, has cardioprotective effect, the effect that suggests a possible treatment for I/R damages. In the present investigation, we found that isorhamnetin could significantly promote the viability of neonatal rat ventricular myocytes that were exposed to ischemia/reperfusion (I/R) in vitro. Ventricular myocytes were obtained from neonatal SD rats, and then were divided randomly into three groups, namely I/R-/isor-, I/R+/isor- and I/R+/isor+ group. Before the whole experiment, the most appropriate concentration of isorhamnetin (4 μM) was determined by MTT assay. Our results showed that isorhamnetin could alleviate the damages of I/R to ventricular myocytes through inhibiting lactate dehydrogenase (LDH) activity, and repressing apoptosis. Compared with the counterpart of the I/R+/isor- group, LDH activity in the isorhamnetin-treated group weakened, halving from 24.1 ± 2.3 to 11.4 ± 1.2U/L. Additionally, flow cytometry showed the apparently increased apoptosis rate induced by I/R, the result that was further confirmed by transmission electron microscope. Administration of isorhamnetin, however, assuaged the apoptosis induced by I/R. Corresponding to the reduced apoptosis rate in the I/R+/isor+ group, western blotting assay showed increased amount of Bcl-2 and p53, decreased amount of Bax, and nuclear accumulation of NF-κB/p65.

  10. Kaempferol and inflammation: From chemistry to medicine.

    Science.gov (United States)

    Devi, Kasi Pandima; Malar, Dicson Sheeja; Nabavi, Seyed Fazel; Sureda, Antoni; Xiao, Jianbo; Nabavi, Seyed Mohammad; Daglia, Maria

    2015-09-01

    Inflammation is an important process of human healing response, wherein the tissues respond to injuries induced by many agents including pathogens. It is characterized by pain, redness and heat in the injured tissues. Chronic inflammation seems to be associated with different types of diseases such as arthritis, allergies, atherosclerosis, and even cancer. In recent years natural product based drugs are considered as the novel therapeutic strategy for prevention and treatment of inflammatory diseases. Among the different types of phyto-constituents present in natural products, flavonoids which occur in many vegetable foods and herbal medicines are considered as the most active constituent, which has the potency to ameliorate inflammation under both in vitro and in vivo conditions. Kaempferol is a natural flavonol present in different plant species, which has been described to possess potent anti-inflammatory properties. Despite the voluminous literature on the anti-inflammatory effects of kaempferol, only very limited review articles has been published on this topic. Hence the present review is aimed to provide a critical overview on the anti-inflammatory effects and the mechanisms of action of kaempferol, based on the current scientific literature. In addition, emphasis is also given on the chemistry, natural sources, bioavailability and toxicity of kaempferol.

  11. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    OpenAIRE

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Jennifer H. Shin; PARK, YEUNSOO; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repr...

  12. Isorhamnetin glycosides with free radical and ONOO-scavenging activities from the stamens of Nelumbo nucifera.

    Science.gov (United States)

    Hyun, Sook Kyung; Jung, Yu Jung; Chung, Hae Young; Jung, Hyun Ah; Choi, Jae Sue

    2006-04-01

    In this study, we isolated two new isorhamnetin glycosides, designated as nelumboroside A (3) and nelumboroside B (4), as well as the previously-characterized isorhamnetin glucoside (1) and isorhamnetin rutinoside (2), from the n-BuOH fraction of Nelumbo nucifera stamens. The structures of the two new compounds were then determined, using chemical and spectroscopic techniques. All isolated isorhamnetin glycosides 1-4 showed marked antioxidant activities in the DPPH, and ONOO- assays.

  13. Kaempferol and Kaempferol Rhamnosides with Depigmenting and Anti-Inflammatory Properties

    OpenAIRE

    Jae Youl Cho; Dong Ha Cho; Keun Ha Lee; Sun Sang Kwon; Dae Sung Yoo; Soo Mi Ahn; Amal Kumar Ghimeray; Ho Sik Rho

    2011-01-01

    The objective of this study was to examine the biological activity of kaempferol and its rhamnosides. We isolated kaempferol (1), a-rhamnoisorobin (2), afzelin (3), and kaempferitrin (4) as pure compounds by far-infrared (FIR) irradiation of kenaf (Hibiscus cannabinus L.) leaves. The depigmenting and anti-inflammatory activity of the compounds was evaluated by analyzing their structure-activity relationships. The order of the inhibitory activity with regard to depigmentation and nitric oxide ...

  14. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3-K.

    Science.gov (United States)

    Kim, Jong-Eun; Lee, Dong-Eun; Lee, Ki Won; Son, Joe Eun; Seo, Sang Kwon; Li, Jixia; Jung, Sung Keun; Heo, Yong-Seok; Mottamal, Madhusoodanan; Bode, Ann M; Dong, Zigang; Lee, Hyong Joo

    2011-04-01

    3'-Methoxy-3,4',5,7-tetrahydroxyflavone (isorhamnetin) is a plant flavonoid that occurs in fruits and medicinal herbs. Isorhamnetin exerts anticancer effects, but the underlying molecular mechanism for the chemopreventive potential of isorhamnetin remains unknown. Here, we report anti-skin cancer effects of isorhamnetin, which inhibited epidermal growth factor (EGF)-induced neoplastic cell transformation. It also suppressed anchorage-dependent and -independent growth of A431 human epithelial carcinoma cells. Isorhamnetin attenuated EGF-induced COX-2 expression in JB6 and A431 cells. In an in vivo mouse xenograft using A431 cells, isorhamnetin reduced tumor growth and COX-2 expression. The EGF-induced phosphorylation of extracellular signal-regulated kinases, p90 and p70 ribosomal S6 kinases, and Akt was suppressed by isorhamnetin. In vitro and ex vivo kinase assay data showed that isorhamnetin inhibited the kinase activity of MAP (mitogen-activated protein)/ERK (extracellular signal regulated kinase) kinase (MEK) 1 and PI3-K (phosphoinositide 3-kinase) and the inhibition was due to direct binding with isorhamnetin. Notably, isorhamnetin bound directly to MEK1 in an ATP-noncompetitive manner and to PI3-K in an ATP-competitive manner. This report is the first mechanistic study identifying a clear molecular target for the anticancer activity of isorhamnetin. Overall, these results indicate that isorhamnetin has potent anticancer activity and it primarily targets MEK and PI3-K, which might contribute to the chemopreventive potential of certain foods.

  15. Quercetin induces apoptosis via the mitochondrial pathway in KB and KBv200 cells.

    Science.gov (United States)

    Zhang, Jian-ye; Yi, Tao; Liu, Jing; Zhao, Zhong-zhen; Chen, Hu-biao

    2013-03-06

    In this study, anticancer activities of six compounds of flavonoids were investigated in human epidermoid carcinoma KB and KBv200 cells. Among these compounds, quercetin and acacetin showed strong inhibition of cell growth in KB and KBv200 cells. IC50 values of quercetin against KB and KBv200 cells were 17.84 ± 4.14 and 18.94 ± 4.75 μM, respectively. The IC50 values of acacetin against KB and KBv200 cells were 41.33 ± 6.05 and 49.04 ± 3.64 μM. The IC50 values of apigenin, kaempferol, kaempferol 3-O-rhamnoside, and quercetin 3-O-rhamnoside were more than 100 μM. Furthermore, quercetin was found to induce apoptosis in KB and KBv200 cells via the mitochondrial pathway, including a decrease of the reactive oxygen species level, loss of mitochondrial membrane potential, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of poly (ADP-ribose) polymerase. The apoptosis induced by quercetin was not related to the regulation of Bcl-2 or Bax in KB and KBv200 cells.

  16. A new kaempferol trioside from Silphium perfoliatum.

    Science.gov (United States)

    Feng, Wei-Sheng; Pei, Yuan-Yuan; Zheng, Xiao-Ke; Li, Chun-Ge; Ke, Ying-Ying; Lv, Yan-Yan; Zhang, Yan-Li

    2014-01-01

    A new apiose-containing kaempferol trioside, kaempferol-3-O-α-L-rhamnosyl-(1‴ → 6″)-O-β-D-galactopyranosyl-7-O-β-D-apiofuranoside, along with 16 known compounds, were isolated from 50% acetone extract of Silphium perfoliatum L. Their structures were elucidated by acid hydrolysis and spectroscopic techniques including UV, IR, MS, ¹H, ¹³C, and 2D-NMR. In addition, the pharmacological activity of compound 1 was tested with HepG2 and Balb/c mice (splenic lymphocytes and thymic lymphocytes) in vitro, and it exhibited inhibitory effect on the proliferation of HepG2 cells and showed the immunosuppressive activity.

  17. QUERCETIN- A FLAVANOID

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2010-01-01

    Full Text Available Quercetin is the most abundant form of the flavonoids. It gain attention when quercetin was found to cause DNA mutations which can then contribute to cancer treatment. Quercitrin is present in the bark of Quercus tinctoria (American Oak. It is generally available in natural sources. In this article we have tried to simplify the basic understanding of quercetin, its synthesis, structure activity relationship, chemical reaction etc. It will help students to understand basic concept and chemistry of quercetin.

  18. Quercetin: a versatile flavonoid

    Directory of Open Access Journals (Sweden)

    Dr. Deepak Kumar Rai

    2007-07-01

    Full Text Available Associative evidence from observational and intervention studies in human subjects shows that a diet including plant foods (particularly fruit and vegetables rich in antioxidants conveys health benefits. There is no evidence that any particular nutrient or class of bioactive substances makes a special contribution to these benefits. Flavonoids occur naturally in fruits, vegetables and beverages such as tea and wine. Quercetin is the major flavonoid which belongs to the class called flavonols. Quercetin is found in many common foods including apples, tea, onions, nuts, berries, cauliflower, cabbage and many other foods. Quercetin provides many health promoting benefits, including improvement of cardiovascular health, eye diseases, allergic disorders, arthritis, reducing risk for cancers and many more. The main aim of this review is to obtain a further understanding of the reported beneficial health effects of Quercetin, its pharmacological effects, clinical application and also to evaluate its safety.

  19. O-Methylated flavonol isorhamnetin prevents acute inflammation through blocking of NF-κB activation.

    Science.gov (United States)

    Yang, Ji Hye; Kim, Sang Chan; Shin, Bo Yeon; Jin, So Hee; Jo, Mi Jeong; Jegal, Kyung Hwan; Kim, Young Woo; Lee, Jong Rok; Ku, Sae Kwang; Cho, Il Je; Ki, Sung Hwan

    2013-09-01

    Here, we isolated isorhamnetin, a natural 3'-O-methylated flavonoid, from water dropwort (Oenanthe javanica, Umbelliferae) and investigated its ability to protect against acute inflammation in vivo and in vitro. To induce paw swelling, the hind paw of each rat was injected with a carrageenan 1h after vehicle or isorhamnetin treatment. In vitro effect and mechanism studies were performed in lipopolysaccharide (LPS)-activated macrophages. Administration of isorhamnetin markedly inhibited the swelling volume and the thickness of hind paws. Moreover, isorhamnetin significantly reduced inflammatory cell infiltration and pro-inflammatory gene expression in rats. Isorhamnetin pretreatment inhibited inducible nitric oxide synthase (iNOS) expression and NO release in LPS-stimulated cells. Activation of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) is the key step in the iNOS gene induction. Isorhamnetin specifically inhibited NF-κB luciferase activity, but not AP-1. Pretreatment with isorhamnetin suppressed NF-κB nuclear translocation in accordance with decreased phosphorylation and degradation of inhibitory-κB. Consistently, TNF-α, IL-1β and IL-6 expression, representative NF-κB target genes, were almost completely prohibited by isorhamnetin. Furthermore, isorhamnetin inhibited LPS-induced JNK and AKT/IKKα/β phosphorylation. Our results suggest that isorhamnetin inhibited JNK, and AKT/IKKα/β activation, leading to NF-κB inactivation, which might contribute to the inhibition of the acute inflammatory response.

  20. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it.

    Science.gov (United States)

    Duan, Jingze; Xie, Yan; Luo, Huilin; Li, Guowen; Wu, Tao; Zhang, Tong

    2014-04-01

    Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated. Isorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin's permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (pisorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571). This study details isorhamnetin's cellular transport and elaborates isorhamnetin's absorption mechanisms to provide a foundation for further studies.

  1. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage.

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-07-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

  2. Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

    Science.gov (United States)

    Han, Xia; Piao, Mei Jing; Kim, Ki Cheon; Madduma Hewage, Susara Ruwan Kumara; Yoo, Eun Sook; Koh, Young Sang; Kang, Hee Kyoung; Shin, Jennifer H; Park, Yeunsoo; Yoo, Suk Jae; Chae, Sungwook; Hyun, Jin Won

    2015-01-01

    Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death. PMID:26157553

  3. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway

    OpenAIRE

    Dou, Wei; Zhang, Jingjing; Li, Hao; Kortagere, Sandhya; Sun, Katherine; Ding, Lili; Ren, Gaiyan; Wang, Zhengtao; Mani, Sridhar

    2014-01-01

    Isorhamnetin is an O-methylated flavonol present in fruit and vegetables. We recently reported the identification of isorhamnetin as an activator of the human pregnane X receptor (PXR), a known target for abrogating inflammation in inflammatory bowel disease (IBD). The current study investigated the role of isorhamnetin as a putative mouse PXR activator in ameliorating chemically induced IBD. Using two different models (Ulcerative colitis-like and Crohn’s disease-like) of experimental IBD in ...

  4. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice

    OpenAIRE

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (...

  5. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    Science.gov (United States)

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  6. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    Science.gov (United States)

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2.

  7. Isorhamnetin protects against cardiac hypertrophy through blocking PI3K-AKT pathway.

    Science.gov (United States)

    Gao, Lu; Yao, Rui; Liu, Yuzhou; Wang, Zheng; Huang, Zhen; Du, Binbin; Zhang, Dianhong; Wu, Leiming; Xiao, Lili; Zhang, Yanzhou

    2017-05-01

    Isorhamnetin, a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L., is well known for its anti-inflammatory, anti-oxidative, anti-adipogenic, anti-proliferative, and anti-tumor activities. However, the role of isorhamnetin in cardiac hypertrophy has not been reported. The aims of the present study were to find whether isorhamnetin could alleviate cardiac hypertrophy and to define the underlying molecular mechanisms. Here, we investigated the effects of isorhamnetin (100 mg/kg/day) on cardiac hypertrophy induced by aortic banding in mice. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our data demonstrated that isorhamnetin could inhibit cardiac hypertrophy and fibrosis 8 weeks after aortic banding. The results further revealed that the effect of isorhamnetin on cardiac hypertrophy was mediated by blocking the activation of phosphatidylinositol 3-kinase-AKT signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes confirmed that isorhamnetin could attenuate cardiomyocyte hypertrophy induced by angiotensin II, which was associated with phosphatidylinositol 3-kinase-AKT signaling pathway. In conclusion, these data indicate for the first time that isorhamnetin has protective potential for targeting cardiac hypertrophy by blocking the phosphatidylinositol 3-kinase-AKT signaling pathway. Thus, our study suggests that isorhamnetin may represent a potential therapeutic strategy for the treatment of cardiac hypertrophy and heart failure.

  8. Flavonoids in the leaves of polish species of the genus Betula L. III. The flavonoids of B. oycoviensis Bess. leaves

    Directory of Open Access Journals (Sweden)

    Lucyna Pawłowska

    2014-01-01

    Full Text Available B. oycoviensis Bess. leaves were found to contain compounds characteristic of B. "nova" i.e. myricitrin, isoquercitrin and probably also kaempferol 3-rhamno-7-glucoside, quercetin 3,7,4'-trimethyl ether, and quercetin 7,3',4'-trimethyl ether. They also contain compounds which occur in B. pendula Roth. (kaempferol 3-glucoside, isorhamnetin 3-glactoside, 6-methoxykaempferide, acacetin 7-glucoside, and probably scutellarein 7-glycoside. These biochemical traits bring out still better the hybrid origin of B. oycoviensis.

  9. Oxidation of Quercetin by Myeloperoxidase

    OpenAIRE

    Tatjana Momić; Jasmina Savić; Vesna Vasić

    2009-01-01

    Study of effect of myeloperoxidase on quercetin at pH 6.0 indicated quercetin oxidation via the formation of the oxidation product. The stability of quercetin and oxidation product was investigated as a function of time by using spectrophotometric and HPLC techniques. The apparent pseudo first-order rate constants were calculated and discussed.

  10. Radiosensitization of non-small cell lung cancer by kaempferol.

    Science.gov (United States)

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  11. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    Science.gov (United States)

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms.

  12. In vitro anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca.

    Science.gov (United States)

    Behbahani, M; Sayedipour, S; Pourazar, A; Shanehsazzadeh, M

    2014-01-01

    Previously, we reported that the kaempferol and kaempferol-7-O-glucoside isolated from Securigera securidaca showed potent anti-HSV activity. In the present study the anti-HIV-1 activities of kaempferol and kaempferol-7-O-glucoside are investigated at different concentrations (100, 50, 25 and 10 μg/ml) using HIV-1 p24 Antigen kit. Real-time Polymerase chain reaction (RT-PCR) assay was also used for quantification of full range of virus load observed in treated and untreated cells. According to the results of RT- PCR, tested compounds at a concentration of 100 μg/ml exerted potent inhibitory effect. Time of drug addition experiments demonstrated that these compounds exerted their inhibitory effects on the early stage of HIV infection. The results also showed potent anti-HIV-1 reverse transcriptase activity. Antiviral activity of kaempferol-7-O-glucoside was more pronounced than that of kaempferol. These findings demonstrate that kaempferol-7-O-glucoside could be considered as a new potential drug candidate for the treatment of HIV infection which requires further assessments.

  13. Isorhamnetin Attenuates Staphylococcus aureus-Induced Lung Cell Injury by Inhibiting Alpha-Hemolysin Expression.

    Science.gov (United States)

    Jiang, Lanxiang; Li, Hongen; Wang, Laiying; Song, Zexin; Shi, Lei; Li, Wenhua; Deng, Xuming; Wang, Jianfeng

    2016-03-01

    Staphylococcus aureus, like other gram-positive pathogens, has evolved a large repertoire of virulence factors as a powerful weapon to subvert the host immune system, among which alpha-hemolysin (Hla), a secreted pore-forming cytotoxin, plays a preeminent role. We observed a concentration-dependent reduction in Hla production by S. aureus in the presence of sub-inhibitory concentrations of isorhamnetin, a flavonoid from the fruits of Hippophae rhamnoides L., which has little antibacterial activity. We further evaluate the effect of isorhamnetin on the transcription of the Hla-encoding gene hla and RNAIII, an effector molecule in the agr system. Isorhamnetin significantly down-regulated RNAIII expression and subsequently inhibited hla transcription. In a co-culture of S. aureus and lung cells, topical isorhamnetin treatment protected against S. aureus-induced cell injury. Isorhamnetin may represent a leading compound for the development of anti-virulence drugs against S. aureus infections.

  14. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research August 2017; 16 (8): 1819-1826 ... regulation [6-8]. The objective of this study was to investigate the ... plant compounds kaempferol, myricetin and .... RMSD threshold for multiple cluster poses was.

  15. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway.

    Science.gov (United States)

    Dou, Wei; Zhang, Jingjing; Li, Hao; Kortagere, Sandhya; Sun, Katherine; Ding, Lili; Ren, Gaiyan; Wang, Zhengtao; Mani, Sridhar

    2014-09-01

    Isorhamnetin is an O-methylated flavonol present in fruit and vegetables. We recently reported the identification of isorhamnetin as an activator of the human pregnane X receptor (PXR), a known target for abrogating inflammation in inflammatory bowel disease (IBD). The current study investigated the role of isorhamnetin as a putative mouse PXR activator in ameliorating chemically induced IBD. Using two different models (ulcerative colitis like and Crohn's disease like) of experimental IBD in mice, we demonstrated that isorhamnetin abrogated inflammation through inhibiting the activity of myeloperoxidase, the levels of TNF-α and IL-6, the mRNA expression of proinflammatory mediators (iNOS, ICAM-1, COX2, TNF-α, IL-2 and IL-6) and the phosphorylation of IκBα and NF-κB p65. PXR gene overexpression inhibited NF-κB luciferase activity, and the inhibition was potentiated by isorhamnetin treatment. PXR knockdown by siRNA demonstrated the necessity for PXR in isorhamnetin-mediated up-regulation of xenobiotic metabolism genes. Ligand pocket-filling mutants (S247W/C284W and S247W/C284W/S208W) of human PXR weakened the effect of isorhamnetin on PXR activation. Molecular docking studies and time-resolved fluorescence resonance energy transfer competitive binding assays confirmed the ligand (isorhamnetin)-binding affinity. These results clearly demonstrated the ameliorating effect of isorhamnetin on experimental IBD via PXR-mediated up-regulation of xenobiotic metabolism and down-regulation of NF-κB signaling. The novel findings may contribute to the effective utilization of isorhamnetin or its derivatives as a PXR ligand in the treatment of human IBD.

  16. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin.

    Science.gov (United States)

    Jnawali, Hum Nath; Jeon, Dasom; Jeong, Min-Cheol; Lee, Eunjung; Jin, Bongwhan; Ryoo, Sungweon; Yoo, Jungheon; Jung, In Duk; Lee, Seung Jun; Park, Yeong-Min; Kim, Yangmee

    2016-04-22

    Isorhamnetin (1) is a naturally occurring flavonoid having anticancer and anti-inflammatory properties. The present study demonstrated that 1 had antimycobacterial effects on Mycobacterium tuberculosis H37Rv, multi-drug- and extensively drug-resistant clinical isolates with minimum inhibitory concentrations of 158 and 316 μM, respectively. Mycobacteria mainly affect the lungs, causing an intense local inflammatory response that is critical to the pathogenesis of tuberculosis. We investigated the effects of 1 on interferon (IFN)-γ-stimulated human lung fibroblast MRC-5 cells. Isorhamnetin suppressed the release of tumor necrosis factor (TNF)-α and interleukin (IL)-12. A nontoxic dose of 1 reduced mRNA expression of TNF-α, IL-1β, IL-6, IL-12, and matrix metalloproteinase-1 in IFN-γ-stimulated cells. Isorhamnetin inhibited IFN-γ-mediated stimulation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase and showed high-affinity binding to these kinases (binding constants: 4.46 × 10(6) M(-1) and 7.6 × 10(6) M(-1), respectively). The 4'-hydroxy group and the 3'-methoxy group of the B-ring and the 5-hydroxy group of the A-ring of 1 play key roles in these binding interactions. A mouse in vivo study of lipopolysaccharide-induced lung inflammation revealed that a nontoxic dose of 1 reduced the levels of IL-1β, IL-6, IL-12, and INF-γ in lung tissue. These data provide the first evidence that 1 could be developed as a potent antituberculosis drug.

  17. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention

    OpenAIRE

    Chen, Allen Y.; Chen, Yi Charlie

    2012-01-01

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body’s antioxidant defense against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a...

  18. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice.

    Science.gov (United States)

    Wang, Meng; Sun, Jianguo; Jiang, Zhihui; Xie, Wenyan; Zhang, Xiaoying

    2015-01-01

    Kaempferol is a biologically active component present in various plants. The hepatoprotective effect of kaempferol in drug-induced liver injury has been proven, while its effect against alcoholic liver injury (ALI) remains unclear. Hence, the present study aimed to evaluate the effect of kaempferol against ALI in mice. The experimental ALI mice model was developed and the mice were treated with different doses of kaempferol for 4 weeks. The liver functions were observed by monitoring the following parameters: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) levels in serum; histopathological studies of liver tissue; oxidative stress by hydrogen peroxide (H2O2), superoxide dismutase (SOD) and glutathione (GSH); the lipid peroxidation status by malondialdehyde (MDA) and lipid accumulation by triglyceride (TG) level in serum; and the expression levels and activities of a key microsomal enzyme cytochrome 2E1 (CYP2E1), by both in vitro and in vivo methods. The ALI mice (untreated) showed clear symptoms of liver injury, such as significantly increased levels of oxidative stress, lipid peroxidation and excessive CYP2E1 expression and activity. The mice treated with different kaempferol dosages exhibited a significant decrease in the oxidative stress as well as lipid peroxidation, and increased anti-oxidative defense activity. The kaempferol treatment has significantly reduced the expression level and activity of hepatic CYP2E1, thus indicating that kaempferol could down regulate CYP2E1. These findings show the hepatoprotective properties of kaempferol against alcohol-induced liver injury by attenuating the activity and expression of CYP2E1 and by enhancing the protective role of anti-oxidative defense system.

  19. Study of the interaction of kaempferol with bovine serum albumin

    Science.gov (United States)

    Tian, Jianniao; Liu, Jiaqin; Tian, Xuan; Hu, Zhide; Chen, Xingguo

    2004-03-01

    The binding of kaempferol with bovine serum albumin (BSA) was investigated at three temperatures, 296, 310 and 318 K, by the fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) at pH 7.40. The CD and FT-IR studies indicate that kaempferol binds strongly to BSA. The association constant K was determined by Stern-Volmer equation based on the quenching of the fluorescence BSA in the presence of kaempferol. The thermodynamic parameters were calculated according to the dependence of enthalpy change on the temperature as follows: Δ H0 and Δ S0 possess small negative (-1.694 kJ/mol) and positive values (88.814 J/mol K), respectively. According to the displacement experimental and the thermodynamic results, it is considered that kaempferol binding site II (subdomain III) mainly by hydrophobic interaction. The results studied by FT-IR and CD experiments indicate that the secondary structures of the protein have been changed by the interaction of kaempferol with BSA. The distance between the tryptophan residues in BSA and kaempferol bound to site II was estimated to be 2.78 nm using Foster's equation on the basis of fluorescence energy transfer.

  20. Microbial Transformation of Quercetin by Bacillus cereus

    OpenAIRE

    Rao, Koppaka V.; Weisner, Nghe T.

    1981-01-01

    Biotransformation of quercetin was examined with a number of bacterial cultures. In the presence of a bacterial culture (Bacillus cereus), quercetin was transformed into two crystalline products, identified as protocatechuic acid and quercetin-3-glucoside (isoquercitrin).

  1. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Jing Sun

    Full Text Available Doxorubicin (Dox is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p. administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p. for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.

  2. [Effects of isorhamnetin on CYP3A4 and herb-drug interaction].

    Science.gov (United States)

    Ding, Li-li; Zhang, Jing-jing; Dou, Wei

    2012-08-01

    The study is to report the investigation of the effects of isorhamnetin on CYP3A4 and herb-drug interaction. A reporter gene assay is used to test pregnane X receptor transactivation action, qRT-PCR and a luminescence-based assay were applied to determine mRNA induction and enzyme activity of CYP3A4 after isorhamnetin treatment. The interaction of irinotecan and isorhamnetin was assessed by inhibition assay of cell proliferation. Isorhamnetin at 1, 10 and 25 micromol x L(-1) transactivated the CYP3A4 reporter construct and upregulated CYP3A4 mRNA as well in a dose-dependent manner. However, isorhamnetin had no effect on enzyme activity of CYP3A4 and irinotecan HepG2 cytotoxicity. In conclusion, activation of PXR by isorhamnetin played a role in the upregulation of CYP3A4 mRNA. Moreover, joint action of isorhamnetin with other drugs may not be associated with the herb-drug interaction.

  3. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice.

    Science.gov (United States)

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA.

  4. Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro.

    Science.gov (United States)

    Sun, Jing; Sun, Guibo; Meng, Xiangbao; Wang, Hongwei; Luo, Yun; Qin, Meng; Ma, Bo; Wang, Min; Cai, Dayong; Guo, Peng; Sun, Xiaobo

    2013-01-01

    Doxorubicin (Dox) is an anthracycline antibiotic for cancer therapy with limited usage due to cardiotoxicity. Isorhamnetin is a nature antioxidant with obvious cardiac protective effect. The aim of this study is going to investigate the possible protective effect of isorhamnetin against Dox-induced cardiotoxicity and its underlying mechanisms. In an in vivo investigation, rats were intraperitoneally (i.p.) administered with Dox to duplicate the model of Dox-induced chronic cardiotoxicity. Daily pretreatment with isorhamnetin (5 mg/kg, i.p.) for 7 days was found to reduce Dox-induced myocardial damage significantly, including the decline of cardiac index, decrease in the release of serum cardiac enzymes and amelioration of heart vacuolation. In vitro studies on H9c2 cardiomyocytes, isorhamnetin was effective to reduce Dox-induced cell toxicity. A further mechanism study indicated that isorhamnetin pretreatment can counteract Dox-induced oxidative stress and suppress the activation of mitochondrion apoptotic pathway and mitogen-activated protein kinase pathway. Isorhamnetin also potentiated the anti-cancer activity of Dox in MCF-7, HepG2 and Hep2 cells. These findings indicated that isorhamnetin can be used as an adjuvant therapy for the long-term clinical use of Dox.

  5. Isorhamnetin-3-O-galactoside Protects against CCl4-Induced Hepatic Injury in Mice.

    Science.gov (United States)

    Kim, Dong-Wook; Cho, Hong-Ik; Kim, Kang-Min; Kim, So-Jin; Choi, Jae Sue; Kim, Yeong Shik; Lee, Sun-Mee

    2012-07-01

    This study was performed to examine the hepatoprotective effect of isorhamnetin-3-O-galactoside, a flavonoid glycoside isolated from Artemisia capillaris Thunberg (Compositae), against carbon tetrachloride (CCl4)-induced hepatic injury. Mice were treated intraperitoneally with vehicle or isorhamnetin-3-O-galactoside (50, 100, and 200 mg/kg) 30 min before and 2 h after CCl4 (20 μl/kg) injection. Serum aminotransferase activities and hepatic level of malondialdehyde were significantly higher after CCl4 treatment, and these increases were attenuated by isorhamnetin-3-O-galactoside. CCl4 markedly increased serum tumor necrosis factor-α level, which was reduced by isorhamnetin-3-O-galactoside. The levels of inducible nitric oxide synthase (iNOS), cyclooxygenase- 2 (COX-2), and heme oxygenase-1 (HO-1) protein and their mRNA expression levels were significantly increased after CCl4 injection. The levels of HO-1 protein and mRNA expression levels were augmented by isorhamnetin-3-O-galactoside, while isorhamnetin- 3-O-galactoside attenuated the increases in iNOS and COX-2 protein and mRNA expression levels. CCl4 increased the level of phosphorylated c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, and isorhamnetin-3-O-galactoside reduced these increases. The nuclear translocation of nuclear factor kappa B (NF-κB), activating protein-1, and nuclear factor erythroid 2-related factor 2 (Nrf2) were signifi cantly increased after CCl4 administration. Isorhamnetin-3-O-galactoside attenuated the increases of NF-κB and c-Jun nuclear translocation, while it augmented the nuclear level of Nrf2. These results suggest that isorhamnetin-3-O-galactoside ameliorates CCl4-induced hepatic damage by enhancing the anti-oxidative defense system and reducing the inflammatory signaling pathways.

  6. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin.

    Science.gov (United States)

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L

    2012-01-01

    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  7. A novel solid fluorescence method for the fast determination of quercetin in biological samples based on the quercetin-Al(III) complex imprinted polymer

    Science.gov (United States)

    Hu, Yufei; Feng, Ting; Li, Gongke

    2014-01-01

    In this work, a novel solid fluorescence method was proposed and applied to the fast determination of quercetin in urine and onion skin samples by using metal coordination imprinted polymer membrane, which was regarded as a recognition element. The quercetin-Al(III) imprinted polymer was immobilized in the microporous polypropylene fiber membrane via consecutive in situ polymerization. The CIP membrane had the porous, loose and layer upon layer structure. The CIP membrane was characterized by electron microscope photographs, infrared spectra, thermogravimetric analysis and solvent-resistant investigation. The extraction conditions including extraction solvent, extraction time, desorption solvent were optimized. Compared with MIP and NIP membrane, CIP membrane had been proved to be peculiar selective for quercetin even in presence of the structurally similar compounds such as kaempferol, rutin, naringenin and alpinetin. The CIP membrane was characteristic of high selectivity, stable and sensitive response to quercetin in polar environment. Under the optimum condition, there was a linear relationship between the state fluorescent response and the concentration of quercetin. The linear calibration range was over 0.02 mg L-1-0.80 mg L-1 with a detection limit of 5 μg L-1. The method was characteristic of flexible and good repeatability with relative standard deviation (RSD) of 4.1%. The proposed method was also successfully applied for the determination of quercetin in urine and onion skin samples without complicated pretreatment. The recoveries were 84.0-112.4% and RSDs varied from 1.5% to 6.8%. The results obtained by the proposed method agreed well with those obtained by HPLC method.

  8. Vitamin D Receptor-Mediated Upregulation of CYP3A4 and MDR1 by Quercetin in Caco-2 cells.

    Science.gov (United States)

    Chae, Yoon-Jee; Cho, Kwan Hyung; Yoon, In-Soo; Noh, Chi-Kyoung; Lee, Hyo-Jong; Park, Yohan; Ji, Eunhee; Seo, Min-Duk; Maeng, Han-Joo

    2016-01-01

    To examine whether quercetin interacts with vitamin D receptor, we investigated the effects of quercetin on vitamin D receptor activity in human intestinal Caco-2 cells. The effects of quercetin on the expression of the vitamin D receptor target genes, vitamin D3 24-hydroxylase, cytochrome P450 3A4, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were measured using quantitative polymerase chain reaction. The vitamin D receptor siRNA was used to assess the involvement of the vitamin D receptor. Vitamin D receptor activation using a vitamin D responsive element-mediated cytochrome P450 3A4 reporter gene assay was investigated in Caco-2 cells transfected with human vitamin D receptor. We also studied the magnitude of the vitamin D receptor activation and/or synergism between 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] and quercetin-like flavonoids. Slight but significant increases in the mRNA expression of cytochrome P450 3A4, vitamin D3 24-hydroxylase, multidrug resistance protein 1, and transient receptor potential vanilloid type 6 were observed after 3 days of continual quercetin treatment. The silencing effect of vitamin D receptor by vitamin D receptor siRNA in Caco-2 cells significantly attenuated the induction of the vitamin D receptor target genes. Moreover, quercetin significantly enhanced cytochrome P450 3A4 reporter activity in Caco-2 cells in a dose-dependent manner, and the expression of exogenous vitamin D receptor further stimulated the vitamin D receptor activity. Quercetin-like flavonoids such as kaempferol stimulated the vitamin D receptor activity in a manner similar to that seen with quercetin. Taken together, the data indicates that quercetin upregulates cytochrome P450 3A4 and multidrug resistance protein 1 expression in Caco-2 cells likely via a vitamin D receptor-dependent pathway.

  9. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans

    OpenAIRE

    Olthof, M.; Hollman, P.C.H.; Vree, T. B.; Katan, M.B.

    2000-01-01

    The flavonoid quercetin is an antioxidant which occurs in foods mainly as glycosides. The sugar moiety in quercetin glycosides affects their bioavailability in humans. Quercetin-3-rutinoside is an important form of quercetin in foods, but its bioavailability in humans is only 20␘f that of quercetin-4'-glucoside. Quercetin-3-rutinoside can be transformed into quercetin-3-glucoside by splitting off a rhamnose molecule. We studied whether this 3-glucoside has the same high bioavailability as the...

  10. Enhancing effect of lipids and emulsifiers on the accumulation of quercetin metabolites in blood plasma after the short-term ingestion of onion by rats.

    Science.gov (United States)

    Azuma, Keiko; Ippoushi, Katsunari; Ito, Hidekazu; Horie, Hideki; Terao, Junji

    2003-12-01

    The effects of co-ingested lipids and emulsifiers on the accumulation of quercetin metabolites in blood plasma after the short-term ingestion of onion by rats were investigated. Plasma extracts of rats that had been fed onion-containing diets for one and two weeks were analyzed by HPLC with electrochemical detection after a treatment with sulfatase/beta-glucuronidase. Almost all of the quercetin metabolites in the plasma were sulfate/glucuronide conjugates of quercetin and isorhamnetin. More than 4.6% (w/w) of soybean oil in the diets significantly enhanced the accumulation of quercetin metabolites in the plasma. Fish oil and beef tallow increased this to an extent similar to that with soybean oil, and lecithin was more effective than the other three lipids. Two emulsifiers, sodium caseinate and sucrose fatty acid ester, also showed an enhancing effect on the accumulation of quercetin metabolites. These results indicate that co-ingested lipids and emulsifiers could enhance the bioavailability of quercetin glucosides in onion.

  11. Induction of apoptosis in colon cancer cells treated with isorhamnetin glycosides from Opuntia ficus-indica pads.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Moreno-García, Beatriz E; Gutiérrez-Uribe, Janet A; Aráiz-Hernández, Diana; Alvarez, Mario M; Serna-Saldivar, Sergio O

    2014-12-01

    (OFI) contains health-promoting compounds like flavonoids, being the isorhamnetin glycosides the most abundant. We evaluated the effect of OFI extracts with different isorhamnetin glycosides against two different human colon cancer cells (HT-29 and Caco2). The extracts were obtained by alkaline hydrolysis with NaOH at 40 °C during 15, 30 or 60 min. Tri and diglycosides were the most abundant isorhamnetin glycosides, therefore these compounds were isolated to compare their cytotoxic effect with the obtained from the extracts. The OFI extracts and purified isorhamnetin glycosides were more cytotoxic against HT-29 cells than Caco2 cells. OFI-30 exhibited the lowest IC50 value against HT-29 (4.9 ± 0.5 μg/mL) and against Caco2 (8.2 ± 0.3 μg/mL). Isorhamnetin diglycosides IG5 and IG6 were more cytotoxic than pure isorhamnetin aglycone or triglycosides when they were tested in HT-29 cells. Bioluminescent analysis revealed increased activity of caspase 3/7 in OFI extracts-treated cells, particularly for the extract with the highest concentration of isorhamnetin triglycosides. Flow cytometry analysis confirmed that OFI extract and isorhamnetin glycosides induced a higher percentage of apoptosis in HT-29 than in Caco2, while isorhamnetin was more apoptotic in Caco2. This research demonstrated that glycosilation affected antiproliferative effect of pure isorhamnetin glycosides or when they are mixed with other phytochemicals in an extract obtained from OFI.

  12. Two New Triterpenoids from Lysimachia heterogenea Klatt and Evaluation of Their Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Xin-Xin Zhou

    2011-09-01

    Full Text Available Two new 13,28-epoxy oleanane-type triterpenoids, namely heterogenoside E and F, were isolated from Lysimachia heterogenea Klatt, together with the eight known compounds: palmitic acid, β-stigmasterol, kaempferol, quercetin, hyperin, isorhamnetin, isorhamnetin-3-O-galactopyranoside and anagallisin C. Heterogenoside F possesses acetoxyl groups at the unusual C-21 and C-22 positions of its oleanane skeleton. The cytotoxic activities of anagallisin C, heterogenoside E and F were weak.

  13. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells.

    Science.gov (United States)

    Ma, Gang; Yang, Chunlei; Qu, Yi; Wei, Huaying; Zhang, Tongtong; Zhang, Najuan

    2007-04-25

    Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit

  14. Kaempferol, a potential cytostatic and cure for inflammatory disorders.

    Science.gov (United States)

    Rajendran, Peramaiyan; Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Palaniswami, Rajendran; Nishigaki, Yutaka; Nishigaki, Ikuo

    2014-10-30

    Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g., tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries, and grapes) and in plants or botanical products commonly used in traditional medicine (e.g., Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Its anti-oxidant/anti-inflammatory effects have been demonstrated in various disease models, including those for encephalomyelitis, diabetes, asthma, and carcinogenesis. Moreover, kaempferol act as a scavenger of free radicals and superoxide radicals as well as preserve the activity of various anti-oxidant enzymes such as catalase, glutathione peroxidase, and glutathione-S-transferase. The anticancer effect of this flavonoid is mediated through different modes of action, including anti-proliferation, apoptosis induction, cell-cycle arrest, generation of reactive oxygen species (ROS), and anti-metastasis/anti-angiogenesis activities. In addition, kaempferol was found to exhibit its anticancer activity through the modulation of multiple molecular targets including p53 and STAT3, through the activation of caspases, and through the generation of ROS. The anti-tumor effects of kaempferol have also been investigated in tumor-bearing mice. The combination of kaempferol and conventional chemotherapeutic drugs produces a greater therapeutic effect than the latter, as well as reduces the toxicity of the latter. In this review, we summarize the anti-oxidant/anti-inflammatory and anticancer effects of kaempferol with a focus on its molecular targets and the possible use of this flavonoid for the treatment of inflammatory diseases and cancer.

  15. Isorhamnetin-3-O-galactoside Protects against CCl4-Induced Hepatic Injury in Mice

    OpenAIRE

    Kim, Dong-Wook; Cho, Hong-Ik; Kim, Kang-Min; Kim, So-Jin; Choi, Jae Sue; Kim, Yeong Shik; Lee, Sun-Mee

    2012-01-01

    This study was performed to examine the hepatoprotective effect of isorhamnetin-3-O-galactoside, a flavonoid glycoside isolated from Artemisia capillaris Thunberg (Compositae), against carbon tetrachloride (CCl4)-induced hepatic injury. Mice were treated intraperitoneally with vehicle or isorhamnetin-3-O-galactoside (50, 100, and 200 mg/kg) 30 min before and 2 h after CCl4 (20 μl/kg) injection. Serum aminotransferase activities and hepatic level of malondialdehyde were significantly higher af...

  16. AMPK activation by isorhamnetin protects hepatocytes against oxidative stress and mitochondrial dysfunction.

    Science.gov (United States)

    Dong, Guang-Zhi; Lee, Ju-Hee; Ki, Sung Hwan; Yang, Ji Hye; Cho, Il Je; Kang, Seung Ho; Zhao, Rong Jie; Kim, Sang Chan; Kim, Young Woo

    2014-10-05

    Arachidonic acid (AA) is a ω-6 polyunsaturated fatty acid that is found in the phospholipids of membranes and released from the cellular membrane lipid bilayer by phospholipase A2. During this process, AA could produce excess reactive oxygen species and induce apoptosis and mitochondrial dysfunction by selectively inhibiting complexes I and III. Isorhamnetin, an O-methylated flavonol aglycone, has been shown to have cardio-protective, anti-adipogenic, anti-tumor, and anti-inflammatory effects. In the present study, we investigated the effects of isorhamnetin on hepatotoxicity and the underlying mechanisms involved. Our in vitro experiments showed that isorhamnetin dose-dependently blocked the hepatotoxicity induced by treatment with AA plus iron in HepG2 cells. Furthermore, isorhamnetin inhibited the AA+iron induced generation of reactive oxygen species and reduction of glutathione, and subsequently maintained mitochondria membrane potential in AA+iron treated HepG2 cells. In addition, isorhamnetin activated AMP-activated protein kinase (AMPK) by Thr-172 phosphorylation of AMPKα, and this was mediated with Ca2+/calmodulin-dependent protein kinase kinase-2 (CaMKK2), but not liver kinase B1. Experiments using CaMKK2 siRNA or its selective inhibitor, STO-609, revealed the role of CaMKK2 in the isorhamnetin-induced activation of AMPK in HepG2 cells. These results indicate isorhamnetin protects against the hepatotoxic effect of AA plus iron, and suggest that the AMPK pathway is involved in the mechanism underlying the beneficial effect of isorhamnetin in the liver.

  17. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    OpenAIRE

    Marilena Antunes-Ricardo; Gutiérrez-Uribe, Janet A.; Carlos Martínez-Vitela; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on d...

  18. Kaempferol and Chrysin Synergies to Improve Septic Mice Survival.

    Science.gov (United States)

    Harasstani, Omar A; Tham, Chau Ling; Israf, Daud A

    2017-01-06

    Previously, we reported the role of synergy between two flavonoids-namely, chrysin and kaempferol-in inhibiting the secretion of a few major proinflammatory mediators such as tumor necrosis factor-alpha (TNF-α), prostaglandin E₂ (PGE₂), and nitric oxide (NO) from lipopolysaccharide (LPS)-induced RAW 264.7 cells. The present study aims to evaluate the effects of this combination on a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Severe sepsis was induced in male ICR mice (n = 7) via the CLP procedure. The effects of chrysin and kaempferol combination treatment on septic mice were investigated using a 7-day survival study. The levels of key proinflammatory mediators and markers-such as aspartate aminotransferase (AST), TNF-α, and NO-in the sera samples of the septic mice were determined via ELISA and fluorescence determination at different time point intervals post-CLP challenge. Liver tissue samples from septic mice were harvested to measure myeloperoxidase (MPO) levels using a spectrophotometer. Moreover, intraperitoneal fluid (IPF) bacterial clearance and total leukocyte count were also assessed to detect any antibacterial effects exerted by chrysin and kaempferol, individually and in combination. Kaempferol treatment improved the survival rate of CLP-challenged mice by up to 16%. During this treatment, kaempferol expressed antibacterial, antiapoptotic and antioxidant activities through the attenuation of bacterial forming units, AST and NO levels, and increased polymorphonuclear leukocyte (PMN) count in the IPF. On the other hand, the chrysin treatment significantly reduced serum TNF-α levels. However, it failed to significantly improve the survival rate of the CLP-challenged mice. Subsequently, the kaempferol/chrysin combination treatment significantly improved the overall 7-day survival rate by 2-fold-up to 29%. Kaempferol and chrysin revealed some synergistic effects by acting individually upon multiple

  19. Isorhamnetin ameliorates LPS-induced inflammatory response through downregulation of NF-κB signaling.

    Science.gov (United States)

    Li, Yang; Chi, Gefu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-08-01

    Isorhamnetin, a flavonoid mainly found in Hippophae fhamnoides L. fruit, has been known for its antioxidant activity and its ability to regulate immune response. In this study, we investigated whether isorhamnetin exerts potent antiinflammatory effects in RAW264.7 cell and mouse model stimulated by LPS. The cytokine (TNF-α, IL-1β, and IL-6) levels were determined. In the mouse model of acute lung injury, the phosphorylation of NF-κB proteins was analyzed and inhibitor of NF-κB signaling (PDTC) was used on mice. Our results showed that isorhamnetin markedly decreased TNF-α, IL-1β, and IL-6 concentrations and suppressed the activation of NF-κB signaling. Meanwhile, isorhamnetin reduced the amount of inflammatory cells, the lung wet-to-dry weight ratio, protein leakage, and myeloperoxidase activity. Interference with specific inhibitor revealed that isorhamnetin-mediated suppression of cytokines and protein was via NF-κB signaling. So, it suggests that isorhamnetin might be a potential therapeutic agent for preventing inflammatory diseases.

  20. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin

    OpenAIRE

    Saud, Shakir M.; Young, Matthew R.; Jones-Hall, Yava L.; Ileva, Lilia; Evbuomwan, Moses O.; Wise, Jennifer; Colburn, Nancy H.; Kim, Young S.; Bobe, Gerd

    2013-01-01

    Analysis of the Polyp Prevention Trial showed an association between isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism of isorhamnetin’s chemoprotective effects remains unclear. Here we demonstrate that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane (AOM) and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number,...

  1. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  2. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-03-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of HCCC9810 and QBC939 cells in vitro. Kaempferol was found to decrease the expression of Bcl-2 and increase the expressions of Bax, Fas, cleaved-caspase 3, cleaved-caspase 8, cleaved-caspase 9, and cleaved-PARP. In addition, kaempferol also downregulated the levels of phosphorylated AKT, TIMP2, and MMP2. In vivo, it was found that the volume of subcutaneous xenograft (0.15 cm(3)) in the kaempferol-treated group was smaller than that (0.6 cm(3)) in the control group. Kaempferol also suppressed the number and volume of metastasis foci in the lung metastasis model, with no marked effects on body weight of mice. Immunohistochemistry assay showed that the number of Ki-67-positive cells was lower in the kaempferol-treated group than that in the control group. We further confirmed that the changes of apoptosis- and invasion-related proteins after kaempferol treatment in vivo were similar to the results in vitro. These data suggest that kaempferol may be a promising candidate agent for the treatment of CCA.

  3. Kaempferol glycosides in the flowers of carnation and their contribution to the creamy white flower color.

    Science.gov (United States)

    Iwashina, Tsukasa; Yamaguchi, Masa-atsu; Nakayama, Masayoshi; Onozaki, Takashi; Yoshida, Hiroyuki; Kawanobu, Shuji; Onoe, Hiroshi; Okamura, Masachika

    2010-12-01

    Three flavonol glycosides were isolated from the flowers of carnation cultivars 'White Wink' and 'Honey Moon'. They were identified from their UV, MS, 1H and 13C NMR spectra as kaempferol 3-O-neohesperidoside, kaempferol 3-O-sophoroside and kaempferol 3-O-glucosyl-(1 --> 2)-[rhamnosyl-(1 --> 6)-glucoside]. Referring to previous reports, flavonols occurring in carnation flowers are characterized as kaempferol 3-O-glucosides with additional sugars binding at the 2 and/or 6-positions of the glucose. The kaempferol glycoside contents of a nearly pure white flower and some creamy white flower lines were compared. Although the major glycoside was different in each line, the total kaempferol contents of the creamy white lines were from 5.9 to 20.9 times higher than the pure white line. Thus, in carnations, kaempferol glycosides surely contribute to the creamy tone of white flowers.

  4. Kaempferol enhances the suppressive function of Treg cells by inhibiting FOXP3 phosphorylation.

    Science.gov (United States)

    Lin, Fang; Luo, Xuerui; Tsun, Andy; Li, Zhiyuan; Li, Dan; Li, Bin

    2015-10-01

    Kaempferol is a natural flavonoid found in many vegetables and fruits. Epidemiologic studies have described that Kaempferol intake could reduce risk of cancer, especially lung, gastric, pancreatic and ovarian cancers. Recent studies have shown that Kaempferol could also be beneficial to the body to defend against inflammation, and infection by bacteria and viruses; however, the molecular mechanism of its immunoregulatory function remains largely unknown. Through screening a small molecule library of traditional Chinese medicine (TCM), we identified that Kaempferol could enhance the suppressive function of regulatory T cells (Tregs). Kaempferol was found to increase FOXP3 expression level in Treg cells and prevent pathological symptoms of collagen-induced arthritis in a rat animal model. Kaempferol could also reduce PIM1-mediated FOXP3 phosphorylation at S422. Our study reveals a molecular mechanism that underlies the anti-inflammatory action of Kaempferol for the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis.

  5. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine.

    Science.gov (United States)

    Takahama, Umeo; Hirota, Sachiko

    2013-11-01

    Kaempferol glycosides can be hydrolyzed to their aglycone kaempferol during cooking under acidic conditions and in the oral cavity and the intestine by glycosidases. Kaempferol was oxidised by nitrite under acidic conditions (pH 2.0) to produce nitric oxide (NO), and the nitrite-induced oxidation of kaempferol was enhanced and inhibited by 10 and 100mg of starch ml(-1), respectively. The opposite effects of starch were discussed by considering the binding of kaempferol to starch and starch-dependent inhibition of the accessibility of nitrous acid to kaempferol. Kaempferol inhibited α-amylase-catalysed starch digestion by forming starch/kaempferol complexes, and the inhibitory effects increased in the order of amylopectinkaempferol were discussed to be due to the difference in binding sites of kaempferol between amylose and amylopectin. From the present study, dual-function of kaempferol became apparent in the digestive tract.

  6. Protective effects of isorhamnetin on apoptosis and inflammation in TNF-α-induced HUVECs injury.

    Science.gov (United States)

    Chen, Tie-Long; Zhu, Guang-Li; Wang, Jian-An; Zhang, Guo-Dong; Liu, Hong-Fei; Chen, Jin-Ru; Wang, Yu; He, Xiao-Long

    2015-01-01

    Little is known about the role of isorhamnetin on endothelial cell apoptosis and inflammation when insulted by TNF-α injury. In our study, HUVECs were treated with TNF-α for 6 hours. HUVECs apoptosis were detected using flow cytometry. The expressions of ICAM-1, VCAM-1, E-selectin, NF-κB, AP-1 and eNOS were determined with western blotting or flow cytometry. The results showed TNF-α increased of apoptosis and the expression of ICAM-1, VCAM-1 and E-selectin in HUVECs, accompanied by significant augmentation of NF-κB and AP-1 expression. Pretreatment with isorhamnetin significantly reduced apoptosis in TNF-α-treated HUVECs. Moreover, isorhamnetin significantly attenuated TNF-α-induced upregulation of ICAM-1, VCAM-1, AP-1, E-selectin and NF-κB expression. Meanwhile, isorhamnetin also increased the expression of eNOS. So, isorhamnetin could suppress TNF-α-induced apoptosis and inflammation by blocking NF-κB and AP-1 signaling in HUVECs, which might be one of the underlying mechanisms for treatment of coronary heart disease.

  7. Isorhamnetin suppresses colon cancer cell growth through the PI3K‑Akt‑mTOR pathway.

    Science.gov (United States)

    Li, Chuan; Yang, Xi; Chen, Cheng; Cai, Shaoxin; Hu, Junbo

    2014-03-01

    Isorhamnetin, a flavonoid isolated from the fruits of herbal medicinal plants, such as Hippophae rhamnoides L., exerts anticancer effects similar to other flavonoids. However, the effect of isorhamnetin on colorectal cancer (CRC) and the underlying molecular mechanism are unclear. This study aimed to determine the effect of isorhamnetin on the proliferation of cells from the human CRC cell lines, HT‑29, HCT116 and SW480. It was demonstrated that isorhamnetin suppressed the proliferation of cells from all three cell lines, induced cell cycle arrest at the G2/M phase and suppressed cell proliferation by inhibiting the PI3K‑Akt‑mTOR pathway. Isorhamnetin also reduced the phosphorylation levels of Akt (ser473), phosph‑p70S6 kinase and phosph‑4E‑BP1 (t37/46) protein, and enhanced the expression of Cyclin B1 protein. Therefore, this compound was revealed to be a selective PI3K‑Akt‑mTOR pathway inhibitor, and may be a potent anticancer agent for the treatment of CRC, as it restrains the proliferation of CRC cells.

  8. In vitro anti-tumor activity of isorhamnetin isolated from Hippophae rhamnoides L. against BEL-7402 cells.

    Science.gov (United States)

    Teng, Bao-Song; Lu, Yan-Hua; Wang, Zheng-Tao; Tao, Xin-Yi; Wei, Dong-Zhi

    2006-09-01

    Isorhamnetin, a flavonol aglycone, isolated from the traditional Chinese medicine Hippophae rhamnoides L., was investigated in its cytotoxicity and its influence on human hepatocellular carcinoma cells (BEL-7402). The cytotoxic effects of isorhamnetin showed dose- and time-dependency against BEL-7402 cells, with IC(50) equal to 74.4+/-1.13 microg ml(-1) after treatment with isorhamnetin for 72 h. Cytotoxicity of the flavonols on tumor cells depends on cellular accumulation of the drugs. The amount of isorhamnetin accumulated in BEL-7402 cells was assayed by high-performance liquid chromatography (HPLC) and showed that isorhamnetin could permeate the cell membrane into the cell. Staining with Hoechst 33258 showed fragmentation and condensation of chromatin in the cell treated with 50 microg ml(-1) isorhamnetin for 48 h. Flow cytometric analysis was performed to determine hypodiploid cells. The results of flow cytometry assay indicated that the percentage of hypodiploid BEL-7402 cells were 13.77+/-1.05% after 48 h treatment with 50 microg ml(-1) isorhamnetin. The treatment resulted in the appearance of a hypodiploid peak (sub-G(0)/G(1) peak), probably due to the presence of cells in apoptosis and apoptotic bodies with DNA content less than 2n. To our knowledge, this is the first report against human hepatocellular carcinoma cells (BEL-7402) of isorhamnetin.

  9. Chemopreventive activity of plant flavonoid isorhamnetin in colorectal cancer is mediated by oncogenic Src and β-catenin.

    Science.gov (United States)

    Saud, Shakir M; Young, Matthew R; Jones-Hall, Yava L; Ileva, Lilia; Evbuomwan, Moses O; Wise, Jennifer; Colburn, Nancy H; Kim, Young S; Bobe, Gerd

    2013-09-01

    Analysis of the Polyp Prevention Trial showed an association between an isorhamnetin-rich diet and a reduced risk of advanced adenoma recurrence; however, the mechanism behind the chemoprotective effects of isorhamnetin remains unclear. Here, we show that isorhamnetin prevents colorectal tumorigenesis of FVB/N mice treated with the chemical carcinogen azoxymethane and subsequently exposed to colonic irritant dextran sodium sulfate (DSS). Dietary isorhamnetin decreased mortality, tumor number, and tumor burden by 62%, 35%, and 59%, respectively. MRI, histopathology, and immunohistochemical analysis revealed that dietary isorhamnetin resolved the DSS-induced inflammatory response faster than the control diet. Isorhamnetin inhibited AOM/DSS-induced oncogenic c-Src activation and β-catenin nuclear translocation, while promoting the expression of C-terminal Src kinase (CSK), a negative regulator of Src family of tyrosine kinases. Similarly, in HT-29 colon cancer cells, isorhamnetin inhibited oncogenic Src activity and β-catenin nuclear translocation by inducing expression of csk, as verified by RNA interference knockdown of csk. Our observations suggest the chemoprotective effects of isorhamnetin in colon cancer are linked to its anti-inflammatory activities and its inhibition of oncogenic Src activity and consequential loss of nuclear β-catenin, activities that are dependent on CSK expression.

  10. Bioavailability of the dietary antioxidant flavonol quercetin in man.

    NARCIS (Netherlands)

    Hollman, P.C.H.; Trijp, van J.M.P.; Mengelers, M.J.B.; Vries, de J.H.M.; Katan, M.B.

    1997-01-01

    Quercetin, a dietary antioxidant flavonoid, has anticarcinogenic properties. We quantified the absorption of quercetin in ileostomists. Absorption was 52 ± 5␏or quercetin glucosides from onions, 17 ± 15␏or quercetin rutinoside, and 24 ± 9␏or quercetin aglycone. The plasma quercetin concentration in

  11. 槲皮素及其糖苷衍生物在Caco-2单层细胞上的吸收特征%ABSORPTION OF QUERCETIN AND ITS GLYCOSIDES BY CACO-2 CELL MONOLAYER

    Institute of Scientific and Technical Information of China (English)

    李素云; 李峥; 李敬来; 高蔚娜; 张振清; 郭长江

    2012-01-01

    目的 探讨槲皮素及其糖苷衍生物在人小肠吸收模型Caco-2细胞单层上的吸收特征.方法 采用Caco-2单层细胞模型,研究槲皮素、槲皮苷、异槲皮苷的肠道吸收特征,以LC-MS法测定槲皮素、槲皮苷、异槲皮苷、异鼠李亭.结果 槲皮素及其糖苷衍生物孵育30~150min后,均能在透过侧检测到槲皮素、槲皮苷和异槲皮苷以及槲皮素的甲基化代谢产物之一异鼠李亭;透过的槲皮素及其代谢产物异鼠李亭含量在150min孵育时间内呈先升后降的趋势特征;而槲皮苷和异槲皮苷的透过量则随孵育时间呈持续升高的趋势,在孵育后期可检测到微量异鼠李亭.结论 槲皮素、槲皮苷和异槲皮苷可以完整的分子形式被Caco-2细胞单层吸收,其吸收特征有显著差异,并在吸收过程中伴有广泛的代谢转化.%Objective To investigate the intestinal absorption of quercetin and its glycosides. Method The absorption of quercetin, quercitrin, isoquercitrin and isorhamnetin were studied using Caco-2 cell monolayer by liquid chromatography-mass spectrometry (HPLC-MS) method. Results Quercetin, quercitrin, isoquercitrin and isorhamnetin were found in the receiver sides throughout 150 min incubation period. The contents of quercetin and isorhamnetin in the receiver sides reached to the peak volume at 120 min, and then decreased gradually. Meanwhile, the contents of quercitrin and isoquercitrin rose up in a linear manner during incubation. The isorhamnetin could also be detected. Conclusion Quercetin and its glycosides can transport wholly across the Caco-2 cell monolayer and subject to an extensive metabolism, but there is remarkable difference between them.

  12. Identification of the Products of Oxidation of Quercetin by Air Oxygenat Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Viktor A Utsal

    2007-03-01

    Full Text Available Oxidation of quercetin by air oxygen takes place in water and aqueous ethanol solutions under mild conditions, namely in moderately-basic media (pH ∼ 8-10 at ambient temperature and in the absence of any radical initiators, without enzymatic catalysis or irradiation of the reaction media by light. The principal reaction products are typical of other oxidative degradation processes of quercetin, namely 3,4-dihydroxy-benzoic (proto-catechuic and 2,4,6-trihydroxybenzoic (phloroglucinic acids, as well as the decarboxylation product of the latter – 1,3,5-trihydroxybenzene (phloroglucinol. In accordance with the literature data, this process involves the cleavage of the γ-pyrone fragment (ring C of the quercetin molecule by oxygen, with primary formation of 4,6-dihydroxy-2-(3,4-dihydroxybenzoyloxybenzoic acid (depside. However under such mild conditions the accepted mechanism of this reaction (oxidative decarbonylation with formation of carbon monoxide, CO should be reconsidered as preferably an oxidative decarboxylation with formation of carbon dioxide, CO2. Direct head-space analysis of the gaseous components formed during quercetin oxidation in aqueous solution at ambient temperature indicates that the ratio of carbon dioxide/carbon monoxide in the gas phase after acidification of the reaction media is ca. 96:4 %. Oxidation under these mild conditions is typical for other flavonols having OH groups at C3 (e.g., kaempferol, but it is completely suppressed if this hydroxyl group is substituted by a glycoside fragment (as in rutin, or a methyl substituent. An alternative oxidation mechanism involving the direct cleavage of the C2-C3 bond in the diketo-tautomer of quercetin is proposed.

  13. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase.

    Science.gov (United States)

    Peng, Xi; Zhang, Guowen; Liao, Yijing; Gong, Deming

    2016-01-01

    α-Glucosidase is a therapeutic target for diabetes mellitus, and α-glucosidase inhibitors play a vital role in the treatments for the disease. As a kind of potentially safer α-glucosidase inhibitor, flavonoids have attached much attention currently. In this study, kaempferol was found to show a notable inhibition activity on α-glucosidase in a mixed-type manner with IC50 value of (1.16 ± 0.04) × 10(-5) mol L(-1). Analyses of fluorescence, circular dichroism and Fourier transform infrared spectra indicated that kaempferol bound to α-glucosidase with high affinity which was mainly driven by hydrogen bonds and van der Waals forces, and this binding resulted in conformational alteration of α-glucosidase. Further molecular docking study validated the experimental results. It was proposed that kaempferol may interact with some amino acid residues located within the active site of α-glucosidase, occupying the catalytic center of the enzyme to avoid the entrance of p-nitrophenyl-α-D-glucopyranoside and ultimately inhibiting the enzyme activity.

  14. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome.

  15. Isorhamnetin prevent endothelial cell injuries from oxidized LDL via activation of p38MAPK.

    Science.gov (United States)

    Bao, Meihua; Lou, Yijia

    2006-10-10

    The present investigation was undertaken to determine the protective effects of isorhamnetin on endothelial cell line EA.hy926 injuries induced by oxidized low-density lipoprotein (ox-LDL) and to uncover some of the underlying mechanisms of these effects. Indices such as cell viability, lactate dehydrogenase (LDH), and nitric oxide (NO) release were measured to evaluate the protective effects of isorhamnetin. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, superoxide dismutase (SOD), superoxide and reactive oxygen species (ROS) generation were also detected to evaluate the antioxidant effects of isorhamnetin. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used to confirm the expression of endothelial nitric oxide synthase (eNOS) mRNA and lectin-like ox-LDL receptor-1 mRNA. Western blotting was used to evaluate the protein expression of this receptor and eNOS, as well as p38-mitogen-activated protein kinase (p38MAPK) phosphorylation and NF-kappaB p65 translocation. As a result, cell viability decreased significantly (Pisorhamnetin resulted in remarkable increase of cell viability (PIsorhamnetin pretreatment inhibited the ox-LDL-induced downregulation of eNOS, upregulation of lectin-like ox-LDL receptor-1, phosphorylation of the p38MAPK and translocation of NF-kappaB. Moreover, isorhamnetin exhibited strong antioxidant activity, which was shown by its inhibition effects on ox-LDL-induced superoxide, ROS overproduction and significant SOD reduction. The data indicated the protective effects of isorhamnetin on endothelial cell line EA.hy926 from ox-LDL-induced cell injuries. These effects were obtained via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin.

  16. Anti-HSV-1 and HSV-2 Flavonoids and a New Kaempferol Triglycoside from the Medicinal Plant Kalanchoe daigremontiana.

    Science.gov (United States)

    Ürményi, Fernanda Gouvêa Gomes; Saraiva, Georgia do Nascimento; Casanova, Livia Marques; Matos, Amanda Dos Santos; de Magalhães Camargo, Luiza Maria; Romanos, Maria Teresa Villela; Costa, Sônia Soares

    2016-12-01

    Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from K. daigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (1), was isolated from the AcOEt fraction (Kd-AC). The BuOH-soluble fraction afforded quercetin 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside (2) and the new kaempferol 3-O-β-d-xylopyranosyl-(1 → 2)-α-l-rhamnopyranoside-7-O-β-d-glucopyranoside (3), named daigremontrioside. The crude extract, Kd-AC fraction, flavonoids 1 and 2 were evaluated using acyclovir-sensitive strains of HSV-1 and HSV-2. Kd-AC was highly active against HSV-1 (EC50  = 0.97 μg/ml, SI > 206.1) and HSV-2 (EC50  = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti-HSV-1 (EC50  = 7.4 μg/ml; SI > 27 and EC50  = 5.8 μg/ml; SI > 8.6, respectively) and anti-HSV-2 (EC50  = 9.0 μg/ml; SI > 22.2 and EC50  = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.

  17. A metabonomic analysis of the effect of quercetin on toxicity induced by chronic exposure to low-level dichlorvos in rat plasma.

    Science.gov (United States)

    Zeng, Yan; Qi, Lei; Li, Sifan; Hou, Yurong; Xu, Wei; Wang, Hong; Zhao, Xiujuan; Sun, Changhao

    2014-10-01

    A previous study of ours has reported that chronic exposure to low-level dichlorvos (DDVP, 7.2 mg per kg bw) damages the liver, interferes with fatty acid metabolism, and disturbs the antioxidant defense system in rats. This study aims to investigate whether or not quercetin can protect against DDVP-induced toxicity through metabonomics and to elucidate the mechanism underlying this protective effect. Rats were randomly assigned into the control group, DDVP-treated group, quercetin-treated group, and quercetin plus DDVP-treated group. DDVP and quercetin were administered to the rats daily via drinking water and gavage, respectively, continuously for 90 d. The metabonomic profiles of rat plasma were analyzed using ultra-performance liquid chromatography-mass spectrometry. Finally, 11 metabolites were identified, including those of quercetin, isorhamnetin, and quercetin-3-glucuronide. The 11 metabolites showed significant changes in some treatment groups compared with the control group. Arachidonic acid, phytosphingosine, and C16 sphinganine significantly decreased while p-cresol, lysoPE (16:0/0:0), lysoPC (15:0/0:0), lysoPC (16:0/0:0), lysoPC (0:0/18:0), and tryptophan significantly increased in the DDVP-treated group compared with the control group. The tendency of the aforementioned metabolites to change was significantly ameliorated in the high-dose quercetin (50 mg per kg bw per day) plus DDVP-treated group compared with the DDVP-treated group. However, the levels of these metabolites in the high-dose quercetin plus DDVP-treated group were still significantly different from those in the control group. The results indicate that high-dose quercetin (50 mg per kg bw per day) elicits a partial protective effect on DDVP-induced toxicity. The histopathology of the liver tissues was consistent with the above results. Quercetin demonstrated regulatory effects on the metabolism of lipids and amino acids, the antioxidant defense system, etc. Therefore, increasing the

  18. Quercetin Glucuronides but Not Glucosides Are Present in Human Plasma after Consumption of Quercetin-3-Glucoside or Quercetin-4'-Glucoside 1)

    NARCIS (Netherlands)

    Sesink, A.L.A.; O'Leary, K.A.; Hollman, P.C.H.

    2001-01-01

    The nature of quercetin conjugates present in blood after consumption of quercetin glucosides is still unclear. In this study, we analyzed plasma of volunteers that had consumed 325 ?mol of either quercetin-3-glucoside or quercetin-4'-glucoside as an oral solution. Quercetin metabolites were extract

  19. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase.

    Science.gov (United States)

    Wang, Yajie; Zhang, Guowen; Pan, Junhui; Gong, Deming

    2015-01-21

    Xanthine oxidase (XO), a key enzyme in purine catabolism, is widely distributed in human tissues. It can catalyze xanthine to generate uric acid and cause hyperuricemia and gout. Inhibition kinetics assay showed that kaempferol inhibited XO activity reversibly in a competitive manner. Strong fluorescence quenching and conformational changes of XO were found due to the formation of a kaempferol-XO complex, which was driven mainly by hydrophobic forces. The molecular docking further revealed that kaempferol inserted into the hydrophobic cavity of XO to interact with some amino acid residues. The main inhibition mechanism of kaempferol on XO activity may be due to the insertion of kaempferol into the active site of XO occupying the catalytic center of the enzyme to avoid the entrance of the substrate and inducing conformational changes of XO. In addition, luteolin exhibited a stronger synergistic effect with kaempferol than did morin at the lower concentration.

  20. Mechanisms Underlying Apoptosis-Inducing Effects of Kaempferol in HT-29 Human Colon Cancer Cells

    OpenAIRE

    Hyun Sook Lee; Han Jin Cho; Rina Yu; Ki Won Lee; Hyang Sook Chun; Jung Han Yoon Park

    2014-01-01

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0–60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays...

  1. Antioxidant effects of isorhamnetin 3,7-di-O-beta-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Yokozawa, Takako; Kim, Hyun Young; Cho, Eun Ju; Choi, Jae Sue; Chung, Hae Young

    2002-09-11

    To investigate the effects of isorhamnetin 3,7-di-O-beta-D-glucopyranoside (isorhamnetin diglucoside), a major flavonoid compound of mustard leaf, on oxidative stress due to diabetes mellitus, in vivo and in vitro studies were carried out. Oral administration of isorhamnetin diglucoside (10 or 20 mg/kg of body weight/day for 10 days) to rats with streptozotocin-induced diabetes significantly reduced serum levels of glucose and 5-(hydroxymethyl)furfural (5-HMF), which is glycosylated with hemoglobin and is an indicator of oxidative stress. After intraperitoneal administration, isorhamnetin diglucoside did not show these activities. In addition, after oral administration, the thiobarbituric acid-reactive substance levels of serum, and liver and kidney mitochondria declined significantly compared with the control group in a dose-dependent manner, whereas after intraperitoneal administration these levels fell only slightly. On the basis of the oral and intraperitoneal results, it was hypothesized that isorhamnetin diglucoside was converted to its metabolite in vivo, and its conversion to its aglycone, isorhamnetin, by beta-glucosidase was confirmed; isorhamnetin acted as an antioxidant. Moreover, it was observed that isorhamnetin diglucoside had no effect on the 1,1-diphenyl-2-picrylhydrazyl radical, whereas isorhamnetin showed a potent antioxidant effect in vitro. In addition, intraperitoneal administration of isorhamnetin reduced serum glucose and 5-HMF levels. Furthermore, lipid peroxidation in blood, liver, and kidney associated with diabetes mellitus declined after the administration of isorhamnetin. These results suggest that isorhamnetin diglucoside is metabolized in vivo by intestinal bacteria to isorhamnetin and that isorhamnetin plays an important role as an antioxidant.

  2. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    Science.gov (United States)

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  4. Synthesis, characterization and anticancer activity of kaempferol-zinc(II) complex.

    Science.gov (United States)

    Tu, Lv-Ying; Pi, Jiang; Jin, Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-06-01

    According to the previous studies, the anticancer activity of flavonoids could be enhanced when they are coordinated with transition metal ions. In this work, kaempferol-zinc(II) complex (kaempferol-Zn) was synthesized and its chemical properties were characterized by UV-VIS, FT-IR, (1)H NMR, elemental analysis, electrospray mass spectrometry (ES-MS) and fluorescence spectroscopy, which showed that the synthesized complex was coordinated with a Zn(II) ion via the 3-OH and 4-oxo groups. The anticancer effects of kaempferol-Zn and free kaempferol on human oesophageal cancer cell line (EC9706) were compared. MTT results demonstrated that the killing effect of kaempferol-Zn was two times higher than that of free kaempferol. Atomic force microscopy (AFM) showed the morphological and ultrastructural changes of cellular membrane induced by kaempferol-Zn at subcellular or nanometer level. Moreover, flow cytometric analysis indicated that kaempferol-Zn could induce apoptosis in EC9706 cells by regulating intracellular calcium ions. Collectively, all the data showed that kaempferol-Zn might be served as a kind of potential anticancer agent.

  5. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  6. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  7. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention.

    Science.gov (United States)

    Chen, Allen Y; Chen, Yi Charlie

    2013-06-15

    Kaempferol is a polyphenol antioxidant found in fruits and vegetables. Many studies have described the beneficial effects of dietary kaempferol in reducing the risk of chronic diseases, especially cancer. Epidemiological studies have shown an inverse relationship between kaempferol intake and cancer. Kaempferol may help by augmenting the body's antioxidant defence against free radicals, which promote the development of cancer. At the molecular level, kaempferol has been reported to modulate a number of key elements in cellular signal transduction pathways linked to apoptosis, angiogenesis, inflammation, and metastasis. Significantly, kaempferol inhibits cancer cell growth and angiogenesis and induces cancer cell apoptosis, but on the other hand, kaempferol appears to preserve normal cell viability, in some cases exerting a protective effect. The aim of this review is to synthesize information concerning the extraction of kaempferol, as well as to provide insights into the molecular basis of its potential chemo-preventative activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the aforementioned processes. Chemoprevention using nanotechnology to improve the bioavailability of kaempferol is also discussed.

  8. A comparison of the pharmacokinetics of three different preparations of total flavones of Hippophae rhamnoides in beagle dogs after oral administration.

    Science.gov (United States)

    Duan, Jingze; Dang, Yang; Meng, Houjun; Wang, Huizhen; Ma, Ping; Li, Guowen; Wu, Tao; Xie, Yan

    2016-06-01

    Pharmacokinetic properties of isorhamnetin, quercetin, and kaempferol in three different total flavones of Hippophae rhamnoides (TFH) preparations were compared after oral administration to beagle dogs by a UPLC-MS method. The pharmacokinetic results showed that C max of isorhamnetin and quercetin in TFH solid dispersion (TFH-SD) and TFH self-emulsifying (TFH-SE) preparations was significantly enhanced than that in TFH preparations (p beagle dogs can be significantly increased in TFH-SD and TFH-SE preparations compared to TFH preparations, which was helpful to explore the new forms for oral administration TFH and explain their in vivo processes.

  9. Isorhamnetin augments the anti-tumor effect of capeciatbine through the negative regulation of NF-κB signaling cascade in gastric cancer.

    Science.gov (United States)

    Manu, Kanjoormana A; Shanmugam, Muthu K; Ramachandran, Lalitha; Li, Feng; Siveen, Kodappully Sivaraman; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Arfuso, Frank; Kumar, Alan Prem; Ahn, Kwang Seok; Sethi, Gautam

    2015-07-10

    Development of drug resistance to standard chemotherapy is a common phenomenon that leads to poor prognosis in patients. Thus, novel agents that can attenuate chemoresistance are urgently needed. Therefore, we analyzed whether isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin, can enhance the potential efficacy of capecitabine in gastric cancer. The potential effect of IH on viability was analyzed by MTT assay, apoptosis by flow cytometric analysis, and NF-κB activation by DNA binding as well as Western blot assays. The in vivo effect of IH was also examined on the growth of subcutaneously implanted tumors in nude mice. IH inhibited the viability, potentiated the apoptotic effects of capecitabine, abrogated NF-κB activation, and suppressed the expression of various NF-κB regulated gene products in tumor cells. In a gastric cancer xenograft model, administration of IH alone (1 mg/kg body weight, i.p.) significantly suppressed the tumor growth alone as well as in combination with capecitabine. IH further reduced NF-κB activation and the expression of various proliferative and oncogenic biomarkers in tumor tissues. Overall, our results demonstrate that IH can significantly enhance the anti-tumor effects of capecitabine through the negative regulation of NF-κB regulated oncogenic genes.

  10. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    OpenAIRE

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents....

  11. Design and characterization of protein-quercetin bioactive nanoparticles

    Directory of Open Access Journals (Sweden)

    Leng Xiaojing

    2011-05-01

    Full Text Available Abstract Background The synthesis of bioactive nanoparticles with precise molecular level control is a major challenge in bionanotechnology. Understanding the nature of the interactions between the active components and transport biomaterials is thus essential for the rational formulation of bio-nanocarriers. The current study presents a single molecule of bovine serum albumin (BSA, lysozyme (Lys, or myoglobin (Mb used to load hydrophobic drugs such as quercetin (Q and other flavonoids. Results Induced by dimethyl sulfoxide (DMSO, BSA, Lys, and Mb formed spherical nanocarriers with sizes less than 70 nm. After loading Q, the size was further reduced by 30%. The adsorption of Q on protein is mainly hydrophobic, and is related to the synergy of Trp residues with the molecular environment of the proteins. Seven Q molecules could be entrapped by one Lys molecule, 9 by one Mb, and 11 by one BSA. The controlled releasing measurements indicate that these bioactive nanoparticles have long-term antioxidant protection effects on the activity of Q in both acidic and neutral conditions. The antioxidant activity evaluation indicates that the activity of Q is not hindered by the formation of protein nanoparticles. Other flavonoids, such as kaempferol and rutin, were also investigated. Conclusions BSA exhibits the most remarkable abilities of loading, controlled release, and antioxidant protection of active drugs, indicating that such type of bionanoparticles is very promising in the field of bionanotechnology.

  12. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-¿)

    NARCIS (Netherlands)

    Beekmann, K.; Rubió, L.; Haan, de L.H.J.; Actis Goretta, L.; Burg, van der B.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2015-01-01

    The consumption of dietary flavonoids has been associated with a variety of health benefits, including effects mediated by the activation of peroxisome proliferator-activated receptor-gamma (PPAR-¿). Flavonoids are extensively metabolized during and after uptake and there is little known on the biol

  13. The effect of quercetin and kaempferol aglycones and glucuronides on peroxisome proliferator-activated receptor-gamma (PPAR-¿)

    NARCIS (Netherlands)

    Beekmann, K.; Rubió, L.; Haan, de L.H.J.; Actis Goretta, L.; Burg, van der B.; Bladeren, van P.J.; Rietjens, I.M.C.M.

    2015-01-01

    The consumption of dietary flavonoids has been associated with a variety of health benefits, including effects mediated by the activation of peroxisome proliferator-activated receptor-gamma (PPAR-¿). Flavonoids are extensively metabolized during and after uptake and there is little known on the

  14. Protective effects of kaempferol on lipopolysaccharide-induced mastitis in mice.

    Science.gov (United States)

    Cao, Rongfeng; Fu, Kaiqiang; Lv, Xiaopei; Li, Weishi; Zhang, Naisheng

    2014-10-01

    Kaempferol isolated from the root of Zingiberaceae plants galangal and other Chinese herbal medicines have been reported to have anti-inflammatory properties. However, the anti-inflammatory effects of kaempferol on lipopolysaccharide (LPS)-induced mastitis are unknown and their underlying molecular mechanisms remain to be explored. The aim of this study was to evaluate the effects of kaempferol on LPS-induced mouse mastitis. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. Kaempferol was injected 1 h before and 12 h after induction of LPS intraperitoneally. The present results showed that kaempferol markedly reduced infiltration of neutrophilic granulocyte, activation of myeloperoxidase (MPO), expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in a dose-dependent manner, which were increased in LPS-induced mouse mastitis. Furthermore, kaempferol suppressed the phosphorylation of nuclear factor-κB (NF-κB) p65 subunit and the degradation of its inhibitor IκBα. All results suggest that anti-inflammatory effects of kaempferol against the LPS-induced mastitis possibly through inhibition of the NF-κB signaling pathway. Kaempferol may be a potential therapeutic agent for mastitis.

  15. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study.

    Science.gov (United States)

    Song, Haibin; Bao, Junjie; Wei, Yuzhe; Chen, Yang; Mao, Xiaoguang; Li, Jianguo; Yang, Zhiwei; Xue, Yingwei

    2015-02-01

    Kaempferol, which is one of the general flavonoids, has recently been reported to suppress proliferation, induce cell cycle arrest and promote apoptosis in various human cancer cell lines. In the present study, the effect and mechanism of kaempferol on gastric cancer (GC) was examined. The results showed that kaempferol significantly inhibited the proliferation of MKN28 and SGC7901 cell lines. However, no significant inhibition in the GSE-1 normal gastric epithelial cell line in our experimental dose was detected. Additionally, significant apoptosis and G2/M phase cell cycle arrest were identified following the treatment of kaempferol. More importantly, we observed that kaempferol inhibited the growth of the tumor xenografts although no marked effects on liver, spleen or body weight were induced. The expression levels of G2/M cell cycle‑regulating factors, cyclin B1, Cdk1 and Cdc25C, were significantly reduced. In addition, kaempferol treatment markedly decreased the level of Bcl-2 concomitant with an increase in Bax expression, resulting in the upregulation of cleaved caspase-3 and -9, which promoted PARP cleavage. Kaempferol-treated cells also led to a decrease in p-Akt, p-ERK and COX-2 expression levels. The present study therefore provided evidence that kaempferol may be a therapeutic agent for GC.

  16. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    Science.gov (United States)

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-02-20

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress.

  17. Mechanisms underlying apoptosis-inducing effects of Kaempferol in HT-29 human colon cancer cells.

    Science.gov (United States)

    Lee, Hyun Sook; Cho, Han Jin; Yu, Rina; Lee, Ki Won; Chun, Hyang Sook; Park, Jung Han Yoon

    2014-02-17

    We previously noted that kaempferol, a flavonol present in vegetables and fruits, reduced cell cycle progression of HT-29 cells. To examine whether kaempferol induces apoptosis of HT-29 cells and to explore the underlying molecular mechanisms, cells were treated with various concentrations (0-60 μmol/L) of kaempferol and analyzed by Hoechst staining, Annexin V staining, JC-1 labeling of the mitochondria, immunoprecipitation, in vitro kinase assays, Western blot analyses, and caspase-8 assays. Kaempferol increased chromatin condensation, DNA fragmentation and the number of early apoptotic cells in HT-29 cells in a dose-dependent manner. In addition, kaempferol increased the levels of cleaved caspase-9, caspase-3 and caspase-7 as well as those of cleaved poly (ADP-ribose) polymerase. Moreover, it increased mitochondrial membrane permeability and cytosolic cytochrome c concentrations. Further, kaempferol decreased the levels of Bcl-xL proteins, but increased those of Bik. It also induced a reduction in Akt activation and Akt activity and an increase in mitochondrial Bad. Additionally, kaempferol increased the levels of membrane-bound FAS ligand, decreased those of uncleaved caspase-8 and intact Bid and increased caspase-8 activity. These results indicate that kaempferol induces the apoptosis of HT-29 cells via events associated with the activation of cell surface death receptors and the mitochondrial pathway.

  18. [Inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide-stimulated human mast cells].

    Science.gov (United States)

    Zhou, Yun-jiang; Wang, Hu; Li, Li; Sui, He-huan; Huang, Jia-jun

    2015-06-01

    This study is to investigate the inhibitory effect of kaempferol on inflammatory response of lipopolysaccharide(LPS)-stimulated HMC-1 mast cells. The cytotoxicity of kaempferol to HMC-1 mast cells were analyzed by using MTT assay and then the administration concentrations of kaempferol were established. Histamine, IL-6, IL-8, IL-1β and TNF-α were measured using ELISA assay in activated HMC-1 mast cells after incubation with various concentrations of kaempferol (10, 20 and 40 µmol.L-1). Western blot was used to test the protein expression of p-IKKβ, IκBα, p-IκBα and nucleus NF-κB of LPS-induced HMC-1 mast cells after incubation with different concentrations of kaempferol. The optimal concentrations of kaempferol were defined as the range from 5 µmol.L-1 to 40 µmol.L-1. Kaempferol significantly decreased the release of histamine, IL-6, IL-8, IL-1β and TNF-α of activated HMC-1 mast cells (Pkaempferol, the protein expression of p-IKKβ, p-IKBa and nucleus NF-κB (p65) markedly reduced in LPS-stimulated HMC-1 mast cells (Pkaempferol markedly inhibit mast cell-mediated inflammatory response. At the same time, kaempferol can inhibit the activation of IKKβ, block the phosphorylation of IκBα, prevent NF-KB entering into the nucleus, and then decrease the release of inflammatory mediators.

  19. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  20. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the p

  1. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro.

    Science.gov (United States)

    Li, Yanxia; Ding, Zhaoxia; Wu, Chuanzhong

    2016-12-08

    BACKGROUND This study examined the effect of kaempferol on uterine fibroids in vitro and the underlying mechanism, and investigated the potential of kaempferol as a clinical drug for the treatment of uterine fibroids. MATERIAL AND METHODS Uterine fibroid tissue and surrounding smooth muscle tissue were collected for primary culture. Different concentrations of kaempferol (12 μM, 24 μM, and 48 μM) were used to treat the cells for 24, 48, and 72 hours. Ethanol was used in the control group. A CCK-8 colorimetric assay was used to detect cell proliferation. Real-time PCR and immunoblot were used to detect estrogen receptor (ER), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) levels in mRNA and protein. RESULTS The differences in proliferation at different time points and concentrations of kaempferol were statistically significant. The inhibitory effect of kaempferol on mRNA levels of ER and IGF, and protein levels of ER, VEGF, and IGF-1 were positively correlated with kaempferol concentration. Changes in kaempferol concentration showed no effect on VEGF mRNA expression. Treatment with kaempferol significantly lowered myocardin levels in uterine fibroid tissue compared to normal uterine smooth muscle (PKaempferol might be used for clinical treatment of uterine fibroids due to its inhibitory effect on the proliferation of uterine fibroids cells.

  2. Role of quercetin in vascular physiology.

    Science.gov (United States)

    Chirumbolo, Salvatore

    2012-12-01

    A recent paper in the Canadian Journal of Physiology and Pharmacology has shown that quercetin has a vascular protective effect associated with eNOS up-regulation, blood GSH redox ratio, and reduction of oxidative stress. Recent reports have recommended the consumption of quercetin, as it may contribute to a reduction in the risk of cardiovascular disease. However, the mechanisms by which quercetin exerts its action have not been fully elucidated. The majority of these mechanisms have been identified with models using animals treated with quercetin, and relatively few have been corroborated in human studies, which indicates the need for further investigation.

  3. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  4. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability.

    Science.gov (United States)

    Luo, Haitao; Jiang, Bingbing; Li, Bingyun; Li, Zhaoliang; Jiang, Bing-Hua; Chen, Yi Charlie

    2012-01-01

    Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid) (PLGA) nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be advantageous in the prevention and treatment of ovarian cancers. On the other hand, PEO-PPO-PEO nanoparticles incorporating kaempferol were more effective inhibitors of cancer cells, but they also significantly reduced the viability of normal cells. PEO-PPO-PEO nanoparticles incorporating kaempferol may be suitable as a cancer-targeting strategy, which could limit the effects of the nanoparticles on normal cells while retaining their potency against cancer cells. We

  5. A New Isorhamnetin Glycoside and Other Phenolic Compounds from Callianthemum taipaicum

    Directory of Open Access Journals (Sweden)

    Yu-Juan Zhang

    2012-04-01

    Full Text Available A new flavonol glycoside together with five known phenolic compounds were isolated from the whole herb of Callianthemum taipaicum. The compounds were identified as isorhamnetin-3-O-α-L-arabinoside-7-O-β-D-glucoside (1, isorhamnetin-3-O-β-D-glucoside (2, dibutyl phthalate (3, (+-1-hydroxylpinoresinol-4'-β-D-glucoside (4, pinoresinol-4'-O-β-D-glucoside (5 and 2-phenylethyl-β-primeveroside (6. Compound 1 was identified as a new flavonol glycoside. The compound 6 was isolated for the first time as natural product. All compounds were isolated for the first time from the Callianthemum genus. Furthermore, the 2D-NMR data of the four known compounds 2–5 are given for the first time in this paper. All the structures were identified on the basis of detailed spectral analysis. The compounds 1 and 4 exhibited certain antifungal activity.

  6. A new isorhamnetin glycoside and other phenolic compounds from Callianthemum taipaicum.

    Science.gov (United States)

    Wang, Dong-Mei; Pu, Wen-Jun; Wang, Yong-Hong; Zhang, Yu-Juan; Wang, Shan-Shan

    2012-04-17

    A new flavonol glycoside together with five known phenolic compounds were isolated from the whole herb of Callianthemum taipaicum. The compounds were identified as isorhamnetin-3-O-α-L-arabinoside-7-O-β-D-glucoside (1), isorhamnetin-3-O-β-D-glucoside (2), dibutyl phthalate (3), (+)-1-hydroxylpinoresinol-4'-β-D-glucoside (4), pinoresinol-4'-O-β-D-glucoside (5) and 2-phenylethyl-β-primeveroside (6). Compound 1 was identified as a new flavonol glycoside. The compound 6 was isolated for the first time as natural product. All compounds were isolated for the first time from the Callianthemum genus. Furthermore, the 2D-NMR data of the four known compounds 2-5 are given for the first time in this paper. All the structures were identified on the basis of detailed spectral analysis. The compounds 1 and 4 exhibited certain antifungal activity.

  7. Flavonoids from Pseudotsuga menziesii.

    Science.gov (United States)

    Krauze-Baranowska, Mirosława; Sowiński, Paweł; Kawiak, Anna; Sparzak, Barbara

    2013-01-01

    Four O-acylated flavonol glycosides, new in the plant kingdom, were isolated from the needles of Pseudotsuga menziesii. Their structures were established by 1D and 2D NMR and MS data as: daglesioside I [kaempferol 3-O-[2",5"-O-(4''',4(IV)-dihydroxy)-beta-truxinoyl]-alpha-L-arabinofuranoside] (1), daglesioside II [kaempferol 3-O-[2",5"-O-(4"'-hydroxy)-beta-truxinoyl]-alpha-L-arabinofuranoside] (2), daglesioside III [kaempferol 3-O-[2",5"-di-O-(E)-p-coumaroyl]-alpha-L-arabinofuranoside] (3), and daglesioside IV [kaempferol 3-O-[3",6"-di-O-(E)-cinnamoyl]-beta-D-glucopyranoside] (4). In addition, the known flavonoids (E)-tiliroside, (E)-ditiliroside, astragalin (kaempferol 3-O-beta-D-glucopyranoside), isorhamnetin, kaempferol, and quercetin were identified. The cytotoxic activity of compounds 1 and 3 was evaluated towards the HL-60, HeLa, and MDA-MB468 cell lines.

  8. Impact of apigenin and kaempferol on human head and neck squamous cell carcinoma

    Science.gov (United States)

    Swanson, Hollie I.; Choi, Eun-Young; Helton, W. Brian; Gairola, C. Gary; Valentino, Joseph

    2014-01-01

    Objective Apigenin and kaempferol are plant flavonoids with reported chemopreventive activities. This study aimed to determine the effect of apigenin and kaempferol on cell viability in cultured cells derived from the pharynx (FaDu cell line), an oral cavity carcinoma (PCI-13 cell line), and a metastatic lymph node (PCI-15B cell line) and in explanted FaDu cells. Study Design The in vitro viability of FaDu, PCI-13, and PCI-15B cells treated with apigenin and kaempferol was determined. Tumor growth of FaDu explants was evaluated in athymic mice that were gavaged with either apigenin or kaempferol. Results Although apigenin and kaempferol treatment decreased viability of cells in vitro, cell-type-dependent differences in responsiveness were observed. In vivo apigenin treatment significantly increased the tumor size of FaDu explants. Results obtained using kaempferol were similar. Conclusions The in vitro decrease in FaDu cell viability by apigenin and kaempferol was not observed in in vivo tumor explants using the conditions described in this study. PMID:24439916

  9. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    Directory of Open Access Journals (Sweden)

    Marilena Antunes-Ricardo

    2015-01-01

    Full Text Available Opuntia ficus-indica (OFI has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO, cyclooxygenase-2 (COX-2, tumor necrosis factor- (TNF- α, and interleukin- (IL- 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7±5.0%, resp. without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4±5.7% equating the indomethacin effects (69.5±5.3%. Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.

  10. Topical Anti-Inflammatory Effects of Isorhamnetin Glycosides Isolated from Opuntia ficus-indica

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A.; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O.

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient. PMID:25821823

  11. Topical anti-inflammatory effects of isorhamnetin glycosides isolated from Opuntia ficus-indica.

    Science.gov (United States)

    Antunes-Ricardo, Marilena; Gutiérrez-Uribe, Janet A; Martínez-Vitela, Carlos; Serna-Saldívar, Sergio O

    2015-01-01

    Opuntia ficus-indica (OFI) has been widely used in Mexico as a food and for the treatment of different health disorders such as inflammation and skin aging. Its biological properties have been attributed to different phytochemicals such as the isorhamnetin glycosides which are the most abundant flavonoids. Moreover, these compounds are considered a chemotaxonomic characteristic of OFI species. The aim of this study was to evaluate the effect of OFI extract and its isorhamnetin glycosides on different inflammatory markers in vitro and in vivo. OFI extract was obtained by alkaline hydrolysis of OFI cladodes powder and pure compounds were obtained by preparative chromatography. Nitric oxide (NO), cyclooxygenase-2 (COX-2), tumor necrosis factor- (TNF-) α, and interleukin- (IL-) 6 production were measured. NO production was tested in lipopolysaccharide-stimulated RAW 264.7 cells while in vivo studies were carried on croton oil-induced ear edema model. OFI extract and diglycoside isorhamnetin-glucosyl-rhamnoside (IGR) at 125 ng/mL suppressed the NO production in vitro (73.5 ± 4.8% and 68.7 ± 5.0%, resp.) without affecting cell viability. Likewise, IGR inhibited the ear edema (77.4 ± 5.7%) equating the indomethacin effects (69.5 ± 5.3%). Both IGR and OFI extract significantly inhibited the COX-2, TNF-α, and IL-6 production. IGR seems to be a suitable natural compound for development of new anti-inflammatory ingredient.

  12. Two new kaempferol glycosides from the seeds of Camellia semiserrata Chi

    Institute of Scientific and Technical Information of China (English)

    Ling Tang; Xiao Juan Wu; Bao Min Feng; Li Ying Shi; Xue Yan Fu; Yong Qi Wang; Mei Feng Liu

    2011-01-01

    Two new acetylated kaempferol glycosides were isolated from the seeds of Camellia semiserrata Chi, their structures were elucidated as kaempferol-3-O-[(3-0-acetyl)-α-L-rharnnopyranosyl(1 → 3)(4-O-acetyl)-α-L-rhamnopyranosyl(l →6)-O-D-gluco-pyranoside] (1) and kaempferol-3-O-[(2-O-acetyl)-α-L-rhamnopyranosyl (1 → 3)(4-Oacetyl)-α-L-rhamnopyranosyl(l → 6)-β-d-gluco-pyranoside] (2) by spectral experiments (including ESI-MS, ID- and 2D-NMR). .

  13. Mechanistic Study of the Inhibitory Effect of Kaempferol on Uterine Fibroids In Vitro

    OpenAIRE

    Li, Yanxia; Ding, Zhaoxia; Wu, Chuanzhong

    2016-01-01

    Background This study examined the effect of kaempferol on uterine fibroids in vitro and the underlying mechanism, and investigated the potential of kaempferol as a clinical drug for the treatment of uterine fibroids. Material/Methods Uterine fibroid tissue and surrounding smooth muscle tissue were collected for primary culture. Different concentrations of kaempferol (12 μM, 24 μM, and 48 μM) were used to treat the cells for 24, 48, and 72 hours. Ethanol was used in the control group. A CCK-8...

  14. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  15. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT).

    Science.gov (United States)

    Poór, Miklós; Zrínyi, Zita; Kőszegi, Tamás

    2016-10-01

    Dietary flavonoids are abundant in the Plant Kingdom and they are extensively studied because of their manifold pharmacological activities. Recent studies highlighted that cell cycle arrest plays a key role in their antiproliferative effect in different tumor cells. However, structure-activity relationship of flavonoids is poorly characterized. In our study the influence of 18 flavonoid aglycones (as well as two metabolites) on cell cycle distribution was investigated. Since flavonoids are extensively metabolized by liver cells, HepG2 tumor cell line was applied, considering the potential metabolic activation/inactivation of flavonoids. Our major observations are the followings: (1) Among the tested compounds diosmetin, fisetin, apigenin, lutelin, and quercetin provoked spectacular extent of G2/M phase cell cycle arrest. (2) Inhibition of catechol-O-methyltransferase enzyme by entacapone decreased the antiproliferative effects of fisetin and quercetin. (3) Geraldol and isorhamnetin (3'-O-methylated metabolites of fisetin and quercetin, respectively) demonstrated significantly higher antiproliferative effect on HepG2 cells compared to the parent compounds. Based on these results, O-methylated flavonoid metabolites or their chemically modified derivatives may be suitable candidates of tumor therapy in the future.

  16. Tissue distribution of quercetin in rats and pigs

    NARCIS (Netherlands)

    Boer, V.C.J. de; Dihal, A.A.; Woude, H. van der; Arts, I.C.W.; Wolffram, S.; Alink, G.M.; Rietjens, I.M.C.M.; Keijer, J.; Hollman, P.C.H.

    2005-01-01

    Quercetin is a dietary polyphenolic compound with potentially beneficial effects on health. Claims that quercetin has biological effects are based mainly on in vitro studies with quercetin aglycone. However, quercetin is rapidly metabolized, and we have little knowledge of its availability to tissue

  17. Quercetin-induced cardioprotection against doxorubicin cytotoxicity

    Science.gov (United States)

    2013-01-01

    Background Cancer has continually been the leading cause of death worldwide for decades. Thus, scientists have actively devoted themselves to studying cancer therapeutics. Doxorubicin is an efficient drug used in cancer therapy, but also produces reactive oxygen species (ROS) that induce severe cytotoxicity against heart cells. Quercetin, a plant-derived flavonoid, has been proven to contain potent antioxidant and anti-inflammatory properties. Thus, this in vitro study investigated whether quercetin can decrease doxorubicin-induced cytotoxicity and promote cell repair systems in cardiomyocyte H9C2 cells. Results Proteomic analysis and a cell biology assay were performed to investigate the quercetin-induced responses. Our data demonstrated that quercetin treatment protects the cardiomyocytes in a doxorubicin-induced heart damage model. Quercetin significantly facilitated cell survival by inhibiting cell apoptosis and maintaining cell morphology by rearranging the cytoskeleton. Additionally, 2D-DIGE combined with MALDI-TOF MS analysis indicated that quercetin might stimulate cardiomyocytes to repair damage after treating doxorubicin by modulating metabolic activation, protein folding and cytoskeleton rearrangement. Conclusion Based on a review of the literature, this study is the first to report detailed protective mechanisms for the action of quercetin against doxorubicin-induced cardiomyocyte toxicity based on in-depth cell biology and proteomic analysis. PMID:24359494

  18. Kaempferol nanoparticles achieve strong and selective inhibition of ovarian cancer cell viability

    Directory of Open Access Journals (Sweden)

    Luo H

    2012-07-01

    Full Text Available Haitao Luo,1 Bingbing Jiang,2 Bingyun Li,2–4 Zhaoliang Li,1 Bing-Hua Jiang,5 Yi Charlie Chen11Department of Biology, Natural Science Division, Alderson-Broaddus College, Philippi, 2Department of Orthopaedics, School of Medicine, West Virginia University, 3WVNano Initiative, 4Mary Babb Randolph Cancer Center, Morgantown, WV, USA; 5Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USAAbstract: Ovarian cancer is one of the leading causes of cancer death for women throughout the Western world. Kaempferol, a natural flavonoid, has shown promise in the chemoprevention of ovarian cancer. A common concern about using dietary supplements for chemoprevention is their bioavailability. Nanoparticles have shown promise in increasing the bioavailability of some chemicals. Here we developed five different types of nanoparticles incorporating kaempferol and tested their efficacy in the inhibition of viability of cancerous and normal ovarian cells. We found that positively charged nanoparticle formulations did not lead to a significant reduction in cancer cell viability, whereas nonionic polymeric nanoparticles resulted in enhanced reduction of cancer cell viability. Among the nonionic polymeric nanoparticles, poly(ethylene oxide-poly(propylene oxide-poly(ethylene oxide (PEO-PPO-PEO nanoparticles incorporating kaempferol led to significant reduction in cell viability of both cancerous and normal cells. Poly(DL-lactic acid-co-glycolic acid (PLGA nanoparticles incorporating kaempferol resulted in enhanced reduction of cancer cell viability together with no significant reduction in cell viability of normal cells compared with kaempferol alone. Therefore, both PEO-PPO-PEO and PLGA nanoparticle formulations were effective in reducing cancer cell viability, while PLGA nanoparticles incorporating kaempferol had selective toxicity against cancer cells and normal cells. A PLGA nanoparticle formulation could be

  19. Quercetin

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Cooper, Ross G.

    2008-01-01

    With increasing interest among the general public for using natural and herbal remedies, there is a great need to document and list ancient medical texts and practices, as well as to investigate the efficacy of a number of 'ancient' compounds that are currently reputed to have medicinal benefits ...

  20. Quercetin-induced apoptosis prevents EBV infection

    Science.gov (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Sung, Gi-Ho; Cho, Hyosun; Kang, Hyojeung

    2015-01-01

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma

  1. Quercetin-induced apoptosis prevents EBV infection.

    Science.gov (United States)

    Lee, Minjung; Son, Myoungki; Ryu, Eunhyun; Shin, Yu Su; Kim, Jong Gwang; Kang, Byung Woog; Cho, Hyosun; Kang, Hyojeung

    2015-05-20

    Epstein-Barr virus (EBV) is a human gamma-1 herpesvirus that establishes a lifelong latency in over 90% of the world's population. During latency, virus exists predominantly as a chromatin-associated, multicopy episome in the nuclei of a variety of tumor cells derived from B cells, T cells, natural killer (NK) cells, and epithelial cells. Licorice is the root of Glycyrrhiza uralensis or G. glabra that has traditionally cultivated in eastern part of Asia. Licorice was reported to have anti-viral, anti-inflammatory, anti-atopic, hepatoprotective, anti-neurodegenerative, anti-tumor, anti-diabetic effects and so forth. Quercetin and isoliquiritigenin are produced from licorice and highly similar in molecular structure. They have diverse bioactive effects such as antiviral activity, anti-asthmatic activity, anti-cancer activity, anti-inflammation activity, monoamine-oxidase inhibitor, and etc. To determine anti-EBV and anti-EBVaGC (Epstein-Barr virus associated gastric carcinoma) effects of licorice, we investigated antitumor and antiviral effects of quercetin and isoliquiritigenin against EBVaGC. Although both quercetin and isoliquiritigenin are cytotoxic to SNU719 cells, quercetin induced more apoptosis in SNU719 cells than isoliquiritigenin, more completely eliminated DNMT1 and DNMT3A expressions than isoliquiritigenin, and more strongly affects the cell cycle progression of SNU719 than isoliquiritigenin. Both quercetin and isoliquiritigenin induce signal transductions to stimulate apoptosis, and induce EBV gene transcription. Quercetin enhances frequency of F promoter use, whereas isoliquiritigenin enhances frequency of Q promoter use. Quercetin reduces EBV latency, whereas isoliquiritigenin increases the latency. Quercetin increases more the EBV progeny production, and inhibits more EBV infection than isoliquiritigenin. These results indicate that quercetin could be a promising candidate for antiviral and antitumor agents against EBV and human gastric carcinoma.

  2. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Directory of Open Access Journals (Sweden)

    Guo Ava

    2012-04-01

    Full Text Available Abstract Background Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of Kaempferia galanga L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods. The herb K. galanga is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated. Methods Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts. Results Kaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM and induced estrogen receptor α (ERα phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, e.g., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM. ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect. Conclusion Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.

  3. Kaempferol, a new nutrition-derived pan-inhibitor of human histone deacetylases.

    Science.gov (United States)

    Berger, Alexander; Venturelli, Sascha; Kallnischkies, Mascha; Böcker, Alexander; Busch, Christian; Weiland, Timo; Noor, Seema; Leischner, Christian; Weiss, Thomas S; Lauer, Ulrich M; Bischoff, Stephan C; Bitzer, Michael

    2013-06-01

    Kaempferol is a natural polyphenol belonging to the group of flavonoids. Different biological functions like inhibition of oxidative stress in plants or animal cells and apoptosis induction have been directly associated with kaempferol. The underlying mechanisms are only partially understood. Here we report for the first time that kaempferol has a distinct epigenetic activity by inhibition of histone deacetylases (HDACs). In silico docking analysis revealed that it fits into the binding pocket of HDAC2, 4, 7 or 8 and thereby binds to the zinc ion of the catalytic center. Further in vitro profiling of all conserved human HDACs of class I, II and IV showed that kaempferol inhibited all tested HDACs. In clinical oncology, HDAC inhibitors are currently under investigation as new anticancer compounds. Therefore, we studied the effect of kaempferol on human-derived hepatoma cell lines HepG2 and Hep3B as well as on HCT-116 colon cancer cells and found that it induces hyperacetylation of histone complex H3. Furthermore, kaempferol mediated a prominent reduction of cell viability and proliferation rate. Interestingly, toxicity assays revealed signs of relevant cellular toxicity in primary human hepatocytes only starting at 50 μM as well as in an in vivo chicken embryotoxicity assay at 200 μM. In conclusion, the identification of a novel broad inhibitory capacity of the natural compound kaempferol for human-derived HDAC enzymes opens up the perspective for clinical application in both tumor prevention and therapy. Moreover, kaempferol may serve as a novel lead structure for chemical optimization of pharmacokinetics, pharmacology or inhibitory activities.

  4. Isorhamnetin inhibits proliferation and invasion and induces apoptosis through the modulation of peroxisome proliferator-activated receptor γ activation pathway in gastric cancer.

    Science.gov (United States)

    Ramachandran, Lalitha; Manu, Kanjoormana Aryan; Shanmugam, Muthu K; Li, Feng; Siveen, Kodappully Sivaraman; Vali, Shireen; Kapoor, Shweta; Abbasi, Taher; Surana, Rohit; Smoot, Duane T; Ashktorab, Hassan; Tan, Patrick; Ahn, Kwang Seok; Yap, Chun Wei; Kumar, Alan Prem; Sethi, Gautam

    2012-11-02

    Gastric cancer (GC) is a lethal malignancy and the second most common cause of cancer-related deaths. Although treatment options such as chemotherapy, radiotherapy, and surgery have led to a decline in the mortality rate due to GC, chemoresistance remains as one of the major causes for poor prognosis and high recurrence rate. In this study, we investigated the potential effects of isorhamnetin (IH), a 3'-O-methylated metabolite of quercetin on the peroxisome proliferator-activated receptor γ (PPAR-γ) signaling cascade using proteomics technology platform, GC cell lines, and xenograft mice model. We observed that IH exerted a strong antiproliferative effect and increased cytotoxicity in combination with chemotherapeutic drugs. IH also inhibited the migratory/invasive properties of GC cells, which could be reversed in the presence of PPAR-γ inhibitor. We found that IH increased PPAR-γ activity and modulated the expression of PPAR-γ regulated genes in GC cells. Also, the increase in PPAR-γ activity was reversed in the presence of PPAR-γ-specific inhibitor and a mutated PPAR-γ dominant negative plasmid, supporting our hypothesis that IH can act as a ligand of PPAR-γ. Using molecular docking analysis, we demonstrate that IH formed interactions with seven polar residues and six nonpolar residues within the ligand-binding pocket of PPAR-γ that are reported to be critical for its activity and could competitively bind to PPAR-γ. IH significantly increased the expression of PPAR-γ in tumor tissues obtained from xenograft model of GC. Overall, our findings clearly indicate that antitumor effects of IH may be mediated through modulation of the PPAR-γ activation pathway in GC.

  5. Novel self-nanoemulsifying formulation of quercetin

    DEFF Research Database (Denmark)

    Jain, Amit K; Thanki, Kaushik; Jain, Sanyog

    2014-01-01

    UNLABELLED: The present work focuses on the anticancer potential of quercetin (QT) loaded self-nanoemulsifying drug delivery system (QT-SNEDDS) composed of Capmul MCM, Tween 20 and ethanol. In vitro cell culture studies revealed potential cell cytotoxicity of developed formulation mediated by its...... to that of free QT (~20%). Finally, safety profile of developed formulation was established assessing various hepatotoxicity markers. FROM THE CLINICAL EDITOR: This basic science study focuses on the anticancer potential of a specific quercetin loaded self-nanoemulsifying drug delivery system. At higher doses...... significantly higher therapeutic anticancer efficacy (~65% tumor suppression) was noted in the same model as compared to that of free quercetin (~20%)....

  6. Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats.

    Science.gov (United States)

    Zhou, Zhaoxiang; Wang, Meng; Guo, Zengjun; Zhang, Xiaoying

    2016-12-01

    This study was aimed at investigating the effect of ethanol on oral bioavailability of kaempferol in rats, namely, at disclosing their possible interaction. Kaempferol (100 or 250 mg kg-1 bm) was administered to the rats by oral gavage with or without ethanol (600 mg kg-1 bm) co-administration. Intravenous administration (10 and 25 mg kg-1 bm) of kaempferol was used to determine the bioavailability. The concentration of kaempferol in plasma was estimated by ultra high performance liquid chromatography. During coadministration, a significant increase of the area under the plasma concentration-time curve as well as the peak concentration were observed, along with a dramatic decrease in total body clearance. Consequently, the bioavailability of kaempferol in oral control groups was 3.1 % (100 mg kg-1 bm) and 2.1 % (250 mg kg-1 bm). The first was increased by 4.3 % and the other by 2.8 % during ethanol co-administration. Increased permeability of cell membrane and ethanolkaempferol interactions on CYP450 enzymes may enhance the oral bioavailability of kaempferol in rats.

  7. Protective effects of kaempferol against cardiac sinus node dysfunction via CaMKII deoxidization.

    Science.gov (United States)

    An, Minae; Kim, Minsuk

    2015-12-01

    Kaempferol exerts cardioprotective actions through incompletely understood mechanisms. This study investigated the molecular mechanisms underlying the cardioprotective effects of kaempferol in sinus node dysfunction (SND) heart. Here, we demonstrate that angiotensin II (Ang II) infusion causes SND through oxidized calmodulin kinase II (CaMKII). In contrast to this, kaempferol protects sinus node against Ang II-induced SND. Ang II evoked apoptosis with caspase-3 activation in sinus nodal cells. However, kaempferol lowered the CaMKII oxidization and the sinus nodal cell death. To block the CaMKII oxidization, gene of p47phox, a cytosolic subunit of NADPH oxidase, was deleted using Cas9 KO plasmid. In the absence of p47phox, sinus nodal cells were highly resistance to Ang II-induced apoptosis, suggesting that oxidized-CaMKII contributed to sinus nodal cell death. In Langendorff heart from Ang II infused mice, kaempferol preserved normal impulse formation at right atrium. These data suggested that kaempferol protects sinus node via inhibition of CaMKII oxidization and may be useful for preventing SND in high risk patients.

  8. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats.

    Science.gov (United States)

    Zabela, Volha; Sampath, Chethan; Oufir, Mouhssin; Moradi-Afrapoli, Fahimeh; Butterweck, Veronika; Hamburger, Matthias

    2016-12-01

    Kaempferol is a major flavonoid in the human diet and in medicinal plants. The compound exerts anxiolytic activity when administered orally in mice, while no behavioural changes were observed upon intraperitoneal administration, or upon oral administration in gut sterilized animals. 4-Hydroxyphenylacetic acid (4-HPAA), which possesses anxiolytic effects when administered intraperitoneally, is a major intestinal metabolite of kaempferol. Pharmacokinetic properties of the compounds are currently not clear. UHPLC-MS/MS methods were validated to support pharmacokinetic studies of kaempferol and 4-HPAA in rats. Non-compartmental and compartmental analyses were performed. After intravenous administration, kaempferol followed a one-compartment model, with a rapid clearance (4.40-6.44l/h/kg) and an extremely short half-life of 2.93-3.79min. After oral gavage it was not possible to obtain full plasma concentration-time profiles of kaempferol. Pharmacokinetics of 4-HPAA was characterized by a two-compartment model, consisting of a quick distribution phase (half-life 3.04-6.20min) followed by a fast elimination phase (half-life 19.3-21.1min). Plasma exposure of kaempferol is limited by poor oral bioavailability and extensive metabolism. Both compounds are rapidly eliminated, so that effective concentrations at the site of action do not appear to be reached. At present, it is not clear how the anxiolytic-like effects reported for the compounds can be explained. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Isorhamnetin flavonoid synergistically enhances the anticancer activity and apoptosis induction by cis-platin and carboplatin in non-small cell lung carcinoma (NSCLC).

    Science.gov (United States)

    Zhang, Bao-Yi; Wang, Yan-Ming; Gong, Hai; Zhao, Hui; Lv, Xiao-Yan; Yuan, Guang-Hui; Han, Shao-Rong

    2015-01-01

    The development of novel antitumor drugs for the treatment of non-small cell lung carcinoma NSCLC is imperative in order to improve the efficacy of lung cancer therapy and prognosis. In the current study, we demonstrated the antitumor activity of isorhamnetin and its combinations with cisplatin and carboplatin against A-549 lung cancer cells. In order to assess the anticancer enhancing effect of isorhamnetin on cisplatin and carboplatin, A-549 cells were treated with isorhamnetin, cisplatin, carboplatin and their combinations and cell viability, cell apoptosis, cell cycle arrest as well as loss of mitochondrial membrane potential were evaluated by MTT assay, flow cytometry, confocal microscopy and fluorescence microscopy. The effect of the drugs on cancer cell migration, microtubule depolymerization as well activation of caspases was also studied. The results revealed that, as compared to single drug treatment, the combination of isorhamnetin with cisplatin and carboplatin resulted in greater effect in inhibiting cancer cell growth and inducing apoptosis. Combination of isorhamnetin with cisplatin and carboplatin resulted in more potent apoptosis induction as revealed by fluorescence microscopy using AO/PI double staining. Isorhamnetin and its combinations also triggered microtubule distortion and depolymerization. The combination of isorhamnetin with cisplatin and carboplatin increased the number of cells in G2/M phase dramatically as compared to single drug treatment. Moreover, isorhamnetin and its combinations with known anticancer drugs induced disruption of the mitochondrial membrane potential as well as activation of caspases 3, 9 and poly-(ADP-ribose) polymerase in A-549 cells. Isorhamnetin as well as its combinations with cisplatin and carboplatin resulted in inhibition of cancer cell migration significantly. Results of the current study suggest that isorhamnetin combinations with cisplatin and carboplatin might be a potential clinical chemotherapeutic

  10. Kaempferol inhibits fibroblast collagen synthesis, proliferation and activation in hypertrophic scar via targeting TGF-β receptor type I.

    Science.gov (United States)

    Li, Hongwei; Yang, Liu; Zhang, Yuebing; Gao, Zhigang

    2016-10-01

    Hypertrophic scar (HPS) formation is a debilitating condition that results in pain, esthetic symptom and loss of tissue function. So far, no satisfactory therapeutic approach has been available for HPS treatment. In this study, we discovered that a natural small molecule, kaempferol, could significantly inhibit HPS formation in a mechanical load-induced mouse model. Our results also demonstrated that kaempferol remarkably attenuated collagen synthesis, proliferation and activation of fibroblasts in vitro and in vivo. Western blot analysis further revealed that kaempferol significantly down-regulated Smad2 and Smad3 phosphorylation in a dose-dependent manner. At last, we found that such bioactivity of kaempferol which resulted from the inhibition of TGF-β1/Smads signaling was induced by the selective binding of kaempferol to TGF-β receptor type I (TGFβRI). These findings suggest that kaempferol could be developed into a promising agent for the treatment of HPS or other fibroproliferative disorders.

  11. Quercetin alters energy metabolism in swimming mice.

    Science.gov (United States)

    Wu, Jianquan; Gao, Weina; Wei, Jingyu; Yang, Jijun; Pu, Lingling; Guo, Changjiang

    2012-10-01

    Quercetin has been demonstrated to be effective in increasing physical endurance in mice and humans. However, the mechanisms involved are not fully understood. In this study, male Kunming mice were fed a diet containing 0.1% quercetin for 14 days before swimming for 60 min. The overall serum metabolic profile was investigated by a ¹H nuclear magnetic resonance-based metabolomic approach. Serum glucose, lactate, nonesterified fatty acids (NEFA), and nonprotein nitrogen (NPN), as well as hepatic and muscular glycogen were measured biochemically. The results of metabolomic analysis showed that swimming induced a significant change in serum metabolic profile. Relative increases in the levels of lactate, alanine, low-density lipoprotein-very low-density lipoprotein, and unsaturated fatty acids, and decreases in choline, phosphocholine, and glucose were observed after swimming. With quercetin supplementation, these changes were attenuated. The results of biochemical assays were consistent with the data obtained from metabolomic analysis, in that serum NEFA was increased while lactate and NPN decreased after exposed to quercetin in swimming mice. Similar change in NEFA was also found in liver and gastrocnemius muscle tissues. Our current findings suggest that quercetin alters energy metabolism in swimming mice and increased lipolysis may contribute to the actions of quercetin on physical endurance.

  12. In Vivo Exposure of Kaempferol Is Driven by Phase II Metabolic Enzymes and Efflux Transporters.

    Science.gov (United States)

    Zheng, Liang; Zhu, Lijun; Zhao, Min; Shi, Jian; Li, Yuhuan; Yu, Jia; Jiang, Huangyu; Wu, Jinjun; Tong, Yunli; Liu, Yuting; Hu, Ming; Lu, Linlin; Liu, Zhongqiu

    2016-09-01

    Kaempferol is a well-known flavonoid; however, it lacks extensive pharmacokinetic studies. Phase II metabolic enzymes and efflux transporters play an important role in the disposition of flavonoids. This study aimed to investigate the mechanism by which phase II metabolic enzymes and efflux transporters determine the in vivo exposure of kaempferol. Pharmacokinetic analysis in Sprague-Dawley rats revealed that kaempferol was mostly biotransformed to conjugates, namely, kaempferol-3-glucuronide (K-3-G), kaempferol-7-glucuronide (K-7-G), and kaempferol-7-sulfate, in plasma. K-3-G represented the major metabolite. Compared with that in wild-type mice, pharmacokinetics in knockout FVB mice demonstrated that the absence of multidrug resistance protein 2 (MRP2) and breast cancer resistance protein (BCRP) significantly increased the area under the curve (AUC) of the conjugates. The lack of MRP1 resulted in a much lower AUC of the conjugates. Intestinal perfusion in rats revealed that the glucuronide conjugates were mainly excreted in the small intestine, but 7-sulfate was mainly excreted in the colon. In Caco-2 monolayers, K-7-G efflux toward the apical (AP) side was significantly higher than K-3-G efflux. In contrast, K-3-G efflux toward the basolateral (BL) side was significantly higher than K-7-G efflux. The BL-to-AP efflux was significantly reduced in the presence of the MRP2 inhibitor LTC4. The AP-to-BL efflux was significantly decreased in the presence of the BL-side MRPs inhibitor MK571. The BCRP inhibitor Ko143 decreased the glucuronide conjugate efflux. Therefore, kaempferol is mainly exposed as K-3-G in vivo, which is driven by phase II metabolic enzymes and efflux transporters (i.e., BCRP and MRPs).

  13. Kaempferol targets RSK2 and MSK1 to suppress UV radiation-induced skin cancer.

    Science.gov (United States)

    Yao, Ke; Chen, Hanyong; Liu, Kangdong; Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M; Dong, Ziming; Dong, Zigang

    2014-09-01

    Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1.

  14. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro

    OpenAIRE

    Jungwhoi Lee; Jae Hoon Kim

    2016-01-01

    Pancreatic cancer is one of the most appalling cancers with a pessimistic prognosis. Despite many therapies, there has been no improvement of survival rates. In this study, we assessed the anti-cancer effects of kaempferol, a well known flavonoid having functional bio-activity against various malignant tumors. Kaempferol had anti-cancer effects on Miapaca-2, Panc-1, and SNU-213 human pancreatic cancer cells. In a dose-dependent manner, kaempferol decreased viability of these pancreatic cancer...

  15. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs.

    Science.gov (United States)

    Zhu, Jun; Tang, Haoyu; Zhang, Zhenhua; Zhang, Yong; Qiu, Chengfeng; Zhang, Ling; Huang, Pinge; Li, Feng

    2017-02-01

    Intervertebral disc (IVD) degeneration is a common disease that represents a significant cause of socio-economic problems. Bone marrow-derived mesenchymal stem cells (BMSCs) are a potential autologous stem cell source for the nucleus pulposus regeneration. Kaempferol has been reported to exert protective effects against both osteoporosis and obesity. This study explored the effect of kaempferol on BMSCs differentiation and inflammation. The results demonstrated that kaempferol did not show any cytotoxicity at concentrations of 20, 60 and 100μM. Kaempferol enhanced cell viability by counteracting the lipopolysaccharide (LPS)-induced cell apoptosis and increasing cell proliferation. Western blot analysis of mitosis-associated nuclear antigen (Ki67) and proliferation cell nuclear antigen (PCNA) further confirmed the increased effect of kaempferol on LPS-induced decreased viability of BMSCs. Besides, kaempferol elevated LPS-induced reduced level of chondrogenic markers (SOX-9, Collagen II and Aggrecan), decreased the level of matrix-degrading enzymes, i.e., matrix metalloprotease (MMP)-3 and MMP-13, suggesting the osteogenesis of BMSC under kaempferol treatment. On the other hand, kaempferol enhanced LPS-induced decreased expression of lipid catabolism-related genes, i.e., carnitine palmitoyl transferase-1 (CPT-1). Kaempferol also suppressed the expression of lipid anabolism-related genes, i.e., peroxisome proliferators-activated receptor-γ (PPAR-γ). The Oil red O staining further convinced the inhibition effect of kaempferol on BMSCs adipogenesis. In addition, kaempferol alleviated inflammatory by reducing the level of pro-inflammatory cytokines (i.e., interleukin (IL)-6) and increasing anti-inflammatory cytokine (IL-10) via inhibiting the nucleus translocation of nuclear transcription factor (NF)-κB p65. Taken together, our research indicated that kaempferol may serve as a novel target for treatment of IVD degeneration.

  16. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    Science.gov (United States)

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  17. Tomato ( Lycopersicon esculentum ) seeds: new flavonols and cytotoxic effect.

    Science.gov (United States)

    Ferreres, Federico; Taveira, Marcos; Pereira, David M; Valentão, Patrícia; Andrade, Paula B

    2010-03-10

    In this study, seeds of Lycopersicon esculentum Mill. were analyzed by HPLC/UV-PAD/MS(n)-ESI. Fourteen flavonoids were identified, including quercetin, kaempferol, and isorhamnetin derivatives, with 13 of them being reported for the first time in tomato seeds. The major identified compounds were quercetin-3-O-sophoroside, kaempferol-3-O-sophoroside, and isorhamnetin-3-O-sophoroside. A significant cell proliferation inhibition (>80%), against rat basophile leukemia (RBL-2H3) cell line, was observed with this extract (IC(50) = 5980 microg/mL). For acetylcholinesterase inhibitory activity, a concentration-dependent effect was verified (IC(20) = 2400 microg/mL). The same behavior was noted regarding antioxidant capacity, evaluated against DPPH (IC(10) = 284 microg/mL), nitric oxide (IC(25) = 396 microg/L), and superoxide radicals (IC(25) = 3 microg/mL).

  18. Double-loaded liposomes encapsulating Quercetin and Quercetin beta-cyclodextrin complexes: Preparation, characterization and evaluation

    Directory of Open Access Journals (Sweden)

    Jessy Shaji

    2012-01-01

    Full Text Available Beta-cyclodextrin (CD inclusion complexes of Quercetin were formed and characterized by Differential scanning calorimetry (DSC and Fourier transform infra-red spectroscopy (FTIR spectroscopy. Plain Quercetin liposomes using phosphatidylcholine and cholesterol were prepared and optimized. Factors such as ratio of lipids employed, drug:lipid ratio, etc. were fine tuned and optimized to achieve maximum entrapment of the Quercetin into the bilayer. Entrapment was further enhanced by double loading the liposomes. These were prepared by incorporating Quercetin as a plain drug as well as the inclusion complexes within the lipid bilayer and the aqueous compartment, respectively, of the liposomes using the thin film hydration technique. The highest entrapment was achieved with a lipid ratio of 9:1, and the amount of plain drug entering the bilayer was 1/10 th the amount of lipid employed. Double loading increased this value to one part of drug per five parts of lipid when Quercetin-beta-CD (1:1 mol/mol was entrapped. The release of Quercetin from liposomes was highest when the drug was entrapped in the form of a complex with beta cylodextrin. The high entrapment ability of Quercetin in the form of plain drug as well as beta cylodextrin-Quercetin complexes in comparison with plain drug is an indubitable advantage of this approach.

  19. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  20. A New Kaempferol Glycoside with Antioxidant Activity from Chenopodium ambrosioides Growing in Egypt

    Directory of Open Access Journals (Sweden)

    Mosad Ahmed Ghareeb

    2016-12-01

    Full Text Available The current study aimed to identify the chemical constituents of Chenopodium ambrosioides (Linn., and the assessment of the in vitro antioxidant activity of the different extracts and pure isolates. Methods: The antioxidant activity was estimated via free radical scavenging and Phosphomolybdenum assays. Structure elucidation of pure compounds was achieved via UV, IR, 1H & 13C-NMR, 1H-1H COSY, HMQC, and HMBC, spectroscopy. Bioassay-guided fractionation and isolation of the n-butanol fraction led to the isolation of a new kaempferol glycoside namely; kaempferol 3-O-α-L-1C4-rhamnosyl-(1'''→2''-β-D-4C1-xylopyranoside (1, together with five known compounds identified as; kaempferol 3-O-α-L-1C4–rhamnopyranoside (afzelin (2, kaempferol 7-O-α-L-1C4–rhamnopyranoside (3, caffeic acid (4, 1,2-benzopyrone (coumarin (5, and kaempferol (6. Compound (1 showed in vitro antioxidant activity of SC50 12.45 μg/ml, compared to ascorbic acid (AA with SC50 of 7.50 μg/ml. It can conclude that the leaves of C. ambrosioides can be used as promising natural antioxidants agents.

  1. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts.

    Science.gov (United States)

    Tang, Xi-Lan; Liu, Jian-Xun; Dong, Wei; Li, Peng; Li, Lei; Hou, Jin-Cai; Zheng, Yong-Qiu; Lin, Cheng-Ren; Ren, Jun-Guo

    2015-02-01

    Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.

  2. Different concentrations of kaempferol distinctly modulate murine embryonic stem cell function.

    Science.gov (United States)

    Correia, Marcelo; Rodrigues, Ana S; Perestrelo, Tânia; Pereira, Sandro L; Ribeiro, Marcelo F; Sousa, Maria I; Ramalho-Santos, João

    2016-01-01

    Kaempferol (3,4',5,7-tetrahydroxyflavone) is a natural flavonoid with several beneficial and protective effects. It has been demonstrated that kaempferol has anticancer properties, particularly due to its effects on proliferation, apoptosis and the cell cycle. However, possible effects on pluripotent embryonic stem cell function have not yet been addressed. Embryonic stem cells have the ability to self-renew and to differentiate into all three germ layers with potential applications in regenerative medicine and in vitro toxicology. We show that exposure of murine embryonic stem cells (mESC) to high concentrations of kaempferol (200 μM) leads to decreased cell numbers, although the resulting smaller cell colonies remain pluripotent. However, lower concentrations of this compound (20 μM) increase the expression of pluripotency markers in mESCs. Mitochondrial membrane potential and mitochondrial mass are not affected, but a dose-dependent increase in apoptosis takes place. Moreover, mESC differentiation is impaired by kaempferol, which was not related to apoptosis induction. Our results show that low concentrations of kaempferol can be beneficial for pluripotency, but inhibit proper differentiation of mESCs. Additionally, high concentrations induce apoptosis and increase mitochondrial reactive oxygen species (ROS).

  3. Standardization of Kaempferol Reference Substance%山柰酚对照品的标定

    Institute of Scientific and Technical Information of China (English)

    谢春燕; 徐新军; 刘群娣; 闫李丽; 谢晓玲; 杨得坡

    2011-01-01

    Objective To standardize the kaempferol reference substance. Methods HPLC- diode array detection (DAD)was applied to determine the purity of kaempferol, and then the purity of kaempferol were calculated both by area normalization method and self-contrasted dilution method. Results The results of normalization method and self-contrasted dilution method showed that the purity was over 98.0 %. Conclusion Purity of this batch of kaempferol could reach the requirement of chemical reference standards for traditional Chinese medicine by confirmation of various analytical methods, and the methods used for the assay of kaempferol are practical.%目的 标定山柰酚对照品.方法 采用高效液相色谱二极管阵列检测(DAD)测定山柰酚样品纯度.结果 经高效液相色谱紫外检测,以面积归一化法和自身稀释对照法计算山柰酚样品纯度,均达98.0%以上.结论 多种分析方法互相印证,表明该批样品达到中药化学对照品纯度要求,所用分析方法可靠.

  4. Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies.

    Science.gov (United States)

    Moradi-Afrapoli, Fahimeh; Oufir, Mouhssin; Walter, Fruzsina R; Deli, Maria A; Smiesko, Martin; Zabela, Volha; Butterweck, Veronika; Hamburger, Matthias

    2016-09-05

    Sedative and anxiolytic-like properties of flavonoids such as kaempferol and quercetin, and of some of their intestinal metabolites, have been demonstrated in pharmacological studies. However, routes of administration were shown to be critical for observing in vivo activity. Therefore, the ability to cross intestinal and blood-brain barriers was assessed in cell-based models for kaempferol (KMF), and for the major intestinal metabolite of KMF, 4-hydroxyphenylacetic acid (4-HPAA). Intestinal transport studies were performed with Caco-2 cells, and blood-brain barrier transport studies with an immortalized monoculture human model and a primary triple-co-culture rat model. UHPLC-MS/MS methods for KMF and 4-HPAA in Ringer-HEPES buffer and in Hank's balanced salt solution were validated according to industry guidelines. For all methods, calibration curves were fitted by least-squares quadratic regression with 1/X(2) as weighing factor, and mean coefficients of determination (R(2)) were >0.99. Data obtained with all barrier models showed high intestinal and blood-brain barrier permeation of KMF, and no permeability of 4-HPAA, when compared to barrier integrity markers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Inhibitory Effects of Isorhamnetin on the Invasion of Human Breast Carcinoma Cells by Downregulating the Expression and Activity of Matrix Metalloproteinase-2/9.

    Science.gov (United States)

    Li, Chenglin; Yang, Dan; Zhao, Yuanwei; Qiu, Yu; Cao, Xin; Yu, Yanyan; Guo, Hao; Gu, Xiaoke; Yin, Xiaoxing

    2015-01-01

    Matrix metalloproteinases (MMPs) play an active role in facilitating the invasion of cancer cells with excessive extracellular matrix (ECM) degradation. In the present study, we investigated the antiinvasive effects of isorhamnetin, a naturally occurring flavonoid, on MDA-MB-231 human breast carcinoma cells. The results indicated that isorhamnetin significantly inhibited the adhesion, migration, and invasion of the cells in vitro. Moreover, isorhamnetin suppressed the activity and expression of MMP-2 and MMP-9, which were determined by gelatin zymography, real-time PCR, and Western blot analysis, respectively. Besides, isorhamnetin had little effect on the secretion of urokinase plasminogen activator. Further elucidation of the mechanism revealed that isorhamnetin exerted an inhibitory effect on the phosphorylation of p38 and STAT3, although it had no effect on ERK1/2 and JNK. Taken together, these data demonstrated that isorhamnetin could significantly inhibit the invasion of MDA-MB-231 cells by downregulating the expression and activity of MMP-2 and MMP-9, which was potentially associated with the suppression of p38 MAPK and STAT3. Therefore, the findings provide new evidence for the anti-cancer activity of isorhamnetin.

  6. Detection of isorhamnetin glycosides in extracts of apples (Malus domestica cv. "Brettacher") by HPLC-PDA and HPLC-APCI-MS/MS.

    Science.gov (United States)

    Schieber, Andreas; Keller, Petra; Streker, Petra; Klaiber, Iris; Carle, Reinhold

    2002-01-01

    Extracts of apple fruits (Malus domestica cv. "Brettacher") were analysed by HPLC with photodiode array detection. An unknown peak was monitored displaying the same retention time as isorhamnetin 3-O-glucoside. Preliminary identification of the isorhamnetin aglycone was performed by comparison of UV spectral data of the unknown compound with a reference substance. Using atmospheric pressure chemical ionisation mass spectrometry in the negative ion mode, the presence of an isorhamnetin glycoside was supported by loss of 162 amu from the pseudomolecular ion (m/z 477). MS2 product ion analysis of the parent ion m/z 477 provided a fragmentation pattern identical to the reference. Collision-induced dissociation of the aglycone (m/z 315) in the MS3 product ion analysis allowed the differentiation of rhamnetin and isorhamnetin, and unambiguous assignment by comparison with standard compounds. A second isorhamnetin glycoside eluting prior to the glucoside was tentatively identified as isorhamnetin 3-O-galactoside. To the best of our knowledge, this is the first report of isorhamnetin glycosides in apple fruit extracts. Results are discussed with respect to chemotaxonomic relevance within the genera Malus and Pyrus, and especially in consideration of the control of the authenticity of apple products.

  7. Protective effects of Nitraria retusa extract and its constituent isorhamnetin against amyloid β-induced cytotoxicity and amyloid β aggregation.

    Science.gov (United States)

    Iida, Akihisa; Usui, Takeo; Zar Kalai, Feten; Han, Junkyu; Isoda, Hiroko; Nagumo, Yoko

    2015-01-01

    Nitraria retusa is a halophyte species that is distributed in North Africa and used as a traditional medicinal plant. In this study, N. retusa ethanol extract and its constituent isorhamnetin (IRA) protected against amyloid β (Aβ)-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. An in vitro Aβ aggregation assay suggested that IRA destabilizes Aβ fibrils.

  8. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.

    Science.gov (United States)

    Wang, Su Bin; Jang, Ji Yong; Chae, Yun Hee; Min, Ji Hyun; Baek, Jin Young; Kim, Myunghee; Park, Yunjeong; Hwang, Gwi Seo; Ryu, Jae-Sang; Chang, Tong-Shin

    2015-06-01

    Reactive oxygen species (ROS) generated upon collagen stimulation act as second messengers to propagate various platelet-activating events. Among the ROS-generating enzymes, NADPH oxidase (NOX) plays a prominent role in platelet activation. Thus, NOX has been suggested as a novel target for anti-platelet drug development. Although kaempferol has been identified as a NOX inhibitor, the influence of kaempferol on the activation of platelets and the underlying mechanism have never been investigated. Here, we studied the effects of kaempferol on NOX activation, ROS-dependent signaling pathways, and functional responses in collagen-stimulated platelets. Superoxide anion generation stimulated by collagen was significantly inhibited by kaempferol in a concentration-dependent manner. More importantly, kaempferol directly bound p47(phox), a major regulatory subunit of NOX, and significantly inhibited collagen-induced phosphorylation of p47(phox) and NOX activation. In accordance with the inhibition of NOX, ROS-dependent inactivation of SH2 domain-containing protein tyrosine phosphatase-2 (SHP-2) was potently protected by kaempferol. Subsequently, the specific tyrosine phosphorylation of key components (Syk, Vav1, Btk, and PLCγ2) of collagen receptor signaling pathways was suppressed by kaempferol. Kaempferol also attenuated downstream responses, including cytosolic calcium elevation, P-selectin surface exposure, and integrin-αIIbβ3 activation. Ultimately, kaempferol inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. This study shows that kaempferol impairs collagen-induced platelet activation through inhibition of NOX-derived ROS production and subsequent oxidative inactivation of SHP-2. This effect suggests that kaempferol has therapeutic potential for the prevention and treatment of thrombovascular diseases.

  9. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  10. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol.

    Science.gov (United States)

    Ilk, Sedef; Sağlam, Necdet; Özgen, Mustafa; Korkusuz, Feza

    2017-01-01

    Quorum sensing (QS) is a cell density dependent expression of species in bacteria mediated by compounds called autoinducers (AI). Several processes responsible for successful establishment of bacterial infection are mediated by QS. Inhibition of QS is therefore being considered as a new target for antimicrobial chemotherapy. Flavonoid compounds are strong antioxidant and antimicrobial agents but their applications are limited due to their poor dissolution and bioavailability. Our objective was to investigate the effect of kaempferol loaded chitosan nanoparticles on modulating QS mediated by AI in model bioassay test systems. For this purpose, kaempferol loaded nanoparticles were synthesized and characterized in terms of hydrodynamic diameter, hydrogen bonding, amorphous transformation and antioxidant activity. QS inhibition in time dependent manner of nanoparticles was measured in violacein pigment producing using the biosensor strain Chromobacterium violaceum CV026 mediated by AI known as acylated homoserine lactone (AHL). Our results indicated that the average kaempferol loaded chitosan/TPP nanoparticle size and zeta potential were 192.27±13.6nm and +35mV, respectively. The loading and encapsulation efficiency of kaempferol into chitosan/TPP nanoparticles presented higher values between 78 and 93%. Kaempferol loaded chitosan/TPP nanoparticle during the 30 storage days significantly inhibited the production of violacein pigment in Chromobacterium violaceum CV026. The observation that kaempferol encapsulated chitosan nanoparticles can inhibit QS related processes opens up an exciting new strategy for antimicrobial chemotherapy as stable QS-based anti-biofilm agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain.

    Science.gov (United States)

    Kim, Shi Hyoung; Park, Jae Gwang; Sung, Gi-Ho; Yang, Sungjae; Yang, Woo Seok; Kim, Eunji; Kim, Jun Ho; Ha, Van Thai; Kim, Han Gyung; Yi, Young-Su; Kim, Ji Hye; Baek, Kwang-Soo; Sung, Nak Yoon; Lee, Mi-nam; Kim, Jong-Hoon; Cho, Jae Youl

    2015-07-01

    Kaempferol (KF) is the most abundant polyphenol in tea, fruits, vegetables, and beans. However, little is known about its in vivo anti-inflammatory efficacy and mechanisms of action. To study these, several acute mouse inflammatory and nociceptive models, including gastritis, pancreatitis, and abdominal pain were employed. Kaempferol was shown to attenuate the expansion of inflammatory lesions seen in ethanol (EtOH)/HCl- and aspirin-induced gastritis, LPS/caerulein (CA) triggered pancreatitis, and acetic acid-induced writhing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cytotoxic activity of kaempferol glycosides against human leukaemic cell lines in vitro.

    Science.gov (United States)

    Dimas, K; Demetzos, C; Mitaku, S; Marselos, M; Tzavaras, T; Kokkinopoulos, D

    2000-01-01

    Two kaempferol coumaroyl glycosides (i.e. platanoside and tiliroside) isolated from the methanolic extract of Platanus orientalis L. buds, were examined for their in vitro cytotoxic activity against a panel of human leukaemic cell lines. Platanoside (1) exhibited cytotoxic activity against most of the cell lines tested, while tiliroside (2) was active against two of the nine tested cell lines. Compound 1, was examined for its effect on the uptake of [(3)H]thymidine as a marker of DNA synthesis. Kaempferol was used as a control.

  13. Synthesis of icariin from kaempferol through regioselective methylation and para-Claisen–Cope rearrangement

    Directory of Open Access Journals (Sweden)

    Qinggang Mei

    2015-07-01

    Full Text Available The hemisynthesis of the naturally occurring bioactive flavonoid glycoside icariin (1 has been accomplished in eleven steps with 7% overall yield from kaempferol. The 4′-OH methylation of kaempferol, the 8-prenylation of 3-O-methoxymethyl-4′-O-methyl-5-O-prenyl-7-O-benzylkaempferol (8 via para-Claisen–Cope rearrangement catalyzed by Eu(fod3 in the presence of NaHCO3, and the glycosylation of icaritin (3 are the key steps.

  14. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    Science.gov (United States)

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.

  15. KINETICS OF QUERCETIN NITRATIO N BY HORSERADISH PEROXIDASE

    Directory of Open Access Journals (Sweden)

    Andrija Šmelcerović

    2013-03-01

    Full Text Available In this study we investigated the kinetics of the nitration of quercetin by horseradish peroxidase. Quercetin nitration reaction was followed by recording the spectral changes over the time at 380 nm. The reaction rate increases with increasing of the quercetin concentration and follows the Michaelis-Menten type kinetics. Kinetic parameters of the studied enzymatic reaction were determined.

  16. Chronic quercetin exposure affects fatty acid catabolism in rat lung

    NARCIS (Netherlands)

    Boer, de V.C.J.; Schothorst, van E.M.; Dihal, A.A.; Woude, van der H.; Arts, I.C.W.; Rietjens, I.M.C.M.; Hollman, P.C.H.; Keijer, J.

    2006-01-01

    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in

  17. Production of 3-O-xylosyl quercetin in Escherichia coli

    DEFF Research Database (Denmark)

    Pandey, Ramesh Prasad; Malla, Sailesh; Simkhada, Dinesh

    2013-01-01

    Quercetin, a flavonol aglycone, is one of the most abundant flavonoids with high medicinal value. The bioavailability and pharmacokinetic properties of quercetin are influenced by the type of sugars attached to the molecule. To efficiently diversify the therapeutic uses of quercetin, Escherichia ...

  18. Chronic quercetin exposure affects fatty acid catabolism in rat lung

    NARCIS (Netherlands)

    Boer, de V.C.J.; Schothorst, van E.M.; Dihal, A.A.; Woude, van der H.; Arts, I.C.W.; Rietjens, I.M.C.M.; Hollman, P.C.H.; Keijer, J.

    2006-01-01

    Dietary quercetin intake is suggested to be health promoting, but this assumption is mainly based on mechanistic studies performed in vitro. Previously, we identified rat lung as a quercetin target tissue. To assess relevant in vivo health effects of quercetin, we analyzed mechanisms of effect in ra

  19. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes.

    Science.gov (United States)

    Rezaei-Sadabady, Rogaie; Eidi, Akram; Zarghami, Nosratollah; Barzegar, Abolfazl

    2016-01-01

    Quercetin (3,5,7,3',4'-pentahydroxyflavone) is a natural bio-flavonoid originating from fruits, vegetables, seeds, berries, and tea. The antioxidant activity of quercetin and its protective effects against cardiovascular disorders, anti-cancer, anti-inflammatory, and anti-viral activities have been extensively documented; however, the clinical request of quercetin in cancer treatment is significantly limited due to its very poor delivery features. In order to increase the hydrophilicity and drug delivery capability, we encapsulated quercetin into liposomes. Our data indicated that liposomal quercetin can significantly improve the solubility and bioavailability of quercetin and can be used as an effective antioxidant for ROS protection within the polar cytoplasm, and the nano-sized quercetin encapsulated by liposomes enhanced the cellular uptake (cancer cell human MCF_7). Quercetin has many pharmaceutical applications, many of which arise from its potent antioxidant properties. The present research examined the antioxidant activities of quercetin in polar solvents by a comparative study using reduction of ferric iron in aqueous medium, intracellular ROS/toxicity assays, and reducing DPPH assays. Cell viability and ROS assays demonstrated that quercetin was able to penetrate into the polar medium inside the cells and to protect them against the highly toxic and deadly belongings of cumene hydroperoxide. The purpose of this study was to determine whether a liposomal formulation of quercetin can suggestively improve its solubility and bioavailability and can be a possible request in the treatment of tumor. The authors encapsulated quercetin in a liposomal delivery system. They studied the in vitro effects of this compound on proliferation using human MCF-7 carcinoma cells. The activity of liposomal quercetin was equal to or better than that of free quercetin at equimolar concentrations. Our data indicated that liposomal quercetin can significantly improve the

  20. In vitro digestion and lactase treatment influence uptake of quercetin and quercetin glucoside by the Caco-2 cell monolayer

    Directory of Open Access Journals (Sweden)

    Brown Dan

    2005-01-01

    Full Text Available Abstract Background Quercetin and quercetin glycosides are widely consumed flavonoids found in many fruits and vegetables. These compounds have a wide range of potential health benefits, and understanding the bioavailability of flavonoids from foods is becoming increasingly important. Methods This study combined an in vitro digestion, a lactase treatment and the Caco-2 cell model to examine quercetin and quercetin glucoside uptake from shallot and apple homogenates. Results The in vitro digestion alone significantly decreased quercetin aglycone recovery from the shallot digestate (p p > 0.05. Digestion increased the Caco-2 cell uptake of shallot quercetin-4'-glucoside by 2-fold when compared to the non-digested shallot. Despite the loss of quercetin from the digested shallot, the bioavailability of quercetin aglycone to the Caco-2 cells was the same in both the digested and non-digested shallot. Treatment with lactase increased quercetin recovery from the shallot digestate nearly 10-fold and decreased quercetin-4'-glucoside recovery by more than 100-fold (p p Conclusions The increase in quercetin uptake following treatment with lactase suggests that dietary supplementation with lactase may increase quercetin bioavailability in lactose intolerant humans. Combining the digestion, the lactase treatment and the Caco-2 cell culture model may provide a reliable in vitro model for examining flavonoid glucoside bioavailability from foods.

  1. Small molecule kaempferol modulates PDX-1 protein expression and subsequently promotes pancreatic β-cell survival and function via CREB.

    Science.gov (United States)

    Zhang, Yanling; Zhen, Wei; Maechler, Pierre; Liu, Dongmin

    2013-04-01

    Chronic hyperlipidemia causes β-cell apoptosis and dysfunction, thereby contributing to the pathogenesis of type 2 diabetes (T2D). Thus, searching for agents to promote pancreatic β-cell survival and improve its function could be a promising strategy to prevent and treat T2D. We investigated the effects of kaempferol, a small molecule isolated from ginkgo biloba, on apoptosis and function of β-cells and further determined the mechanism underlying its actions. Kaempferol treatment promoted viability, inhibited apoptosis and reduced caspase-3 activity in INS-1E cells and human islets chronically exposed to palmitate. In addition, kaempferol prevented the lipotoxicity-induced down-regulation of antiapoptotic proteins Akt and Bcl-2. The cytoprotective effects of kaempferol were associated with improved insulin secretion, synthesis, and pancreatic and duodenal homeobox-1 (PDX-1) expression. Chronic hyperlipidemia significantly diminished cyclic adenosine monophosphate (cAMP) production, protein kinase A (PKA) activation, cAMP-responsive element binding protein (CREB) phosphorylation and its regulated transcriptional activity in β-cells, all of which were restored by kaempferol treatment. Disruption of CREB expression by transfection of CREB siRNA in INS-1E cells or adenoviral transfer of dominant-negative forms of CREB in human islets ablated kaempferol protection of β-cell apoptosis and dysfunction caused by palmitate. Incubation of INS-1E cells or human islets with kaempferol for 48h induced PDX-1 expression. This effect of kaempferol on PDX-1 expression was not shared by a host of structurally related flavonoid compounds. PDX-1 gene knockdown reduced kaempferol-stimulated cAMP generation and CREB activation in INS-1E cells. These findings demonstrate that kaempferol is a novel survivor factor for pancreatic β-cells via up-regulating the PDX-1/cAMP/PKA/CREB signaling cascade.

  2. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen-activated protein kinase kinase signaling pathways

    OpenAIRE

    Hu, Shan; HUANG, LIMING; MENG, LIWEI; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-01-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammal...

  3. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Sun, Bing; Sun, Gui-Bo; Xiao, Jing; Chen, Rong-Chang; Wang, Xin; Wu, Ying; Cao, Li; Yang, Zhi-Hong; Sun, Xiao-Bo

    2012-02-01

    As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.

  4. Antiproliferative Efficacy of Kaempferol on Cultured Daudi Cells: An In Silico and In Vitro Study

    Directory of Open Access Journals (Sweden)

    Felisa Parmar

    2016-01-01

    Full Text Available There is always a constant need to develop alternative or synergistic anticancer drugs with minimal side effects. One important strategy to develop effective anticancer agents is to investigate potent derived compounds from natural sources. The present study was designed to determine antiproliferative activity of Kaempferol using in silico as well as in vitro study. Docking was performed using human GCN5 (hGCN5 protein involved with cell cycle, apoptosis, and glucose metabolism. Cell viability and cytotoxicity on Daudi cells were evaluated by trypan blue and 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays in a dose and time dependent manner, respectively. The compound inhibited the proliferation and growth of the Daudi cells, through induced cell death. The pure compound proved lead inhibitors of cell proliferation, thus manifesting significant antiproliferative activity. The docking results revealed that Kaempferol exhibited binding interaction to hGCN5 protein. Further, molecular dynamics using the dock pose of hGCN5-Kaempferol complex were performed to understand the basic structural unit which lead to inefficiency in binding and, therefore, pronounced instability and its possible consequences of reduced binding affinity. The data obtained in this study indicates that Kaempferol is a promising compound leading to inhibition of Daudi cell growth and proliferation.

  5. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  6. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  7. Simultaneous chromatographic fingerprinting and quantitative analysis of flavonoids in Pollen Typhae by high-performance capillary electrophoresis

    Directory of Open Access Journals (Sweden)

    Le Han

    2012-12-01

    Full Text Available To evaluate the quality of Pollen Typhae as used in traditional Chinese medicine, a high-performance capillary electrophoresis (HPCE method has been developed, validated and applied to chromatographic fingerprinting and quantitation of its eight main bioactive flavonoids (naringenin, isorhamnetin 3-O-(2G-α-l-rhamnosyl-rutinoside, rhamnetin 3-O-neohesperidoside, isorhamnetin, quercetin 3-O-(2G-α-l-rhamnosyl-rutinoside, quercetin 3-O-neohesperidoside, kaempferol and quercetin. Fingerprinting was based on the selection of nine characteristic chromatographic peaks. In quantitative analysis, the recovery of all eight compounds was in the range 98.5–102.2% with good linearity (r2>0.9919 over a relatively wide concentration range. The assay was successfully applied to the analysis of the eight bioactive flavonoids in 14 different samples. The results indicate that the assay is reproducible and precise and can be used for convenient quality assessment of Pollen Typhae.

  8. Determination of flavonoids in stamen, gynoecium, and petals of Magnolia grandiflora L. and their associated antioxidant and hepatoprotection activities

    Directory of Open Access Journals (Sweden)

    Nadia M. Sokkar

    2014-01-01

    Full Text Available Chromatographic analysis of flavonoids in ethyl acetate fractions of the stamen, gynoecium, and petal of Magnolia grandiflora L. by HPLC-PDA-MS/MS-ESI in the negative ionization mode was performed in this study. The results revealed the presence of eight flavonoids: apigenin 8-C-glucoside, luteolin 8-C-glucoside, quercetin 3-O-rutinoside, quercetin 3-O-galactoside, quercetin, 3-O-glucoside, kaempferol 3-O-rutinoside, isorhamnetin 3-O-glucoside, and isorhamnetin. Their quantification revealed that luteolin 8-C-glucoside is the major flavonoid and that the total phenolic content is concentrated primarily in the stamen. The antioxidant and hepatoprotective effects of ethanolic extract of the flower organs were evaluated against hepatotoxicity induced by CCl4, compared with the effects of silymarin.

  9. Therapeutic effect of quercetin in collagen-induced arthritis.

    Science.gov (United States)

    Haleagrahara, Nagaraja; Miranda-Hernandez, Socorro; Alim, Md Abdul; Hayes, Linda; Bird, Guy; Ketheesan, Natkunam

    2017-03-22

    Quercetin, a bioactive flavonoid with anti-inflammatory, immunosuppressive, and protective properties, is a potential agent for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis (CIA) is the most commonly used animal model for studying the pathogenesis of RA. This study analysed the therapeutic role of quercetin in collagen-induced arthritis in C57BL/6 mice. The animals were allocated into five groups that were subjected to the following treatments: negative (untreated) control, positive control (arthritis-induced), arthritis+methotrexate, arthritis+quercetin, and arthritis+methotrexate+quercetin. Assessments of weight, oedema, joint damage, and cytokine production were used to determine the therapeutic effect of quercetin. This study demonstrated for the first time the anti-inflammatory and protective effects of quercetin in vivo in CIA. The results also showed that the concurrent administration of quercetin and methotrexate did not offer greater protection than the administration of a single agent. The use of quercetin as a monotherapeutic agent resulted in the lowest degree of joint inflammation and the highest protection. The reduced severity of the disease in animals treated with quercetin was associated with decreased levels of TNF-α, IL-1β, IL-17, and MCP-1. In conclusion, this study determined that quercetin, which was non-toxic, produced better results than methotrexate for the protection of joints from arthritic inflammation in mice. Quercetin may be an alternative treatment for RA because it modulates the main pathogenic pathways of RA.

  10. The flavonoid quercetin reverses pulmonary hypertension in rats.

    Directory of Open Access Journals (Sweden)

    Daniel Morales-Cano

    Full Text Available Quercetin is a dietary flavonoid which exerts vasodilator, antiplatelet and antiproliferative effects and reduces blood pressure, oxidative status and end-organ damage in humans and animal models of systemic hypertension. We hypothesized that oral quercetin treatment might be protective in a rat model of pulmonary arterial hypertension. Three weeks after injection of monocrotaline, quercetin (10 mg/kg/d per os or vehicle was administered for 10 days to adult Wistar rats. Quercetin significantly reduced mortality. In surviving animals, quercetin decreased pulmonary arterial pressure, right ventricular hypertrophy and muscularization of small pulmonary arteries. Classic biomarkers of pulmonary arterial hypertension such as the downregulated expression of lung BMPR2, Kv1.5, Kv2.1, upregulated survivin, endothelial dysfunction and hyperresponsiveness to 5-HT were unaffected by quercetin. Quercetin significantly restored the decrease in Kv currents, the upregulation of 5-HT2A receptors and reduced the Akt and S6 phosphorylation. In vitro, quercetin induced pulmonary artery vasodilator effects, inhibited pulmonary artery smooth muscle cell proliferation and induced apoptosis. In conclusion, quercetin is partially protective in this rat model of PAH. It delayed mortality by lowering PAP, RVH and vascular remodeling. Quercetin exerted effective vasodilator effects in isolated PA, inhibited cell proliferation and induced apoptosis in PASMCs. These effects were associated with decreased 5-HT2A receptor expression and Akt and S6 phosphorylation and partially restored Kv currents. Therefore, quercetin could be useful in the treatment of PAH.

  11. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  12. Adsorption Isotherms of Quercetin and Catechin Compounds on Quercetin-MIP

    Institute of Scientific and Technical Information of China (English)

    JIN Yin-zhe; ROW Kyung Ho

    2007-01-01

    A molecular imprinted polymer(MIP) was prepared with quercetin as the template and methacrylic acid(MAA)as the functional monomer. Acetonitrile and methanol were used as the porogen with ethylene glycol dimethacrylate(EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The experimental parameters of the equilibrium isotherms were estimated via linear and nonlinear regression analyses. The linear equation as the functions of the adsorption concentration of the single compound in its solution and the competitive adsorption of the single compound in its mixed compounds solution was then expressed, and the adsorption equilibrium data were correlated to Langmnir and Freundlich isotherm models. The mixture compounds show competitive adsorption on the specific binding sites of quercetin-MIP. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds. The adsorption concentrations of quercetin, ( + )catechin( + C), and ( - )epicatechin(EC) on the quercetin molecular imprinted polymer were compared. The quercetin-imprinted polymer shows extraordinarily higher adsorption ability for quercetin than for the two catechin compounds that were also assessed.

  13. Kaempferol-3-O-rutinoside from Afgekia mahidoliae promotes keratinocyte migration through FAK and Rac1 activation.

    Science.gov (United States)

    Petpiroon, Nareerat; Suktap, Chalermlat; Pongsamart, Sunanta; Chanvorachote, Pithi; Sukrong, Suchada

    2015-07-01

    The restoration of the epidermal epithelium through re-epithelialization is a critical process in wound healing. Directed keratinocyte migration to the wound is required, and the retardation of this process may result in a chronic, non-healing wound. The present study contributes to research aiming to identify promising compounds that promote wound healing using a human keratinocyte model. The effects of three kaempferol glycosides from an Afgekia mahidoliae leaf extract, kaempferol-3-O-arabinoside, kaempferol-3-O-glucoside, and kaempferol-3-O-rutinoside, on keratinocyte migration were determined. Interestingly, kaempferol-3-O-rutinoside exhibited a pronounced effect on wound closure in comparison to the parental kaempferol and other glycosides. The mechanism by which kaempferol-3-O-rutinoside enhances cell migration involves the induction of filopodia and lamellipodia formation, increased cellular levels of phosphorylated FAK (Tyr 397) and phosphorylated Akt (Ser 473), and up-regulation of active Rac1-GTP. The data obtained in this study may support the development of this compound for use in wound healing therapies.

  14. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    Science.gov (United States)

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-02-28

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer.

  15. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro.

    Science.gov (United States)

    Lee, Jungwhoi; Kim, Jae Hoon

    2016-01-01

    Pancreatic cancer is one of the most appalling cancers with a pessimistic prognosis. Despite many therapies, there has been no improvement of survival rates. In this study, we assessed the anti-cancer effects of kaempferol, a well known flavonoid having functional bio-activity against various malignant tumors. Kaempferol had anti-cancer effects on Miapaca-2, Panc-1, and SNU-213 human pancreatic cancer cells. In a dose-dependent manner, kaempferol decreased viability of these pancreatic cancer cells by increasing apoptosis. In particular, kaempferol effectively inhibited the migratory activity of human pancreatic cancer cells at relatively low dosages without any toxicity. The anti-cancer effect of kaempferol was mediated by inhibition of EGFR related Src, ERK1/2, and AKT pathways. These results collectively indicate that kaempferol, a phytochemical ingredient reported to have anti-viability and anti-oxidant properties, can act as a safety anti-migration reagent in human pancreatic cancer cells, which provide the rationale for further investigation of kaempferol as a strong candidate for the potential clinical trial of malignant pancreatic cancers.

  16. [Determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy].

    Science.gov (United States)

    Ye, Li-Ming; Zhou, Min; Zhang, Hao; Chen, Chu; Li, Zhang-Wan; Chen, Cong; Wang, Yan-Ping

    2008-02-01

    The objective of this study was to develop a method for the determination of isorhamnetin in Hippophae rhamnoides Linn from West Sichuan plateau using near infrared diffuse reflectance spectroscopy. Applying the method of mixing with SiO2, the near infrared spectra (NIS) with the range of 12 000-4 000 cm(-1) were recorded for the Hippophae rhamnoides Linn containing isorhamnetin with the content of 0.1%-0.8%. Calibration models were established using the PLS (partial least squares). Different spectra pretreatments methods were compared. The study showed that spectral information can be extracted thoroughly by constant offset elimination (COE) pretreatments method with the correlation coefficient (r2) of 0.739 8, SEC of 0.107 (standard deviation of the calibration sets) and SEP of 0.073 (standard deviation of the prediction sets). The results indicate that near infrared diffuse reflectance spectroscopy is more rapid and convenient than conventional methods.

  17. Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor.

    Science.gov (United States)

    Zeng, Y Q; Liu, X S; Wu, S; Zou, C; Xie, Q; Xu, S M; Jin, X W; Li, W; Zhou, A; Dai, Z

    2015-07-01

    Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low-dose, but not high-dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft-infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low-dose, but not high-dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL-6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol-induced Tregs exhibited both allospecific and non-allospecific suppression. Administering IL-6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much-needed synergy between kaempferol and cyclosporine.

  18. In vivo efficacy studies of layer-by-layer nano-matrix bearing kaempferol for the conditions of osteoporosis: a study in ovariectomized rat model.

    Science.gov (United States)

    Kumar, Avinash; Gupta, Girish K; Khedgikar, Vikram; Gautam, Jyoti; Kushwaha, Priyanka; Changkija, Bendangla; Nagar, Geet K; Gupta, Varsha; Verma, Ashwni; Dwivedi, Anil Kumar; Chattopadhyay, Naibedya; Mishra, Prabhat Ranjan; Trivedi, Ritu

    2012-11-01

    A prototype formulation based on layer-by-layer (LbL) nano-matrix was developed to increase bioavailability of kaempferol with improved retention in bone marrow to achieve enhanced bone formation. The layer-by-layer nano-matrix was prepared by sequential adsorption of biocompatible polyelectrolytes over the preformed kaempferol-loaded CaCO(3) template. The system was pharmaceutically characterized and evaluated for osteogenic activity in ovariectomized (OVx) rats. Data have been compared to the standard osteogenic agent parathyroid hormone (PTH). Single oral dose of kaempferol loaded LbL nano-matrix formulation increased bioavailability significantly compared to unformulated kaempferol. Three months of Formulated kaempferol administration to osteopenic rats increased plasma and bone marrow Kaempferol levels by 2.8- and 1.75-fold, respectively, compared to free Kaempferol. Formulated Kaempferol increased bone marrow osteoprogenitor cells, osteogenic genes in femur, bone formation rate, and improved trabecular micro-architecture. Withdrawal of Formulated kaempferol-in OVx rats resulted in the maintenance of bone micro-architecture up to 30days, whereas micro-architectural deterioration was readily observed in OVx rats treated with unformulated kaempferol-within 15days of withdrawal. The developed novel formulation has enhanced anabolic effect in osteopenic rats through increased stimulatory effect in osteoblasts. Treatment post-withdrawal sustenance of formulated kaempferol could become a strategy to enhance bioavailability of flavanoids.

  19. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: From macro to nano.

    Science.gov (United States)

    Tu, Lv-Ying; Bai, Hai-Hua; Cai, Ji-Ye; Deng, Sui-Ping

    2016-11-01

    Kaempferol has been identified as a potential cancer therapeutic agent by an increasing amount of evidences. However, the changes in the topography of cell membrane induced by kaempferol at subcellular- or nanometer-level were still unclear. In this work, the topographical changes of cytomembrane in human cervical cancer cell (SiHa) induced by kaempferol, as well as the role of kaempferol in apoptosis induction and its possible mechanisms, were investigated. At the macro level, MTT assays showed that kaempferol inhibited the proliferation of SiHa cells in a time- and dose-dependent manner. Flow cytometry analysis demonstrated that kaempferol could induce SiHa cell apoptosis, mitochondrial membrane potential disruption, and intracellular free calcium elevation. At the micro level, fluorescence imaging by laser scanning confocal microscopy (LSCM) indicated that kaempferol could also destroy the networks of microtubules. Using high resolution atomic force microscopy (AFM), we determined the precise changes of cellular membrane induced by kaempferol at subcellular or nanometer level. The spindle-shaped SiHa cells shrank after kaempferol treatment, with significantly increased cell surface roughness. These data showed structural characterizations of cellular topography in kaempferol-induced SiHa cell apoptosis and might provide novel integrated information from macro to nano level to assess the impact of kaempferol on cancer cells, which might be important for the understanding of the anti-cancer mechanisms of drugs. SCANNING 38:644-653, 2016. © 2016 Wiley Periodicals, Inc.

  20. TRAIL apoptosis is enhanced by quercetin through Akt dephosphorylation.

    Science.gov (United States)

    Kim, Young-Ho; Lee, Yong J

    2007-03-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapy that preferentially induces apoptosis in cancer cells. However, many neoplasms are resistant to TRAIL by mechanisms that are poorly understood. Here we demonstrated that human prostate cancer cells, but not normal prostate cells, are dramatically sensitized to TRAIL-induced apoptosis and caspase activation by quercetin. Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. We have shown that quercetin can potentiate TRAIL-induced apoptotic death. Human prostate adenocarcinoma DU-145 and LNCaP cells were treated with various concentrations of TRAIL (10-200 ng/ml) and/or quercetin (10-200 microM) for 4 h. Quercetin, which caused no cytotoxicity by itself, promoted TRAIL-induced apoptosis. The TRAIL-mediated activation of caspase, and PARP (poly(ADP-ribose) polymerase) cleavage were both enhanced by quercetin. Western blot analysis showed that combined treatment with TRAIL and quercetin did not change the levels of TRAIL receptors (death receptors DR4 and DR5, and DcR2 (decoy receptor 2)) or anti-apoptotic proteins (FLICE-inhibitory protein (FLIP), inhibitor of apoptosis (IAP), and Bcl-2). However, quercetin promoted the dephosphorylation of Akt. Quercetin-induced potent inhibition of Akt phosphorylation. Taken together, the present studies suggest that quercetin enhances TRAIL-induced cytotoxicity by activating caspases and inhibiting phosphorylation of Akt.

  1. Isolation of flavonoids from onion skins and their effects on K562 cell viability

    Directory of Open Access Journals (Sweden)

    Guo-Qing Shi

    2016-04-01

    Full Text Available To investigate the anti-proliferative activity of flavonoids from onion skins, extraction by 50% ethanol (v/v, soxhlet polar fractionation, pH gradient separation, thin-layer chromatography, and recrystallization methods were used to isolate and purify flavonoids from dry onion skins. Anti-proliferative activities of some flavonoids obtained on leukemia K562 cell line were deter-mined by MTT assay. Results showed that flavonoids of onion skins were mainly in form of quercetin, kaempferol, isorhamnetin, apigenin-7-O-β-D-glucopyranoside, quercetin-3-O-β-D-glucopyranoside, kaempferol-7-O-β-D-glucopyranoside and rutin. Quercetin and kaempferol decreased K562 cell viability, and quercetin had stronger effect. However, isorhamnetin and rutin exhibited certain proliferation-promoting effects. It suggests that ortho hydroxyl groups on B ring of onion flavonoids might be the key structural elements of their cytotoxic effects on K562 cells, and hydroxyl groups in position 3 or carbonyl groups in position 4 might be one of the structural effect elements.

  2. Quercetin 7-O-glucoside suppresses nitrite-induced formation of dinitrosocatechins and their quinones in catechin/nitrite systems under stomach simulating conditions.

    Science.gov (United States)

    Morina, Filis; Takahama, Umeo; Yamauchi, Ryo; Hirota, Sachiko; Veljovic-Jovanovic, Sonja

    2015-01-01

    Foods of plant origin contain flavonoids. In the adzuki bean, (+)-catechin, quercetin 3-O-rutinoside (rutin), and quercetin 7-O-β-D-glucopyranoside (Q7G) are the major flavonoids. During mastication of foods prepared from the adzuki bean, the flavonoids are mixed with saliva and swallowed into the stomach. Here we investigated the interactions between Q7G and (+)-catechin at pH 2, which may proceed in the stomach after the ingestion of foods prepared from the adzuki bean. Q7G reacted with nitrous acid producing nitric oxide (˙NO) and a glucoside of 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. (+)-Catechin reacted with nitrous acid producing ˙NO and 6,8-dinitrosocatechin. The production of the dinitrosocatechin was partly suppressed by Q7G, and the suppression resulted in the enhancement of Q7G oxidation. 6,8-Dinitrosocatechin reacted further with nitrous acid generating the o-quinone, and the quinone formation was effectively suppressed by Q7G. In the flavonoids investigated, the suppressive effect decreased in the order Q7G≈quercetin>kaempferol>quercetin 4'-O-glucoside>rutin. Essentially the same results were obtained when (-)-epicatechin was used instead of (+)-catechin. The results indicate that nitrous acid-induced formation of 6,8-dinitrosocatechins and the o-quinones can be suppressed by flavonols in the stomach, and that both a hydroxyl group at C3 and ortho-hydroxyl groups in the B-ring are required for efficient suppression.

  3. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia.

    Science.gov (United States)

    He, Yuanzhou; Cao, Xiaopei; Guo, Pujian; Li, Xiaochen; Shang, Huihui; Liu, Jin; Xie, Min; Xu, Yongjian; Liu, Xiansheng

    2017-02-01

    Quercetin, an important dietary flavonoid has been demonstrated to potentially reverse or even prevent pulmonary arterial hypertension (PAH) progression. However, the effects of quercetin on apoptosis and autophagy in pulmonary arterial smooth muscle cells (PASMCs) have not yet been clearly elucidated. The current study found that quercetin significantly induce the apoptotic and autophagic capacities of PASMCs in vitro and in vivo in hypoxia. In addition, we found that quercetin increases FOXO1 (a major mediator in autophagy regulation) expression and transcriptional activity. Moreover, FOXO1 knockdown by siRNAs inhibited the phosphorylation of mTOR and 4E-BPI, which is downstream of P70-S6K, and markedly blocked quercetin-induced autophagy. We also observed that FOXO1-mediated autophagy was achieved via SESN3 not Rictor upregulation and after mTOR suppression. Furthermore, Treatment with autophagy-specific inhibitors could markedly enhance quercetin-induced apoptosis in PASMCs under hypoxia. Finally, quercetin in combination with autophagy inhibition treatment could enhance the therapeutic effects of quercetin in hypoxia-associated PAH in vivo. Taken together, quercetin could enhance hypoxia-induced autophagy through the FOXO1-SENS3-mTOR pathway in PASMCs. Combining quercetin and autophagy inhibitors may be a novel therapeutic strategy for treating hypoxia-associated PAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Supercritical Antisolvent Precipitation of Microparticles of Quercetin

    Institute of Scientific and Technical Information of China (English)

    刘学武; 李志义; 韩冰; 苑塔亮

    2005-01-01

    Supercritical antisolvent (SAS) process is a recently developed technology to produce micro- and nanoparticles. This paper presents a continuous apparatus to conduct experiment of SAS process. With the apparatus,the effects of pressure, temperature and flow ratio of CO2 to the solution on the shape and size of particles are studied for the quercetin-ethanol-CO2 system. Spherical quercetin microparticles with diameters ranging form i μm to 6μm can be obtained while ethanol is used as organic solvent. The most effective fact on the shape and size of particles is pressure, the next is temperature and the last is the flow ratio of CO2 to solution.

  5. RP-HPLC 测定小茴香中槲皮素和山奈酚含量%Determination of Quercetin and KaempferoI in FoenicuIum vuIgare MiII.by RP-HPLC

    Institute of Scientific and Technical Information of China (English)

    石雪萍; 余芳

    2015-01-01

    The RP-HPLC is applied to determine quercetin and kaempferol content in Foeniculum vulgare Mill..The sample solution is separated by using Zorbax Eclipse (4.6 mm × 150 mm,5μm) as stationary phase and a mixture of methanol and 0.4% phosphoric acid solution (50∶50)as mobile phase.The content of quercetin and kaempferol is determined at the wavelength of 360 nm.The linear relationship between values of peak area and content of quercetin and kaempferol is 2 .1 9 ~109.6μg/mL and 2.28~114.0μg/mL respectively.The recoveries of quercetin and kaempferol are 95.61%,94.41%,with the RSDs of 2.4% and 3.0% respectively.The content of quercetin and kaempferol in flavonoids hydrolysate from Foeniculum vulgare Mill.is 0.29 mg/g (n=3,RSD=2.60%)and 0.36 mg/g (n=3,RSD=3.25%).%建立用反相高效液相色谱法同时测定小茴香中槲皮素和山奈酚含量的方法。采用 Eclipse XDB-C18色谱柱(4.6 mm×150 mm,5μm);柱温:25℃;流动相:甲醇-0.4%磷酸(50∶50);流速:1 mL/min;检测波长:360 nm。槲皮素、山奈酚分别在2.19~109.6μg/mL 和2.28~114.0μg/mL 范围内线性关系良好。槲皮素和山奈酚的平均回收率分别为95.61%,94.41%,RSD 分别为2.4%,3.0%。此方法简便、准确、可靠,可作为小茴香中槲皮素和山奈酚的定量分析方法。测定出小茴香总黄酮水解物中槲皮素和山奈酚的含量分别为:槲皮素0.29 mg/g,n=3,RSD=2.60%;山奈酚含量为:0.36 mg/g,n=3,RSD=3.25%。

  6. Quercetin Treatment Ameliorates Systemic Oxidative Stress in Cirrhotic Rats

    Science.gov (United States)

    Vieira, Emanuelle Kerber; Bona, Silvia; Di Naso, Fábio Cangeri; Porawski, Marilene; Tieppo, Juliana; Marroni, Norma Possa

    2011-01-01

    Our aim was to investigate whether the antioxidant quercetin protects against liver injury and ameliorates the systemic oxidative stress in rats with common bile duct ligation. Secondary biliary cirrhosis was induced through 28 days of bile duct obstruction. Animals received quercetin (Q) after 14 days of obstruction. Groups of control (CO) and cirrhotic (CBDL) animals received a daily 50 mg/kg body weight i.p. injection of quercetin (CO + Q; CBDL + Q) or vehicle (CO; CBDL). Quercetin corrected the reduction in superoxide dismutase (SOD), catalase CAT, and glutathione peroxidase GPx activities and prevented the increase of thiobarbituric acid reactive substances (TBARS), aminotransferases, and alkaline phosphatase in cirrhotic animals. Quercetin administration also corrected the reduced total nitrate concentration in the liver and prevented liver fibrosis and necrosis. These effects suggest that quercetin might be a useful agent to preserve liver function and prevent systemic oxidative stress. PMID:21991520

  7. Kaempferol-human serum albumin interaction: Characterization of the induced chirality upon binding by experimental circular dichroism and TDDFT calculations

    Science.gov (United States)

    Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela

    2012-10-01

    The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.

  8. Reactive Oxygen Species Scavenging Activity of Flavone Glycosides from Melilotus neapolitana

    Directory of Open Access Journals (Sweden)

    Pietro Monaco

    2007-02-01

    Full Text Available One new and six known flavone glycosides were isolated from the MeOH extract of Melilotus neapolitana Ten. The new compound, identified as 7-O-β-D-gluco-pyranosyloxy-4',5-dihydroxy-3-[O-α-L-rhamnopyranosyl-(1→6-3-O-β-D-glucopyrano-syloxy]flavone (1 by 1D and 2D NMR techniques and mass spectra, was isolated along with kaempferol-3-O-rutinoside (2, kaempferol-3-O-glucoside (3, rutin (4, quercetin-3-O-glucoside (5, isorhamnetin-3-O-rutinoside (6, and isorhamnetin-3-O-glucoside (7. The antioxidant and radical scavenging activities of these compounds and the whole crude methanol extract were evaluated. The organic extract can inhibit MDA marker’s synthesis by 57%. All the metabolites displayed good reducing power, with the kaempferol (2,3 and isorhamnetin derivatives (6,7 being less active than the corresponding quercetin derivatives 4,5.

  9. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  10. Quercetin and Its Anti-Allergic Immune Response

    OpenAIRE

    Jiri Mlcek; Tunde Jurikova; Sona Skrovankova; Jiri Sochor

    2016-01-01

    Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes); some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inf...

  11. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  12. Blockade of Airway Inflammation by Kaempferol via Disturbing Tyk-STAT Signaling in Airway Epithelial Cells and in Asthmatic Mice

    OpenAIRE

    Ju-Hyun Gong; Daekeun Shin; Seon-Young Han; Sin-Hye Park; Min-Kyung Kang; Jung-Lye Kim; Young-Hee Kang

    2013-01-01

    Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. The in vitro study elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20  μ M suppressed the LPS-induced IL-8 production through the TLR4 activat...

  13. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece); Simos, George, E-mail: simos@med.uth.gr [Laboratory of Biochemistry, School of Medicine, University of Thessaly, BIOPOLIS, 41110 Larissa (Greece); Institute of Biomedical Research and Technology (BIOMED), 51 Papanastasiou str., 41222 Larissa (Greece)

    2010-07-16

    Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers including HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.

  14. 山奈酚的抗肿瘤作用%Antitumor mechanism of kaempferol

    Institute of Scientific and Technical Information of China (English)

    付成瑞; 李宝生

    2013-01-01

    山奈酚是一种广泛存在于水果、蔬菜、中草药等天然植物中的黄酮类化合物,具有抗肿瘤、抗氧化、抗炎、抗焦虑、镇痛和抗过敏等广泛的药理作用.研究发现,山奈酚可降低罹患癌症的风险,可通过诱导细胞凋亡、调节细胞周期、抑制新生血管生成和肿瘤转移等作用抑制肿瘤细胞增殖和侵袭,并可通过调节氧化应激反应和抑制炎性因子发挥抗肿瘤作用,在肿瘤防治中具有广阔的应用前景.%Kaempferol is a kind of flavonoid compound that exists in natural plants including fruits,vegetables and Chinese herbal medicine.Kaempferol has extensive pharmacological activities,including antitumor,antioxidant,anti-inflammatory,anxiolytic,analgesic and antiallergic activities.Researches show that Kaempferol can reduce the risk of cancer,can inhibit proliferation and invasion of tumor cells by inducing apoptosis,regulating cell cycle,inhibiting angiogenesis and tumor metastasis.Meanwhile,kaempferol can suppress tumor growth by regulating the oxidative stress reaction and inhibiting inflammatory cytokines.In a word,kaempferol has broad prospects in cancer prevention and treatment.

  15. Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol.

    Science.gov (United States)

    Zeka, Keti; Ruparelia, Ketan C; Continenza, Maria A; Stagos, Dimitrios; Vegliò, Francesco; Arroo, Randolph R J

    2015-12-01

    Saffron from the province of L'Aquila, in the Abruzzo region of Italy, is highly prized and has been awarded a formal recognition by the European Union with EU Protected Designation of Origin (PDO) status. Despite this, the saffron regions are abandoned by the younger generations because the traditional cultivation of saffron (Crocus sativus L.) is labour intensive and yields only one crop of valuable saffron stamens per year. Petals of the saffron Crocus have had additional uses in traditional medicine and may add value to the crops for local farmers. This is especially important because the plant only flowers between October and November, and farmers will need to make the best use of the flowers harvested in this period. Recently, the petals of C. sativus L., which are considered a waste material in the production of saffron spice, were identified as a potential source of natural antioxidants. The antioxidants crocin and kaempferol were purified by flash column chromatography, and identified by thin layer chromatography (TLC), HPLC-DAD, infrared (IR), and nuclear magnetic resonance ((1)H &(13)C NMR) spectroscopy. The antioxidant activity was determined with the ABTS and DPPH tests. The antioxidant activities are mainly attributed to carotenoid and flavonoid compounds, notably glycosides of crocin and kaempferol. We found in dried petals 0.6% (w/w) and 12.6 (w/w) of crocin and kaempferol, respectively. Petals of C. sativus L. have commercial potential as a source for kaempferol and crocetin glycosides, natural compounds with antioxidant activity that are considered to be the active ingredients in saffron-based herbal medicine.

  16. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2016-01-01

    Full Text Available Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.

  17. Application of Bioactive Quercetin in Oncotherapy: From Nutrition to Nanomedicine.

    Science.gov (United States)

    Nam, Ju-Suk; Sharma, Ashish Ranjan; Nguyen, Lich Thi; Chakraborty, Chiranjib; Sharma, Garima; Lee, Sang-Soo

    2016-01-19

    Phytochemicals as dietary constituents are being explored for their cancer preventive properties. Quercetin is a major constituent of various dietary products and recently its anti-cancer potential has been extensively explored, revealing its anti-proliferative effect on different cancer cell lines, both in vitro and in vivo. Quercetin is known to have modulatory effects on cell apoptosis, migration and growth via various signaling pathways. Though, quercetin possesses great medicinal value, its applications as a therapeutic drug are limited. Problems like low oral bioavailability and poor aqueous solubility make quercetin an unreliable candidate for therapeutic purposes. Additionally, the rapid gastrointestinal digestion of quercetin is also a major barrier for its clinical translation. Hence, to overcome these disadvantages quercetin-based nanoformulations are being considered in recent times. Nanoformulations of quercetin have shown promising results in its uptake by the epithelial system as well as enhanced delivery to the target site. Herein we have tried to summarize various methods utilized for nanofabrication of quercetin formulations and for stable and sustained delivery of quercetin. We have also highlighted the various desirable measures for its use as a promising onco-therapeutic agent.

  18. Quercetin Reverses Rat Liver Preneoplastic Lesions Induced by Chemical Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Gabriela Carrasco-Torres

    2017-01-01

    Full Text Available Quercetin is a flavonoid widely studied as a chemopreventive agent in different types of cancer. Previously, we reported that quercetin has a chemopreventive effect on the liver-induced preneoplastic lesions in rats. Here, we evaluated if quercetin was able not only to prevent but also to reverse rat liver preneoplastic lesions. We used the modified resistant hepatocyte model (MRHM to evaluate this possibility. Treatment with quercetin was used 15 days after the induction of preneoplastic lesions. We found that quercetin reverses the number of preneoplastic lesions and their areas. Our results showed that quercetin downregulates the expression of EGFR and modulates this signaling pathway in spite of the activated status of EGFR as detected by the upregulation of this receptor, with respect to that observed in control rats. Besides, quercetin affects the phosphorylation status of Src-1, STAT5, and Sp-1. The better status of the liver after the treatment with quercetin could also be confirmed by the recovery in the expression of IGF-1. In conclusion, we suggest that quercetin reversed preneoplastic lesions by EGFR modulation and the activation state of Src, STAT5, and Sp1, so as the basal IGF-1.

  19. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.

    Science.gov (United States)

    Xu, X H; Zhao, C; Peng, Q; Xie, P; Liu, Q H

    2017-03-02

    Diabetic retinopathy (DR) is one of the common and specific microvascular complications of diabetes. This study aimed to investigate the anti-angiogenic effect of kaempferol and explore its underlying molecular mechanisms. The mRNA expression level of vascular endothelial growth factor (VEGF) and placenta growth factor (PGF) and the concentrations of secreted VEGF and PGF were measured by qTR-PCR and ELISA assay, respectively. Human retinal endothelial cells (HRECs) proliferation, migration, and sprouting were measured by CCK-8 and transwell, scratching wound, and tube formation assays, respectively. Protein levels were determined by western blot. High glucose (25 mM) increased the mRNA expression levels of VEGF and PGF as well as the concentrations of secreted VEGF and PGF in HRECs, which can be antagonized by kaempferol (25 µM). Kaempferol (5-25 µM) significantly suppressed cell proliferation, migration, migration distance and sprouting of HRECs under high glucose condition. The anti-angiogenic effect of kaempferol was mediated via downregulating the expression of PI3K and inhibiting the activation of Erk1/2, Src, and Akt1. This study indicates that kaempferol suppressed angiogenesis of HRECs via targeting VEGF and PGF to inhibit the activation of Src-Akt1-Erk1/2 signaling pathway. The results suggest that kaempferol may be a potential drug for better management of DR.

  20. Kaempferol alleviates insulin resistance via hepatic IKK/NF-κB signal in type 2 diabetic rats.

    Science.gov (United States)

    Luo, Cheng; Yang, Hui; Tang, Chengyong; Yao, Gaoqiong; Kong, Lingxi; He, Haixia; Zhou, Yuanda

    2015-09-01

    Recent studies show that inflammation underlies the metabolic disorders of insulin resistance and type 2 diabetes mellitus. Since kaempferol, a naturally occurring flavonoid, has been described to have potent anti-inflammatory properties, we investigated whether kaempferol could ameliorate insulin resistance through inhibiting inflammatory responses. The model of diabetic rat was induced by 6-week high-fat diet plus streptozotocin. Animals were orally treated with kaempferol (50 or 150 mg/kg) and aspirin (100mg/kg) for 10 weeks. The results showed that kaempferol ameliorated blood lipids and insulin in an dose-dependent manner. Kaempferol effectively restored insulin resistance induced alteration of glucose disposal by using an insulin tolerance test and the euglycemic-hyperinsulinemic clamp method. Western blotting results showed that KPF inhibited the phosphorylation of insulin receptor substrate-1 (IRS-1), IkB kinase α (IKKα) and IkB kinase β (IKKβ). These effects were accompanied with reduction in nucleic and cytosol levels of nuclear factor kappa-β (NF-κB), and further tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. Aspirin had similar effects. These results provide in vivo evidence that kaempferol-mediated down-regulation of IKK and subsequent inhibition of NF-κB pathway activation may be associated with the reduction of hepatic inflammatory lesions, which is contributing to the improvement of insulin signaling defect in diabetes.

  1. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through EGFR/p38 signaling.

    Science.gov (United States)

    Song, Wenbin; Dang, Qiang; Xu, Defeng; Chen, Yule; Zhu, Guodong; Wu, Kaijie; Zeng, Jin; Long, Qingzhi; Wang, Xinyang; He, Dalin; Li, Lei

    2014-03-01

    Kaempferol has been shown to inhibit cell growth, induce apoptosis and cell cycle arrest in several tumors, but not in renal cell carcinoma (RCC). In the present study, we investigated the effects of kaempferol and the underlying mechanism(s) on the cell growth of RCC cells. MTT assay and colony formation assay were used to study cell growth, and flow cytometry was used to study apoptosis and cell cycles in different RCC cells treated with various doses of kaempferol. A significant inhibition on cell growth, induction of apoptosis and cell cycle arrest were observed in 786-O and 769-P cells after kaempferol treatment compared with the control group. Moreover, the results clearly showed that kaempferol causes a strong inhibition of the activation of the EGFR/p38 signaling pathways, upregulation of p21 expression and downregulation of cyclin B1 expression in human RCC cells, together with activation of PARP cleavages, induction of apoptotic death and inhibition of cell growth. Collectively, our results suggest that kaempferol may serve as a candidate for chemo-preventive or chemotherapeutic agents for RCC.

  2. Study of the electrochemical behavior of isorhamnetin on a glassy carbon electrode and its application.

    Science.gov (United States)

    Liu, Ai-Lin; Zhang, Shao-Bo; Chen, Wei; Huang, Li-Ying; Lin, Xin-Hua; Xia, Xing-Hua

    2008-10-19

    The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (alpha) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0x10(-8) to 4.0x10(-7)M and 1.0x10(-6) to 1.0x10(-5)M. The detection limit is 5.0x10(-9)M. This method has been successfully applied to the detection of ISO in tablets.

  3. HPLC法测定芙蓉抗流感胶囊中槲皮素、山奈素、异鼠李素的含量%Determination of Ouercetin, Kaempferide and Isorhamnetin in Furong Anti-flu Capsules by HPLC

    Institute of Scientific and Technical Information of China (English)

    邓亚利; 孙平川; 卢生杰

    2011-01-01

    Objective: To establish a method for determination of quercetin, kaempferide and isorhamnetin in Furong anti-flu capsules by HPLC. Method: HPLC method was set up using Waters Xbridge C18 column (250 mm ×4.6 mm,5 μm). The mobile phase consisted of methanol and 0. 4% phosphoric acid solution with gradient elution,and the flow rate was 1. 0 ml·min-1,the UV detection wavelength was 360 nm,and the column temperature was 25℃. Result: The linear range of quercetin,kaempferide and isorhamnetin was 63.4-634. 0 μg( r = 0.999 9) ,70. 8-708. 0 μg(r = 0.999 8) and 45. 8-458. 0 μg (r = 0. 999 8 ) ,with the average recovery of 98. 45% ,98.79% and 99. 16%,respectively. Conclusion: The method is quick, simple and accurate. It can be used for the quality control of Furong anti-flu capsules.%目的:建立芙蓉抗流感胶囊中槲皮素、山奈素、异鼠李素含量测定方法.方法:采用Waters Xbridge C18(250 mm×4.6 mm,5μm)色谱柱;以甲醇-0.4%磷酸水溶液为流动相梯度洗脱;流速为1.0 ml· min-1;检测波长为360 nm;柱温:25℃.结果:槲皮素、山奈素、异鼠李素的线性范围分别为63.4 ~634.0 μg(r =0.999 9),70.8~708.0 μg(r =0.999 8),45.8 ~458.0μg(r =0.9998);加样回收率分别为98.45%、98.79%与99.16%.结论:该方法简单、快速、准确,可用于芙蓉抗流感胶囊的质量控制.

  4. 异鼠李素抗癌活性研究%Research on the Antitumor Activity of Isorhamnetin

    Institute of Scientific and Technical Information of China (English)

    谭琪明; 胡丹

    2016-01-01

    The antitumor activity of isorhamnetin was studied. The human breast cancer cell line MCF7 treated with different concentrations of isorhamnetin were examined for cell inhibitory activity by using SRB assay and the human leukemia cell lines K562 and HL60 treated with different concentrations of isorhamnetin were examined for cell inhibitory activity by using MTT assay. The results showed that under the condition of different concentrations of isorhamnetin, the highest human breast cancer cell line MCF7 inhibition rate was (69.55±3.17)%, the lowest was (59.42±4.40)%. The human breast cancer cell line MCF7 inhibition rate of 0.3 μmol/mL adriamycin reached (76.08±3.32)%, there was no significant difference between it and 0.063μmol/mL isorhamnetin. And under the condition of different concentrations of isorhamnetin, the highest human leukemia cell line K562 inhibition rate was (100±4.12)%, the lowest was(9.84±1.14)%. The human leukemia cell line K562 inhibition rate of 10μmol/mL adriamycin reached (87.59±1.38)%, there was no significant difference between it and 0.633μmol/mL isorhamnetin. And under the condition of different concentrations of isorhamnetin, the highest human leukemia cell line HL60 inhibition rate was (100±6.89)%, the lowest was (12.50±1.41)%. The human leukemia cell line HL60 inhibition rate of 10μmol/mL adriamycin reached (94.20 ± 2.17)%, there was no significant difference between it and 0.633μmol/mL isorhamnetin. Isorhamnetin had a certain activity of antitumor.%为了研究沙棘中异鼠李素的抗癌活性,分别采用了 SRB 法测试不同浓度异鼠李素对人乳腺癌细胞株MCF-7细胞的抑制率以及MTT法测试不同浓度异鼠李素对人白血病细胞株K562和HL60的抑制率。结果为不同浓度异鼠李素对人乳腺癌细胞株MCF-7细胞的抑制率达(59.42±4.40)%~(69.55±3.17)%,其中0.063μmol/mL异鼠李素对人乳腺癌细胞株MCF-7细胞抑制率为(69.55±3.17)%,与0.3μmol/mL

  5. Assessment of isorhamnetin 3-O-neohesperidoside from Acacia salicina: protective effects toward oxidation damage and genotoxicity induced by aflatoxin B1 and nifuroxazide.

    Science.gov (United States)

    Bouhlel, Ines; Limem, Ilef; Skandrani, Ines; Nefatti, Aicha; Ghedira, Kamel; Dijoux-Franca, Marie-Genevieve; Leila, Chekir-Ghedira

    2010-08-01

    Antioxidant activity of isorhamnetin 3-O-neohesperidoside, isolated from the leaves of Acacia salicina, was determined by the ability of this compound to inhibit xanthine oxidase activity and to scavenge the free radical 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(.-)) diammonium salt. Antigenotoxic activity was assessed using the SOS chromotest assay. This compound has the ability to scavenge the ABTS(.+) radical by a hydrogen donating mechanism. We also envisaged the study of the antioxidant effect of this compound by the enzymatic xanthine/xanthine oxidase (X/XOD) assay. Results indicated that isorhamnetin 3-O-neohesperidoside was a potent inhibitor of xanthine oxidase and superoxide anion scavengers. Moreover, this compound induced an inhibitory activity against nifuroxazide and aflatoxine B1 (AFB1) induced genotoxicity. Taken together, these observations provide evidence that isorhamnetin 3-O-neohesperidoside isolated from the leaves of A. salicina is able to protect cells against the consequences of oxidative stress.

  6. Quercetin reduces Ehrlich tumor-induced cancer pain in mice.

    Science.gov (United States)

    Calixto-Campos, Cassia; Corrêa, Mab P; Carvalho, Thacyana T; Zarpelon, Ana C; Hohmann, Miriam S N; Rossaneis, Ana C; Coelho-Silva, Leticia; Pavanelli, Wander R; Pinge-Filho, Phileno; Crespigio, Jefferson; Bernardy, Catia C F; Casagrande, Rubia; Verri, Waldiceu A

    2015-01-01

    Cancer pain directly affects the patient's quality of life. We have previously demonstrated that the subcutaneous administration of the mammary adenocarcinoma known as Ehrlich tumor induces pain in mice. Several studies have shown that the flavonoid quercetin presents important biological effects, including anti-inflammatory, antioxidant, analgesic, and antitumor activity. Therefore, the analgesic effect and mechanisms of quercetin were evaluated in Ehrlich tumor-induced cancer pain in mice. Intraperitoneal (i.p.) treatments with quercetin reduced Ehrlich tumor-induced mechanical and thermal hyperalgesia, but not paw thickness or histological alterations, indicating an analgesic effect without affecting tumor growth. Regarding the analgesic mechanisms of quercetin, it inhibited the production of hyperalgesic cytokines IL-1β and TNFα and decreased neutrophil recruitment (myeloperoxidase activity) and oxidative stress. Naloxone (opioid receptor antagonist) inhibited quercetin analgesia without interfering with neutrophil recruitment, cytokine production, and oxidative stress. Importantly, cotreatment with morphine and quercetin at doses that were ineffective as single treatment reduced the nociceptive responses. Concluding, quercetin reduces the Ehrlich tumor-induced cancer pain by reducing the production of hyperalgesic cytokines, neutrophil recruitment, and oxidative stress as well as by activating an opioid-dependent analgesic pathway and potentiation of morphine analgesia. Thus, quercetin treatment seems a suitable therapeutic approach for cancer pain that merits further investigation.

  7. Quercetin protection against ciprofloxacin induced liver damage in rats.

    Science.gov (United States)

    Taslidere, E; Dogan, Z; Elbe, H; Vardi, N; Cetin, A; Turkoz, Y

    2016-01-01

    Ciprofloxacin is a common, broad spectrum antibacterial agent; however, evidence is accumulating that ciprofloxacin may cause liver damage. Quercetin is a free radical scavenger and antioxidant. We investigated histological changes in hepatic tissue of rats caused by ciprofloxacin and the effects of quercetin on these changes using histochemical and biochemical methods. We divided 28 adult female Wistar albino rats into four equal groups: control, quercetin treated, ciprofloxacin treated, and ciprofloxacin + quercetin treated. At the end of the experiment, liver samples were processed for light microscopic examination and biochemical measurements. Sections were prepared and stained with hematoxylin and eosin, and a histopathologic damage score was calculated. The sections from the control group appeared normal. Hemorrhage, inflammatory cell infiltration and intracellular vacuolization were observed in the ciprofloxacin group. The histopathological findings were reduced in the group treated with quercetin. Significant differences were found between the control and ciprofloxacin groups, and between the ciprofloxacin and ciprofloxacin + quercetin groups. Quercetin administration reduced liver injury caused by ciprofloxacin in rats. We suggest that quercetin may be useful for preventing ciprofloxacin induced liver damage.

  8. Covalent binding of the flavonoid quercetin to human serum albumin

    NARCIS (Netherlands)

    Kaldas, M.I.; Walle, U.K.; Woude, van der H.; McMillan, J.M.; Walle, T.

    2005-01-01

    Quercetin is an abundant flavonoid in the human diet with numerous biological activities, which may contribute to the prevention of human disease but also may be potentially harmful. Quercetin is oxidized in cells to products capable of covalently binding to cellular proteins, a process that may be

  9. Estimation of Quercetin, an Anxiolytic Constituent, in Elaeocarpus ganitrus.

    Directory of Open Access Journals (Sweden)

    Mohan Pal S. Ishar

    2013-03-01

    Full Text Available Having established quercetin as the anxiolytic constituent of Elaeocarpus ganitrus, it was decided to use it as marker to standardize the plant material. Quercetin was used as an external standard for determining its content in E. ganitrus beads by TLC densitometry. An HPTLC densitometric method has been developed to estimate quercetin inE. ganitrus beads so that plant can be standardized on the basis of its bioactive marker. Two methods were followed for preparing the test samples for determining the quercetin content. Initially, quercetin was determined in the ethanol extract of the plant material. It was also determined in the acid hydrolyzed ethanol extract, in order to free quercetin from its O-glycoside. Quercetin content in the hydrolyzed ethanol extract (0.11% w/w of E. ganitrus beads was found to be about 4 times more than in the ethanol extract prepared by direct method (0.03% w/w. Results showed that quercetin occurs in E. ganitrus beads in the form of glycoside.

  10. Dietary Compound Kaempferol Inhibits Airway Thickening Induced by Allergic Reaction in a Bovine Serum Albumin-Induced Model of Asthma.

    Science.gov (United States)

    Shin, Daekeun; Park, Sin-Hye; Choi, Yean-Jung; Kim, Yun-Ho; Antika, Lucia Dwi; Habibah, Nurina Umy; Kang, Min-Kyung; Kang, Young-Hee

    2015-12-16

    Asthma is characterized by aberrant airways including epithelial thickening, goblet cell hyperplasia, and smooth muscle hypertrophy within the airway wall. The current study examined whether kaempferol inhibited mast cell degranulation and prostaglandin (PG) release leading to the development of aberrant airways, using an in vitro model of dinitrophenylated bovine serum albumin (DNP-BSA)-sensitized rat basophilic leukemia (RBL-2H3) mast cells and an in vivo model of BSA-challenged asthmatic mice. Nontoxic kaempferol at 10-20 μM suppressed β-hexosaminidase release and cyclooxygenase 2 (COX2)-mediated production of prostaglandin D2 (PGD2) and prostaglandin F2α (PGF2α) in sensitized mast cells. Oral administration of ≤20 mg/kg kaempferol blocked bovine serum albumin (BSA) inhalation-induced epithelial cell excrescence and smooth muscle hypertrophy by attenuating the induction of COX2 and the formation of PGD2 and PGF2α, together with reducing the anti-α-smooth muscle actin (α-SMA) expression in mouse airways. Kaempferol deterred the antigen-induced mast cell activation of cytosolic phospholipase A2 (cPLA2) responsive to protein kinase Cμ (PKCμ) and extracellular signal-regulated kinase (ERK). Furthermore, the antigen-challenged activation of Syk-phospholipase Cγ (PLCγ) pathway was dampened in kaempferol-supplemented mast cells. These results demonstrated that kaempferol inhibited airway wall thickening through disturbing Syk-PLCγ signaling and PKCμ-ERK-cPLA2-COX2 signaling in antigen-exposed mast cells. Thus, kaempferol may be a potent anti-allergic compound targeting allergic asthma typical of airway hyperplasia and hypertrophy.

  11. Optimization of chemometric approaches for the extraction of isorhamnetin-3-O-rutinoside from Calendula officinalis L.

    Science.gov (United States)

    Moraes, Maria Lourdes Leite; da Silva, Heron Dominguez Torres; Blanes, Lucas; Doble, Philip; Tavares, Marina Franco Maggi

    2016-06-05

    The application of Design of Experiments (DoE) to the determination of optimum conditions for an extraction process relies on the correct selection of mathematical models. The linear model is the one typically used; however, in some cases it does not always have superior performance, ignoring the real nature of the data and its appropriate descriptive model. In order to evaluate the extraction efficiency of isorhamnetin-3-O-rutinoside from flowers of Calendula officinalis L. a multivariate factorial analysis was used. Simulations were conducted using linear, quadratic, full cubic and special cubic models. A Simplex-Centroid design was chosen as it delivered greater precision with only minor errors versus other models tested. Analyses were performed by capillary zone electrophoresis using sodium tetraborate buffer (40mmolL(-1), pH 9.4) containing 10% methanol. The detection was linear over a range of 8.0-50.0mgL(-1) (r(2)=0.996), and the limits of detection (LOD) and quantification (LOQ) for isorhamnetin-3-O-rutinoside were 3.44mgL(-1) and 11.47mgL(-1), respectively. The full cubic model showed the best extraction results, with an error of 3.40% compared to analysis of variance, and a determination coefficient of 0.974. The difference between the responses at the reference point, calculated by the model, and the experimental response, varies around 2.72% for full cubic model. Comparison of the four models showed the full cubic model was the most appropriate one, allowing greater efficiency in the extraction of isorhamnetin-3-O-rutinoside. Selection of the model made it possible to obtain a 60% increase in sensitivity compared to the linear model. Copyright © 2016. Published by Elsevier B.V.

  12. Evaluation of quercetin as a potential drug in osteosarcoma treatment.

    Science.gov (United States)

    Berndt, Kersten; Campanile, Carmen; Muff, Roman; Strehler, Emanuel; Born, Walter; Fuchs, Bruno

    2013-04-01

    Osteosarcoma is the most common malignant bone tumor in children and young adults. Since the introduction of chemotherapy, the 5-year survival rate of patients with non-metastatic osteosarcoma is ~70%. The main problems in osteosarcoma therapy are the occurrence of metastases, severe side-effects and chemoresistance. Antiproliferative and apoptotic effects of quercetin were shown in several types of cancers, including breast cancer and lung carcinoma. The present study investigates the cytotoxic potential of quercetin, a dietary flavonoid, in a highly metastasizing human osteosarcoma cell line, 143B. We found that quercetin induces growth inhibition, G2/M phase arrest, and apoptosis in the 143B osteosarcoma cell line. We also observed impaired adhesion and migratory potential after the addition of quercetin. Since quercetin has already been shown to have low side effects in a clinical phase I trial in advanced cancer patients, this compound may have considerable potential for osteosarcoma treatment.

  13. Evaluation of the effects of quercetin on damaged salivary secretion.

    Directory of Open Access Journals (Sweden)

    Ayako Takahashi

    Full Text Available With the aim of discovering an effective method to treat dry mouth, we analyzed the effects of quercetin on salivary secretion and its mechanism of action. We created a mouse model with impaired salivary secretion by exposure to radiation and found that impaired secretion is suppressed by quercetin intake. Moreover, secretion levels were enhanced in quercetin-fed normal mice. To elucidate the mechanisms of these effects on salivary secretion, we conducted an analysis using mouse submandibular gland tissues, a human salivary gland epithelial cell line (HSY, and mouse aortic endothelial cells (MAECs. The results showed that quercetin augments aquaporin 5 (AQP5 expression and calcium uptake, and suppresses oxidative stress and inflammatory responses induced by radiation exposure, suggesting that quercetin intake may be an effective method to treat impaired salivary secretion.

  14. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression.

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-10-01

    Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. © 2014 The British Pharmacological Society.

  15. Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression

    Science.gov (United States)

    Dong, Qinghua; Chen, Long; Lu, Qunwei; Sharma, Sherven; Li, Lei; Morimoto, Sachio; Wang, Guanyu

    2014-01-01

    Background and Purpose Doxorubicin-based chemotherapy induces cardiotoxicity, which limits its clinical application. We previously reported the protective effects of quercetin against doxorubicin-induced hepatotoxicity. In this study, we tested the effects of quercetin on the expression of Bmi-1, a protein regulating mitochondrial function and ROS generation, as a mechanism underlying quercetin-mediated protection against doxorubicin-induced cardiotoxicity. Experimental Approach Effects of quercetin on doxorubicin-induced cardiotoxicity was evaluated using H9c2 cardiomyocytes and C57BL/6 mice. Changes in apoptosis, mitochondrial function, oxidative stress and related signalling were evaluated in H9c2 cells. Cardiac function, serum enzyme activity and reactive oxygen species (ROS) generation were measured in mice after a single injection of doxorubicin with or without quercetin pre-treatment. Key Results In H9c2 cells, quercetin reduced doxorubicin-induced apoptosis, mitochondrial dysfunction, ROS generation and DNA double-strand breaks. The quercetin-mediated protection against doxorubicin toxicity was characterized by decreased expression of Bid, p53 and oxidase (p47 and Nox1) and by increased expression of Bcl-2 and Bmi-1. Bmi-1 siRNA abolished the protective effect of quercetin against doxorubicin-induced toxicity in H9c2 cells. Furthermore, quercetin protected mice from doxorubicin-induced cardiac dysfunction that was accompanied by reduced ROS levels and lipid peroxidation, but enhanced the expression of Bmi-1 and anti-oxidative superoxide dismutase. Conclusions and Implications Our results demonstrate that quercetin decreased doxorubicin-induced cardiotoxicity in vitro and in vivo by reducing oxidative stress by up-regulation of Bmi-1 expression. The findings presented in this study have potential applications in preventing doxorubicin-induced cardiomyopathy. PMID:24902966

  16. Comparative Effect of Quercetin and Quercetin-3-O-β-d-Glucoside on Fibrin Polymers, Blood Clots, and in Rodent Models.

    Science.gov (United States)

    Choi, Jun-Hui; Kim, Kyung-Je; Kim, Seung

    2016-11-01

    The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin-3-O-β-d-glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen-induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin-induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.

  17. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry.

    Science.gov (United States)

    Schmidt, Susanne; Zietz, Michaela; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W; Krumbein, Angelika

    2010-07-30

    Kale is a member of the Brassicaceae family and has a complex profile of flavonoid glycosides. Therefore, kale is a suitable matrix to discuss in a comprehensive study the different fragmentation patterns of flavonoid glycosides. The wide variety of glycosylation and acylation patterns determines the health-promoting effects of these glycosides. The aim of this study is to investigate the naturally occurring flavonoids in kale. A total of 71 flavonoid glycosides of quercetin, kaempferol and isorhamnetin were identified using a high-performance liquid chromatography diode-array detection/electrospray ionization multi-stage mass spectrometry (HPLC-DAD/ESI-MS(n)) method. Of these 71 flavonol glycosides, 27 were non-acylated, 30 were monoacylated and 14 were diacylated. Non-acylated flavonol glycosides were present as mono-, di-, tri- and tetraglycosides. This is the first time that the occurrence of four different fragmentation patterns of non-acylated flavonol triglycosides has been reported in one matrix simultaneously. In addition, 44 flavonol glycosides were acylated with p-coumaric, caffeic, ferulic, hydroxyferulic or sinapic acid. While monoacylated glycosides existed as di-, tri- and tetraglycosides, diacylated glycosides occurred as tetra- and pentaglycosides. To the best of our knowledge, 28 compounds in kale are reported here for the first time. These include three acylated isorhamnetin glycosides (isorhamnetin-3-O-sinapoyl-sophoroside-7-O-D-glucoside, isorhamnetin-3-O-feruloyl-sophoroside-7-O-diglucoside and isorhamnetin-3-O-disinapoyl-triglucoside-7-O-diglucoside) and seven non-acylated isorhamnetin glycosides.

  18. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia HL-60 cells.

    Science.gov (United States)

    Wu, Lung-Yuan; Lu, Hsu-Feng; Chou, Yu-Cheng; Shih, Yung-Luen; Bau, Da-Tian; Chen, Jaw-Chyun; Hsu, Shu-Chun; Chung, Jing-Gung

    2015-01-01

    Numerous evidences have shown that plant flavonoids (naturally occurring substances) have been reported to have chemopreventive activities and protect against experimental carcinogenesis. Kaempferol, one of the flavonoids, is widely distributed in fruits and vegetables, and may have cancer chemopreventive properties. However, the precise underlying mechanism regarding induced DNA damage and suppressed DNA repair system are poorly understood. In this study, we investigated whether kaempferol induced DNA damage and affected DNA repair associated protein expression in human leukemia HL-60 cells in vitro. Percentages of viable cells were measured via a flow cytometry assay. DNA damage was examined by Comet assay and DAPI staining. DNA fragmentation (ladder) was examined by DNA gel electrophoresis. The changes of protein levels associated with DNA repair were examined by Western blotting. Results showed that kaempferol dose-dependently decreased the viable cells. Comet assay indicated that kaempferol induced DNA damage (Comet tail) in a dose-dependent manner and DAPI staining also showed increased doses of kaempferol which led to increased DNA condensation, these effects are all of dose-dependent manners. Western blotting indicated that kaempferol-decreased protein expression associated with DNA repair system, such as phosphate-ataxia-telangiectasia mutated (p-ATM), phosphate-ataxia-telangiectasia and Rad3-related (p-ATR), 14-3-3 proteins sigma (14-3-3σ), DNA-dependent serine/threonine protein kinase (DNA-PK), O(6)-methylguanine-DNA methyltransferase (MGMT), p53 and MDC1 protein expressions, but increased the protein expression of p-p53 and p-H2AX. Protein translocation was examined by confocal laser microscopy, and we found that kaempferol increased the levels of p-H2AX and p-p53 in HL-60 cells. Taken together, in the present study, we found that kaempferol induced DNA damage and suppressed DNA repair and inhibited DNA repair associated protein expression in HL-60

  19. Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic β -Cell Mass in Middle-Aged Obese Diabetic Mice.

    Science.gov (United States)

    Alkhalidy, Hana; Moore, William; Zhang, Yanling; McMillan, Ryan; Wang, Aihua; Ali, Mostafa; Suh, Kyung-Shin; Zhen, Wei; Cheng, Zhiyong; Jia, Zhenquan; Hulver, Matthew; Liu, Dongmin

    2015-01-01

    Insulin resistance and a progressive decline in functional β-cell mass are hallmarks of developing type 2 diabetes (T2D). Thus, searching for natural, low-cost compounds to target these two defects could be a promising strategy to prevent the pathogenesis of T2D. Here, we show that dietary intake of flavonol kaempferol (0.05% in the diet) significantly ameliorated hyperglycemia, hyperinsulinemia, and circulating lipid profile, which were associated with the improved peripheral insulin sensitivity in middle-aged obese mice fed a high-fat (HF) diet. Kaempferol treatment reversed HF diet impaired glucose transport-4 (Glut4) and AMP-dependent protein kinase (AMPK) expression in both muscle and adipose tissues from obese mice. In vitro, kaempferol increased lipolysis and prevented high fatty acid-impaired glucose uptake, glycogen synthesis, AMPK activity, and Glut4 expression in skeletal muscle cells. Using another mouse model of T2D generated by HF diet feeding and low doses of streptozotocin injection, we found that kaempferol treatment significantly improved hyperglycemia, glucose tolerance, and blood insulin levels in obese diabetic mice, which are associated with the improved islet β-cell mass. These results demonstrate that kaempferol may be a naturally occurring anti-diabetic agent by improving peripheral insulin sensitivity and protecting against pancreatic β-cell dysfunction.

  20. Oral quercetin supplementation hampers skeletal muscle adaptations in response to exercise training

    DEFF Research Database (Denmark)

    Casuso, R A; Martínez-López, E J; Nordsborg, Nikolai Baastrup

    2014-01-01

    We aimed to test exercise-induced adaptations on skeletal muscle when quercetin is supplemented. Four groups of rats were tested: quercetin sedentary, quercetin exercised, placebo sedentary, and placebo exercised. Treadmill exercise training took place 5 days a week for 6 weeks. Quercetin groups ...

  1. The effects of quercetin supplementation on body composition, exercise performance and muscle damage indices in athletes

    Directory of Open Access Journals (Sweden)

    Gholamreza Askari

    2013-01-01

    Results: Lean body mass, total body water, basal metabolic rate, and total energy expenditure increased significantly in the quercetin group after intervention. On the other hand, VO 2max increased in the "quercetin" and "quercetin + vitamin C" groups following the intervention, non-significantly. Conclusion: Our findings suggest that supplementation with quercetin in athletes may improve some indices of performance.

  2. Ergogenic effects of quercetin supplementation in trained rats

    Directory of Open Access Journals (Sweden)

    Casuso Rafael A

    2013-01-01

    Full Text Available Abstract Background Quercetin is a natural polyphenolic compound currently under study for its ergogenic capacity to improve mitochondrial biogenesis. Sedentary mice have exhibited increased endurance performance, but results are contradictory in human models. Methods We examined the effects of six weeks of endurance training and quercetin supplementation on markers of endurance performance and training in a rodent model. Rats were randomly assigned to one of the following groups: placebo+sedentary (PS, quercetin+sedentary (QS, placebo+endurance training (PT and quercetin+endurance training (QT. Quercetin was administered at a dose of 25 mg/kg on alternate days. During six weeks of treatment volume parameters of training were recorded, and after six weeks all groups performed a maximal graded VO2 max test and a low-intensity endurance run-to-fatigue test. Results No effects were found in VO2 peak (p>0.999, nor in distance run during low-intensity test, although it was 14% greater in QT when compared with PT (P = 0.097. Post-exercise blood lactate was increased in QT when compared with PT (p=0.023 and also in QS compared with PS (p=0.024. Conclusions This study showed no effects in VO2 peak, speed at VO2 peak or endurance time to exhaustion after six weeks of quercetin supplementation compared with placebo in trained rats. Quercetin was show to increase blood lactate production after high-intensity exercise.

  3. Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles

    Science.gov (United States)

    Dian, Linghui; Yu, Enjiang; Chen, Xiaona; Wen, Xinguo; Zhang, Zhengzan; Qin, Lingzhen; Wang, Qingqing; Li, Ge; Wu, Chuanbin

    2014-12-01

    To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.00 ± 2.24 nm, suggesting the complete dispersibility of quercetin in water. X-ray diffraction (XRD) patterns illustrated that quercetin was in amorphous or molecular form within PMs. Fourier transform infrared spectroscopy (FTIR) indicated that quercetin formed intermolecular hydrogen bonding with carriers. An in vitro dialysis test showed the Qu-PMs possessed significant sustained-release property, and the formulation was stable for at least 6 months under accelerated conditions. The pharmacokinetic study in beagle dogs showed that absorption of quercetin after oral administration of Qu-PMs was improved significantly, with a half-life 2.19-fold longer and a relative oral bioavailability of 286% as compared to free quercetin. Therefore, these novel soluplus polymeric micelles can be applied to encapsulate various poorly water-soluble drugs towards a development of more applicable therapeutic formulations.

  4. Antioxidative and antiinflammatory activities of quercetin-loaded silica nanoparticles.

    Science.gov (United States)

    Lee, Ga Hyun; Lee, Sung June; Jeong, Sang Won; Kim, Hyun-Chul; Park, Ga Young; Lee, Se Geun; Choi, Jin Hyun

    2016-07-01

    Utilizing the biological activities of compounds by encapsulating natural components in stable nanoparticles is an important strategy for a variety of biomedical and healthcare applications. In this study, quercetin-loaded silica nanoparticles were synthesized using an oil-in-water microemulsion method, which is a suitable system for producing functional nanoparticles of controlled size and shape. The resulting quercetin-loaded silica nanoparticles were spherical, highly monodispersed, and stable in an aqueous system. Superoxide radical scavenging effects were found for the quercetin-loaded silica nanoparticles as well as free quercetin. The quercetin-loaded silica nanoparticles showed cell viability comparable to that of the controls. The amounts of proinflammatory cytokines produced by macrophages, such as interleukin 1 beta, interleukin 6, and tumor necrosis factor alpha, were reduced significantly for the quercetin-loaded silica nanoparticles. These results suggest that the antioxidative and antiinflammatory activities of quercetin are maintained after encapsulation in silica. Silica nanoparticles can be used for the effective and stable incorporation of biologically active natural components into composite biomaterials.

  5. [Study on limit detection of flavones in diterpene ginkgolides meglumine injection materials by LC-MS and HPLC-DAD].

    Science.gov (United States)

    Bi, Sen; Li, Yan-jing; Huang, Wen-zhe; Kang, Dan-yu; Ding, Gang; Xiao, Wei

    2015-08-01

    Limit test of flavones in diterpene ginkgolides meglumine injection materials by UV-Vis and HPLC-DAD method was studied in this essay. The HPLC-DAD method has lower LOD (about 1% of the UV-Vis), that is, the sensitivity is higher than UV-Vis method. Through the analysis of the kinds of flavonoids ingredients in the samples by LC-MS, the three compounds with highest contents are kaempferol, quercetin and isorhamnetin. Kaempferol, quercetin and isorhamnetin were chosen as reference compounds for HPLC analysis, and the HPLC separation analysis was carried on an Agilent Eclipse plus C18 column (4.6 mm x 250 mm, 5 μm) with methanol and water containing 0.4% phosphoric acid (50: 50) as mobile phase, and the flow rate was 1.0 mL x min(-1). The detection wavelength was set at 360 nm. This method has good specificity, precision and reproducibility. The LODs of quercetin, kaempferide and isorhamnetin were 27.6, 22.3, 29.5 μg x L(-1). The average recovery was 87.9% (RSD 3.3%), 91.7% (RSD 3.1%), 88.3 (RSD 1.3%) for quercetin, kaempferide and isorhamnetin, respectively. Based on the 10 batches of sample results and sensitivity of different HPLC, the content of total flavonoids ingredients of diterpene ginkgolides meglumine injection materials was limited no more than 2 x 10(-5). This method is simple, quick and has good maneuverability, and could be used to the limit test of flavonoids in the diterpene ginkgolides meglumine injection materials.

  6. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  7. Quercetin accumulation by chronic administration causes the caspase-3 activation in liver and brain of mice.

    Science.gov (United States)

    Choi, Eun Jeong; Kim, Gun-Hee

    2010-01-01

    Quercetin is an excellent antioxidant that has a variety of side effects. This study investigated whether the chronic administration of quercetin in mice induces apoptosis. Mice were divided randomly into three treatment groups. Quercetin was administered orally to two of three groups at 100 and 250 mg/kg body weight (BW) for 18 days. The serum quercetin level increased in a dose-dependent manner, although the quercetin levels in the liver and brain were lower than in serum. Nevertheless, quercetin induced apoptosis in both the liver and brain, as evidenced by increased caspase-3 expression and activity. Quercetin-induced apoptosis seems to be associated with quercetin accumulation. Moreover, with quercetin accumulation, the brain was more susceptible to apoptosis than the liver. In conclusion, quercetin administration at a high dose may lead to apoptosis in the liver and brain of mouse.

  8. Role of Quercetin in Modulating Chloride Transport in the Intestine

    Science.gov (United States)

    Yu, Bo; Jiang, Yu; Jin, Lingling; Ma, Tonghui; Yang, Hong

    2016-01-01

    Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs) are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Cl− transport in a dose-dependent manner, with EC50 ~37 μM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Cl− currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Cl− currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase, and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels. PMID:27932986

  9. Role of quercetin in modulating chloride transport in the intestine

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2016-11-01

    Full Text Available Epithelial chloride channels provide the pathways for fluid secretion in the intestine. Cystic fibrosis transmembrane conductance regulator (CFTR and calcium-activated chloride channels (CaCCs are the main chloride channels in the luminal membrane of enterocytes. These transmembrane proteins play important roles in many physiological processes. In this study, we have identified a flavonoid quercetin as a modulator of CaCC chloride channel activity. Fluorescence quenching assay showed that quercetin activated Clˉ transport in a dose-dependent manner, with EC50 ~37 µM. Short-circuit current analysis confirmed that quercetin activated CaCC-mediated Clˉ currents in HT-29 cells that can be abolished by CaCCinh-A01. Ex-vivo studies indicated that application of quercetin to mouse ileum and colon on serosal side resulted in activation of CFTR and CaCC-mediated Clˉ currents. Notably, we found that quercetin exhibited inhibitory effect against ANO1 chloride channel activity in ANO1-expressing FRT cells and decreased mouse intestinal motility. Quercetin-stimulated short-circuit currents in mouse ileum was multi-component, which included elevation of Ca2+ concentration through L-type calcium channel and activation of basolateral NKCC, Na+/K+-ATPase and K+ channels. In vivo studies further revealed that quercetin promoted fluid secretion in mouse ileum. The modulatory effect of quercetin on CaCC chloirde channels may therefore represent a potential therapeutic strategy for treating CaCC-related diseases like constipation, secretory diarrhea and hypertension. The inverse effects of quercetin on CaCCs provided evidence that ANO1 and intestinal epithelial CaCCs are different calcium-activated chloride channels.

  10. [Study of quantum-pharmacological chemical characteristics of quercetin].

    Science.gov (United States)

    Zahorodnyĭ, M I

    2007-01-01

    It was established in the previous studies that quercetin prevented the development and caused faster regression of ulcers, petechia and anabroses in rats, which were induced by diclofenac taking. In the group of patients taking diclofenac together with quercetin, the ulcers and dyspeptic events were less found. The application of quercetin normalizes the function and metabolism of cartilage tissue of rabbits with an experimental osteoarthrosis and in patients with osteoartrosis. Quantum-chemical properties of molecule quercetin were studied using the methods of molecular mechanics MM+ and ab initio 6-31G*, and also semiempirical method. The following indices were investigated: distance between atoms (A), the distribution of electronic density of only external valency electrons, distribution of electrostatic potential; common energy of the exertion of molecule (kkal/mmol); binding energy (kkal/mmol); electron energy (kkal/mmol); energy of nucleus-nucleus interaction (kkal/mmol); formation heat (kkal/mmol); atomic charge (eB); value of the dipole moment of molecule (D); localization and energy of highest occupied orbital (HOMO) and the lowest unoccupied (LUMO) molecular orbital (eB) of quercetin miolecule; the value of absolute rigidity of chemical structure of bioflavonoid. It was shown, that bioflavonoid quercetin belongs to mild reagents, has nucleophilic properties, can react with alkaline, unsaturated and aromatic compounds,. Polar substitutes in the quercetine molecule influence on the distribution of superficial valency electrons and localization of HOMO and LUMO. The energy value of quercetin LUMO enables us to refer quercetine to the reducing agent and it is illustrated by antioxidant properties of this medicine.

  11. SERS spectroscopy of kaempferol and galangin under the interaction of human serum albumin with adsorbed silver nanoparticles

    Science.gov (United States)

    Zhang, Wei; Bai, Xueyuan; Wang, Yingping; Zhao, Bing; Zhao, Daqing; Zhao, Yu

    Raman and surface-enhanced Raman scattering (SERS) spectroscopy were employed to probe the interaction of the flavonol drugs, kaempferol and galangin, with human serum albumin (HSA). SERS spectra of both flavonol derivatives were obtained from a colloidal silver surface in physiological condition, based on the high performance of the enhanced substrate, the most enhanced modes of kaempferol and galangin were those with certain motions perpendicular to the metal surface. The SERS spectra were allowed to predict similar orientation geometry for both of the drugs on the colloidal surface with minor difference. In addition, both flavonols-HSA complexes were prepared in different concentration ratios and the orientated differences between kaempferol and galangin were investigated by SERS.

  12. Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies.

    Science.gov (United States)

    Gidaro, Maria Concetta; Astorino, Christian; Petzer, Anél; Carradori, Simone; Alcaro, Francesca; Costa, Giosuè; Artese, Anna; Rafele, Giancarlo; Russo, Francesco M; Petzer, Jacobus P; Alcaro, Stefano

    2016-02-17

    The purpose of this work was to determine the kaempferol content in three red wines of Calabria, a southern Italian region with a great number of certified food products. Considering that wine cultivar, climate, and soil influence the qualitative and quantitative composition in flavonoids of Vitis vinifera L. berries, the three analyzed samples were taken from the 2013 vintage. Moreover, the Gaglioppo samples, with assigned Controlled Origin Denomination (DOC), were also investigated in the production of years 2008, 2010, and 2011. In addition to the analysis of kaempferol, which is present in higher concentration than in other Italian wines, in vitro assays were performed to evaluate, for the first time, the inhibition of the human monoamine oxidases (hMAO-A and hMAO-B). Molecular recognition studies were also carried out to provide insight into the binding mode of kaempferol and selectivity of inhibition of the hMAO-A isoform.

  13. Acetylated flavonol triglycosides from Ammi majus L.

    Science.gov (United States)

    Singab, A N

    1998-12-01

    Two new acetylated flavonol triglycosides: kaempferol and isorhamnetin 3-O-[2"-(4"'-acetylrhamnosyl)-6"-glucosyl] glucosides, were isolated and identified from the aerial parts of Ammi majus L. In addition, three known flavonol glycosides namely; isorhamnetin-3-O-rutinoside, kaempferol-3-O-glucoside and isorhamnetin-3-O-glucoside were detected.

  14. Pharmacologic modulation of acute ocular inflammation with quercetin.

    Science.gov (United States)

    Romero, J; Marak, G E; Rao, N A

    1989-01-01

    Anti-inflammatory potentials of a safe, common dietary component, quercetin, were investigated in suppression of intraocular inflammation induced by retinal S antigen. Lewis rats sensitized to S antigen were treated daily with intraperitoneal injections of quercetin. Control rats with S-antigen-induced uveitis were similarly treated with diluent. When compared with controls the treated group showed marked reduction in uveal and retinal inflammation and in vasculitis and perivasculitis. Morphometric analysis revealed a significant reduction (p less than 0.005) in choroidal thickness when compared with that of control animals. These results clearly show the antiphlogistic effects of quercetin in experimental uveitis.

  15. Quantum Chemistry Calculation of Quercetin-silver Complex

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Three possible molecular structures of quercetin-silver complexes obtained from the reaction of quercetin and Ag+ in equivalent molar ratio were designed and optimized by using Gaussian 98 program at the B3LYP/LanL2DZ basis set. Through theoretical analysis, one of the three designed structures is discovered to have the most stable coordination position. Then its geometry structure, natural bond orbital analyses, vibrational frequency and biological activity were performed. The results show that it has good stability and relatively stronger antioxidative activity because it is favorably attacked by O2-*. Therefore theoretical foundation is provided for the development of new quercetin metal complexes with higher activity antioxidants.

  16. Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway.

    Science.gov (United States)

    Guo, Haiqing; Ren, Feng; Zhang, Li; Zhang, Xiangying; Yang, Rongrong; Xie, Bangxiang; Li, Zhuo; Hu, Zhongjie; Duan, Zhongping; Zhang, Jing

    2016-03-01

    Kaempferol is a flavonoid compound that has gained importance due to its antitumor properties; however, the underlying mechanisms remain to be fully understood. The present study aimed to investigate the molecular mechanisms of the antitumor function of kaempferol in HepG2 hepatocellular carcinoma cells. Kaempferol was determined to reduce cell viability, increase lactate dehydrogenase activity and induce apoptosis in a concentration‑ and time‑dependent manner in HepG2 cells. Additionally, kaempferol‑induced apoptosis possibly acts via the endoplasmic reticulum (ER) stress pathway, due to the significant increase in the protein expression levels of glucose‑regulated protein 78, glucose‑regulated protein 94, protein kinase R‑like ER kinase, inositol‑requiring enzyme 1α, partial activating transcription factor 6 cleavage, caspase‑4, C/EBP homologous protein (CHOP) and cleaved caspase‑3. The pro‑apoptotic activity of kaempferol was determined to be due to induction of the ER stress‑CHOP pathway, as: i) ER stress was blocked by 4‑phenyl butyric acid (4‑PBA) pretreatment and knockdown of CHOP with small interfering RNA, which resulted in alleviation of kaempferol‑induced HepG2 cell apoptosis; and ii) transfection with plasmid overexpressing CHOP reversed the protective effect of 4‑PBA in kaempferol‑induced HepG2 cells and increased the apoptotic rate. Thus, kaempferol promoted HepG2 cell apoptosis via induction of the ER stress‑CHOP signaling pathway. These observations indicate that kaempferol may be used as a potential chemopreventive treatment strategy for patients with hepatocellular carcinoma.

  17. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2012-01-01

    Full Text Available Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer’s disease and depression.

  18. Isorhamnetin, A Flavonol Aglycone from Ginkgo biloba L., Induces Neuronal Differentiation of Cultured PC12 Cells: Potentiating the Effect of Nerve Growth Factor.

    Science.gov (United States)

    Xu, Sherry L; Choi, Roy C Y; Zhu, Kevin Y; Leung, Ka-Wing; Guo, Ava J Y; Bi, Dan; Xu, Hong; Lau, David T W; Dong, Tina T X; Tsim, Karl W K

    2012-01-01

    Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, share a chemical resemblance to estrogen, and indeed some of which have been used as estrogen substitutes. In searching for possible functions of flavonoids, the neuroprotective effect in brain could lead to novel treatment, or prevention, for neurodegenerative diseases. Here, different subclasses of flavonoids were analyzed for its inductive role in neurite outgrowth of cultured PC12 cells. Amongst the tested flavonoids, a flavonol aglycone, isorhamnetin that was isolated mainly from the leaves of Ginkgo biloba L. showed robust induction in the expression of neurofilament, a protein marker for neurite outgrowth, of cultured PC12 cells. Although isorhamnetin by itself did not show significant inductive effect on neurite outgrowth of cultured PC12 cells, the application of isorhamnetin potentiated the nerve growth factor- (NGF-)induced neurite outgrowth. In parallel, the expression of neurofilaments was markedly increased in the cotreatment of NGF and isorhamnetin in the cultures. The identification of these neurite-promoting flavonoids could be very useful in finding potential drugs, or food supplements, for treating various neurodegenerative diseases, including Alzheimer's disease and depression.

  19. Modulation of drug resistance in Staphylococcus aureus by a kaempferol glycoside from Herissantia tiubae (Malvaceae).

    Science.gov (United States)

    Falcão-Silva, Vivyanne S; Silva, Davi A; Souza, Maria de Fátima V; Siqueira-Junior, José P

    2009-10-01

    In an ongoing project to evaluate natural compounds isolated from plants from the Brazilian biodiversity as modulators of antibiotic resistance, kaempferol-3-O-beta-d-(6''-E-p-coumaroyl) glucopyranoside (tiliroside), isolated from Herissantia tiubae (Malvaceae) was investigated using the strain SA-1199B of Staphylococcus aureus, which overexpresses the norA gene encoding the NorA efflux protein which extrudes hydrophilic fluorquinolones and some biocides, such as benzalkonium chloride, cetrimide, acriflavine and ethidium bromide. The minimum inhibitory concentrations (MICs) of the antibiotics and biocides were determined by the microdilution assay in the absence and in the presence of sub-inhibitory concentration of tiliroside. Although tiliroside did not display relevant antibacterial activity (MIC = 256 microg/mL), it modulated the activity of antibiotics, i.e. in combination with antibiotics a reduction in the MIC was observed for norfloxacin (16-fold), ciprofloxacin (16-fold), lomefloxacin (four-fold) and ofloxacin (two-fold), and an impressive reduction in the MICs for the biocides (up to 128-fold). The results presented here represent the first report of a kaempferol glycoside as a putative efflux pump inhibitor in bacteria. The present finding indicates that H. tiubae (and broadly Malvaceae) could serve as a source of plant-derived natural products that modulate bacterial resistance, i.e. a source of potential adjuvants of antibiotics.

  20. Preparation and evaluation of kaempferol-phospholipid complex for pharmacokinetics and bioavailability in SD rats.

    Science.gov (United States)

    Zhang, Kexia; Gu, Liqiang; Chen, Jinpeng; Zhang, Yuanyuan; Jiang, Yu; Zhao, Longshan; Bi, Kaishun; Chen, Xiaohui

    2015-10-10

    As one of the dietary flavonoids, kaempferol (KP) has been well known to show strong anti-oxidative effect along with other biological properties. However, the oral bioavailability of KP is relatively low due to its poor solubility. In this study, we intended to increase the solubility and bioavailability of KP by preparing kaempferol-phospholipid complex (KP-PC). The KP-PC's physicochemical properties were characterized in terms of infrared spectroscopy (IR), differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), water/n-Octanol solubility and in vitro dissolution. KP-PC exhibited higher solubility and dissolution rate than KP, indicating a significant improvement in hydrophilicity. A UPLC-ESI-MS/MS method was developed and validated for the determination of KP in Sprague-Dawley (SD) rat plasma, so as to investigate the oral bioavailability of KP-PC versus KP. Results showed that Cmax and AUC(0-48 h) of KP from the complex (Cmax: 3.94 ± 0.83 μg/mL, AUC(0-48 h): 57.81 ± 9.43 mg/Lh) were higher than that of KP (Cmax: 1.43 ± 0.21 μg/mL, AUC(0-48 h): 13.65 ± 3.12 mg/Lh). This research indicated that phospholipid complex (PC) might be one of the suitable approachs to improve the oral bioavailability of KP and other poor-solubility flavonoids.

  1. Fibrinolytic activity of kaempferol isolated from the fruits of Lagenaria siceraria (Molina) Standley.

    Science.gov (United States)

    Rajput, M S; Mathur, Vineet; Agrawal, Purti; Chandrawanshi, H K; Pilaniya, Urmila

    2011-11-01

    This study was undertaken to isolate a flavonol, kaempferol, from the fruits of Lagenaria siceraria (bottle gourd) as a sole compound and to explore the fibrinolytic potential of the methanolic extract of the fruits of L. siceraria and the isolated compound using their in vitro activity. The fibrinolytic activity in terms of percentage of plasma clot liquefaction was determined by plasma clot lysis at 37°C in 24 h. The fibrinolytic activity of both substances was compared to the well-known thrombolytic agent streptokinase (30,000 IU). The percentage of fibrinolytic activity of the extract and isolated compound were found to be 54.72 ± 0.7210 and 77.37 ± 1.3010, respectively. Streptokinase was considered as the standard fibrinolytic enzyme for comparative purposes and had 91.46 ± 0.7625% fibrinolytic activity. The conclusion drawn in our study after testing the hypothesis by experimental procedures is that in vitro fibrinolytic activity on plasma clots is an inherent property of kaempferol isolated from the fruits of L. siceraria, and its comparison with streptokinase is a new aspect for further study.

  2. Protective Effects of Quercetin and Quercetin-5',8-Disulfonate against Carbon Tetrachloride-Caused Oxidative Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Yanmang Cui

    2013-12-01

    Full Text Available Oxidative stress is one of the major factors in the pathogenesis of liver disease. Quercetin is a plant-based antioxidant traditionally used as a treatment for hepatic injury, but its poor solubility affects its bioavailability. We here report the regulative effects on hepatoprotection and absorption in mice of quercetin sulfation to form quercetin-5',8-disulfonate (QS, a novel synthetic compound. Oral administration of both QS and the parent quercetin at 100, 200 and 500 mg/kg·bw prior to acute CCl4 oxidative damage in mice, effectively attenuated serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and lactate dehydrogenase (LDH activities and hepatic malondialdehyde (MDA levels (p < 0.05, and suppressed the CCl4-induced depletion of glutathione peroxidase (GSH-Px and total superoxide dismutase (T-SOD. Selective 5',8-sulfation of quercetin increased the hepatoprotective effect, and its relative absorption relative to quercetin (p < 0.05 as indicated by an improved 24-hour urinary excretion and a decreased fecal excretion determined by HPLC. These results and histopathological observations collectively demonstrate that quercetin sulfation increases its hepatoprotective effects and absorption in mice, and QS has potential as a chemopreventive and chemotherapeutic agent for liver diseases.

  3. Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae) and the relaxant activity of kaempferol-3-O-{beta}-D-(6''-E-p -coumaroyl) glucopyranoside on guinea-pig ileum

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Danielly Albuquerque da; Silva, Davi Antas e; Cavalcanti, Aline Coutinho; Medeiros, Marcos Antonio Alves de; Lima, Julianeli Tolentino de; Cavalcante, Jose Marcilio Sobral; Silva, Bagnolia Araujo da; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Dept. de Ciencias Farmaceuticas]. E-mail: mfvanderlei@ltf.ufpb.br

    2007-07-15

    The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: {beta}-sitosterol, a mixture of sitosteryl-3-O-{beta}-D-glucopyranoside and stigmasteryl-3-O-{beta}-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-{beta}-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-{beta}-D-(6{sup -}E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, {sup 1}H and {sup 13}C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC{sub 50} = 9.5 {+-} 1.0 x 10{sup -5} M), acetylcholine 10{sup -6} M (EC{sub 50} = 2.3 {+-} 0.9 x 10{sup -5} M) or histamine 10{sup -6} M (EC{sub 50} = 4.1 {+-} 1.0 x 10{sup -5} M) in a concentration-dependent manner. (author)

  4. Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae and the relaxant activity of kaempferol-3-O-beta-D-(6"-E-p -coumaroyl glucopyranoside on guinea-pig ileum

    Directory of Open Access Journals (Sweden)

    Danielly Albuquerque da Costa

    2007-08-01

    Full Text Available The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: beta-sitosterol, a mixture of sitosteryl-3-O-beta-D-glucopyranoside and stigmasteryl-3-O-beta-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-beta-D-glucopyranoside (isoquercitrin and kaempferol-3-O-beta-D-(6"-E-p -coumaroyl glucopyranoside (tiliroside, which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, ¹H and 13C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC50 = 9.5 ± 1.0 x 10-5 M, acetylcholine 10-6 M (EC50 = 2.3 ± 0.9 x 10-5 M or histamine 10-6 M (EC50 = 4.1 ± 1.0 x 10-5 M in a concentration-dependent manner.

  5. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    Science.gov (United States)

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  6. Separation and purification of isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze by counter-current chromatography comparing two kinds of solvent systems.

    Science.gov (United States)

    Xie, Qianqian; Yin, Li; Zhang, Guoliang; Wei, Yun

    2012-01-01

    The first preparative separation of a flavonoid sulphate isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze by counter-current chromatography (CCC) was presented. Two kinds of solvent systems were used. A conventional organic/aqueous solvent system n-butanol-ethyl acetate-water (4:1:5, v/v) was used, yielding isorhamnetin 3-sulphate 2.0 mg with a purity of 93.4% from 83 mg of pre-enriched crude extract obtained from 553 mg ethanol extract by macroporous resin. A one-component organic/salt-containing system composed of n-butanol-0.25% sodium chloride aqueous solution (1:1, v/v) was also used, and the LC column packed with macroporous resin has been employed for desalination of the target compound purified from CCC. As a result, 2.1 mg of isorhamnetin 3-sulphate with a purity of over 97% has been isolated from 402 mg of crude extract without pre-enrichment. Compared with the conventional organic/aqueous system, the one-component organic/salt-containing aqueous system was more suitable for the separation of isorhamnetin 3-sulphate, and purer target compound was obtained from the crude extract without pre-enrichment using the new solvent system. The chemical structure was confirmed by ESI-MS and (1)H, (13)C NMR. In summary, our results indicated that CCC using one-component organic/salt-containing aqueous solution is very promising and powerful for high-throughput purification of isorhamnetin 3-sulphate from Flaveria bidentis (L.) Kuntze.

  7. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    Science.gov (United States)

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  8. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells.

    Science.gov (United States)

    Chen, Hui-Jye; Lin, Chung-Ming; Lee, Chao-Ying; Shih, Nai-Chen; Peng, Shu-Fen; Tsuzuki, Minoru; Amagaya, Sakae; Huang, Wen-Wen; Yang, Jai-Sing

    2013-08-01

    Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.

  9. Quercetin Inhibits Cell Migration and Invasion in Human Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Haifeng Lan

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma is a malignant tumor associated with high mortality; however, no effective therapies for the disease have been developed. Several studies have focused on elucidating the pathogenesis of osteosarcoma and have aimed to develop novel therapies for the disease. Quercetin is a vital dietary flavonoid that has been shown to have a variety of anticancer effects, as it induces cell cycle arrest, apoptosis, and differentiation and is involved in cell adhesion, metastasis and angiogenesis. Herein, we aimed to investigate the effects of quercetin on osteosarcoma migration and invasion in vitro and in vivo and to explore the molecular mechanisms underlying its effects on osteosarcoma migration and invasion. Methods: Cell viability, cell cycle activity and cell apoptosis were measured using CCK-8 assay and flow cytometry, and cell migration and invasion were evaluated by wound healing and transwell assays, respectively. The mRNA and protein expression levels of several proteins of interest were assessed by real-time quantitative PCR and western blotting, respectively. Moreover, a nude mouse model of human osteosarcoma lung metastasis was established to assess the anti-metastatic effects of quercetin in vivo. Results: We noted no significant differences in cell cycle activity and apoptosis between HOS and MG63 cells and control cells. Treatment with quercetin significantly attenuated cell migration and invasion in HOS and MG63 cells compared with treatment with control medium. Moreover HIF-1α, VEGF, MMP2, and MMP9 mRNA and protein expression levels were significantly downregulated in HOS cells treated with quercetin compared with HOS cells treated with controls. Additionally, treatment with quercetin attenuated metastatic lung tumor formation and growth in the nude mouse model of osteosarcoma compared with treatment with controls. Conclusion: Our findings regarding the inhibitory effects of quercetin on cell migration and

  10. Ergogenic effects of quercetin supplementation in trained rats

    OpenAIRE

    Casuso Rafael A; Martínez-Amat Antonio; Martínez-López Emilio J; Camiletti-Moirón Daniel; Porres Jesus M; Aranda Pilar

    2013-01-01

    Abstract Background Quercetin is a natural polyphenolic compound currently under study for its ergogenic capacity to improve mitochondrial biogenesis. Sedentary mice have exhibited increased endurance performance, but results are contradictory in human models. Methods We examined the effects of six weeks of endurance training and quercetin supplementation on markers of endurance performance and training in a rodent model. Rats were randomly assigned to one of the following groups: placebo+sed...

  11. Health – promoting effect of quercetin in human diet

    Directory of Open Access Journals (Sweden)

    Agnieszka Kobylińska

    2015-06-01

    Full Text Available Quercetin is a plant flavonoid phytochemical exhibiting a broad spectrum of properties i.a. antioxidant, anti-inflammatory and immunomodulatory. However, the effect of quercetin is not clear. This compound at low concentrations can stimulate proliferation of human cells, so it can be a potential drug in the treatment of neurodegenerative diseases and in high concentrations, it induces apoptosis thereby eliminating the infected or abnormal cells and can serve as a potential anticancer drug with wide clinical application. Action of quercetin can be explained by its interference with cellular enzymes, receptors, transporters and signalling system. Due to its widespread occurrence in the plant world, it is an integral component of the human diet. The dietary quercetin occurs most often in the form of β-glycosides connected mostly with rutinose, rhamnose and glucose. Depending on the nutritional habits, the daily intake of flavonoids, including quercetin, ranges from 3 to 70 mg. Epidemiological studies confirm an inverse correlation between the consumption of flavonoids and the incidence of lifestyle diseases and tumor formation. Published data indicate that consumption of foods rich in flavonoids reduces the risk of coronary heart disease. Thus, flavonoids - including quercetin – seem to be an interesting pro-health agent.

  12. [Health--promoting effect of quercetin in human diet].

    Science.gov (United States)

    Kobylińska, Agnieszka; Janas, Krystyna M

    2015-01-09

    Quercetin is a plant flavonoid phytochemical exhibiting a broad spectrum of properties i.a. antioxidant, anti-inflammatory and immunomodulatory. However, the effect of quercetin is not clear. This compound at low concentrations can stimulate proliferation of human cells, so it can be a potential drug in the treatment of neurodegenerative diseases and in high concentrations, it induces apoptosis thereby eliminating the infected or abnormal cells and can serve as a potential anticancer drug with wide clinical application. Action of quercetin can be explained by its interference with cellular enzymes, receptors, transporters and signalling system. Due to its widespread occurrence in the plant world, it is an integral component of the human diet. The dietary quercetin occurs most often in the form of β-glycosides connected mostly with rutinose, rhamnose and glucose. Depending on the nutritional habits, the daily intake of flavonoids, including quercetin, ranges from 3 to 70 mg. Epidemiological studies confirm an inverse correlation between the consumption of flavonoids and the incidence of lifestyle diseases and tumor formation. Published data indicate that consumption of foods rich in flavonoids reduces the risk of coronary heart disease. Thus, flavonoids - including quercetin - seem to be an interesting pro-health agent.

  13. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    Directory of Open Access Journals (Sweden)

    Fazlullah Khan

    2016-08-01

    Full Text Available Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  14. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-01-01

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790

  15. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C; Nabavi, Seyed Mohammad; Bishayee, Anupam

    2016-08-29

    Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods-including fruits, vegetables, tea, wine, as well as other dietary supplements-and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed.

  16. Development and evaluation of PLGA polymer based nanoparticles of quercetin.

    Science.gov (United States)

    Anwer, Md Khalid; Al-Mansoor, Mohammed A; Jamil, Shahid; Al-Shdefat, Ramadan; Ansari, Mohammad Nazam; Shakeel, Faiyaz

    2016-11-01

    Quercetin is the most abundant antioxidant found in the human diet. Low aqueous solubility of quercetin limits its bioavailability and hence therapeutic effects. Therefore, the aim of the present study was to develop a poly lactide-co-glycolic acid (PLGA) polymer based nanoparticles of quercetin with a view to improve its aqueous solubility and examine the effect on its antioxidant and diuretic properties. Nanoparticles of quercetin were developed by single emulsion-solvent evaporation technique and evaluated in vitro for differential scanning calorimetry (DSC), Fourier transforms infra-red (FTIR) spectroscopy, particle size, polydispersity index and drug entrapment efficiency. Among the five different formulations (F1, F2, F3, F4 and F5), F2 and F3 were optimized with an average particle size of 189nm and 186nm and high entrapment values of 86.48%, 83.71%, respectively. SEM images of confirmed that prepared nanoparticles were spherical in shape with a smooth surface. In vitro release and anti-oxidant activity confirmed significant results. Furthermore, its in vivo diuretic activity was much better as compared to pure quercetin. The overall results suggest that PLGA polymer based nanoparticle could be a potential option for quercetin delivery.

  17. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    Science.gov (United States)

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties.

  18. HPLC FOR CONTROL STABILITY OF QUERCETIN INJECTABLE DOSAGE FORM

    Directory of Open Access Journals (Sweden)

    Martynov AV

    2016-12-01

    Full Text Available Introduction. Quercetin is a flavone derivatives which known like a substances with vitamin activity, high antioxidant, antimutagenic and anticarcinogenic activity and many other types of biological activity. Wide usage of quercetin prevents their polyphenolic nature structure which does not allow a high bioavailability of pure quercetin when administered orally. This is associated with a wide spectrum variety of chemical reactions for the phenolic groups: from interaction with amino acid residues in proteins to reactions with amine heterocyclic alkaloids and polysaccharides. In our days Corvitin – one from the number of quercetin based drugs with sufficiently low levels all types toxicity, allergenic and has no irritating action on intravenous administration. In the same time quercetin cannot be used in full measure because of the limited number of publications with analysis methods, especially HPLC. Determining the stability over time of concentrate quercetin solution, as well as determining the stability of the concentrate to the original autoclave sterilization conditions is a promising direction in creating new drugs. Materials and methods The objective was to research quercetin soluble formulation samples in different conditions: 1 fresh dilute concentrate (0.9% sodium chloride; 2 the original dilute concentrate, which was stored at room temperature for 14 days in light and 3 similar to the first sample dilute concentrate, which went before breeding in autoclaving at 120 0 C for 20 minutes. The objects used in the studies were industrial drug-substance quercetin (Sinkea manufactured (China, the original pharmaceutical composition as the soluble form of quercetin for injection and aerosol applications, glycerol (Sigma, Polysorbat 80 (Merk, ethanol 96 %. For the HPLC – analysis, chromatograph "Milichrom A-02" (SiChrom, Knauer (Econova, Novosibirsk, Russia was used. Results and discussion Quercetin was identified using information on its

  19. Kaempferol inhibits the production of ROS to modulate OPN-αvβ3 integrin pathway in HUVECs.

    Science.gov (United States)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Liu, Zi-Kui; Luo, Zhi-Feng

    2016-06-01

    In the present study, we tested the hypothesis that aldosterone regulates osteopontin (OPN)-related signaling pathways to promote nuclear factor κB (NF-κB) activation in primary human umbilical vein endothelial cells (HUVECs) and that kaempferol, a flavonoid compound, blocks those changes. Aldosterone induced productions of reactive oxygen species (ROS), OPN, interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) and expression of nicotinamide adenine dinucleotide phosphate-oxidase 4 (Nox4), NF-κB, OPN, alphavbeta3 (αvβ3) integrin, and inhibitor of NF-κB alpha phosphorylation (P-IκBα) in HUVEC. HUVECs were pretreated with kaempferol (0, 1, 3, or 10 μM) for 1 h and exposed to aldosterone (10(-6) M) for 24 h. Kaempferol reduced ROS, OPN, NF-κB, IL-6, and TNF-α levels; Nox4, αvβ3 integrin; and P-IκBα expressions. The effect of aldosterone was also abrogated by spironolactone (10(-6) M). In addition, vitamin C (20 mmol/L) reduced ROS production. Vitamin C and LM609 (10 μg/mL) treatment decreased expressions of OPN, αvβ3 integrin, and NF-κB (P kaempferol may modulate OPN-αvβ3 integrin pathway to inhibit NF-κB activation in HUVECs.

  20. Effects of quercetin and quercetin-3-O-glycosides on oxidative damage in rat C6 glioma cells.

    Science.gov (United States)

    Zielińska, Małgorzata; Gülden, Michael; Seibert, Hasso

    2003-01-01

    Flavonoids are reported to be powerful antioxidants in cell free systems. They naturally occur as glycosides rather than as aglycon. In this study the ability of the flavonoid quercetin and its glycosides, quercetin-3-O-rutinoside (rutin), quercetin-3-O-glucoside and quercetin-3-O-(6″-O-acetyl)-glucoside, to protect in vitro rat C6 glioma cells from oxidative damage induced by cumene hydroperoxide was investigated. Cumene hydroperoxide induced cell death and lipid peroxidation. The cytotoxicity of cumene hydroperoxide could be prevented by the radical scavenger dimethyl thiourea and the ferric iron chelator deferoxamine, indicating that its cytotoxic activity is related to the generation of reactive oxygen radicals in the ferrous iron dependent Fenton reaction. Quercetin, in a concentration range of 10-100 μM, but neither rutin nor the other two glycosides, were able to protect C6 cells from cytotoxicity and lipid peroxidation. Furthermore, cytoprotective concentrations of quercetin proved to be cytotoxic itself. These results call in question potential beneficial effects of dietary intake or therapeutic use of naturally occurring flavonoids.

  1. Quantum dots (QDs) based fluorescence probe for the sensitive determination of kaempferol

    Science.gov (United States)

    Tan, Xuanping; Liu, Shaopu; Shen, Yizhong; He, Youqiu; Yang, Jidong

    2014-12-01

    In this work, using the quenching of fluorescence of thioglycollic acid (TGA)-capped CdTe quantum dots (QDs), a novel method for the determination of kaempferol (KAE) has been developed. Under optimum conditions, a linear calibration plot of the quenched fluorescence intensity at 552 nm against the concentration of KAE was observed in the range of 4-44 μg mL-1 with a detection limit (3σ/K) of 0.79 μg mL-1. In addition, the detailed reaction mechanism has also been proposed on the basis of electron transfer supported by ultraviolet-visible (UV-vis) absorption and fluorescence (FL) spectroscopy. The method has been applied for the determination of KAE in pharmaceutical preparations with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation.

  2. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  3. Effect of kaempferol on lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal carcinoma in rats.

    Science.gov (United States)

    Nirmala, Parthasarathy; Ramanathan, Manickam

    2011-03-01

    Colorectal cancer, a common cause of cancer related deaths in both sexes in western population is often due to persistent oxidative stress leading to DNA damage. Antioxidants scavenge free radicals and inhibit neoplastic process. Kaempferol, a flavonol widely distributed in tea, broccoli, grape fruit, brussels sprouts and apple, is claimed to have chemopreventive action in colon cancer. The aim of our study was to evaluate the effect of kaempferol on tissue lipid peroxidation and antioxidant status in 1,2-dimethyl hydrazine induced colorectal cancer in male Wistar rats and to compare its efficacy with irinotecan. Experimental colon cancer induced by 1,2-dimethyl hydrazine in rats mimic human colon cancer and therefore is an ideal model for chemoprevention studies. The rats were divided into six groups. Group 1 served as control. Group 2 received 1,2-dimethyl hydrazine (20 mg/kg body weight) subcutaneously once a week for four weeks. Group 3 received irinotecan (100 mg/kg body weight) intravenously once a week for four weeks with 1,2-dimethyl hydrazine. Groups 4 to 6 were given a daily oral dose of 50, 100, 200 mg/kg body weight of kaempferol with 1,2-dimethyl hydrazine. The total study period was 16 weeks. Kaempferol supplementation lowered 1,2-dimethyl hydrazine induced erythrocyte lysate and liver thiobarbituric acid reactive substances level and rejuvenated anti oxidant enzymes catalase, super oxide dismutase and glutathione peroxidase. The recovery of enzyme status was maximum at the dose of 200 mg/kg body weight and was comparable to irinotecan. Our study reveals that kaempferol could be safely used as a chemopreventive agent in colorectal cancer.

  4. The effect of isorhamnetin glycosides extracted from Opuntia ficus-indica in a mouse model of diet induced obesity.

    Science.gov (United States)

    Rodríguez-Rodríguez, César; Torres, Nimbe; Gutiérrez-Uribe, Janet A; Noriega, Lilia G; Torre-Villalvazo, Iván; Leal-Díaz, Ana M; Antunes-Ricardo, Marilena; Márquez-Mota, Claudia; Ordaz, Guillermo; Chavez-Santoscoy, Rocío A; Serna-Saldivar, Sergio O; Tovar, Armando R

    2015-03-01

    A diet rich in polyphenols can ameliorate some metabolic alterations associated with obesity and type 2 diabetes. Opuntia ficus-indica (OFI) is a plant rich in isorhamnetin glycosides and is highly consumed in Mexico. The purpose of this research was to determine the metabolic effect of an OFI extract on a mouse model of diet-induced obesity and in isolated pancreatic islets. OFI extract was added to a high fat (HF) diet at a low (0.3%) or high (0.6%) dose and administered to C57BL/6 mice for 12 weeks. Mice fed the HF diet supplemented with the OFI extract gained less body weight and exhibited significantly lower circulating total cholesterol, LDL cholesterol and HDL cholesterol compared to those fed the HF diet alone. The HF-OFI diet fed mice presented lower glucose and insulin concentration than the HF diet fed mice. However, the HF-OFI diet fed mice tended to have higher insulin concentration than control mice. The OFI extract stimulated insulin secretion in vitro, associated with increased glucose transporter 2 (GLUT2) and peroxisome proliferator-activated receptor gamma (PPARγ) mRNA content. Furthermore, the OFI extract improved glucose tolerance, and additionally increased energy expenditure. These metabolic improvements were associated with reduced adipocyte size, increased hepatic IRS1 tyr-608 and S6 K thr-389 phosphorylation. OFI isorhamnetin glycosides also diminished the hepatic lipid content associated with reduced mRNA expression of the endoplasmic reticulum stress markers and lipogenic enzymes and increased mRNA expression of genes related to fatty acid oxidation. Overall, the OFI extract prevented the development of metabolic abnormalities associated with diet-induced obesity.

  5. Interactions of quercetin-uranium complexes with biomembranes and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Enas Mohammed Hassan

    2014-07-21

    Uranium decontamination gains a great importance with the spread of nuclear waste in both soil and water systems across the planet. All known remediation methods of uranium can be exclusively based either on synthetic materials with high adsorbent power and known physical chemistry or life organisms by which the uranium eventually accumulated inside their tissues. In the present thesis, it was attempted to design a rational approach for uranyl removal primarily from waters using the reducing potential of quercetin, which is a plant-derived small organic molecules, along with its photochemical activities. Such approach, which is neither a fully synthetic nor an organism-based approach, was chosen here to avoid disadvantages with both traditional strategies. Here, complexation experiments were designed to assess the use of uranyl-quercetin complexes for the photoreduction of water-soluble U(VI) to insoluble U(IV) by comparing absorption properties of uranyl-quercetin complexes in acetone, water, and hydrophobic bilayer lipid vesicles. The UV-vis data show that uranyl quercetin complex can form in both hydrophobic and hydrophilic environments. In both cases the B-ring band in quercetin structure becomes reduced, red shifted and a pronounced absorption arises in the 400-500 nm range. Such data suggests that U(VI) binds at the 3-OH and 4-carbonyl of ring C of quercetin. Interestingly, the results of UV-Vis spectroscopy part hint at a crucial role of a stable or transiently ionized hydroxyl for the efficient uranyl-dependent photodegradation of quercetin. FTIR spectroscopy absorption changes further demonstrates that the UV-vis-spectroscopic changes are indeed accompanied by changes in the chemical structure of the complex as expected for a uranyl-dependent photodegradation. IR data thus suggest that U(VI) becomes reduced by the photoreaction, rather than merely changing its coordination shell. The frequency shifts in the C=C and C=O absorption range on the other hand

  6. Effect of Cudrania tricuspidata and Kaempferol in Endoplasmic Reticulum Stress-Induced Inflammation and Hepatic Insulin Resistance in HepG2 Cells.

    Science.gov (United States)

    Kim, Ok-Kyung; Jun, Woojin; Lee, Jeongmin

    2016-01-21

    In this study, we quantitated kaempferol in water extract from Cudrania tricuspidata leaves (CTL) and investigated its effects on endoplasmic reticulum (ER) stress-induced inflammation and insulin resistance in HepG2 cells. The concentration of kaempferol in the CTL was 5.07 ± 0.08 mg/g. The HepG2 cells were treated with 300 µg/mL of CTL, 500 µg/mL of CTL, 1.5 µg/mL of kaempferol or 2.5 µg/mL of kaempferol, followed immediately by stimulation with 100 nM of thapsigargin for ER stress induction for 24 h. There was a marked increase in the activation of the ER stress and inflammation response in the thapsigargin-stimulated control group. The CTL treatment interrupted the ER stress response and ER stress-induced inflammation. Kaempferol partially inhibited the ER stress response and inflammation. There was a significant increase in serine phosphorylation of insulin receptor substrate (IRS)-1 and the expression of C/EBPα and gluconeogenic genes in the thapsigargin-stimulated control group compared to the normal control. Both CTL and kaempferol suppressed serine phosphorylation of IRS-1, and the treatments did not interrupt the C/EBPα/gluconeogenic gene pathway. These results suggest that kaempferol might be the active compound of CTL and that it might protect against ER stress-induced inflammation and hyperglycemia.

  7. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models.

    Science.gov (United States)

    Kim, Seung-Hee; Choi, Kyung-Chul

    2013-12-31

    Phytoestrogens exist in edible compounds commonly found in fruits or plants. For long times, phytoestrogens have been used for therapeutic treatments against human diseases, and they can be promising ingredients for future pharmacological industries. Kaempferol is a yellow compound found in grapes, broccoli and yellow fruits, which is one of flavonoid as phytoestrogens. Kaempferol has been suggested to have an antioxidant and anti-inflammatory effect. In past decades, many studies have been performed to examine anti-toxicological role(s) of kaempferol against human cancers. It has been shown that kaempferol may be involved in the regulations of cell cycle, metastasis, angiogenesis and apoptosis in various cancer cell types. Among them, there have been a few of the studies to examine a relationship between kaempferol and apoptosis. Thus, in this review, we highlight the effect(s) of kaempferol on the regulation of apoptosis in diverse cancer cell models. This could be a forecast in regard to use of kaempferol as promising treatment against human diseases.

  8. Dietary quercetin supplementation is not ergogenic in untrained men.

    Science.gov (United States)

    Cureton, Kirk J; Tomporowski, Phillip D; Singhal, Arpit; Pasley, Jeffrey D; Bigelman, Kevin A; Lambourne, Kathleen; Trilk, Jennifer L; McCully, Kevin K; Arnaud, Maurice J; Zhao, Qun

    2009-10-01

    Quercetin supplementation increases muscle oxidative capacity and endurance in mice, but its ergogenic effect in humans has not been established. Our study investigates the effects of short-duration chronic quercetin supplementation on muscle oxidative capacity; metabolic, perceptual, and neuromuscular determinants of performance in prolonged exercise; and cycling performance in untrained men. Using a double-blind, pretest-posttest control group design, 30 recreationally active, but not endurance-trained, young men were randomly assigned to quercetin and placebo groups. A noninvasive measure of muscle oxidative capacity (phosphocreatine recovery rate using magnetic resonance spectroscopy), peak oxygen uptake (Vo(2peak)), metabolic and perceptual responses to submaximal exercise, work performed on a 10-min maximal-effort cycling test following the submaximal cycling, and voluntary and electrically evoked strength loss following cycling were measured before and after 7-16 days of supplementation with 1 g/day of quercetin in a sports hydration beverage or a placebo beverage. Pretreatment-to-posttreatment changes in phosphocreatine recovery time constant, Vo(2peak,) substrate utilization, and perception of effort during submaximal exercise, total work done during the 10-min maximal effort cycling trial, and voluntary and electrically evoked strength loss were not significantly different (P > 0.05) in the quercetin and placebo groups. Short duration, chronic dietary quercetin supplementation in untrained men does not improve muscle oxidative capacity; metabolic, neuromuscular and perceptual determinants of performance in prolonged exercise; or cycling performance. The null findings indicate that metabolic and physical performance consequences of quercetin supplementation observed in mice should not be generalized to humans.

  9. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS

    Science.gov (United States)

    Yang, Le-Le; Xiao, Na; Li, Xiao-Wei; Fan, Yong; Alolga, Raphael N.; Sun, Xiao-Yue; Wang, Shi-Lei; Li, Ping; Qi, Lian-Wen

    2016-10-01

    Quercetin is a natural flavonoid widely distributed in human diet and functional foods. Quercetin 3-O-β-glucuronide (Q3G) is present in wine and some medicinal plants. Quercetin and Q3G may be metabolized from each other in vivo. While quercetin has been the subject of many studies, the pharmacokinetic profiles of quercetin and Q3G (in animals) have not yet been compared. Herein, we prepared a column-based method for rapid isolation of Q3G from Nelumbo nucifera. Then, we developed an UHPLC-MS/MS method to compare the pharmacokinetics of quercetin and Q3G. Our results showed that the plasma concentration-time curves of quercetin and Q3G show two maxima (Tmax1 ≈ 0.75 h, Tmax2 ≈ 5 h). After oral administration of 100 mg/kg quercetin or 100 mg/kg Q3G in rats, predominantly Q3G was detected in plasma with AUC at 39529.2 ± 6108.2 mg·h·L‑1 or 24625.1 ± 1563.8 mg·h·L‑1, 18-fold higher than quercetin with AUC at 1583.9 ± 583.3 mg·h·L‑1 or 1394.6 ± 868.1 mg·h·L‑1, respectively. After intravenous injection of 10 mg/kg in rats, Q3G showed extensive tissue uptake in kidney (409.2 ± 118.4 ng/g), liver (166.1 ± 52.9 ng/g), heart (97.7 ± 22.6 ng/g), and brain (5.8 ± 1.2 ng/g). In conclusion, we have shown that Q3G is a major active component in plasma and tissue for oral administration of quercetin or Q3G.

  10. Pharmacokinetic comparison between quercetin and quercetin 3-O-β-glucuronide in rats by UHPLC-MS/MS

    Science.gov (United States)

    Yang, Le-Le; Xiao, Na; Li, Xiao-Wei; Fan, Yong; Alolga, Raphael N.; Sun, Xiao-Yue; Wang, Shi-Lei; Li, Ping; Qi, Lian-Wen

    2016-01-01

    Quercetin is a natural flavonoid widely distributed in human diet and functional foods. Quercetin 3-O-β-glucuronide (Q3G) is present in wine and some medicinal plants. Quercetin and Q3G may be metabolized from each other in vivo. While quercetin has been the subject of many studies, the pharmacokinetic profiles of quercetin and Q3G (in animals) have not yet been compared. Herein, we prepared a column-based method for rapid isolation of Q3G from Nelumbo nucifera. Then, we developed an UHPLC-MS/MS method to compare the pharmacokinetics of quercetin and Q3G. Our results showed that the plasma concentration-time curves of quercetin and Q3G show two maxima (Tmax1 ≈ 0.75 h, Tmax2 ≈ 5 h). After oral administration of 100 mg/kg quercetin or 100 mg/kg Q3G in rats, predominantly Q3G was detected in plasma with AUC at 39529.2 ± 6108.2 mg·h·L−1 or 24625.1 ± 1563.8 mg·h·L−1, 18-fold higher than quercetin with AUC at 1583.9 ± 583.3 mg·h·L−1 or 1394.6 ± 868.1 mg·h·L−1, respectively. After intravenous injection of 10 mg/kg in rats, Q3G showed extensive tissue uptake in kidney (409.2 ± 118.4 ng/g), liver (166.1 ± 52.9 ng/g), heart (97.7 ± 22.6 ng/g), and brain (5.8 ± 1.2 ng/g). In conclusion, we have shown that Q3G is a major active component in plasma and tissue for oral administration of quercetin or Q3G. PMID:27775094

  11. Flavonoid profile of green asparagus genotypes.

    Science.gov (United States)

    Fuentes-Alventosa, J M; Jaramillo, S; Rodríguez-Gutiérrez, G; Cermeño, P; Espejo, J A; Jiménez-Araujo, A; Guillén-Bejarano, R; Fernández-Bolaños, J; Rodríguez-Arcos, R

    2008-08-27

    The determination of flavonoid profiles from different genotypes of triguero asparagus and their comparison to those from green asparagus commercial hybrids was the main goal of this study. The samples consisted of 32 commercial hybrids and 65 genotypes from the Huetor-Tajar population variety (triguero). The analysis of individual flavonoids by HPLC-DAD-MS has allowed the determination of eight naturally occurring flavonol derivatives in several genotypes of triguero asparagus. Those compounds included mono-, di-, and triglycosides of three flavonols, that is, quercetin, isorhamnetin, and kaempferol. The detailed analysis of the flavonoid profiles revealed significant differences among the distinct genotypes. These have been classified in three distinct groups as the result of a k-means clustering analysis, two of them containing both commercial hybrids and triguero asparagus and another cluster constituted by 21 genotypes of triguero asparagus, which contain several key flavonol derivatives able to differentiate them. Hence, the triglycosides tentatively identified as quercetin-3-rhamnosyl-rutinoside, isorhamnetin-3-rhamnosyl-rutinoside, and isorhamnetin-3-O-glucoside have been detected only in the genotypes grouped in the above-mentioned cluster. On the other hand, the compound tentatively identified as isorhamnetin-3-glucosyl-rutinoside was present in most genotypes of triguero asparagus, whereas it has not been detected in any of the commercial hybrids.

  12. Suppressive Activity of Quercetin on Periostin Functions In Vitro.

    Science.gov (United States)

    Irie, Shinji; Kashiwabara, Misako; Yamada, Asako; Asano, Kazuhito

    2016-01-01

    Periostin, a 90-kDa extracellular matrix protein, has been attracting attention as a novel biomarker of airway inflammatory diseases such as allergic rhinitis (AR) and asthma. Although oral administration of quercetin to patients with AR can favorably modify the clinical condition of this disease, the influence of quercetin on periostin functions is not well understood. The present study was, therefore, undertaken to examine the influence of quercetin on the production of both periostin and periostin-induced eosinophil chemoattractants from human nasal epithelial cells (HNEpC) in vitro. HNEpC were stimulated with 15.0 ng/ml interleukin (IL)-4 in the absence or presence of quercetin for 72 h. Periostin levels in the culture supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Addition of 4.0 μM quercetin into cell cultures suppressed periostin production from HNEpC that was induced by IL-4 stimulation through inhibitation of signal transducer and activator of transcription 6 (STAT6) activation. We then examined whether quercetin could inhibit production of the periostin-induced eosinophil chemoattractants, regulated on activation, normal T-cell expressed and secreted (RANTES) and eotaxin, from HNEpC. HNEpC were stimulated with 2.0 ng/ml periostin in the absence or presence of quercetin for 72 h. RANTES and eotaxin levels in culture supernatants were examined using ELISA. Treatment of HNEpC with quercetin at a concentration of 4.0 μM suppressed the ability of cells to produce RANTES and eotaxin. This suppression was mediated through suppression of activation of the transcription factor nuclear factor-kappa B (NF-κB) p65, as measured using ELISA, and of chemokine mRNA expression, as measured using reverse transcriptase-polymerase chain reaction (RT-PCR). These results strongly suggest that quercetin suppresses the production of both periostin and periostin-induced eosinophil chemoattractants from HNEpC and results in improvement of the

  13. Quercetin and Its Anti-Allergic Immune Response

    Directory of Open Access Journals (Sweden)

    Jiri Mlcek

    2016-05-01

    Full Text Available Quercetin is the great representative of polyphenols, flavonoids subgroup, flavonols. Its main natural sources in foods are vegetables such as onions, the most studied quercetin containing foods, and broccoli; fruits (apples, berry crops, and grapes; some herbs; tea; and wine. Quercetin is known for its antioxidant activity in radical scavenging and anti-allergic properties characterized by stimulation of immune system, antiviral activity, inhibition of histamine release, decrease in pro-inflammatory cytokines, leukotrienes creation, and suppresses interleukin IL-4 production. It can improve the Th1/Th2 balance, and restrain antigen-specific IgE antibody formation. It is also effective in the inhibition of enzymes such as lipoxygenase, eosinophil and peroxidase and the suppression of inflammatory mediators. All mentioned mechanisms of action contribute to the anti-inflammatory and immunomodulating properties of quercetin that can be effectively utilized in treatment of late-phase, and late-late-phase bronchial asthma responses, allergic rhinitis and restricted peanut-induced anaphylactic reactions. Plant extract of quercetin is the main ingredient of many potential anti-allergic drugs, supplements and enriched products, which is more competent in inhibiting of IL-8 than cromolyn (anti-allergic drug disodium cromoglycate and suppresses IL-6 and cytosolic calcium level increase.

  14. 糯米藤中黄酮类化学成分研究%Study on flavonoid chemical constituents contained in Memorialis hirta

    Institute of Scientific and Technical Information of China (English)

    雷军; 肖云川; 王文静; 席贞; 刘淼; 冉坚; 黄静

    2012-01-01

    目的:对糯米藤的化学成分进行研究.方法:运用多种色谱方法进行分离纯化,根据理化性质和波谱数据鉴定化合物的结构.结果:从糯米藤95%乙醇提取物的乙酸乙酯萃取部分中分离得到12个化合物,分别签定为异鼠李素(1),山柰酚(2),槲皮素(3),异鼠李素-3-O-α-L-鼠李糖苷(4),山柰酚-3-O-α-L-鼠李糖苷(5),异鼠李素-3-O-β-D-葡萄糖苷(6),山柰酚-3-O-β-D-葡萄糖苷(7),槲皮素-3-O-α-L-鼠李糖苷(8),槲皮素-3-O-β-D-葡萄糖苷(9),异鼠李素-3-O-芸香糖苷(10),山柰酚-3-O-芸香糖苷(11)和槲皮素-3-O-芸香糖苷(12).结论:所有化合物均为首次从该属植物中分离得到.%Objective: To study the chemical constituents of Menwrialis hirta. Method: Compounds were isolated and purified by multiple methods, and their structures were identified based on physicochemical property and spectrum data. Result: 12 compounds were isolated from ethyl acetate from 95% ethanol extracts of M. Hirta, they were isorhamnetin (1) , kaempferol (2) , quercetin (3) , isorhamnetin-3-O-α-L-rhamnopyranoside ( 4 ) , kaempferol-3-O-α-L-rhamnopyranoside ( 5 ) , isorhamnetin-3-0-β-D-glucopyranoside (6) , kaempferol-3-0-β-D-glucopyranoside (7) , quercetin-3-O-α-L-rhamnopyranoside (8) , quercetin-3-0-β-D-glucopyranoside (9) , isorhamnetin-3-O-rutinoside (10) , kaempferol-3-O-rutinoside (11) and quercetin-3-O-rutinoside (12), respectively. Conclusion; All compounds were obtained from the genus Memorialis for the first time.

  15. Chemical constituents of Caragana bungei shoots

    Directory of Open Access Journals (Sweden)

    Daniil N. Olennikov

    2012-06-01

    Full Text Available The phytochemical study of flowering shoots of Caragana bungei Ledeb., Fabaceae, collected in Tuva Republic (Russian Federation resulted in the isolation of sixteen compounds identified as β-sitosterol, β-sitosterol-3-O-glucoside, umbelliferone, kaempferol, quercetin, isorhamnetin-3-O-glucoside, isoquercitrin, rutin, narcissin, nicotiflorin, caffeic acid, 3-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, gallic acid and sucrose. The structures of the compounds were established by spectral analyses. This is the first phytochemical investigation of C. bungei. The nicotiflorin, phenylpropanoids and gallic acid were isolated from the Caragana genus for the first time.

  16. Quercetin as natural stabilizing agent for bio-polymer

    Energy Technology Data Exchange (ETDEWEB)

    Morici, Elisabetta [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, 90128 Palermo (Italy); Arrigo, Rossella; Dintcheva, Nadka Tzankova [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, 90128 Palermo (Italy)

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  17. Potential improvement of Lymantria dispar L. management by quercetin

    Directory of Open Access Journals (Sweden)

    Perić-Mataruga Vesna

    2014-01-01

    Full Text Available Lymantria dispar, a polyphagous insect pest, copes with a wide variety of host-specific allelochemicals. Glutathione S-transferases (GST are important for catalyzing detoxification in L. dispar. Larval mortality, GST activity in midgut tissue and mass of L. dispar with different trophic adaptations (originating from two forests with a suitable host, Quercus robur, and an unsuitable host, Robinia pseudoacacia, differed after feeding on quercetin supplemented diets (2% or 5% w/w. Quercetin inhibited GST most potently in oak forest larvae that were less adapted to flavonoids in their diet. The larvicidal effect of quercetin on L. dispar larvae depended on the host-use history. We believe this is important in strategies for sustainable control of insect pests. [Projekat Ministarstva nauke Republike Srbije, br. 173027

  18. Quercetin as natural stabilizing agent for bio-polymer

    Science.gov (United States)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  19. Isorhamnetin 3-O-robinobioside from Nitraria retusa leaves enhance antioxidant and antigenotoxic activity in human chronic myelogenous leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Boubaker Jihed

    2012-08-01

    Full Text Available Abstract Background In this report, the isorhamnetin 3-o-robinobioside and its original extract, the ethyl acetate extract, from Nitraria retusa leaves, were evaluated for their ability to induce antioxidant and antigenotoxic effects in human chronic myelogenous leukemia cell line. Methods Nitraria retusa products properties were carried out by firstly evaluating their effects against lipid peroxidation induced by H2O2, using the thiobarbituric acid reactive substances species (TBARS assay, and proceeding to the assay of cellular antioxidant activity, then doing the comet assay. Results The isorhamnetin 3-o-robinobioside showed a protective effect against lipid peroxidation induced by H2O2. The same natural compound and ethyl acetate extract inhibited oxidation induced by 2,2′-azobis (2-amidinopropane dihydrochloride in human chronic myelogenous leukemia cells with respectively 50% inhibitory concentration values of 0.225 mg/ml and 0.31 mg/ml, reflecting a significant antioxidant potential. The same two products inhibited the genotoxicity induced by hydroxyl radicals in the same human cell line (by 77.77% at a concentration of 800 μg/ml and by 80.55% at a concentration of 1000 μg/ml respectively. Conclusions The isorhamnetin 3- o-robinobioside and its original extract, the ethyl acetate extract, from Nitraria retusa leaves, have a great antioxidant and antigenotoxic potential on human chronic myelogenous leukemia cell line K562.

  20. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Ranganathan, Santhalakshmi; Halagowder, Devaraj; Sivasithambaram, Niranjali Devaraj

    2015-01-01

    Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231), which differed in hormone receptor. IC50 value (37μM) of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM) of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  1. Estimated Daily Intake and Seasonal Food Sources of Quercetin in Japan

    Directory of Open Access Journals (Sweden)

    Haruno Nishimuro

    2015-04-01

    Full Text Available Quercetin is a promising food component, which can prevent lifestyle related diseases. To understand the dietary intake of quercetin in the subjects of a population-based cohort study and in the Japanese population, we first determined the quercetin content in foods available in the market during June and July in or near a town in Hokkaido, Japan. Red leaf lettuce, asparagus, and onions contained high amounts of quercetin derivatives. We then estimated the daily quercetin intake by 570 residents aged 20–92 years old in the town using a food frequency questionnaire (FFQ. The average and median quercetin intakes were 16.2 and 15.5 mg day−1, respectively. The quercetin intakes by men were lower than those by women; the quercetin intakes showed a low correlation with age in both men and women. The estimated quercetin intake was similar during summer and winter. Quercetin was mainly ingested from onions and green tea, both in summer and in winter. Vegetables, such as asparagus, green pepper, tomatoes, and red leaf lettuce, were good sources of quercetin in summer. Our results will help to elucidate the association between quercetin intake and risks of lifestyle-related diseases by further prospective cohort study and establish healthy dietary requirements with the consumption of more physiologically useful components from foods.

  2. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  3. Variation of quercetin glycoside derivatives in three onion (Allium cepa L. varieties

    Directory of Open Access Journals (Sweden)

    Jung-Ho Kwak

    2017-09-01

    Full Text Available The aim of this study was to quantify the contents of individual quercetin glycosides in red, yellow and chartreuse onion by High Performance Liquid Chromatography (HPLC analysis. Acid hydrolysis of individual quercetin glycosides using 6 M hydrochloric acid guided to identify and separate quercetin 7,4′-diglucoside, quercetin 3-glucoside, quercetin 4′-glucoside, and quercetin. The contents of total quercetin glycosides varied extensively among three varieties (ranged from 16.10 to 103.93 mg/g DW. Quercetin was the predominant compound that accounted mean 32.21 mg/g DW in red onion (43.6% of the total and 127.92 mg/g DW in chartreuse onion (78.3% of the total followed by quercetin 3-glucoside (28.83 and 24.16 mg/g DW respectively. Quercetin 3-glucoside levels were much higher in yellow onion (43.85 mg/g DW followed by quercetin 30.08 mg/g DW. Quercetin 4′-glucoside documented the lowest amount that documented mean 2.4% of the total glycosides. The varied contents of glycosides present in the different onion varieties were significant.

  4. Chemical composition and antioxidant activity of aerial parts of Ferula longipes Coss. ex Bonnier and Maury.

    Science.gov (United States)

    Bouratoua, Aicha; Khalfallah, Assia; Bensouici, Chawki; Kabouche, Zahia; Alabdul Magid, Abdulmagid; Harakat, Dominique; Voutquenne-Nazabadioko, Laurence; Kabouche, Ahmed

    2017-07-16

    This is the first study on the phytochemistry and antioxidant activity of Ferula longipes Coss. ex Bonnier and Maury (Apiaceae). A new flavonoid quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-[2-O-caffeoyl]-glucopyranoside (1), along with 10 known compounds kaempferol-3-O-α-L-rhamnopyranoside (2), quercetin-3-O-α-L-rhamnopyranoside (3), kaempferol-3-O-ß-D-glucopyranoside-7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (5), quercetin-3-O-α-L-rhamnopyranoside-7-O-ß-D-glucopyranoside (6), isorhamnetin-3,7-di-O-β-D-glucopyranoside (7), apigenin (8), apigenin-7-O-ß-D-glucopyranoside (9), 3,5-dicaffeoylquinic acid (10), deltoin (11) were isolated from the aerial parts of Ferula longipes Coss. Structures elucidation was performed by comprehensive 1D and 2D NMR analyses, mass spectrometry and by comparison with literature data. The compounds 1, 3, 4, 6, 7 and 10 were evaluated for their antioxidant activity, compound 1 exhibited the best antiradical activity potential and showed IC50 and A0.5 values 5.70, 7.25, 5.00, and 2.63 μg/mL towards DPPH free radical-scavenging, ABTS, CUPRAC, and reducing power assays, respectively compared with BHA, BHT and ascorbic acid which were used as positive controls.

  5. [Quercetin induces the apoptosis of human PC-3 cells].

    Science.gov (United States)

    Zhu, Qing-Yi; Hu, Rui; Liu, Li; Yuan, Lin; Huang, Wei-Zhou; Ma, Long; Gu, Xiao-Jian

    2011-09-01

    To study the effect of quercetin on the apoptosis of human PC-3 cells. Human PC-3 cells were cultured in vitro and then treated with quercetin at the concentrations of 50, 100, 150, 200 and 250 micromol/L. The inhibition rate of quercetin on the PC-3 cells was detected by MTT, the apoptosis of the cells determined by flow cytometry, and the changes of the cellular ultramicrostructure observed by transmission electron microscopy. Quercetin markedly inhibited the proliferation of PC-3 cells in vitro in a time- and dose-dependent manner. Its inhibition rates were (3.01 +/- 1.32)%, (4.84 +/- 1.73)%, (20.35 +/- 1.30)%, (16.78 +/- 1.89)% and (27.25 +/- 4.01)% at 24 hours, and (10.18 +/- 1.16)%, (6.22 +/- 0.04)%, (24.29 +/- 4.19)%, (22.4 +/- 4.26)% and (41.42 +/- 5.43)% at 48 hours in the 50, 100, 150, 200 and 250 micromol/L groups, respectively, with statistical significance at the concentration of > 150 micromol/L (P apoptosis of PC-3 cells was increased with the elevated concentration and prolonged time of Quercetin treatment, (19.10 +/- 0.28)% and (26.55 +/- 0.78)% at 24 hours, and (27.65 +/- 1.06)% and (38.30 +/- 5.96)% at 48 hours in the 150 and 200 micromol/L groups, respectively (P Quercetin can inhibit the proliferation and induce the apoptosis of human PC-3 cells, but its action mechanism remains to be further investigated.

  6. Acylation of Quercetin with a Novel Thermophilic Esterase as Biocatalyst

    Institute of Scientific and Technical Information of China (English)

    XIE Xiao-na; ZHANG Chun-li; XUN Er-na; WANG Jia-xin; ZHANG Hong; WANG Lei; WANG Zhi

    2012-01-01

    The regioselective acylation of quercetin catalyzed by a novel thermophilic esterase(APE1547)from the archaeon Aeropyrum pernix K1 was successfully conducted in organic solvents.The effects of acyl donor,substrate ratio,organic solvent,temperature,and water activity were investigated.Under the optimum conditions,a yield of 74% for its mono ester could be achieved in the reaction for about 6 h.With the reaction time extending to about 30 h,the final conversion of quercetin was about 100% and three products were synthesized.

  7. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10(-6)M) or E2 (10(-9)M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10(-8)M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan.

  8. Kaempferol regulates the lipid-profile in high-fat diet-fed rats through an increase in hepatic PPARα levels.

    Science.gov (United States)

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2011-11-01

    The aim of this study was to investigate the antiobesity and antihyperlipidemic effects of the flavonoid kaempferol (3,5,7,4'-tetrahydroxyflavone). After being fed a high-fat diet (HFD) for two weeks, rats were dosed orally with kaempferol (75, 150, or 300 mg/kg) or fenofibrate (100 mg/kg) once daily for eight weeks. Fenofibrate is an antilipemic agent that exerts its therapeutic effects through activation of peroxisome proliferator-activated receptor α (PPAR α). Kaempferol (300 mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights, plasma lipid levels, as well as the coronary artery risk and atherogenic indices of HFD-fed rats. Kaempferol also caused dose-related reductions in hepatic triglyceride and cholesterol content and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes in HFD-fed rats. Kaempferol and fenofibrate reversed the HFD-induced downregulation of hepatic PPAR α. HFD-induced reductions in the hepatic levels of acyl-CoA oxidase (ACO), and cytochrome P450 isoform 4A1 (CYP4A1) proteins were reversed by kaempferol and fenofibrate. The elevated expression of hepatic sterol regulatory element binding proteins (SREBPs) in HFD-fed rats were lowered by kaempferol and fenofibrate. These results suggest that kaempferol reduced the accumulation of visceral fat and improved hyperlipidemia in HFD-fed obese rats by increasing lipid metabolism through the downregulation of SREBPs and promoting the hepatic expression of ACO and CYP4A1, secondary to a direct upregulation hepatic PPAR α expression.

  9. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes

    DEFF Research Database (Denmark)

    Justesen, U.; Knuthsen, Pia

    2001-01-01

    Many herbs are known as excellent sources of natural antioxidants, and consumption of fresh herbs in the diet may therefore contribute to the daily antioxidant intake. The present study was performed in order to quantify flavonoids in commonly eaten fresh herbs. Fifteen fresh herbs (basil, chives......, coriander, cress, dill, lemon balm, lovage, oregano, parsley, rosemary, sage, spearmint, tarragon, thyme, and watercress) were analysed by HPLC and mass spectrometry. Five major flavonoid aglycones were detected and quantified by HPLC after acid hydrolysis: apigenin, isorhamnetin, kaempferol, luteolin......, and quercetin. The highest levels of flavonoids were found in parsley (510-630 mg apigenin /100 g), lovage (170 mg quercetin/100g), mint (18-100 mg apigenin/ 100 g), and dill (48-110 mg quercetin/100 g). Mass spectrometric detection, using atmospheric pressure chemical ionisation (APCI), was used to verify...

  10. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-02-22

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway.

  11. Evaluation of antioxidant activity of crocin, podophyllotoxin and kaempferol by chemical, biochemical and electrochemical assays

    Directory of Open Access Journals (Sweden)

    Riyaz A. Dar

    2017-02-01

    Full Text Available The present study was designed to evaluate the antioxidant potential of three natural origin drugs, namely crocin, kaempferol and podophyllotoxin by chemical, biochemical and electrochemical assays. The chemical assay was carried out by DPPH and reducing power assays while the biochemical assay evaluated the lipid peroxidation inhibition capacity, using brain cells as models; the electrochemical characterization was performed by cyclic voltammetry and differential pulse voltammetry using multi-walled carbon nanotube paste electrode (MWCNTPE in 0.02 M acetate buffer (pH 4.5. The superoxide radical scavenging activity was performed at dropping mercury electrode (DME in 0.1 M KCl. All the species proved to have antioxidant activity, and particularly, by the electrochemical techniques, it has been shown that these drugs showed scavenging ability on superoxide anion produced by electrochemical reduction of oxygen. The highest scavenging property of crocin may be due to the hydroxyl and glucose moieties that could provide the necessary component as a radical scavenger.

  12. Curcumin and kaempferol prevent lysozyme fibril formation by modulating aggregation kinetic parameters.

    Science.gov (United States)

    Borana, Mohanish S; Mishra, Pushpa; Pissurlenkar, Raghuvir R S; Hosur, Ramakrishna V; Ahmad, Basir

    2014-03-01

    Interaction of small molecule inhibitors with protein aggregates has been studied extensively, but how these inhibitors modulate aggregation kinetic parameters is little understood. In this work, we investigated the ability of two potential aggregation inhibiting drugs, curcumin and kaempferol, to control the kinetic parameters of aggregation reaction. Using thioflavin T fluorescence and static light scattering, the kinetic parameters such as amplitude, elongation rate constant and lag time of guanidine hydrochloride-induced aggregation reactions of hen egg white lysozyme were studied. We observed a contrasting effect of inhibitors on the kinetic parameters when aggregation reactions were measured by these two probes. The interactions of these inhibitors with hen egg white lysozyme were investigated using fluorescence quench titration method and molecular dynamics simulations coupled with binding free energy calculations. We conclude that both the inhibitors prolong nucleation of amyloid aggregation through binding to region of the protein which is known to form the core of the protein fibril, but once the nucleus is formed the rate of elongation is not affected by the inhibitors. This work would provide insight into the mechanism of aggregation inhibition by these potential drug molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins

    Indian Academy of Sciences (India)

    Beena Mishra; Atanu Barik; K Indira Priyadarsini; Hari Mohan

    2005-11-01

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime measurements of HSA showed decrease in the average lifetimes indicating binding at a location, near the tryptophan moiety, and the possibility of fluorescence energy transfer between excited tryptophan and quercetin. Critical transfer distance () was determined, from which the mean distance between tryptophan-214 in HSA and quercetin was calculated. The above studies were also carried out with bovine serum albumin (BSA).

  14. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis.

    Science.gov (United States)

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Sreedhar, Remya; Giridharan, Vijayasree V; Watanabe, Kenichi

    2016-04-01

    Atopic dermatitis (AD) is an inflammatory skin disease. Over the past few decades, AD has become more prevalent worldwide. Quercetin, a naturally occurring polyphenol, shows antioxidant, anti-inflammatory, and antiallergic activities. Several recent clinical and preclinical findings suggest quercetin as a promising natural treatment for inflammatory skin diseases. Significant progress in elucidating the molecular mechanisms underlying the anti-AD properties of quercetin has been achieved in the recent years. Here, we discuss the use of quercetin as treatment for AD, with a particular focus on the molecular basis of its effect. We also briefly discuss the approaches to improve the bioavailability of quercetin.

  15. The flavonoid quercetin induces apoptosis and inhibits migration through a MAPK-dependent mechanism in osteoblasts.

    Science.gov (United States)

    Nam, Tae Wook; Yoo, Chong Il; Kim, Hui Taek; Kwon, Chae Hwa; Park, Ji Yeon; Kim, Yong Keun

    2008-01-01

    The present study was undertaken to evaluate effects of quercetin, a major dietary flavonoid occurring in foods of plant origin, on cell viability and migration of osteoblastic cells. Quercetin inhibited cell viability, which was largely attributed to apoptosis, in a dose-and time-dependent manner in osteoblastic cells. Similar cytotoxicity of quercetin was observed in adipose tissue-derived stromal cells. Quercetin exerted a protective effect against H(2)O(2)-induced cell death, whereas it increased TNF-alpha-induced cell death. Western blot analysis showed that quercetin induced activation of ERK and p38, but not JNK. Quercetin-induced cell death was prevented by the ERK inhibitor PD98059, but not by inhibitors of p38 and JNK. Quercetin increased Bax expression and caused depolarization of mitochondrial membrane potential, which were inhibited by PD98059. Quercetin induced caspase-3 activation, and the quercetininduced cell death was prevented by caspase inhibitors. Quercetin inhibited cell migration, and its effect was prevented by inhibitors of ERK and p38. Taken together, these findings suggest that quercetin induces apoptosis through a mitochondria-dependent mechanism involving ERK activation and inhibits migration through activation of ERK and p38 pathways. Quercetin may exert both protective and deleterious effects in bone repair.

  16. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  17. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin

    Directory of Open Access Journals (Sweden)

    Fahmy T. Ali

    2016-04-01

    Conclusions: Quercetin and moringinine are responsible to a great extent for the antitumor activity of the whole extract. Chlorogenic acid is a potent hepatoprotective in alloxan induced liver toxicity. [Int J Res Med Sci 2016; 4(4.000: 1147-1153

  18. DFT study of glycosyl group reactivity in quercetin derivatives

    Science.gov (United States)

    Jeevitha, D.; Sadasivam, K.; Praveena, R.; Jayaprakasam, R.

    2016-09-01

    Density functional theory (DFT) is used to compute relevant electronic properties with the purpose of generating precise information which facilitates the best activity given by the positions of glycosyl group attached at all 3 different rings of quercetin such as Q3G (C- ring), Q7G (A-ring) and Q3‧G (B-ring). Computed values of the OH BDE, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP), Density of states (DOS,PDOS,OPDOS) and electronic properties such as electron affinity (EA), ionization potential (IP), softness (S), hardness (η), electronegativity (χ) and electrophilic index (ω) indicate that the title compounds possess good radical scavenging activity. Charge delocalization and intramolecular hydrogen bonds are characterized using natural bond orbital (NBO) analysis. NBO accurately differentiate the weak and strong intramolecular hydrogen bond of quercetin-O-glycoside compounds. Results available from the computational investigation have proved that A-ring glycoside of quercetin is capable of donating electrons and acts as a good anti-oxidant than B-ring glycoside and C-ring glycoside of quercetin.

  19. Quercetin protects rat skeletal muscle from ischemia reperfusion injury.

    Science.gov (United States)

    Ekinci Akdemir, Fazile Nur; Gülçin, İlhami; Karagöz, Berna; Soslu, Recep

    2016-01-01

    In this study, we investigated the potential beneficial effects of quercetin on skeletal muscle ischemia reperfusion injury. Twenty-four Sprague-Dawley type rats were randomly divided into four groups. In the sham group, only gastrocnemius muscle were removed and given no quercetin. In ischemia group, all the femoral artery, vein and collaterals were occluded in the left hindlimb by applying tourniquate under general anaesthesia for three hours but reperfusion was not done. In the Quercetin + Ischemia reperfusion group, quercetin (200 mg kg(-1) dose orally) was given during one-week reoperation and later ischemia reperfusion model was done. Finally, gastrocnemius muscle samples were removed to measure biochemical parameters. The biomarkers, MDA levels, SOD, CAT and GPx activities, were evaluated related to skeletal muscle ischemia reperfusion injury. MDA levels reduced and SOD, CAT and GPx activities increased significantly in Quercetin + Ischemia reperfusion group. Results clearly showed that Quercetin have a protective role against oxidative damage induced by ischemia reperfusion in rats.

  20. EXTRACTION OF QUERCETIN FROM POLYGONUM HYDROPIPER L. BY SUBCRITICAL WATER

    Directory of Open Access Journals (Sweden)

    A. V. Lekar

    2014-01-01

    Full Text Available The new method of quercetin extraction from Polygonum hydropiper L. by subcritical water was developed. High performance liquid chromatography was used for identification and quantification of flavonoids in the extract. The new method is environmentally friendly and more effective (7.6-times than traditional flavonoids extraction methods using expensive and toxic organic solvents.

  1. Maltodextrin fast dissolving films for quercetin nanocrystal delivery. A feasibility study.

    Science.gov (United States)

    Lai, Francesco; Franceschini, Ilaria; Corrias, Francesco; Sala, Maria Chiara; Cilurzo, Francesco; Sinico, Chiara; Pini, Elena

    2015-05-05

    The objective of this study was to evaluate the feasibility to prepare fast dissolving films as quercetin nanocrystal delivery systems, using maltodextrins as film forming material and glycerin as plasticizer, with the goal of enhancing quercetin oral bioavailability. Quercetin nanosuspensions were prepared using a high-pressure homogenizer, and then directly used to prepare the films by a casting method. Spectroscopic and calorimetric analysis evidenced that reduction of quercetin size at nanoscale and incorporation in maltodextrin films do not affect the solid state of the active ingredient. The loading of quercetin nanocrystals into the film determined a slight variation of film elasticity and ductility. Indeed, the elastic modulus of the loaded films resulted about a half of the placebo ones, while the elongation at break increased four folds. Free and film loaded quercetin nanocrystals showed a comparable dissolution rate, much higher than that of bulk quercetin.

  2. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    Science.gov (United States)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  3. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method.

    Science.gov (United States)

    Ravichandran, R; Rajendran, M; Devapiriam, D

    2014-03-01

    Quercetin found chelate cadmium ions, scavenge free radicals produced by cadmium. Hence new complex, quercetin with cadmium was synthesised, and the synthesised complex structures were determined by UV-vis spectrophotometry, infrared spectroscopy, thermogravimetry and differential thermal analysis techniques (UV-vis, IR, TGA and DTA). The equilibrium stability constants of quercetin-cadmium complex were determined by Job's method. The determined stability constant value of quercetin-cadminum complex at pH 4.4 is 2.27×10(6) and at pH 7.4 is 7.80×10(6). It was found that the quercetin and cadmium ion form 1:1 complex in both pH 4.4 and pH 7.4. The structure of the compounds was elucidated on the basis of obtained results. Furthermore, the antioxidant activity of the free quercetin and quercetin-cadmium complexes were determined by DPPH and ABTS assays.

  4. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction.

    Directory of Open Access Journals (Sweden)

    Yun Luo

    Full Text Available Isorhamnetin (Iso is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/- mice fed a high fat diet.Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions.In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction.

  5. Down-regulation of endothelial protein C receptor shedding by persicarin and isorhamnetin-3-O-galactoside.

    Science.gov (United States)

    Ku, Sae-Kwang; Han, Min-Su; Bae, Jong-Sup

    2013-07-01

    Increasing evidence has shown that beyond its role in coagulation, endothelial protein C receptor (EPCR) plays an important role in the cytoprotective pathway. Previous reports have shown that EPCR can be shed from the cell surface, and that this is mediated by tumor necrosis factor-α converting enzyme (TACE) and that sEPCR levels are increased in patients with systemic inflammatory diseases. Persicarin and isorhamnetin-3-O-galactoside (I3G) are active compounds from Oenanthe javanica, which has been widely studied for its neuroprotective, antioxidant, and barrier protective activities. However, little is known of the effects of persicarin on EPCR shedding. Here, we investigated this issue by monitoring the effects of persicarin and I3G on phorbol-12-myristate 13-acetate (PMA) and on cecal ligation and puncture (CLP)-mediated EPCR shedding and underlying mechanisms. According to the results, persicarin and I3G induced potent inhibition of PMA and CLP-induced EPCR shedding by suppressing expression of TACE. In addition, persicarin and I3G reduced PMA-stimulated phosphorylation of p38MAPK, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). Given these results, persicarin and I3G could be used as a candidate therapeutic for treatment of severe vascular inflammatory diseases.

  6. Inhibitory Effects of Quercetin on Angiogenesis of Experimental Mammary Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Lingquan Kong; Kainan Wu; Hui Lin

    2005-01-01

    OBJECTIVE To explore the inhibitory effects of quercetin on angiogenesis of experimental mammary carcinoma.METHODS A 7,12-dimethylbenzanthracene (DMBA)-induced animal model of mammary carcinoma was established in rats. Seventy-nine female Sprague-Dawly rats were randomized into 4 groups namely, DMBA, DMBA with tamoxifen (TAM), DMBA with quercetin and control agents identified as group A, B, C and D respectively. Treatment was for 28 weeks. Samples of breast tissues were collected for histopathological observation and microvessel density (MVD) estimation by light microscopy. The expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and the protein product of H-ras were examined by immunohistochemical staining.tumor diameter of group A (76.2%, 2.37cm) were significantly higher than that in group B (40.9%, 1.82cm), C (45.5%, 1.71cm) and D (0%, 0cm) (P<0.05). There was no significant difference between groups B and C (P >0.05), which indicated that quercetin inhibited the incidence and growth of ing for VEGF, bFGF and the H-ras protein product showed significant differences between groups A and B, as well as groups A and C (P < 0.05), but no significant difference between groups B and C (P>0.05).CONCLUSION Quercetin can reduce the DMBA- induced mammary carcinoma incidence and tumor growth.The following mechanisms may be recausing inhibition of proliferation of the tumor cells and tumor angiogenesis.as VEGF and bFGF, so that angiogenesis in the mammary carcinomas is suppressed, with decreased mammary MVD in the rats receiving quercetin treatment.

  7. Electrical characterization of Au/quercetin/n-Si heterojunction diode and optical analysis of quercetin thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tombak, Ahmet, E-mail: tahmet@yahoo.com [Department of Physics, Faculty of Art& Science, Batman University, Batman 72000 (Turkey); Özaydin, C. [Department of Computer Engineering, Faculty of Engineering and Architecture, Batman University, Batman 72000 (Turkey); Boğa, M. [Faculty of Pharmacy, Pharmaceutical Technology Department, Dicle University, Diyarbakir 21280 (Turkey); Kiliçoğlu, T. [Department of Physics, Faculty of Science, Dicle University, Diyarbakir 21280 (Turkey)

    2016-03-25

    Quercetin (3,5,7,3’,4’-pentahydroxyflavone, QE), one of the most widely distributed flavonoids in fruits and vegetables, has been reported to possess a wide variety of biological effects, including anti-oxidative, anti-inflammatory, anti-apoptosis, hepatoprotective, renoprotective and neuroprotective effects. In this study organic-inorganic junctions were fabricated by forming quercetin complex thin film using spin coating technique on n-Si and evaporating Au metal on the film. Optical properties of quercetin thin film were studied with the help of spectrophotometer. The current-voltage (I-V) characteristic of Au/quercetin/n-Si heterojunction diode was investigated at room temperature in dark. Some basic parameters of the diode such as ideality factor, rectification ratio, barrier height, series resistance and shunt resistance were calculated using dark current-voltage measurement. It was also seen that the device had good sensitivity to the light under 40-100 mW/cm{sup 2} illumination conditions.

  8. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  9. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs.

    Science.gov (United States)

    Yoon, Ha-Yong; Lee, Eun-Gyeong; Lee, Hyun; Cho, In Jin; Choi, Yun Jung; Sung, Myung-Soon; Yoo, Han-Gyul; Yoo, Wan-Hee

    2013-10-01

    Inflammatory cytokines, matrix metalloproteinases (MMPs) and cyclooxygenase (COX)-2 released from rheumatoid arthritis synovial fibroblasts (RASFs) are involved in the destruction of both articular bone and cartilage. Kaempferol has been reported to act as an antioxidant and anti-inflammatory agent by inhibiting nitric oxide synthase and COX enzymes. The aim of the present study was to determine the effects of kaempferol on the interleukin-1β (IL-1β)-induced proliferation of RASFs and the production of MMPs, COX and prostaglandin E2 (PGE2) by RASFs. The proliferation of the RASFs stimulated with IL-1β and treated with/without kaempferol was evaluated by CCK-8 assay. The expression of MMPs, TIMP metallopeptidase inhibitor-1 (TIMP-1), COXs, PGE2 and that of intracellular MAPK signaling molecules, including p-ERK, p-p38, p-JNK and nuclear factor-κB (NF-κB) was examined by immunoblotting or semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) and ELISA under the conditions described above. Kaempferol inhibited the proliferation of both unstimulated and IL-1β‑stimulated RASFs, as well as the mRNA and protein expression of MMP-1, MMP-3, COX-2 and PGE2 induced by IL-1β. Kaempferol also inhibited the phosphorylation of ERK-1/2, p38 and JNK, as well as the activation of NF-κB induced by IL-1β. These results indicate that kaempferol inhibits synovial fibroblast proliferation, as well as the production of and MMPs, COX‑2 and PGE2, which is involved in articular inflammation and destruction in rheumatoid arthritis (RA). Our data suggest that kaempferol may be a novel therapeutic agent for the treatment of RA.

  10. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake.

    Science.gov (United States)

    Azevedo, Cláudia; Correia-Branco, Ana; Araújo, João R; Guimarães, João T; Keating, Elisa; Martel, Fátima

    2015-01-01

    Our aim was to investigate the effect of several dietary polyphenols on glucose uptake by breast cancer cells. Uptake of (3)H-deoxy-D-glucose ((3)H-DG) by MCF-7 cells was time-dependent, saturable, and inhibited by cytochalasin B plus phloridzin. In the short-term (26 min), myricetin, chrysin, genistein, resveratrol, kaempferol, and xanthohumol (10-100 µM) inhibited (3)H-DG uptake. Kaempferol was found to be the most potent inhibitor of (3)H-DG uptake [IC50 of 4 µM (1.6-9.8)], behaving as a mixed-type inhibitor. In the long-term (24 h), kaempferol (30 µM) was also able to inhibit (3)H-DG uptake, associated with a 40% decrease in GLUT1 mRNA levels. Interestingly enough, kaempferol (100 µM) revealed antiproliferative (sulforhodamine B and (3)H-thymidine incorporation assays) and cytotoxic (extracellular lactate dehydrogenase activity determination) properties, which were mimicked by low extracellular (1 mM) glucose conditions and reversed by high extracellular (20 mM) glucose conditions. Finally, exposure of cells to kaempferol (30 µM) induced an increase in extracellular lactate levels over time (to 731 ± 32% of control after a 24 h exposure), due to inhibition of MCT1-mediated lactate cellular uptake. In conclusion, kaempferol potently inhibits glucose uptake by MCF-7 cells, apparently by decreasing GLUT1-mediated glucose uptake. The antiproliferative and cytotoxic effect of kaempferol in these cells appears to be dependent on this effect.

  11. Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana.

    Science.gov (United States)

    Hashiguchi, Takuyu; Sakakibara, Yoichi; Hara, Yosuke; Shimohira, Takehiko; Kurogi, Katsuhisa; Akashi, Ryo; Liu, Ming-Cheh; Suiko, Masahito

    2013-05-17

    In plants, flavonoids have been shown to be subjected to conjugation modifications such as glycosylation, methylation, and sulfation. Among these modifications, sulfation is known as an important pathway in the regulation of the levels of endogenous compounds such as steroids. Although a large variety of flavonoid sulfates also exist in plants, the detailed biochemical characterization of Arabidopsis thaliana sulfotransferases (AtSULTs) remains to be fully clarified. We report here that uncharacterized AtSULT202E1 (AGI code: At2g03770), a SULT202E subfamily member, shows the sulfating activity toward flavonoids. The general characteristics of the enzyme were studied on the optimum temperature and pH, the effect of divalent cations, and the thermal stability with kaempferol as substrate. A comparative analysis of the sulfation of flavonoids by AtSULT202E1, AtSULT202B1 and AtSULT202A1 revealed that three AtSULTs have differential substrate specificities. Surprisingly, 3-hydroxyflavone was sulfated only by AtSULT202A1 while 7-hydroxyflavone was highly sulfated by AtSULT202E1 and AtSULT202B1. These results indicate that flavonols might be sulfated in a position specific manner. In conclusion, our studies indicate that a novel AtSULT202E1 has the sulfating activity toward flavonoids together with AtSULT202B1 and AtSULT202A1. The existence of three flavonoid sulfotransferases in A. thaliana suggests that sulfation of flavonoids have an important role in regulation of their functions.

  12. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Wei Qiu

    2017-03-01

    Full Text Available Background: Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae, a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs. However, whether Kae can inhibit DNA methylation remains unclear. Methods: Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Results: Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs associated with genes (50 hyper-methylated and 53 hypo-methylated. DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX. By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Conclusion: Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer.

  13. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Zhang, Ruihua; Ai, Xia; Duan, Yongjie; Xue, Man; He, Wenxiao; Wang, Cunlian; Xu, Tong; Xu, Mingju; Liu, Baojian; Li, Chunhong; Wang, Zhijun; Zhang, Ruihong; Wang, Guohua; Tian, Shufei; Liu, Huifeng

    2017-03-02

    Kaempferol, a very common type of dietary flavonoids, has been found to exert antioxidative and anti-inflammatory properties. The purpose of our investigation was designed to reveal the effect of kaempferol on H9N2 influenza virus-induced inflammation in vivo and in vitro. In vivo, BALB/C mice were infected intranasally with H9N2 influenza virus with or without kaempferol treatment to induce acute lung injury (ALI) model. In vitro, MH-S cells were infected with H9N2 influenza virus with or without kaempferol treatment. In vivo, kaempferol treatment attenuated pulmonary edema, the W/D mass ratio, pulmonary capillary permeability, myeloperoxidase (MPO) activity, and the numbers of inflammatory cells. Kaempferol reduced ROS and Malondialdehyde (MDA) production, and increased the superoxide dismutase (SOD) activity. Kaempferol also reduced overproduction of TNF-α, IL-1β and IL-6. In addition, kaempferol decreased the H9N2 viral titre. In vitro, ROS, MDA, TNF-α, IL-1β and IL-6 was also reduced by kaempferol. Moreover, our data showed that kaempferol significantly inhibited the upregulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), phosphorylation level of IκBα and nuclear factor-κB (NF-κB) p65, NF-κB p65 DNA binding activity, and phosphorylation level of MAPKs, both in vivo and in vitro. These results suggest that kaempferol exhibits a protective effect on H9N2 virus-induced inflammation via suppression of TLR4/MyD88-mediated NF-κB and MAPKs pathways, and kaempferol may be considered as an effective drug for the potential treatment of influenza virus-induced ALI.

  14. Evaluation of polyamidoamine dendrimers as potential carriers for quercetin, a versatile flavonoid.

    Science.gov (United States)

    Madaan, Kanika; Lather, Viney; Pandita, Deepti

    2016-01-01

    The aim of the present research work was to investigate the potential of polyamidoamine (PAMAM) dendrimers as oral drug delivery carriers for quercetin, a Biopharmaceutical Classification System (BCS) class II molecule. The aqueous solubility of quercetin was investigated in different generations of dendrimers, i.e. G0, G1, G2 and G3, with varying concentrations (0.1, 0.5, 1, 2 and 4 µM). Then, it was successfully incorporated in PAMAM dendrimers and they were characterized for incorporation efficacy, nature of nanoformulations, size, size distribution, surface morphology and stability. In vitro release characteristics of quercetin from all quercetin-PAMAM complexes were studied at 37 °C in phosphate buffer saline (PBS; pH 7.4). Furthermore, the efficacy of quercetin-loaded PAMAM dendrimer was assessed by pharmacodynamic experiment, namely, a carrageenan-induced paw edema model to evaluate the acute activity of this nanocarrier in response to inflammation. It was observed that both generation and the respective concentrations of PAMAM dendrimers showed potential positive effects on solubility enhancement of quercetin. All the quercetin-PAMAM complexes were found to be in nanometeric range (quercetin which was characterized by an initial faster release followed by sustained release phase and pharmacodynamic study provided the preliminary proof of concept about the potential of quercetin-PAMAM complexes. The study concludes that the dendrimer-based drug delivery system for quercetin has enormous potential to resolve the drug delivery issues associated with it.

  15. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway.

    Science.gov (United States)

    He, Yuanzhou; Cao, Xiaopei; Liu, Xiansheng; Li, Xiaochen; Xu, Yongjian; Liu, Jin; Shi, Jing

    2015-11-15

    Pulmonary arterial hypertension (PAH) is characterized by excessive proliferation, resistance to apoptosis, and increased migration of pulmonary artery smooth muscle cells (PASMCs). We hypothesized that quercetin exerts protective effects against this disease; thus, a chronic hypoxia model of PAH was generated using male Sprague-Dawley rats, which were treated with quercetin. In this model, quercetin prevented the development of PAH, right ventricular hypertrophy, and vascular remodeling after exposure to hypoxia. Quercetin inhibited PASMC proliferation and increased the apoptosis of PASMCs in vivo. In vitro, quercetin significantly inhibited hypoxia-induced PASMC proliferation, arrested cells in G1/G0 and inhibited cell migration in a dose-dependent manner. Moreover, our results showed that quercetin increased cyclin D1 protein levels and decreased the protein expression of cyclin B1 and Cdc2. Additionally, quercetin altered the Bax/Bcl-2 ratio and reduced MMP2, MMP9, CXCR4, integrin β1, and integrin α5 expression. Using genome-wide microarray analysis, we found that factors regulating proliferation, apoptosis, cell cycle, and migration were related to the tyrosine receptor kinase A (TrkA) pathway. In addition, activation of the TrkA/AKT signaling cascade during hypoxia was inhibited by quercetin in a dose-dependent manner. Moreover, quercetin alone inhibited the TrkA/AKT signaling pathway, resulting in decreased PASMC migration, cell cycle arrest and the induction of apoptosis. Our data suggest that quercetin is a potential candidate for the treatment of hypoxia-induced PAH.

  16. Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling.

    Directory of Open Access Journals (Sweden)

    Xiangsheng Xiao

    Full Text Available Quercetin, a polyphenolic bioflavonoid, possesses multiple pharmacological actions including anti-inflammatory and antitumor properties. However, the precise action mechanisms of quercetin remain unclear. Here, we reported the regulatory actions of quercetin on cyclooxygenase-2 (COX-2, an important mediator in inflammation and tumor promotion, and revealed the underlying mechanisms. Quercetin significantly suppressed COX-2 mRNA and protein expression and prostaglandin (PG E(2 production, as well as COX-2 promoter activation in breast cancer cells. Quercetin also significantly inhibited COX-2-mediated angiogenesis in human endothelial cells in a dose-dependent manner. The in vitro streptavidin-agarose pulldown assay and in vivo chromatin immunoprecipitation assay showed that quercetin considerably inhibited the binding of the transactivators CREB2, C-Jun, C/EBPβ and NF-κB and blocked the recruitment of the coactivator p300 to COX-2 promoter. Moreover, quercetin effectively inhibited p300 histone acetyltransferase (HAT activity, thereby attenuating the p300-mediated acetylation of NF-κB. Treatment of cells with p300 HAT inhibitor roscovitine was as effective as quercetin at inhibiting p300 HAT activity. Addition of quercetin to roscovitine-treated cells did not change the roscovitine-induced inhibition of p300 HAT activity. Conversely, gene delivery of constitutively active p300 significantly reversed the quercetin-mediated inhibition of endogenous HAT activity. These results indicate that quercetin suppresses COX-2 expression by inhibiting the p300 signaling and blocking the binding of multiple transactivators to COX-2 promoter. Our findings therefore reveal a novel mechanism of action of quercetin and suggest a potential use for quercetin in the treatment of COX-2-mediated diseases such as breast cancers.

  17. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax.

    Science.gov (United States)

    Cheng, Senping; Gao, Ning; Zhang, Zhuo; Chen, Gang; Budhraja, Amit; Ke, Zunji; Son, Young-ok; Wang, Xin; Luo, Jia; Shi, Xianglin

    2010-12-01

    To investigate the in vivo antitumor efficacy of quercetin in U937 xenografts and the functional roles of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia. Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercetin as well as Mcl-1 expression and Bax activation were investigated in xenografts of U937 cells. Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial translocation that triggered cytochrome c release. Knockdown of Bax by siRNA reversed quercetin-induced apoptosis and abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation, and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 downregulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL-positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 downregulation and Bax activation were also observed in xenografts. These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells through a process involving Mcl-1 downregulation, which, in turn, potentiates Bax activation and mitochondrial translocation, culminating in apoptosis. ©2010 AACR.

  18. Phenolic Composition Analysis and Gene Expression in Developing Seeds of Yellow-and Black-seeded Brassica napus

    Institute of Scientific and Technical Information of China (English)

    Jinjin Jiang; Yanlin Shao; Aimin Li; Chunliang Lu; Yongtai Zhang; Youping Wang

    2013-01-01

    Breeders have focused on yellow-seeded Brassica napus (rapeseed) for its better quality compared with the black-seeded variety.Moreover,flavonoids have been associated with this kind of rapeseed.In this study,we applied lipid chromatography-electrospray ionization mass spectrometry (LC-ESI-MSn) to compare flavonoids in developing seeds of natural black-seeded B.napus and yellow-seeded introgression lines selected from progenies of B.napus-Sinapis alba somatic hybrids.Aside from the most abundant phenolic compounds (sinapine and sinapic acid) and 1,2-disinapoylglucose,16 different flavonoids were identified and quantified,including (-)-epicatechin,five monocharged oligomers of (-)-epicatechin ([DP 2]-,[DP 3]-,[DP 4] [DP 2]-B2 and [DP 2]-B5),quercetin,kaempferol,isorhamnetin-dihexoside,kaempferol-sinapoyl-trihexoside,isorhamnetinsinapoyl-trihexoside,isorhamnetin-hexoside-sulfate,and isorhamnetin-3-O-glucoside.Most of the flavonoids accumulated with seed development,whereas some rapidly decreased during maturation.The content of these flavonoids was lower in the yellow-seeded materials than in the black seeds.In addition,variations of insoluble procyanidin oligomers and soluble phenolic acids were observed among both rapeseed varieties.Transcriptome changes of genes participating in the flavonoid pathway were discovered by quantitative reverse transcription polymerase chain reaction analysis.Consistent with flavonoid changes identified by high performance liquid chromatography analysis,the expression of most genes in the flavonoid biosynthetic pathway was also downregulated.

  19. A Novel Flavonoid Glucoside from Anoectochilus roxburghii (Wall.) Lindl.

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Eight compounds were isolated from the ethyl acetate- and n-butanol-soluble fractions of the ethanolic extract of the whole plant of Anoectochilus roxburghii(Wall.) Lindl. (Orchidaceae). On the basis of spectroscopic methods,the structures of these compounds were elucidated as quercetin-7-O-β-D-[6"-O-(trans-feruloyl)]-glucopyranoside (compound 1), 8-C-p-Hydroxybenzylquercetin (compound 2), isorhamnetin-7-O-β-D-glucopyranoside (compound 3), isorhamnetin-3-O-β-D-glucopyranoside (compound 4), kaempferol-3-O-β-D-glucopyranoside (compound 5), kaempferol-7-O-β-D-glucopyranoside (compound 6), 5-hydroxy-3',4',7-trimethoxyflavonol-3-O-β-D-rutinoside (compound 7), and isorhamnetin-3-O-β-D-rutinoside (compound 8). Of the compounds isolated, compound 1 was a new flavonoid glucoside and exhibited strong scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl free radical, whereas the ethanolic extract showed weak activity. Compounds 2-8 were obtained from this family for the first time.

  20. Effect of pH on the complexation of kaempferol-4'-glucoside with three β-cyclodextrin derivatives: isothermal titration calorimetry and spectroscopy study.

    Science.gov (United States)

    Zheng, Yan; Dong, Li-Na; Liu, Min; Chen, Aiju; Feng, Shangcai; Wang, Bingquan; Sun, Dezhi

    2014-01-08

    The utilization of kaempferol and its glycosides in food and pharmaceutical industries could be improved by the formation of inclusion complexes with cyclodextrins at different pH. This study explores the complexation of kaempferol-4'-glucoside with sulfobutyl ether-β-cyclodextrin (SBE-β-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD), and methylated-β-cyclodextrin (M-β-CD) in phosphate buffer solutions of different pH using isothermal titration calorimetry, UV-vis absorption and proton nuclear magnetic resonance spectroscopy at 298.2 K. Experimental results showed that kaempferol-4'-glucoside binds with the three β- cyclodextrins in the same 1:1 stoichiometry. The rank order of stability constants is SBE-β-CD > HP-β-CD > M-β-CD at the same pH level and pH 6.0 > pH 7.4 > pH 9.0 for the same cyclodextrin. The binding of kaempferol-4'-glucoside with the three β-cyclodextrin derivatives is synergistically driven by enthalpy and entropy at pH 6.0 and enthalpy-driven at pH 7.4 and 9.0. The possible inclusion mode was that in the cavity of β-CD is included the planar benzopyranic-4-one part of the kaempferol-4'-glucoside.

  1. Quercetin: A wonder bioflvonoid with therapeutic potential in disease management

    Directory of Open Access Journals (Sweden)

    Alka Gupta

    2016-03-01

    Full Text Available In the last decade, considerable efforts have been made to develop health promising nutritional supplements. Quercetin is a plant-derived bioflavonoid which is recently gaining scientific interest for its antioxidant free radical scavenging effects and anti-inflammatory properties. This wonder flavanol exhibits therapeutic potential in various ailments like cancer, coronary artery, asthma and alzheimer (neurodegeneration diseases. Additional clinical uses include treatment of inflammatory conditions like gout, pancreatitis and prostatitis. It has been extensively studied for its gastroprotective effects, anti-obesity action, immune booster, reducing risk of cataract and reduction of diabetic complications. The present review briefly discusses about biological activity, mechanism of action and therapeutic potential of quercetin in prevention and mitigation of diseases.

  2. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.

    Science.gov (United States)

    Napimoga, Marcelo H; Clemente-Napimoga, Juliana T; Macedo, Cristina G; Freitas, Fabiana F; Stipp, Rafael N; Pinho-Ribeiro, Felipe A; Casagrande, Rubia; Verri, Waldiceu A

    2013-12-27

    Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1β, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production.

  3. Antagonism of quercetin against tremor induced by unilateral striatal lesion of 6-OHDA in rats.

    Science.gov (United States)

    Mu, Xin; Yuan, Xia; Du, Li-Da; He, Guo-Rong; Du, Guan-Hua

    2016-01-01

    Quercetin, a flavonoid present in many plants, is reported to be effective in models of neurodegenerative diseases. The aim of the present study was to evaluate the anti-tremor effects of quercetin in 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson's disease. In rats, quercetin had no effect on apomorphine-induced rotations, but it could significantly attenuate muscle tremor of 6-OHDA lesioned rats. Interestingly, quercetin could decrease the burst frequency in a dose- and time-dependent manner. These results suggest that quercetin may have a protective effect on models to mimic muscle tremors of Parkinson's disease. This effect of quercetin may be associated with serotonergic system, but further study is needed.

  4. Isolation and identification of quercetin degrading bacteria from human fecal microbes.

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    Full Text Available Quercetin has a wide range of biological properties. The gut microflora can often modulate its biological activity and their potential health effects. There still is a lack of information about gut bacteria involving in this process. The strains of gut microbes from human feces that can transform quercetin were isolated and identified by in vitro fermentation. The results showed that Escherichia coli, Stretococcus lutetiensis, Lactobacillus acidophilus, Weissella confusa, Enterococcus gilvus, Clostridium perfringens and Bacteroides fragilis have the various ability of degrading quercetin. Among them, C. perfringens and B. fragilis were discovered to have the strongest ability of degrading quercetin. Additionally, quercetin can't inhibit the growth of C. perfringens. In conclusion, many species of gut microbiota can degrade quercetin, but their ability are different.

  5. Binding, stability, and antioxidant activity of quercetin with soy protein isolate particles.

    Science.gov (United States)

    Wang, Yufang; Wang, Xiaoyong

    2015-12-01

    This work is to study the potential of particles fabricated from soy protein isolate (SPI) as a protective carrier for quercetin. When the concentration of SPI particles increases from 0 to 0.35 g/L, quercetin gives a gradually increased fluorescence intensity and fluorescence anisotropy. The addition of quercetin can highly quench the intrinsic fluorescence of SPI particles. These results are explained in terms of the binding of quercetin to the hydrophobic pockets of SPI particles mainly through the hydrophobic force together with the hydrogen bonding. The small difference in the binding constants at 25 and 40 °C suggests the structural stability of SPI particles. The relative changes in values of Gibbs energy, enthalpy, and entropy indicate that the binding of quercetin with SPI particles is spontaneous and hydrophobic interaction is the major force. Furthermore, SPI particles are superior to native SPI for improving the stability and radical scavenging activity of quercetin.

  6. Effect of quercetin against mixture of four organophosphate pesticides induced nephrotoxicity in rats.

    Science.gov (United States)

    Li, Sifan; Cao, Can; Shi, Haidan; Yang, Shuang; Qi, Lei; Zhao, Xiujuan; Sun, Changhao

    2016-01-01

    1. It has been demonstrated that the ingestion of foods containing quercetin protects against the toxicity of single pesticides. The aim of this study is to make a comprehensive elaboration about the protective effect of quercetin against multi-organophosphorous pesticides induced nephrotoxicity by measuring indices in rat kidney, urine and serum. Rats were divided into six groups (n = 10/group): control, two different doses of quercetin, pesticide mixture (PM), and different doses of quercetin plus PM-treated groups. 2. The following parameters were significantly changed in PM-treated groups compared with the control (p quercetin (p quercetin may protect against adverse effects resulted from multi-organophosphorous pesticides with significant high levels of uptake in man provided.

  7. Anti-Japanese-encephalitis-viral effects of kaempferol and daidzin and their RNA-binding characteristics.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available BACKGROUND: New therapeutic tools and molecular targets are needed for treatment of Japanese encephalitis virus (JEV infections. JEV requires an α-1 translational frameshift to synthesize the NS1' protein required for viral neuroinvasiveness. Several flavonoids have been shown to possess antiviral activity in vitro against a wide spectrum of viruses. To date, the antiviral activities of flavonol kaempferol (Kae and isoflavonoid daidzin (Dai against JEV have not been described. METHODOLOGY/PRINCIPAL FINDINGS: The 50% cytotoxic concentration (CC(50 and 50% effective concentration (EC(50 against JEV were investigated in BHK21 cells by MTS reduction. Activity against viral genomic RNA and proteins was measured by real-time RT-PCR and western blotting. The frameshift site RNA-binding characterization was also determined by electrospray ionization mass spectrometry, isothermal titration calorimetry and autodocking analysis. EC(50 values of Kae and Dai were 12.6 and 25.9 µM against JEV in cells pretreated before infection, whereas in cells infected before treatment, EC(50 was 21.5 and 40.4 µM, respectively. Kae exhibited more potent activity against JEV and RNA binding in cells following internalization through direct inhibition of viral replication and protein expression, indicating that its antiviral activity was principally due to direct virucidal effects. The JEV frameshift site RNA (fsRNA was selected as a target for assaying Kae and Dai. ITC of fsRNA revealed an apparent K(b value for Kae that was nine fold stronger than that for Dai. This binding was confirmed and localized to the RNA using ESI-MS and autodock analysis. Kae could form non-covalent complexes with fsRNA more easily than Dai could. CONCLUSIONS/SIGNIFICANCE: Kae demonstrates more potent antiviral activity against JEV than does Dai. The mode of action of Kae as an anti-JEV agent seems to be related to its ability to inactivate virus by binding with JEV fsRNA.

  8. Quercetin, not caffeine, is a major neuroprotective component in coffee.

    Science.gov (United States)

    Lee, Moonhee; McGeer, Edith G; McGeer, Patrick L

    2016-10-01

    Epidemiologic studies indicate that coffee consumption reduces the risk of Parkinson's disease and Alzheimer's disease. To determine the factors involved, we examined the protective effects of coffee components. The test involved prevention of neurotoxicity to SH-SY5Y cells that was induced by lipopolysaccharide plus interferon-γ or interferon-γ released from activated microglia and astrocytes. We found that quercetin, flavones, chlorogenic acid, and caffeine protected SH-SY5Y cells from these toxins. They also reduced the release of tumor necrosis factor-α and interleukin-6 from the activated microglia and astrocytes and attenuated the activation of proteins from P38 mitogen-activated protein kinase (MAPK) and nuclear factor kappa light chain enhancer of activated B cells (NFκB). After exposure to toxin containing glial-stimulated conditioned medium, we also found that quercetin reduced oxidative/nitrative damage to DNA, as well as to the lipids and proteins of SH-SY5Y cells. There was a resultant increase in [GSH]i in SH-SY5Y cells. The data indicate that quercetin is the major neuroprotective component in coffee against Parkinson's disease and Alzheimer's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation

    Science.gov (United States)

    López, Laura C.; Varea, Olga; Navarro, Susanna; Carrodeguas, José A.; Sanchez de Groot, Natalia; Ventura, Salvador; Sancho, Javier

    2016-01-01

    Human Amylin, or islet amyloid polypeptide (hIAPP), is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed—benzbromarone, quercetin, and folic acid—are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin. PMID:27322259

  10. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin.

    Science.gov (United States)

    Sahu, Sneha; Saraf, Swarnlata; Kaur, Chanchal Deep; Saraf, Shailendra

    2013-07-01

    This study describes the release and retention of a herbal lipophilic drug in sustained and controlled manner in skin layers, given topically, intended for skin cancer. Quercetin -loaded nanoparticles were prepared by nanoprecipitation technique using ethylcellulose as polymer. Ethylcellulose was selected as it is biocompatible, but non-biodegradable and hence can act as a reservoir in skin furrows and ducts. It was observed that the Quercetin: Ethylcellulose: Tween 80 at different ratios affects particle sizes along with yield and entrapment efficiency. It was found that the size of nanoparticles could be varied by changing the speed of agitation and sonication. The nanoparticles were prepared in particle size range 228.77 +/- 2.0 nm and the zeta potential of the selected formulation were found to be -16.7 mV, which shows the stability of the preparation. The percent entrapment efficiency was found to be in the range from 51.96 to 53.93% and percent loading capacity in the range 34.19 to 5.12%. The amount of drug release from nanoparticles and of drug retained in skin was compared using ex vivo study which shows that the drug being lipophilic could be retained in the skin for longer duration thus reducing the dose and frequency of drug administration. Further the amount of drug reaching to other organs is also reduced since the systemic absorption of drug was low. Thus, Quercetin loaded nanoparticles were prepared for topical use.

  11. Benzbromarone, Quercetin, and Folic Acid Inhibit Amylin Aggregation

    Directory of Open Access Journals (Sweden)

    Laura C. López

    2016-06-01

    Full Text Available Human Amylin, or islet amyloid polypeptide (hIAPP, is a small hormone secreted by pancreatic β-cells that forms aggregates under insulin deficiency metabolic conditions, and it constitutes a pathological hallmark of type II diabetes mellitus. In type II diabetes patients, amylin is abnormally increased, self-assembled into amyloid aggregates, and ultimately contributes to the apoptotic death of β-cells by mechanisms that are not completely understood. We have screened a library of approved drugs in order to identify inhibitors of amylin aggregation that could be used as tools to investigate the role of amylin aggregation in type II diabetes or as therapeutics in order to reduce β-cell damage. Interestingly, three of the compounds analyzed—benzbromarone, quercetin, and folic acid—are able to slow down amylin fiber formation according to Thioflavin T binding, turbidimetry, and Transmission Electron Microscopy assays. In addition to the in vitro assays, we have tested the effect of these compounds in an amyloid toxicity cell culture model and we have found that one of them, quercetin, has the ability to partly protect cultured pancreatic insulinoma cells from the cytotoxic effect of amylin. Our data suggests that quercetin can contribute to reduce oxidative damage in pancreatic insulinoma β cells by modulating the aggregation propensity of amylin.

  12. Antioxidation of quercetin against spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-bo; TANG Tian-si; YANG Hui-lin

    2006-01-01

    Objective: To observe the effect of quercetin on experimental spinal cord injury (SCI) in rats.Methods: Sixty Sprague-Dawley rats were randomly divided into four groups: Group A only for laminectomy,Group B for laminectomy with SCI, Group C for SCI and intraperitoneal injection with a bolus of 200 mg/kg quercetin and Group D for SCI and intraperitoneal injection of saline. SCI model was made by using modified Allen's method on T12. Six rats of each group were killed at4 h after injury and the levels of free iron and malondialdehyde (MDA) of the involved spinal cord segments were measured by bleomycin and thiobarbituric acid (TBA) assays separately. The recovery of hind limb function was assessed by Modified Tarlov's scale and inclined plane method at 7 d,14 d and 21 d after SCI. The histological changes of the damaged spinal cord were also examined at 7 d after SCI.Results: After SCI, the levels of free iron and MDA were significantly increased in Groups B and D, while not in Group C. The Modified Tarlov's score and the inclined plane angles were significantly decreased in Groups B, C and D. The histological findings were not improved.Conclusions: After SCI, quercetin can reduce the level of lipid peroxidation, but not improve recovery of function.

  13. The oxidation mechanism of the antioxidant quercetin in nonaqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Sokolova, Romana, E-mail: romana.sokolova@jh-inst.cas.cz [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Degano, Ilaria [Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 56100 Pisa (Italy); Ramesova, Sarka; Bulickova, Jana; Hromadova, Magdalena; Gal, Miroslav; Fiedler, Jan [J. Heyrovsky Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague (Czech Republic); Valasek, Michal [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)

    2011-08-30

    The knowledge of the degradation pathways of natural dyes used in medieval textiles is necessary for the restoration of their original color. Quercetin, one of such colorants, reportedly yields the wide spectrum of oxidation products in different types of media. This study deals with electrochemical oxidation mechanism of quercetin in nonaqueous solution, which has not been yet attempted. The final oxidation product at the first oxidation wave was identified by HPLC-DAD and GC-MS techniques as 2-(3',4'-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The apparent two-electron process at the potential of the first oxidation wave yields current-voltage shapes with one-electron characteristics. The in situ spectroelectrochemistry measurements proved the oxidation mechanism leading through a short-lived anion radical. Two possibilities of the oxidation mechanism are discussed: two one-electron transfers, which do not have identical but similar redox potentials, or the presence of a disproportionation chemical reaction following the first one electron transfer. The quinone formed in either case is stable only on the time scale of a fast spectroelectrochemistry and undergoes fast hydroxylation reaction, where 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3-one is formed. This compound is oxidized at the potential of the second oxidation wave of quercetin.

  14. Antioxidant Effects of Quercetin and Catechin Encapsulated into PLGA Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hector Pool

    2012-01-01

    Full Text Available Polymeric nanoparticles (PLGA have been developed for the encapsulation and controlled release of quercetin and catechin. Nanoparticles were fabricated using a solvent displacement method. Physicochemical properties were measured by light scattering, scanning electron microscopy and ζ-potential, X-ray diffraction, infrared spectroscopy and differential scanning calorimetry. Encapsulation efficiency and in vitro release profiles were obtained from differential pulse voltammetry experiments. Antioxidant properties of free and encapsulated flavonoids were determined by TBARS, fluorescence spectroscopy and standard chelating activity methods. Relatively small (d≈ 400 nm polymeric nanoparticles were obtained containing quercetin or catechin in a non-crystalline form (EE ≈ 79% and the main interactions between the polymer and each flavonoid were found to consist of hydrogen bonds. In vitro release profiles were pH-dependant, the more acidic pH, the faster release of each flavonoid from the polymeric nanoparticles. The inhibition of the action of free radicals and chelating properties, were also enhanced when quercetin and catechin were encapsulated within PLGA nanoparticles. The information obtained from this study will facilitate the design and fabrication of polymeric nanoparticles as possible oral delivery systems for encapsulation, protection and controlled release of flavonoids aimed to prevent oxidative stress in human body or food products.

  15. Inhibitory activity against urease of quercetin glycosides isolated from Allium cepa and Psidium guajava.

    Science.gov (United States)

    Shabana, Samah; Kawai, Azusa; Kai, Kenji; Akiyama, Kohki; Hayashi, Hideo

    2010-01-01

    Methanolic extracts of edible plants and seaweeds were tested for their inhibitory activity against Jack bean urease. Quercetin-4'-O-beta-D-glucopyranoside was isolated from Allium cepa as a urease inhibitor with an IC(50) value of 190 microM-. Quercetin and two quercetin glycosides, avicularin and guaijaverin, were isolated from Psidium guajava as urease inhibitors with respective IC(50) values of 80 microM-, 140 microM-, and 120 microM-.

  16. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    OpenAIRE

    Thi Thanh Hanh Nguyen; Shin-Hye Yu; Jiyoun Kim; Eunbae An; Kyeonghwan Hwang; Jun-Seong Park; Doman Kim

    2015-01-01

    Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creati...

  17. Determination of Quercetin Using Tris(2,2'-bipyridyl) ruthenium (Ⅲ) Electrochemiluminescence (ECL) in Flowing Streams

    Institute of Scientific and Technical Information of China (English)

    Rong LEI; Hu Wei LIU; Na LI; Ke'An LI

    2006-01-01

    Ru(bpy)32+ electrochemiluminescence (ECL) was applied to determine quercetin. It was found that ECL intensity of Ru(bpy)32+ could be enhanced in the presence of quercetin in basic solution, and the enhanced light emission intensity was proportional to the concentration of quercetin over the range of 1×10-6 mol/L to 2×10-4 mol/L.

  18. Tocopherols and flavonoids of SOS-7 halophyte

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1993-10-01

    Full Text Available Halophyte is an oil seed coded as SOS-7 (Salicomia Oil Seed, 7th year of selection. Tocopherol constituents of SOS-7 halophyte oil were determined directly in the oil by using high pressure liquid chromatography coupled to fluorescence detector. It was found that the oil contains 710 ppm total tocopherols. The tocopherol constituents, alpha, beta, gamma and delta, were found at the level of 38.2,1.0, 58.7 and 2.1% respectively. Nine flavonoid glycosides were isolated and identified from the seeds and it was found that they belong to the flavonol class of flavonoids. These flavonol compounds were identified as: quercetin-3, 7-diglucoside, quercetin-3-glucoside-7-galactoside, quercetin-3-sophoroside, quercetin-3-glucoside, quercetin-3-galactoside, isorhamnetin-3, 7-di-glucoside, isorhamnetin-3-glucoside, kaempferol-3, 7-diglucoside and kaempferol-3-glucoside.

    Halofito es una semilla oleaginosa codificada como SOS-7 (semilla oleaginosa Salicomia, séptimo año de selección. Los tocoferoles del aceite de halofito SOS-7 fueron determinados directamente en el aceite usando cromatografía líquida de alta presión acoplada a detector fluorescente. Se encontró que el aceite contenía 710 ppm de tocoferoles totales. Los tocoferoles alfa, beta, gamma y delta, se encontraron a niveles de 38.2,1.0, 58.7 y 2.1%, respectivamente. Nueve glicósidos flavonoides fueron aislados e identificados de las semillas y se encontró que pertenecen a la clase flavonol dentro de los flavonoides. Estos flavonoles fueron identificados como: quercetina-3,7-diglucosido, quercetina-3-glucosido-7-galactosido, quercetina-3-soforosido, quercetina- 3-glucosido, quercetina-3-galactosido, isorannetina-3, 7-di-glucosido, isorannetina-3-glucosido, kampferol-3, 7-diglucosido y kampferol-3-glucosido.

  19. 金刚藤的黄酮类化学成分%Chemical constituents of flavanoids from Smilax bockii Warb

    Institute of Scientific and Technical Information of China (English)

    许婧; 李铣; 张鹏; 李占林

    2004-01-01

    目的对金刚藤化学成分进行分离、鉴定.方法采用反复硅胶柱色谱法、制备薄层色谱法等进行分离纯化;通过理化常数测定和光谱分析鉴定了其化学结构.结果分离得到了5个黄酮类化合物,即山萘酚(kaempferol,Ⅰ)、山萘酚-7-O-β-D-吡喃葡萄糖苷(kaempferol-7-O-β-D-glucopyranoside,Ⅱ)、二氢山萘酚(dihydrokaempferol,Ⅲ)、槲皮素(quercetine,Ⅳ)、异鼠李素(isorhamnetin,Ⅴ).结论这5个黄酮类化合物均为首次从金刚藤中分离得到.

  20. Flavonoids from Polygonum Rumex Patientia L.%巴天酸模中的黄酮化合物

    Institute of Scientific and Technical Information of China (English)

    苏跃增; 高黎明; 郑旭东; 郑尚珍; 沈序维

    2000-01-01

    从巴天酸模(Polygonum Rumex Patientia L.)的全草中分离得到5个黄酮化合物,经化学方法和各种光谱数据鉴定了其结构,分别是山奈酚(kaempferol,Ⅰ),槲皮素-3-O-β-D-葡萄糖甙(quercetin-3-O-β-D-glucoside,Ⅱ),异鼠李素(isorhamnetin,Ⅲ),山奈素-3-O-β-D-葡萄糖甙(kaempferol-3-O-β-D-glucoside,Ⅳ)和5-羟基-4′-甲氧基黄酮-7-O-β-芸香糖甙(5-hydro-4′-methyoxyflavanone-7-O-β-rutinoside,Ⅴ).化合物Ⅲ、Ⅳ和Ⅴ系首次从该植物中分得.

  1. Quercetin suppresses HeLa cells by blocking PI3K/Akt pathway.

    Science.gov (United States)

    Xiang, Tao; Fang, Yong; Wang, Shi-Xuan

    2014-10-01

    To explore the effect of quercetin on the proliferation and apoptosis of HeLa cells, HeLa cells were incubated with quercetin at different concentrations. Cell viability was evaluated by MTT assay, cell apoptosis was detected by Annexin-V/PI double labeled cytometry and DNA ladder assay. Cell cycle was flow cytometrically determined and the morphological changes of the cells were observed under a fluorescence microscope after Hoechst 33258 staining and the apoptosis-related proteins in the HeLa cells were assessed by Western blotting. The results showed that quercetin significantly inhibited the growth of HeLa cells and induced obvious apoptosis in vitro in a time- and dose-dependent manner. Moreover, quercetin induced apoptosis of HeLa cells in cell cycle-dependent manner because quercetin could induce arrest of HeLa cells at G0/G1 phase. Quercetin treatment down-regulated the expression of the PI3K and p-Akt. In addition, quercetin could down-regulate expression of bcl-2, up-regulate Bax, but exerted no effect on the overall expression of Akt. We are led to conclude that quercetin induces apoptosis via PI3k/Akt pathways, and quercetin has potential to be used as an anti-tumor agent against human cervix cancer.

  2. Quercetin Potentiates Doxorubicin Mediated Antitumor Effects against Liver Cancer through p53/Bcl-xl

    Science.gov (United States)

    Wang, Guanyu; Sharma, Sherven; Dong, Qinghua

    2012-01-01

    Background The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. Methodology and Results The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. Conclusion and Significance These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer. PMID:23240061

  3. Human myeloperoxidase activity is inhibited in vitro by quercetin. Comparison with three related compounds.

    Science.gov (United States)

    Pincemail, J; Deby, C; Thirion, A; de Bruyn-Dister, M; Goutier, R

    1988-05-15

    Quercetin is an effective inhibitor of human myeloperoxidase (MPO) activity, both with purified enzyme (IC50 = 3.5 microM) and in a system using stimulated human neutrophils. Quercetin is significantly more potent than three other related compounds (rutin, rutin sulfate and troxerutin) and than methimazole, a previously-known myeloperoxidase inhibitor. The inhibitory activity of quercetin is of the competitive type. Moreover, quercetin is directly able to scavenge hypochlorous acid (HOCl), a chlorinated species generated by the MPO/H2O2/Cl- system.

  4. Effects of quercetin on polychlorinated biphenyls-induced liver injury in rats

    Directory of Open Access Journals (Sweden)

    Cléia Rocha de Oliveira

    2014-05-01

    Full Text Available Introduction: Polychlorinated biphenyls (PCBs, used as pesticides in agriculture, can lead to irreversible injuries in living organisms, particularly in liver. Oxidative stress has been implicated in the liver pathogenesis induced by different molecules, including PCBs. It has been demonstrated that quercetin, an antioxidant flavonoid found in the diet, exhibits a potent antioxidant effect in different liver pathologies. Objective: To evaluate oxidative stress caused by PCBs in liver and the antioxidant activity of quercetin. Methodology: We used male Wistar rats (n = 36, divided in 4 groups: control, quercetin (50 mg/kg/day, PCBs (0.4 ml/kg/day, and rats treated with both PCBs and quercetin. On day 25 blood was collected to assess liver integrity (enzymes AST, ALT and ALP, and liver samples to measure oxidative stress (TBARS, activity of antioxidant enzymes (SOD, CAT, GPx and DNA damage (micronucleus assay, and histological damage. Results: TBARS concentration and SOD activity were significantly higher in PCBs animals as compared to the PCB group receiving quercetin. CAT and GPx decreased in PCBs and increased when quercetin was added. The histological analysis showed damage to hepatocytes in PCBs, but quercetin was able to afford protection against such damage. The micronucleus test showed there was an increase in the production of microclenucleus compared to control, and quercetin was able to reduce this effect. Conclusion: Contamination with PCBs led to increased lipid peroxidation and DNA damage, and the use of antioxidant quercetin was effective in reducing PCBs-induced liver injury.

  5. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    Science.gov (United States)

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  6. HPLC法测定沙棘不同部位槲皮素和异鼠李素的含量%Determ Ination of Quercetin and Isorhamnetin in Seabuckthorn by HPLC

    Institute of Scientific and Technical Information of China (English)

    刘娟; 杨艳丽

    2010-01-01

    目的:建立沙棘茎中槲皮素、异鼠李素含量测定方法,并测定沙棘不同部位中两种苷元的含量.方法:以甲醇-0.4%磷酸(58:42)为流动相,370nm为检测波长,对甲醇提取酸水解后的样品进行含量测定.结果:沙棘茎、叶、果实中槲皮素的含量分别为:0.276、2.11、0.574mg/g,异鼠李素的含量为:0.463、1.60、0.729mg/g.结论:该方法简便、快速、结果可靠.

  7. Determination of Antioxidant Flavonoids in Sudanese Honey Samples by Solid Phase Extraction and High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Suzan Zein Alabdeen Makawi

    2009-01-01

    Full Text Available Flavonoids were extracted by solid phase extraction (SPE from seven floral honey samples of different botanical origin from different regions of Sudan. The flavonoids were determined by high performance liquid chromatography (HPLC technique using photo diode array detector (PDA. An isocratic and gradient systems for the resolution, identification and quantification of five flavonoids, namely; quercetin, kaempferol, apigenin, hesperetin and isorhamnetin, were developed. Although the isocratic system resolved the five compounds, however it suffered from interference by the complex mixture of honey samples. The gradient system resolved three of five flavonoids, namely, quercetin, kaempferol, and isorhamnetin, without interference by the complex honey matrix. Two flavonoids, apigenin and hesperetin, were observed to elute at close retention times, which lead to their interference with each other when injected in a mixture; however, absorption wavelength selection was found indicative of the presence or absence of either compound. The quantification of these flavonoids was done through the calibration curves of their standards. The obtained results were compared with reported results.

  8. Simultaneous Determination of Typhaneoside and Isorhamnetin-3-O-Neohesperidoside in Rats After Oral Administration of Pollen Typhae Extract by UPLC-MS/MS.

    Science.gov (United States)

    Cao, Sali; Ni, Boran; Feng, Lijun; Yin, Xingbin; Dou, Haoran; Fu, Jing; Lin, Longfei; Ni, Jian

    2015-07-01

    For the first time, a selective and rapid ultra-performance liquid chromatography method with tandem mass spectrometric (UPLC-MS/MS) detection for simultaneous determination of typhaneoside and isorhamnetin-3-O-neohesperidoside in rat plasma was developed and validated, which was applied to the pharmacokinetic study of Pollen Typhae extract. The separation was carried out on an ACQUITY UPLC(TM) BEH C18 column with gradient elution using mobile phase including acetonitrile and water (containing 0.1% formic acid). The flow rate was 0.4 mL/min. The detection was conducted by means of electrospray ionization mass spectrometry in negative ion mode with multiple reaction monitoring. The assays were linear over the concentration range of 0.5-100 ng/mL, and the lower limit of quantification was 0.5 ng/mL for typhaneoside and isorhamnetin-3-O-neohesperidoside. The method was validated in terms of intra- and interday precision (<9.37%), accuracy (within ±10.91%), linearity, specificity and stability, and has been successfully applied to a pharmacokinetic study of Pollen Typhae extract in rats after oral administration.

  9. Separation of isorhamnetin 3-sulphate and astragalin from Flaveria bidentis (L.) Kuntze using macroporous resin and followed by high-speed countercurrent chromatography.

    Science.gov (United States)

    Shaheen, Nusrat; Yin, Li; Gu, Yanxiang; Rwigimba, Eric; Xie, Qianqian; Wei, Yun

    2015-06-01

    D4020 resin offered the best dynamic adsorption and desorption capacity for total flavonoids based on the research results from ten kinds of macroporous resin. A column packed with D4020 resin was used to optimize the separation of total flavonoids from Flaveria bidentis (L.) Kuntze extracts. The content of flavonoids in the product was increased from 4.3 to 30.1% with a recovery yield of 90%. After the treatment with gradient elution on D4020 resin, the contents of isorhamnetin 3-sulfate and astragalin were increased from 0.49 to 8.70% with a recovery yield of 74.1% and 1.16 to 30.8%, with a recovery yield of 92.2%, respectively. Further purification was carried out by one-run high-speed countercurrent chromatography yielding 4.5 mg of isorhamnetin 3-sulfate at a high purity of 96.48% and yielding 24.4 mg of astragalin at a high purity of over 98.46%.

  10. The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Park, Min Ju; Lee, Eun Kyeong; Heo, Hyoung-Sam; Kim, Min-Sun; Sung, Bokyoung; Kim, Mi Kyung; Lee, Jaewon; Kim, Nam Deuk; Anton, Stephen; Choi, Jae Sue; Yu, Byung Pal; Chung, Hae Young

    2009-04-01

    Kaempferol, one of the phytoestrogens, is found in berries and Brassica and Allium species and is known to have antioxidative and anti-inflammatory properties. In the present study, we examined the molecular mechanisms underlying the anti-inflammation effect of kaempferol in an aged animal model. To examine the effect of kaempferol in aged Sprague-Dawley rats, kaempferol was fed at 2 or 4 mg/kg/day for 10 days. The data show that kaempferol exhibited the ability to maintain redox balance. Kaempferol suppressed nuclear factor-kappaB (NF-kappaB) activation and expression of its target genes cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemoattractant protein-1, and regulated upon activation, and normal T-cell expressed and secreted in aged rat kidney and in tert-butylhydroperoxide-induced YPEN-1 cells. Furthermore, kaempferol suppressed the increase of the pro-inflammatory NF-kappaB cascade through modulation of nuclear factor-inducing kinase (NIK)/IkappaB kinase (IKK) and mitogen-activated protein kinases (MAPKs) in aged rat kidney. Based on these results, we concluded that anti-oxidative kaempferol suppressed the activation of inflammatory NF-kappaB transcription factor through NIK/IKK and MAPKs in aged rat kidney.

  11. Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells.

    Science.gov (United States)

    Huang, Wen-Wen; Tsai, Shih-Chang; Peng, Shu-Fen; Lin, Meng-Wei; Chiang, Jo-Hua; Chiu, Yu-Jen; Fushiya, Shinji; Tseng, Michael T; Yang, Jai-Sing

    2013-06-01

    Kaempferol belongs to the flavonoid family and has been used in traditional folk medicine. Here, we investigated the antitumor effects of kaempferol on cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. Kaempferol decreased cell viability as determined by MTT assays and induced a G2/M phase cell cycle arrest in a concentration-dependent manner. Kaempferol did not induce DNA fragmentation, apoptotic bodies or caspase-3 activity in SK-HEP-1 cells as determined by DNA gel electrophoresis, DAPI staining and caspase-3 activity assays, respectively. In contrast, kaempferol is involved in the autophagic process. Double-membrane vacuoles, lysosomal compartments, acidic vesicular organelles and cleavage of microtubule-associated protein 1 light chain 3 (LC3) were observed by transmission electron microscopy, LysoΤracker red staining, GFP-fluorescent LC3 assays and acridine orange staining, respectively. In SK-HEP-1 cells, kaempferol increased the protein levels of p-AMPK, LC3-II, Atg 5, Atg 7, Atg 12 and beclin 1 as well as inhibited the protein levels of CDK1, cyclin B, p-AKT and p-mTOR. Taken together, CDK1/cyclin B expression and the AMPK and AKT signaling pathways contributed to kaempferol-induced G2/M cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. These results suggest that kaempferol may be useful for long-term cancer prevention.

  12. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration.

    Science.gov (United States)

    Gupta, Sweta K; Kumar, Ritesh; Mishra, Narayan C

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration.

  13. Effect of Quercetin on Egg Quality and Components in Laying Hens of Different Weeks

    Institute of Scientific and Technical Information of China (English)

    You Ying; Han Chun-yan; ChaudhrYMaria Tabassum; Li Ling; Yao Jia-ying; Wang Sheng-nan; Yang Jia-xin; Teng Nan; Li Yao

    2015-01-01

    This trial was conducted to evaluate the effect of quercetin on egg quality and components in laying hens of different weeks. A total of 240 healthy Hessian laying hens at 29, 39-week-old with similar body weight and laying rate were randomly divided into four groups with six replicates of 10 each replicate, respectively. The treatments were fed with basal diet supplemented with 0, 0.2, 0.4 and 0.6 g•kg-1 quercetin for 8 weeks. The results showed that compared with the control, broken or soft shell rate significantly decreased at 0.2 and 0.4 g•kg-1 quercetin and eggshell thickness significantly increased at 0.4 g•kg-1 quercetin (P<0.01) in laying hens at 39-47 weeks old; yolk protein significantly decreased at 0.6 g•kg-1 quercetin (P<0.05) in laying hens at 29-37 weeks old; while yolk protein significantly increased at three quercetin treatments in laying hens at 39-47 weeks old; yolk cholesterol significantly decreased by quercetin in laying hens at 29-37 weeks old (P<0.05); yolk total phospholipids significantly increased at 0.4 and 0.6 g•kg-1 quercetin (P<0.01) and yolk cholesterol significantly decreased at 0.6 g•kg-1 quercetin (P<0.05) in laying hens at 39-47 weeks old. In a word, quercetin affected egg quality and components to some extents in laying hens of different weeks, the older the hens became, the better improvement they would be. The optimum level of quercetin was 0.4 g•kg-1 in the basal diet.

  14. The effect of quercetin on plasma oxidative status, C-reactive protein and blood pressure in women with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Fatemeh Javadi

    2014-01-01

    Conclusions: In this study, quercetin had no effect on oxidative and inflammatory status of plasma and blood pressure in patients with RA. Further studies are needed to ensure the effect of quercetin on oxidative stress and inflammation in human.

  15. Quercetin suppresses insulin receptor signaling through inhibition of the insulin ligand–receptor binding and therefore impairs cancer cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Gastroenterology, The Tenth People’s Hospital of Shanghai, Tongji University, Shanghai 200072 (China); Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Yang, Yong, E-mail: yyang@houstonmethodist.org [Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 (United States); Department of Medicine, Weill Cornell Medical College, New York, NY 10065 (United States)

    2014-10-03

    Graphical abstract: - Highlights: • Quercetin inhibits insulin ligand–receptor interactions. • Quercetin reduces downstream insulin receptor signaling. • Quercetin blocks insulin induced glucose uptake. • Quercetin suppresses insulin stimulated cancer cell proliferation and tumor growth. - Abstract: Although the flavonoid quercetin is known to inhibit activation of insulin receptor signaling, the inhibitory mechanism is largely unknown. In this study, we demonstrate that quercetin suppresses insulin induced dimerization of the insulin receptor (IR) through interfering with ligand–receptor interactions, which reduces the phosphorylation of IR and Akt. This inhibitory effect further inhibits insulin stimulated glucose uptake due to decreased cell membrane translocation of glucose transporter 4 (GLUT4), resulting in impaired cancer cell proliferation. The effect of quercetin in inhibiting tumor growth was also evident in an in vivo model, indicating a potential future application for quercetin in the treatment of cancers.

  16. 闹羊花中黄酮类成分研究

    Institute of Scientific and Technical Information of China (English)

    刘有强; 孔令义

    2009-01-01

    目的 研究闹羊花Rhododendron molle中的黄酮类成分.方法 利用各种柱色谱分离得到化合物,利用理化性质、波谱技术鉴定其结构.结果 从闹羊花中分离得到9个黄酮类化合物,分别鉴定为槲皮素(quercetin,I)、槲皮苷(quercitrin,II)、槲皮素-3-O-α-L-阿拉伯糖苷(quercetin-3-O-α-L-arabinoside,III)、槲皮素-3-O-β-D-半乳糖苷(quercetin-3-O-β-D-galactoside,IV)、quercetin 3-rhamnoside 2"-gallate(V)、山柰酚(kaempferol,Ⅵ)、山柰酚-7-O-α-L-鼠李糖苷(kaempferol-7-O-α-L-rhamnoside,Ⅶ)、山核桃素(caryatin,Ⅷ)和异鼠李素(isorhamnetin,IX).结论 此9个化合物均为首次从该植物中分离得到,其中化合物V、Ⅶ和Ⅸ为首次从闹羊花属中分离得到.

  17. Quercetin Induces Mitochondrial Mediated Apoptosis and Protective Autophagy in Human Glioblastoma U373MG Cells

    Directory of Open Access Journals (Sweden)

    Hyeonji Kim

    2013-01-01

    Full Text Available Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.

  18. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells.

    Science.gov (United States)

    Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica; Duarte, Juan; Cogolludo, Angel; Moreno, Laura; Bosca, Lisardo; Mitchell, Jane A; Warner, Timothy D

    2006-08-04

    Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries. The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPARgamma, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.

  19. Quercetin induces gadd45 expression through a p53-independent pathway.

    Science.gov (United States)

    Yoshida, Tatsushi; Maeda, Ayaka; Horinaka, Mano; Shiraishi, Takumi; Nakata, Susumu; Wakada, Miki; Yogosawa, Shingo; Sakai, Toshiyuki

    2005-11-01

    Quercetin, a kind of flavonoid, is found in edible fruits and vegetables and has anti-tumorigenic activity. However, the mechanism of activity has not been elucidated. We show for the first time that gadd45 is a molecular target of quercetin, which inhibits growth of human cervical cancer HeLa cells. Apoptosis was detected in HeLa cells treated with quercetin. At the concentration inducing apoptosis, quercetin also increased gadd45 expression at the mRNA and protein level, however, the 5'-promoter region of the gadd45 gene was not activated by quercetin. Since gadd45 is known to be a downstream gene of the tumor suppressor p53, we examined whether or not quercetin regulates gadd45 induction via a p53 pathway. Quercetin did not activate transcription through p53-binding sites in HeLa cells, although it up-regulated gadd45 in p53-inactivated tumor cells. These results indicate that quercetin induces gadd45 expression in a p53-independent manner.

  20. Quercetin induces necrosis and apoptosis in SCC-9 oral cancer cells.

    Science.gov (United States)

    Haghiac, Maricela; Walle, Thomas

    2005-01-01

    Evidence has accumulated that dietary polyphenols, in particular, flavonoids, have protective effects against oral cancer. In this study, we have examined the effects of quercetin, a major dietary flavonoid, on cell growth and necrosis/apoptosis and cell cycle regulation in human oral squamous carcinoma SCC-9 cells. Quercetin induced dose- and time-dependent, irreversible inhibition of cell growth and cellular DNA synthesis. Light microscopy and lactate dehydrogenase measurements showed modifications in the morphology and membrane integrity of these cells after quercetin treatment. Propidium iodide/annexin V staining showed that quercetin induced necrosis at 24 h and 48 h, whereas at 72 h cells underwent apoptosis, correlating with caspase-3 activation. Flow cytometry studies of the cell cycle distribution showed that quercetin induced mainly S-phase arrest. Thymidylate synthase (TS), a key S-phase enzyme, was inhibited in a time- and dose-dependent fashion by quercetin at the protein level. A lack of effect on TS mRNA suggested that TS down-regulation occurred at the translational level. In conclusion, our data support a view that quercetin initially induces a stress response, resulting in necrosis of these oral epithelial cells. Prolonged exposure of the surviving cells to quercetin causes apoptosis, presumably mediated by inhibition of TS protein.

  1. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells.

    Science.gov (United States)

    Kim, Hyeonji; Moon, Jeong Yong; Ahn, Kwang Seok; Cho, Somi Kim

    2013-01-01

    Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.

  2. Intestinal Uptake of Quercetin-3- Glucoside in Rats Involves Hydrolysis by Lactase Phlorizin Hydrolase

    NARCIS (Netherlands)

    Sesink, A.L.A.; Arts, I.C.W.; Faassen-Peters, M.; Hollman, P.C.H.

    2003-01-01

    Quercetin has antioxidant, anti-inflammatory, antiproliferative and anticarcinogenic properties. In plant foods, quercetin occurs mainly bound to various sugars via a ß-glycosidic link. We hypothesized that lactase phlorizin hydrolase (LPH), an enzyme at the brush border membrane of intestinal cells

  3. Effects of Quercetin Encapsulated Liposomes via Nasal Administration: A Novel Cognitive Enhancer

    Directory of Open Access Journals (Sweden)

    Terdthai Tong-un

    2010-01-01

    Full Text Available Problem statement: Demand for cognitive-enhancing drugs is growing. Numerous medicinal plants possessing antioxidant activity have received much attention as food supplement to improve cognitive function. Quercetin is a potent free radical scavenger and antioxidant. However, the limitations of quercetin: Rapidly metabolized is an obstacle to its use for a cognitive enhancer. In addition, the burden of blood brain barrier can be overcome by nasal administration and liposomes. In the present study, we investigated whether nasal administration of quercetin liposomes could improve spatial memory in healthy adult rats. Approach: Male Wistar rats were pretreated with quercetin liposomes, containing 0.5 mg of quercetin in 20 µL (dose = 20 µg, via right nasal cavity once daily continually for 4 weeks. Evaluation of rodent learning and memory was assessed by Morris water maze test and then all rats were sacrificed for determining the survival and cholinergic neurons densities in hippocampus. Results: Quercetin liposomes via nasal route treated rats exhibited a significant improvement in cognitive performance. In addition, nasal administration of quercetin liposomes also resulted in induced the densities of survival and cholinergic neurons in hippocampus. However, further researches about the precise underlying mechanism are still required. Conclusion: Our studies demonstrate that quercetin liposomes via nasal administration may have a candidate for cognitive enhancer in the future.

  4. Quercetin Influences Quorum Sensing in Food Borne Bacteria: In-Vitro and In-Silico Evidence.

    Directory of Open Access Journals (Sweden)

    Venkadesaperumal Gopu

    Full Text Available Quorum sensing (QS plays a vital role in regulating the virulence factor of many food borne pathogens, which causes severe public health risk. Therefore, interrupting the QS signaling pathway may be an attractive strategy to combat microbial infections. In the current study QS inhibitory activity of quercetin and its anti-biofilm property was assessed against food-borne pathogens using a bio-sensor strain. In addition in-silico techniques like molecular docking and molecular dynamics simulation studies were applied to screen the quercetin's potentiality as QS inhibitor. Quercetin (80 μg/ml showed the significant reduction in QS-dependent phenotypes like violacein production, biofilm formation, exopolysaccharide (EPS production, motility and alginate production in a concentration-dependent manner. Synergistic activity of conventional antibiotics with quercetin enhanced the susceptibility of all tested pathogens. Furthermore, Molecular docking analysis revealed that quercetin binds more rigidly with LasR receptor protein than the signaling compound with docking score of -9.17 Kcal/mol. Molecular dynamics simulation predicted that QS inhibitory activity of quercetin occurs through the conformational changes between the receptor and quercetin complex. Above findings suggest that quercetin can act as a competitive inhibitor for signaling compound towards LasR receptor pathway and can serve as a novel QS-based antibacterial/anti-biofilm drug to manage food-borne pathogens.

  5. Genetic expression profile analysis of the temporal inhibition of quercetin and naringenin on Lactobacillus rhamnosus GG

    Science.gov (United States)

    The plant polyphenols, quercetin and naringenin, are considered healthy dietary compounds; however, little is known of their effects on the probiotic Lactobacillus rhamnosus GG (LGG). In this study, it was discovered that both quercetin and naringenin produced temporary inhibition of LGG growth, par...

  6. Oral absorption and metabolism of quercetin and sugar-conjugated derivatives in specific transport systems

    NARCIS (Netherlands)

    Noteborn, H.P.J.M.; Jansen, E.; Benito, S.; Mengelers, M.J.B.

    1997-01-01

    The intestinal transport and metabolism of quercetin and various sugar-conjugates were quantified in in vitro and in vivo model systems. The nature of the sugar moiety at the C3 and C4′ position had no significant effect on the rate of transport. At the 10 μM level, quercetin and glycosides with sug

  7. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans

    NARCIS (Netherlands)

    Woude, van der H.; Gliszczynska-Swiglo, A.; Struijs, K.; Smeets, A.; Alink, G.M.; Rietjens, I.M.C.M.

    2003-01-01

    Optimal in vitro conditions regarding quercetin solubility and stability were defined. Using these conditions, the effect of quercetin on proliferation of the colon carcinoma cell lines HCT-116 and HT29 and the mammary adenocarcinoma cell line MCF-7 was investigated. For the colon carcinoma cell lin

  8. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)

  9. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice

    NARCIS (Netherlands)

    Hoek-van den Hil, E.F.; Keijer, J.; Bunschoten, A.; Vervoort, Jacques; Stankova, B.; Bekkenkamp-Grovestein, M.; Herreman, L.; Venema, D.P.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.; Schothorst, van E.M.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and 1H

  10. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and (1)

  11. Inhibition of human glutathione S-transferase P1-1 by the flavonoid quercetin

    NARCIS (Netherlands)

    Zanden, J.J. van; Hamman, O.B.; Iersel, M.L.P.S. van; Boeren, S.; Cnubben, N.H.P.; Lo Bello, M.; Vervoort, J.; Bladeren, P.J. van; Rietjens, I.M.C.M.

    2003-01-01

    In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 μM q

  12. Effects of quercetin on pharmacokinetics of cefprozil in Chinese-Han male volunteers.

    Science.gov (United States)

    Jia, Fei-Fei; Tan, Zhi-Rong; McLeod, Howard L; Chen, Yao; Ou-Yang, Dong-Sheng; Zhou, Hong-Hao

    2016-10-01

    1. The primary objective of this study was to evaluate the effects of quercetin on the pharmacokinetics of cefprozil. The secondary objective was to evaluate the safety of the combined use of cefprozil and quercetin. 2. An open-label, two-period, crossover phase I trial among 24 Han Chinese male subjects was conducted. Participants were given 500 mg of quercetin orally once daily for 15 d followed by single dose of cefprozil (500 mg) on day 15. Serum concentrations of cefprozil were then measured in all participants on day 15. A 15-d washout period was then assigned after which a 500 mg dose of cefprozil was administered and measured in the serum on day 36. 3. All subjects completed the trial, and no serious adverse events were reported. We measured mean serum concentrations of cefprozil in the presence and absence of quercetin in all participants. The maximum serum concentration of cefprozil in the presence of quercetin was 8.18 ug/ml (95% CI: 7.55-8.81) versus a maximum cefprozil concentration of 8.35 ug/ml (95% CI: 7.51-9.19) in the absence of quercetin. We conclude that the concurrent use of quercetin has no substantial effect on serum concentrations of orally administered cefprozil. 4. Co-administration of quercetin showed no statistically significant effects on the pharmacokinetics of cefprozil in healthy Chinese subjects.