Sample records for kadavu high-mg adakite

  1. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen


    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  2. Kadavu Island: adaptation and stagnation in the Fijian periphery

    Directory of Open Access Journals (Sweden)

    Sofer Michael


    Full Text Available The outer island of Kadavu is representative of the Fijian periphery. This paper deals with its physical characteristics, infrastructural conditions, and village economic activities with the aim of understanding the changes it has gone through in recent years. A combination of micro-geographic studies in two villages and a meso-geographical analysis show that the pattern of development found in Kadavu in the early 1980s has not changed much. The current pattern of cash crop production and trade is almost entirely dependent on the kava beverage crop, infrastructure is underdeveloped, the island suffers from the peripheral penalty phenomenon, and government initiatives aimed at changing the trend are very limited. However, the current form of non-capitalist production and its derived benefit has forced villagers into a strategy of adaptation which might actually be preferable for them under the current conditions of peripheralization.

  3. Adakitic magmas: modern analogues of Archaean granitoids (United States)

    Martin, Hervé


    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine+clinopyroxene+orthopyroxene, such that the partial melts are HREE-rich (low La/Yb and Sr

  4. Discovery of Eocene adakites in Primor'e (United States)

    Chashchin, A. A.; Nechaev, V. P.; Nechaeva, E. V.; Blokhin, M. G.


    This paper presents the first results of petrochemical and geochemical studies (by the ICP-MS technique) of adakites comprising a small extrusive body in the Ilistaya River basin (West Primor'e). Based on the data of radioisotopic dating (K-Ar method), the age of adakites corresponds to the Middle Eocene (45.52 ± 1.1 Ma). In terms of the content of most microelements and the value of the Sr/Y ratio, the discussed rocks are close to Paleogene adakites from northwest China, the Kitakami massif in Japan, and the northwestern margin of North America; these rocks are attributed to gaps in the subducted plate (slab windows). Additionally, the adakites found in Primor'e significantly differ from adakite-like rocks found in Tibet formed during melting of bottoms of the superthickened continental crust. Thus, this discovery proves the hypothesis about formation of slab windows at the Paleogene stage of the region's evolution.

  5. Semi-adakitic magmatism of the Satkatbong diorite, South Korea: Geochemical implications for post-adakitic magmatism in southeastern Eurasia (United States)

    Lim, Hoseong; Woo, Hyeon Dong; Myeong, Bora; Park, Jongkyu; Jang, Yun-Deuk


    The Satkatbong diorite (190 Ma) and the older Yeongdeok granite (250 Ma) in the Yeongnam massif, which is part of the southeastern margin of the Eurasian plate, are affected by a subduction system that is associated with the Izanagi and Farallon plates. The Satkatbong diorite is characterized by its abundant mafic magmatic enclaves (MMEs), mantle affinity, and intermediate adakitic Sr/Y vs. Y signature, whereas the Yeongdeok granite is distinctly adakitic and felsic and contains few MMEs. These differences in adakitic features might be due to differences in the lithospheric mantle material and/or different mafic MME sources. The results of rare earth element (REE) analyses and newly proposed Sr/La modeling in this study indicate that these two plutons were both generated by slab-mantle mixing and continental assimilation, whereas the Satkatbong diorite was additionally affected by the injection of a mafic source of MMEs, which "diluted" its adakitic chemistry. The young and hot subducting ridge passing toward the northeast due to the oblique subduction of the Izanagi and Farallon plates during the Early Mesozoic could have given rise to slab melting and asthenospheric influence through slab melting regions and a slab window, respectively. This implies that the adakitic Yeongdeok granite produced by slab melting and then the semi-adakitic Satkatbong diorite produced by asthenospheric influence, including other similar adakitic to semi-adakitic magmatism, might have occurred along the areas affected by ridge subduction. We suggest that this sequential magmatism would be applicable for many continental arcs which experienced ridge subduction being one of the mechanisms of adakite to semi-adakite magmatism.

  6. High Sr/Y rocks are not all adakites! (United States)

    Moyen, Jean-François


    The name of "adakite" is used to describe a far too large group of rocks, whose sole common feature is high Sr/Y and La/Yb ratios. Defining adakites only by this criterion is misleading, as the definition of this group of rocks does include many other criteria, including major elements. In itself, high (or commonly moderate!) Sr/Y ratios can be achieved via different processes: melting of a high Sr/Y (and La/Yb) source; deep melting, with abundant residual garnet; fractional crystallization or AFC; or interactions of felsic melts with the mantle, causing selective enrichment in LREE and Sr over HREE. A database of the compositions of "adakitic" rocks - including "high silica" and "low silica" adakites, "continental" adakites and Archaean adakites—was assembled. Geochemical modeling of the potential processes is used to interpret it, and reveals that (1) the genesis of high-silica adakites requires high pressure evolution (be it by melting or fractionation), in equilibrium with large amounts of garnet; (2) low-silica adakites are explained by garnet-present melting of an adakite-metasomatized mantle, i.e at depths greater than 2.5 GPa; (3) "Continental" adakites is a term encompassing a huge range of rocks, with a corresponding diversity of petrogenetic processes, and most of them are different from both low- and high- silica adakites; in fact in many cases it is a complete misnomer and the rocks studied are high-K calc-alkaline granitoids or even S-type granites; (4) Archaean adakites show a bimodal composition range, with some very high Sr/Y examples (similar to part of the TTG suite) reflecting deep melting (> 2.0 GPa) of a basaltic source with a relatively high Sr/Y, while lower Sr/Y rocks formed by shallower (1.0 GPa) melting of similar sources. Comparison with the Archaean TTG suite highlights the heterogeneity of the TTGs, whose composition spreads the whole combined range of HSA and Archaean adakites, pointing to a diversity of sources and processes

  7. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Yener Eyuboglu


    Full Text Available The eastern Pontides orogenic belt provides a window into continental arc magmatism in the Alpine–Himalayan belt. The late Mesozoic–Cenozoic geodynamic evolution of this belt remains controversial. Here we focus on the nature of the transition from the adakitic to non-adakitic magmatism in the Kale area of Gumushane region in NE Turkey where this transition is best preserved. The adakitic lithologies comprise porphyries and hyaloclastites. The porphyries are represented by biotite-rich andesites, hornblende-rich andesite and dacite. The hayaloclastites represent the final stage of adakitic activity and they were generated by eruption/intrusion of adakitic andesitic magma into soft carbonate mud. The non-adakitic lithologies include basaltic-andesitic volcanic and associated pyroclastic rocks. Both rock groups are cutting by basaltic dikes representing the final stage of the Cenozoic magmatism in the study area. We report zircon U-Pb ages of 48.71 ± 0.74 Ma for the adakitic rocks, and 44.68 ± 0.84 Ma for the non-adakitic type, suggesting that there is no significant time gap during the transition from adakitic to non-adakitic magmatism. We evaluate the origin, magma processes and tectonic setting of the magmatism in the southern part of the eastern Pontides orogenic belt. Our results have important bearing on the late Mesozoic–Cenozoic geodynamic evolution of the eastern Mediterranean region.

  8. Two types of adakites revealed by 238U-230Th disequilibrium from Daisen volcano, southwestern Japan

    International Nuclear Information System (INIS)

    Tokunaga, Saimi; Nakai, Shun'ichi; Orihashi, Yuji


    Daisen volcano is located on the Quaternary volcanic front in southwestern Japan. The volcano is composed mainly of andesite and dacite, which chemically resemble adakites, with high Al 2 O 3 and Sr/Y, steep REE patterns, and no negative Eu anomaly. ( 238 U/ 230 Th) disequilibrium (herein, a ratio in parentheses denotes the activity ratio) and trace element analyses of adakites from two volcanic domes, Karasugasen and Misen, indicate two adakite types. Adakite from Karasugasen is characterized by excess ( 230 Th) over ( 238 U), typical of most adakites, whereas adakite from Misen is characterized by excess ( 238 U) over ( 230 Th). The latter is consistent with enrichment in fluid-mobile elements relative to fluid immobile elements compared to rocks from Karasugasen. The values of ( 230 Th/ 232 Th) of adakites from Karasugasen and Misen are, respectively, around 0.75 and 0.81. These low ( 230 Th/ 232 Th) ratios result from the incorporation of subducted sedimentary material. The ratios, nevertheless, are higher than that for the estimate of lower crustal material suggesting significant incorporation of lower crust is unlikely. As adakites from Misen have ( 238 U) excess over ( 230 Th), adakite magma must have interacted with wedge mantle metasomatized by a slab-derived fluid, confirming the presence of a fluid-metasomatized mantle beneath Daisen volcano. (author)

  9. The final pulse of the Early Cenozoic adakitic activity in the Eastern Pontides Orogenic Belt (NE Turkey): An integrated study on the nature of transition from adakitic to non-adakitic magmatism in a slab window setting (United States)

    Eyuboglu, Yener; Dudas, Francis O.; Santosh, M.; Eroğlu-Gümrük, Tuğba; Akbulut, Kübra; Yi, Keewook; Chatterjee, Nilanjan


    The Eastern Pontides Orogenic Belt, one of the best examples of a fossil continental arc in the Alpine-Himalayan system, is characterized by adakitic magmatism during the Early Cenozoic. Popular models correlate the adakitic magmatism to syn- or post-collisional processes occurring after the collision between the Eastern Pontides Orogenic Belt and the Tauride Platform at the end of Late Mesozoic and/or beginning of the Cenozoic. We present new geological, petrological and chronological data from andesites and felsic tuffs exposed in the Bayburt area, in the southern part of the Eastern Pontides Orogenic Belt, and discuss the nature of the transition from adakitic to non-adakitic activities in a continental arc. Major, trace and rare earth element concentrations of both andesites and felsic tuffs clearly suggest that they are related to arc magmatism in a continental arc with adakitic composition. The isotopic compositions are permissive of mixing between a component similar to depleted mantle and a second component that is either mafic lower crust or subducted oceanic crust. 39Ar/40Ar hornblende and U/Pb zircon dating indicate that this adakitic magmatism in the Bayburt area ended by about 47 Ma, and transformed into non-adakitic, granitoid arc magmatism in the area immediately north of Bayburt in the Lutetian (∼46 Ma). Based on our new results in conjunction with available data, we propose that the beginning of northward rollback of a south-directed subducting slab, and simultaneous opening of a slab window related to ridge subduction, triggered both adakitic magmatism for approximately a 10 Myr period between 57.6 and 47 Ma and arc-parallel extension that caused the opening of the Early Cenozoic sedimentary basins. We also suggest that the shallow marine environment, in which Nummulite-bearing sandy limestones accumulated in the Early Cenozoic, was transformed into a saline-lake environment during the pyroclastic activity that produced the studied felsic tuffs

  10. Cretaceous and Eocene Adakites in the Sikhote-Alin area (Russian Far East) and their correlation with adakitic rocks in the East Asia continental margin (United States)

    Wu, T. J.; Jahn, B. M.


    Adakitic rocks of the Sikhote-Alin area were emplaced during two main periods: the Cretaceous (132-98 Ma) and Eocene (46-39 Ma). These rocks primarily occur in the Khanka Block and, less commonly, in the Sikhote-Alin Orogenic Belt. The adakitic rocks record the following chemical compositions: SiO2 = 57-74%, Al2O3 = 15-18%, Na2O = 3.5-6.1%, K2O = 0.7-3.2%, Na2O/K2O = 1.1-3.9, Sr/Y = 33-145, and (La/Yb)N = 11-53. The HREE and HFSE in these rocks are remarkably depleted. The Early Cretaceous adakites record ɛNd(T) = -1.0 to +3.2 and ISr = 0.7040-0.7090, and the Eocene adakitic rocks record Nd(T) = -2.0 to +2.2 and ISr = 0.7042-0.7058. Adakitic features suggest different modes of magma generation; a comparison of the Sr/Y and La/Yb ratios and geochemical data on Harker diagrams between the two periods of adakitic rocks reveals differences in their petrogenesis. The Cretaceous adakites may have been generated by the partial melting of meta-basic rocks in a subduction zone, accompanied by the emplacement of volcanic arc granitoids. Therefore, the subduction of the Paleo-Pacific Plate beneath the Sikhote-Alin was probably initiated during this time. The Eocene rocks, which record increasing adakitic features with increasing silica content, are most likely the product of andesite that underwent fractionation of mineral assemblage including clinopyoxene, orthopyroxene, garnet and amphibole. These rocks and associated basalts and rhyolite were formed after Cretaceous arc magmatism in the Sikhote-Alin area and were most likely generated by rollback of the subducting Pacific Plate after the Eocene. Abundant adakitic granitoids of Early Cretaceous and Eocene age occur in the Kitakami and Abukuma Mountains of NE Japan. Consequently, it is highly probable that a geological correlation existed between Sikhote-Alin and North Japan, particularly before the opening of the Japan Sea.

  11. Evolution of the East Philippine Arc: experimental constraints on magmatic phase relations and adakitic melt formation (United States)

    Coldwell, B.; Adam, J.; Rushmer, T.; MacPherson, C. G.


    Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures 1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.

  12. Experimental constraints on metasomatism of mantle wedge peridotites by hybridized adakitic melts (United States)

    Corgne, Alexandre; Schilling, Manuel E.; Grégoire, Michel; Langlade, Jessica


    In this study, a series of high-pressure (1.5 GPa) and high-temperature (1000-1300 °C) experiments were performed to investigate the petrological imprints of adakitic metasomatism on mantle wedge peridotites. Reaction couples were prepared using a powdered adakite from Cerro Pampa, Argentina (Mg# 0.7) placed in contact with a cored sample of medium-grained protogranular depleted spinel lherzolite from Pali Aike (Chile). Textural and chemical analyses of the run products allow us to identify key features of modal metasomatism by hybridized adakitic melts. The main changes in phase relations are associated with the following metasomatic reactions: incongruent dissolution of olivine and associated precipitation of secondary orthopyroxene, dissolution of primary spinel and subsequent replacement by secondary high-Cr spinel. In experiments with high water contents (9-12 wt%), precipitation of pargasitic amphibole also occurred, possibly at the expense of primary clinopyroxene. Neither phlogopite nor Ti-oxides were precipitated in any of these experiments. As expected, primary pyroxenes do not show evidence of being significantly altered following the interaction with the produced siliceous melts. Within the adakitic portion of the experimental charge, it was also observed the crystallization of secondary Ti-rich, Cr- and Na-poor diopsidic clinopyroxene, andesine plagioclase and, at low temperature, Fe-enriched secondary orthopyroxene. Considering textural criteria, we interpreted the formation of these minerals as crystallization products of the adakite component and not as true products of metasomatic reactions. The experimental results are used to discuss some of the petrological evidences presented to support modal metasomatism by slab-derived melts of mantle xenoliths extracted from several suprasubduction settings located around the Pacific Ring of Fire.

  13. An isotopic study of mafic microgranular enclaves in the Katsuragi adakitic tonalite, southwestern Japan. (United States)

    Tezuka, N.; Tsuboi, M.; Asahara, Y.


    The Cretaceous Katsuragi tonalite in southwestern Japan has been regarded as adakite formed by the partial melting of lower crust a) b). The tonalite is 10 x 15 km in areal extent, is composed of hornblende-biotite tonalite with a mineral assemblage of plagioclase, biotite, quartz and hornblende, and contains mafic microgranular enclaves (MME). The MME has dioritic composition with a mineral assemblage of plagioclase, biotite, hornblende and quartz. The boundary between the tonalite and the MME is sharp. To reveal the relationship between the MME and adakitic feature of the host tonalite, we have focused on the chemical and Sr-Nd isotopic compositions of the MME in the Katsuragi tonalite. Three models have been proposed for the origin of MME: restite, magma-mixing, and cumulate c). In the restite model, MME is regarded as a residual material of partial melting, and therefore chemical compositions of MME and host should show a linear trend on the Harker's diagram. However, the Katsuragi tonalite and its MME do not show one linear trend. Based on mixing of two magmas, initial 87Sr/86Sr (SrI) value of MME is basically different from that of its host. However, the SrI value of the MME is 0.70725-0.70749 and is identical to the value of 0.70728 in the Katsuragi tonalite d), indicating one magma source for the MME and its host. According to the cumulate model, MME forms from cumulate piles by subsequent feeding of congenetic magma immediately after the early crystallized minerals are solidified. The concordance of the age and SrI between the Katsuragi tonalite and its MME strongly indicate the cumulate origin c). Furthermore, the mineral assemblage of the MME resembles with the common mineral assemblage of andesitic cumulate such as plagioclase, hornblende and quartz c), and this is consistent with the cumulate model. Based on the cumulate origin of the MME, the adakitic feature of chemical composition in the host rock is potentially formed by the separation of cumulate

  14. Petrology, geochemistry and radiometric ages of high silica Adakitic Domes of Neogene continental arc, south of Quchan

    International Nuclear Information System (INIS)

    Ghasemi, H.; Sadeghian, M.; Khanalizadeh, A.; Tanha, A.


    Neogene high silica adakitic domes of south Quchan, cropped out in the northern part of the Quchan-Esfarayen Cenozoic magmatic arc (north of Sabzevar ophiolitic and metamorphic belt). In this volcanic belt, magmatic activities has been started since Eocene (about 40 Ma ago) and continued to Plio-Pleistocene (about 2 Ma ago). The ages of volcanic rocks range from Eocene to Plio-Pleistocene from south (in adjacent to the Sabzevar ophiolitic belt) to north (in south of Quchan) respectively. Northern part of this high silica adakitic arc is composed of pyroclastic units and several domes contain trachyandesites, trachytes, dacites and rhyodacites (2-12 Ma ago) which are usually overlain an olivine basaltic- basaltic basement of Eocene to Lower Miocene (19-20 Ma ago). Existence of Eocene volcanic enclaves and gneissic, siltstone, marl and pellitic enclaves, appearance and disappearance of some mineral phases, corrosions and chemical dis equilibriums of some phenocrysts and sieve textures are some evidences of magmatic contamination. 87 Sr/ 86 Sr ratio ranges from 0.7041 to 0.7057 confirms this contamination. A clear positive anomaly in LREE and LILE and a negative anomaly in HREE found in the rocks of Neogene domes. Negative anomalies in HFSE (e.g. P, Nb, Ti) which is the indicator of arc settings, also found in these rocks. Calc-alkaline nature, continental arc subduction setting, presence of an eclogitic or garnet-amphibolitic source rock (resulted from metamorphism of Sabzevar subducted oceanic crust as a source of magma generation), high silica adakitic nature of magmatism and the role of fractional crystallization, assimilation and magmatic contamination in the genesis and evolution of magma in these domes, indicated by the geochemical evidences. These adakitic magmas were the latest melts resulted from partial melting of young and hot Sabzevar Neotethyan subducted oceanic crust and its overlaying mantle wedge, which have been emplaced and manifested in the form of

  15. Genesis of Cenozoic intraplate high Mg# andesites in Northeast China (United States)

    Liu, J. Q.; Chen, L. H.; Zhong, Y.; Wang, X. J.


    High-Mg# andesites (HMAs) are usually generated in the converged plate boundary and have genetic relationships with slab subduction. However, it still remained controversial about the origin of those HMAs erupted in the intra-plate setting. Here we present major, trace element, and Sr-Nd-Pb-Hf isotopic compositions for the Cenozoic intra-plate HMAs from Northeast China to constrain their origin and formation process. Cenozoic Xunke volcanic rocks are located in the northern Lesser Khingan Range, covering an area of about 3, 000 km2. These volcanic rocks are mainly basaltic andesite and basaltic trachyandesite, with only several classified as trachyandesite and andesites. They have high SiO2 contents (54.3-57.4 wt%) and Mg# (49.6-57.8), falling into the scope of high Mg# andesites. The Xunke HMAs are enriched in large ion lithophile elements but depleted in high field strength elements, with positive Ba, K, Sr and negative Zr-Hf, and Ti anomalies. Their trace element absolute concentrations are between those of potassic basalts and Wuchagou HMAs. The Xunke HMAs have relatively enriched Sr-Nd-Hf isotopes (87Sr/86Sr = 0.705398-0.705764, ɛNd=-8.8-3.8, ɛHf=0.5-11.7), and low radiogenic Pb isotopes (206Pb/204Pb = 16.701-17.198), towards to the EM1 end-member, which indicates that they are ultimately derived from ancient, recycled crustal components. Primitive silica-rich melts were generated from higher degrees of partial melting of recycled crustal materials (relative to potassic basalts) and then interacted with the peridotite to produce the Xunke HMAs.

  16. Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling (United States)

    Chiaradia, Massimo; Müntener, Othmar; Beate, Bernardo; Fontignie, Denis


    In the Northern Andes of Ecuador, a broad Quaternary volcanic arc with significant across-arc geochemical changes sits upon continental crust consisting of accreted oceanic and continental terranes. Quaternary volcanic centers occur, from west to east, along the Western Cordillera (frontal arc), in the Inter-Andean Depression and along the Eastern Cordillera (main arc), and in the Sub-Andean Zone (back-arc). The adakite-like signatures of the frontal and main arc volcanoes have been interpreted either as the result of slab melting plus subsequent slab melt-mantle interactions or of lower crustal melting, fractional crystallization, and assimilation processes. In this paper, we present petrographic, geochemical, and isotopic (Sr, Nd, Pb) data on dominantly andesitic to dacitic volcanic rocks as well as crustal xenolith and cumulate samples from five volcanic centers (Pululagua, Pichincha, Ilalo, Chacana, Sumaco) forming a NW-SE transect at about 0° latitude and encompassing the frontal (Pululagua, Pichincha), main (Ilalo, Chacana), and back-arc (Sumaco) chains. All rocks display typical subduction-related geochemical signatures, such as Nb and Ta negative anomalies and LILE enrichment. They show a relative depletion of fluid-mobile elements and a general increase in incompatible elements from the front to the back-arc suggesting derivation from progressively lower degrees of partial melting of the mantle wedge induced by decreasing amounts of fluids released from the slab. We observe widespread petrographic evidence of interaction of primary melts with mafic xenoliths as well as with clinopyroxene- and/or amphibole-bearing cumulates and of magma mixing at all frontal and main arc volcanic centers. Within each volcanic center, rocks display correlations between evolution indices and radiogenic isotopes, although absolute variations of radiogenic isotopes are small and their values are overall rather primitive (e.g., ɛNd = +1.5 to +6, 87Sr/86Sr = 0

  17. A possible connection between post-subduction arc magmatism and adakite-NEB rock association in Baja California, Mexico (United States)

    Castillo, P. R.


    Late Miocene to Recent arc-related magmatism occurs in Baja California, Mexico despite the cessation of plate subduction along its western margin at ~12.5 Ma. It includes calcalkaline and K-rich andesites, tholeiitic basalts and basaltic andesites, alkalic basalts similar to many ocean island basalts (OIB), magnesian and basaltic andesites with adakitic affinity (bajaiites), adakites, and Nb-enriched basalts (NEB). A popular model for the close spatial and temporal association of adakite (plus bajaiite) and NEB in Baja California is these are due to melting of the subducted Farallon/Cocos plate, which in turn is caused by the influx of hot asthenospheric mantle through a window created in the subducted slab directly beneath the Baja California peninsula [e.g., Benoit, M. et. al. (2002) J. Geol. 110, 627-648; Calmus, T. et al. (2003) Lithos 66, 77-105]. Here I propose an alternative model for the cause of post-subduction magmatism in Baja California in particular and origin of adakite-NEB rock association in general. The complicated tectonic configuration of the subducting Farallon/Cocos plate and westward motion of the North American continent caused western Mexico to override the hot, upwelling Pacific mantle that was decoupled from the spreading centers abandoned west of Baja California. The upwelling asthenosphere is best manifested east of the peninsula, beneath the Gulf of California, and is most probably due to a tear or window in the subducted slab there. The upwelling asthenosphere is compositionally heterogeneous and sends materials westward into the mantle wedge beneath the peninsula. These materials provide sources for post-subduction tholeiitic and alkalic magmas. Portions of tholeiitic magmas directly erupted at the surface produce tholeiitic lavas, but some get ponded beneath the crust. Re-melting and/or high-pressure fractional crystallization of the ponded tholeiitic magmas generate adakitic rocks. Alkalic magmas directly erupted at the surface

  18. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China) (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang


    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The

  19. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China) (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang


    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA

  20. El Chichón Volcano (Chiapas Volcanic Belt, Mexico) Transitional Calc-Alkaline to Adakitic-Like Magmatism: Petrologic and Tectonic Implications


    Ignacio San José, Cristina de; Castiñeiras García, Pedro; Márquez González, Álvaro; Oyarzun, Roberto; Lillo Ramos, F. Javier; López Ruiz-Labranderas, Iván


    The rocks of the 1982 eruption of El Chichón volcano (Chiapas, Mexico) display a series of geochemical and mineralogical features that make them a special case within the NW-trending Chiapas volcanic belt. The rocks are transitional between normal arc and adakitic-like trends. They are anhydrite-rich, and were derived from a water-rich, highly oxidized sulfur-rich magma, thus very much resembling adakitic magmas (e.g., the 1991 Pinatubo eruption). We propose that these rocks we...

  1. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao


    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  2. Long-lived melting of ancient lower crust of the North China Craton in response to paleo-Pacific plate subduction, recorded by adakitic rhyolite (United States)

    Wang, Chao; Song, Shuguang; Niu, Yaoling; Allen, Mark B.; Su, Li; Wei, Chunjing; Zhang, Guibin; Fu, Bin


    Magmatism in eastern China in response to paleo-Pacific plate subduction during the Mesozoic was complex, and it is unclear how and when exactly the magmas formed via thinning and partial destruction of the continental lithosphere. To better understand this magmatism, we report the results of a geochronological and geochemical study of Early Cretaceous adakitic rhyolite (erupted at 125.4 ± 2.2 Ma) in the Xintaimen area within the eastern North China Craton (NCC). In situ zircon U-Pb dating shows that this adakitic rhyolite records a long ( 70 Myrs) and complicated period of magmatism with concordant 206Pb/238U ages from 193 Ma to 117 Ma. The enriched bulk rock Sr-Nd isotopic compositions of the Xintaimen adakitic rhyolite, as well as the enriched zircon Hf and O isotopic compositions, indicate that the magmas parental to the adakitic rhyolite were derived from partial melting of the Paleoproterozoic mafic lower crust, heated by mafic melts derived from the mantle during the paleo-Pacific plate subduction. A minor older basement component is indicated by the presence of captured Neoarchean to Early Paleoproterozoic zircons. The Mesozoic zircons have restricted Hf and O isotopic compositions irrespective of their ages, suggesting that they formed from similar sources at similar melting conditions. The Xintaimen adakitic rhyolite offers an independent line of evidence that the ancient lower crust of eastern China underwent a long period ( 70 Myrs) of destruction, melting or remelting, from 193 to 120 Ma, related to the subduction of the paleo-Pacific plate beneath eastern China.

  3. Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt (United States)

    Abdelfadil, Khaled M.; Obeid, Mohamed A.; Azer, Mokhles K.; Asimow, Paul D.


    -stage model that appeals to re-melting of arc material in a post-collisional setting. The Wadi Sahiya basaltic andesite and andesite samples exhibit the defining chemical characteristics of adakites: high Sr (>700 ppm), low Y (20) and low Yb (partial melting of lithospheric mantle beneath thickened continental arc crust. The early eruptive phase, exposed at Sahiya, was erupted on an active continental margin, whereas the later Khashabi succession marks the transition to a post-collisional stage.

  4. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization (United States)

    Wang, Bai-Qiu; Zhou, Mei-Fu; Li, Jian-Wei; Yan, Dan-Ping


    Early Mesozoic porphyritic intrusions in the Shangri-La region, southern Yidun terrane, SW China, are spatially associated with andesites and dacites. These intrusions are composed of diorite and quartz diorite, and are closely related to copper mineralization. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The associated andesites and dacites are interlayered with slates and sandstones and have ages of around 220 Ma. All of the intrusive and extrusive rocks have similar, highly fractionated REE patterns and high La/Yb (13-49) ratios with no prominent Eu anomalies. They display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Their SiO2 contents range from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from1.9 to 4.2 wt.%. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). These features suggest that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and εNd (- 1.88 to - 4.93) values, but belong to high silica (HSA) and low silica adakitic rocks (LSA). The HSA represent an early stage of magmatism (230 to 215 Ma) and were derived from oceanic slab melts with limited interaction with the overlying mantle wedge during ascent. At 215 Ma, more extensive interaction produced the LSA. We propose that the early adakitic magmas (HSA) formed by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the later adakitic magmas (LSA).

  5. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu (United States)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.


    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type

  6. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau (United States)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han


    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  7. Hot subduction: Magmatism along the Hunter Ridge, SW Pacific

    International Nuclear Information System (INIS)

    Crawford, A.J.; Verbeeten, A.; Danyushevsky, L.V.; Sigurdsson, I.A.; Maillet, P.; Monzier, M.


    The Hunter 'fracture zone' is generally regarded as a transform plate boundary linking the oppositely dipping Tongan and Vanuatu subduction systems. Dredging along the Hunter Ridge and sampling of its northernmost extent, exposed as the island of Kadavu in Fiji, has yielded a diversity of magmatic suites, including arc tholeiites and high-Ca boninites, high-Mg lavas with some affinities to boninites and some affinities to adakites, and true adakitic lavas associated with remarkable low-Fe, high-Na basalts with 8-16 ppm Nb (herein high-Nb basalts). Lavas which show clear evidence of slab melt involvement in their petrogenesis occur at either end of the Hunter Ridge, whereas the arc tholeiites and high-Ca boninites appear to be restricted to the south central part of the ridge. Mineralogical and whole rock geochemical data for each of these suites are summarized, and a tectono-magmatic model for their genesis and distribution is suggested. Trace element features and radiogenic isotope data for the Hunter Ridge lavas indicate compositions analogue to Pacific MORB-like mantle

  8. Petrographic and petrogenetic studies of adakitic magmatism of Gavdel (Shivar Dagh in Garehdagh-South Arminian Zone (Northwest of Iran (Irankuh Pb-Zn deposit, Southwest of Isfahan

    Directory of Open Access Journals (Sweden)

    Ahmad Jahangiri


    Full Text Available Gavdel intrusive body, situated in NW Iran and NE of Uromieh-Dokhtar zone, is a part of Garehdagh, South-Arminian Zone (Arasbaran. The major outcrops of intrusive include of granodiorite, monzonite accompanied with granodioritic dyke. The studied samples display granular texture with essential minerals of, plagioclase, K-feldspar, amphibole ± quartz ± clinopyroxene. Geochemically, the studied rocks characterized by SiO2 in the range of (59.1-67.8%, Al2O3 (14.09-18.3%, high Sr (507.18-1150 ppm content , high ratios of Sr/Y (32.93-83.54, La/Yb and low Y (12.05-16.13 contents, which can indicate the adakitic characters of studied rocks. These features of Gavdel intrusive display geochemical similarity with high SiO2 adakites (HAS that comprise enriched LREE, LILE and depleted HFS elements such as Ta, Nb, and Ti. The fractionated REE pattern and low HREE and Y amount can be related to the occurrence of garnet or amphibole in residual source of adakitic magmas. High content of Sr and depletion of Ta, Nb and Ti can be ascribed either to the absence of plagioclase and the presence of Fe-Ti oxides in melt residue or fractionation of titanomagnetite and amphibole minerals with respect to petrograhic indications. Subducted slab breaking off followed by its partial melting and the overlying sediments accompanied by crustal assimilation through magma rising generated the magma in the studied area and the NW of Iran.

  9. Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites (United States)

    Zhang, Chen; Santosh, M.; Liu, Luofu; Luo, Qun; Zhang, Xin; Liu, Dongdong


    The Central Asian Orogenic Belt (CAOB) evolved through a long-lived orogeny involving multiple episodes of subduction and accretion marking a major phase of continental growth during the Paleozoic. The northern part of the Western Junggar region (NW Junggar) offers a window into these processes, particularly to constrain the timing of closure of the Paleo-Asian Ocean. Here we report geochemical, geochronological, and isotopic data from K-feldspar granites and adakitic rocks from the NW Junggar region. Zircon U-Pb ages suggest that the granites were emplaced during Early Silurian to the Early Carboniferous (434-328 Ma). The granites show geochemical characteristics similar to those of A-type granites, with high SiO2 (71.13-76.72 wt%), Na2O + K2O (8.00-9.59 wt%), and Al2O3 (12.28-14.08 wt%), but depleted Sr, Nb, Ta and Eu. They display moderate to high positive εNd(t) and εHf(t) values (4.26-8.21 and 7.69-14.60, respectively) and young Nd and Hf model ages (T2DM-Nd = 489-740 Ma and T2DM-Hf = 471-845 Ma), suggesting magma derivation through partial melting of lower crust in the Boshchekul-Chingiz and Zharma-Saur arcs. The adakites are characterized by high Sr content (406.5-751.6 ppm), and low Y (13.8-16.4 ppm) and Yb (1.5-1.8 ppm) content, yielding relatively high Sr/Y ratios (25.38-49.41) similar to those of modern adakites. They have high positive εNd(t) and εHf(t) values (7.85-8.25 and 13.23-15.97, respectively) and young Nd and Hf model ages (T2DM-Nd = 429-535 Ma and T2DM-Hf = 355-550 Ma), indicating that their source magmas were likely derived from partial melting of the oceanic crust beneath the Boshchekul-Chingiz arc. The petrogenesis and distribution of the A-type granites and adakites, as well as the tectonic architecture of the region, suggest that a ridge subduction event might have occurred during the Early Silurian to Early Carboniferous. In combination with previous studies in the Chinese Altai, we suggest a two-sided ridge subduction model for the

  10. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang


    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  11. Preliminary study of the characteristics of a high Mg containing Al-Mg-Si alloy

    International Nuclear Information System (INIS)

    Yan, F; McKay, B J; Fan, Z; Chen, M F


    An Al-20Mg-4Si high Mg containing alloy has been produced and its characteristics investigated. The as-cast alloy revealed primary Mg 2 Si particles evenly distributed throughout an α-Al matrix with a β-Al 3 Mg 2 fully divorced eutectic phase observed in interdendritic regions. The Mg 2 Si particles displayed octahedral, truncated octahedral, and hopper morphologies. Additions of Sb, Ti and Zr had a refining influence reducing the size of the Mg 2 Si from 52 ± 4 μm to 25 ± 0.1 μm, 35 ± 1 μm and 34 ± 1 μm respectively. HPDC tensile test samples could be produced with a 0.6 wt.% Mn addition which prevented die soldering. Solution heating for 1 hr was found to dissolve the majority of the Al 3 Mg 2 eutectic phase with no evidence of any effect on the primary Mg 2 Si. Preliminary results indicate that the heat treatment has a beneficial effect on the elongation and the UTS.

  12. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats (United States)

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry


    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  13. An essential factor for high Mg2+ tolerance of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Joshua Armitano


    Full Text Available Internal bacterial concentration of Mg2+, the most abundant divalent cation in living cells, is estimated to be in the single millimolar range. However, many bacteria will thrive in media with only micromolars of Mg2+, by using a range of intensely studied and highly efficient import mechanisms, as well as in media with very high magnesium concentration, presumably mediated by currently unknown export mechanisms. Staphylococcus aureus has a particularly high Mg2+ tolerance for a pathogen, growing unimpaired in up to 770 mM Mg2+, and we here identify SA0657, a key factor in this tolerance. The predicted domain structure of SA0657 is shared with a large number of proteins in bacteria, archaea and even eukarya, for example CorB from Salmonella and the human CNNM protein family. One of the shared domains, a CBS pair potentially involved in Mg2+ sensing, contains the conserved Glycine326 which we establish to be a key residue for SA0657 function. In light of our findings, we propose the name MpfA, Magnesium Protection Factor A, for SA0657.

  14. Discovery of Miocene adakitic dacite from the Eastern Pontides Belt (NE Turkey) and a revised geodynamic model for the late Cenozoic evolution of the Eastern Mediterranean region (United States)

    Eyuboglu, Yener; Santosh, M.; Yi, Keewook; Bektaş, Osman; Kwon, Sanghoon


    The Cenozoic magmatic record within the ca. 500 km long eastern Pontides orogen, located within the Alpine metallogenic belt, is critical to evaluate the tectonic history and geodynamic evolution of the eastern Mediterranean region. In this paper we report for the first time late Miocene adakitic rocks from the southeastern part of the eastern Pontides belt and present results from geochemical and Sr-Nd isotopic studies as well as zircon U-Pb geochronology. The Tavdagi dacite that we investigate in this study is exposed as round or ellipsoidal shaped bodies, sills, and dikes in the southeastern part of the belt. Zircons in the dacite show euhedral crystal morphology with oscillatory zoning and high Th/U values (up to 1.69) typical of magmatic origin. Zircon LA-ICPMS analysis yielded a weighted mean 206Pb/238U age of 7.86 ± 0.15 Ma. SHRIMP analyses of zircons with typical magmatic zoning from another sample yielded a weighted mean 206Pb/238U age of 8.79 ± 0.19 Ma. Both ages are identical and constrain the timing of dacitic magmatism as late Miocene. The Miocene Tavdagi dacite shows adakitic affinity with high SiO2 (68.95-71.41 wt.%), Al2O3 (14.88-16.02 wt.%), Na2O (3.27-4.12 wt.%), Sr (331.4-462.1 ppm), Sr/Y (85-103.7), LaN/YbN (34.3-50.9) and low Y (3.2-5 ppm) values. Their initial 143Nd/144Nd (0.512723-0.512736) and 87Sr/86Sr (0.70484-0.70494) ratios are, respectively, lower and higher than those of normal oceanic crust. The geological, geochemical and isotopic data suggest that the adakitic magmatism was generated by partial melting of the mafic lower crust in the southeastern part of the eastern Pontide belt during the late Miocene. Based on the results presented in this study and a synthesis of the geological and tectonic information on the region, we propose that the entire northern edge of the eastern Pontides-Lesser Caucasus-Elbruz magmatic arc was an active continental margin during the Cenozoic. We identify a migration of the Cenozoic magmatism towards

  15. Late Triassic Porphyritic Intrusions And Associated Volcanic Rocks From The Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Implications For Adakitic Magmatism And Porphyry Copper Mineralization (United States)

    Wang, B.; Zhou, M.; Li, J.; Yan, D.


    The Yidun terrane, located on the eastern margin of the Tibetan plateau, has been commonly considered to be a Triassic volcanic arc produced by subduction of the Ganzi-Litang oceanic lithosphere. The Yidun terrane is characterized by numerous arc-affinity granitic intrusions located along a 500-km-long, north-south-trending belt. Among these granitic bodies, several small porphyritic intrusions in the southern segment of the terrane (Shangri-La region) are associated with large porphyry copper deposits. These porphyritc intrusions are composed of diorite and quartz diorite, and spatially associated with andesites and dacites. LA-ICP-MS zircon U-Pb ages of the intrusions range from 230 to 215 Ma. The andesites and dacites are intercalated with slates and sandstones and have ages of around 220 Ma. The intrusive and volcanic rocks have SiO2 contents from 56.6 to 67.1 wt.%, Al2O3 from 14.2 to 17.4 wt.% and MgO from 1.9 to 4.2 wt.%. They show significant negative Nb-Ta anomalies on primitive mantle-normalized spidergrams. They have high La/Yb (13-49) ratios with no prominent Eu anomalies. All the rocks have high Sr (258-1980 ppm), and low Y (13-21 ppm) with high Sr/Y ratios (29-102). The geochemical features indicate that both the volcanic rocks and porphyritic intrusions were derived from adakitic magmas. They have similar initial 87Sr/86Sr ratios (0.7058 to 0.7077) and ɛNd (-1.88 to -4.93) values, but can be further divided into two groups: high silica (HSA) and low silica adakitic rocks (LSA). The HSA, representing an early stage of magmatism (230 to 215 Ma), were derived from oceanic slab melts with limited interaction with the overlying mantle wedge. At 215 Ma, more extensive interaction resulted in the formation of LSA. We propose that HSA were produced by flat subduction leading to melting of oceanic slab, whereas subsequent slab break-off caused the significant interaction between slab melts and the mantle wedge and thus the generation of the LSA. Compared with

  16. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description (United States)

    Rose, T. R.; Fiske, R. S.; Swanson, D.


    Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the

  17. The influence of mineralogical, chemical and physical properties on grindability of commercial clinkers with high MgO level

    International Nuclear Information System (INIS)

    Souza, Vladia Cristina G. de; Koppe, Jair Carlos; Costa, Joao F.C.L.; Vargas, Andre Luis Marin; Blando, Eduardo; Huebler, Roberto


    This research investigates various methods able to identify possible mineralogical, physical and chemical influences on the grindability of commercial clinkers with high MgO level. The aim of the study is to evaluate the hardness and elastic modulus of the clinker mineral phases and their fracture strength during the comminution processes, comparing samples from clinkers with low MgO level (0.5%) and clinkers with elevated MgO levels (> 5.0%). The study of the influence of mineralogical, chemical and physical properties was carried out using several analytical techniques, such as: optical microscopy, X-ray diffraction with Rietveld refinement (XRD) and X-ray fluorescence (XRF). These techniques were useful in qualifying the different clinker samples. The drop weight test (DWT) and the Bond ball mill grindability test were performed to characterize the mechanical properties of clinkers. Nanoindentation tests were also carried out. Results from the Bond ball mill grindability test were found to be related to the hardness of the mineral phase and to mineralogical characteristics, such as type and amount of inclusions in silicates, belite and alite crystals shape, or microcracked alites. In contrast, the results obtained by the DWT were associated to the macro characteristics of clinkers, such as porosity, as well as to the hardness and mineralogical characteristics of belite crystals in clusters. Hardness instrumented tests helped to determine the Vickers hardness and elastic modulus from the mineral phases in commercial clinkers and produced different values for the pure phases compared to previous publications

  18. The Cretaceous Duimiangou adakite-like intrusion from the Chifeng region, northern North China Craton: Crustal contamination of basaltic magma in an intracontinental extensional environment (United States)

    Fu, Lebing; Wei, Junhao; Kusky, Timothy M.; Chen, Huayong; Tan, Jun; Li, Yanjun; Shi, Wenjie; Chen, Chong; Zhao, Shaoqing


    Zircon U-Pb ages, major and trace element and Sr, Nd and Pb isotope compositions of the Duimiangou (DMG) quartz monzonite from the Chifeng region on the northern North China Craton (NCC) were studied to investigate its derivation, evolution and geodynamic significance. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U-Pb dating yields an emplacement age of 128 ± 1 Ma for this intrusion, with numerous Mesozoic inherited zircons clustering at 219 ± 12 Ma and 161 ± 3 Ma, along with some ancient zircons with ages of 2.5 Ga, 1.77 Ga and 324 Ma. Bulk-rock analyses show that this intrusion is characterized by variable SiO2 (63.4-69.4 wt.%), Al2O3 (14.5-16.3 wt.%), Na2O + K2O (8.01-8.95 wt.%), and Mg# (41.3-48.0). They are enriched in large ion lithophile elements and light rare earth elements without significant Eu anomalies (mostly between 0.89-1.10), and depleted in heavy rare earth elements and high field strength elements, with high Sr/Y (63.7-101.7) and (La/Yb)N (20.5-31.0) ratios. The DMG intrusion formed in an intracontinental extensional setting contemporaneous with the formation of pull-apart basins, metamorphic core complexes and intense magmatism, rather than in a convergent margin. It has homogeneous Sr ((87Sr/86Sr)i = 0.7059-0.7066), Nd (εNd(t) = - 6.2 to - 7.2) and Pb ((206Pb/204Pb)i = 17.289-17.375, (207Pb/204Pb)i = 15.359-15.463, (208Pb/204Pb)i = 37.130-37.472) isotope compositions. Sr-Nd isotope modeling results, plus relatively young Nd model ages (1522-1618 Ma) and the presence of relict zircons, suggest that this intrusion could have originated from crustal contamination of newly formed basaltic melts derived from asthenospheric mantle, accompanied by fractional crystallization of K-feldspar, biotite, apatite, Fe-Ti oxides and minor hornblende and plagioclase. Thus, the DMG adakite-like intrusion may record the magmatic event associated with underplating of asthenospheric magma in an intracontinental extensional

  19. Early Carboniferous adakite-like and I-type granites in central Qiangtang, northern Tibet: Implications for intra-oceanic subduction and back-arc basin formation within the Paleo-Tethys Ocean (United States)

    Liu, Jin-Heng; Xie, Chao-Ming; Li, Cai; Wang, Ming; Wu, Hao; Li, Xing-Kui; Liu, Yi-Ming; Zhang, Tian-Yu


    Recent studies have proposed that the Late Devonian ophiolites in the central Qiangtang region of northern Tibet were formed in an oceanic back-arc basin setting, which has led to controversy over the subduction setting of the Longmucuo-Shuanghu-Lancangjiang Suture Zone (LSLSZ) during the Late Devonian to Early Carboniferous. In this paper we present new data about a suite of granite plutons that intrude into ophiolite in central Qiangtang. Our aim was to identify the type of subduction and to clarify the existence of an intra-oceanic back-arc basin in the LSLSZ during the Late Devonian to Early Carboniferous. The suite of granites consists of monzogranites, syenogranites, and granodiorites. Our laser ablation-inductively coupled plasma-mass spectrometry zircon U-Pb data yielded Early Carboniferous crystallization ages of 357.2 Ma, 357.4 Ma and 351.1 Ma. We subsequently investigated the petrogenesis and tectonic setting of these granites based on their geochemical and Hf isotopic characteristics. First, we divided the granites into high Sr/Y (HSG) and low Sr/Y granites (LSG). The HSG group contains monzogranites and granodiorites that have similar geochemical characteristics to adakites (i.e., high Sr/Y and La/Yb ratios, low MgO, Y, and Yb contents, and no pronounced negative Eu anomaly), although they have slightly lower Sr and Al2O3 contents, caused by crystal fractionation during late magmatic evolution. Therefore, we define the HSG group as adakite-like granites. The study of the HSG shows that they are adakite-like granites formed by partial melting of oceanic crust and experience fractional crystallization process during late evolution. However, some differences between the monzogranites and granodiorites indicate that there are varying degree contributions of subducted sediments during diagenesis. The LSG group contains syenogranites that have distinct negative correlations between their P2O5 and SiO2 contents, and Y and Th contents have significant positive

  20. Incorporation of Mg, Sr, Ba, U, and B in High-Mg Calcite Benthic Foraminifers Cultured Under Controlled pCO2 (United States)

    Not, C.; Thibodeau, B.; Yokoyama, Y.


    Measurement of elemental ratios (E/Ca) has been performed in two symbiont-bearing species of high-Mg calcite benthic foraminifers (hyaline, Baculogypsina sphaerulata and porcelaneous, Amphisorus hemprichii), cultured under five pCO2 levels, representing preindustrial, modern, and three predicted future values. E/Ca ratios were analyzed by Laser Ablation coupled with Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). We measured several E/Ca, such as Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca simultaneously. We observed that high-Mg calcite benthic foraminifers possess higher E/Ca than low-Mg calcite foraminifers, irrespective of their calcification mode (hyaline or porcelaneous). In both modes of calcification, Mg, Sr, Ba, U, and B incorporation could be controlled by Rayleigh fractionation. However, more data are needed to validate and quantify the relative importance of this process and closely investigate the presence/absence of other mechanism. Therefore, it highlights the need for a multielemental approach when looking at trace element incorporation. Finally, no significant relationship was observed between the different ratios and the pCO2 of the water, suggesting that none of the Mg/Ca, Sr/Ca, Ba/Ca, U/Ca, and B/Ca is sensitive to bottom water pCO2 or pH for these species.

  1. Petrological constraints on the high-Mg basalts from Capo Marargiu (Sardinia, Italy): Evidence of cryptic amphibole fractionation in polybaric environments (United States)

    Tecchiato, Vanni; Gaeta, Mario; Mollo, Silvio; Scarlato, Piergiorgio; Bachmann, Olivier; Perinelli, Cristina


    This study deals with the textural and compositional characteristics of the calc-alkaline stratigraphic sequence from Capo Marargiu Volcanic District (CMVD; Sardinia island, Italy). The area is dominated by basaltic to intermediate hypabyssal (dikes and sills) and volcanic rocks (lava flows and pyroclastic deposits) emplaced during the Oligo-Miocene orogenic magmatism of Sardinia. Interestingly, a basaltic andesitic dome hosts dark-grey, crystal-rich enclaves containing up 50% of millimetre- to centimetre-sized clinopyroxene and amphibole crystals. This mineral assemblage is in equilibrium with a high-Mg basalt recognised as the parental magma of the entire stratigraphic succession at CMVD. Analogously, centimetre-sized clots of medium- and coarse-grained amphibole + plagioclase crystals are entrapped in andesitic dikes that ultimately intrude the stratigraphic sequence. Amphibole-plagioclase cosaturation occurs at equilibrium with a differentiated basaltic andesite. Major and trace element modelling indicates that the evolutionary path of magma is controlled by a two-step process driven by early olivine + clinopyroxene and late amphibole + plagioclase fractionation. In this context, enclaves represent parts of a cumulate horizon segregated at the early stage of differentiation of the precursory high-Mg basalt. This is denoted by i) resorption effects and sharp transitions between Mg-rich and Mg-poor clinopyroxenes, indicative of pervasive dissolution phenomena followed by crystal re-equilibration and overgrowth, and ii) reaction minerals found in amphibole coronas formed at the interface with more differentiated melts infiltrating within the cumulate horizon, and carrying the crystal-rich material with them upon eruption. Coherently, the mineral chemistry and phase relations of enclaves indicate crystallisation in a high-temperature, high-pressure environment under water-rich conditions. On the other hand, the upward migration and subsequent fractionation of the

  2. Geochemistry and geochronology of the ∼0.82 Ga high-Mg gabbroic dykes from the Quanji Massif, southeast Tarim Block, NW China: Implications for the Rodinia supercontinent assembly (United States)

    Liao, Fanxi; Wang, Qinyan; Chen, Nengsong; Santosh, M.; Xu, Yixian; Mustafa, Hassan Abdelsalam


    The role of the Tarim Block in the reconstruction of the Neoproterozoic supercontinent Rodinia remains contentious. Here we report a suite of high-Mg gabbroic dykes from the Yingfeng area in northwestern Quanji Massif, which is considered as a fragment of the Tarim Block in NW China. Magmatic zircons from these dykes yield to have a weighted mean 206Pb/238U age of 822.2 ± 5.3 Ma, recording the timing of their emplacement. The gabbros have high MgO (9.91-13.09 wt%), Mg numbers (69.89-75.73) and CaO (8.41-13.55 wt%), medium FeOt (8.50-9.67 wt%) and TiO2 (0.67-0.93 wt%), variable Al2O3 (13.04-16.07 wt%), and high Cr (346.14-675.25 ppm), but relatively low Ni (138.72-212.94 ppm), suggestive of derivation from a primary magma. The rocks display chondrite-normalized LREE patterns with weak fractionation but flat HREE patterns relative to those of the N-MORB. Their primitive mantle normalized trace elemental patterns show positive Rb, Ba and U but negative Th, Nb, Ti and Zr anomalies, carrying characteristics of both mid-ocean ridge basalts and arc basalts. The εHf(t) values of the zircons from these rocks vary from +4.7 to +13.5 with depleted mantle model ages (TDM) of 1.23-0.85 Ga, and the youngest value nearly approaching that for the coeval depleted mantle, suggesting significant addition of juvenile materials. Our data suggest that the strongly depleted basaltic magma was probably sourced from a depleted mantle source that had undergone metasomatism by subduction-related components in a back-arc setting. Accordingly we postulate that a subduction-related tectonic regime possibly prevailed at ∼0.8 Ga along the southeastern margin of the Tarim Block. Combining with available information from the northern Tarim Block, we propose an opposite verging double-sided subduction model for coeval subduction of the oceanic crust beneath both the southern and northern margins of the Tarim Block during early Neoproterozoic.

  3. Les adakites d'Equateur : modèle préliminaire


    Monzier, Michel; Robin, Claude; Hall, M.L.; Cotten, J.; Mothes, P.; Eissen, Jean-Philippe; Samaniego, P.


    L'ensemble des roches de 12 volcans quaternaires des Andes équatoriennes (286 analyses nouvelles) présente une signature adakitique, plus ou moins forte selon les appareils. Cette signature proviendrait de la fusion partielle de matériaux basaltiques métamorphisés de la croûte continentale (MORB et/ou basaltes d'arc) sous l'action des remontées magmatiques d'origine mantellique. Un modèle pétrogénétique préliminaire est proposé, qui explique les grands traits d'ensemble de la géochimie des vo...

  4. Inhibitory effect of high [Mg2+] on the vasopressin-stimulated hydroosmotic permeability of the isolated perfused cortical collecting duct

    Directory of Open Access Journals (Sweden)

    Falkenstein D.


    Full Text Available High magnesium concentration inhibits the effect of arginine vasopressin (AVP on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimulated osmotic water permeability coefficient (Pf was evaluated in the isolated perfused rabbit cortical collecting duct (CCD. Control tubules bathed and perfused with standard Ringer bicarbonate solution containing 1 mM Mg2+ presented a Pf of 223.9 ± 27.2 µm/s. When Mg2+ was not added to the bathing solution, an increase in the AVP-stimulated Pf to 363.1 ± 57.2 µm/s (P<0.05 was observed. An elevation of Mg2+ to 5 mM resulted in a decrease in Pf to 202.9 ± 12.6 µm/s (P<0.05. This decrease in the AVP-stimulated Pf at 5 mM Mg2+ persisted when the CCDs were returned to 1 mM Mg2+, Pf = 130.2 ± 20.3 µm/s, and was not normalized by the addition of 8-[4-chlorophenylthio]-adenosine 3',5'-cyclic monophosphate, a cAMP analogue, to the preparation. These data indicate that magnesium may play a modulatory role in the action of AVP on CCD osmotic water permeability, as observed in other tissues.

  5. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN (United States)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas


    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  6. Petrography, mineral chemistry of tourmaline, geochemistry and tectonic setting of Tertiary igneous rocks in Shurab area(west of Khusf), Southern Khorasan

    International Nuclear Information System (INIS)

    Gholami, A. A.; Mohammadi, S. S.; Zarrinkoub, M. H.


    Tertiary igneous rocks of Shurab area in eastern part of Lut block include pyroxene andesite, andesite, trachy andesite, quartz andesite, diorite, quartz diorite and porphyric quartz monzodiorite. Plagioclase, hornblende, pyroxene, biotite and quartz are common minerals and alkali feldspar, opaque, sphene, apatite, tourmaline and zircon exists as minor minerals. Propylitization, chloritization, silisification and tourmalinization are common alterations. Based on electron micro prob analysis, tourmaline in quartz monzodiorite is characterized by weakly chemical zoning, high Mg/Fe ratio from dravite type with alkaline nature that originated from Ca-poor metapelites and metapsammites. The studied rocks have low to medium-K calk-alkaline nature and their spider diagrams display enrichment in LILE such as Cs, Rb ,K , Sr and LREE and depletion in Nb,Ti and HREE that indicate their relation to subduction zone. Geochemical characteristics such as high Sr/Y and La/Yb ratios, high SiO_2 and no Eu anomaly are comparable to high-SiO_2 adakites. Shuorab adakitic rocks are likely originated from partial melting of the crust during delamination process.

  7. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico (United States)

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis


    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT volcano was constructed at the intersection of three fault systems, and it seems that the Plio-Quaternary E-W system played an important role in the ascent and storage of magmas during the recent volcanic activity in the two regions. Chemical and textural features of orthopyroxene, amphibole and Fe-Ti oxides from NT suggest that crystallization of magmas occurred at polybaric conditions, confirming the rapid upwelling of magmas.

  8. Adakite-like and Normal Arc Magmas: Distinct Fractionation Paths in the East Serbian Segment of the Balkan-Carpathian Arc


    Kolb, M.; Von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Fowler, S. J.; Cvetković, V.


    New age and whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic data are used to assess petrogenetic and regional geodynamic processes associated with Late Cretaceous subvolcanic intrusions within the sparsely studied Timok Magmatic Complex (TMC) and Ridanj-Krepoljin Zone (RKZ) of eastern Serbia. The TMC and RKZ form part of the Apuseni-Banat-Timok-Srednogorie (ABTS) magmatic belt, a Cu-Au mineralized calc-alkaline magmatic arc related to closure of the Tethys Ocean that extends through Romania, Se...

  9. Petrogenesis of siliceous high-Mg series rocks as exemplified by the Early Paleoproterozoic mafic volcanic rocks of the Eastern Baltic Shield: enriched mantle versus crustal contamination (United States)

    Bogina, Maria; Zlobin, Valeriy; Sharkov, Evgenii; Chistyakov, Alexeii


    The Early Paleoproterozoic stage in the Earth's evolution was marked by the initiation of global rift systems, the tectonic nature of which was determined by plume geodynamics. These processes caused the voluminous emplacement of mantle melts with the formation of dike swarms, mafic-ultramafic layered intrusions, and volcanic rocks. All these rocks are usually considered as derivatives of SHMS (siliceous high-magnesian series). Within the Eastern Baltic Shield, the SHMS volcanic rocks are localized in the domains with different crustal history: in the Vodlozero block of the Karelian craton with the oldest (Middle Archean) crust, in the Central Block of the same craton with the Neoarchean crust, and in the Kola Craton with a heterogeneous crust. At the same time, these rocks are characterized by sufficiently close geochemical characteristics: high REE fractionation ((La/Yb)N = 4.9-11.7, (La/Sm)N=2.3-3.6, (Gd/Yb)N =1.66-2.74)), LILE enrichment, negative Nb anomaly, low to moderate Ti content, and sufficiently narrow variations in Nd isotope composition from -2.0 to -0.4 epsilon units. The tectonomagmatic interpretation of these rocks was ambiguous, because such characteristics may be produced by both crustal contamination of depleted mantle melts, and by generation from a mantle source metasomatized during previous subduction event. Similar REE patterns and overlapping Nd isotope compositions indicate that the studied basaltic rocks were formed from similar sources. If crustal contamination en route to the surface would play a significant role in the formation of the studied basalts, then almost equal amounts of contaminant of similar composition are required to produce the mafic rocks with similar geochemical signatures and close Nd isotopic compositions, which is hardly possible for the rocks spaced far apart in a heterogeneous crust. This conclusion is consistent with analysis of some relations between incompatible elements and their ratios. In particular, the rocks show no correlation between Th/Ta and La/Yb, (Nb/La)pm ratio and Th content, and eNd and (Nb/La)N ratio. At the same time, some correlation observed in the eNd-Mg# and (La/Sm)N-(Nb/La)N diagrams in combination with the presence of inherited zircons in the rocks does not allow us to discard completely the crustal contamination. Examination of Sm/Yb-La/Sm relations and the comparison with model melting curves for garnet and spinel lherzolites showed that the parental melts of the rocks were derived by 10-30% mantle melting at garnet-spinel facies transition. Two stage model can be proposed to explain such remarkable isotope-geochemical homogeneity of the mafic volcanic rocks over a large area: (1) ubiquitous emplacement of large volumes of sanukitoid melts in the lower crust of the shield at 2.7 Ga; (2) underplating of plume-derived DM melts at the crust-mantle boundary, melting of the lower crust of sanukitoid composition, and subsequent mixing of these melts with formation of SHMS melts at 2.4 Ga. A simple mixing model showed that in this case the Nd isotope composition of obtained melts remained practically unchanged at variable amounts of contaminant (up to 30%). This work was supported by the RFBR no. 14-05-00458.

  10. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.


    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  11. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift (United States)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.


    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI Sc(2-3 ppm), positive Sr anomaly and predominantly negative zircon εHf(t) values (-10.8 to -9.3 with an average of -10.2) and initial 176Hf/177Hf ratios (0.281947-0.282022) confirm a Paleoproterozoic crustal source. Based on the field and geochemical evidences, we propose that a previously metasomatized mafic lower-crustal source enriched in alkalis has undergone CO2-present partial melting as a result of asthenospheric upwelling beneath an aborted rifting along the DRZ generating the magma that crystallized the Sundamalai rocks. Age of this pluton is comparable with that of the other Cryogenian felsic alkaline plutons from Salem Block suggesting extensive rift-related magmatism at this time in the SGT.

  12. Nearly Efficiency-Droop-Free AlGaN-Based Ultraviolet Light-Emitting Diodes with a Specifically Designed Superlattice p-Type Electron Blocking Layer for High Mg Doping Efficiency (United States)

    Zhang, Zi-Hui; Huang Chen, Sung-Wen; Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Bi, Wengang; Kuo, Hao-Chung


    This work reports a nearly efficiency-droop-free AlGaN-based deep ultraviolet light-emitting diode (DUV LED) emitting in the peak wavelength of 270 nm. The DUV LED utilizes a specifically designed superlattice p-type electron blocking layer (p-EBL). The superlattice p-EBL enables a high hole concentration in the p-EBL which correspondingly increases the hole injection efficiency into the multiple quantum wells (MQWs). The enhanced hole concentration within the MQW region can more efficiently recombine with electrons in the way of favoring the radiative recombination, leading to a reduced electron leakage current level. As a result, the external quantum efficiency for the proposed DUV LED structure is increased by 100% and the nearly efficiency-droop-free DUV LED structure is obtained experimentally.

  13. The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction (United States)

    Martin, E.; Bindeman, I.; Grove, T. L.


    We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9-6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.

  14. Tectono-metamorphic evolution of high-P/T and low-P/T metamorphic rocks in the Tia Complex, southern New England Fold Belt, eastern Australia: Insights from K-Ar chronology (United States)

    Fukui, Shiro; Tsujimori, Tatsuki; Watanabe, Teruo; Itaya, Tetsumaru


    The Tia Complex in the southern New England Fold Belt is a poly-metamorphosed Late Paleozoic accretionary complex. It consists mainly of high-P/low-T type pumpellyite-actinolite facies (rare blueschist facies) schists, phyllite and serpentinite (T = 300 °C and P = 5 kbar), and low-P/high-T type amphibolite facies schist and gneiss (T = 600 °C and P Tia granodiorite). White mica and biotite K-Ar ages distinguish Carboniferous subduction zone metamorphism and Permian granitic intrusions, respectively. The systematic K-Ar age mapping along a N-S traverse of the Tia Complex exhibits a gradual change. The white mica ages become younger from the lowest-grade zone (339 Ma) to the highest-grade zone (259 Ma). In contrast, Si content of muscovite changes drastically only in the highest-grade zone. The regional changes of white mica K-Ar ages and chemical compositions of micas indicate argon depletion from precursor high-P/low-T type phengitic white mica during the thermal overprinting and recrystallization by granitoids intrusions. Our new K-Ar ages and available geological data postulate a model of the eastward rollback of a subduction zone in Early Permian. The eastward shift of a subduction zone system and subsequent magmatic activities of high-Mg andesite and adakite might explain formation of S-type granitoids (Hillgrove suite) and coeval low-P/high-T type metamorphism in the Tia Complex.

  15. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges (United States)

    Yogodzinski, G. M.; Lees, J. M.; Churikova, T. G.; Dorendorf, F.; Wöerner, G.; Volynets, O. N.


    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed `adakites', are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  16. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang


    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  17. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang


    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  18. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao


    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  19. Genetic Evidence for Modifying Oceanic Boundaries Relative to Fiji. (United States)

    Shipley, Gerhard P; Taylor, Diana A; N'Yeurt, Antoine D R; Tyagi, Anand; Tiwari, Geetanjali; Redd, Alan J


    We present the most comprehensive genetic characterization to date of five Fijian island populations: Viti Levu, Vanua Levu, Kadavu, the Lau Islands, and Rotuma, including nonrecombinant Y (NRY) chromosome and mitochondrial DNA (mtDNA) haplotypes and haplogroups. As a whole, Fijians are genetically intermediate between Melanesians and Polynesians, but the individual Fijian island populations exhibit significant genetic structure reflecting different settlement experiences in which the Rotumans and the Lau Islanders were more influenced by Polynesians, and the other Fijian island populations were more influenced by Melanesians. In particular, Rotuman and Lau Islander NRY chromosomal and mtDNA haplogroup frequencies and Rotuman mtDNA hypervariable segment 1 region haplotypes more closely resemble those of Polynesians, while genetic markers of the other populations more closely resemble those of the Near Oceanic Melanesians. Our findings provide genetic evidence supportive of modifying regional boundaries relative to Fiji, as has been suggested by others based on a variety of nongenetic evidence. Specifically, for the traditional Melanesia/Polynesia/Micronesia scheme, our findings support moving the Melanesia-Polynesia boundary to include Rotuma and the Lau Islands in Polynesia. For the newer Near/Remote Oceania scheme, our findings support keeping Rotuma and the Lau Islands in Remote Oceania and locating the other Fijian island populations in an intermediate or "Central Oceania" region to better reflect the great diversity of Oceania.

  20. Isotopic character of Cambro-Ordovician plutonism, southern Victoria Land

    International Nuclear Information System (INIS)

    Cox, S.C.; Parkinson, D.L.; Allibone, A.H.; Cooper, A.F.


    Previous mapping of granitoid rocks in the Dry Valleys area of southern Victoria Land, Antarctica, identified the calc-alkaline (DV1a), adakitic (DV1b), and monzonitic (DV2) suites. A fourth older suite comprising alkaline gabbro, syenite, and A-type granite occurs in the Mt Dromedary area c. 80 km to the south. U-Pb zircon dating of Bonney Pluton, the largest calc-alkaline DV1a intrusion, indicates emplacement of this regional-scale body at 505 +/- 2 Ma. Pb-loss and inherited zircon were common to Bonney Pluton analyses of this study. U-Pb dating of monazite from Valhalla Pluton, a principal DV1b suite adakitic intrusion, indicates emplacement at 488 +/- 2 Ma. The Bonney Pluton age constrains the peak of calc-alkaline plutonism at 505 Ma and the Valhalla Pluton age records the major pulse of adakitic plutonism that is inferred to mark the final stages of subduction c. 490 Ma along this section of the East Antarctic margin. Nd and Sr isotope data for the calc-alkaline DV1a suite and adakitic DV1b suite define distinct ranges for each suite, supporting their subdivision on the basis of field relationships, petrography, and whole-rock geochemistry. Calc-alkaline DV1a suite granite magmas have eNd(T) = -4.2 to -6.1 and Sri = 0.7071-0.7079, whereas the adakitic DV1b suite rocks have a wider range of eNd(T) = -1.9 to -7.2 and Sri = 0.7065-0.7097. The isotopic data suggest a significant mantle component and subordinate crustal component in the source region of both suites. Time-dependent variations in the isotopic ratios of DV1a and DV1b suites imply a progressive increase in the proportion of more radiogenic material in the source region of the granitoid rocks, either mantle- or crust-derived material. Larger adakitic DV1b plutons are more 'evolved' than equivalent, smaller plutons of the same DV1b suite. Vanda Dikes and monzonitic DV2 suite intrusions are characterised by particularly low Sri = 0.7044-0.7067 and near-constant eNd(T) = -4.8 to -5.3, which indicate a

  1. Rb-Sr and Sm-Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Mazaheri, S. A.


    The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineralization. The ore bearing porphyries are I-type, meta luminous, high-Kcalc-alkaline to shoshonite intrusive rocks which were formed in island arc setting. These rocks are characterized by average of SiO 2 > 59 wt %, Al 2 O 3 > 15 wt %, MgO 2 O> 3 wt %, Sr> 870 ppm, Y 55, moderate Light rare earth elements, relatively low heavy rare earth elements and enrichment LILE (Sr, Cs, Rb, K and Ba) relative to HFSE (Nb, Ta, Ti, Hf and Zr). They are chemically similar to some adakites, but their chemical signatures differ in some ways from normal adakites, including higher K 2 O contents and K 2 O/Na 2 O ratios and lower Mg, (La/Yb) N , (Ce/Yb) N and εNd in Maherabad rocks. Maherabad intrusive rocks are the first K-rich adakites that can be related with subduction zone. Partial melting of mantle hybridized by hydrous, silica-rich slab-derived melts or/and input of enriched mantle-derived ultra-potassic magmas during or prior to the formation and migration of adakitic melts could be explain their high K 2 O contents and K 2 O/Na 2r atios. Low Mg values and relatively low MgO, Cr and Ni contents imply limited interaction between adakite-like magma and mantle wedge peridotite. The initial 87 Sr/ 86 Sr and ( 143 Nd/ 144 Nd)i was recalculated to an age of 39 Ma (unpublished data). Initial 87 Sr/ 86 Sr ratios for hornblende monzonite porphyry are 0.7047-0.7048. The ( 143 Nd/ 144 Nd)i isotope composition are 0.512694-0.512713. Initial εNd isotope values 1.45-1.81. These values could be considered as representative of oceanic slab-derived magmas. Source modeling indicates that high-degree of

  2. Temporal geochemical trends in northern Luzon arc lavas (Philippines): implications on metasomatic processes in the island arc mantle

    International Nuclear Information System (INIS)

    Maury, R.C.; Bellon, H.; Jacques, D.; Defant, J.; Joron, J.L.; Mcdermott, F.; Vidal, Ph.


    Neogene and Quaternary lavas from Batan, Babuyan de Claro, Camiguin and Calayan islands (northern Luzon arc) display temporal increases in incompatible elements including Cs, Rb, Ba, K, La, Ce, Th, U, Ta, Hf and Zr from volcanoes older than 3 Ma to younger ones. These enrichments occur either within a single island (Batan) or within an island group (from Calayan to Camiguin and Babuyan). We show that these enrichments result from incompatible element input into the mantle wedge rather than from partial melting or fractionation effects. The fact that highly incompatible elements display temporal enrichment patterns in Batan lavas whatever their chemical properties indicates that hydrous fluids are not the only metasomatic agents operating in the mantle wedge and that slab-derived melts (adakitic magmas) may also be involved. The coupled temporal variation patterns of large ion lithophile elements and Sr-Nd isotopes suggest that the metasomatic budgets beneath the southern group of islands are mainly controlled by hydrous fluids inputs. In contrast, young Batan lavas likely derive from a mantle source mostly metasomatized by adakitic magmas. (authors)

  3. The genesis of the slab window-related Arzular low-sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey

    Directory of Open Access Journals (Sweden)

    Enver Akaryalı


    Full Text Available The Arzular mineralization is one of the best examples of epithermal gold deposits in the eastern Pontides orogenic belt. The mineralization is hosted by the subduction-related basaltic andesites and is mainly controlled by E–W and NE–SW trending fracture zones. The main ore minerals are galena, sphalerite, pyrite, chalcopyrite, tetrahedrite and gold. Homogenization temperatures of fluid inclusions are between 130 and 295 °C for quartz and between 90 and 133 °C for sphalerite. Sulphur isotope values obtained from pyrite, galena and sphalerite vary between −1.2‰ and 3‰, indicating that sulphur belongs to magmatic origin and was derived from the Lutetian non-adakitic granitic intrusions in the region. Oxygen isotope values are between 15.0‰ and 16.7‰, and hydrogen isotope values are between −87‰ and −91‰. The sulphur isotope thermometer yielded temperatures in the range of 244–291 °C for the ore formation. Our results support the hypothesis that the Arzular mineralization is a low-sulfidation epithermal gold deposit associated with non-adakitic subduction-related granitic magmas that were generated by slab window-related processes in a south-dipping subduction zone during the Lutetian.

  4. Petrogenesis of Early Cretaceous dioritic dikes in the Shanyang-Zhashui area, South Qinling, central China: Evidence for partial melting of thickened lower continental crust (United States)

    Chen, Lei; Yan, Zhen; Wang, Zongqi; Wang, Kunming


    The dioritic dikes distributed in the Shanyang-Zhashui area of the South Qinling region play an important role in understanding the deep magmatic processes and tectonic evolution during the orogenic process. The zircon Usbnd Pb ages of the dioritic dikes indicate that they were emplaced at ∼144 Ma and therefore postdate the dikes that formed in the intracontinental orogenic background after the continental collision between the North China Block (NCB) and the South China Block (SCB). The dioritic dikes have SiO2 contents of 56.86-64.93 wt%; K2O contents of 1.65-3.21 wt%; low MgO (1.50-2.66 wt%), Y (14.4-25.5 ppm) and heavy rare earth element (HREE) contents; low Mg# values (39.9-49); high Sr contents (528-4833 ppm); and high Sr/Y ratios (32.8-189). They exhibit highly fractionated REE and flat HREE patterns, strong enrichment in large ion lithophile elements (LILEs; e.g., Rb, Ba, and U) and depletion in high field strength elements (HFSEs) (e.g., Nb), as well as positive Sr and negative Ti anomalies. Furthermore, these dioritic dikes exhibit (87Sr/86Sr)i ratios ranging from 0.7048 to 0.7083, εNd(t) values ranging from -3.3 to -1.4, and εHf(t) values ranging from -4.1 to 1.6. The geochemical patterns of the dioritic dikes indicate that they possess adakitic characteristics. Moreover, the low MgO contents, Mg# values, Ni contents, Th/Ce ratios, and Srsbnd Ndsbnd Hf isotopic features all indicate that these dioritic dikes were generated by the partial melting of thickened mafic lower crust. The high La/Yb and Sr/Y ratios, low Y and Yb contents, absence of significant Eu anomalies, flat HREE patterns, and low Nb/Ta ratios of these rocks suggest that the adakitic melts were derived from the melting of garnet-bearing amphibolite. The geochronologic, elemental and isotopic evidence suggests that the dioritic dikes may have formed in a locally extensional environment within an overall N-S compressional setting or during the transition from compressional to extensional

  5. Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region (United States)

    Seghedi, Ioan; Maţenco, Liviu; Downes, Hilary; Mason, Paul R. D.; Szakács, Alexandru; Pécskay, Zoltán


    The south-eastern part of the Carpathian-Pannonian region records the cessation of convergence between the European platform/Moesia and the Tisza-Dacia microplate. Plio-Quaternary magmatic activity in this area, in close proximity to the 'Vrancea zone', shows a shift from normal calc-alkaline to much more diverse compositions (adakite-like calc-alkaline, K-alkalic, mafic Na-alkalic and ultrapotassic), suggesting a significant change in geodynamic processes at approximately 3 Ma. We review the tectonic setting, timing, petrology and geochemistry of the post-collisional volcanism to constrain the role of orogenic building processes such as subduction or collision on melt production and migration. The calc-alkaline volcanism (5.3-3.9 Ma) marks the end of normal subduction-related magmatism along the post-collisional Călimani-Gurghiu-Harghita volcanic chain in front of the European convergent plate margin. At ca. 3 Ma in South Harghita magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma) interrupted at 1.6-1.2 Ma by generation of Na and K-alkalic magmas, signifying changes in the source and melting mechanism. We attribute the changes in magma composition in front of the Moesian platform to two main geodynamic events: (1) slab-pull and steepening with opening of a tear window (adakite-like calc-alkaline magmas) and (2) renewed contraction associated with deep mantle processes such as slab steepening during post-collisional times (Na and K-alkalic magmas). Contemporaneous post-collisional volcanism at the eastern edge of the Pannonian Basin at 2.6-1.3 Ma was dominated by Na-alkalic and ultrapotassic magmas, suggesting a close relationship with thermal asthenospheric doming and strain partitioning related to the Adriatic indentation. Similar timing, magma chamber processes and volume for K-alkalic (shoshonitic) magmas in the South Apuseni Mountains (1.6 Ma) and South Harghita area at a distance of ca. 200 km imply a

  6. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere (United States)

    Wang, Peng; Dong, Guo-Chen; Zhao, Guo-Chun; Han, Yi-Gui; Li, Yong-Ping


    The Pulang complex is located in the southern segment of the Yidun Arc in the Sanjiang Tethys belt, southwestern China. It is composed of quartz diorite, quartz monzonite and granodiorite porphyries, and hosts the super-large Pulang deposit. This study presents new U-Pb geochronological, major-trace elemental and Sr-Nd-Hf isotopic data to constrain the petrogenesis of the Pulang complex and to evaluate its significances for porphyric mineralization and tectonic evolution of the Paleo-Tethys Ocean. The zircon U-Pb dating yields ages ranging from 208 Ma to 214 Ma. Geochemically, the Pulang complex has high Sr and MgO contents, and high Sr/Y and La/Yb ratios, but low Yb and Y contents, displaying adakitic affinities. However, it has moderate Sr/Y and La/Yb ratios, and high Rb contents (32 to 202 ppm). The Pulang samples plot into the transitional field between adakites and normal arc rocks, differing from typical adakites. It is attributed to the assimilation of 10-15% crustal components. The zircon εHf(t) (-4.6 to -2.5), whole-rock (87Sr/86Sr)i (0.7052 to 0.7102), εNd(t) (-0.62 to 2.12) values and adakitic affinities suggest that the Pulang complex was derived from a basaltic slab-melt source and reacted with peridotite during ascending through an enriched asthenospheric mantle wedge. The basaltic slab-melts likely resulted from the westward subduction of the Ganzi-Litang oceanic plate (a branch of the Paleo-Tethys). As far as the metallogenesis concerned, three factors in mineralization are proposed in this paper. The country rock, quartz diorite porphyry, has higher Cu contents than the mantle (average 30 ppm), suggesting that ore-forming magma was derived from a Cu-enriched source, which is a crucial contribution to the late mineralization to form the super-large Pulang deposit. In addition, the barren quartz diorite, granodiorite, and ore-bearing quartz monzonite porphyries are all characterized by high oxygen fugacity, which is another important factor for the

  7. Geochemistry of volcanic series of Aragats province

    International Nuclear Information System (INIS)

    Meliksetyan, Kh.B.


    In this contribution we discuss geochemical and isotope characteristics of volcanism of the Aragats volcanic province and possible petrogenetical models of magma generation in collision zone of Armenian highland. We talk about combination of some specific features of collision related volcanism such as dry and high temperature conditions of magma generation, that demonstrate some similarities to intraplate-like petrogenesis and presence of mantle source enriched by earlier subductions, indicative to island-arc type magma generation models. Based on comprehensive analysis of isotope and geochemical data and some published models of magma generation beneath Aragats we lead to a petrogenetic model of origin of Aragats system to be a result of magma mixture between mantle originated mafic magma with felsic, adakite-type magmas

  8. Petrogenesis of Jurassic granitoids at the northeastern margin of the North China Craton: New geochemical and geochronological constraints on subduction of the Paleo-Pacific Plate (United States)

    Liu, Jin; Zhang, Jian; Liu, Zhenghong; Yin, Changqing; Zhao, Chen; Peng, Youbo


    At the junction between the North China Craton (NCC) and the Central Asian Orogenic Belt (CAOB), northern Liaoning province, NE China, there are widespread Jurassic igneous rocks. The tectonic setting and petrogenesis of these rocks are unresolved. Zircon U-Pb dating, whole-rock geochemistry, and Hf isotopic compositions of Jurassic granitoids were investigated to constrain their ages and petrogenesis in order to understand the tectonic evolution of the Paleo-Pacific Ocean along the northeastern margin of the NCC. Geochronological data indicate that magmatism occurred between the early and late Jurassic (180-156 Ma). Despite the wide range in ages of the intrusions, Jurassic granitoids were likely derived from a similar or common source, as inferred from their geochemical and Hf isotopic characteristics. Compared to the island arc andesite-dacite-rhyolite series, the Jurassic granitoids are characterized by higher SiO2, Al2O3, and Sr contents, and lower MgO, FeOT, Y, and Yb contents, indicating that the primary magmas show typical characteristics of adakitic magmas derived from partial melting of thickened lower crust. These findings, combined with their εHf(t) values (+1.4 to +5.4) and two-stage model ages (1515-1165 Ma), indicate the primary magmas originated from partial melting of juvenile crustal material accreted during the Mesoproterozoic. They are enriched in large-ion lithophile elements (e.g., Rb, K, Th, Ba, and U) and light rare-earth elements (REE), and depleted in high-field-strength elements (e.g., Nb, Ta, Ti, and P) and heavy REE. Based on these findings and previous studies, we suggest that the Jurassic adakitic granitoids (180-156 Ma) were formed in an active continental margin and compressive tectonic setting, related to subduction of the Paleo-Pacific Plate.

  9. Microstructural finite strain analysis and 40Ar/39Ar evidence for the origin of the Mizil gneiss dome, eastern Arabian Shield, Saudi Arabia (United States)

    Al-Saleh, Ahmad M.; Kassem, Osama M. K.


    The Mizil antiform is a gneiss-cored culmination situated near the northern end of the Ar Rayn island arc terrane, which is the easternmost exposed tectonic unit of the Arabian Shield. This domal structure has a mantle of metamorphosed volcanosedimentary rocks belonging to the Al-Amar Group, and an igneous interior made up of foliated granodiorite-tonalite with adakitic affinity. The gneissic core has a SHRIMP U-Pb zircon age of 689 ± 10 Ma making it the oldest rock unit in the Ar Rayn terrane. An adakite diapir, formed by the melting of the subducted crust of a young marginal basin, and rising through the volcanosedimentary succession of the Ar Rayn island arc is thought to have caused the observed doming. Relatively uniform strain throughout the dome combined with strong vertical shortening and the roughly radial pattern of stretching lineation is consistent with diapirism; the absence of strain localization rules out detachment faulting as a causative mechanism. Amphibolites from the metamorphic envelope have an 40Ar/39Ar age of 615 ± 2 Ma; the age gap between core and cover is thought to reflect the resetting of metamorphic ages during the final suturing event, a phenomenon that is often observed throughout the eastern shield. Aeromagnetic anomalies beneath the Phanerozoic sedimentary cover indicate the presence of a collage of accreted terranes east of the Ar Rayn terrane that were probably amalgamated onto the Arabian margin during the latest stages of the closure of the Mozambique ocean; culminant orogeny is believed to have taken place between 620 and 600 Ma as these terrane collided with a major continental mass to the east referred to here as the eastern Arabian block (EAB). The Mizil gneiss dome is therefore considered to have formed in a convergent contractional setting rather than being the outcome of extensional post-orogenic collapse.

  10. Mantle dynamics and Cretaceous magmatism in east-central China: Insight from teleseismic tomograms (United States)

    Jiang, Guoming; Zhang, Guibin; Zhao, Dapeng; Lü, Qingtian; Li, Hongyi; Li, Xinfu


    Both the rich mineralization in the Lower Yangtze Block (LYB) and the post-collisional mafic rocks in the Dabie Orogen (DBO) are closely related to the Cretaceous magmatism in east-central China. Various geodynamic models have been proposed for explaining the mechanism of the Cretaceous magmatism, but these models are controversial and even contradictory with each other, especially on the mechanism of adakites. A unified geodynamic model is required for explaining the magmatism in east-central China, in particular, the spatial and temporal correlations of magmatic activity in the DBO and that in the LYB. For this purpose, we apply teleseismic tomography to study P-wave velocity structure down to 800 km depth beneath east-central China. A modified multiple-channel cross-correlation method is used to collect 28,805 high-quality P-wave arrival-time data from seismograms of distant earthquakes recorded by permanent seismic stations and our temporary stations in the study region. To remove the influence of crustal heterogeneity on the mantle tomography, we used the CRUST1.0 model to correct the teleseismic relative residuals. Our tomography revealed distinct high-velocity (high-V) anomalies beneath the DBO and two flanks of the LYB, and low-velocity (low-V) anomalies above the high-V zones. Combining our tomographic images with previous geological, geochemical and geophysical results, we infer that these high-V and low-V anomalies reflect the detached lithosphere and upwelling asthenospheric materials, respectively, which are associated with the Late Mesozoic dynamic process and the Cretaceous magmatism. We propose a double-slab subduction model that a ridge subduction yielded the adakitic rocks in the LYB during 150-135 Ma and the subsequent Pacific Plate subduction played a crucial role in not only the formation of igneous rocks in the LYB but also remelting of the subducted South China Block beneath the DBO during 135-101 Ma.

  11. Crystallization conditions and petrogenesis of the lava dome from the ˜900 years BP eruption of Cerro Machín Volcano, Colombia (United States)

    Laeger, Kathrin; Halama, Ralf; Hansteen, Thor; Savov, Ivan P.; Murcia, Hugo F.; Cortés, Gloria P.; Garbe-Schönberg, Dieter


    geochemical characteristics of adakites. Both Sr and Nd isotope compositions (87Sr/86Sr ˜0.70497, 143Nd/144Nd ˜0.51267) are among the most radiogenic observed for the Northern Volcanic Zone of the Andes. They are distinct from oceanic crust that has been subducted in the region, pointing to a continental crustal control on the isotope composition and hence the adakitic signature, possibly in a crustal "hot zone".

  12. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition (United States)

    Guo, Liang; Zhang, Hong-Fei; Harris, Nigel; Pan, Fa-Bin; Xu, Wang-Chun


    This integrated study of whole rock geochemistry, zircon U-Pb dating and Hf isotope composition for seven felsic rocks from the Nyingchi Complex in eastern Himalayan syntaxis has revealed a complex magmatic history for the eastern Gangdese belt. This involves multiple melt sources and mechanisms that uniquely identify the tectonic evolution of this part of the Himalayan orogen. Our U-Pb zircon dating reveals five stages of magmatic or anatectic events: 165, 81, 61, 50 and 25 Ma. The Jurassic granitic gneiss (165 Ma) exhibits εHf(t) values of + 1.4 to + 3.5. The late Cretaceous granite (81 Ma) shows variable εHf(t) values from - 0.9 to + 6.2, indicating a binary mixing between juvenile and old crustal materials. The Paleocene granodioritic gneiss (61 Ma) has εHf(t) values of + 5.4 to + 8.0, suggesting that it originated from partial melting of a juvenile crustal material. The Eocene anatexis is recorded in the leucosome, which has Hf isotopic composition similar to that of the Jurassic granite, indicating that the leucosome could be derived from partial melting of the Jurassic granite. The late Oligocene biotite granite (25 Ma) shows adakitic geochemical characteristics, with Sr/Y = 49.3-56.6. The presence of a large number of inherited zircons and negative εHf(t) values suggest that it sourced from anatexis of crustal materials. In contrast to the Gangdese batholiths that are mainly derived from juvenile crustal source in central Tibet, the old crustal materials play an important role for the magma generation of the felsic rocks, suggesting the existence of a crustal basement in the eastern Gangdese belt. These correspond to specific magmatic evolution stages during the convergence between India and Asia. The middle Jurassic granitic gneiss resulted from the northward subduction of the Neo-Tethyan oceanic slab. The late Cretaceous magmatism is probably related to the ocean ridge subduction. The Paleocene-Eocene magmatism, metamorphism and anatexis are

  13. Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: Geochemistry and Nd-Hf and U-Pb isotope systematics

    International Nuclear Information System (INIS)

    Deckart, Katja; Godoy, Estanislao; Bertens, Alfredo; Jerez, Daniela; Saeed, Ayesha


    Four Middle-to-Late Miocene barren plutonic complexes that occur between the giant porphyry copper deposits of the central Chilean Andes were selected for U-Pb LA-ICPMS geochronology and Hf-isotope systematics on single zircon grains. Major and trace elements and Sr-Nd-Hf isotope whole rock geochemical studies were undertaken to compare with slightly younger or coeval barren and fertile intrusive rocks between 32 o and 34 o S. The studied granitoids yield resolvable crystallization ages of 11.3±0.1 Ma (Cerro Meson Alto massif), 10.3±0.2 Ma (La Gloria pluton), 14.9±0.2 Ma/14.9±0.1 Ma (Yerba Loca stock) and 11.2±0.1 Ma/14.7±0.1 Ma (San Francisco Batholith). Major and trace elements discard an adakitic signature as suggested for coeval porphyric intrusions at 32 o S, slightly younger mineralized porphyries at Rio Blanco-Los Bronces deposit and other Cenozoic adakites. Volcanic host rocks are less fractionated than the intrusive rock units. The same observation can be made for the unmineralized northern plutons compared to the southern ones. Initial Sr-Nd isotope data show insignificant variation (0.703761-0.704118 and 0.512758- 0.512882), plotting in the mantle array. Trace element enrichment can be explained by addition of subducted-slab fluids and/or terrigenous sediments to the mantle wedge prior to and/or slight crustal input during magma ascent. Zircon grains separated from these barren intrusives share a similar initial εHf-data variation for the younger age group (10-12 Ma; 7.04-9.54) and show a more scattered range for the older one (14-15 Ma; 8.50-15.34); both sets plot between the DM and CHUR evolution lines. There is evidence that magma evolution was slightly distinct through time from older to younger barren magmatism, compared to a few fertile porphyritic rocks from Rio Blanco-Los Bronces porphyry copper deposit. It is suggested that chronological inconsistencies within these complexes might be related to differential shortening across the NE

  14. Association of Sub-continental and Asthenosphere related Volcanism in NW Iran,Implication forMantle thermal perturbation induced by slab break off and collision event (United States)

    Jahangiri, A.


    Cenozoic magmatic rocks occur extensively in the north of the Zagros suture zone and constitute a significant component of the continental crust in this segment of the Alpine-Himalayan orogenic belt. They range in age from Eocene to quaternary. Miocene to Plio-Quaternary volcanism with post-collisional related significant is covered vast areas in NW Iran. These volcanic rocks can be divided into three different sub-groups on the basis of their mineralogy, geochemistry and magma sources including: 1. alkaline leucite-bearing mafic rocks, which are characterized with high ratios of K2O/Na2O, high content LILE and low HFS elements like Ti, Nb and Ta. They are display fractionated REE patterns and based on different discrimination diagrams show similarity with subduction related magmas. 2- Olivine basalt to trachy-basaltic samples which shows similarity to within plate basalts with high content of TiO2, Nb, Ta and fractionated REE pattern. However, compared with a global average of OIB, they are display slightly higher LIL elements and lower HFS elements concentrations, features that resemble to the arc magmas and suggest that the source of the magmas may have been contaminated by slab-derived fluids. These rocks have simple mineralogical composition with plagioclase, clinopyroxene and olivine. 3- Dominant dacitic volcanic rocks with adakitic geochemical characteristics such as highly fractionate REE pattern and high Sr/Y ratio. Generation of adakitic magmas can be related to increased temperatures in the subduction zone due to mantle upwelling and slab tearing. Subsequent asthenospheric upwelling could be caused direct melting of sub-continental mantle to produce the alkaline magmas, with high contents of K2O, MgO and volatile rich phase's potassic magmas that led to crystallization of leucite, phlogopite, apatite and olivine in studied samples. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompression

  15. Impacts of tropical cyclones on Fiji and Samoa (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola


    Weather and climate hazards have significant impacts on Pacific Island Countries. Costs of hazards such as tropical cyclones can be astronomical making enormous negative economic impacts on developing countries. We highlight examples of extreme weather events which have occurred in Fiji and Samoa in the last few decades and have caused major economic and social disruption in the countries. Destructive winds and torrential rain associated with tropical cyclones can bring the most damaging weather conditions to the region causing economic and social hardship, affecting agricultural productivity, infrastructure and economic development which can persist for many years after the initial impact. Analysing historical data, we describe the impacts of tropical cyclones Bebe and Kina on Fiji. Cyclone Bebe (October 1972) affected the whole Fiji especially the Yasawa Islands, Viti Levu and Kadavu where hurricane force winds have been recorded. Nineteen deaths were reported and damage costs caused by cyclone Bebe were estimated as exceeding F20 million (F 1972). Tropical cyclone Kina passed between Fiji's two main islands of Viti Levu and Vanua Levu, and directly over Levuka on the night of 2 January 1993 with hurricane force winds causing extensive damage. Twenty three deaths have been reported making Kina one of the deadliest hurricanes in Fiji's recent history. Severe flooding on Viti Levu, combined with high tide and heavy seas led to destruction of the Sigatoka and Ba bridges, as well as almost complete loss of crops in Sigatoka and Navua deltas. Overall, damage caused by cyclone Kina was estimated as F170 million. In Samoa, we describe devastation to the country caused by tropical cyclones Ofa (February 1990) and Val (December 1991) which were considered to be the worst cyclones to affect the Samoan islands since the 1889 Apia cyclone. In Samoa, seven people were killed due to cyclone Ofa, thousands of people were left homeless and entire villages were destroyed. Damage

  16. Convective removal of the Tibetan Plateau mantle lithosphere by 26 Ma (United States)

    Lu, Haijian; Tian, Xiaobo; Yun, Kun; Li, Haibing


    During the late Oligocene-early Miocene there were several major geological events in and around the Tibetan Plateau (TP). First, crustal shortening deformation ceased completely within the TP before 25 Ma and instead adakitic rocks and potassic-ultrapotassic volcanics were emplaced in the Lhasa terrane since 26-25 Ma. Several recent paleoelevation reconstructions suggest an Oligocene-early Miocene uplift of 1500-3000 m for the Qiangtang (QT) and Songpan-Ganzi (SG) terranes, although the exact timing is unclear. As a possible response to this uplift, significant desertification occurred in the vicinity of the TP at 26-22 Ma, and convergence between India and Eurasia slowed considerably at 26-20 Ma. Subsequently, E-W extension was initiated no later than 18 Ma in the Lhasa and QT terranes. In contrast, the tectonic deformation around the TP was dominated by radial expansion of shortening deformation since 25-22 Ma. The plateau-wide near-synchroneity of these events calls for an internally consistent model which can be best described as convective removal of the lower mantle lithosphere. Geophysical and petrochemical evidence further confirms that this extensive removal occurred beneath the QT and SG terranes. The present review concludes that, other than plate boundary stress, the internal stress within the TP lithosphere could have contributed to rapid wholesale uplift and a series of concomitant tectonic events, accompanied by major aridification, since 26 Ma.

  17. First insights on the molybdenum-copper Bled M'Dena complex (Eglab massif, Algeria) (United States)

    Lagraa, Karima; Salvi, Stefano; Béziat, Didier; Debat, Pierre; Kolli, Omar


    Molybdenum-Copper showings in the Eglab massif (eastern part of the Reguibat rise of Algeria), are found in quartz-monzodiorite and granodiorite of the Bled M'Dena complex, a Paleoproterozoic circular structure of ∼5 km in diameter, comprising volcanic and intrusive suites. The latter consist of quartz-diorite, quartz-monzodiorite and granodiorite with a metaluminous normative composition. They display an "adakitic character" with moderate light rare-earth element (LREE) enrichment, minor Eu anomalies, high Sr/Y ratio and low Yb concentration, suggestive of a hydrous, arc magma of volcanic-arc affinity. The mineralization occurs mostly in quartz + molybdenite + chalcopyrite stockwork veins marked by widespread propylitic alteration along the selvages. Molybdenite and chalcopyrite are commonly associated with calcite, which precipitated at relatively late stages of the hydrothermal alteration. Fluid inclusions related to the mineralization stage, range from aqueous to aqueous-carbonic to solid bearing. The latter inclusions have the highest homogenization temperature (up to ∼400 °C), are salt saturated, and commonly contain molybdenite and/or chalcopyrite crystals. The petrology and geochemistry of the host rocks, the style of the hydrothermal alteration, the ore mineral associations, and the characteristics of the fluid inclusions, are all coherent in indicating that the Bled M'Dena represents a Paleoproterozoic porphyry style Mo mineralization, which is far unreported in the African continent.

  18. Paleogene volcanism in Central Afghanistan: Possible far-field effect of the India-Eurasia collision (United States)

    Motuza, Gediminas; Šliaupa, Saulius


    A volcanic-sedimentary succession of Paleogene age is exposed in isolated patches at the southern margin of the Tajik block in the Ghor province of Central Afghanistan. The volcanic rocks range from basalts and andesites to dacites, including adakites. They are intercalated with sedimentary rocks deposited in shallow marine environments, dated biostratigraphically as Paleocene-Eocene. This age corresponds to the age of the Asyābēd andesites located in the western Ghor province estimated by the 40Ar/39Ar method as 54 Ma. The magmatism post-dates the Cimmerian collision between the Tajik block (including the Band-e-Bayan block) and the Farah Rod block located to the south. While the investigated volcanic rocks apparently bear geochemical signatures typical to an active continental margin environment, it is presumed that the magmatism was related to rifting processes most likely initiated by far-field tectonics caused by the terminal collision of the Indian plate with Eurasia (Najman et al., 2017). This event led to the dextral movement of the Farah Rod block, particularly along Hari Rod (Herat) fault system, resulting in the development of a transtensional regime in the proximal southern margin of the Tajik block and giving rise to a rift basin where marine sediments were interbedded with pillow lavas intruded by sheeted dyke series.

  19. Adakitica affinity rocks south-east of Manizales: petrogenetic features and geochemistry (Colombia)

    International Nuclear Information System (INIS)

    Toro Toro, Luz Mary; Alvaran Echeverri, Mauricio; Borrero Pena, Carlos Alberto


    To the southeast of Manizales city, in Gallinazo area, there are a series of aligned hills such as: Gallinazo, Amazonas, Sabinas, La Oliva and La Negra, corresponding to volcanic and sub-volcanic rocks of andesitic and dacitic composition respectively, geochemical data present characteristic of adakitic rocks. Both, volcanic and sub-volcanic rocks presents high SiO 2 concentration (63,87-70,15%), Al 2 O 3 (14,18-16,83%), low Y concentration (11,20-27 ppm) and Yb (0,94-1,93 ppm); strong enrichment in Light Rare Earth Elements(LREE) and highly incompatible elements (Rb, Ba), except for Sr which presents low contents and negative anomaly of Nb-Ta, characteristic that distinguish also the calcoalkaline magmas. Geochemical pattern of LREE and multielements show a strong fractionation ((La/ Yb)n>8) with typical low content of (Yb ≤ 1.8 ppm , Y ≤ 18 ppm). In this work authors propose SE Manizales adakita-like rocks were generated by subducted basaltic slab melting with some minimum peridotitic mantelic wedge contamination. Genesis and geochemical characteristics of these rocks open the possibility to find Au-Cu porphyry mineralizations and epithermal gold deposits in this area due to their highly oxidixing potential.

  20. Petrology, geochemistry, and tectonic setting of Tertiary volcanic and intrusive rocks in the north of Shahr-e-Firouzeh (northeast of Iran)

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Zarei, A.


    The study area is located in 15 km of the north of Shahr-e-Firouzeh in Khorasan Razavi province. The area is situated in the southeast of Quchan-Sabzevar arc magmatic. Lithology of the district includes dacitic lavas, which are intruded by Oligocene porphyritic hornblende granodioritic stock and granodioritic dike as subvolcanic and plutonic rocks. Igneous rocks were overlapped by younger sedimentary rocks. The texture of dacitic unit is porphyric to glomeroporphic with flow groundmass. Quartz, plagioclase, K-feldspar, and hornblende are the main minerals. The texture of hornblende granodiorite porphyry is porphyric to glomeroporphic and plagioclase, K-feldspar, hornblende, and quartz are the common minerals, whereas granodiorite unit is granular and hornblende is not present. Based on geochemical studies, the acidic volcanic and intrusive rocks show metaluminous and medium-K nature. These rocks belong to the I-type granitoid. Enrichment of LREE versus HREE and enrichment of LILE and depletion in HFSE indicate magma formed in subduction zone. The melt originated from partial melting of amphibolite with 10 to 25% garnet. Based on the average amount of major oxides, enrichment of LREE, mostly positive Eu anomaly, high Sr (up to 499 ppm), and low Y (<13 ppm) and Yb (<1.4 ppm) contents, the magma show silica-rich adakitic nature. The intrusive and volcanic rocks of the northern Shahr-e-Firouzeh were generated by partial melting of Sabzevar Neotethyan young and hot subducted oceanic crust and mantle wedge in the continental margin of the Turan plate.

  1. Petro-geochemical constraints on the source and evolution of magmas at El Misti volcano (Peru) (United States)

    Rivera, Marco; Martin, Hervé; Le Pennec, Jean-Luc; Thouret, Jean-Claude; Gourgaud, Alain; Gerbe, Marie-Christine


    El Misti volcano, a large and hazardous edifice of the Andean Central Volcanic Zone (CVZ) of southern Peru, consists of four main growth stages. Misti 1 (> 112 ka) is an old stratovolcano partly concealed by two younger stratocones (Misti 2, 112-40 ka; Misti 3, 38-11 ka), capped in turn by a recent summit cone (Misti 4, Peru. Geochemical evidence indicates that magmatic evolution is mostly controlled by Assimilation-Fractional Crystallisation (AFC) mechanisms. Modelling reveals a mass-assimilated/mass-fractionated ratio (ρ) ≤ 2.2, which suggests an assimilated crust fraction below 14 wt.% on average. Our isotopic data clearly identify the Proterozoic "Charcani gneiss" basement as the main contaminant. Both contamination and assimilation processes peaked at 30 wt.%, during the Misti 3 stage when rhyolites were generated. We ascribe the general depletion in HREE and Y and elevated La/Yb and Sr/Y ratios in El Misti samples to the enrichment of the mantle wedge source of the parental magmas by a felsic melt of adakitic composition and hydrous fluids. Our work highlights that El Misti's magmatic system has remained relatively homogeneous since at least 0.12 Ma, with a marked influence of the contaminating crust in the Late Pleistocene Misti 3 stage, which resulted in highly explosive eruptions. Andesitic-dacitic compositions are dominant in the Holocene and historical Misti 4 stage, and are expected for future volcanic events at El Misti.

  2. Australasian microtektites from the Central Indian Basin: Implications for ejecta distribution patterns

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    , stratigraphic position, chemical composition and geographic occurrence. Their chemistry reveals that among the analysed specimens, a majority belong to the 'normal' microtektite clan, one has a high Mg (HMg) composition shown by bottle green microtektites...

  3. Late Carboniferous to Early Permian magmatic pulses in the Uliastai continental margin linked to slab rollback: Implications for evolution of the Central Asian Orogenic Belt (United States)

    Chai, Hui; Wang, Qingfei; Tao, Jixiong; Santosh, M.; Ma, Tengfei; Zhao, Rui


    The Paleo Asian Ocean underwent a protracted closure history during Late Paleozoic. Here we investigate the magmatic evolution during this process based on a detailed study in the Baiyinwula region along the Uliastai continental margin. The major rock types in this area are Late Carboniferous-Early Permian volcanic sequences and coeval intrusions. We identified four stages of magmatic evolution based on the diverse assemblages and their precise isotopic ages. The first stage is represented by andesites with a zircon 206Pb/238U age of ca. 326 ± 12 Ma. These rocks are metaluminous to weakly peraluminous, high-K calc-alkaline, and possess high Na2O/K2O ratios in the range of 1.23 to 2.45. They also display enrichment of large ion lithophile elements (LILE) and depletion of high field strength elements (HFSE), with markedly positive zircon εHf (t) varying from 8.1 to 15.6.The geochemical features of these andesites are similar to those of typical arc volcanic rocks. The second stage includes granodiorites emplaced at 318.6 + 1.8 Ma. The rocks are high-K calc-alkaline with A/CNK values ranging from 0.95 to 1.06, and show enrichment in LILE and depletion in HFSE. They show geochemical affinities to adakites, with high Sr and low Y and Yb contents, indicating magma derivation from thickened lower crust. Zircon grains from these rocks display positive initial εHf (t) values ranging from 11.1 to 14.6 with corresponding two-stage Hf model ages (TDM2) of 394-622 Ma. The third stage consists of syenogranite together with a volcanic suite ranging in composition from rhyolite todacite, which formed during 303.4 ± 1.2 to 285.1 ± 2.2 Ma. They possess elevated silica and alkali contents, high FeOt/MgO and Ga/Al ratios, low Al2O3, MgO and CaO contents, and high Rb, Y, Nb, Ce, Zr, Y, and Ga contents, strong negative Ba, Sr and Eu anomalies, showing I- to A-type granitic affinities. Zircons in these rocks show elevated Hf isotopic compositions (εHf (t) = 9.9 to 14.6) with TDM2

  4. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang


    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  5. Cenozoic Evolution of the Central Part of the Mexican Subduction Zone From Geologic and Geophysical Data - In the Eve of the Result From the "Mase" Experiment (United States)

    Ferrari, L.


    The Meso America Subduction Experiments (MASE), carried out jointly by Caltech, UCLA and UNAM (Institute of Geophysics and Center for Geoscience) is about to provide a detailed image of the crust and upper mantle in the central part of the Mexican subduction zone (Acapulco, Gro. Huejutla, Hgo.). Preliminary results show that the Cocos plate between the coast and the volcanic front is horizontal and placed just beneath the upper plate Moho. Further north, beneath the Trans-Mexican Volcanic Belt (TMVB), seismicity is scarce or absent and the geometry of the subducted plate is poorly defined. This part of the TMVB also displays a large geochemical variability, including lavas with scarce to none evidence of fluids from the subducting plate (OIB in Sierra Chichinautzin) and lavas with slab melting signature (adakites of Nevado de Toluca and Apan area) that coexist with the more abundant products showing clear evidence of fluids from the subduting plate. These peculiarities led several workers to formulate models that depart from a classic subduction scenario for the genesis of the TMVB. These include the presence of a rootless mantle plume, the development of a continental rift, a more or less abrupt increase of the subduction angle and a detached slab. While waiting from the final results of the MASE project the data available from potential methods, thermal modeling and the geologic record of the TMVB provide some constraints to evaluate these models. Gravimetric and magnetotelluric data consistently indicate that beneath the TMVB the upper mantle has a relatively low density and high temperatures/conductivity. Thermal modeling also indicates a low viscosity and high temperature mantle beneath the arc. All the above seems to indicate that the slab must increase rapidly its dip beneath the volcanic front leaving space for a hot asthenospheric mantle. The fate of the slab further to the north is unclear from geophysical data alone. Global and regional tomographic

  6. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet (United States)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu


    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to

  7. U-series radioactive disequilibria 238U-230Th-226Ra: discussions on sources and processes responsible for volcanism of the Andean cordillera and on the deglaciation in Iceland

    International Nuclear Information System (INIS)

    Chmeleff, J.


    their formation which is necessarily fast (less than 8.000 years to preserve these disequilibria). We show that eruptive activity and excesses of 238 U (and to a lesser extent 226 Ra) compared to 230 Th are linked. This observation suggests that the most active volcanoes (Villarrica and Llairna for the SVZ) are those whose source is enriched in fluids, coming from the subducted plate and sediments which cover it, during partial melting of the mantle wedge and that radioactive disequilibria tell us about the geodynamic context on a regional scale. Finally a more precise study of particular volcanoes (Nevado de Longavi (SVZ) and Guagua Pichincha (NVZ)), suggests that-uranium series disequilibria record the evolution of a volcano in time. Thus the complex history of Nevado de Longavi and the particular signals of this volcano can be translated in term of variation of partial melting degree of the source, fractional crystallization or crustal contamination. In the case of Guagua Pichincha volcano, the adakitic source of the volcanic activity could be discussed thanks to the study of 238 U and 226 Ra excesses compared to 230 Th and a model of adakites formation by partial melting of an hydrated mantle wedge followed by fractional crystallization of garnet at high pressure will be proposed. (author)

  8. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen (United States)

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.


    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic

  9. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei


    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  10. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China (United States)

    Sha, Xin; Wang, Jinrong; Chen, Wanfeng; Liu, Zheng; Zhai, Xinwei; Ma, Jinlong; Wang, Shuhua


    The Paleo-Asian Ocean (Southern Mongolian Ocean) ophiolitic belts and massive granitoids are exposed in the Alxa block, in response to oceanic subduction processes. In this work, we report petrographic, geochemical, and zircon U-Pb age data of some granitoid intrusions from the northern Alxa. Zircon U-Pb dating for the quartz diorite, tonalite, monzogranite, and biotite granite yielded weighted mean 206Pb/238U ages of 302±9.2 Ma, 246.5±4.6 Ma, 235±4.4 Ma, and 229.5±5.6 Ma, respectively. The quartz diorites ( 302 Ma) exhibit geochemical similarities to adakites, likely derived from partial melting of the initially subducted Chaganchulu back-arc oceanic slab. The tonalites ( 246.5 Ma) display geochemical affinities of I-type granites. They were probably derived by fractional crystallization of the modified lithospheric mantle-derived basaltic magmas in a volcanic arc setting. The monzogranites ( 235 Ma) are characterized by low Al2O3, but high Y and Yb with notably negative Eu anomalies. In contrast, the biotite granites ( 229.5 Ma) show high Al2O3 but low Y and Yb with steep HREE patterns and the absence of negative Eu anomalies. Elemental data suggested that the biotite granites were likely derived from a thickened lower crust, but the monzogranites originated from a thin crust. Our data suggested that the initial subduction of the Chaganchulu oceanic slab towards the Alxa block occurred at 302 Ma. This subduction process continued to the Early Triassic ( 246 Ma) and the basin was finally closed before the Middle Triassic ( 235 Ma). Subsequently, the break-off of the subducted slab triggered asthenosphere upwelling (240-230 Ma).

  11. Monzonitoid magmatism of the copper-porphyritic Lazurnoe deposit (South Primor'e): U-Pb and K-Ar geochronology and peculiarities of ore-bearing magma genesis by the data of isotopic-geochemical studies (United States)

    Sakhno, V. G.; Kovalenko, S. V.; Alenicheva, A. A.


    Magmatic rocks from the copper-porphyritic Lazurnoe deposit (Central Primor'e) have been studied. It has been found that rocks from the Lazurnyi massif are referred to gabbro-monzodiorites, monzodiorites, and monzo-granodiorites formed during two magmatic phases of different ages. The earlier phase is represented by gabbro-monzodiorites and diorites of the North Stock, and the later one, by gabbro-monzodiorites and monzo-grano-diorites of the South Stock. On the basis of isotopic dating by the U-Pb (SHRIMP) method for zircon and by the K-Ar method for hornblendes and biotites, the age of magmatic rocks is determined at 110 ± 4 for the earlier phase and at 103.5 ± 1.5 for the later one. Examination of the isotopic composition for Nd, Sr, Pb, Hf, δ18O, and REE spectra has shown that melts of the first phase are contaminated with crustal rocks and they are typical for a high degree of secondary alterations. Potassiumfeldspar, biotite, propylitic alterations, and sulfidization are manifested in these rocks. The rocks of the later stage of magmatism are characteristic for a primitive composition of isotopes and the absence of secondary alterations. They carry the features of adakite specifics that allows us to consider them derivatives of mantle generation under high fluid pressure. The intrusion of fluid-saturated melts of the second phase into the magmatic source of the first phase caused both an alteration pattern of rocks and copper-porphyritic mineralization. Isotopes of sulfur and oxygen allow us to consider the ore component to be of magmatic origin.

  12. Timing of Secondary Hydrothermal Alteration of the Luobusa Chromitites Constrained by Ar/Ar Dating of Chrome Chlorites

    Directory of Open Access Journals (Sweden)

    Wei Guo


    Full Text Available Chrome chlorites are usually found as secondary phases formed by hydrothermal alteration of chromite deposits and associated mafic/ultramafic rocks. Here, we report the 40Ar/39Ar age of chrome chlorites separated from the Luobusa massive chromitites which have undergone secondary alteration by CO2-rich hydrothermal fluids. The dating results reveal that the intermediate heating steps (from 4 to 10 of sample L7 generate an age plateau of 29.88 ± 0.42 Ma (MSWD = 0.12, plateau 39Ar = 74.6%, and the plateau data points define a concordant inverse isochron age of 30.15 ± 1.05 Ma (MSWD = 0.08, initial 40Ar/36Ar = 295.8 ± 9.7. The Ar release pattern shows no evidence of later degassing or inherited radiogenic component indicated by an atmospheric intercept, thus representing the age of the hydrothermal activity. Based on the agreement of this hydrothermal age with the ~30 Ma adakitic plutons exposed in nearby regions (the Zedong area, tens of kilometers west Luobusa and the extensive late Oligocene plutonism distributed along the southeastern Gangdese magmatic belt, it is suggested that the hydrothermal fluids are likely related to the ~30 Ma magmatism. The hydrothermal fluid circulation could be launched either by remote plutons (such as the Sangri granodiorite, the nearest ~30 Ma pluton west Luobusa or by a similar coeval pluton in the local Luobusa area (inferred, not found or reported so far. Our results provide important clues for when the listwanites in Luobusa were formed.

  13. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei


    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  14. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang


    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  15. Forty years of TTG research (United States)

    Moyen, Jean-François; Martin, Hervé


    TTGs (tonalite-trondhjemite-granodiorite) are one of the archetypical lithologies of Archaean cratons. Since their original description in the 1970s, they have been the subject of many studies and discussions relating to Archaean geology. In this paper, we review the ideas, concepts and arguments brought forward in these 40 years, and try to address some open questions — both old and new. The late 1960s and the 1970s mark the appearance of "grey gneisses" (TTG) in the scientific literature. During this period, most work was focused on the identification and description of this suite, and the recognition that it is a typical Archaean lithology. TTGs were already recognised as generated by melting of mafic rocks. This was corroborated during the next decade, when detailed geochemical TTG studies allowed us to constrain their petrogenesis (melting of garnet-bearing metamafic rocks), and to conclude that they must have been generated by Archaean geodynamic processes distinct from their modern counterparts. However, the geodynamic debate raged for the following 30 years, as many distinct tectonic scenarios can be imagined, all resulting in the melting of mafic rocks in the garnet stability field. The 1990s were dominated by experimental petrology work. A wealth of independent studies demonstrated that melting of amphibolites as well as of mafic eclogites can give rise to TTG liquids; whether amphibolitic or eclogitic conditions are more likely is still an ongoing debate. From 1990s onwards, one of the key questions became the comparison with modern adakites. As originally defined these arc lavas are reasonably close equivalents to Archaean TTGs. Pending issues largely revolve around definitions, as the name TTG has now been applied to most Archaean plutonic rocks, whether sodic or potassic, irrespective of their HREE contents. This leads to a large range of petrogenetic and tectonic scenarios; a fair number of which may well have operated concurrently, but are

  16. Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane (United States)

    Wei, Youqing; Zhao, Zhidan; Niu, Yaoling; Zhu, Di-Cheng; Liu, Dong; Wang, Qing; Hou, Zengqian; Mo, Xuanxue; Wei, Jiuchuan


    Understanding the geological history of the Lhasa Terrane prior to the India-Asia collision ( 55 ± 10 Ma) is essential for improved models of syn-collisional and post-collisional processes in the southern Lhasa Terrane. The Miocene ( 18-10 Ma) adakitic magmatism with economically significant porphyry-type mineralization has been interpreted as resulting from partial melting of the Jurassic juvenile crust, but how this juvenile crust was accreted remains poorly known. For this reason, we carried out a detailed study on the volcanic rocks of the Yeba Formation (YF) with the results offering insights into the ways in which the juvenile crust may be accreted in the southern Lhasa Terrane in the Jurassic. The YF volcanic rocks are compositionally bimodal, comprising basalt/basaltic andesite and dacite/rhyolite dated at 183-174 Ma. All these rocks have an arc-like signature with enriched large ion lithophile elements (LILEs; e.g., Rb, Ba and U) and light rare earth elements (LREEs) and depleted high field strength elements (HFSEs; e.g., Nb, Ta, Ti). They also have depleted whole-rock Sr-Nd and zircon Hf isotopic compositions, pointing to significant mantle isotopic contributions. Modeling results of trace elements and isotopes are most consistent with the basalts being derived from a mantle source metasomatized by varying enrichment of subduction components. The silicic volcanic rocks show the characteristics of transitional I-S type granites, and are best interpreted as resulting from re-melting of a mixed source of juvenile amphibole-rich lower crust with reworked crustal materials resembling metagraywackes. Importantly, our results indicate northward Neo-Tethyan seafloor subduction beneath the Lhasa Terrane with the YF volcanism being caused by the initiation of back-arc rifting. The back-arc setting is a likely site for juvenile crustal accretion in the southern Lhasa Terrane.

  17. Late Jurassic-Early Cretaceous continental convergence and intracontinental orogenesis in East Asia: A synthesis of the Yanshan Revolution (United States)

    Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Cui, Jianjun; Chen, Xuanhua; Zhang, Shuanhong; Miao, Laicheng; Li, Jianhua; Shi, Wei; Li, Zhenhong; Huang, Shiqi; Li, Hailong


    The basic tectonic framework of continental East Asia was produced by a series of nearly contemporaneous orogenic events in the late Middle Jurassic to Early Cretaceous. Commonly, the Late Mesozoic orogenic processes were characterized by continent-continent collision, large-scale thrusting, strike-slip faulting and intense crustal shortening, crustal thickening, regional anatexis and metamorphism, followed by large-scale lithospheric extension, rifting and magmatism. To better understand the geological processes, this paper reviews and synthesizes existing multi-disciplinary geologic data related to sedimentation, tectonics, magmatism, metamorphism and geochemistry, and proposes a two-stage tectono-thermal evolutionary history of East Asia during the late Middle Jurassic to Early Cretaceous (ca. 170-120 Ma). In the first stage, three orogenic belts along the continental margins were formed coevally at ca. 170-135 Ma, i.e., the north Mongol-Okhotsk orogen, the east paleo-Pacific coastal orogen, and the west Bangong-Nujiang orogen. Tectonism related to the coastal orogen caused extensive intracontinental folding and thrusting that resulted in a depositional hiatus in the Late Jurassic, as well as crustal anatexis that generated syn-kinematic granites, adakites and migmatites. The lithosphere of the East Asian continent was thickened, reaching a maximum during the latest Jurassic or the earliest Cretaceous. In the second stage (ca. 135-120 Ma), delamination of the thickened lithosphere resulted in a remarkable (>120 km) lithospheric thinning and the development of mantle-derived magmatism, mineralization, metamorphic core complexes and rift basins. The Middle Jurassic-Early Cretaceous subduction of oceanic plates (paleo-Pacific, meso-Tethys, and Mongol-Okhotsk) and continent-continent collision (e.g. Lhasa and Qiangtang) along the East Asian continental margins produced broad coastal and intracontinental orogens. These significant tectonic activities, marked by

  18. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances (United States)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian


    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  19. The AMBRE project: The thick thin disk and thin thick disk of the Milky Way (United States)

    Hayden, M. R.; Recio-Blanco, A.; de Laverny, P.; Mikolaitis, S.; Worley, C. C.


    We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from Gaia DR1, providing reliable age estimates with relative uncertainties of ±1 or 2 Gyr and allowing precise orbital determinations. The sample is split based on chemistry into a low-[Mg/Fe] sequence, which are often identified as thin disk stellar populations, and high-[Mg/Fe] sequence, which are often associated with thick disk stellar populations. We find that the high-[Mg/Fe] chemical sequence has extended star formation for several Gyr and is coeval with the oldest stars of the low-[Mg/Fe] chemical sequence: both the low- and high-[Mg/Fe] sequences were forming stars at the same time. We find that the high-[Mg/Fe] stellar populations are only vertically extended for the oldest, most-metal poor and highest [Mg/Fe] stars. When comparing vertical velocity dispersion for the low- and high-[Mg/Fe] sequences, the high-[Mg/Fe] sequence has lower vertical velocity dispersion than the low-[Mg/Fe] sequence for stars of similar age. This means that identifying either group as thin or thick disk based on chemistry is misleading. The stars belonging to the high-[Mg/Fe] sequence have perigalacticons that originate in the inner disk, while the perigalacticons of stars on the low-[Mg/Fe] sequence are generally around the solar neighborhood. From the orbital properties of the stars, the high-[Mg/Fe] and low-[Mg/Fe] sequences are most likely a reflection of the chemical enrichment history of the inner and outer disk populations, respectively; radial mixing causes both populations to be observed in situ at the solar position. Based on these results, we emphasize that it is important to be clear in defining what populations are being referenced when using the terms thin and thick disk, and that ideally the term thick disk should be reserved for purely geometric definitions to avoid confusion and be consistent with definitions in external

  20. Geochemical characteristics of Mesoproterozoic metabasite dykes ...

    Indian Academy of Sciences (India)

    High Mg# observed in a number of samples indicates their derivation from .... show characteristic of orangeites, lamproites or ail- ... ite, and iron oxides. .... while preparing powder for the chemical analy- ses. ..... Cai K, Sun M, Yuan C, Zhao G, Xiao W, Long X and Wu .... Mallik A K, Gupta S N and Ray Barman T 1991 Dating.

  1. Evidence of paleo-cold seep activity from the Bay of Bengal, offshore India

    Digital Repository Service at National Institute of Oceanography (India)

    Mazumdar, A.; Dewangan, P.; Joao, H.M.; Peketi, A.; Khosla, V.R.; Kocherla, M.; Badesab, F.K.; Joshi, R.K.; Roxanne, P.; Ramamurty, P.B.; Karisiddaiah, S.M.; Patil, D.J.; Dayal, A.M.; Ramprasad, T.; Hawkesworth, C.J.; Avanzinelli, R.

    clam shells, chimneys, shell breccias with high Mg calcite cement, and pyrite within this zone suggest seepage of methane and sulfide-bearing fluid to the seafloor in the past. Highly depleted carbon isotopic values (delta sup(13)C ranges from -41...

  2. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases (United States)

    Stanienda-Pilecki, Katarzyna


    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  3. Metasomatized mantle as the source of Mid-Miocene-Quaternary volcanism in NW-Iranian Azerbaijan: Geochronological and geochemical evidence (United States)

    Lechmann, Anna; Burg, Jean-Pierre; Ulmer, Peter; Guillong, Marcel; Faridi, Mohammad


    Middle Miocene to Quaternary volcanic rocks cover large areas of the Azerbaijan Province in NW Iran. This study reports two separate age clusters out of 23 new LA-ICP-MS U-Pb zircon ages: (1) Middle Miocene (16.2-10.6 Ma) and (2) Latest Miocene-Late Pleistocene (5.5-0.4 Ma). Major and trace element bulk rock geochemistry and initial Sr, Nd, Pb radiogenic isotope data on the dated rocks provide new constraints on the Mid-Miocene to Quaternary volcanism in this region. The analyses are distributed over a large compositional range from low-K to high-K calc-alkaline andesites and dacites/rhyolites to more alkaline trachybasalts and dacites with shoshonitic affinities. Chondrite-normalized REE patterns are steep with significant enrichment in LREE and low abundances of HREE indicating a garnet control. Plots of primitive mantle-normalized trace elements show negative Ti and Nb-Ta anomalies indicative of an arc signature. The wide compositional range and the ubiquitous presence of an arc signature reveal that the source mantle is heterogeneous and metasomatically altered. Sr, Nd and Pb radiogenic isotope data further point towards an enriched mantle source and/or crustal contamination. Crustal contamination is best recognized by inherited zircon cores, which yield Late Neoproterozoic to Early Cambrian ages typical for the Iranian basement. The occurrence of adakite-like compositions with elevated magnesium numbers, Cr and Ni concentrations argue against a fractionation-driven process but point to a subcrustal origin. Overall, the analyzed lavas show no spatial and temporal relation to a potential subduction zone, confirming the dated volcanics to be post-collisional and not related to singular processes such as slab retreat or delamination of a continuous lower crustal sliver. We propose three hypotheses to explain the reported disparity in distribution, age and composition and favour small-scale sublithospheric convection or incorporation of crustal material into the

  4. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia (United States)

    Xu, W.


    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  5. Age and geochemistry of Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and tectonic implications (United States)

    Luan, Jin-Peng; Xu, Wen-Liang; Wang, Feng; Wang, Zhi-Wei; Guo, Peng


    This study presents new zircon U-Pb ages and geochemical data for Neoproterozoic granitoids in the Songnen-Zhangguangcai Range Massif (SZRM) of NE China. This dataset provides insights into the Neoproterozoic tectonic setting of the SZRM and the links between this magmatism and the evolution of the Rodinia supercontinent. The zircon U-Pb dating indicates that the Neoproterozoic magmatism within the SZRM can be subdivided into two stages: (1) a ∼917-911 Ma suite of syenogranites and monzogranites, and (2) an ∼841 Ma suite of granodiorites. The 917-911 Ma granitoids contain high concentrations of SiO2 (67.89-71.18 wt.%), K2O (4.24-6.91 wt.%), and Al2O3 (14.89-16.14 wt.%), and low concentrations of TFe2O3 (1.63-3.70 wt.%) and MgO (0.53-0.88 wt.%). They are enriched in the light rare earth elements (LREE) and the large ion lithophile elements (LILE), are depleted in the heavy REE (HREE) and the high field strength elements (HFSE; e.g., Nb, Ta, and Ti), and have slightly positive Eu anomalies, indicating that they are geochemically similar to high-K adakitic rocks. They have zircon εHf (t) values and TDM2 ages from -4.4 to +1.5 and 1915 Ma to 1592 Ma, respectively, suggesting that they were derived from a primary magma generated by the partial melting of ancient thickened lower crustal material. In comparison, the 841 Ma granodiorites contain relatively low concentrations of Al2O3 (14.50-14.58 wt.%) and K2O (3.27-3.29 wt.%), relatively high concentrations of TFe2O3 (3.78-3.81 wt.%) and the HREE, have negative Eu anomalies, and have zircon εHf (t) values and TDM2 ages from -4.7 to +1.0 and 1875 to 1559 Ma, respectively. These granodiorites formed from a primary magma generated by the partial melting of ancient crustal material. The ∼917-911 Ma magmatism within the SZRM is inferred to have formed in an orogenic setting, whereas the ∼841 Ma magmatism formed in an anorogenic setting related to either a post-orogenic tectonic event or the onset of Neoproterozoic

  6. Source constraints on the genesis of Danubian granites in the South Carpathians Alpine Belt (Romania) (United States)

    Duchesne, Jean-Clair; Laurent, Oscar; Gerdes, Axel; Bonin, Bernard; Liégeois, Jean-Paul; Tatu, Mihai; Berza, Tudor


    The pre-Alpine basement of the Lower Danubian nappes in the South Carpathians is made up of two Precambrian terranes (Drăgşan and Lainici-Păiuş) that were intruded by Pan-African/Cadomian and Variscan granitoid massifs. We focus on the major and trace element geochemistry (1) in the Drăgşan terrane, of the Variscan Retezat and Parâng intrusions; (2) in the Lainici-Păiuş terrane, of the Variscan Furcǎtura, Petreanu and Frumosu intrusions and of the Pan-African Vârful Pietrii, Şuşiţa and Olteţ granites and granitic leucosomes of migmatites; and (3) in the Upper Danubian nappes basement, of the Variscan Muntele Mic, Sfârdin, Cherbelezu and Ogradena intrusions. For each intrusion, in which a range of composition is observed, we decipher the differentiation mechanisms (fractional crystallization, hybridization, melt laden with restite minerals, etc.) in order to define the parental liquid compositions. The latter are calc-alkaline to alkali-calcic (except Olteţ that is calcic) and medium to high-K in composition. With [La/Yb]N > 10 and Sr/Y > 15, most melts display the so-called "continental adakite" affinities. The parental melt compositions are compared with experimental data to determine the melting conditions and the nature of the source rock. When the P-T conditions can be estimated, the temperatures range between 850 °C and 875 °C and the pressure between 5 and 15 kbar regardless of the ages of the granites and the terrane in which they have intruded. The source rock composition is dominated by a variety of mafic igneous compositions or metasediments rich in volcanic components. Clay-rich (pelitic) protoliths have not been identified. We confirm a Variscan age (c. 300 Ma) for the Frumosu intrusion granite and inherited Precambrian ages (c. 1.7-1.9 and 2.6-2.9 Ga) for the Motru dyke swarm. Thus, both Drăgşan and Lainici-Păiuş together with the Upper Danubian basement terranes were affected by Variscan post-collisional granitic plutonism. In

  7. Across and along arc geochemical variations in altered volcanic rocks: Evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications (United States)

    Rossel, Pablo; Oliveros, Verónica; Ducea, Mihai N.; Hernandez, Laura


    Postmagmatic processes mask the original whole-rock chemistry of most Mesozoic igneous rocks from the Andean arc and back-arc units preserved in Chile. Mineral assemblages corresponding to subgreenschist metamorphic facies and/or propylitic hydrothermal alteration are ubiquitous in volcanic and plutonic rocks, suggesting element mobility at macroscopic and microscopic scale. However, fresh primary phenocrysts of clinopyroxene and plagioclase do occur in some of the altered rocks. We use major and trace element chemistry of such mineral phases to infer the geochemical variations of four Jurassic arc and four back-arc units from northern Chile. Clinopyroxene belonging to rocks of the main arc and two units of the bark-arc are augites with low contents of HFSE and REE; they originated from melting of an asthenospheric mantle source. Clinopyroxenes from a third back-arc unit show typical OIB affinities, with high Ti and trace element contents and low Si. Trace elemental variations in clinopyroxenes from these arc and back-arc units suggest that olivine and clinopyroxene were the main fractionating phases during early stages of magma evolution. The last back-arc unit shows a broad spectrum of clinopyroxene compositions that includes depleted arc-like augite, high Al and high Sr-Ca diopside (adakite-like signature). The origin of these lavas is the result of melting of a mixture of depleted mantle plus Sr-rich sediments and subsequent high pressure fractionation of garnet. Thermobarometric calculations suggest that the Jurassic arc and back-arc magmatism had at least one crustal stagnation level where crystallization and fractionation took place, located at ca. ~ 8-15 km. The depth of this stagnation level is consistent with lower-middle crust boundary in extensional settings. Crystallization conditions calculated for high Al diopsides suggest a deeper stagnation level that is not consistent with a thinned back-arc continental crust. Thus minor garnet fractionation

  8. An evolving tectonic environment of Late Carboniferous to Early Permian granitic plutons in the Chinese Altai and Eastern Junggar terranes, Central Asian Orogenic Belt, NW China (United States)

    Zhang, Chen; Liu, Dongdong; Luo, Qun; Liu, Luofu; Zhang, Yunzhao; Zhu, Deyu; Wang, Pengfei; Dai, Quanqi


    The Central Asian Orogenic Belt (CAOB) represents one of the most important sites of juvenile crustal growth during the Phanerozoic. Located in the central part of the CAOB, the Chinese Altai and Eastern Junggar terranes record the collisional processes between the peri-Siberian and Kazakhstan orogenic systems. However, the precise timing of collision between the two terranes remains controversial. The Wukuli and Kadelat plutons in the Chinese Altai belt are dated at ∼305 and ∼280 Ma respectively, whereas the Aketas pluton in the Eastern Junggar terrane is dated at ∼308 Ma. Granites from the Wukuli and Kadelat plutons are strongly peraluminous (A/CNK > 1.1), and are characterized by low Al2O3, Na2O, MnO, MgO, CaO and heavy rare earth element (HREE) contents, but with high SiO2, K2O and Rb contents as well as high Rb/Sr ratios. Granites from the Wukuli pluton have low εNd(t) and εHf(t) values of -3.7 to -3.4 and -9.7 to +4.9, whereas those from the Kadelat pluton have values of -3.6 to -3.4 and -8.0 to +2.6. These features suggest S-type affinity for the Wukuli and Kadelat plutons with magma derivation through partial melting of Mesoproterozoic metasediments. The Aketas pluton is composed of weakly peraluminous quartz monzonites that have A/CNK values ranging from 0.92 to 1.08, with high Na2O, Sr, and Sr/Y, and low Y, Yb, Nb, and Ta. These rocks display positive εNd(t) (+4.8 to +6.4) and εHf(t) (+9.7 to +14.6) values, and low initial 87Sr/86Sr ratios (0.703357-0.703868), similar to modern adakites, suggesting that the quartz monzonites were derived from the partial melting of lower crustal material. The geochemical characteristics suggest that the Aketas pluton was formed in a subduction-related setting, the Wukuli pluton in a syn-collisional setting, and the Kadelat pluton in the subsequent post-orogenic strike-slip-related setting. In combination with data from other granitoids in these two terranes, the Aketas pluton represents the youngest record of

  9. 3D modeling of magnetotelluric data unraveling the tectonic setting and sources of magmatism in the northeastern corner of Borborema Province, NE Brazil (United States)

    Padilha, A. L.; Vitorello, I.; Padua, M. B.; Batista, J. C.; Fuck, R. A.


    The Borborema Province in northeast Brazil is a complex orogenic system formed by crustal blocks of different ages, origin and evolution amalgamated during the West Gondwana convergence in late Neoproterozoic-early Phanerozoic Brasiliano Orogeny. We discuss here new magnetotelluric (MT) data collected along four linear profiles crisscrossing the northeastern corner of the province to assess its deep electrical resistivity structure. Dimensionality analysis showed that a 3D electrical structure predominates in the subsurface and thus the data were modeled by a 3D MT data inversion scheme. The modeling revealed several subvertical discontinuities, with significant lateral contrast in the overall geoelectric structure, down to upper mantle depths. A major conductivity anomaly is registered in the crust beneath Neoproterozoic supracrustal rocks (Serido Group) and this anomaly deepens to upper mantle depths in the northwest direction below a zone of Paleoproterozoic plutons (Caico Complex). It has been suggested that the Serido Group was originally initiated as a sedimentary basin developed upon a Paleoproterozoic basement during a Neoproterozoic extension event related to a collisional foredeep of a south-dipping subduction slab, contrary to our northwest-dipping conductivity vergence. In case of the Caico Complex, because of the petrogenesis of its orthogneisses that indicates partial melting of a metasomatically enriched spinel-to garnet-bearing lherzolite with adakitic features, we also propose a subduction zone environment for its original magmatism. Considering the tenuous evidence indicating that this conductive anomaly could extend down into the upper mantle in the same region where teleseismic tomography register an attenuation of P waves, it can be concluded that this zone could also be the source of the metasomatic fluids and minerals observed along north-south Mesozoic volcanic plugs and flows of alkaline rocks and alkali basalts (Macau-Queimadas belt). In

  10. Andesite Petrogenesis in Nevado de Toluca Stratovolcano, Central Mexico (United States)

    Gomez-Tuena, A.; Capra, L.; Cai, Y.; Goldstein, S. L.


    A popular model for andesite petrogenesis in continental arcs involves a hydrous parental basalt that fractionates and probably assimilates continental crust during ascent. Nevertheless, andesites erupted from polygenetic volcanoes in the Trans-Mexican Volcanic Belt are not entirely consistent with this scenario because: (1) they display a shift to higher SiO2 contents at similar Mg# than true basalts, (2) they trend to lower HREE and HFSE contents with increasing SiO2, and (3) they often show correlated isotopic compositions with proxies for slab inputs but not with fractionation indexes. Young andesites from Toluca stratovolcano (1-0.042 Ma) also display modest adakite-like features (Sr/YToluca rock-suite revealed that some other andesites (2.6-1 Ma) also exhibit very strong negative Ce (Ce/Ce~0.25) anomalies, fractionated HREE patterns (Gd/Yb~4.2), as well as low Zr/Sm (~12.6), and Sr/Y (~12) ratios. These features are not easily explained by low or even high pressure differentiation from a common primitive magma, unless enormous quantities of fractionating accessory minerals are taken into account. And yet these geochemical signals are almost identical to those observed in the pelagic sedimentary horizon of the subducted Cocos plate sampled at DSDP site 487, and thus provide strong evidence for slab-derived sediment contributions to the petrogenesis of Toluca andesites. Since sediment transfer to the Toluca source must have occurred in the form of a silicate melt, the new evidence brings further support to the slab melting hypothesis in the Mexican subduction zone. Interestingly, Ce/Pb ratios of the Toluca rocks display a linear positive correlation with Pb isotopes, that departs from the pelagic sediment values, and extends to the enriched Pb isotopic compositions of intraplate-type volcanic rocks from the Chichinautzin volcanic field. Thus the Toluca rocks likely represent discrete slab-derived melts coming from different portions of the subducted slab that

  11. Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes (United States)

    Perchuk, A. L.; Yapaskurt, V. O.; Griffin, W. L.; Shur, M. Yu.; Gain, S. E. M.


    Piston-cylinder experiments with natural rocks and mineral separates were carried out at 750-900 °C and 2.9 GPa, conditions relevant to hot subduction zones, to study the mechanisms of metasomatic alteration of mantle-wedge rocks such as dunite and lherzolite, and the transfer of trace elements released from a carbonate-bearing amphibolite during its eclogitization. Element transfer from the slab to the mantle lithologies occurred in porous-, focused- and diffusive-flow regimes that remove melt and carbon, and partially water, from the metabasite layer. Porous flow is recorded by dissolution of clinopyroxene and growth of orthopyroxene ± garnet ± magnesite ± chlorite along grain boundaries in the peridotite layers, but is invisible in the metabasite layers. Porous flow of the same fluids/melts produces harzburgite mineralogy in both dunite and lherzolite. The transformation of lherzolite to harzburgite reflects breakdown of clinopyroxene in the lherzolite and diffusion of the liberated calcium into the metabasite layer, i.e. against the direction of major fluid/melt flow. Focused flow develops along the side walls of the capsules, producing a melt-free omphacite ± phengite ± quartz paragenesis in the metabasite, and melt segregations, separated from the host peridotite layers by newly-formed omphacite ± garnet ± phlogopite + orthopyroxene + magnesite. Diffusive flow leads to the formation of orthopyroxene ± magnesite ± garnet reaction zones at the metabasite-peridotite interface and some melt-peridotite interfaces. Melt segregations in the peridotite layers at 850-900 °C are rich in LREE and LILE, strongly depleted in Y and HREE, and have higher Sr/Y and La/Yb ratios than island arc andesites, dacites and rhyolites. These features, and negative anomalies in Nb-Ta and low Nb/Ta, resemble those of high-silica adakites and TTGs, but K2O is high compared to TTGs. Metasomatism in the dunite layer changes the REE patterns of dunite, recording chromatographic

  12. Geochemistry of komatiites and basalts from the Rio das Velhas and Pitangui greenstone belts, São Francisco Craton, Brazil: Implications for the origin, evolution, and tectonic setting (United States)

    Verma, Sanjeet K.; Oliveira, Elson P.; Silva, Paola M.; Moreno, Juan A.; Amaral, Wagner S.


    The Neoarchean Rio das Velhas and Pitangui greenstone belts are situated in the southern São Francisco Craton, Minas Gerais, Brazil. These greenstone belts were formed between ca. 2.79-2.73 Ga, and consist mostly of mafic to ultramafic volcanics and clastic sediments, with minor chemical sediments and felsic volcanics that were metamorphosed under greenschist facies. Komatiites are found only in the Rio das Velhas greenstone belt, which is composed of high-MgO volcanic rocks that have been identified as komatiites and high-Mg basalts, based on their distinctive geochemical characteristics. The Rio das Velhas komatiites are composed of tremolite + actinolite + serpentine + albite with a relict spinifex-texture. The Rio das Velhas komatiites have a high magnesium content ((MgO)adj ≥ 28 wt.%), an Al-undepleted Munro-type [(Al2O3/TiO2)adj and (CaO/Al2O3)adj] ratio ranging from 27 to 47 and 0.48 to 0.89, relatively low abundances of incompatible elements, a depletion of light rare earth elements (LREE), a pattern of non-fractionated heavy rare- earth elements (HREE), and a low (Gd/Yb)PM ratio (≤ 1.0). Negative Ce anomalies suggest that alteration occurred during greenschist facies metamorphism for the komatiites and high-Mg basalts. The low [(Gd/Yb)PM 18] and high HREE, Y, and Zr content suggest that the Rio das Velhas komatiites were derived from the shallow upper mantle without garnet involvement in the residue. The chemical compositions [(Al2O3/TiO2)adj, (FeO)adj, (MgO)adj, (CaO/Al2O3)adj, Na, Th, Ta, Ni, Cr, Zr, Y, Hf, and REE] indicate that the formation of the komatiites, high-Mg basalts and basalts occurred at different depths and temperatures in a heterogeneous mantle. The komatiites and high-Mg basalts melted at liquidus temperatures of 1450-1550 °C. The Pitangui basalts are enriched in the highly incompatible LILE (large-ion lithophile elements) relative to the moderately incompatible HFS (high field strength) elements. The Zr/Th ratio ranging from 76 to

  13. Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: Geochemistry and Nd-Hf and U-Pb isotope systematics Granitoides estériles del Mioceno en la franja metalogénica de los Andes Centrales, Chile: geoquímica e isotopía de Nd-Hf y U-Pb

    Directory of Open Access Journals (Sweden)

    Katja Deckart


    Full Text Available Four Middle-to-Late Miocene barren plutonic complexes that occur between the giant porphyry copper deposits of the central Chilean Andes were selected for U-Pb LA-ICPMS geochronology and Hf-isotope systematics on single zircon grains. Major and trace elements and Sr-Nd-Hf isotope whole rock geochemical studies were under-taken to compare with slightly younger or coeval barren and fertile intrusive rocks between 32° and 34°S. The studied granitoids yield resolvable crystallization ages of 11.3±0.1 Ma (Cerro Mesón Alto massif, 10.3±0.2 Ma (La Gloria pluton, 14.9±0.2 Ma/14.9±0.1 Ma (Yerba Loca stock and 11.2±0.1 Ma/14.7±0.1 Ma (San Francisco Batholith. Major and trace elements discard an adakitic signature as suggested for coeval porphyric intrusions at 32°S, slightly younger mineralized porphyries at Río Blanco-Los Bronces deposit and other Cenozoic adakites. Volcanic host rocks are less fractionated than the intrusive rock units. The same observation can be made for the unmineralized northern plutons compared to the southern ones. Initial Sr-Nd isotope data show insignificant variation (0.703761-0.704118 and 0.512758-0.512882, plotting in the mantle array. Trace element enrichment can be explained by addition of subducted-slab fluids and/or terrigenous sediments to the mantle wedge prior to and/or slight crustal input during magma ascent. Zircon grains separated from these barren intrusives share a similar initial εHf i-data variation for the younger age group (10-12 Ma; 7.04-9.54 and show a more scattered range for the older one (14-15 Ma; 8.50-15.34; both sets plot between the DM and CLTUR evolution lines. There is evidence that magma evolution was slightly distinct through time from older to younger barren magmatism, compared to a few fertile porphyritic rocks from Río Blanco-Los Bronces porphyry copper deposit. It is suggested that chronological inconsistencies within these complexes might be related to differential shortening

  14. Solar-blind wurtzite MgZnO alloy films stabilized by Be doping

    International Nuclear Information System (INIS)

    Su, Longxing; Zhu, Yuan; Zhang, Quanlin; Chen, Mingming; Ji, Xu; Wu, Tianzhun; Gui, Xuchun; Xiang, Rong; Tang, Zikang; Pan, Bicai


    Mg x Zn 1−x O alloy films were deposited on c-plane sapphire substrates by radio frequency plasma-assisted molecular beam epitaxy (rf-PMBE). The phase segregation occurred when x was larger than 33%. Be doping was found experimentally able to stabilize the high-Mg-content MgZnO alloy. By alloying 1–2% Be into MgZnO, the band gap of as-prepared quaternary alloys can be raised to the solar-blind range (4.5 eV). Calculated formation energy of the alloys based on first principle reveals that a small amount of Be incorporation can reduce the formation energy of high-Mg-content MgZnO alloys and results in a more stable system, which justifies our experimental observations. (paper)

  15. Crustal contamination versus an enriched mantle source for intracontinental mafic rocks: Insights from early Paleozoic mafic rocks of the South China Block (United States)

    Xu, Wenjing; Xu, Xisheng; Zeng, Gang


    Several recent studies have documented that the silicic rocks (SiO2 > 65 wt.%) comprising Silicic Large Igneous Provinces are derived from partial melting of the crust facilitated by underplating/intraplating of "hidden" large igneous province-scale basaltic magmas. The early Paleozoic intracontinental magmatic rocks in the South China Block (SCB) are dominantly granitoids, which cover a combined area of 22,000 km2. In contrast, exposures of mafic rocks total only 45 km2. These mafic rocks have extremely heterogeneous isotopic signatures that range from depleted to enriched (whole rock initial 87Sr/86Sr = 0.7041-0.7102; εNd(t) = - 8.4 to + 1.8; weighted mean zircon εHf(t) = - 7.4 to + 5.2), show low Ce/Pb and Nb/U ratios (0.59-13.1 and 3.5-20.9, respectively), and variable Th/La ratios (0.11-0.51). The high-MgO mafic rocks (MgO > 10 wt.%) tend to have lower εNd(t) values (- 4) and Sm/Nd ratios (> 0.255). The differences in geochemistry between the high-MgO and low-MgO mafic rocks indicate greater modification of the compositions of high-MgO mafic magmas by crustal material. In addition, generally good negative correlations between εNd(t) and initial 87Sr/86Sr ratios, MgO, and K2O, along with the presence of inherited zircons in some plutons, indicate that the geochemical and isotopic compositions of the mafic rocks reflect significant crustal contamination, rather than an enriched mantle source. The results show that high-MgO mafic rocks with fertile isotopic compositions may be indicative of crustal contamination in addition to an enriched mantle source, and it is more likely that the lithospheric mantle beneath the SCB during the early Paleozoic was moderately depleted than enriched by ancient subduction processes.

  16. Chemical stratigraphy of Grande Ronde Basalt, Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Long, P.E.; Ledgerwood, R.K.; Myers, C.W.; Reidel, S.P.; Landon, R.D.; Hooper, P.R.


    Grande Ronde Basalt in the Pasco Basin, south-central Washington, can be subdivided into three chemical types and two chemical subtypes based on x-ray fluorescence major element analysis of samples from seven deep core holes and three surface sections. These chemical types are: (1) high-Mg Grande Ronde chemical type; (2) low-Mg Grande Ronde chemical type; (3) low-K (very high-Mg.) Grande Ronde chemical type; and (4) Umtanum Grande Ronde chemical subtype. A possible fifth subdivision is the McCoy Canyon Grande Ronde chemical subtype. The Umtanum and the McCoy Canyon subtypes are both single flows which belong to the low Mg and high-Mg chemical types, respectively. These subdivisions are all distinguished on a plot of MgO versus TiO 2 and/or MgO versus P 2 O 5 , but other major and minor elements, as well as trace elements, also reflect consistent chemical differences between the chemical types. Identification of these chemical types in the Pasco Basin subsurface shows that the high-Mg and low-Mg chemical types are ubiquitous, but the low-K chemical type is limited to the central, southern, and eastern parts of the basin. The Umtanum chemical subtype is present throughout the Pasco Basin subsurface, although it thins in the northeastern part of the basin and is apparently absent from surface exposures 40 kilometers (25 miles) north of the basin. The McCoy Canyon chemical subtype is also present throughout the basin

  17. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs


    Vahjen, Wilfried; Pietruszy?ska, Dominika; Starke, Ingo C.; Zentek, J?rgen


    Background Dietary zinc oxide is used in pig nutrition to combat post weaning diarrhoea. Recent data suggests that high doses (2.5?g/kg feed) increase the bacterial antibiotic resistance development in weaned pigs. Therefore, the aim of this study was to investigate the development of enterobacterial antibiotic resistance genes in the intestinal tract of weaned pigs. Findings Weaned pigs were fed diets for 4?weeks containing 57 (low), 164 (intermediate) or 2425 (high) mg?kg?1 analytical grade...

  18. On the formation and functions of high and very high magnesium calcites in the continuously growing teeth of the echinoderm Lytechinus variegatus: development of crystallinity and protein involvement. (United States)

    Veis, Arthur; Stock, Stuart R; Alvares, Keith; Lux, Elizabeth


    Sea urchin teeth grow continuously and develop a complex mineralized structure consisting of spatially separate but crystallographically aligned first stage calcitic elements of high Mg content (5-15 mol% mineral). These become cemented together by epitaxially oriented second stage very high Mg calcite (30-40 mol% mineral). In the tooth plumula, ingressing preodontoblasts create layered cellular syncytia. Mineral deposits develop within membrane-bound compartments between cellular syncytial layers. We seek to understand how this complex tooth architecture is developed, how individual crystalline calcitic elements become crystallographically aligned, and how their Mg composition is regulated. Synchrotron microbeam X-ray scattering was performed on live, freshly dissected teeth. We observed that the initial diffracting crystals lie within independent syncytial spaces in the plumula. These diffraction patterns match those of mature tooth calcite. Thus, the spatially separate crystallites grow with the same crystallographic orientation seen in the mature tooth. Mineral-related proteins from regions with differing Mg contents were isolated, sequenced, and characterized. A tooth cDNA library was constructed, and selected matrix-related proteins were cloned. Antibodies were prepared and used for immunolocaliztion. Matrix-related proteins are acidic, phosphorylated, and associated with the syncytial membranes. Time-of-flight secondary ion mass spectroscopy of various crystal elements shows unique amino acid, Mg, and Ca ion distributions. High and very high Mg calcites differ in Asp content. Matrix-related proteins are phosphorylated. Very high Mg calcite is associated with Asp-rich protein, and it is restricted to the second stage mineral. Thus, the composition at each part of the tooth is related to architecture and function. Copyright © 2011 S. Karger AG, Basel.

  19. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua


    Carboniferous back-arc basin formed as a result of slab rollback ascribed to northward subduction of the Niujuanzi oceanic lithosphere. Subduction of this back-arc basin probably took place in the early Carboniferous, generating the widespread arc-related granitoids including adakitic plutons, and overlapping earlier arc assemblages. The Beishan orogenic collage is not the eastern extension of the Chinese Central Tianshan, but it was generated by the same north-dipping subduction system separated by the Xingxingxia transform fault, as revealed by available regional data. This contribution implies that in addition to fore-arc accretion, back-arc accretion ascribed to opening and closure of a back-arc basin may also have been a common process in the construction of the CAOB, resembling that of the Mesozoic-Cenozoic subduction-accretion system in the SW pacific.

  20. Mesozoic to Cenozoic magmatic history of the Pamir (United States)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo


    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to shoshonitic monzonite, syenite, and granite that is adakitic (La/YbN = 13 to 57) with low Mg# (35-41). The Vanj complex displays a range of SiO2 (54-75 wt.%) and isotopic compositions (-7 to -3 εNd(i), 0.706 to

  1. Why Archaean TTG cannot be generated by MORB melting in subduction zones (United States)

    Martin, Hervé; Moyen, Jean-François; Guitreau, Martin; Blichert-Toft, Janne; Le Pennec, Jean-Luc


    produced. Consequently, internal recycling of oceanic plateaus does not appear to be a suitable process for the genesis of Archaean continental crust. A possible alternative to this scenario is the subduction of oceanic plateaus. This hypothesis is supported by a present-day analog. In Ecuador, the Carnegie ridge, which is an oceanic plateau resulting from the Galapagos hot spot activity, is being subducted beneath the South American plate. Not only are the resulting magmas adakitic (TTG-like) in composition, but the volcanic productivity is several times greater than in other parts of the Andean volcanic arc. Above the location where the plateau is subducted, the arc is wide and the quaternary volcanoes numerous (about 80 active edifices). The volcanic productivity of each individual volcano also is more intense than away from the subduction focal point with an average output rate of about 0.4-0.5 km3·ka- 1 compared with only about 0.05-0.2 km3·ka- 1 for production rates at volcanoes erupting in the rest of the arc. Consequently, we infer that occasional subduction of oceanic plateaus throughout Earth's history can account for the episodic nature of crustal growth. Additionally, the generation by this mechanism of huge volumes of TTG-like magmas would readily dominate the crustal growth record.

  2. Rare earth elements exploitation, geopolitical implications and raw materials trading (United States)

    Chemin, Marie-Charlotte


    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  3. What olivine and clinopyroxene mineral chemistry and melt inclusion study can tell us about magmatic processes in a post-collisional setting. Examples from the Miocene-Quaternary East Carpathian volcanic chain, Romania (United States)

    Seghedi, Ioan; Mason, Paul R. D.


    Calc-alkaline magmatism occurred along the easternmost margin of Tisia-Dacia at the contact with East European Platform forming the Călimani-Gurghiu- Harghita volcanic chain. Its northern part represented by Călimani-Gurghiu-North Harghita (CGNH hereafter) is showing a diminishing age and volume southwards at 10-3.9 Ma. This marks the end of subduction-related magmatism along the post-collision front of the European convergent plate margin. Magma generation was associated with progressive break-off of a subducted slab and asthenosphere uprise. Fractionation and crustal assimilation were typical CGNH volcanic chain. The rocks show homogeneous 87Sr/86Sr, but a linear trend of Th/Y vs Nb/Y that reflects a common mantle source considered to be the metasomatized lithospheric mantle wedge. Fractionation and/or assimilation-fractional crystallization are characteristic for each main volcanic area, suggestive of lower to middle crust magma chamber processes. The South Harghita (SH) volcanic area represents direct continuation of the CGNH volcanic chain. Here at ca. 3 Ma following a time-gap, magma compositions changed to adakite-like calc-alkaline and continued until recent times (< 0.03 Ma). This volcanism was interrupted at ~1.6-1.8 Ma by simultaneous generation of Na- and K-alkalic varieties in nearby areas, suggestive of various sources and melting mechanisms, closely related to the hanging block beneath Vrancea seismic zone. The specific geochemistry is revealed by higher Nb/Y and Th/Y ratios and lower 87Sr/86Sr as compared to the CGNH chain. Identification of primitive magmas has been difficult despite the fact that this volcanic area contains more basalts than any other in the Carpathian-Pannonian region. Since the most primitive rocks represent the best opportunity to identify the trace element composition of the mantle source beneath the East Carpathian volcanic chain we use mineral and melt inclusions in olivine and composition of the most primitive

  4. Archean greenstone-tonalite duality: Thermochemical mantle convection models or plate tectonics in the early Earth global dynamics? (United States)

    Kerrich, Robert; Polat, Ali


    Mantle convection and plate tectonics are one system, because oceanic plates are cold upper thermal boundary layers of the convection cells. As a corollary, Phanerozoic-style of plate tectonics or more likely a different version of it (i.e. a larger number of slowly moving plates, or similar number of faster plates) is expected to have operated in the hotter, vigorously convecting early Earth. Despite the recent advances in understanding the origin of Archean greenstone-granitoid terranes, the question regarding the operation of plate tectonics in the early Earth remains still controversial. Numerical model outputs for the Archean Earth range from predominantly shallow to flat subduction between 4.0 and 2.5 Ga and well-established steep subduction since 2.5 Ga [Abbott, D., Drury, R., Smith, W.H.F., 1994. Flat to steep transition in subduction style. Geology 22, 937-940], to no plate tectonics but rather foundering of 1000 km sectors of basaltic crust, then "resurfaced" by upper asthenospheric mantle basaltic melts that generate the observed duality of basalts and tonalities [van Thienen, P., van den Berg, A.P., Vlaar, N.J., 2004a. Production and recycling of oceanic crust in the early earth. Tectonophysics 386, 41-65; van Thienen, P., Van den Berg, A.P., Vlaar, N.J., 2004b. On the formation of continental silicic melts in thermochemical mantle convection models: implications for early Earth. Tectonophysics 394, 111-124]. These model outputs can be tested against the geological record. Greenstone belt volcanics are composites of komatiite-basalt plateau sequences erupted from deep mantle plumes and bimodal basalt-dacite sequences having the geochemical signatures of convergent margins; i.e. horizontally imbricated plateau and island arc crust. Greenstone belts from 3.8 to 2.5 Ga include volcanic types reported from Cenozoic convergent margins including: boninites; arc picrites; and the association of adakites-Mg andesites- and Nb-enriched basalts. Archean cratons

  5. Geochronological synthesis of magmatism, metamorphism and metallogeny of Costa Rica, Central America

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Gans, Phillipe B.


    A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 40 Ar/ 39 Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) have provided a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metallogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age (∼ 160 to ∼ 41 Ma), mainly accreted ophiolites. The actual subduction zone was established, represented by volcano-sedimentary rocks of basic to felsic composition, at the beginning of Campanian time (∼ 71 Ma). However, voluminous subalkaline, primary volcanic rocks have appeared only after ∼ 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range (∼ 12,4 - 7,8 Ma), hills of Escazu (∼ 6,0 - 5,9 Ma), and Fila Costena (∼ 18,3 - 16,8 and ∼ 14,8 - 11,1 Ma), Tapanti-Montes del Aguacate-Carpintera (∼ 4,2 - 2,2 Ma) and Guacimal (∼ 6,4 - 5,2 Ma). Arc rocks between 29 and 11 Ma (called Photo-Volcanic Front) are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks have indicated that there was a 20 degrees counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation that has centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At ∼ 3,45 Ma, arc-related volcanism has shut off in southern part of the region, but local acid-adakite volcanism has persisted in the Talamanca range (4,2 - 0,95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3,5 Ma) along the length of Costa Rica, parallel to but in front of the modern arc. This activity was followed by the

  6. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin


    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  7. Delamination of lithospheric mantle evidenced by Cenozoic potassic rocks in Yunnan, SW China: A contribution to uplift of the Eastern Tibetan Plateau (United States)

    Chen, Bei; Long, Xiaoping; Wilde, Simon A.; Yuan, Chao; Wang, Qiang; Xia, Xiaoping; Zhang, Zhaofeng


    New zircon U-Pb ages, mineral chemical data, whole-rock geochemistry and Sr-Nd isotopes from the potassium-rich intrusions in the Yunnan area, SW China, were determined to provide constraints on the uplift of the Eastern Tibetan Plateau. The intrusive rocks consist of shoshonitic syenites (high-Mg syenites, low-Mg syenites and syenite porphyries) and potassic granitoids (granite porphyries). Zircon LA-ICP-MS U-Pb dating indicates coeval emplacement ages of 35 Ma. The shoshonitic syenites have alkaline affinities and the enrichment in LILEs and LREEs (e.g. La, Sr, U, Pb), with depletion of HFSEs (e.g. Nb, Ti, Ta) and weak Eu anomalies. They display uniform Sr-Nd-Lu-Hf isotopic compositions with similar initial 87Sr/86Sr ratios (0.7073-0.7079), enriched εNd(t) values (- 6.8 to - 4.3) and mostly negative zircon εHf(t) values ranging from - 4.6 to + 0.1. The high-Mg syenites have high MgO, Fe2O3T, TiO2, CaO, Cr, Ni concentrations and relatively high Mg# (60-68), indicating an origin from enriched lithospheric mantle. The low-Mg syenites and syenite porphyries are geochemically distinct with the high-Mg syenites, but the insignificant variations in major elements, linear trends of La against (La/Yb)N and similar Sr-Nd isotopic compositions to the high-Mg syenites suggest that they were produced by different degrees of partial melting of the same enriched mantle source. The potassic granitic intrusions are sub-alkaline with a strongly peraluminous character. They display an S-type granite affinity, with high Al2O3/TiO2 and low CaO/Na2O and K2O/Al2O3 ratios, suggesting a pelitic source. They are LREE-enriched and have relatively flat HREE patterns with weakly negative Eu anomalies and positive Rb, U, and Pb anomalies and negative Nb, Ta, and Ti anomalies. They have relatively high initial 87Sr/86Sr ratios (0.7143) and enriched Nd isotopic compositions [εNd(t) = - 4.1]. Their zircon εHf(t) values (- 4.0 to + 0.09) and old two-stage Hf model ages (TDMc = 1.16-1.36 Ga

  8. Growth Rates, Stable Oxygen Isotopes (18O), and Strontium (Sr/Ca) Composition in Two Species of Pacific Sclerosponges (Acanthocheatetes wellsi and Astrosclera willeyana) with 18O Calibration and Application to Paleoceanography

    Energy Technology Data Exchange (ETDEWEB)

    Grottoli, A.; Adkins, J; Panero, W; Reaman, D; Moots, K


    The isotopic and elemental composition of sclerosponge skeletons is used to reconstruct paleoceanographic records. Yet few studies have systematically examined the natural variability in sclerosponge skeletal {delta}{sup 18}O, growth, and Sr/Ca, and how that may influence the interpretation of sclerosponge proxy records. Here, we analyzed short records in seven specimens of Acanthocheatetes wellsi (high-Mg calcite, 21 mol% Mg) from Palau, four A. wellsi (high-Mg calcite, 21 mol% Mg) from Saipan, and three Astrosclera willeyana (aragonite) sclerosponges from Saipan, as well as one long record in an A. wellsi specimen from Palau spanning 1945-2001.5. In Saipan, species-specific and mineralogical effects appear to have a negligible effect on sclerosponge {delta}{sup 18}O, facilitating the direct comparison of {delta}{sup 18}O records between species at a given location. At both sites, A. wellsi {delta}{sup 18}O and growth rates were sensitive to environmental conditions, but Sr/Ca was not sensitive to the same conditions. High-resolution {delta}{sup 18}O analyses confirmed this finding as both A. wellsi and A. willeyana deposited their skeleton in accordance with the trends in isotopic equilibrium with seawater, though with a 0.27{per_thousand} offset in the case of A. willeyana. In the high-Mg-calcite species A. wellsi, Mg may be interfering with Sr incorporation into the skeleton. On multidecadal timescales, A. wellsi sclerosponge {delta}{sup 18}O in Palau tracked the Southern Oscillation Index variability post-1977, but not pre-1977, coincident with the switch in the Pacific Decadal Oscillation (PDO) at {approx}1976. This suggests that water mass circulation in the region is influenced by El Nino-Southern Oscillation variability during positive PDO phases, but not during negative ones.

  9. Partial purification and properties of an AMP-specific soluble 5'-nucleotidase from pigeon heart.


    Skladanowski, A C; Newby, A C


    A soluble 5'-nucleotidase was purified 200-fold from pigeon heart. The enzyme (1) had an apparent molecular mass close to 150 kDa, (2) had a neutral pH optimum and hydrolysed a wide range of nucleoside 5'-monophosphates with a 15-fold preference for AMP over IMP, (3) at near-physiological concentrations of AMP was activated by ADP but not by ATP, (4) was inhibited by high Mg2+ concentration and high ionic strength, (5) was weakly inhibited by p-nitrophenol phosphate and Pi, and (6) was non-co...

  10. Lead concentration and isotopic composition in the Pacific sclerosponge (Acanthochaetetes wellsi) reflects environmental lead pollution


    Ohmori, Kazuto; Watanabe, Tsuyoshi; Tanimizu, Masaharu; Shirai, Kotaro


    We measured Pb/Ca and Pb isotopes with high resolution in the high-Mg calcite skeleton of a Pacific sclerosponge (Acanthochaetetes wellsi) collected from the reef edge off the western coast of Kume Island (East China Sea), to investigate its potential to he used as a proxy for lead contamination in the environment, and atmospheric transportation and fallout over the last few decades. Skeletal Pb/Ca ranged from 58 to 1642 nmol/mol, 10x higher than that of the aragonite skeleton of Pacific cora...

  11. Chemical differences between small subsamples of Apollo 15 olivine-normative basalts (United States)

    Shervais, J. W.; Vetter, S. K.; Lindstrom, M. M.


    Results are presented on the chemical and petrological characterization of nine samples of an Apollo 15 mare basalt suite. The results show that all nine samples are low-silica olivine normative basalts (ONBs) similar to those described earlier for low-silica ONBs from Apollo 15 site. The samples were found to vary in texture and grain size, from fine-grained intergranular or subophitic basalts to coarse-grained granular 'microgabbros'. Several displayed macroscopic heterogeneity. Variation diagrams show that the overall trend of the data is consistent with the fractionation of olivine (plus minor Cr-spinel) from a high-MgO parent magma.

  12. Gallium Nitride: A Nano scale Study using Electron Microscopy and Associated Techniques

    International Nuclear Information System (INIS)

    Mohammed Benaissa; Vennegues, Philippe


    A complete nano scale study on GaN thin films doped with Mg. This study was carried out using TEM and associated techniques such as HREM, CBED, EDX and EELS. It was found that the presence of triangular defects (of few nanometers in size) within GaN:Mg films were at the origin of unexpected electrical and optical behaviors, such as a decrease in the free hole density at high Mg doping. It is shown that these defects are inversion domains limited with inversion-domains boundaries. (author)

  13. Are oceanic plateaus sites of komatiite formation? (United States)

    Storey, M.; Mahoney, J. J.; Kroenke, L. W.; Saunders, A. D.


    During Cretaceous and Tertiary time a series of oceanic terranes were accreted onto the Pacific continental margin of Colombia. The island of Gorgona is thought to represent part of the most recent, early Eocene, terrane-forming event. Gorgona is remarkable for the occurrence of komatiites of middle Cretaceous age, having MgO contents up to 24%. The geochemistry of spatially and temporally associated tholeiites suggests that Gorgona is an obducted fragment of the oceanic Caribbean Plateau, postulated by Duncan and Hargraves (1984) to have formed at 100 to 75 Ma over the Galapagos hotspot. Further examples of high-MgO oceanic lavas that may represent fragments of the Caribbean Plateau occur in allochthonous terranes on the island of Curaçao in the Netherlands Antilles and in the Romeral zone ophiolites in the southwestern Colombian Andes. These and other examples suggest that the formation of high-MgO liquids may be a feature of oceanic-plateau settings. The association of Phanerozoic komatiites with oceanic plateaus, coupled with thermal considerations, provides a plausible analogue for the origin of some komatiite-tholeiite sequences in Archean greenstone belts.

  14. Neoproterozoic marine carbonates and their paleoceanographic significance (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William


    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  15. Performance analysis of conceptual waste package designs in salt repositories

    International Nuclear Information System (INIS)

    Jansen, G. Jr.; Raines, G.E.; Kircher, J.F.


    A performance analysis of commercial high-level waste and spent fuel conceptual package designs in reference repositories in three salt formations was conducted with the WAPPA waste package code. Expected conditions for temperature, stress, brine composition, radiation level, and brine flow rate were used as boundary conditions to compute expected corrosion of a thick-walled overpack of 1025 wrought steel. In all salt formations corrosion by low Mg salt-dissolution brines typical of intrusion scenarios was too slow to cause the package to fail for thousands of years after burial. In high Mg brines judged typical of thermally migrating brines in bedded salt formations, corrosion rates which would otherwise have caused the packages to fail within a few hundred years were limited by brine availability. All of the brine reaching the package was consumed by reaction with the iron in the overpack, thus preventing further corrosion. Uniform brine distribution over the package surface was an important factor in predicting long package lifetimes for the high Mg brines. 14 references, 15 figures

  16. Ultraviolet electroluminescence from Au/MgO/MgxZn1−xO heterojunction diodes and the observation of Zn-rich cluster emission

    International Nuclear Information System (INIS)

    Liu, C.Y.; Xu, H.Y.; Sun, Y.; Zhang, C.; Ma, J.G.; Liu, Y.C.


    In this work, ultraviolet (UV) electroluminescence (EL) is achieved from Au/MgO/Mg x Zn 1−x O heterojunction diodes. The EL mechanism and laser forming process are discussed based on the energy band diagram, impact-ionization process and disordered optical structure. For ZnO and low Mg-content MgZnO devices, their EL spectra show single near-band-edge (NBE) emission. While in high Mg-content MgZnO devices, the emission from self-formed Zn-rich MgZnO clusters is observed and also contribute to the UV EL band. These Zn-rich clusters can act as thermally-stable luminescence centers, suggesting a promising route for developing MgZnO-based UV light-emitting devices. -- Highlights: • A series of Au/MgO/Mg x Zn 1−x O heterojunction diodes with multiple Mg compositions are fabricated and ultraviolet electroluminescence is achieved. • EL mechanism and laser forming process are discussed based on energy band diagram, impact-ionization process and disordered optical structure. • The transition from spontaneous to stimulated emission is observed in these heterojunctions, and the lasing mode is random laser. • In high Mg-content MgZnO devices, the emission from self-formed Zn-rich clusters is observed, which are thermally stable luminescence centers

  17. Band gap tuning of ZnO nanoparticles via Mg doping by femtosecond laser ablation in liquid environment

    International Nuclear Information System (INIS)

    Chelnokov, E.; Rivoal, M.; Colignon, Y.; Gachet, D.; Bekere, L.; Thibaudau, F.; Giorgio, S.; Khodorkovsky, V.; Marine, W.


    Highlights: ► Femtosecond laser ablation synthesis of Mg doped ZnO nanoparticles. ► Electronic properties of ZnO are modified by Mg. ► Band gap and exciton energy shifts to the blue. ► The exciton energy shift is saturated at Mg content of about 20%. ► Phase separation at Mg content is at more than 25%. ► Mechanism of exciton pinning – recombination via new surface states. - Abstract: We use multiphoton IR femtosecond laser ablation to induce non-thermal non-equilibrium conditions of the nanoparticle growth in liquids. Modifications of the electronic properties of ZnO NP were achieved by Mg ion doping of targets prepared from mixtures of Zn and Mg acetylacetonates. The nanoparticle sizes were 3–20 nm depending on the ablation conditions. X-ray fluorescence indicates that stoichiometric ablation and incorporation of Mg in nanocrystalline ZnO occurs. HRTEM observations show that nanoparticles retain their wurtzite structure, while at high Mg concentrations we detect the MgO rich domains. Exciton emissions exhibit relatively narrow bands with progressive and controlled blue shifts up to 184 meV. The exciton energy correlates to band edge absorption indicating strong modification of the NP band gaps. Stabilisation of the exciton blue shift is observed at high Mg concentration. It is accompanied by the formation of structure defects and ZnO/MgO phase separation within the nanoparticles.

  18. Effects of Cp2Mg supply on MOVPE growth behavior of InN

    International Nuclear Information System (INIS)

    Sugita, K.; Sasamoto, K.; Hashimoto, A.; Yamamoto, A.


    This report shows the effect of Cp 2 Mg supply on MOVPE growth behavior of InN. At low growth temperature (∝600 C), the formation of adducts occurred, which degenerates the crystal quality. With increasing the growth temperature, the adduct formation was suppressed because the decomposition of Cp 2 Mg was enhanced and thus the incorporation of carbon into the film was suppressed. The use of Cp 2 Mg during InN growth increases the growth rate in the lateral direction. Non-doped InN film grown on GaN buffer has an In-face of the top side. On the other hand, the inversion domains seems to be formed in the highly Mg-doped InN. Tilt distribution decreases from 65 to 30 arcmin with the increase of Cp 2 Mg/TMI molar ratio 0 to 0.06. The donor is produced in highly Mg-doped MOVPE-grown InN (Cp 2 Mg/TMI molar ratio > 0.005). Therefore, the effect of Cp 2 Mg supply on MOVPE growth behavior of InN is found to improve a macro-scale crystal quality but also produces the donor (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Petrogenesis of andesites and dacites of White Island volcano, Bay of Plenty, New Zealand, in the light of new geochemical and isotopic data

    International Nuclear Information System (INIS)

    Graham, I.J.; Cole, J.W.


    White Island volcano comprises three main lava types: (1) silicic andesite, forming Western Cone and a tholoid at Troup Head, (2) dacite forming the Central Cone, and (3) mafic-silicic andesite erupted in March 1977 from the currently active crater. All lavas are calc-alkalic and medium-K orogenic types. The older andesites of Western Cone and Troup Head were probably formed from chemically dissimilar parental magmas by processes of assimilation and fractional crystallisation (AFC). Andesite blocks and bombs ejected during phreatomagmatic activity in March 1977 are geochemically primitive having high Mg-numbers, high Cr and Ni contents, and containing forsteritic olivine. They cannot be derived from magmatic compositions similar to known basaltic lavas of Taupo Volcanic Zone, and it is possible that the blocks are hybrid magmas resulting from mixing of a high Mg basalt parent and Central Cone dacite. The bombs appear to be fractionated derivatives. Central Cone dacites may also be AFC derivatives of a common parent to the 1977 lavas, in which substantial chemical diffusion has occurred. Their earlier eruption might represent unloading of a zoned magma chamber. (author). 49 refs., 8 figs., 3 tabs

  20. Platinum Group Elements (PGE) geochemistry of komatiites and boninites from Dharwar Craton, India: Implications for mantle melting processes (United States)

    Saha, Abhishek; Manikyamba, C.; Santosh, M.; Ganguly, Sohini; Khelen, Arubam C.; Subramanyam, K. S. V.


    High MgO volcanic rocks having elevated concentrations of Ni and Cr are potential hosts for platinum group elements (PGE) owing to their primitive mantle origin and eruption at high temperatures. Though their higher PGE abundance is economically significant in mineral exploration studies, their lower concentrations are also valuable geochemical tools to evaluate petrogenetic processes. In this paper an attempt has been made to evaluate the PGE geochemistry of high MgO volcanic rocks from two greenstone belts of western and eastern Dharwar Craton and to discuss different mantle processes operative at diverse geodynamic settings during the Neoarchean time. The Bababudan greenstone belt of western and Gadwal greenstone belt of eastern Dharwar Cratons are dominantly composed of high MgO volcanic rocks which, based on distinct geochemical characteristics, have been identified as komatiites and boninites respectively. The Bababudan komatiites are essentially composed of olivine and clinopyroxene with rare plagioclase tending towards komatiitic basalts. The Gadwal boninites contain clinopyroxene, recrystallized hornblende with minor orthopyroxene, plagioclase and sulphide minerals. The Bababudan komatiites are Al-undepleted type (Al2O3/TiO2 = 23-59) with distinctly high MgO (27.4-35.8 wt.%), Ni (509-1066 ppm) and Cr (136-3036 ppm) contents. These rocks have low ΣPGE (9-42 ppb) contents with 0.2-2.4 ppb Iridium (Ir), 0.2-1.4 ppb Osmium (Os) and 0.4-4.4 ppb Ruthenium (Ru) among Iridium group PGE (IPGE); and 1.4-16.2 ppb Platinum (Pt), 2.8-19 ppb Palladium (Pd) and 0.2-9.8 ppb Rhodium (Rh) among Platinum group PGE (PPGE). The Gadwal boninites are high-Ca boninites with CaO/Al2O3 ratios varying between 0.8 and 1.0, with 12-24 wt.% MgO, 821-1168 ppm Ni and 2307-2765 ppm Cr. They show higher concentration of total PGE (82-207 ppb) with Pt concentration ranging from 13 to 19 ppb, Pd between 65 and 180 ppb and Rh in the range of 1.4-3 ppb compared to the Bababudan komatiites. Ir

  1. Low-Ti basalts from the Faroe Islands constrain the early Iceland depleted plume component

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    New Sr, Nd, Hf and high precision Pb isotope analyses of 46 Faroese low-Ti lavas erupted at the rifting of the proto-North Atlantic ~56-55 Ma ago are presented. The low-Ti lavas are depleted, MORB-like basalts erupted close to the riftzone at the same time as enriched high-Ti basalts were erupted...... away from the rift . The low-Ti samples include a large proportion of high-MgO basalts and can be related by a common model of low-pressure fractionation. Fractionation correction to 13 % MgO shows only little variation in their primitive major element contents, suggesting very similar origins...

  2. Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Teng, H. Henry [PI, The George Washington University; Xu, Huifang [Co-PI, University of Wisconsin-Madison


    We have approached the long-standing geochemical question why anhydrous high-Mg carbonate minerals (i.e., magnesite and dolomite) cannot be formed at ambient conditions from a new perspective by exploring the formation of MgCO{sub 3} and Mg{sub x}Ca{sub (1-x)}CO{sub 3} in non-aqueous solutions. Data collected from our experiments in this funding period suggest that a fundamental barrier, other than cation hydration, exists that prevents Mg{sup 2+} and CO{sub 3}{sup 2-} ions from forming long-range ordered structures. We propose that this barrier mainly stems from the lattice limitation on the spatial configuration of CO{sub 3} groups in magnesite crystals. On the other hand, the measured higher distribution coefficients of Mg between magnesian calcites formed in the absence and presence of water give us a first direct proof to support and quantify the cation hydration effect.

  3. Subduction initiation, recycling of Alboran lower crust, and intracrustal emplacement of subcontinental lithospheric mantle in the Westernmost Mediterranean (United States)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Bosch, Delphine; Marchesi, Claudio; Hidas, Károly; Booth-Rea, Guillermo; Acosta-Vigil, Antonio


    largest outcrop (> 300 km2) of subcontinental lithospheric mantle peridotite in westernmost Mediterranean -- occurs at the basal units of the western Alpujarride. Late, intrusive mantle, high-Mg pyroxenite dykes in the Ronda peridotite (Betic Cordillera, S. Spain) show geochemical signature akin to high-pressure (> 1 GPa) segregates of high-Mg andesite and boninite found in island arc terrains and ophiolite, where they usually witness nascent subduction and/or oceanic accretion in a forearc setting. These pyroxenites point to a suprasubduction environment prior to the intracrustal emplacement of subcontinental peridotites drawing some parallels between the crustal emplacement environment of some ophiolites and that of sublithospheric mantle in the westernmost Mediterranean. Here, we present new Sr-Nd-Pb-isotopic data from a variety of crustal rocks that might account for the crustal components seen in high-Mg Ronda pyroxenites. This data allows the origin of this crustal component to be unveiled, providing fundamentally constraints on the processes involved in the emplacement of large massifs of subcontinental mantle lithosphere in the westernmost Mediterranean. In order to test the hypothesis that the crustal component in Ronda high-Mg pyroxenites was acquired during the Alpine evolution of the Betic-Rif orogen, we selected samples from crustal sections that might have been underthrusted beneath the Alboran lithospheric mantle before the putative Miocene intra-crustal emplacement of peridotites. Samples are from the western Betics and comprise sediments from the Gibraltar Arc Flysch Trough units, which forms a fold-and-thrust belt between the Iberian paleomargin and the allochthonous Alboran domain, and metasedimentary rocks from the Jubrique and Blanca units of the Alpujarride complex, which underlie and overlie the Ronda peridotite and constitute the crustal section of the Alboran lithosphere domain to which the Ronda peridotite pertains. Sr-Nd-Pb systematic of

  4. Survival of the Lhasa Terrane during its collision with Asia due to crust-mantle coupling revealed by ca. 114 Ma intrusive rocks in western Tibet (United States)

    Wang, Qing; Zhu, Di-Cheng; Liu, An-Lin; Cawood, Peter A.; Liu, Sheng-Ao; Xia, Ying; Chen, Yue; Wang, Hao; Zhang, Liang-Liang; Zhao, Zhi-Dan


    Survival of the Lhasa Terrane during its drift across the Tethyan Ocean and subsequent collision with Asia was likely maintained by mechanical coupling between its ancient lithospheric mantle and the overlying crust. Evidence for this coupling is provided by geochronological and geochemical data from high-Mg dioritic porphyrite dikes that intruded into granodiorites with dioritic enclaves within the Nixiong Batholith in the western segment of the central Lhasa subterrane, southern Tibet. Zircon LA-ICP-MS U-Pb dating indicates synchronous emplacement of dioritic porphyrite dikes (113.9 ± 2 Ma), dioritic enclaves (113.9 ± 1 Ma), and host granodiorites (113.1 ± 2 Ma). The hornblende-bearing granodiorites are metaluminous to weakly peraluminous (A/CNK = 0.95-1.05) and belong to high-K calc-alkaline I-type granite. These rocks are characterized by low Mg# (37-43), negative zircon εHf(t) values (-6.8 to -1.2), and negative whole-rock εNd(t) values (-8.1 to -5.4), suggestive of derivation through anatexis of ancient lower crust. The two least-mixed or contaminated dioritic porphyrite dike samples have high MgO (8.46-8.74 wt%), high Mg# (69-70), and high abundances of compatible elements (e.g., Cr = 673-646 ppm, Ni = 177-189 ppm), which are close to those of primitive magma. They are high-K calc-alkaline and show negative whole-rock εNd(t) values (-1.9 to -1.2), indicating that these samples are most likely derived from the partial melting of ancient lithospheric mantle that was metasomatized by slab-derived fluids. The dioritic enclave samples are metaluminous high-K calc-alkaline and have varying negative whole-rock εNd(t) values (-7.8 to -3.7), which are interpreted as the result of magma mixing between the ancient lower crust-derived melts and asthenospheric mantle- (rather than lithospheric mantle-) derived melts. The Nd isotope mantle model ages of the least-mixed or contaminated high-Mg dioritic porphyrite dike samples (1.1-1.4 Ga) are close to the Nd isotope

  5. Experimental alteration of R7T7 glass in salt brines at 90 deg C and 150 deg C

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.; Gin, S.; Beaufort, D.; Thomassin, J.H.


    Static experiments have been developed to investigate the R7T7 glass corrosion in four natural salt brines (brines 1 and 3: pure halite, brines 2 and 4: high Mg, K fluid inclusions rich halite), at 90 deg C and 150 deg C with 0.7 cm -1 S/V ratio and at 11 different running times. Analysis of brines after alteration (pHmeter and ICP) added to a detailed study of the crystalline phases developed at the interface glass-brine (XRD,SEM and Microprobe), showed that the influence of the compositional difference is more important on the nature of the secondary phases formed than on the corrosion rate of the glass. After 91 days of alteration at 150 deg C stady states to be reached (after 40 days at 90 deg C). A long term experiment (1 year) is necessary to confirm this hypothesis. 7 refs., 7 figs., 2 tabs

  6. The Wenquan ultramafic rocks in the Central East Kunlun Fault zone, Qinghai-Tibet Plateau—crustal relics of the Paleo-Tethys ocean (United States)

    Jia, Lihui; Meng, Fancong; Feng, Huibin


    The Wenquan ultramafic rocks, located in the East Kunlun Orogenic belt in the northeastern part of the Qinghai-Tibet Plateau, consist of dunite, wehrlite, olivine-clinopyroxenite and clinopyroxenite, and exhibit cumulate textures. Olivine from dunite has high Fo (forsterite, 90.0-91.8 wt%) and NiO content (0.15-0.42 wt%). Cr-spinels from all of the rocks in this suite are characterized by high Cr# (100×[Cr/(Cr + Al)], 67-91), low Mg# (100×[Mg/(Mg + Fe2+)], 17-35) and low TiO2 contents (mostly rocks show enrichment of LILE, Sr, and Ba, and depletion of Nb and Th. High-Mg# (mostly > 80) and low-CaO (evolution along the Central East Kunlun Fault zone.

  7. Micro-CT of sea urchin ossicles supplemented with microbeam diffraction (United States)

    Stock, Stuart R.; Ignatiev, Konstantin I.; Veis, Arthur; De Carlo, Francesco; Almer, J. D.


    Sea urchins employ as wide a range of composite reinforcement strategies as are seen in engineering composites. Besides tailoring reinforcement morphology and alignment to the functional demands of position, solid solution strengthening (high Mg calcite), inclusion toughening (macromolecules), functional gradients in mineral reinforcement morphology, composition and dimensions and mineral interface tailoring are other tactics important to achieving high toughness and high strength in sea urchin teeth. Teeth from different echinoid families illustrate combinations of reinforcement parameters and toughening mechanisms providing good functionality, a virtual probe of the available design space. This paper focuses on a multi-mode x-ray investigation of sea urchin teeth studied on scales approaching 1 μm in millimeter-sized samples, in particular mapping 3-D microarchitecture with synchrotron and laboratory microCT and mapping Ca1-xMgxCO3 crystal composition x and microstrain and crystallite size via microbeam diffraction.

  8. The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry. (United States)

    Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L


    X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.

  9. Endogenic carbonate sedimentation in Bear Lake, Utah and Idaho, over the last two glacial-interglacial cycles (United States)

    Dean, W.E.


    Sediments deposited over the past 220,000 years in Bear Lake, Utah and Idaho, are predominantly calcareous silty clay, with calcite as the dominant carbonate mineral. The abundance of siliciclastic sediment indicates that the Bear River usually was connected to Bear Lake. However, three marl intervals containing more than 50% CaCO3 were deposited during the Holocene and the last two interglacial intervals, equivalent to marine oxygen isotope stages (MIS) 5 and 7, indicating times when the Bear River was not connected to the lake. Aragonite is the dominant mineral in two of these three high-carbonate intervals. The high-carbonate, aragonitic intervals coincide with warm interglacial continental climates and warm Pacific sea-surface temperatures. Aragonite also is the dominant mineral in a carbonate-cemented microbialite mound that formed in the southwestern part of the lake over the last several thousand years. The history of carbonate sedimentation in Bear Lake is documented through the study of isotopic ratios of oxygen, carbon, and strontium, organic carbon content, CaCO3 content, X-ray diffraction mineralogy, and HCl-leach chemistry on samples from sediment traps, gravity cores, piston cores, drill cores, and microbialites. Sediment-trap studies show that the carbonate mineral that precipitates in the surface waters of the lake today is high-Mg calcite. The lake began to precipitate high-Mg calcite sometime in the mid-twentieth century after the artificial diversion of Bear River into Bear Lake that began in 1911. This diversion drastically reduced the salinity and Mg2+:Ca2+ of the lake water and changed the primary carbonate precipitate from aragonite to high-Mg calcite. However, sediment-trap and core studies show that aragonite is the dominant mineral accumulating on the lake floor today, even though it is not precipitating in surface waters. The isotopic studies show that this aragonite is derived from reworking and redistribution of shallow-water sediment

  10. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.


    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  11. Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy (United States)

    Okumura, Hironori; Martin, Denis; Malinverni, Marco; Grandjean, Nicolas


    We grew heavily Mg-doped GaN using ammonia molecular-beam epitaxy. The use of low growth temperature (740 °C) allows decreasing the incorporation of donor-like defects (p-type doping compensation. As a result, a net acceptor concentration of 7 × 1019 cm-3 was achieved, and the hole concentration measured by Hall effect was as high as 2 × 1019 cm-3 at room temperature. Using such a high Mg doping level, we fabricated GaN backward diodes without polarization-assisted tunneling. The backward diodes exhibited a tunneling-current density of 225 A/cm2 at a reverse bias of -1 V at room temperature.

  12. On the Stability of DNA Origami Nanostructures in Low-Magnesium Buffers. (United States)

    Kielar, Charlotte; Xin, Yang; Shen, Boxuan; Kostiainen, Mauri A; Grundmeier, Guido; Linko, Veikko; Keller, Adrian


    DNA origami have great potential as functional platforms in various biomedical applications. Many applications, however, are incompatible with the high Mg2+ concentrations commonly believed to be a prerequisite for maintaining DNA origami integrity. Here, we investigate DNA origami stability in low-Mg2+ buffers. DNA origami stability is found to crucially depend on the availability of residual Mg2+ ions for screening electrostatic repulsion. The presence of EDTA and phosphate ions may thus facilitate DNA origami denaturation by displacing Mg2+ ions from the DNA backbone and reducing the strength of the Mg2+-DNA interaction, respectively. Most remarkably, these buffer dependencies are affected by DNA origami superstructure. However, by rationally selecting buffer components and considering superstructure-dependent effects, the structural integrity of a given DNA origami nanostructure can be maintained in conventional buffers even at Mg2+ concentrations in the low-μM range. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming


    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  14. How to Determine the Environmental Exposure of PAHs Originating from Biochar

    DEFF Research Database (Denmark)

    Mayer, Philipp; Hilber, Isabel; Gouliarmou, Varvara


    Biochars are obtained by pyrolyzing biomass materials and are increasingly used within the agricultural sector. Owing to the production process, biochars can contain polycyclic aromatic hydrocarbons (PAHs) in the high mg/kg range, which makes the determination of the environmental exposure of PAHs...... originating from biochars relevant. However, PAH sorption to biochar is characterized by very high (104–106 L/kg) or extreme distribution coefficients (KD) (>106 L/kg), which makes the determination of exposure scientifically and technically challenging. Cyclodextrin extractions, sorptive bioaccessibility...... extractions, Tenax extractions, contaminant traps, and equilibrium sampling were assessed and selected methods used for the determination of bioavailability parameters for PAHs in two model biochars. Results showed that: (1) the KD values of typically 106–109 L/kg made the biochars often act as sinks, rather...

  15. The 3.1 Ga Nuggihalli chromite deposits, Western Dhawar craton (India)

    DEFF Research Database (Denmark)

    Mukherjee, Ria; Mondal, Sisir K.; Frei, Robert


    The Nuggihalli greenstone belt is part of the older greenstone belts (3.4 - 3.0 Ga) in the Western Dharwar Craton, southern India. This greenstone sequence consists of conformable metavolcanic and metasedimentary supracrustal rock assemblages that belong to the Sargur Group. Sill-like ultramafic......-mafic plutonic bodies are present within these supracrustal rocks (schist rocks) which are in turn enclosed by tonalite-trondhjemite-granodiorite gneiss (TTG). The sill-like ultramafic-mafic rocks are cumulates derived from a high-Mg parental magma that are represented by chromitite-hosted serpentinite...... and tremolite-chlorite-actinolite- schist (altered peridotite), anorthosite, pyroxenite, and gabbro hosting magnetite bands. The first whole-rock Sm-Nd data for the peridotite anorthosite- pyroxenite-gabbro unit has been obtained yielding an age of 3125 ± 120 Ma (MSWD = 1.3) which is similar to reported ages...

  16. Ultraviolet detecting properties of amorphous MgInO thin film phototransistors

    International Nuclear Information System (INIS)

    Lu, Huiling; Bi, Xiaobin; Zhang, Shengdong; Zhou, Hang


    The ultraviolet (UV) detecting properties of Mg doped In 2 O 3 (MgInO or MIO) bottom gate thin film transistors (TFTs) were investigated. The optical measurements show that the introduction of Mg dopants effectively widens the optical band gap of In 2 O 3 . The cutoff wavelength of MIO films is pushed to deep UV as Mg content increases. Fabricated MIO TFTs with high Mg content demonstrate appraisable UV detecting properties with a dark current of 10 −14 A, a UV to visible rejection ratio of 10 3 , a responsivity of 3.2 A/W (300 nm) and a cutoff wavelength of 320 nm, which can be put to good use in deep UV detection. The dynamic photo-response measurement shows that the persistent photo-conductivity (PPC) effect can be alleviated by imposing a transient positive gate pulse. (paper)

  17. A SIMS study of lunar 'komatiitic glasses' - Trace element characteristics and possible origin (United States)

    Shearer, C. K.; Papike, J. J.; Galbreath, K. C.; Wentworth, S. J.; Shimizu, N.


    In Apollo 16 regolith breccias, Wentworth and McKay (1988) identified a suite of minute (less than 120 microns) 'komatiitic glass beads'. The wide major element compositional range, and ultra-Mg-prime character of the glasses suggest a variety of possible origins from complex impact processes to complex volcanic processes involving rather unusual and primitive magmatism. The extent of trace element depletion or enrichment in these glasses appears to be correlated to the siderophile character of the element (ionization potential or experimentally determined silicate melt/Fe metal partition coefficients. The ultra-Mg-prime glasses are depleted in Co relative to a bulk Moon Mg/Co exhibited by many lunar samples (volcanic glasses, basalts, regolith breccia, estimated upper mantle). The low Co and high incompatible element concentrations diminish the possibility that these glasses are a product of lunar komatiitic volcanism or impact, excavation, and melting of a very high Mg-prime plutonic unit.

  18. Apollo 15 yellow-brown volcanic glass: Chemistry and petrogenetic relations to green volcanic glass and olivine-normative mare basalts

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, S.S.; Schmitt, R.A.; (Oregon State Univ., Corvallis (USA)); Delano, J.W. (State Univ. of New York, Albany (USA))


    Apollo 15 yellow-brown glass is one of twenty-five, high Mg, primary magmas emplaced on the lunar surface in pyroclastic eruptions. Forty spherules of this glass were individually analyzed by electron microprobe and INAA for major- and trace-elements. The abundances demonstrate that this primary magma was produced by partial melting of differentiated cumulates in the lunar mantle. Models are developed to explain the possible source-regions of several Apollo 15 and Apollo 12 low-Ti mare magmas as being products of hybridization involving three ancient differentiated components of a primordial lunar magma ocean: (a) early olivine {plus minus} orthopyroxene cumulates; (b) late-stage clinopyroxene + pigeonite + ilmenite + plagioclase cumulates; and (c) late-stage inter-cumulus liquid.

  19. Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province (United States)

    Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan


    The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.

  20. Geochemistry and geodynamics of the Mawat mafic complex in the Zagros Suture zone, northeast Iraq (United States)

    Azizi, Hossein; Hadi, Ayten; Asahara, Yoshihiro; Mohammad, Youssef Osman


    The Iraqi Zagros Orogenic Belt includes two separate ophiolite belts, which extend along a northwest-southeast trend near the Iranian border. The outer belt shows ophiolite sequences and originated in the oceanic ridge or supra-subduction zone. The inner belt includes the Mawat complex, which is parallel to the outer belt and is separated by the Biston Avoraman block. The Mawat complex with zoning structures includes sedimentary rocks with mafic interbedded lava and tuff, and thick mafic and ultramafic rocks. This complex does not show a typical ophiolite sequences such as those in Penjween and Bulfat. The Mawat complex shows evidence of dynamic deformation during the Late Cretaceous. Geochemical data suggest that basic rocks have high MgO and are significantly depleted in LREE relative to HREE. In addition they show positive ɛ Nd values (+5 to+8) and low 87Sr/86Sr ratios. The occurrence of some OIB type rocks, high Mg basaltic rocks and some intermediate compositions between these two indicate the evolution of the Mawat complex from primary and depleted source mantle. The absence of a typical ophiolite sequence and the presence of good compatibility of the source magma with magma extracted from the mantle plume suggests that a mantle plume from the D″ layer is more consistent as the source of this complex than the oceanic ridge or supra-subduction zone settings. Based on our proposed model the Mawat basin represents an extensional basin formed during the Late Paleozoic to younger along the Arabian passive margin oriented parallel to the Neo-Tethys oceanic ridge or spreading center. The Mawat extensional basin formed without creation of new oceanic basement. During the extension, huge volumes of mafic lava were intruded into this basin. This basin was squeezed between the Arabian Plate and Biston Avoraman block during the Late Cretaceous.

  1. Luna 24 ferrobasalt as a low-Mg primary melt

    International Nuclear Information System (INIS)

    Norman, M.; Ryder, G.


    Luna 24 very-low titanium (VLT) ferrobasalts, metabasalts, brown glasses and impact melts form a tight compositional cluster with no gradation to other groupings postulated for the Luna 24 core components. This suggests that the Luna 24 VLT ferrobasalt was extruded as a liquid of its own composition and was not derived by fractional crystallization from a more magnesian parent in a surface flow. Furthermore, the characteristics of the core lithologies are not easily visualized as components of such a differential flow, e.g. brown glasses. Gravitative settling models purporting to demonstrate the validity of the flow differentiation model are merely permissive. Subsurface fractionation requires that plagioclase, not olivine, be the liquidus phase. The high-Mg component in the Luna 24 core can be constrained, though not identified, chemically, and it has neither the major element, trace element, isotopic, nor mineralogical characteristics required of a possible parent to the Luna 24 VLT ferrobasalt. Thus models of fractionation lack a physical expression of the less differentiated compositions, contrary to the belief that the high-Mg component in the core is the parent material. The Luna 24 VLT ferrobasalt is probably a primary low-Mg melt from a plagioclase-bearing source region, and may have undergone little or no fractionation prior to eruption. Such a model is compatible with, and suggested by, chemical and experimental data. Caution against posulating that all Mg-poor melts are fractionated products, based on terrestrial models, is advised. The terrestrial oceanic situation of 'primary melts' with similar Mg/Fe is probably not valid for the Moon. (Auth.)

  2. Modulation of Connexin-36 Gap Junction Channels by Intracellular pH and Magnesium Ions. (United States)

    Rimkute, Lina; Kraujalis, Tadas; Snipas, Mindaugas; Palacios-Prado, Nicolas; Jotautis, Vaidas; Skeberdis, Vytenis A; Bukauskas, Feliksas F


    Connexin-36 (Cx36) protein forms gap junction (GJ) channels in pancreatic beta cells and is also the main Cx isoform forming electrical synapses in the adult mammalian brain. Cx36 GJs can be regulated by intracellular pH (pH i ) and cytosolic magnesium ion concentration ([Mg 2+ ] i ), which can vary significantly under various physiological and pathological conditions. However, the combined effect and relationship of these two factors over Cx36-dependent coupling have not been previously studied in detail. Our experimental results in HeLa cells expressing Cx36 show that changes in both pH i and [Mg 2+ ] i affect junctional conductance (g j ) in an interdependent manner; in other words, intracellular acidification cause increase or decay in g j depending on whether [Mg 2+ ] i is high or low, respectively, and intracellular alkalization cause reduction in g j independently of [Mg 2+ ] i . Our experimental and modelling data support the hypothesis that Cx36 GJ channels contain two separate gating mechanisms, and both are differentially sensitive to changes in pH i and [Mg 2+ ] i . Using recombinant Cx36 we found that two glutamate residues in the N-terminus could be partly responsible for the observed interrelated effect of pH i and [Mg 2+ ] i . Mutation of glutamate at position 8 attenuated the stimulatory effect of intracellular acidification at high [Mg 2+ ] i , while mutation at position 12 and double mutation at both positions reversed stimulatory effect to inhibition. Moreover, Cx36 * E8Q lost the initial increase of g j at low [Mg 2+ ] i and double mutation lost the sensitivity to high [Mg 2+ ] i . These results suggest that E8 and E12 are involved in regulation of Cx36 GJ channels by Mg 2+ and H + ions.

  3. Ciguatoxin enhances quantal transmitter release from frog motor nerve terminals. (United States)

    Molgó, J.; Comella, J. X.; Legrand, A. M.


    1. Ciguatoxin (CTX), a marine toxin produced by the benthic dinoflagellate Gambierdiscus toxicus, is responsible for a complex endemic disease in man known as ciguatera fish poisoning. In the present study we have investigated the effects of purified CTX extracted for Gymnothorax javanicus moray-eel liver on frog isolated neuromuscular preparations with conventional electrophysiological techniques. 2. CTX (1-2.5 nM) applied to cutaneous pectoris nerve-muscle preparations induced, after a short delay, spontaneous fibrillations of the muscle fibres that could be suppressed with 1 microM tetrodotoxin (TTX) or by formamide to uncouple excitation-contraction. 3. In preparations treated with formamide, CTX (1-2.5 nM) caused either spontaneous or repetitive muscle action potentials (up to frequencies of 60-100 Hz) in response to a single nerve stimulus. Recordings performed at extrajunctional regions of the muscle membrane revealed that during the repetitive firing a prolongation of the repolarizing phase of the action potential occurred. At junctional sites the repetitive action potentials were triggered by repetitive endplate potentials ( 4. CTX (2.5 nM) caused a TTX-sensitive depolarization of the muscle membrane. 5. In junctions equilibrated in solutions containing high Mg2+ + low Ca2+, addition of CTX (1.5 nM) first induced an average increase of 239 +/- 36% in the mean quantal content of Subsequently CTX reduced and finally blocked nerve-evoked transmitter release irreversibly. 6. CTX (1.5-2.5 nM) increased the frequency of miniature endplate potentials ( in junctions bathed either in normal Ringer, low Ca2(+)-high Mg2+ medium or in a nominally Ca2(+)-free solution containing EGTA.2+ Extensive washing with toxin-free solutions did not reverse the effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1972891

  4. The Tonian Beck Spring Dolomite: Marine dolomitization in a shallow, anoxic sea (United States)

    Shuster, Alice Mary; Wallace, Malcolm William; van Smeerdijk Hood, Ashleigh; Jiang, Ganqing


    The reason for the abundance of dolomite lithologies in Earth's early geological record compared to modern environments remains contentious. This study provides new insight into this Precambrian "dolomite problem" by revisiting one of the most controversial dolomite localities, the Beck Spring Dolomite, of Death Valley, USA. Consistent with some previous studies, petrographic evidence indicates that although the Beck Spring Dolomite now consists almost entirely of dolomite, it was originally precipitated largely as aragonite and high-Mg calcite. Depositional constituents (microbialites and ooids) were likely originally aragonitic, and early marine length-fast cements (now dolomite) are suggested to have precipitated as high-Mg calcite then replaced syntaxially by dolomite. Based on petrographic and geochemical evidence, we suggest that marine dolomitization was the dominant synsedimentary diagenetic process in the unit, and for the most part, involved syntaxial and mimetic replacement. Further, a length-slow fibrous dolomite generation was precipitated during the later stages of marine diagenesis as a primary marine dolomite cement. This is indicated by the length-slow crystallographic structure of the cement and from its preserved geochemical and cathodoluminescence growth zonation. This new evidence for Tonian marine dolomite precipitation reinforces the idea of Precambrian marine environmental conditions, including the chemical composition of seawater, promoting dolomite formation at this time. The trace metal geochemical composition of well-preserved marine components, especially dolomite marine cements, reveals information about redox conditions in this Tonian shallow seawater. In terms of rare earth element geochemistry, the Beck Spring Dolomite has no significant Ce anomaly, and a ubiquitous positive Eu anomaly, consistent with widespread oceanic anoxia during deposition. Furthermore, the relatively low levels of iron and chalcophile elements Co, Cu, Pb and

  5. O efeito facilitatório do óxido nítrico sobre a transmissão neuromuscular de preparações nervo frênico- diafragma isolado de ratos é Ca++ dependente - DOI: 10.4025/actascibiolsci.v26i4.1528 NO- induced neuromuscular facilitation in the phrenic nerve diaphragm preparation of rats is Ca++ dependent - DOI: 10.4025/actascibiolsci.v26i4.1528

    Directory of Open Access Journals (Sweden)

    Heraldo Esheveria Borges


    Full Text Available A pesquisa foi conduzida para verificar se os efeitos neuromusculares induzidos por óxido nítrico (NO poderiam depender dos níveis extracelulares de Ca++. O doador de NO, nitroprussiato de sódio (NPS, e o análogo de GMPc, 8-Br-cGMP, aumentaram a amplitude das contrações musculares (ACM em preparações indiretamente estimuladas a 0.2 Hz, mas não produziram efeitos quando a solução nutriente (Krebs normal foi trocada por Krebs com baixo Ca++/ alto Mg++. NPS e 8-Br-cGMP reduziram a ACM quando as preparações foram diretamente estimuladas, mas tal efeito não foi observado com o uso de Krebs com baixo Ca++/ alto Mg++. Dados sugerem que os efeitos neuromusculares induzidos por NO dependem dos níveis extracelulares de Ca++The research was carried out to verify whether the neuromuscular effects induced by nitric oxide (NO might depend on extracellular level of Ca++. The donor of NO, sodium nitroprusside (SNP, and the analogue of cGMP, 8-Br-cGMP, increased the muscular contraction amplitude (MCA in preparations indirectly stimulated at 0.2 Hz, but did not produce any effect when the nutrient solution was exchanged by Krebs buffer low Ca++/ high Mg++. SNP and 8-Br-cGMP reduced the MCA in preparations directly stimulated. Such effect was not recorded in Krebs buffer low Ca++/ high Mg++. Data suggest that the neuromuscular effects induced by NO or cGMP depend on extracellular level of Ca++

  6. Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 °C: Effects of Mg and the Q-precipitate phase

    International Nuclear Information System (INIS)

    Farkoosh, A.R.; Pekguleryuz, M.


    Strategies to improve the strength of Al–Si alloys at elevated temperatures can follow two routes: (i) improving the age-hardening behavior and/or (ii) producing effective dispersoid strengthening. In this study, the influence of Mg (in the range of 0.3–0.7 wt%) on the precipitation characteristics and mechanical properties of the Al–7Si–0.5Cu–(Mg) alloy was investigated. Thermodynamic calculations were performed via the CALPHAD method which showed that Q-Al 5 Mg 8 Cu 2 Si 6 is the main thermodynamically stable precipitate at 300 °C. The calculations were validated by transmission electron microscopy and differential scanning calorimetry analyses. Increasing the Mg level from 0.3 wt% to the maximum solubility limit of ∼0.5 wt% increased the amount of the Q-Al 5 Mg 8 Cu 2 Si 6 precipitates at 300 °C by ∼60 wt% and significantly improved the tensile strength and creep resistance at the expense of some ductility. Mg in excess of the solubility limit was seen to remain within the microstructure in the form of the large π-Al 8 FeMg 3 Si 6 and β-Mg 2 Si intermetallics after solution treatment at 530 °C. Cracking of the brittle π-Al 8 FeMg 3 Si 6 intermetallics during deformation was accounted for the decreased ductility of the alloys at high Mg levels. It is concluded that the Mg level can be increased to 0.5 wt% in the A–7Si–0.5Cu alloys to improve strength. However, for elevated temperature applications in which both strength and ductility are required (e.g. Diesel engine), modification of the π-Al 8 FeMg 3 Si 6 intermetallics would be required to improve the ductility of the alloys with high Mg contents

  7. Geochronological synthesis of magmatism, metamorphism and metallogeny of Costa Rica, Central America; Sintesis geocronologica del magmatismo, metamorfismo y metalogenia de Costa Rica, America Central

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Guillermo E., E-mail: [Inst. Costarricense de Electricidad, Apdo. 10032, 1000 San Jose (Costa Rica); Univ. de Costa Rica, Centro de Investigaciones Geologicas, Apdo. 35-2060 (Costa Rica); Gans, Phillipe B [Univ. of California, Dept. of Geological Science, Santa Barbara, CA 93106 (United States)


    A comprehensive compilation of 651 (since 1968) radiometric ages determinations (415 {sup 40}Ar/{sup 39}Ar, 211 K/Ar, 5 U/Th, 4 Rb/Sr, 2 U/Pb, and 13 fission track thermochronology ages using zircon) have provided a complete picture of the igneous stratigraphy of Costa Rica, and information about the age of the major metamorphic and metallogenic events in the region. Igneous rocks of Late Jurassic to Middle Eocene age ({approx} 160 to {approx} 41 Ma), mainly accreted ophiolites. The actual subduction zone was established, represented by volcano-sedimentary rocks of basic to felsic composition, at the beginning of Campanian time ({approx} 71 Ma). However, voluminous subalkaline, primary volcanic rocks have appeared only after {approx} 29 Ma. Intrusive to hypabyssal granitic to gabboic plutons, stocks, equivalent dykes and sills, are widely exposed in the Talamanca range ({approx} 12,4 - 7,8 Ma), hills of Escazu ({approx} 6,0 - 5,9 Ma), and Fila Costena ({approx} 18,3 - 16,8 and {approx} 14,8 - 11,1 Ma), Tapanti-Montes del Aguacate-Carpintera ({approx} 4,2 - 2,2 Ma) and Guacimal ({approx} 6,4 - 5,2 Ma). Arc rocks between 29 and 11 Ma (called Photo-Volcanic Front) are known in the San Carlos plains and in southern Costa Rica. The location and age of the igneous rocks have indicated that there was a 20 degrees counterclockwise rotation of the arc (termed as Proto-Volcanic Front) between 15 and 8 Ma, with a pole of rotation that has centered on southern Costa Rica. This rotation is attributed to deformation in the overriding plate (shortening in the south coeval with extension in the NW), accompanied by trench retreat in the south. At {approx} 3,45 Ma, arc-related volcanism has shut off in southern part of the region, but local acid-adakite volcanism has persisted in the Talamanca range (4,2 - 0,95 Ma) due to the subduction of the Cocos Ridge. The Paleo-Volcanic Front is represented by arc-related rocks (8 - 3,5 Ma) along the length of Costa Rica, parallel to but in

  8. Geochemistry and tectonomagatic setting of Tertiary volcanic rocks of the Kangan area, northeast of Sarbisheh, southern Khorasan

    Directory of Open Access Journals (Sweden)

    Mahshid Malekian Dastjerdi


    , Z., Qiu, H., Chu, Z., Zhao, Z. and Dong, Y., 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet: evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4: 437-490.

  9. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb


    Full Text Available Introduction The formation of porphyry copper deposits is attributed to the shallow emplacement, and subsequent cooling of the hydrothermal system of porphyritic intrusive rocks (Titley and Bean, 1981. These deposits have usually been developed along the chain of subduction-related volcanic and calc-alkalin batholiths (Sillitoe, 2010. Nevertheless, it is now confirmed that porphyry copper systems can also form in collisional and post collisional settings (Zarasvandi et al., 2015b. Detailed studies on the geochemical features of ore-hosting porphyry Cu-Mo-Au intrusions indicate that they are generally adakitic, water and sulfur- riched, and oxidized (Wang et al., 2014. For example, high oxygen fugacity of magma has decisive role in transmission of copper and gold to the porphyry systems as revealed in (Wang et al., 2014. In this regard, the present work deals with the mineral chemistry of amphibole and plagioclase in the Dalli porphyry Cu-Au deposit. The data is used to achieve the physical and chemical conditions of magma and its impact on mineralization. Moreover, the results of previous studies on the hydrothermal system of the Dalli deposit such as Raman laser spectroscopy and fluid inclusion studies are included for determination of the evolution from magmatic to hydrothermal conditions. Materials and methods In order to correctly characterize the physical and chemical conditions affecting the trend of mineralization, 20 least altered and fractured samples of diorite and quartz-diorite intrusions were chosen from boreholes. Subsequently, 20 thin-polished sections were prepared in the Shahid Chamran University of Ahvaz. Finally, mineral chemistry of amphibole and plagioclase were determined using electron micro probe analyses (EMPA in the central lab of the Leoben University. Results Amphibole that is one of the the main rock-forming minerals can form in a wide variety of igneous and metamorphic rocks. Accordingly, amphibole chemistry can be

  10. Rb-Sr and Nd-Sr isotope geochemistry and petrogenesis of the Misho Mountains mafic dikes (NW Iran

    Directory of Open Access Journals (Sweden)

    Maryam Ahankoub


    the mafic dike. Discussion Geochemistry data indicate that Misho mafic dikes are similar to calc-alkaline basalts of the oceanic island basalts (OIB whereas Nb and Ti negative anomalies of the trace elements patterns are similar to crustal contamination. Negative amount of the εNd(T indicated depleted mantel source (array mantel with some continental crust contamination during AFC processes . Base on the results of analysis, the upper crust is the best candidates for magma contamination of the mafic dikes in Misho. Isotopic data indicated to replace mafic dike 232ma years ago by closing of paleotethys and forming the extension zone (break up in active continental margin. Acknowledgement We thank Professor Yamamoto, head of geochemistry department of the Nagoya University for help .We are grateful to professor Karimpour, Chief Editor of the Journal of Economic Geology, and three anonymous reviewers for their constructive suggestions and comments. Reference Ahankoub, M., 2012. Petrogenesis and geochemistry east Misho granitoides (NW of Iran. Ph.D. Thesis, Tabriz University, Tabriz, Iran, 171 pp. (in Persian with English abstract Eftekharnejad, J., 1981. Tectonic division of Iran with respect to sedimentary basins. Journal of Iran Petroleum Society, 82(3: 19–28. (in Persian with English abstract Martin, H, 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46(3: 411–429. Metcalfe, I., 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research, 9(1-2: 24–46. Moayyed, M. and Hossainzade, G., 2011. Petrology and petroghraphy of A- type Granitoides of the East-Misho Mountain with theory on its geodynamic importance. Journal of Mineralogy and Crystalography, 3(19: 529–544. (in Persian with English abstract Sun, S.S. and McDonough, W.F., 1989. Chemical and isotopic systematic of ocean basalts: implications for mantle composition and process. In: A

  11. La Isla de Gorgona, Colombia: A petrological enigma? (United States)

    Kerr, Andrew C.


    A wide range of intrusive (wehrlite, dunite, gabbro and olivine gabbro) and extrusive (komatiites picrites and basalts) igneous rocks are found on the small pacific island of Gorgona. The island is best known for its ˜90 Ma spinifex-textured komatiites: the only true Phanerozoic komatiites yet discovered. Early work led to suggestions that the rocks of the island formed at a mid-ocean ridge, however more recent research supports an origin as part of a hot mantle plume-derived oceanic plateau. One of the main lines of evidence for this origin stems from the inferred high mantle source temperatures required to form the high-MgO (> 15 wt.%) komatiites and picrites. Another remarkable feature of the island, considering its small size (8 × 2.5 km), is the degree of chemical and radiogenic isotopic heterogeneity shown by the rocks. This heterogeneity requires a mantle source region with at least three isotopically distinctive source regions (two depleted and one enriched). Although these mantle source regions appear to be derived in significant part from recycled oceanic crust and lithosphere, enrichments in 187Os, 186Os and 3He in Gorgona lavas and intrusive rocks, suggest some degree of transfer of material from the outer core to the plume source region at D″. Modelling reveals that the komatiites probably formed by dynamic melting at an average pressure of 3-4 GPa leaving residual harzburgite. Trace element depletion in Gorgona ultramafic rocks appears to be the result of earlier, deeper melting which produced high-MgO trace element-enriched magmas. The discovery of a trace-element enriched picrite on the island has confirmed this model. Gorgona accreted onto the palaeocontinental margin of northwestern South America in the Eocene and palaeomagnetic work reveals that it was formed at ˜26 °S. It has been proposed that Gorgona is a part of the Caribbean-Colombian Oceanic Plateau (CCOP), however, the CCOP accreted in the Late Cretaceous and was derived from a more

  12. Potential Temperatures of Sources of MORB, OIB and LIPs Based on AL Partitioning Between Olivine and Spinel (United States)

    Sobolev, A. V.; Batanova, V. G.; Krasheninnikov, S.; Borisov, A.; Arndt, N.; Kuzmin, D.; Krivolutskaya, N.; Sushevskaya, N.


    Knowledge of potential temperatures of convecting mantle is required for the understanding the global processes on the Earth [1]. The common way to estimate these is the reconstruction of primary melt compositions and liquidus temperatures based on the Fe-Mg partitioning between olivine and melt. This approach requires knowledge of the compositions of primitive melts in equilibrium with olivine alone as well as composition of olivine equilibrium with primary melts. This information is in most cases unavailable or of questionable quality. Here we report a new approach to obtain crystallization temperatures of primary melts based on the olivine-spinel Al-Cr geothermometer [2]. The advantages of this approach are: (1) low rate of diffusion of Al in the olivine, which promises to preserve high magmatic temperatures and (2) common presence of spinel in assemblage with high-Mg olivine. In order to decipher influence of elevated Ti concentrations in spinel we have run several experiments at high temperatures (1400-1200 degree C), atmospheric pressure and controled oxygen fugacity. We also analysed over two thousand spinel inclusions and high-Mg host olivines from different MORB, OIB, LIP and Archean komatiites on the JXA-8230 EPMA at ISTerre, Grenoble, France. Concentrations of Al, Ti, Na, P, Zn, Cr, Mn, Ca, Co, Ni were determined with a precision of 10 ppm (2 standard errors) using a newly developed protocol [3]. When available, we also analysed matrix glass and glass inclusions in olivine and found that temperature estimations from olivine-spinel (Al-Cr) and olivine-melt (Fe-Mg) [4] equilibrium match within (+/-30 degree C). The results show contrasting crystallization temperatures of Mg-rich olivine of the same Fo content from different types of mantle-derived magmas, from the lowest (down to 1220 degree C) for MORB to the highest (up to 1550 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and

  13. Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old Hydrothermal Systems in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere (United States)

    Zakharov, D. O.; Bindeman, I. N.


    The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2

  14. Age and geochemistry of the Newania dolomite carbonatites, India: implications for the source of primary carbonatite magma (United States)

    Ray, Jyotiranjan S.; Pande, Kanchan; Bhutani, Rajneesh; Shukla, Anil D.; Rai, Vinai K.; Kumar, Alok; Awasthi, Neeraj; Smitha, R. S.; Panda, Dipak K.


    The Newania carbonatite complex of India is one of the few dolomite-dominated carbonatites of the world. Intruding into Archean basement gneisses, the rocks of the complex have undergone limited diversification and are not associated with any alkaline silicate rock. Although the magmatic nature of the complex was generally accepted, its age of emplacement had remained equivocal because of the disturbed nature of radioisotope systems. Many questions about the nature of its mantle source and mode of origin had remained unanswered because of lack of geochemical and isotopic data. Here, we present results of our effort to date the complex using 147Sm-143Nd, 207Pb-206Pb and 40Ar-39Ar dating techniques. We also present mineral chemistry, major and trace element geochemistry and Sr-Nd isotopic ratio data for these carbonatites. Our age data reveal that the complex was emplaced at ~1,473 Ma and parts of it were affected by a thermal event at ~904 Ma. The older 207Pb-206Pb ages reported here (~2.4 Ga) and by one earlier study (~2.3 Ga; Schleicher et al. Chem Geol 140:261-273, 1997) are deemed to be a result of heterogeneous incorporation of crustal Pb during the post-emplacement thermal event. The thermal event had little effect on many magmatic signatures of these rocks, such as its dolomite-magnesite-ankerite-Cr-rich magnetite-magnesio-arfvedsonite-pyrochlore assemblage, mantle like δ13C and δ18O and typical carbonatitic trace element patterns. Newania carbonatites show fractional crystallization trend from high-Mg to high-Fe through high-Ca compositions. The least fractionated dolomite carbonatites of the complex possess very high Mg# (≥80) and have similar major element oxide contents as that of primary carbonatite melts experimentally produced from peridotitic sources. In addition, lower rare earth element (and higher Sr) contents than a typical calcio-carbonatite and mantle like Nb/Ta ratios indicate that the primary magma for the complex was a magnesio

  15. Evaluating controls on planktonic foraminiferal geochemistry in the Eastern Tropical North Pacific (United States)

    Gibson, Kelly Ann; Thunell, Robert C.; Machain-Castillo, Maria Luisa; Fehrenbacher, Jennifer; Spero, Howard J.; Wejnert, Kate; Nava-Fernández, Xinantecatl; Tappa, Eric J.


    To explore relationships between water column hydrography and foraminiferal geochemistry in the Eastern Tropical North Pacific, we present δ18O and Mg/Ca records from three species of planktonic foraminifera, Globigerinoides ruber, Globigerina bulloides, and Globorotalia menardii, collected from a sediment trap mooring maintained in the Gulf of Tehuantepec from 2006-2012. Differences in δ18O between mixed-layer species G. ruber and G. bulloides and thermocline-dweller G. menardii track seasonal changes in upwelling. The records suggest an increase in upwelling during the peak positive phase of El Niño, and an overall reduction in stratification over the six-year period. For all three species, Mg/Ca ratios are higher than what has been reported in previous studies, and show poor correlations to calcification temperature. We suggest that low pH (7.6-8.0) and [3 2-CO] values (∼70-120 μmol/kg) in the mixed layer contribute to an overall trend of higher Mg/Ca ratios in this region. Laser Ablation Inductively Coupled Mass Spectrometry analyses of G. bulloides with high Mg/Ca ratios (>9 mmol/mol) reveal the presence of a secondary coating of inorganic calcite that has Mg/Ca and Mn/Ca ratios up to an order of magnitude higher than these elemental ratios in the primary calcite, along with elevated Sr/Ca and Ba/Ca ratios. Some of the samples with abnormally high Mg/Ca are found during periods of high primary productivity, suggesting the alteration may be related to changes in carbonate saturation resulting from remineralization of organic matter in oxygen-poor waters in the water column. Although similar shell layering has been observed on fossil foraminifera, this is the first time such alteration has been studied in shells collected from the water column. Our results suggest a role for seawater carbonate chemistry in influencing foraminiferal calcite trace element:calcium ratios prior to deposition on the seafloor, particularly in high-productivity, low

  16. Two stage melt-rock interaction in the lower oceanic crust of the Parece Vela basin (Philippine sea), evidence from the primitive troctolites from the Godzilla Megamullion (United States)

    Sanfilippo, A.; Dick, H. J.; Ohara, Y.


    Godzilla Megamullion is a giant oceanic core complex exposed in an extinct slow- to intermediate-spreading segment of the Parece Vela Basin (Philippine sea) [1; 2]. It exposes lower crust and mantle rocks on the sea-floor, offering a unique opportunity to unravel the architecture and the composition of the lower oceanic lithosphere of an extinct back arc basin. Here we present data on primitive troctolites and associated olivine-gabbros from the breakaway area of the Godzilla Megamullion. On the basis of the olivine/plagioclase volume ratio, the troctolites are subdivided into Ol-troctolites (Ol/Pl >1) and Pl-troctolites (Ol/Plthe olivine and a melt crystallizing plagioclase and clinopyroxene. We interpret these rocks as reaction products of a dunite matrix with transient basaltic melts [e.g. 3; 4]. Pl-troctolites have euhedral plagioclase and poikilitic olivine and clinopyroxene. Irregular shapes and inverse zoning of the plagioclase chadacrysts within the olivine indicate disequilibrium between existing plagioclase and an olivine-clinopyroxene saturated melt. The occurrence of plagioclase chadacrysts within clinopyroxene ranging from irregular to euhedral in shape suggests crystallization of new lower-Na plagioclase with the clinopyroxene. Olivine oikocrysts in the Pl-troctolites have low-NiO olivine in equilibrium with a high-MgO melt. The Pl-troctolites, then, may be the product of reaction between a plagioclase cumulate and a basaltic melt produced by mixing the high-MgO melt residual to the formation of the Ol-troctolites with new magma. The effect of melt-rock reaction in the Pl- and Ol- troctolites explains the sharp decrease in plagioclase An with respect to Mg# in clinopyroxene and olivine. Furthermore, the melt is shifted towards lower Na, which is consistent with the low Na8 values of the associated MORB glasses (2.4-2.7 wt %). Our results, then, show that melt-rock interaction was a process active in the lower oceanic crust of the Parece Vela basin and

  17. Origin of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande basalts, SE China (United States)

    Xiao, Yan; Zhang, Hong-Fu; Liang, Zi; Su, Ben-Xun; Zhu, Bin; Sakyi, Patrick Asamoah


    We present petrological and geochemical data of sapphirine- and garnet-bearing clinopyroxenite xenoliths entrained in the Jiande Cenozoic basalts, SE China, to investigate their igneous and metamorphic history, and reconstruct of the thermal-tectonic evolution of the lithospheric mantle. These xenoliths have an unusual mineral association consisting of clinopyroxene + garnet/kelyphite + spinel (±sapphirine). Clinopyroxene has high Mg# (89-93) and displays convex-upward REE pattern. Garnet, partially to completely kelyphitized, is rich in pyrope end-member. It usually includes relics of spinel, suggesting that garnet was formed at the expense of spinel. The spinel has high MgO (20.8-22.9 wt%) and Al2O3 (64.8-67.9 wt%) contents. Sapphirine, forming a rim on spinel, has homogeneous SiO2 (14.5-14.9 wt%), Al2O3 (60.9-61.7 wt%) and MgO (19.7-20.1 wt%) contents, interpreted to be of metamorphic origin. The subsolidus reaction for the formation of sapphirine is as follows: spinel + garnet = sapphirine + clinopyroxene + orthopyroxene. Thus, the earliest mineral assemblage recorded in these xenoliths was spinel + clinopyroxene. The clinopyroxene in the Jiande clinopyroxenite xenoliths has Li abundances (1.04-1.63 ppm) similar to high-P mafic cumulate but much lower than those in crustal eclogite. In addition, the clinopyroxene and garnet do not show positive Eu anomalies. Therefore, the protolith of these three clinopyroxenite xenoliths was most likely a pyroxenite, originating as clinopyroxene + spinel cumulates from mafic melts percolating through the mantle. Many reaction textures such as formation of garnet and sapphirine were developed during decompression possibly coupled with cooling and melt percolation. During this process, the earlier composition of clinopyroxene and spinel also changed. The latest P-T conditions recorded in these xenoliths were at pressure of 8-10 kbar and temperatures of 1069-1094 °C. These observations imply that these rocks have been

  18. Formation of secondary minerals and uptake of various anions under naturally-occurring hyper-alkaline conditions in Oman - 16344

    International Nuclear Information System (INIS)

    Anraku, Sohtaro; Sato, Tsutomu; Yoneda, Tetsuro; Morimoto, Kazuya


    In Japanese transuranic (TRU) waste disposal facilities, 129 I is the most important key nuclide for the long-term safety assessment. Thus, the K d values of I to natural minerals are important factor in the safety assessment. However, the degradation of cement materials in the repositories can produce high pH pore fluid which can affect the anion transport behavior. Therefore, it is necessary to understand the behavior of anions such as I- under the hyper-alkaline conditions. The natural hyper-alkaline spring water (pH>11) in the Oman ophiolite is known to be generated from the partly serpentinized peridotites. The spring water is characteristically hyper-alkaline, reducing, low-Mg, Si and HCO 3 - , and high-Ca, while the river water is moderately alkaline, oxidizing, high-Mg and HCO 3 - . The mixing of these spring and river water resulted in the formation of secondary minerals. In the present study, the naturally occurring hyper-alkaline conditions near the springs in Oman were used as natural analogue for the interaction between cement pore fluid and natural Mg-HCO 3 - groundwater. The present aim of this paper is to examine the conditions of secondary mineral formation and the anion uptake capacity of these mineral in this system. Water and precipitate samples were collected from the different locations around the spring vent to identify the effect of mixing ratios between spring and river water on mineral composition and water-mineral distribution coefficient of various anions. On-site synthesis was also carried out to support these data quantitatively. Aragonite was observed in all precipitates, while calcite, brucite and Mg-Al hydrotalcite-like compounds (HTlc) were also determined in some samples. Calcite was observed only closed to the springs. At locations far from the springs, calcite formation was inhibited due to high-Mg fluid from river water. Brucite was observed from the springs with relatively low-Al concentration and HTlc was the opposite. During

  19. Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate.

    Directory of Open Access Journals (Sweden)

    Anne M Visscher

    Full Text Available BACKGROUND: Martian regolith (unconsolidated surface material is a potential medium for plant growth in bioregenerative life support systems during manned missions on Mars. However, hydrated magnesium sulfate mineral levels in the regolith of Mars can reach as high as 10 wt%, and would be expected to be highly inhibitory to plant growth. METHODOLOGY AND PRINCIPAL FINDINGS: Disabling ion transporters AtMRS2-10 and AtSULTR1;2, which are plasma membrane localized in peripheral root cells, is not an effective way to confer tolerance to magnesium sulfate soils. Arabidopsis mrs2-10 and sel1-10 knockout lines do not mitigate the growth inhibiting impacts of high MgSO(4.7H(2O concentrations observed with wildtype plants. A global approach was used to identify novel genes with potential to enhance tolerance to high MgSO(4.7H(2O (magnesium sulfate stress. The early Arabidopsis root transcriptome response to elevated concentrations of magnesium sulfate was characterized in Col-0, and also between Col-0 and the mutant line cax1-1, which was confirmed to be relatively tolerant of high levels of MgSO(4.7H(2O in soil solution. Differentially expressed genes in Col-0 treated for 45 min. encode enzymes primarily involved in hormone metabolism, transcription factors, calcium-binding proteins, kinases, cell wall related proteins and membrane-based transporters. Over 200 genes encoding transporters were differentially expressed in Col-0 up to 180 min. of exposure, and one of the first down-regulated genes was CAX1. The importance of this early response in wildtype Arabidopsis is exemplified in the fact that only four transcripts were differentially expressed between Col-0 and cax1-1 at 180 min. after initiation of treatment. CONCLUSIONS/SIGNIFICANCE: The results provide a solid basis for the understanding of the metabolic response of plants to elevated magnesium sulfate soils; it is the first transcriptome analysis of plants in this environment. The results foster

  20. Temperatures and Melt Water Contents at the Onset of Phenocryst Growth in Quaternary Nepheline-Normative Basalts Erupted along the Tepic-Zacoalco Rift in Western Mexico (United States)

    Mesa, J.; Lange, R. A.; Pu, X.


    Nepheline-normative, high-Mg basalts erupted from the western Mexican arc, along the Tepic-Zacoalco rift (TZR), have a trace-element signature consistent with an asthenosphere source, whereas calc-alkaline basalts erupted from the central Mexican arc in the Michoacan-Guanajuato volcanic field (MGVF) have a trace-element signature consistent with a mantle source strongly affected by subduction fluids. In this study, olivine-melt thermometry and plagioclase-liquid hygrometry are used to constrain the temperature and melt water content of the alkaline TZR basalts. The presence of diffusion-limited growth textures in olivine and plagioclase phenocrysts provide preliminary evidence of rapid growth during ascent. For each basalt sample, a histogram of all analyzed olivines in each sample allows the most Fo-rich composition to be identified, which matches the calculated composition at the liquidus via MELTS (Ghiorso & Sack, 1995; Asimow & Ghiorso, 1998) at fO2 values of QFM +2. Therefore a newly developed olivine-melt thermometer, based on DNiol/liq (Pu et al., 2017) was used to calculate temperature at the onset of olivine crystallization during ascent. Temperatures range from 1076-1247°C, whereas those calculated using an olivine-melt thermometer based on DMgol/liq range from 1141-1236 °C. Olivine-melt thermometers based on DMgol/liq are sensitive to melt H2O content, therefore ΔT = TMg - TNi (≤ 82 degrees) may be used as a qualitative indicator of melt H2O (≤ 2.6 wt% H2O; Pu et al., 2017). When temperatures from the Ni-thermometer are applied to the most calcic plagioclase in each sample (Waters & Lange, 2015), calculated melt H2O contents range from 1.3-1.9 (± 0.4) wt%. These values are significantly lower than those obtained from high-Mg calc-alkaline basalts from the MGVF using similar methods (1.9-5.0 wt%; Pu et al., 2017), consistent with a reduced involvement of slab-derived fluids in the origin of the alkaline TZR basalts from western Mexico.

  1. Geochemistry of Fast-Spreading Lower Oceanic Crust: Results from Drilling at the Hess Deep Rift (ODP Leg 147 and IODP Expedition 345; East Pacific Rise) (United States)

    Godard, M.; Falloon, T.; Gillis, K. M.; Akizawa, N.; de Brito Adriao, A.; Koepke, J.; Marks, N.; Meyer, R.; Saha, A.; Garbe-Schoenberg, C. D.


    The Hess Deep Rift, where the Cocos Nazca Ridge propagates into the young, fast-spread East Pacific Rise crust, exposes a dismembered, but nearly complete, lower crustal section. The extensive exposures of the plutonic crust were drilled at 3 sites during ODP Leg 147 (Nov. 1992-Jan. 1993) and IODP Expedition 345 (Dec. 2012-Feb. 2013). We report preliminary results of a bulk rock geochemical study (major and trace elements) carried out on 109 samples representative of the different drilled lithologies. The shallowest gabbroic rocks were sampled at ODP Site 894. They comprise gabbronorite, gabbro, olivine gabbro and gabbronorite. They have evolved compositions with Mg# 39-55, Yb 4-8 x chondrite and Eu/Eu* 1-1.6. Olivine gabbro and troctolite were dominant at IODP Site U1415, with minor gabbro, gabbronorite and clinopyroxene oikocryst-bearing troctolite and gabbro. All U1415 gabbroic rocks have primitive compositions except for one gabbronorite rubble that is similar in composition to the shallow gabbros. Olivine gabbro, gabbro and gabbronorite overlap in composition: they have high Mg# (79-87) and Ni (130-570 ppm), low TiO2 (0.1-0.3 wt.%) and Yb (1.3-2.3 x chondrite) and positive Eu anomaly (Eu/Eu*=1.9-2.7). Troctolite has high Mg# (81-89), Ni (260-1500 ppm) and low TiO2 (4). ODP Site 895 recovered sequences of highly depleted harzburgite, dunite and troctolite (Yb down to <0.1xchondrite) that are interpreted as a mantle-crust transition zone. Basalts were recovered at Sites 894 and U1415: they have low Yb (0.5-0.9xN6MORB) and are depleted in the most incompatible elements (Ce/Yb=0.6-0.9xN-MORB). The main geochemical characteristics of Site U1415 and 894 gabbroic rocks are consistent with formation as a cumulate sequence from a common parental MORB melt; troctolites are the most primitive end-member of this sequence. They overlap in composition with the most primitive of slow and fast spread crust gabbroic rocks.

  2. Enhanced mechanical properties of an Al–Si–Cu–Mg alloy at 300 °C: Effects of Mg and the Q-precipitate phase

    Energy Technology Data Exchange (ETDEWEB)

    Farkoosh, A.R., E-mail:; Pekguleryuz, M., E-mail:


    Strategies to improve the strength of Al–Si alloys at elevated temperatures can follow two routes: (i) improving the age-hardening behavior and/or (ii) producing effective dispersoid strengthening. In this study, the influence of Mg (in the range of 0.3–0.7 wt%) on the precipitation characteristics and mechanical properties of the Al–7Si–0.5Cu–(Mg) alloy was investigated. Thermodynamic calculations were performed via the CALPHAD method which showed that Q-Al{sub 5}Mg{sub 8}Cu{sub 2}Si{sub 6} is the main thermodynamically stable precipitate at 300 °C. The calculations were validated by transmission electron microscopy and differential scanning calorimetry analyses. Increasing the Mg level from 0.3 wt% to the maximum solubility limit of ∼0.5 wt% increased the amount of the Q-Al{sub 5}Mg{sub 8}Cu{sub 2}Si{sub 6} precipitates at 300 °C by ∼60 wt% and significantly improved the tensile strength and creep resistance at the expense of some ductility. Mg in excess of the solubility limit was seen to remain within the microstructure in the form of the large π-Al{sub 8}FeMg{sub 3}Si{sub 6} and β-Mg{sub 2}Si intermetallics after solution treatment at 530 °C. Cracking of the brittle π-Al{sub 8}FeMg{sub 3}Si{sub 6} intermetallics during deformation was accounted for the decreased ductility of the alloys at high Mg levels. It is concluded that the Mg level can be increased to 0.5 wt% in the A–7Si–0.5Cu alloys to improve strength. However, for elevated temperature applications in which both strength and ductility are required (e.g. Diesel engine), modification of the π-Al{sub 8}FeMg{sub 3}Si{sub 6} intermetallics would be required to improve the ductility of the alloys with high Mg contents.

  3. Erratum to ``Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (Southern Italy): The Monticchio Lakes Formation'' [Journal of Volcanology and Geothermal Research 78 (1997) 251 265 (United States)

    Stoppa, Francesco; Principe, Claudia


    The Monticchio Lakes Formation (MLF) is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example (ca. 0.13 m.y.) of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO 2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite and/or porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mg# (> 85) and Cr and Ni content (1500 ppm). The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr

  4. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj


    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain 14 wt.% of MgO and 4% wt.% of H2O and originated by partial melting ( 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of 1250 °C and pressure of 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at 2.8 GPa and 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC liquid

  5. The 89 Ma Tortugal komatiitic suite, Costa Rica: Implications for a common geological origin of the Caribbean and Eastern Pacific region from a mantle plume (United States)

    Alvarado, Guillermo E.; Denyer, Percy; Sinton, Christopher W.


    Komatiites are reported for the first time in the northern part of the Gulf of Nicoya, Costa Rica. These rocks, dated at 89.7 ± 1.4 Ma (Turonian) by 40Ar/39Ar methods, occur as a large, elongated (14 km long, 1.5 km wide) N60°W striking body in the ophiolitic Nicoya Complex. These lavas have high MgO (26% 29%), Ni, and Cr, have high CaO/Al2O3 (0.98 1.08) and moderate Al2O3/TiO2 (5.55 8.44) ratios, and are depleted in Al2O3 (4% 5.5%), K2O (0.02% 0.37%), and TiO2 (0.59% 0.9%). Although these lavas are cumulates, their geochemical composition indicates an origin from a primary komatiitic magma, with a melting temperature of 1700 °C at a depth of 150 km. Similarities in the petrology and age (88 90 Ma) of Gorgona, Curaìao, and Nicoya-Tortugal mafic and ultramafic volcanic rocks suggest that these rocks had a common origin. These occurrences suggest a single hotspot center over a large area of the Caribbean and Eastern Pacific Mesozoic region due to a major thermal anomaly in the mantle, such as a hot, rising, convective plume.

  6. Dynamic melting in plume heads: the formation of Gorgona komatiites and basalts (United States)

    Arndt, Nicholas T.; Kerr, Andrew C.; Tarney, John


    The small Pacific island of Gorgona, off the coast of Colombia, is well known for its spectacular spinifex-textured komatiites. These high-Mg liquids, which have been linked to a late Cretaceous deep mantle plume, are part of a volcanic series with a wide range of trace-element compositions, from moderately enriched basalts ( La/SmN ˜ 1.5) to extremely depleted ultramafic tuffs and picrites ( La/SmN ˜ 0.2). Neither fractional crystallization, nor partial melting of a homogeneous mantle source, can account for this large variation: the source must have been chemically heterogeneous. Low 143Nd/144Nd in the more enriched basalts indicates some initial source heterogeneity but most of the variation in magma compositions is believed to result from dynamic melting during the ascent of a plume. Modelling of major- and trace-element compositions suggests that ultramafic magmas formed at ˜ 60-100 km depth, and that the melt extraction that gave rise to their depleted sources started at still greater depths. The ultra-depleted lavas represent magmas derived directly from the hottest, most depleted parts of the plume; the more abundant moderately depleted basalts are interpreted as the products of pooling of liquids from throughout the melting region.

  7. Whole Blood PCR Amplification with Pfu DNA Polymerase and Its Application in Single-Nucleotide Polymorphism Analysis. (United States)

    Liu, Er-Ping; Wang, Yan; He, Xiao-Hui; Guan, Jun-Jie; Wang, Jin; Qin, Zheng-Hong; Sun, Wan-Ping


    Point-of-care genetic analysis may require polymerase chain reaction (PCR) to be carried out on whole blood. However, human blood contains natural inhibitors of PCR such as hemoglobin, immunoglobulin G, lactoferrin, and proteases, as well as anticoagulant agents, including EDTA and heparin that can reduce whole blood PCR efficiency. Our purpose was to develop a highly specific, direct whole blood single-nucleotide polymorphism (SNP) analysis method based on allele-specific (AS) PCR that is mediated by Pfu DNA polymerase and phosphorothioate-modified AS primers. At high Mg(2+) concentrations, Pfu DNA polymerase efficiently amplified genomic DNA in a reaction solution containing up to 14% whole blood. Among the three anticoagulants tested, Pfu DNA polymerase showed the highest activity with sodium citrate. Meanwhile, Triton X-100 and betaine inhibited Pfu DNA polymerase activity in whole blood PCR, whereas trehalose had virtually no effect. These findings provided for the development of a low-cost, simple, and fast direct whole blood genotyping method that uses Pfu DNA polymerase combined with phosphorothioate AS primers for CYP2C9*3 and VKORC1(-1639) loci. With its high DNA amplification efficiency and tolerance of various blood conditions, Pfu DNA polymerase can be used in clinical laboratories to analyze SNPs in whole blood samples.

  8. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. (United States)

    Prazeres, Martina; Uthicke, Sven; Pandolfi, John M


    Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yun; Liu, Qing, E-mail:; Jia, Zhihong, E-mail:; Xing, Yuan; Ding, Lipeng; Wang, Xueli


    Highlights: • High Cu alloy with high Mg/Si ratio has the best comprehensive property. • Addition of excess Mg could improve the intergranular corrosion resistance. • Si containing particles on the grain boundaries of Si-rich alloys promote IGC. • IGC susceptibility depends primarily on Cu content and secondarily on Mg/Si ratio. - Abstract: 6000-series aluminium alloys with high Cu or excess Si addition were susceptible to intergranular corrosion (IGC). In order to obtain good IGC resistance, four alloys with low/high Cu and various Mg/Si ratios were designed. The corrosion behaviour of four alloys was investigated by accelerated corrosion test, electrochemical test and electron microscopies. It was revealed that IGC susceptibility of alloys was the result of microgalvanic coupling between the noble grain boundary precipitates and the adjacent precipitates free zone (PFZ), which was closely related to a combination of Cu content and the Mg/Si ratio. Excess Mg could improve the IGC resistance of alloys by forming discontinuous precipitates on the grain boundaries. The designed alloy with high Cu and excess Mg has the same corrosion level as the commercial alloy with low Cu and excess Si, which provides possibility for developing new alloy.

  10. Mechanism of Calcite Co-Orientation in the Sea Urchin Tooth

    Energy Technology Data Exchange (ETDEWEB)

    Killian, Christopher; Metzler, Rebecca; Gong, Y. U. T.; Olson, Ian; Aizenberg, Joanna; Politi, Yael; Wilt, Fred; Scholl, Andreas; Young, Anthony; Doran, Andrew; Kunz, Martin; Tamura, Nobumichi; Coppersmith, Susan; Gilbert, P. U. P. A.


    Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO{sub 3}) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin (Strongylocentrotus purpuratus), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction ({mu}XRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO{sub 3} is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.

  11. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton. (United States)

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan


    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  12. Binding of /sup 125/I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, K.M.; Boehme, M.; Inbar, O.


    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using /sup 125/I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed.

  13. The occurrence of fluor-wagnerite in UHT granulites and its implications towards understanding fluid regimes in the evolution of deep crust: a case study from the Eastern Ghats Belt, India (United States)

    Das, Kaushik; Tomioka, Naotaka; Bose, Sankar; Ando, Jun-ichi; Ohnishi, Ichiro


    We report the occurrence of a rare phosphate mineral, fluor-wagnerite (Mg1.91-1.94Fe0.06-0.07Ca1000 °C, 8-9 kbar) of the studied area was retrogressed after emplacement to mid-crustal level (800-850 °C, 6-6.5 kbar) as deduced from their pressure -temperature histories. Based on mineral chemical data and micro-Raman analyses, we document an unusual high Mg-F-rich chemistry of the F-wagnerite, which occur both in peak metamorphic porphyroblastic assemblages as well as in the retrograde matrix assemblage. Therefore, in absence of other common phosphates like apatite, fluor-wagnerite can act as an indicator for the presence of F-bearing fluids for rocks with high X Mg and/or fO2. The occurrence of F-rich minerals as monitors for fluid compositions has important implications for the onset of biotite dehydration melting and hence melt production in the deep crust. We propose that fluor-wagnerite can occur as an accessory mineral associated with F-rich fluids in lower-mid crustal rocks, and F in coexisting minerals should be taken into consideration when reconciling the petrogenetic grid of biotite-dehydration melting.

  14. Hot LO-phonon limited electron transport in ZnO/MgZnO channels (United States)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Toporkov, M.; Özgür, Ü.; Morkoç, H.


    High-field electron transport in two-dimensional channels at ZnO/MgZnO heterointerfaces has been investigated experimentally. Pulsed current-voltage (I-V) and microwave noise measurements used voltage pulse widths down to 30 ns and electric fields up to 100 kV/cm. The samples investigated featured electron densities in the range of 4.2-6.5 × 1012 cm-2, and room temperature mobilities of 142-185 cm2/V s. The pulsed nature of the applied field ensured negligible, if any, change in the electron density, thereby allowing velocity extraction from current with confidence. The highest extracted electron drift velocity of ˜0.5 × 107 cm/s is somewhat smaller than that estimated for bulk ZnO; this difference is explained in the framework of longitudinal optical phonon accumulation (hot-phonon effect). The microwave noise data allowed us to rule out the effect of excess acoustic phonon temperature caused by Joule heating. Real-space transfer of hot electrons into the wider bandgap MgZnO layer was observed to be a limiting factor in samples with a high Mg content (48%), due to phase segregation and the associated local lowering of the potential barrier.

  15. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda

    Directory of Open Access Journals (Sweden)

    Philippe Muchez


    Full Text Available Tungsten mineralization in hydrothermal quartz veins from the Nyakabingo,Gifurwe and Bugarama deposits in central Rwanda occurs as the iron-rich endmember ofthe wolframite solid solution series (ferberite and in the particular form of reinite, whichrepresents a pseudomorph of ferberite after scheelite. Primary ferberite, reinite and latesecondary ferberite are characterized by their trace element chemistry and rare earthelement patterns. The replacement of scheelite by ferberite is also documented in the traceelement composition. Primary ferberite shows high Mg, Zn, Sc, V, Nb, In and Snconcentrations, but very low Ca, Pb, Sr and Ba contents. Reinite and late secondaryferberite display an uncommon trace element composition containing high concentrationsof Ca, Pb, Sr, Ba, As and Ga, but very low levels in Sn, Zr, Hf, In, Ti, Sc, Nb, Ta, Mg andZn. Late secondary ferberite replacing primary ferberite is characterized by additionalenrichments in Bi, Pb, As and Sb. The rare earth element patterns of reinite and secondaryferberite are also similar to hydrothermal scheelite. The formation of the tungsten depositsin central Rwanda is interpreted to be epigenetic in origin, and the hydrothermalmineralizing fluids are related to the intrusion of the G4-granites.

  16. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    International Nuclear Information System (INIS)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.


    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  17. Zircon and allanite U-Pb ID-TIMS ages of vaugnerites from the Calzadilla pluton, Salamanca (Spain): dating mantle-derived magmatism and post-magmatic subsolidus overprint

    Energy Technology Data Exchange (ETDEWEB)

    López-Moro, F.J.; Romer, R. L.; López-Plaza, M.; González Sánchez, M.


    Basic to intermediate high-K, high-Mg mantle-derived rocks occur throughout the Iberian Massif and are particularly important in the Tormes Dome, where vaugnerites form several stocks and small plutons. One of the largest and geochemically most variable among these plutons is the Calzadilla pluton in the Tormes Dome that crystallized at 318 ± 1.4Ma (Bashkirian; U-Pb TIMS zircon). This age reveals that the vaugnerite pluton was emplaced during the transition from late D2 extensional deformation to early D3 contractional deformation (319 to 317Ma). Large-scale extension in the area resulted, on one hand, in extensive anatexis in the crust due to quasiisothermal decompression and mica-dehydration melting and, on the other hand, in the upwelling of the mantle, which induced partial melting of the enriched domains in the lithospheric mantle. The driving reason why crustal and mantle melts were coeval is extension. The U-Pb ID-TIMS age of allanite is not related to the emplacement nor cooling of the Calzadilla vaugnerite, but it seems to be related to a younger subsolidus overprint ca. 275Ma that, in the scale of the Central Iberian Zone, corresponds to a period of hydrothermal alteration, including episyenite formation and tungsten mineralization.

  18. Thermal shock investigation of silicon nitride

    International Nuclear Information System (INIS)

    Ziegler, G.; Leucht, R.


    In this work, the thermal shock properties of commercial reaction-bonded Si 3 N 4 quality material (RBSN), of commercial hot-pressed Si 3 N 4 (HPSN) and of different laboratory grades of hot-pressed Si 3 N 4 were examined. The thermal shock properties of RBSN quality material differ according to the structure considerably: The critical temperature difference for sample crossections of 5 x 5 or 6 x 6 mm after quenching in oil lies between 730 0 C and over 1400 0 C. The best thermal shock properties are shown by high density RBSN quality material having very fine pores and high initial strength. The results indicate that for RBSN large pores and density inhomogenities are responsible for bad thermal shock properties. Resistance to fast temperature change is higher for hot-pressed Si 3 N 4 than for RBSN quality material. In HPSN, the thermal shock results show dependence on structure. High MgO content and the associated coarse rod-shaped configuration of the β phase and structural inhomogenities affect the thermal shock properties in an adverse way. (orig.) [de

  19. Effects of Mg pre-flow, memory, and diffusion on the growth of p-GaN with MOCVD (Conference Presentation) (United States)

    Tu, Charng-Gan; Chen, Hao-Tsung; Chen, Sheng-Hung; Chao, Chen-Yao; Kiang, Yean-Woei; Yang, Chih-Chung


    In MOCVD growth, two key factors for growing a p-type structure, when the modulation growth or delta-doping technique is used, include Mg memory and diffusion. With high-temperature growth (>900 degree C), doped Mg can diffuse into the under-layer. Also, due to the high-pressure growth and growth chamber coating in MOCVD, plenty Mg atoms exist in the growth chamber for a duration after Mg supply is ended. In this situation, Mg doping continues in the following designated un-doped layers. In this paper, we demonstrate the study results of Mg preflow, memory, and diffusion. The results show that pre-flow of Mg into the growth chamber can lead to a significantly higher Mg doping concentration in growing a p-GaN layer. In other words, a duration for Mg buildup is required for high Mg incorporation. Based on SIMS study, we find that with the pre-flow growth, a high- and a low-doping p-GaN layer are formed. The doping concentration difference between the two layers is about 10 times. The thickness of the high- (low-) doping layer is about 40 (65) nm. The growth of the high-doping layer starts 10-15 min after Mg supply starts (Mg buildup time). The diffusion length of Mg into the AlGaN layer beneath (Mg content reduced to doping concentration is reduced to <1%.

  20. Chemical–physical characterisation of Early Iron Age glass beads from Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Agua, F.; Conde, J.F.; Kobylińska, U.; Kobyliński, Z.; García-Heras, M.; Villegas, M.A.


    Archaeological excavation of the Institute of Archaeology and Ethnology (Polish Academy of Sciences, PAN) at several Iron Age sites located in West Poland and South Germany has allowed the recovery of an important set of coloured glass beads mostly decorated (6th–4th centuries BC). The present paper summarises the results obtained through the chemical and microstructural characterisation of such beads. The research was carried out by binocular microscope observations, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and visible spectrophotometry. The main objective was to attain information on the production technology and conservation state of these beads. The results indicated that all them were produced with soda lime silicate glass, even though two groups can be separated: (i) beads containing high MgO percentages made from plant ashes as an alkaline source, and (ii) beads containing low MgO percentages made from natron as an alkaline source. As regards decorations, opaque white was obtained from tin oxide, turquoise blue from Cu2+-ions, and opaque yellow from lead antimonate. Additionally, results showed microstructural and microcrystalline differences between some glass beads studied here and other glass beads from Mediterranean areas, dated in the same chronological period. This fact pointed out the valuable role given to these beads by Iron Age communities from Central Europe. (Author)

  1. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. (United States)

    Gopinath, Ashwin; Rothemund, Paul W K


    Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.

  2. Replacement of lumpy chrome ore by agglomerated ore concentrates and lowering of specific power consumption and improvement of Cr-yield by means of improved slag composition in the production of H.C. Ferrochrome

    International Nuclear Information System (INIS)

    Retelsdorf, H.J.; Fichte, R.; Breuer, F.; Zimmermann, H.


    Work on this project is finished, but further work on the use of Cr-ore briquettes seems necessary. It was the aim of the project to develop improved slag compositions for the FeCr 4-6% C-process resulting in higher Cr-yield and lower specific power consumption. Furthermore, replacement of lumpy ore in the charge by agglomerated Cr-ore-fines or concentrates in the form of pellets and briquettes was to be tested. Experimentals were performed in a 70 kW and a 300 kW arc furnace. Two different slag compositions were tested. The high-MgO slag type proved suitable. The specific power consumption and the Cr-yield depend to a large extent on the type of Cr-ore and on the agglomeration process. Cr-ore pellets can be used up to 65% in the ore charge but briquettes can be used only up to 25% to replace lumpy ores without causing higher Cr-losses in the slag. (orig.) [de

  3. Descriptive summary of the Grande Ronde Basalt type section, Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Camp, V.E.; Price, S.M.; Reidel, S.P.


    The Grande Ronde Basalt type section, located in extreme southeastern Washington, was measured, sampled, and characterized. The section is 800 meters thick and is comprised of 35 Grande Ronde Basalt flows. These flows are divisible into 3 magnetostratiographic units termed, in ascending order, the R 1 , the N 1 , and the R 2 . The R 1 unit is represented by 13 reversely polarized flows; the N 1 unit, by 13 normally polarized flows; and the R 2 , by 9 reversely polarized flows. Chemically, the Grande Ronde Basalt flows are divided into 2 major groups, termed A and B. The compositions of the lower 9 flows, members of Group A, are similar to either the high-Mg Grande Ronde chemical type, the high-Ti Grande Ronde chemical type, or the Pomona chemical type. The compositions of the upper 25 flows, members of Group B, are predominantly similar to the low-Mg Grande Ronde chemical type. Petrographically, the Grande Ronde Basalt flows are generally fine grained and aphyric, and have a intergranular or intersertal micro-texture. Major mineral phases include plagioclase (An/sub 40-60/) and augite; minor mineral phases include pigeonite, orthopyroxene, ilmenite, titanomagnetite, and olivine. Group A flows generally contain more olivine and less pigeonite than do Group B flows. 6 figures, 6 tables

  4. Petrology of Ortsog-Uul peridotite-gabbro massif in Western Mongolia (United States)

    Shapovalova, M.; Tolstykh, N.; Shelepaev, R.; Cherdantseva, M.


    The Ortsog-Uul mafic-ultramafic massif of Western Mongolia is located in a tectonic block with overturned bedding. The massif hosts two intrusions: a rhythmically-layered peridotite-gabbro association (Intrusion 1) and massive Bt-bearing amphibole-olivine gabbro (Intrusion 2). Intrusions 1 and 2 have different petrology features. Early Intrusion 1 (278±2.5Ma) is characterized by lower concentrations of alkalis, titanium and phosphorus than late Intrusion 2 (272±2Ma). The chondrite-normalized REE and primitive mantle-normalized rare elements patterns of Ortsog-Uul intrusions have similar curves of elements distribution. However, Intrusion 2 is characterized higher contents of REE and rare elements. High concentrations of incompatible elements are indicative of strong fractionation process. It has been suggested that Intrusions 1 and 2 derived from compositionally different parental melts. Model calculations (COMAGMAT-3.57) show that parental melts of two intrusions were close to high-Mg picrobasaltic magmas. The concentration of MgO in melt is 16.21 (Intrusion 1) and 16.17 (Intrusion 2). Isotopic data of Ortsog-Uul magmatic rocks exhibit different values of εNd (positive and negative) for Intrusion 1 and 2, respectively.

  5. Binding of 125I-labeled endotoxin to bovine, canine, and equine platelets and endotoxin-induced agglutination of canine platelets

    International Nuclear Information System (INIS)

    Meyers, K.M.; Boehme, M.; Inbar, O.


    Endotoxin from Escherichia coli O127:B8, Salmonella abortus-equi and S minnesota induced clumping of some canine platelets (PLT) at a final endotoxin concentration of 1 microgram/ml. Endotoxin-induced clumping of canine PLT was independent of PLT energy-requiring processes, because clumping was observed with canine PLT incubated with 2-deoxy-D-glucose and antimycin A. The PLT responded to adenosine diphosphate before, but not after, incubation with the metabolic inhibitors. Endotoxin induced a slight and inconsistant clumping of bovine and equine PLT at high (mg/ml) endotoxin concentration. High-affinity binding sites could not be demonstrated on canine, bovine, and equine PLT, using 125 I-labeled E coli O127:B8 endotoxin. Nonspecific binding was observed and appeared to be due primarily to an extraneous coat on the PLT surface that was removed by gel filtration. The endotoxin that was bound to PLT did not appear to modify PLT function. An attempt to identify plasma proteins that bound physiologically relevant amounts of endotoxin was not successful. The significance of the endotoxin-induced clumping or lack of it on the pathophysiology of endotoxemia is discussed

  6. Magnesium nutrition of apple trees. III. Comparison of different methods of magnesium fertilization

    Directory of Open Access Journals (Sweden)

    A. Sadowski


    Full Text Available In the period 1969-1973 two experiments were performed in young orchards in Central Poland: a four-year experiment at Julianów, on sandy loamy soil on underlying sand and one-year experiment at Kośmin, on sandy loam soil on clay loam. At Kosmin, in spite of a high Mg content in the subsoil, Mg deficiency symptoms appeared, because of shallow rooting owing to poor aeration. In both experiments, foliar sprays with epsomite were less effective than fertilization to the soil; at Kośmin even eight sprays were less effective than soil dressings. Mg losses from a sandy soil due to leaching were high, particularly where sand was present in the whole profile; under these conditions the least losses of Mg were from split doses of epsomite (Mg3x120. Single doses of epsomite were the most effective in increasing leaf Mg content, reducing Mg deficiency symptoms and promoting growth of trees in the first year after application; in the later years split doses of epsomite and a single initial dose of magnesium lime were more effective. Effects of Mg fertilization on growth and yields of apples were rather slight, when K fertilizer doses were low. No effect of Mg fertilization upon fruit drop and fruit quality was found. Preliminary recommendations for practice are given.

  7. Molecular beam epitaxy of iodine-doped CdTe and (CdMg)Te

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Waag, A.; Litz, Th.; Scholl, S.; Schmitt, M.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstofforschung, Stuttgart (Germany))


    The n-type doping of CdTe and (CdMg)Te by the use of the solid dopant source material ZnI[sub 2] is reported. Doping levels as high as 7x10[sup 18] cm[sup -3] have been obtained in CdTe with carrier mobilities around 500 cm[sup 2]/V[center dot]s at room temperature. For a dopant incorporation higher than 1x10[sup 19] cm[sup -3] the free carrier concentration decreases, indicating the onset of a compensation mechanism, which is observed in the case of chlorine and bromine doping, too. Preliminary experiments show that with increasing Mg concentration the free carrier concentration decreases. Nevertheless, CdMgTe with a magnesium concentration x=0.37 (band gap 2.2 eV at room temperature) can be doped up to 2x10[sup 17] cm[sup -3]. The existence of deep donor levels in this CdTe based ternary is not supposed to be the only reason for the reduction of the free carrier concentration. For high Mg support during molecular beam epitaxial (MBE) growth of wide gap (CdMg)Te layers, the ZnI[sub 2] incorporation is reduced, leading to low doping levels, too

  8. Nutrient uptake and biomass accumulation for eleven different field crops

    Directory of Open Access Journals (Sweden)



    Full Text Available Oil hemp (Cannabis sativa L., quinoa (Chenopodium quinoa Willd., false flax (Camelina sativa (L. Crantz, caraway (Carum carvi L., dyer’s woad (Isatis tinctoria L., nettle (Urtica dioica L., reed canary grass (RCG (Phalaris arundinacea L., buckwheat (Fagopyrum esculentum Moench, linseed (Linum usitatissimum L., timothy (Phleum pratense L. and barley (Hordeum vulgare L. were grown under uniform conditions in pots containing well fertilised loam soil. Dry matter (DM accumulation was measured repeatedly, and contents of minerals N, P, K, Ca and Mg at maturity. Annual crops accumulated above-ground biomass faster than perennials, while perennials had higher DM accumulation rates below ground. Seeds had high concentrations of N and P, while green biomass had high concentrations of K and Ca. Stems and roots had low concentrations of minerals. Concentrations of K and P were high in quinoa and caraway, and that of P in buckwheat. Hemp and nettle had high Ca concentrations, and quinoa had high Mg concentration. N and P were efficiently harvested with seed, Ca and K with the whole biomass. Perennials could prevent soil erosion and add carbon to the soil in the long term, while annuals compete better with weeds and prevent erosion during early growth. Nutrient balances in a field could be modified and nutrient leaching reduced by careful selection of the crop and management practices.;

  9. Which Type of Planets do We Expect to Observe in the Habitable Zone? (United States)

    Adibekyan, Vardan; Figueira, Pedro; Santos, Nuno C


    We used a sample of super-Earth-like planets detected by the Doppler spectroscopy and transit techniques to explore the dependence of orbital parameters of the planets on the metallicity of their host stars. We confirm the previous results (although still based on small samples of planets) that super-Earths orbiting around metal-rich stars are not observed to be as distant from their host stars as we observe their metal-poor counterparts to be. The orbits of these super-Earths with metal-rich hosts usually do not reach into the Habitable Zone (HZ), keeping them very hot and inhabitable. We found that most of the known planets in the HZ are orbiting their GK-type hosts which are metal-poor. The metal-poor nature of planets in the HZ suggests a high Mg abundance relative to Si and high Si abundance relative to Fe. These results lead us to speculate that HZ planets might be more frequent in the ancient Galaxy and had compositions different from that of our Earth.

  10. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M


    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  11. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.


    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  12. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani


    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  13. Magnesium isotope evidence for single stage formation of CB chondrules by colliding planetesimals

    DEFF Research Database (Denmark)

    Olsen, Mia Bjørg Stolberg; Schiller, Martin; Krot, Alexander N.


    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrit...... planetesimals. The inferred μMg* value of -3.87 ± 0.93 ppm for the CB parent body is significantly lower than the bulk solar system value of 4.5 ± 1.1 ppm inferred from CI chondrites, suggesting that CB chondrites accreted material comprising an early formed Al-free component.......Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite......, indicating substantial suppression of isotopic fractionation during evaporative loss of Mg, possibly due to evaporation at high Mg partial pressure. Thus, the Mg-isotope data of skeletal chondrules from HH237 are consistent with their origin as melts produced in the impact-generated plume of colliding...

  14. Mafic and ultramafic rocks, and platinum mineralisation potential, in the Longwood Range, Southland, New Zealand

    International Nuclear Information System (INIS)

    Ashley, P.; Craw, D.; Mackenzie, D.; Rombouts, M.; Reay, A.


    Intrusive rocks in the Longwood Range represent a component of the Permian Brook Street Terrane. They include diffusely layered, cumulate-textured olivine gabbro, troctolite, and gabbro, and gradations into non-cumulate gabbro and gabbronorite. Volumetrically small ultramafic layers occur (plagioclase wehrlite), and thin veins of felsic rocks ranging from quartz diorite to trondhjemite. Primary olivine, plagioclase, clinopyroxene, and subordinate orthopyroxene and hornblende are commonly altered or metamorphosed to amphiboles, minor spinel, magnetite, chlorite, biotite and clinozoisite, and serpentine in olivine-rich rocks. Accessory primary Ti-bearing magnetite and ilmenite occur, and trace Cr-magnetite is characteristic of olivine-rich rocks. Trace pyrrhotite, chalcopyrite, pentlandite, and pyrite could reflect equilibrated late magmatic, and alteration-derived phases. Key petrochemical characteristics of the rock suite are high Mg, Al, Ca, and Sr contents, and low alkali, LILE, and sulfur contents. Platinum and Pd are locally enriched in drill-hole intercepts, but zones appear unrelated to rock type, magnetic properties, or to S, Cu, Ni, Cr, or Au values. Local platinum group element (PGE) enrichment in altered rocks implies metamorphic and/or hydrothermal redistribution. Pervasive PGE enrichment in Longwood rocks is an indicator of potential 'fertility', but evidence is currently lacking for the precipitation of primary stratiform PGE accumulations from a sulfide liquid saturated magma. (author). 41 refs., 11 figs., 2 tabs.

  15. Composition And Characteristic Of The Surficial Sediments In The Southern Corniche Of Jeddah, Red Sea Coast

    Directory of Open Access Journals (Sweden)

    Talha A Al-Dubai


    Full Text Available This work discusses the composition and characteristic of the surficial sediments in the southern corniche of Jeddah, Saudi Red Sea coast, in an attempt to infer the surficial distribution pattern of minerals and provenance of sediments. Twenty-six superficial sediments samples were collected from backreef and forereef areas and were analyzed for grain size, CaCO3 content, and mineralogy. The textural of grain size range from gravel to mud fraction. The mud-dominated substrates (<63 µm occur generally in the back-reef area near the shoreline (sheltered area and in the lagoon. Gravel rich-sediments are mostly found in forereef regions. The highest content of aragonite and Mg-calcite occur in the forereef area, probably because to suitability the forereef region for chemical and biochemical precipitation of these minerals. High Mg-calcite and Dolomite are low in both the regions. The pyrite occurs in lagoon; this indicates the reductive conditions in this part. However, on the contrary the percentage of carbonate minerals were low in the backreef-flat area, which could be attributed to the supply of non-carbonate terrigenous materials. The terrigenous material contains quartz, k-feldspar, plagioclase and amphibole minerals and are dominant in backreef-flat area with averages of 12.7%, 7.13%, 2.93% and 0.65%, respectively. Their abundance could be attributed to the supply of terrigenous materials by Aeolian deposits and intermittent Wadis.

  16. Carbonate cements in contemporaneous beachrocks, Jaguaribe beach, Itamaracá island, northeastern Brazil: petrographic, geochemical and isotopic aspects

    Directory of Open Access Journals (Sweden)

    Guerra Núbia C.


    Full Text Available Holocene beachrocks of the Jaguaribe beach, State of Pernambuco, northeastern Brazil, consist of horizontal, cemented layers approximately 40 cm thick. The cement shows three textural varieties: (a calciferous, surrounding siliciclastic grains, (b micritic, with an acicular fringe; and (c cryptocrystalline calcite in pores. Early cementation took place at the water table below beach ridges, where geochemical, hydrodynamic and, perhaps, also microbiological conditions favored rapid precipitation of aragonite and/or high-Mg calcite. delta13C values range from -1.8 to +1.5? for dissolved carbonate in interstitial water and from +0.2 to +2.1? for bioclastic components. delta18O values range from -2.8 to +0.5? for seawater, freshwater and interstitial water. delta13C values and diagenetic features suggest that cementation occurred in meteoric-vadose and/or marine-phreatic water by loss of CO2 during evaporation of the interstitial water. Locally, superimposed low-Mg calcite cements point to subsequent freshwater influence. Total-rock cement composition of vertically stacked beachrock beds at the Jaguaribe beach shows that the highest beachrock bed is older than the one (of same petrographic composition situated at the current groundwater level. This implies a downward progression of cementation, which probably followed the sea-level fall after a local high stand.

  17. Trace element and strontium isotope characteristics of volcanic rocks from Isla Tortuga: a young seamount in the Gulf of California (United States)

    Batiza, Rodey; Futa, K.; Hedge, C.E.


    Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87Sr/86Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiitic andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87Sr/86Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87Sr/86Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. ?? 1979.

  18. Trace element and strontium isotope characteristics of volcanic rocks from Isla Tortuga: a young seamount in the Gulf of California

    International Nuclear Information System (INIS)

    Batiza, R.


    Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87 Sr/ 86 Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiiite (low Mg/Fe) and tholeite andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87 Sr/ 86 Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87 Sr/ 86 Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. (Auth.)

  19. Trace element and strontium isotope characteristics of volcanic rocks from Isla Tortuga: a young seamount in the Gulf of California

    Energy Technology Data Exchange (ETDEWEB)

    Batiza, R [Washington Univ., St. Louis, MO (USA). McDonnell Center for the Space Sciences; Futa, K; Hedge, C E [Geological Survey, Denver, CO (USA)


    Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and /sup 87/Sr//sup 86/Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiite andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable /sup 87/Sr//sup 86/Sr (0.7024 to 0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and /sup 87/Sr//sup 86/Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known.

  20. /sup 40/Ar//sup 39/Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P. N. G

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A. (Australian National Univ., Canberra. Dept. of Geology); McDougall, I. (Australian National Univ., Canberra. Research School of Earth Sciences)


    K-Ar and /sup 40/Ar//sup 39/Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. /sup 40/Ar//sup 39/Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic /sup 40/Ar(/sup 40/Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain /sup 39/Ar during or subsequent to irradiation, but in some cases may contain /sup 40/Ar*. The results are discussed.

  1. 40Ar/39Ar and K-Ar dating of altered glassy volcanic rocks: the Dabi Volcanics, P.N.G

    International Nuclear Information System (INIS)

    Walker, D.A.; McDougall, I.


    K-Ar and 40 Ar/ 39 Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40 Ar/ 39 Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 +- 1.1 Ma), and also for the boninitic lavas (58.8 +- 0.8 Ma). Apparent K-Ar ages for the same samples range from 27.2 +- 0.7 to 63.9 +- 4.5 Ma, and young K-Ar ages for glassy boninites are probably due to variable radiogenic 40 Ar( 40 Ar*) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics, and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene. Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39 Ar during or subsequent to irradiation, but in some cases may contain 40 Ar*. The results are discussed. (author)

  2. Fish as major carbonate mud producers and missing components of the tropical carbonate factory (United States)

    Perry, Chris T.; Salter, Michael A.; Harborne, Alastair R.; Crowley, Stephen F.; Jelks, Howard L.; Wilson, Rod W.


    Carbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts ("low" and "high" Mg-calcite and aragonite), but that very fine-grained (mostly 4 mole % MgCO3) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ~6.1 x 106 kg CaCO3/year across the Bahamian archipelago, all as mud-grade (the marine carbonate factories function both today and in the past.

  3. Response of the Miliolid Archaias angulatus to simulated ocean acidification (United States)

    Knorr, Paul O.; Robbins, Lisa L.; Harries, Peter J.; Hallock, Pamela; Wynn, Jonathan


    A common, but not universal, effect of ocean acidification on benthic foraminifera is a reduction in the growth rate. The miliolid Archaias angulatus is a high-Mg (>4 mole% MgCO3), symbiont-bearing, soritid benthic foraminifer that contributes to Caribbean reef carbonate sediments. A laboratory culture study assessed the effects of reduced pH on the growth of A. angulatus. We observed a statistically significant 50% reduction in the growth rate (p < 0.01), calculated from changes in maximum diameter, from 160 μm/28 days in the pH 8.0/pCO2air 480 ppm control group to 80 μm/28 days at a treatment level of pH 7.6/pCO2air 1328 ppm. Additionally, pseudopore area, δ18O values, and Mg/Ca ratio all increased, albeit slightly in the latter two variables. The reduction in growth rate indicates that under a high-CO2 setting, future A. angulatus populations will consist of smaller adults. A model using the results of this study estimates that at pH 7.6 A. angulatus carbonate production in the South Florida reef tract and Florida Bay decreases by 85%, from 0.27 Mt/yr to 0.04 Mt/yr, over an area of 9,000 km2.

  4. The action of chlorphenesin carbamate on the frog spinal cord. (United States)

    Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M


    Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.

  5. Methane seepage intensities traced by biomarker patterns in authigenic carbonates from the South China Sea (United States)

    Guan, H.; Feng, D.


    Authigenic carbonate rocks from an active seep (Site F) at 1120 m water depth of the South China Sea (SCS) were studied using mineralogical and lipid biomarker analyses. Carbonate mineral compositions, in specific samples, were predominantly aragonite, high-Mg calcite (HMC), or a mixture of both. Abundant 13C-depleted lipid biomarkers (various isoprenoids) diagnostic for archaea provide evidence that anaerobic oxidation of methane (AOM) mediated by anaerobic methane oxidizing archaea (ANME) and their bacterial partners is the major process leading to formation of the carbonates. Nearly a pure suite of AOM biomarkers was preserved in aragonitic carbonate in which predominant consortia were most likely ANME-2/Desulfosarcina & Desulfococcus (DSS) assemblages and a mixture of ANME-2/DSS and ANME-1/DSS consortia in the mixed mineral sample, the predominant consortia are in good accordance with the point that the relative higher methane seepage intensity favors the precipitation of aragonite over HMC. In contrast, the completely different biomarker patterns in HMC sample were mainly composed terrestrial organic matter and marine Thaumarchaea, which most likely originally within sediments accompanied with high organic matter input and low methane supply. This environment is known to be favored for archaea of ANME-1 and precipitation of HMC. High concentrations of 13C-depleted hopanoids, including diplopterol, hopanoic acids and hopanols were observed in the aragonite sample that may be sourced by the intermittent presence of oxic conditions in an overall anoxic condition, which was possibly induced by changing seepage intensities.

  6. Characterization of emerald from Gujar Kili, Swat, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Akram, M.; Khattak, N.U.; Khan, H.A.


    The green gem variety of beryl family having Cr as colouring agent is known as emerald. Thirteen emerald occurrences are known from northern Pakistan. These occurrences are in Mohamand Agency, Bajuar Agency, Swat District, Indus Kohistan and Gilgit which are located exclusively in the metamorphosed ophiolitic melange of the Indus Suture Zone. The ophiolitic rocks of this suture are the source of Cr which colours the beryl to make it emerald. Studies have been carried out for the characterisation of emerald from one locality, Gujar Kili in Swat district, using petrographic, XRD, XRF and fission track techniques. The Gujar Kili emerald is of green to deep green colour good quality gemstone and contains inclusions in some cases. In general, the Gujar Kili emerald has high Mg, Fe, Cr, V and Al values as compared to average composition of natural emeralds of Swat District. Two mineralogical phases, namely beryl and chrysoberyl have been identified in the four Gujar Kili samples analysed by us. The XRD data for the beryl and chrysoberyl is also presented. The Cr which colours the beryl to make it emerald, does not substitute any element in the beryl structure, rather it is present as an impurity in the crystal matrix. A new etchant to reveal fission tracks in a very short time is also being reported in this paper. (author)

  7. Ankaramite: A New Type of High-Magnesium and High-Calcium Primitive Melt in the Magnitogorsk Island-Arc Zone (Southern Urals) (United States)

    Pushkarev, E. V.; Ryazancev, A. V.; Gottman, I. A.; Degtyarev, K. E.; Kamenetsky, V. S.


    This work describes the geological position, mineral and chemical composition of high-Mg effusive ankaramites occurring as dykes and lava flows. They were found in the mélange zone of the western margin of the Magnitogorsk island arc zone in the Southern Urals. Data on the liquidus association of phenocrysts and on the composition of the matrix of effusives are given. According to the data obtained, the conclusion was drawn that the ankaramites studied can be attributed to the primary island arc melts, which were not subject to essential differentiation. This type of effusives has not been distinguished previously among island arc volcanogenic formations of the Urals. It is shown that ankaramites can be considered to be primary melts parental for dunite-clinopyroxenites-gabbro complexes of Ural-Alaskan type. The occurrence of ankaramites in the Paleozoic island arc formations of the Urals indicates the wehrlite composition of the mantle as the reason for the extremely wide development of wehrlites and clinopyroxenites in different mafic-ultramafic complexes of the Urals.

  8. Production of Magnesium and Aluminum-Magnesium Alloys from Recycled Secondary Aluminum Scrap Melts (United States)

    Gesing, Adam J.; Das, Subodh K.; Loutfy, Raouf O.


    An experimental proof of concept was demonstrated for a patent-pending and trademark-pending RE12™ process for extracting a desired amount of Mg from recycled scrap secondary Al melts. Mg was extracted by electrorefining, producing a Mg product suitable as a Mg alloying hardener additive to primary-grade Al alloys. This efficient electrorefining process operates at high current efficiency, high Mg recovery and low energy consumption. The Mg electrorefining product can meet all the impurity specifications with subsequent melt treatment for removing alkali contaminants. All technical results obtained in the RE12™ project indicate that the electrorefining process for extraction of Mg from Al melt is technically feasible. A techno-economic analysis indicates high potential profitability for applications in Al foundry alloys as well as beverage—can and automotive—sheet alloys. The combination of technical feasibility and potential market profitability completes a successful proof of concept. This economical, environmentally-friendly and chlorine-free RE12™ process could be disruptive and transformational for the Mg production industry by enabling the recycling of 30,000 tonnes of primary-quality Mg annually.

  9. The nutritional value of sorghum bicolor stem flour used for infusion drinks in nigeria

    International Nuclear Information System (INIS)

    Adetuyi, A.O.; Akpambang, V.O.E.


    The black purple sheath (stem) of Sorgum bicolor, used locally as colour additive in cooked meals and infusion drinks taken as beverages, was examined for its nutritive value. The stem made into flour, was found to be rich in energy (1121.3 kJ/100 g), and in some micronutrients (mg/100 g), such as Mg (185.33), Ca (151.70), K (138.87), Na (127.61), and Fe (10.98). High Mg content of stem may be useful for overcoming Mg deficiency. The Fe content was sufficient to meet the daily-required intake (DRI) value for human beings. The presence of Cu, Zn and Mn was also observed. The content of crude fibre (32.0%) and carbohydrates (44.50%) were useful for making the stem a fodder for animal consumption. However, the protein content of the stem was low (3.20%). The functional properties observed for the stem compared favourably with those already reported for some other plants such as pigeon pea flour, African yam bean, and wheat flour. (author)

  10. Mineralogy and geochemistry of picro-dolerite dykes from the central Deccan Traps flood basaltic province, India, and their geodynamic significance (United States)

    Dongre, Ashish; Viljoen, K. S.; Rathod, A.


    Constituent mineral compositions and whole rock major element geochemistry of picro-dolerite dykes from the central part of the Deccan flood basalt province are presented and discussed. The dykes are characterized by an MgO content of about 13 wt%, coupled with 13-16 modal percents of olivine. A high whole rock molar Mg# value of 71 and the presence of magnesian olivine phenocrysts ( Fo78) are consistent with a primitive (i.e. unevolved) geochemistry. The nature and composition of clinopyroxene (augite and pigeonite), plagioclase feldspar (labradorite) and Fe-Ti oxides (mostly ilmenite and magnetite) are also discussed, with implications drawn with respect to the geodynamics. High MgO magmas and rocks such as picrites are generally considered to be indicative of plume magmatism, formed by high degrees of partial melting in, e.g. the high-temperature region of a plume head. Recent age data is consistent with a model in which the Deccan LIP picritic magmatism is associated with the main phase of Deccan Trap activity at 66 Ma, as a result of a syn- to post rifting phase associated with the impact of the Rèunion mantle plume. It is speculated that the differentiation of primary olivine basaltic magma of picritic composition, may have been the mechanism for the generation of alkalic basalts which occurs in the Deccan Trap basaltic sequence.

  11. Rapid Diffusion and Nanosegregation of Hydrogen in Magnesium Alloys from Exposure to Water. (United States)

    Brady, Michael P; Ievlev, Anton V; Fayek, Mostafa; Leonard, Donovan N; Frith, Matthew G; Meyer, Harry M; Ramirez-Cuesta, Anibal J; Daemen, Luke L; Cheng, Yongqiang; Guo, Wei; Poplawsky, Jonathan D; Ovchinnikova, Olga S; Thomson, Jeffrey; Anovitz, Lawrence M; Rother, Gernot; Shin, Dongwon; Song, Guang-Ling; Davis, Bruce


    Hydrogen gas is formed when Mg corrodes in water; however, the manner and extent to which the hydrogen may also enter the Mg metal is poorly understood. Such knowledge is critical as stress corrosion cracking (SCC)/embrittlement phenomena limit many otherwise promising structural and functional uses of Mg. Here, we report via D 2 O/D isotopic tracer and H 2 O exposures with characterization by secondary ion mass spectrometry, inelastic neutron scattering vibrational spectrometry, electron microscopy, and atom probe tomography techniques direct evidence that hydrogen rapidly penetrated tens of micrometers into Mg metal after only 4 h of exposure to water at room temperature. Further, technologically important microalloying additions of mechanical properties of Mg significantly increased the extent of hydrogen ingress, whereas Al additions in the 2-3 wt % range did not. Segregation of hydrogen species was observed at regions of high Mg/Zr/Nd nanoprecipitate density and at Mg(Zr) metastable solid solution microstructural features. We also report evidence that this ingressed hydrogen was unexpectedly present in the alloy as nanoconfined, molecular H 2 . These new insights provide a basis for strategies to design Mg alloys to resist SCC in aqueous environments as well as potentially impact functional uses such as hydrogen storage where increased hydrogen uptake is desired.

  12. Histamine Excites Rat Superior Vestibular Nuclear Neurons via Postsynaptic H1 and H2 Receptors in vitro

    Directory of Open Access Journals (Sweden)

    Qian-Xing Zhuang


    Full Text Available The superior vestibular nucleus (SVN, which holds a key position in vestibulo-ocular reflexes and nystagmus, receives direct hypothalamic histaminergic innervations. By using rat brainstem slice preparations and extracellular unitary recordings, we investigated the effect of histamine on SVN neurons and the underlying receptor mechanisms. Bath application of histamine evoked an excitatory response of the SVN neurons, which was not blocked by the low-Ca2+/high-Mg2+ medium, indicating a direct postsynaptic effect of the amine. Selective histamine H1 receptor agonist 2-pyridylethylamine and H2 receptor agonist dimaprit, rather than VUF8430, a selective H4 receptor agonist, mimicked the excitation of histamine on SVN neurons. In addition, selective H1 receptor antagonist mepyramine and H2 receptor antagonist ranitidine, but not JNJ7777120, a selective H4 receptor antagonist, partially blocked the excitatory response of SVN neurons to histamine. Moreover, mepyramine together with ranitidine nearly totally blocked the histamine-induced excitation. Immunostainings further showed that histamine H1 and H2 instead of H4 receptors existed in the SVN. These results demonstrate that histamine excites the SVN neurons via postsynaptic histamine H1 and H2 receptors, and suggest that the central histaminergic innervation from the hypothalamus may actively bias the SVN neuronal activity and subsequently modulate the SVN-mediated vestibular functions and gaze control.

  13. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University


    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  14. Molecular determinants of magnesium-dependent synaptic plasticity at electrical synapses formed by connexin36 (United States)

    Palacios-Prado, Nicolás; Chapuis, Sandrine; Panjkovich, Alejandro; Fregeac, Julien; Nagy, James I.; Bukauskas, Feliksas F.


    Neuronal gap junction (GJ) channels composed of connexin36 (Cx36) play an important role in neuronal synchronization and network dynamics. Here we show that Cx36-containing electrical synapses between inhibitory neurons of the thalamic reticular nucleus are bidirectionally modulated by changes in intracellular free magnesium concentration ([Mg2+]i). Chimeragenesis demonstrates that the first extracellular loop of Cx36 contains a Mg2+-sensitive domain, and site-directed mutagenesis shows that the pore-lining residue D47 is critical in determining high Mg2+-sensitivity. Single-channel analysis of Mg2+-sensitive chimeras and mutants reveals that [Mg2+]i controls the strength of electrical coupling mostly via gating mechanisms. In addition, asymmetric transjunctional [Mg2+]i induces strong instantaneous rectification, providing a novel mechanism for electrical rectification in homotypic Cx36 GJs. We suggest that Mg2+-dependent synaptic plasticity of Cx36-containing electrical synapses could underlie neuronal circuit reconfiguration via changes in brain energy metabolism that affects neuronal levels of intracellular ATP and [Mg2+]i.

  15. Incorporation of Mg and Sr in calcite of cultured benthic foraminifera: impact of calcium concentration and associated calcite saturation state

    Directory of Open Access Journals (Sweden)

    M. Raitzsch


    Full Text Available We investigated the effect of the calcium concentration in seawater and thereby the calcite saturation state (Ω on the magnesium and strontium incorporation into benthic foraminiferal calcite under laboratory conditions. For this purpose individuals of the shallow-water species Heterostegina depressa (precipitating high-Mg calcite, symbiont-bearing and Ammonia tepida (low-Mg calcite, symbiont-barren were cultured in media under a range of [Ca2+], but similar Mg/Ca ratios. Trace element/Ca ratios of newly formed calcite were analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS and normalized to the seawater elemental composition using the equation DTE=(TE/Cacalcite/(TE/Caseawater. The culturing study shows that DMg of A. tepida significantly decreases with increasing Ω at a gradient of −4.3×10−5 per Ω unit. The DSr value of A. tepida does not change with Ω, suggesting that fossil Sr/Ca in this species may be a potential tool to reconstruct past variations in seawater Sr/Ca. Conversely, DMg of H. depressa shows only a minor decrease with increasing Ω, while DSr increases considerably with Ω at a gradient of 0.009 per Ω unit. The different responses to seawater chemistry of the two species may be explained by a difference in the calcification pathway that is, at the same time, responsible for the variation in the total Mg incorporation between the two species. Since the Mg/Ca ratio in H. depressa is 50–100 times higher than that of A. tepida, it is suggested that the latter exhibits a mechanism that decreases the Mg/Ca ratio of the calcification fluid, while the high-Mg calcite forming species may not have this physiological tool. If the dependency of Mg incorporation on seawater [Ca2+] is also valid for deep

  16. The chemistry of hydrothermal magnetite: a review (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John


    States and Indonesia, and (5) plutonic igneous rocks from the Henderson Climax-type Mo deposit, United States, and the un-mineralized Inner Zone Batholith granodiorite, Japan. These five settings represent a diverse suite of geological settings and cover a wide range of formation conditions. The main discriminator elements for magnetite are Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn, and Ga. These elements are commonly present at detectable levels (10 to > 1000 ppm) and display systematic variations. We propose a combination of Ni/(Cr + Mn) vs. Ti + V, Al + Mn vs. Ti + V, Ti/V and Sn/Ga discriminant plots and upper threshold concentrations to discriminate hydrothermal from igneous magnetite and to fingerprint different hydrothermal ore deposits. The overall trends in upper threshold values for the different settings can be summarized as follows: (I) BIF (hydrothermal) — low Al, Ti, V, Cr, Mn, Co, Ni, Zn, Ga and Sn; (II) Ag–Pb–Zn veins (hydrothermal) — high Mn and low Ga and Sn; (III) Mg-skarn (hydrothermal) — high Mg and Mn and low Al, Ti, Cr, Co, Ni and Ga; (IV) skarn (hydrothermal) — high Mg, Al, Cr, Mn, Co, Ni and Zn and low Sn; (V) porphyry (hydrothermal) — high Ti and V and low Sn; (VI) porphyry (igneous) — high Ti, V and Cr and low Mg; and (VII) Climax-Mo (igneous) — high Al, Ga and Sn and low Mg and Cr.

  17. Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia: time constraints, down-plunge zonation, and fluid source (United States)

    Mueller, Andreas G.


    kilometres above the base of the greenstone belt. Mass balance calculations involving bulk ore indicate enrichment of both felsic (K, Rb, Cs, Li, Ba, W) and mafic elements (Ca, Sr, Mg, Ni, V, Cr, Te), a source signature compatible with the local high-Mg porphyry suite but not with the meta-gabbro host rock. The initial 87Sr/86Sr ratios of the vein scheelites (0.7014-0.7016) are higher than the mantle ratio of the meta-gabbro (0.7009-0.7011) and overlap those of high-Mg monzodiorite intrusions (0.7016-0.7018) emplaced along the Golden Mile Fault at 2,662 ± 6 Ma to 2,658 ± 3 Ma.

  18. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy (United States)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid


    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  19. Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington (United States)

    Sawlan, M.; Hagstrum, J. T.; Wells, R. E.


    broad, NE-trending anticline of the Yakima Fold Belt, with the section base (N1) beneath the fold crest and R2 and N2 flows exposed in the fold's SE limb. In addition to addressing our main mapping objectives, observations made in the course of mapping at Bingen and other sections have led to insights into the cooling, fracturing and emplacement of GRB lavas. A distinctive set of fractures, termed quench fractures, comprise subvertical, curviplanar fractures and flanking mini-columnar joints, and are attributed to ascent of steam, generated by conduction heating of groundwater, through recently emplaced flows [Sawlan and Moore, 2011, GSA Rocky Mtn-Cord. Sec. Mtg, Logan (abst)]. Quench fractures are widespread across the GRB extent and occur in flows at Bingen. We have identified small lava tubes (<2 m wide) in several sections, in both high-Mg and low-Mg flows. In relation to the large volumes of GRB flows, the lava tubes are notably diminutive. At Bingen and in the Buttermilk Canyon section (near Lone Rock, OR), pahoehoe toes are recognized in flows also containing lava tubes. While observations of lava tubes and pahoehoe toes are few to date, ropy pahoehoe and layered upper flow crusts are common in high-Mg flows. These characteristics - tubes, toes, ropes and crusts - indicate emplacement as pahoehoe flows.

  20. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas and its effects on marine biological calcification

    Directory of Open Access Journals (Sweden)

    J. B. Ries


    production increased along with calcification within the bryopsidalean and coccolithophorid algae in mineralogically favorable seawater is consistent with the hypothesis that calcification promotes photosynthesis within some species of these algae through the liberation of CO2.

    The experiments also revealed that aragonite-secreting bryopsidalean algae and scleractinian corals, and bacterial biofilms that secrete a mixture of aragonite and high Mg calcite, began secreting an increased proportion of their calcium carbonate as the calcite polymorph in the lower-Mg/Ca experimental seawaters. Furthermore, the Mg/Ca ratio of calcite secreted by the coccolithophores, coralline red algae, reef-dwelling animals (crustacea, urchins, calcareous tube worms, bacterial biofilms, scleractinian corals, and bryopsidalean algae declined with reductions in seawater Mg/Ca. Notably, Mg fractionation in autotrophic organisms was more strongly influenced by changes in seawater Mg/Ca than in heterotrophic organisms, a probable consequence of autotrophic organisms inducing a less controlled mode of calcification simply through the removal of CO2 via photosynthesis.

    These results indicate that biomineralogical control can be partially overridden by ambient seawater Mg/Ca and suggest that modern aragonite-secreting organisms may have secreted a mixture of aragonite and low Mg calcite, and that modern high Mg calcite-secreting organisms probably secreted low Mg calcite, in calcite seas of the past. These effects of seawater Mg/Ca on the polymorph mineralogy and calcite Mg/Ca ratio of calcareous skeletons should be accounted for in thermal-chemical reconstructions of seawater that are based upon skeletal Mg/Ca.

    Lastly, by identifying how marine calcifiers respond to changes in seawater Mg/Ca and absolute Ca2+ concentration, this work should enhance our interpretation of parallel studies investigating the effects of anthropogenic CO2

  1. Further Evidence for Geochemical Diversity, and Possible Bimodality, Among Cumulate Eucrites (United States)

    Warren, P. H.; Kallemeyn, G. W.


    monomict. The pyroxene is uniformly Mg-rich (opx mg = 68), yet diogenitic px is not present. No Ce anomaly was detected. If lunar standards can be applied to eucrites, our RNAA siderophile result for Au gives a marginal indication of "pristinity": [Au] = 2.5 X 10^-4 times CI; also [Re] = 4.3 X 10^-4 times CI, but [Ir] = 7.4 X 10^-4 times CI (possibly linked to the unusually mafic nature of this rock). Like Binda and the mildly accumulative Pomozdino, LEW87002 appears to be the product of a melt along the moderate-mg, high- ITE "Stannem Trend." Collectively, these samples suggest that cumulate eucrites formed from parent melts more diverse than the known noncumulate eucrites. The data also hint at a geochemical bimodality for the parent melts, reminiscent of the bimodality among ancient lunar cumulates, which show a paradoxical tendency for high-mg cumulates to be more ITE-rich than low-mg cumulates. The same basic mechanism might be responsible: later melts are more directly linked to the high-mg mantle, but tend to be contaminated by mixing with residual melts left over from the slightly older Nuevo Laredo Trend linked cumulates. References: Delaney J. S. (1988) Lunar and Planet. Sci. XX, 236-237. Mittlefehldt D. W. and Lindstrom M. M. (1991) Geochim. Cosmochim. Acta 55, 77-87. Takeda H., Tagai T., and Graham A. (1988) Thirteenth Symp. Ant. Mets. (Tokyo), pp. 142-144. Figure 1, which in the hard copy appears here, shows cumulate and cumulate-like eucrites and possible parent melt compositions.

  2. Timing the evolution of a monogenetic volcanic field: Sierra Chichinautzin, Central Mexico (United States)

    Jaimes-Viera, M. C.; Martin Del Pozzo, A. L.; Layer, P. W.; Benowitz, J. A.; Nieto-Torres, A.


    The unique nature of monogenetic volcanism has always raised questions about its origin, longevity and spatial distribution. Detailed temporal and spatial boundaries resulted from a morphometric study, mapping, relative dating, twenty-four new 40Ar/39Ar dates, and chemical analyses for the Sierra Chichinautzin, Central Mexico. Based on these results the monogenetic cones were divided into four groups: (1) Peñón Monogenetic Volcanic Group (PMVG); (2) Older Chichinautzin Monogenetic Volcanic Group (Older CMVG); (3) Younger Chichinautzin Monogenetic Volcanic Group (Younger CMVG) and (4) Sierra Santa Catarina Monogenetic Volcanic Group (SSC). The PMVG cover the largest area and marks the northern and southern boundaries of this field. The oldest monogenetic volcanism (PMVG; 1294 ± 36 to 765 ± 30 ka) started in the northern part of the area and the last eruption of this group occurred in the south. These basaltic-andesite cones are widely spaced and are aligned NE-SW (N60°E). After this activity, monogenetic volcanism stopped for 527 ka. Monogenetic volcanism was reactivated with the birth of the Tezoyuca 1 Volcano, marking the beginning of the second volcanic group (Older CMVG; 238 ± 51 to 95 ± 12 ka) in the southern part of the area. These andesitic to basaltic andesite cones plot into two groups, one with high MgO and Nb, and the other with low MgO and Nb, suggesting diverse magma sources. The eruption of the Older CMVG ended with the eruption of Malacatepec volcano and then monogenetic volcanism stopped again for 60 ka. At 35 ka, monogenetic volcanism started again, this time in the eastern part of the area, close to Popocatépetl volcano, forming the Younger CMVG (<35 ± 4 ka). These cones are aligned in an E-W direction. Geochemical composition of eruptive products of measured samples varies from basalts to dacites with low and high MgO. The Younger CMVG is considered still active since the last eruptions took place <2 ka. The SSC (132 ± 70 to 2 ± 56 ka

  3. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing (United States)

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.


    The Pribilof Islands, Alaska, are located in the Bering Sea in a continental intraplate setting. In this study we examine the petrology and geochemistry of volcanic rocks from St. Paul (0??54-0??003 Ma) and St. George (2??8-1??4 Ma) Islands, the two largest Pribilof Islands. Rocks from St. George can be divided into three groups: group 1 is a high-MgO, low-SiO. 2 suite composed primarily of basanites; group 2 is a high-MgO, high-SiO 2 suite consisting predominantly of alkali basalts; group 3 is an intermediate- to low-MgO suite that includes plagioclase-phyric subalkali basalts and hawaiites. Major and trace element geochemistry suggests that groups 1 and 2 formed by small-degree partial melting of amphibole-bearing to amphibole-free garnet peridotite. Group 1 rocks were the earliest melts produced from the most hydrous parts of the mantle, as they show the strongest geochemical signature of amphibole in their source. The suite of rocks from St. Paul ranges from 14??4 to 4??2 wt % MgO at relatively constant SiO 2 contents (43??1-47??3 wt %). The most primitive St. Paul rocks are modeled as mixtures between magmas with compositions similar to groups 1 and 2 from St. George Island, which subsequently fractionated olivine, clinopyroxene, and spinel to form more evolved rocks. Plagioclase-phyric group 3 rocks from St. George are modeled as mixtures between an evolved melt similar to the evolved magmas on St. Paul and a fractionated group 2 end-member from St. George. Mantle potential temperatures estimated for primitive basanites and alkali basalts are ???1400??C and are similar to those of mid-ocean ridge basalts (MORB). Similarly, 87Sr/. 86Sr and 143Nd/. 144Nd values for all rocks are MORB-like, in the range of 0??702704-0??703035 and 0??513026-0??513109, respectively. 208Pb/. 204Pb vs 206Pb/. 204Pb values lie near the MORB end-member but show a linear trend towards HIMU (high time-integrated 238U/. 204Pb). Despite isotopic similarities to MORB, many of the major and

  4. Impacts of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates (United States)

    Ries, Justin B.; Ghazaleh, Maite N.; Connolly, Brian; Westfield, Isaac; Castillo, Karl D.


    Anthropogenic increase of atmospheric pCO2 since the Industrial Revolution has caused seawater pH to decrease and seawater temperatures to increase-trends that are expected to continue into the foreseeable future. Myriad experimental studies have investigated the impacts of ocean acidification and warming on marine calcifiers' ability to build protective shells and skeletons. No studies, however, have investigated the combined impacts of ocean acidification and warming on the whole-shell dissolution kinetics of biogenic carbonates. Here, we present the results of experiments designed to investigate the effects of seawater saturation state (ΩA = 0.4-4.6) and temperature (10, 25 °C) on gross rates of whole-shell dissolution for ten species of benthic marine calcifiers: the oyster Crassostrea virginica, the ivory barnacle Balanus eburneus, the blue mussel Mytilus edulis, the conch Strombus alatus, the tropical coral Siderastrea siderea, the temperate coral Oculina arbuscula, the hard clam Mercenaria mercenaria, the soft clam Mya arenaria, the branching bryozoan Schizoporella errata, and the coralline red alga Neogoniolithon sp. These experiments confirm that dissolution rates of whole-shell biogenic carbonates decrease with calcium carbonate (CaCO3) saturation state, increase with temperature, and vary predictably with respect to the relative solubility of the calcifiers' polymorph mineralogy [high-Mg calcite (mol% Mg > 4) ≥ aragonite > low-Mg calcite (mol% Mg carbonates. Furthermore, the severity of the temperature effects on gross dissolution rates also varied with respect to carbonate polymorph solubility, with warming (10-25 °C) exerting the greatest effect on biogenic high-Mg calcite, an intermediate effect on biogenic aragonite, and the least effect on biogenic low-Mg calcite. These results indicate that both ocean acidification and warming will lead to increased dissolution of biogenic carbonates in future oceans, with shells/skeletons composed of the more

  5. The geochemistry and tectonic setting of late Cretaceous Caribbean and Colombian volcanism (United States)

    Kerr, Andrew C.; Tarney, John; Marriner, Giselle F.; Nivia, Alvaro; Klaver, Gerard Th.; Saunders, Andrew D.


    Late Cretaceous mafic volcanic sequences in Western Colombia and in the southern Caribbean have a striking coherence in their chemistry and compositional range which suggests they are part of the same magmatic province. The chemical characteristics of the majority of the mafic lavas are totally unlike those of island arc or marginal basin basalts, so the sequences cannot represent accreted arc terranes. On the other hand their trace element characteristics closely resemble those of Icelandic/Reykjanes Ridge basalts that represent an oceanic plateau formed by extensive decompression melting of an uprising deep mantle plume. The occurrence of komatiites on Gorgona and high-MgO picritic lavas in S.E. Colombia and on Curaçao, representing high temperature melts of the plume tail, confirms this analogy. Likewise, late stage rhyolites within the Colombian mafic volcanics may well be the equivalent of the extensive silicic magmas on Iceland and at Galapagos, possibly formed by remelting of the deep parts of the overthickened basaltic crust above the plume head. These volcanics, plus others around the Caribbean, including the floor of the Central Caribbean, probably all represent part of an oceanic plateau that formed rapidly at the Galapagos hotspot at 88 Ma, and that was too hot and buoyant to subduct beneath the margin of S. America as it migrated westwards with the opening of the South Atlantic, and so was imbricated along the continental margin. Minor arc-like volcanics, tonalites and hornblende leucogabbro veins may represent the products of subduction-flip of normal ocean crust against the buoyant plateau, or hydrous melts developed during imbrication/obduction.

  6. CSN1S2 protein of goat milk inhibits the decrease of viability and increases the proliferation of MC3T3E1 pre-osteoblast cell in methyl glyoxal exposure

    Directory of Open Access Journals (Sweden)

    Choirunil Chotimah


    Full Text Available Objective: To investigate whether the CNS1S2 protein of goat milk is able to inhibit the toxicity of methyl glyoxal (MG towards MC3T3E1 pre-osteoblast cells. Methods: At confluency, pre-osteoblast cells were divided into five groups which included control (untreated, pre-osteoblast cells exposed to 5 µmol/L MG, pre-osteoblast cells exposed to MG in the presence of CSN1S2 protein at doses of 0.025, 0.050, and 0.100 mg/L, respectively. Analysis of reactive oxygen species was done with 2,7-dichlorodihydrofluorescein diacetate fluorochrome. The proliferation and viability of MC3T3E1 cells were measured by trypan blue staining. Malondialdehyde analysis was done colorimetrically. Results: Cell's viabilities were significantly lower in MG+0.050 mg/L CSN1S2 protein of goat milk compared to MG group (P<0.05. MG+0.100 mg/L CSN1S2 protein of goat milk significantly increased the cells viability compared to MG group (P<0.05. The levels of proliferation were significantly higher in MG+0.100 mg/L CSN1S2 protein of goat milk compared to control group and all treatment groups, respectively (P<0.05. Conclusions: High dose of CSN1S2 protein of goat milk (0.100 mg/L in high MG environment inhibits the decrease of viability due to the increases of the proliferation of MC3T3E1 preosteoblast cell.

  7. Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro (United States)

    Kawai, Akira; Onimaru, Hiroshi; Homma, Ikuo


    We investigated mechanisms of CO2/H+ chemoreception in the respiratory centre of the medulla by measuring membrane potentials of pre-inspiratory neurons, which are putative respiratory rhythm generators, in the brainstem–spinal cord preparation of the neonatal rat. Neuronal response was tested by changing superfusate CO2 concentration from 2% to 8% at constant HCO3− concentration (26 mm) or by changing pH from 7.8 to 7.2 by reducing HCO3− concentration at constant CO2 (5%). Both respiratory and metabolic acidosis lead to depolarization of neurons with increased excitatory synaptic input and increased burst rate. Respiratory acidosis potentiated the amplitude of the neuronal drive potential. In the presence of tetrodotoxin (TTX), membrane depolarization persisted during respiratory and metabolic acidosis. However, the depolarization was smaller than that before application of TTX, which suggests that some neurons are intrinsically, and others synaptically, chemosensitive to CO2/H+. Application of Ba2+ blocked membrane depolarization by respiratory acidosis, whereas significant depolarization in response to metabolic acidosis still remained after application of Cd2+ and Ba2+. We concluded that the intrinsic responses to CO2/H+changes were mediated by potassium channels during respiratory acidosis, and that some other mechanisms operate during metabolic acidosis. In low-Ca2+, high-Mg2+ solution, an increased CO2 concentration induced a membrane depolarization with a simultaneous increase of the burst rate. Pre-inspiratory neurons could adapt their baseline membrane potential to external CO2/H+ changes by integration of these mechanisms to modulate their burst rates. Thus, pre-inspiratory neurons might play an important role in modulation of respiratory rhythm by central chemoreception in the brainstem–spinal cord preparation. PMID:16469786

  8. [Composition characteristics and source analysis of major ions in four small lake-watersheds on the Tibetan Plateau, China]. (United States)

    Li, He; Li, Jun; Liu, Xiao-Long; Yang, Xi; Zhang, Wei; Wang, Jie; Niu, Ying-Quan


    To investigate the ionic compositions of small lake-watersheds on the Tibetan Plateau, water samples from the brackish lakes (Pung Co (lake), Angrenjin Co and Dajia Co), the freshwater lake (Daggyaima Co), their inflowing rivers and the hot spring (Dagejia Geothermal Field), were collected during July-August 2013. The results showed that the major anions and cations of the brackish lakes were HCO3-, SO4(2-) and Na+, respectively, and the hydrochemical types were HCO3-SO4-Na and HCO3-Na. The major anions and cations of the inflowing rivers and the freshwater lake were HCO3-, SO4(2-) and Ca2+, Mg2+, respectively, and the hydrochemical types were HCO3-Ca, HCO3-Ca-Mg, HCO3-Mg-Ca, HCO3-SO4-Ca and SO4-HCO3- Ca. The major anions and cations of the hot spring were HCO3- and Na+, respectively, and the hydrochemical type was HCO3-Na. Water chemistry in the brackish lakes was primarily dominated by evaporation-crystallization processes, while the inflowing rivers and the freshwater lake were mainly influenced by carbonate weathering, and the hot spring was mainly controlled by hot water-granite interaction. Ca2+ was preferentially removed over Mg2+ from the water when carbonate minerals precipitation occured, which resulted in the high Mg2+/Ca2+ molar ratios of the brackish lakes. In the contribution of cation compositions, the largest contribution was carbonate weathering (54% - 79%), followed by silicate weathering (13% -29%) and evaperite dissolution (4% -23%), and the smallest was atmospheric input (3% - 7%).

  9. Current and calcium responses to local activation of axonal NMDA receptors in developing cerebellar molecular layer interneurons.

    Directory of Open Access Journals (Sweden)

    Bénédicte Rossi

    Full Text Available In developing cerebellar molecular layer interneurons (MLIs, NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+ channels (VDCCs. Using Ca(2+ imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+ or by the addition of APV. Similar paradigms yielded restricted Ca(2+ transients in interneurons loaded with a Ca(2+ indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+ elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+-induced Ca(2+ release process mediated by presynaptic Ca(2+ stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+-mediated synaptic plasticity.

  10. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy) (United States)

    Forni, Francesca; Petricca, Eleonora; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo; Piochi, Monica


    Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi Flegrei (i.e., Campanian Ignimbrite, CI, 39 ka and Neapolitan Yellow Tuff, NYT, 15 ka). While the CI displays linear compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clinopyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing remobilized portions of a "mature" (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal mushes of becoming eruptible upon recharge.

  11. Management of sexually transmissible infections in the era of multiplexed molecular diagnostics: a primary care survey. (United States)

    Brosh-Nissimov, Tal; Kedem, Ron; Ophir, Nimrod; Shental, Omri; Keller, Nathan; Amit, Sharon


    Background: Data regarding sexually transmissible infections (STI) often originate from STI clinics, screening programs or laboratory-based studies, thus are biased for specific risk groups or lack clinical details. This real-life observational study presents sample data of most young adult Israeli population by exploiting the centralised diagnostic and documentation platforms resulting from a mandatory military service at the age of 18 years for both genders. Methods: All STI diagnoses of Israeli Defence Forces soldiers during a 6-month period were reviewed. Patients with Chlamydia trachomatis (CT), Mycoplasma genitalium (MG), Neisseria gonorrhoeae (NG) and Trichomonas vaginalis (TV) (major-STI) and Ureaplasma urealyticum (UU), Ureaplasma parvum (UP) and Mycoplasma hominis (MH) (equivocal STI) were compared with STI-negative controls. Results: Sexually transmissible infection positivity rates (n=2816) were as follows: CT 6.6%; MG 1.9%; NG 0.7%; TV 0.5%; UU 15.7%; UP 28.2%; and MH 6.2%. The CT+MG coinfection rate was 4.1%, yet CT+NG coinfections were rare (≈0.5%). More than half of the patients with ureaplasmas and/or MH were treated; 40% of them were recommended partner treatment. Most antibiotics were prescribed to patients with equivocal infections. Classic STI symptoms in males were linked to major-STI and UU, while females were asymptomatic or presented non-specific symptoms. Conclusions: The judicious use of antibiotics in the era of antimicrobial resistance necessitates re-evaluating the significance of equivocal pathogen detection and reporting (MH, UU, UP). Likewise, universal empiric treatment for NG should be reconsidered in light of its low rates in non-high-risk groups. Conversely, a high MG rate, a pathogen with potential resistance to common STI protocols, requires evaluation of guidelines adequacy.

  12. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau? (United States)

    Zhang, Yuqi; Song, Shuguang; Yang, Liming; Su, Li; Niu, Yaoling; Allen, Mark B.; Xu, Xin


    Oceanic plateaus with high-Mg rocks in the present-day oceanic crust have attracted much attention for their proposed mantle-plume origins and abnormally high mantle potential temperatures (Tp). However, equivalent rocks in ancient oceanic environments are usually poorly preserved because of deformation and metamorphism. Here we present petrological, geochronological and geochemical data for pillow lavas from Cambrian ophiolites in the Lajishan and Yongjing regions of the South Qilian Accretionary Belt (SQAB), from the southern part of the Qilian Orogen, northern China. Three rock groups can be identified geochemically: (1) sub-alkaline basalts with enriched mid- ocean ridge basalt (E-MORB) affinity; (2) alkaline basalts with oceanic island basalt (OIB) features, probably derived from partial melting of an enriched mantle source; and (3) picrites with MgO (18-22 wt%). Cr-numbers [Cr# = Cr/(Cr + Al)] of spinels from the picrites suggest 18-21% degree of partial melting at the estimated mantle potential temperature (Tp) of 1489-1600 °C, equivalent to values of Cenozoic Hawaiian picrites (1500-1600 °C). Zircons from one gabbro sample yielded a U-Pb Concordia age of 525 ± 3 Ma, suggesting the oceanic crust formed in the Cambrian. Available evidence suggests that Cambrian mantle plume activity is preserved in the South Qilian Accretionary Belt, and influenced the regional tectonics: "jamming" of the trench by thick oceanic crust explains the emplacement and preservation of the oceanic plateau, and gave rise to the generation of concomitant Ordovician inner-oceanic island arc basalts via re-organisation of the subduction zones in the region.

  13. Synthesis of a potential fast ionic conductor for Mg 2+ ions

    Energy Technology Data Exchange (ETDEWEB)

    Redko, Mikhail [Powermet Inc., Euclid, OH (United States)


    This report represents Powdermet’s attempts to synthesize a novel crystalline solid substance–Mg(B5C)2. This was expected to exhibit a high Mg2+ ionic conductivity, exceeding that of all known materials. The project was expected to consist of three major steps: 1) reproduction of a literature synthesis of a rare sodium compound NaB5C; 2) substitution of Na+ cations with Mg2+ cations, resulting in Mg(B5C)2; and 3) analysis of its Mg2+ conductivity. In course of the research, 15 attempts were made to reproduce the literature procedure on synthesis of NaB5C, a precursor to the Mg2+ conductor. The first nine attempts were unsuccessful, but later it was found that NaB5C formed when the synthesis was performed in pressurized Ar atmosphere. Powdermet performed partial exchange of Na+ to Mg2+ by heating NaB5C with magnesium triflate in sulfolane at 260°C. In another avenue, theoretical optimization of the Mg(B5C)2 structure have been performed with distant goal estimate the activation barrier for the Mg2+ diffusion and estimate the temperature at which the mobility of Mg2+ cations will be of the order of 10-2 S*cm.

  14. Nd-Sr isotopic and geochemical systematics in Cambrian boninites and tholeiites from Victoria, Australia (United States)

    Nelson, D. R.; Crawford, A. J.; McCulloch, M. T.


    Rocks with boninitic affinities have been recognised in a number of “ophiolites”, including the Cambrian Heathcote and Mt Wellington Greenstone Belts of Victoria. Boninites and high-Mg andesites from the Heathcote Greenstone Belt show a restricted range of initial ɛ Nd values of between +3.3 to +5.8. Extremely refractory boninites from the Mt Wellington Greenstone Belt have ɛ Nd ranging from +1.3 to -9. Ti/Zr is positively correlated with Sm/Nd with the Heathcote lavas generally possessing greater depletion of Ti and enrichment of Zr relative to the middle and heavy REE with increasing LREE/HREE. These data are consistent with the generation of boninites by partial melting of refractory peridotite following invasion by LREE- and Zr-enriched, low ɛ Nd fluids. Tholeiites overlying the boninites in both greenstone belts have flat REE patterns and ɛ Nd˜+5, lower than that anticipated for lavas derived from depleted MORB source reservoirs in the Cambrian, suggesting that their source was also contaminated by a LREE-enriched, low ɛ Nd component similar to that involved in the generation of the Howqua boninites. The added components have characteristics compatible with their derivation from subducted altered oceanic crust and/or from wet subducted sediments. The identification of boninites and other low-Ti lavas in the Victorian greenstone belts is strong evidence for island arc development in southeastern Australia during the Lower Cambrian and provides further support for a subduction-related origin for many ophiolites.

  15. Late Cretaceous (ca. 95 Ma) magnesian andesites in the Biluoco area, southern Qiangtang subterrane, central Tibet: Petrogenetic and tectonic implications (United States)

    He, Haiyang; Li, Yalin; Wang, Chengshan; Zhou, Aorigele; Qian, Xinyu; Zhang, Jiawei; Du, Lintao; Bi, Wenjun


    The tectonic evolutionary history of the Lhasa and Qiangtang collision zones remains hotly debated because of the lack of pivotal magmatic records in the southern Qiangtang subterrane, central Tibet. We present zircon U-Pb dating, whole-rock major and trace-element geochemical analyses, and Sr-Nd isotopic data for the newly discovered Biluoco volcanic rocks from the southern Qiangtang subterrane, central Tibet. Zircon U-Pb dating reveals that the Biluoco volcanic rocks were crystallized at ca. 95 Ma. The samples are characterized by low SiO2 (50.26-54.53 wt%), high Cr (109.7-125.92 ppm) and Ni (57.4-71.58 ppm), and a high Mg# value (39-56), which plot in the magnesian andesites field on the rock classification diagram. They display highly fractionated rare earth element patterns with light rare earth element enrichment ([La/Yb]N = 21.04-25.24), high Sr/Y (63.97-78.79) and no negative Eu anomalies (Eu/Eu* = 0.98-1.04). The Biluoco volcanic rocks are depleted in Nb, Ta and Ti and enriched in Ba, Th, U and Pb. Moreover, the eight samples of Biluoco volcanic rocks display constant (87Sr/86Sr)i ratios (0.70514-0.70527), a positive εNd(t) value (2.16-2.68) and younger Nd model ages (0.56-0.62 Ga). These geochemical signatures indicate that the Biluoco volcanic rocks were most likely derived from partial melting of the mantle wedge peridotite metasomatized by melts of subducted slab and sediment in the subducted slab, invoked by asthenospheric upwelling resulting from the slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere. Identification of ca. 95 Ma Biluoco magnesian andesites suggests they were a delayed response of slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere at ca. 100 Ma.

  16. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa


    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  17. Sm-Nd and Ar-Ar Studies of DHO 908 and 489: Implications for Lunar Crustal History (United States)

    Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.; Park, J.; Bogard, D. D.; Garrison, D. H.; Yamaguchi, A.


    It is widely assumed that ferroan anorthosites (FANs) formed as flotation cumulates on a global lunar magma ocean (LMO). A corollary is that all FANs are approximately contemporaneous and formed with the same initial Nd-143/Nd-144 ratio. Indeed, a whole rock isochron for selected FANs (and An93 anorthosite) yields an isochron age of 4.42 +/- 0.13 Ga and initial Nd-143/Nd-144, expressed in epsilon-units, of epsilon(sub Nd,CHUR) = 0.3+/-0.3 relative to the CHondritic Uniform Reservoir , or epsilon(sub Nd,HEDPB)=-0.6+/-0.3 relative to the HED Parent Body. These values are in good agreement with the age (T) = 4.47+/-0.07 Ga, and epsilon(sub Nd,HEDPB) =-0.6 +/- 0.5 for FAN 67075. We also have studied anorthositic clasts in the Dhofar 908 and 489 lunar highland meteorites containing clasts of magnesian anorthosites (MAN) with Mg# approximately 75. Because of their relatively high Mg#, magnesian anorthosites should have preceded most FANs in crystallization from the LMO if both are LMO products. Thus, it is important to determine whether the Nd-isotopic data of MAN and FAN are consistent with a co-magmatic origin. We previously reported Sm-Nd data for white clast Dho 908 WC. Mafic minerals in this clast were too small to be physically separated for an isochron. However, we estimated initial Nd-143/Nd-144 for the clast by combining its bulk ("whole rock") Sm-Nd data with an Ar-39-Ar-40 age of 4.42+/-.04 Ga. Here we report additional Sm-Nd data for bulk samples of Dho 908 and its pair Dho 489.

  18. Occurrence and mineral chemistry of chromite and related silicates from the Hongshishan mafic-ultramafic complex, NW China with petrogenetic implications (United States)

    Ruan, Banxiao; Yu, Yingmin; Lv, Xinbiao; Feng, Jing; Wei, Wei; Wu, Chunming; Wang, Heng


    The Hongshishan mafic-ultramafic complex is located in the western Beishan Terrane, NW China, and hosts an economic Ni-Cu deposit. Chromite as accessory mineral from the complex is divided into three types based on its occurrence and morphology. Quantitative electron probe microanalysis (EPMA) have been conducted on the different types of chromites. Type 1 chromite occurs as inclusions within silicate minerals and has relatively homogeneous composition. Type 2 chromite occurs among serpentine, as interstitial phase. Type 3 chromite is zoned and exhibits a sudden change in compositions from core to rim. Type 1 chromite occurs in olivine gabbro and troctolite showing homogeneous composition. This chromite is more likely primary. Interstitial type 2 and zoned type 3 chromite has compositional variation from core to rim and is more likely modified. Abundant inclusions of orthopyroxene, phlogopite and hornblende occur within type 2 and type 3 chromites. The parental melt of type 1 chromite has an estimated composition of 14.5 wt% MgO, 12.3 wt% Al2O3 and 1.9 wt% TiO2 and is characterized by high temperature, picritic affinity, hydrous nature and high Mg and Ti contents. Compositions of chromite and clinopyroxene are distinct from those of Alaskan-type complexes and imply that the subduction-related environment is not reasonable. Post orogenic extension and the early Permian mantle plume are responsible for the emplacement of mafic-ultramafic complexes in the Beishan Terrane. The cores of zoned chromites are classified as ferrous chromite and the rims as ferrian chromite. The formation of ferrian rim involves reaction of ferrous chromite, forsterite and magnetite to produce ferrian chromite and chlorite, or alternaively, the rim can be simply envisioned as the result of external addition of magnetite in solution to the already formed ferrous chromite.

  19. Coal ball formation and a soil extinction near the P-Tr boundary (United States)

    Breecker, D.; Royer, D. L.


    Coal balls are calcium carbonate accumulations that commonly permineralize paleotropical PermoCarboniferous coal deposits and preserve exceptional specimens of the coal swamp flora. A widely applicable model for the origin of coal balls is lacking despite the study of these deposits for over a century. Two characteristics of coal balls have been particularly challenging to explain: 1) their temporal range is restricted to the PermoCarboniferous and 2) their typical oxygen isotope and elemental compositions paradoxically indicate freshwater and marine origins, respectively. We propose a new model for coal ball formation. The first step in our model is the episodic delivery of seawater and marine carbonate sediment to coastal mires. Next, these waters are diluted by freshwater and the carbonates dissolve at the elevated pCO2 of the mire subsurface. Finally, as waters flow laterally through stands of arborescent lycopsids, aqueous CO2 in the pore spaces of the peat escapes by diffusion through the air-filled lycopsid rootlets into the overlying water column, where some rootlets are thought to have extended. The CO2 escape drives calcite precipitation in the soil zone. This model explains the narrow temporal occurrence of coal balls, which coincides with the peak diversity of arborescent lycopsids. It also resolves the geochemical conundrum; dilution by freshwater can result in relatively low pore water δ18O values without preventing high-Mg calcite formation. Furthermore, we show mathematically that for published densities of arborescent lycopsid root mats and for reasonable rates of lateral water flow and vertical peat accumulation, CO2 could escape rapidly enough through the rootlets to fill >35% of the porosity with calcite before substantial burial (top several decimeters of peat), explaining the exceptional preservation of coal swamp flora. Therefore, we suggest that coal balls are pedogenic in origin and that their disappearance from the rock record represents

  20. Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, central India (United States)

    Asthana, Deepanker; Kumar, Sirish; Vind, Aditya Kumar; Zehra, Fatima; Kumar, Harshavardhan; Pophare, Anil M.


    The Pitepani volcanic suite of the Dongargarh Supergroup, central India comprises of a calc-alkaline suite and a tholeiitic suite, respectively. The rare earth element (REE) patterns, mantle normalized plots and relict clinopyroxene chemistry of the Pitepani calc-alkaline suite are akin to high-Mg andesites (HMA) and reveal remarkable similarity to the Cenozoic Setouchi HMA from Japan. The Pitepani HMAs are geochemically correlated with similar rocks in the Kotri-Dongargarh mobile belt (KDMB) and in the mafic dykes of the Bastar Craton. The rationale behind lithogeochemical correlations are that sanukitic HMAs represent fore-arc volcanism over a very limited period of time, under abnormally high temperature conditions and are excellent regional and tectonic time markers. Furthermore, the tholeiitic suites that are temporally and spatially associated with the HMAs in the KDMB and in the mafic dykes of the Bastar Craton are classified into: (a) a continental back-arc suite that are depleted in incompatible elements, and (b) a continental arc suite that are more depleted in incompatible elements, respectively. The HMA suite, the continental back-arc and continental arc suites are lithogeochemically correlated in the KDMB and in the mafic dykes of the Bastar Craton. The three geochemically distinct Neoarchaean magmatic suites are temporally and spatially related to each other and to an active continental margin. The identification of three active continental margin magmatic suites for the first time, provides a robust conceptual framework to unravel the Neoarchaean geodynamic evolution of the Bastar Craton. We propose an active continental margin along the Neoarchaen KDMB with eastward subduction coupled with slab roll back or preferably, ridge-subduction along the Central Indian Tectonic Zone (CITZ) to account for the three distinct magmatic suites and the Neoarchean geodynamic evolution of the Bastar Craton.

  1. State-changes in the swimmeret system: a neural circuit that drives locomotion. (United States)

    Tschuluun, N; Hall, W M; Mulloney, B


    The crayfish swimmeret system undergoes transitions between a silent state and an active state. In the silent state, no patterned firing occurs in swimmeret motor neurons. In the active state, bursts of spikes in power stroke motor neurons alternate periodically with bursts of spikes in return stroke motor neurons. In preparations of the isolated crayfish central nervous system (CNS), the temporal structures of motor patterns expressed in the active state are similar to those expressed by the intact animal. These transitions can occur spontaneously, in response to stimulation of command neurons, or in response to application of neuromodulators and transmitter analogues. We used single-electrode voltage clamp of power-stroke exciter and return-stroke exciter motor neurons to study changes in membrane currents during spontaneous transitions and during transitions caused by bath-application of carbachol or octopamine (OA). Spontaneous transitions from silence to activity were marked by the appearance of a standing inward current and periodic outward currents in both types of motor neurons. Bath-application of carbachol also led to the development of these currents and activation of the system. Using low Ca(2+)-high Mg(2+) saline to block synaptic transmission, we found that the carbachol-induced inward current included a direct response by the motor neuron and an indirect component. Spontaneous transitions from activity to silence were marked by disappearance of the standing inward current and the periodic outward currents. Bath-application of OA led promptly to the disappearance of both currents, and silenced the system. OA also acted directly on both types of motor neurons to cause a hyperpolarizing outward current that would contribute to silencing the system.

  2. Microbial and chemical characterization of underwater fresh water springs in the Dead Sea.

    Directory of Open Access Journals (Sweden)

    Danny Ionescu

    Full Text Available Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.

  3. Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya (United States)

    Jonnalagadda, Mallika K.; Karmalkar, Nitin R.; Duraiswami, Raymond A.; Harshe, Shivani; Gain, Sarah; Griffin, William L.


    The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.

  4. The importance of structural inhomogeneity in GaN thin films (United States)

    Liliental-Weber, Z.; Reis, Roberto dos; Weyher, Jan L.; Staszczak, Grzegorz; Jakieła, Rafał


    This paper describes two types of MOCVD-grown n-type GaN layers (Samples A and B) with similar carrier concentration but behaved differently under galvanic photo-etching. In order to understand this behavior, Transmission Electron Microscopy (TEM) for cross-section and plan-view samples, Secondary Ion Mass Spectroscopy (SIMS) and photoluminescence (PL) techniques were applied. SIMS studies showed that Si, C and O are approximately at the same concentration in both samples, but Sample B also contained Fe and Mg. Both GaN samples were grown on sapphire substrate with Ga growth polarity, which was confirmed by Convergent Beam Electron Diffraction (CBED). Despite a smaller layer thickness in Sample B, the density of edge dislocations is almost one order of magnitude lower than in Sample A. In addition, planar defects formed in this sample in the transition area between the undoped buffer and Si doped layers resulted in a substantial decrease in the density of screw dislocations at the sample surface. These planar defects most probably gave rise to the PL lines observed at 3.42 eV and 3.32 eV. The new PL lines that only appeared in Sample B might be related to Mg impurities found in this sample. There were no detectable gettering of these impurities at dislocations using different diffraction conditions. However, Fe rich platelets were found only in Sample B due to the presence of Fe as well as hexagonal features, similar to defects reported earlier in highly Mg-doped GaN. These structural and chemical non-uniformities between the two GaN samples can explain their different etching behaviors. This paper demonstrates that samples with similar carrier concentrations do not necessarily ensure similar structural and optical properties and that additional material characterization are needed to ensure that devices built on such samples have similar performance.

  5. The growth of axially modulated p–n GaN nanowires by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Wu, Tung-Hsien; Hong, Franklin Chau-Nan


    Due to the n-type characteristics of intrinsic gallium nitride, p-type gallium nitride (GaN) is more difficult to synthesize than n-type gallium nitride in forming the p–n junctions for optoelectronic applications. For the growth of the p-type gallium nitride, magnesium is used as the dopant. The Mg-doped GaN nanowires (NWs) have been synthesized on (111)-oriented n + -silicon substrates by plasma-enhanced chemical vapor deposition. The scanning electron microscope images showed that the GaN NWs were bent at high Mg doping levels, and the transmission electron microscope characterization indicated that single-crystalline GaN NWs grew along < 0001 > orientation. As shown by energy dispersive spectroscopy, the Mg doping levels in GaN NWs increased with increasing partial pressure of magnesium nitride, which was employed as the dopant precursor for p-GaN NW growth. Photoluminescence measurements suggested the presence of both p- and n‐type GaN NWs. Furthermore, the GaN NWs with axial p–n junctions were aligned between either two-Ni or two-Al electrodes by applying alternating current voltages. The current–voltage characteristics have confirmed the formation of axial p–n junctions in GaN nanowires. - Highlights: ► Grow axially modulated GaN nanowires by plasma-enhanced chemical vapor deposition ► Control the Mg concentration of GaN nanowires by tuning Mg 3 N 2 temperature ► Align the GaN nanowires by applying alternating current voltages between electrodes

  6. Oral supplements of inulin during gestation offsets rotenone-induced oxidative impairments and neurotoxicity in maternal and prenatal rat brain. (United States)

    Krishna, Gokul; Muralidhara


    Environmental insults including pesticide exposure and their entry into the immature brain are of increased concern due to their developmental neurotoxicity. Several lines of evidence suggest that maternal gut microbiota influences in utero fetal development via modulation of host's microbial composition with prebiotics. Hence we examined the hypothesis if inulin (IN) supplements during pregnancy in rats possess the potential to alleviate brain oxidative response and mitochondrial deficits employing a developmental model of rotenone (ROT) neurotoxicity. Initially, pregnant Sprague-Dawley rats were gavaged during gestational days (GDs) 6-19 with 0 (control), 10 (low), 30 (mid) or 50 (high) mg/kg bw/day of ROT to recapitulate developmental effects on general fetotoxicity (assessed by the number of fetuses, fetal body and placental weights), markers of oxidative stress and cholinergic activities in maternal brain regions and whole fetal-brain. Secondly, dams orally supplemented with inulin (2×/day, 2 g/kg/bw) on GD 0-21 were administered ROT (50 mg/kg, GD 6-19). IN supplements increased maternal cecal bacterial numbers that significantly corresponded with improved exploratory-related behavior among ROT administered rats. In addition, IN supplements improved fetal and placental weight on GD 19. IN diminished gestational ROT-induced increased reactive oxygen species levels, protein and lipid peroxidation biomarkers, and cholinesterase activity in maternal brain regions (cortex, cerebellum, and striatum) and fetal brain. Moreover, in the maternal cortex, mitochondrial assessment revealed IN protected against ROT-induced reduction in NADH cytochrome c oxidoreductase and ATPase activities. These data suggest a potential role for indigestible oligosaccharides in reducing oxidative stress-mediated developmental origins of neurodegenerative disorders. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Review of Liquidus Surface and Phase Equilibria in the TiO2-SiO2-Al2O3-MgO-CaO Slag System at PO2 Applicable in Fluxed Titaniferous Magnetite Smelting (United States)

    Goso, Xolisa; Nell, Johannes; Petersen, Jochen

    The current liquidus surface and phase equilibria established in air for fluxed titaniferous magnetite (titanomagnetite) slags conforming to a composition of 37.19% TiO2, 19.69% SiO2, 13.12% Al2O3, and 30.00% of various ratios of CaO+MgO were reviewed at applicable PO2 using FactSage simulation and phase composition of a real plant titanomagnetite slag. The testwork included the incorporation into FactSage of a private MgTi2O5-Al2TiO5 pseudobrookite solution model. The results of the investigation showed that the liquidus surface and Ti3+/ Ti4+ mass fraction ratio increased with decreasing the PO2, At low PO2, perovskite crystallizes as a primary phase at high CaO content. The spinel solution, i.e. (Mg)(Al,Ti)O4, generally crystallizes as the primary phase at high MgO contents, though it is replaced by MgTi2O5-Al2TiO5 solution at PO2 of 10-10 atm to 10-15 atm. An intermediate equilibrium phase diagram established at PO2 of 10-16 atm is proposed. This phase diagram does not show the observed primary phase crystallization competition, however, the phase composition of a real titanomagnetite slag produced by Evraz Highveld Steel and Vanadium Corporation in South Africa does show primary phase crystallization competition between (Mg)(Al,Ti)2O4 and MgTi2O5-Al2TiO5. Smelting involving such slags is likely conducted around the transition PO2, i.e. PO2 of about 10-16 atm. Complex modelling with MgTi2O5, Al2TiO5 and Ti3O5 end members and experiments are underway to verify and update the intermediate phase diagram.

  8. Energetics of Mg incorporation at GaN(0001) and GaN(0001¯) surfaces (United States)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan


    By using density functional calculations in the generalized gradient approximation, we investigate the energetics of Mg adsorption and incorporation at GaN(0001) and GaN(0001¯) surfaces under various Ga and Mg coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find significant differences in Mg incorporation between Ga- and N-polar surfaces. Mg incorporation is easier at the Ga-polar surface, but high Mg coverages are found to cause important distortions which locally change the polarity from Ga to N polar. At the N-rich and moderately Ga-rich GaN(0001) surface, 0.25 ML of Mg substituting Ga in the top bilayer strongly reduce the surface diffusion barriers of Ga and N adatoms, in agreement with the surfactant effect observed in experiments. As the Mg coverage exceeds 0.5 ML, partial incorporation in the subsurface region (second bilayer) becomes favorable. A surface structure with 0.5 ML of incorporated Mg in the top bilayer and 0.25 ML in the second bilayer is found to be stable over a wide range of Ga chemical potential. At the Ga bilayer-terminated GaN(0001) surface, corresponding to Ga-rich conditions, configurations where Mg is incorporated in the interface region between the metallic Ga bilayer and the underlying GaN bilayer appear to be favored. At the N-polar surface, Mg is not incorporated under N-rich or moderately Ga-rich conditions, whereas incorporation in the adlayer may take place under Ga-rich conditions. In the presence of light or electron beam induced excitation, energy differences between Mg incorporated at the surface and in deeper layers are reduced so that the tendency toward surface segregation is also reduced.

  9. Comet Mineralogy as Inferred from Infrared Spectra of Comets (United States)

    Wooden, Diane H.


    For most comets, infrared (IR) spectroscopy (remote sensing) is the method through which we diagnose the mineralogy and size distribution of dust in their comae. The shape and contrast of the IR spectral features depend on the particle size: optically active minerals (absorbing of visible and near-IR solar photons) and submicron solid grains or highly porous (> 90% vacuum) grains primarily contribute to the shapes of the observed resonances. Comet mineralogies typically are determined by fitting thermal emission models of ensembles of discrete mineral grains to observed IR spectral energy distributions. The absorptivities (Q-abs) and scattering efficiencies (Q-scat) of the discrete mineral grains are computed using Mie scattering, Maxwell-Garnet mixing, Discrete Dipole Approximation, and Multi-Layered Sphere codes. These techniques when applied to crystalline minerals, specifically olivine (Mg_x, Fe_1-x)2 Si04, x>0.9, require the use of ellipsoidal shaped particles with elongated axial ratios or hollow spheres to produce the shapes of the resonances observed both from comet comae and laboratory samples. The wavelength positions of the distinct resonances from submicron-radii crystalline silicates, as well as their thermal equilibrium temperatures, constrain the crystalline olivine to have a relatively high Mg-content (x>0.9, or Fo>90). Only resonances computed for submicron Mg-rich crystalline olivine and crystalline orthopyroxene match the observed IR spectral features. However, this has led to the interpretation that micron-radii and larger crystals are absent from comet comae. Furthermore, the mass fraction of silicate crystals is dependent upon whether just the submicron portion of the size distribution is being compared or the submicron crystals compare to the aggregates of porous amorphous silicates that are computationally tractable as porous spheres. We will discuss the Deep Impact results as examples of these challenges to interpreting mid-IR spectra of

  10. Tourmalinization at the Darasun goldfield, Eastern Transbaikalia: Compositional, fluid inclusion and isotopic constraints

    Directory of Open Access Journals (Sweden)

    Vsevolod Prokofiev


    Full Text Available Zoned tourmaline (schorl-dravite in the matrix of hydrothermal explosive breccia and ore veins in gold deposits, Chita region, Eastern Transbaikalia, Russia, are associated with Na- and K-rich porphyry-type subvolcanic intrusives. δ18O values of tourmaline from three gold deposits (Darasun, Talatui, Teremkinskoye are +8.3‰, +7.6‰, and +6.0‰ and calculated δ18O values of fluids responsible for the tourmalinization are +7.3‰, +7.7‰, and +4.2‰, respectively. These data imply an igneous fluid source, except at the Teremkin deposit where mixing with meteoric water is indicated. Wide ranges of Fe3+/Fetot and the presence of vacancies characterize the Darasun deposit tourmaline indicating wide ranges of ƒ(O2 and pH of mineralizing fluids. Initial stage tourmalines from the gold deposits of the Darasun ore district are dravite or high mg schorl. Second stage tourmaline is characterized by oscillatory zoning but with Fe generally increasing towards crystal rims indicating decreasing temperature. Third stage tourmaline formed unzoned crystals with xMg (mole fraction of Mg close to that of the first stage tourmaline, due to a close association with pyrite and arsenopyrite. From Fe3+/Fetot values, chemical composition and crystallization temperatures, logf(O2 of mineralizing fluids ranged from ca. −25 to −20, much higher than for the gold-bearing beresite–listvenite association, indicating that tourmalinization was not related to gold mineralization.

  11. Restrictions in Mg/Ca-Paleotemperature Estimations in High-Latitude Bottom Waters: Evidence from the Fram Strait and the Nordic Seas (United States)

    Werner, K.; Marchitto, T. M., Jr.; Not, C.; Spielhagen, R. F.; Husum, K.


    Mg to Ca ratios of the benthic foraminifer species Cibicidoides wuellerstorfi provide a great potential for reconstructing bottom water temperatures, especially from the lower end of the temperature range between 0 and 6°C (Tisserand et al., 2013). A set of core top samples from the Fram Strait and the Norwegian margin have been studied for Mg/Ca ratios in C. wuellerstorfi in order to establish a calibration relationship to the environmental conditions. In this part of the northern North Atlantic the bottom water temperature range between -0.5 and -1°C. For the calibration to modern water mass conditions, modern oceanographic data from both existing conductivity-temperature-depth (CTD) casts and the World Ocean Data Base 2013 (Boyer et al., 2013) have been used. Benthic Mg/Ca ratios are relatively high suggesting a preference of C. wuellerstorfi to incorporate Mg below 0°C. Although no correlation has been found to existing temperature calibrations, the data are in line with earlier Mg/Ca data from C. wuellerstorfi in the area (Martin et al., 2002; Elderfield et al., 2006). The carbonate ion effect is most likely a main cause for the relatively high Mg/Ca ratios found in core top samples from the Fram Strait and the Nordic Seas, however, other factors may influence the values as well. Holocene records of benthic trace metal/Ca ratios from the eastern Fram Strait display trends similar to those found in other proxy indicators, despite the difficulties to constrain a temperature calibration for this low temperature range. In particular, the benthic B/Ca and Li/Ca records resemble trends in Holocene planktic foraminifer assemblages, suggesting to be influenced by environmental factors such as the carbonate ion effect consistent for the entire water column.

  12. Material Exchange and Migration between Pore Fluids and Sandstones during Diagenetic Processes in Rift Basins: A Case Study Based on Analysis of Diagenetic Products in Dongying Sag, Bohai Bay Basin, East China

    Directory of Open Access Journals (Sweden)

    W. Meng


    Full Text Available The exchange and migration of basin materials that are carried by pore fluids are the essence of diagenesis, which can alter physical properties of clastic rocks as well as control formation and distribution of favorable reservoirs of petroliferous basins. Diagenetic products and pore fluids, resulting from migration and exchange of basin materials, can be used to deduce those processes. In this study, 300 core samples from 46 wells were collected for preparation of casting thin sections, SEM, BSE, EDS, inclusion analysis, and isotope analysis in Dongying Sag, Bohai Bay Basin, East China. Combined with geochemical characteristics of pore fluids and geological background of the study area, the source and exchange mechanisms of materials in the pore fluids of rift basins were discussed. It was revealed that the material exchange of pore fluids could be divided into five stages. The first stage was the evaporation concentration stage during which mainly Ca2+, Mg2+, and CO32- precipitated as high-Mg calcites. Then came the shale compaction stage, when mainly Ca2+ and CO32- from shale compaction water precipitated as calcites. The third stage was the carboxylic acid dissolution stage featured by predominant dissolution of plagioclases, during which Ca2+ and Na+ entered pore fluids, and Si and Al also entered pore fluids and then migrated as clathrates, ultimately precipitating as kaolinites. The fourth stage was the organic CO2 stage, mainly characterized by the kaolinization of K-feldspar as well as dissolution of metamorphic lithic fragments and carbon cements. During this stage, K+, Fe2+, Mg2+, Ca2+, HCO3-, and CO32- entered pore fluids. The fifth stage was the alkaline fluid stage, during which the cementation of ferro-carbonates and ankerites as well as illitization or chloritization of kaolinites prevailed, leading to the precipitation of K+, Fe2+, Mg2+, Ca2+, and CO32- from pore fluids.

  13. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil

    Directory of Open Access Journals (Sweden)

    Leite Renato J.


    Full Text Available The Piedade Granite (~600 Ma was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit and core (metaluminous titanite-bearing biotite monzogranite BmgT unit and felsic pink inequigranular granite (Bmg unit between them. Bmg has high LaN/YbN (up to 100, Th/U (>10 and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (~45, Ba and Sr, fractionated REE patterns (LaN/YbN= 45, 87Sr/86Sr(t~ 0.710, epsilonNd(t ~ -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta. The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t = 0.713-0.714; epsilonNd(t= -14 to -16, similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  14. High-Resolution Mg/Ca Ratios in a Coralline Red Alga as a Proxy for Bering Sea Temperature Variations and Teleconnections (United States)

    Halfar, J.; Steffen, H.; Kronz, A.; Steneck, R. S.; Adey, W.; Lebednik, P. A.


    We present the first continuous high-resolution record of Mg/Ca variations within an encrusting coralline red alga of the species Clathromorphum nereostratum from Amchitka Island, Aleutian Islands. Mg/Ca ratios of individual growth increments were analyzed by measuring a single point electron microprobe transect yielding a resolution of 15 samples/year on average, generating a continuous record from 1830 to 1967 of algal Mg/Ca variations. Results show that Mg/Ca ratios in the high-Mg calcite skeleton display pronounced annual cyclicity and archive late spring to late fall sea surface temperature (SST) corresponding to the main season of algal growth. Mg/Ca values correlate well to local SST (ERSSTJun-Nov, 1902-1967; r = 0.73 for 5-year mean), as well as to an air temperature record from the same region. Our data correlate well to a shorter Mg/Ca record from a second site, corroborating the ability of the alga to reliably record regional environmental signals. In addition, Mg/Ca ratios relate well to a 29-year stable oxygen isotope time series measured on the same sample, which provides additional support for the use of Mg as a paleotemperature proxy in coralline red algae, that is, unlike stable oxygen isotopes, not influenced by salinity fluctuations. High spatial correlation to large-scale SST variability in the North Pacific is observed, with patterns of strongest correlation following the direction of major oceanographic features (i.e., the signature of the Alaska Current and the Alaskan Stream), which play a key role in the exchange of water masses between the North Pacific and the Bering Sea through Aleutian Island passages. The time series further displays significant teleconnections with the signature of the Pacific Decadal Oscillation in the northeast Pacific and the Atlantic Multidecadal Oscillation.

  15. The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: the case of the Manihiki Plateau and the Troodos ophiolite (United States)

    Golowin, Roman; Portnyagin, Maxim; Hoernle, Kaj; Sobolev, Alexander; Kuzmin, Dimitry; Werner, Reinhard


    High-Mg, low-Ti volcanic rocks from the Manihiki Plateau in the Western Pacific share many geochemical characteristics with subduction-related boninites such as high-Ca boninites from the Troodos ophiolite on Cyprus, which are believed to originate by hydrous re-melting of previously depleted mantle. In this paper we compare the Manihiki rocks and Troodos boninites using a new dataset on the major and trace element composition of whole rocks and glasses from these locations, and new high-precision, electron microprobe analyses of olivine and Cr-spinel in these rocks. Our results show that both low-Ti Manihiki rocks and Troodos boninites could originate by re-melting of a previously depleted lherzolite mantle source (20-25% of total melting with 8-10% melting during the first stage), as indicated by strong depletion of magmas in more to less incompatible elements (Sm/Yb Y 0.5). In comparison with Troodos boninites, the low-Ti Manihiki magmas had distinctively lower H2O contents ( 2 wt% in boninites), 100 °C higher liquidus temperatures at a given olivine Fo-number, lower fO2 (ΔQFM + 0.2) and originated from deeper and hotter mantle (1.4-1.7 GPa, 1440 °C vs. 0.8-1.0 GPa, 1300 °C for Troodos boninites). The data provide new evidence that re-melting of residual upper mantle is not only restricted to subduction zones, where it occurs under hydrous conditions, but can also take place due to interaction of previously depleted upper mantle with mantle plumes from the deep and hotter Earth interior.

  16. Geochemical evolution of groundwater in carbonate aquifers of southern Latium region, central Italy

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa


    Full Text Available Spring and well water samples, from carbonate aquifers of Latium region, have been characterized to determine the hydrochemical processes governing the evolution of the groundwater. Most of the spring samples, issuing from Lepini, Ausoni and Aurunci Mts., are characterized as alkaline earth HCO3 waters, however, some samples show a composition of Cl--SO4 -- alkaline earth waters. Groundwater samples from Pontina Plain shows three different hydrochemical facies: alkaline earth HCO3 type, Cl-- SO4 -- alkaline earth type and Cl--SO4 -- alkaline type waters. Geochemical modeling and saturation index computation of the sampled waters show an interaction with calcareous and calcareous-dolomitic lithologies. Most of the springs and wells was kinetically saturated with respect to calcite and dolomite, and all the samples were below the equilibrium state with gypsum. This indicates that the groundwater has capacity to dissolve the gypsum along the flow paths. The electrical conductivity and Cl- concentrations of the sampled waters show a positive trend with the decrease in the distance from the coast, highlighting seawater intrusion in the coastal area. According to hydrochemistry results and geochemical modeling, the dominant factors in controlling the hydrochemical characteristics of groundwater are: (i water rock interaction with calcareous and calcareous-dolomitic lithologies; (ii seawater intrusion in the coastal area; (iii dissolution and/or precipitation of carbonate and (i.e. dolomite and calcite evaporate minerals (gypsum determined by saturation indexes; (iv mineral weathering process; (the high Mg/Ca ratio due to the weathering of Mg-rich dolomite.

  17. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)


    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  18. Taurine and magnesium supplementation enhances the function of endothelial progenitor cells through antioxidation in healthy men and spontaneously hypertensive rats. (United States)

    Katakawa, Mayumi; Fukuda, Noboru; Tsunemi, Akiko; Mori, Mari; Maruyama, Takashi; Matsumoto, Taro; Abe, Masanori; Yamori, Yukio


    Endothelial damage is repaired by endothelial progenitor cells (EPCs), which are pivotal in preventing cardiovascular diseases and prolonging lifespan. The WHO Cardiovascular Diseases and Alimentary Comparison Study demonstrated that dietary taurine and magnesium (Mg) intake suppresses cardiovascular diseases. We herein evaluate the effects of taurine and Mg supplementation on EPC function and oxidative stress in healthy men and spontaneously hypertensive rats (SHRs). Healthy men received taurine (3 g per day) or Mg (340 mg per day) for 2 weeks. SHRs and Wistar-Kyoto (WKY) rats were housed with high-salt drinking water (1% NaCl). The SHRs received 3% taurine solution and/or a high-Mg (600 mg per 100 g) diet for 4 weeks. Their peripheral blood mononuclear cells were separated to quantify EPC colony formation. Oxidative stress markers in their peripheral blood were evaluated using a free radical analytical system and a thiobarbituric acid reactive substance (TBARS) assay. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased free radical levels and TBARS scores in healthy men. Taurine and Mg supplementation significantly increased EPC colony numbers and significantly decreased TBARS scores and free radical levels in SHRs. Nicotinamide adenine dinucleotide phosphate oxidase component mRNA expression was significantly higher in the renal cortex of salt-loaded SHRs than in WKY rats, in which it was suppressed by taurine and Mg supplementation. Taurine and Mg supplementation increased EPC colony formation in healthy men and improved impaired EPC function in SHRs through antioxidation, indicating that the dietary intake of taurine and Mg may prolong lifespan by preventing the progression of cardiovascular diseases.

  19. Characterizing the nature of melt-rock reaction in peridotites from the Santa Elena Ophiolite, NW Costa Rica (United States)

    Carr, D.; Loocke, M. P.; Snow, J. E.; Gazel, E.


    The Santa Elena Ophiolite (SEO), located on the northwestern coast of Costa Rica, consists primarily of preserved oceanic mantle and crustal rocks thrust above an accretionary complex. The SEO is predominantly characterized by mantle peridotites (i.e., primarily spinel lherzolite with minor amounts of harzburgite and dunite) cut and intruded by minor pegmatitic gabbros, layered gabbros, plagiogranites, and doleritic and basaltic dykes. Previous studies have concluded that the complex formed in a suprasubduction zone (SSZ) setting based on the geochemical nature of the layered gabbros and plagiogranites (i.e., depleted LREE and HFSE and enriched LILE and Pb), as well, as the peridotites (i.e., low-TiO2, Zr, and V, and high MgO, Cr, and Ni)(Denyer and Gazel, 2009). Eighteen ultramafic samples collected during the winter 2010/2011 field season (SECR11) exhibit abundant evidence for melt-rock reaction (e.g., disseminated plagioclase and plagioclase-spinel, clinopyroxene-spinel, and plagioclase-clinopyroxene symplectites) and provide a unique opportunity to characterize the textural and chemical nature of melt-rock reaction in the SEO. We present the results of a petrologic investigation (i.e., petrography and electron probe microanalysis) of 28 thin sections (19 spinel lherzolites, of which 14 are plagioclase-bearing, 4 pyroxenite veins, and 5 harzburgites) derived from the SECR11 sample set. The results of this investigation have the potential to better our understanding of the nature of melt generation and migration and melt-rock interaction in the SEO mantle section and shed further light on the complex petrogenetic history of the SEO. Denyer, P., Gazel, E., 2009, Journal of South American Earth Sciences, 28:429-442.

  20. Rangitoto Volcano Drilling Project: Life of a Small 'Monogenetic' Basaltic Shield in the Auckland Volcanic Field (United States)

    Shane, P. A. R.; Linnell, T.; Lindsay, J. M.; Smith, I. E.; Augustinus, P. M.; Cronin, S. J.


    Rangitoto is a small basaltic shield volcano representing the most recent and most voluminous episode of volcanism in the Auckland Volcanic Field, New Zealand. Auckland City is built on the field, and hence, Rangitoto's importance in hazard-risk modelling. The symmetrical edifice, ~6 km wide and 260 m high, has volume of 1.78 km3. It comprises summit scoria cones and a lava field. However, the lack of deep erosion dissection has prevented the development of an eruptive stratigraphy. Previous studies suggested construction in a relatively short interval at 550-500 yrs BP. However, microscopic tephra have been interpreted as evidence of intermittent activity from 1498 +/- 140 to 504 +/- 6 yrs BP, a longevity of 1000 years. A 150-m-deep hole was drilled through the edifice in February 2014 to obtain a continuous core record. The result is an unparalleled stratigraphy of the evolution of a small shield volcano. The upper 128 m of core comprises at least 27 lava flows with thicknesses in the range 0.3-15 m, representing the main shield-building phase. Underlying marine sediments are interbedded with 8 m of pyroclastic lapilli, and a thin lava flow, representing the explosive phreatomagmatic birth of the volcano. Preliminary geochemical analyses reveal suite of relatively uniform transitional basalts (MgO = 8.1 to 9.7 wt %). However, 4 compositional groups are distinguished that were erupted in sequential order. High-MgO magmas were erupted first, followed by a two more heterogeneous groups displaying differentiation trends with time. Finally, distinct low-MgO basalts were erupted. Each magma type appears to represent a new magma batch. The core places the magma types in a time series, which can be correlated to the surface lava field. Hence, allowing a geometrical reconstruction of the shield growth. Additional petrologic investigations are providing insight to magmatic ascent processes, while radiocarbon and paleomagnetic secular variation studies will reveal the

  1. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep


    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Evidence of enrichment by individual SN from elemental abundance ratios in the very metal-poor dSph galaxy Boötes I (United States)

    Feltzing, S.; Eriksson, K.; Kleyna, J.; Wilkinson, M. I.


    Aims. We establish the mean metallicity from high-resolution spectroscopy for the recently found dwarf spheroidal galaxy Boötes I and test whether it is a common feature for ultra-faint dwarf spheroidal galaxies to show signs of inhomogeneous chemical evolution (e.g. as found in the Hercules dwarf spheroidal galaxy). Methods: We analyse high-resolution, moderate signal-to-noise spectra for seven red giant stars in the Boötes I dSph galaxy using standard abundance analysis techniques. In particular, we assume local thermodynamic equilibrium and employ spherical model atmospheres and codes that take the sphericity of the star into account when calculating the elemental abundances. Results: We confirm previous determinations of the mean metallicity of the Boötes I dwarf spheroidal galaxy to be -2.3 dex. Whilst five stars are clustered around this metallicity, one is significantly more metal-poor, at -2.9 dex, and one is more metal-rich at, -1.9 dex. Additionally, we find that one of the stars, Boo-127, shows an atypically high [Mg/Ca] ratio, indicative of stochastic enrichment processes within the dSph galaxy. Similar results have previously only been found in the Hercules and Draco dSph galaxies and appear, so far, to be unique to this type of galaxy. The data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  3. Spheroidization of primary Mg{sub 2}Si in Al-20Mg{sub 2}Si-4.5Cu alloy modified with Ca and Sb during T6 heat treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong-Chen; Wang, Hui-Yuan, E-mail:; Chen, Lei; Zha, Min, E-mail:; Wang, Cheng; Li, Chao; Jiang, Qi-Chuan


    The morphology evolution of primary Mg{sub 2}Si particles in a Al-20Mg{sub 2}Si-4.5Cu alloy both unmodified and modified with 0.5 wt% Ca-Sb prepared by hot-extrusion followed by T6 heat treatment was investigated in the present study. Interestingly, we found that the combination of hot-extrusion and T6 heat treatment was efficient in transforming truncated octahedral primary Mg{sub 2}Si into sphere in the modified alloy. In contrast, the primary Mg{sub 2}Si particles still kept dentritic in the unmodified alloy. It suggested that the formation of truncated octahedral primary Mg{sub 2}Si particles in as-cast state, the fragmentation of particles by hot-extrusion and the enhanced solid-state diffusion of Si and/or Mg atoms during heat treatment were responsible for the spheroidization of primary Mg{sub 2}Si. Moreover, the existence of fine (~10–20 µm) spherical primary Mg{sub 2}Si played an important role in strengthening the alloy, i.e., the ultimate tensile strength (UTS) increased from ~227 MPa in the unmodified alloy to ~303 MPa in the modified one. It is because the fine spherical primary Mg{sub 2}Si particles can provide a higher fracture stress and strength of the matrix/particle interface. Our study offered a simple methodology to prepare spherical primary Mg{sub 2}Si in an Al-high Mg{sub 2}Si alloy, which is beneficial to design novel light-weight Al-Mg-Si alloys with improved mechanical properties.

  4. Substrate and Mg doping effects in GaAs nanowires

    Directory of Open Access Journals (Sweden)

    Perumal Kannappan


    Full Text Available Mg doping of GaAs nanowires has been established as a viable alternative to Be doping in order to achieve p-type electrical conductivity. Although reports on the optical properties are available, few reports exist about the physical properties of intermediate-to-high Mg doping in GaAs nanowires grown by molecular beam epitaxy (MBE on GaAs(111B and Si(111 substrates. In this work, we address this topic and present further understanding on the fundamental aspects. As the Mg doping was increased, structural and optical investigations revealed: i a lower influence of the polytypic nature of the GaAs nanowires on their electronic structure; ii a considerable reduction of the density of vertical nanowires, which is almost null for growth on Si(111; iii the occurrence of a higher WZ phase fraction, in particular for growth on Si(111; iv an increase of the activation energy to release the less bound carrier in the radiative state from nanowires grown on GaAs(111B; and v a higher influence of defects on the activation of nonradiative de-excitation channels in the case of nanowires only grown on Si(111. Back-gate field effect transistors were fabricated with individual nanowires and the p-type electrical conductivity was measured with free hole concentration ranging from 2.7 × 1016 cm−3 to 1.4 × 1017 cm−3. The estimated electrical mobility was in the range ≈0.3–39 cm2/Vs and the dominant scattering mechanism is ascribed to the WZ/ZB interfaces. Electrical and optical measurements showed a lower influence of the polytypic structure of the nanowires on their electronic structure. The involvement of Mg in one of the radiative transitions observed for growth on the Si(111 substrate is suggested.

  5. Characterization and quantitation of concanavalin A binding by plasma membrane enriched fractions from soybean root

    International Nuclear Information System (INIS)

    Berkowitz, R.L.; Travis, R.L.


    The binding of concanavalin A (Con A) to soybean root membranes in plasma membrane enriched fractions (recovered from the 34/45% interface of simplified discontinuous sucrose density gradients) was studied using a radiochemical assay employing tritated ( 3 H)-Con A. The effect of lectin concentration, time, and membrane protein concentration on the specific binding of 3 H-Con A by the membranes was evaluated. Kinetic analyses showed that Con A will react with membranes in that fraction in a characteristic and predictable manner. The parameters for an optimal and standard binding assay were established. Maximal binding occurred with Con A concentrations in the range of 8 to 16% of the total membrane protein with incubation times greater than 40 min at 22 C. Approximately 10 15 molecules of 3 H-Con A were bound per microgram of membrane protein at saturation. Binding was reversible. Greater than 92% of the total Con A bound at saturation was released by addition of α-methyl mannoside. A major peak of 3 H-Con A binding was also observed in fractions recovered from the 25/30% interface of a complex discontinuous sucrose density gradient when membranes were isolated in the absence of Mg 2+ . When high Mg 2+ was present in the isolation and gradient media, the peak was shifted to a fraction recovered from the 34/38% sucrose interface. These results suggest that Con A binding sites are also present on membranes of the endoplasmic reticulum. The amount of Con A bound by endoplasmic reticulum membranes was at least twice the amount bound by membranes in plasma membrane enriched fractions when binding was compared on a per unit membrane protein basis. In contrast, mitochondrial inner membranes, which equilibrate at the same density as plasma membranes, had little ability to bind the lectin

  6. Geology of the Saddle Mountains between Sentinel Gap and 119030' longitude

    International Nuclear Information System (INIS)

    Reidel, S.P.


    Members and flows of the Grande Ronde, Wanapum, and Saddle Mountains basalts of the Columbia River Basalt Group were mapped in the Saddle Mountains between Sentinel Gap and the eastern edge of Smyrna Bench. The Grande Ronde Basalt consists of the Schwana (low-MgO) and Sentinel Bluffs (high-MgO) members (informal names). The Wanapum Basalt consists of the aphyric and phyric units of the Frenchman Springs Member, the Roza-Like Member, and the Priest Rapids Member. The Saddle Mountains Basalt consists of the Wahluke, Huntzinger, Pomona, Mattawa, and Elephant Mountain basalts. The Wanapum and Saddle Mountains basalts are unevenly distributed across the Saddle Mountains. The Wanapum Basalt thins from south to north and across a northwest-southeast-trending axis at the west end of Smyrna Bench. The Priest Rapids, Roza-Like, and aphyric Frenchman Springs units are locally missing across this zone. The Saddle Mountains basalt has a more irregular distribution and, within an area between Sentinel Gap and Smyrna Bench, is devoid of the basalt. The Wahluke, Huntzinger, and Mattawa flows are locally present, but the Pomona is restricted to the southern flank west of Smyrna Bench, and the Elephant Mountain Basalt only occurs on the flanks and in three structurally controlled basins on the northwest side. The structure of the Saddle Mountains is dominated by an east-west trend and, to a lesser degree, controlled by a northwest-southeast and northeast-southwest trend. The geomorphological expression of the Saddle Mountains results from the east-west fold set and the Saddle Mountains fault along the north side. The oldest structures follow the northwest-southeast trend. The distribution of the flows, combined with the structural features, indicates a complex geologic history for the Saddel Mountains

  7. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    International Nuclear Information System (INIS)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.


    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years

  8. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico (United States)

    Roberts, Harry H.; Feng, Dong; Joye, Samantha B.


    Authigenic carbonates from cold seeps on the middle and lower continental slope of the northern Gulf of Mexico (GOM) exhibit a wide range of mineralogical and stable isotopic compositions. These carbonates consist of concretions and nodules in surface sediments, hardgrounds of crusts and isolated slabs, and mounded buildups of blocks and slabs of up to over 10 meters in relief above the surrounding seafloor. Mineralogically, the carbonates are dominated by high-Mg calcite (HMC) and aragonite. However, low levels (oil, seawater CO2, and 13C-enriched residual CO2 from methanogenesis. A similarly large variability in δ18O values (2.5 to 6.7‰ PDB) demonstrates the geochemical complexity of the slope, with some samples pointing toward an 18O-enriched oxygen source that is possibly related to advection of 18O-enriched formation water and/or to the decomposition of gas hydrate. A considerable range of mineralogical and isotopic variations in cold-seep carbonate composition was noted even within individual study sites. However, common trends occur across multiple geographic areas. This situation suggests that local controls on fluid and gas flux, types of seep hydrocarbons, the presence or absence of gas hydrate in the near-surface sediment, and chemosynthetic communities, as well as the temporal evolution of the local hydrocarbon reservoir, all may play a part in determining carbonate mineralogy and isotope geochemistry. The carbon isotope data clearly indicate that between-site variation is greater than within-site variation. Seep carbonates formed on the middle and lower continental slope of the GOM do not appear to be substantially different from those found on the upper slope (<1000-m water depth). The highly variable fluids and gases that leave their geochemical imprints on seep carbonate of the middle and lower continental slope are similar to their outer shelf and upper slope counterparts.

  9. Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India (United States)

    Beane, J. E.; Turner, C. A.; Hooper, P. R.; Subbarao, K. V.; Walsh, J. N.


    In the Western Ghats between latitudes 18° 20' N and 19° 15' N, 7000 km2 of Deccan Basalt have been mapped with the primary objective of establishing a flow stratigraphy as a guide to the volcanic history of the flood basalts. Using over 70 measured vertical sections, major and trace element analyses of nearly 1200 samples, and rare-earth and87Sr/86Sr determinations for over 60 samples, we divide the basalt into three subgroups and ten formations. In this paper we describe the seven principal formations in the area and the most prominent individual flows. The Kalsubai Subgroup is formed by the lower five formations, the Jawhar, Igatpuri, Neral, Thakurvadi, and Bhimashankar formations, from botton to top. In these formations amygdaloidal compound flows predominate and have a typically high MgO content, including picrite basalt (> 10% MgO) and picrite (> 18% MgO) with phenocrysts of olivine and clinopyroxene. These flows are separated by others which contain giant plagioclase phenocrysts and have more evolved chamical compositions. The Lonavala Subgroup overlies the Kalsubai and is composed of two formations, the Khandala and the Bushe. Both are readily recognized in the field and by their chemical compositions. The Wai Subgroup includes the upper three formations, the Poladpur, the Ambenali, and the Mahabaleshwar. The whole subgroup is composed of simple flows with well-developed flow tops, small phenocrysts of plagioclase, pyroxene and olivine, and relatively evolved bulk compositions. Distribution and variation in thickness of the straitigraphic units within the Western Ghats provide a first comprehensive view of the development of the Deccan volcanic edifice. The persistent southerly dip and gentle southerly plunging anticlinal form of the flows, the lensoid shape of many of the formations, and nearly randomly oriented feeder-dike system are together interpreted as evidence of a central volcanic edifice formed as the Indian plate drifted northward over a mantle

  10. Comparison of authigenic carbonates formation at mud volcanoes and pockmarks in the Portuguese Margin vs. at the Yinazao serpentinite mud volcano in the Marianas forearc (United States)

    Magalhaes, V. H.; Freitas, M.; Azevedo, M. R.; Pinheiro, L. M.; Salgueiro, E.; Abrantes, F. F. G.


    On the Portuguese passive continental margin, active and past seepage processes form mud volcanoes and pockmarks at the seafloor. Often associated with these structures are extensive methane-derived authigenic carbonates that form from deep-sourced methane-rich fluids that ascend from deep to the upper sedimentary column and often discharge at the seafloor. These carbonates form within the sediments and are either dominated by dolomite and high-Mg calcites, when formed under a restricted seawater circulation environment, anoxic and low sulphate conditions; or by aragonite and calcite when formed close to or at the seafloor in a high sulphate system. The δ13C values (-56.2‰ VPDB) found on the carbonate-cemented material clearly indicates methane as the major carbon source. On the Yinazao serpentinite mud volcano at an active, non-accretionary, convergent margin, sediment samples from IODP Sites U1491 and U1492 (Exp. 366) contain authigenic minerals such as aragonite, calcite, brucite, gypsum among others. Authigenic aragonite occurs predominantly within the top meters of the cores where both oxidation and seawater circulation in the sedimentary column are higher. In this system, initial results indicate that the major carbon source is most probably not methane but seawater related. This work discusses and compares the major carbon sources in both systems: sedimentary mud volcanoes and pockmarks of a passive margin vs. a serpentinite mud volcano of an active, non-accretionary, convergent margin. We acknowledge the support from the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT).

  11. The Origin of Mercury's Surface Composition, an Experimental Investigation (United States)

    Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.


    Introduction: Results from MESSENGER spacecraft have confirmed the reduced nature of Mercury, based on its high core/mantle ratio and its FeO-poor and S-rich surface. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting major melting stages of the Mercurian mantle. In addition, MESSENGER has provided the most precise data to date on major elemental compositions of Mercury's surface. These results revealed considerable chemical heterogeneities that suggested several stages of differentiation and re-melting processes. This interpretation was challenged by our experimental previous study, which showed a similar compositional variation in the melting products of enstatite chondrites, which are a possible Mercury analogue. However, these experimental melts were obtained over a limited range of pressure (1 bar to 1 gigapascal) and were not compared to the most recent elemental maps. Therefore, here we extend the experimental dataset to higher pressures and perform a more quantitative comparison with Mercury's surface compositions measured by MESSENGER. In particular, we test whether these chemical heterogeneities result from mixing between polybaric melts. Our experiments and models show that the majority of chemical diversity of Mercury's surface can result from melting of a primitive mantle compositionally similar to enstatite chondrites in composition at various depths and degrees of melting. The high-Mg region's composition is reproduced by melting at high pressure (3 gigapascals) (Tab. 1), which is consistent with previous interpretation as being a large degraded impact basin based on its low elevation and thin average crust. While low-Mg NVP (North Volcanic Plains) are the result of melting at low pressure (1 bar), intermediate-Mg NVP, Caloris Basin and Rachmaninoff result from mixing of a high-pressure (3 gigapascals) and low-pressure components (1 bar for Rachmaninoff and 1 gigapascal for the other regions

  12. A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats. (United States)

    Kim, Youjin; Jaja-Chimedza, Asha; Merrill, Daniel; Mendes, Odete; Raskin, Ilya


    A 14-d short-term oral toxicity study in rats evaluated the safety of moringa isothiocyanate-1 (MIC-1)-enriched hydro-alcoholic moringa seeds extract (MSE). Rats (5 males/5 females per group) were gavaged daily for 14 d with the vehicle control or MSE, at 78 (low), 257 (mid-low), 772 (mid-high), or 2571 (high) mg/kg bw/d, standardized to MIC-1 (30, 100, 300, or 1000 mg/kg bw/d, respectively). Toxicological endpoints included body weight and weight gain, food consumption and feed efficiency, clinical observations, hematology, gross necropsy and histopathology, and relative organ weights. Mortality was only observed in the high dose group animals, both male and female, representing decreases in body weight/weight gain and food consumption/feed efficiency. Irregular respiratory patterns and piloerection were major clinical observations found primarily in the mid-high and high dose group animals. In the high dose group, gastrointestinal distention and stomach discoloration were observed in non-surviving males and females, and degeneration and necrosis of the testicular germinal cells and epididymal cells were also observed in a non-surviving male. Increased liver weights were found in females in the mid-high and high dose groups. Animals in the low and mid-low groups did not exhibit adverse effects of MSE (100 mg/kg bw/d MIC-1). A no observed adverse effect level (NOAEL) of the standardized MSE was determined as 257 mg/kg bw/d providing 100 mg/kg bw/d MIC-1.

  13. The role of Mg in the crystallization of monohydrocalcite (United States)

    Rodriguez-Blanco, Juan Diego; Shaw, Samuel; Bots, Pieter; Roncal-Herrero, Teresa; Benning, Liane G.


    Monohydrocalcite is a member of the carbonate family which forms in Mg-rich environments at a wide range of Mg/Ca ratios Mg2+aq/Ca2+aq≥0.17stock solutions. However, its crystallite and particle size are inversely proportional to these parameters. At high supersaturations (SIMHC = 3.89) nanometer-sized single crystals of monohydrocalcite form, while at low values (SIMHC = 2.43) the process leads to low-angle branching spherulites. Many carbonates produced during biomineralization form at similar conditions to most synthetic monohydrocalcites, and thus we hypothesize that some calcite or aragonite deposits found in the geologic record that have formed at high Mg/Ca ratios could be secondary in origin and may have originally formed via a metastable monohydrocalcite intermediate. High-Mg monohydrocalcite (χMgCO3 > 0.06) consists of individual nanometer-sized crystals (500 °C (Fig. 9b). Such high-Mg monohydrocalcites are uncommon in nature, but can be synthesized in the laboratory at high initial supersaturation levels (SI > 3.25). Low-Mg monohydrocalcite (χMgCO3 bonded to Mg, so it fully dehydrates at low temperatures (150-200 °C). They have the same composition as natural monohydrocalcites reported in the literature, and can be synthesized in the laboratory at lower supersaturation levels (SI relationships. Firstly, our on-line experiment shows an increase in nanocrystal sizes during the secondary crystallization of monohydrocalcite, which is coupled with a significant decrease in χMgCO3 (from ˜0.26 to ˜0.065). This corresponds to the transition from high- to low-Mg monohydrocalcite, suggesting that the former would be metastable and rapidly transforming to the latter, possibly triggered by the removal of Mg from aqueous solution. Secondly, Davis et al. (2000) determined that the solubility of Mg-calcite (Ca1-xMgxCO3; x = 0-0.20) varies by approximately half an order of magnitude depending on the Mg content of the solid (Ksp = 10-8.0-10-8.5). A similar

  14. Melt inclusion evidence for a volatile-enriched (H2O, Cl, B) component in parental magmas of Gorgona Island komatiites (United States)

    Kamenetsky, V.; Sobolev, A.; McDonough, W.


    Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the

  15. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland (United States)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna


    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain pfu in ortho-, and pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg/(Mg+Fe) ratios of olivine and pyroxenes. Thus, the variation of relative volumes of olivine and orthopyroxene as well as the decrease of mg# of rock-forming silicates is well explained by reactive melt percolation in the peridotitic protolith consisting of high mg# olivine and pyroxenes (in the area studied by us that protolith was characterised by olivine

  16. Geochronology and geochemistry of the Niujuanzi ophiolitic mélange, Gansu Province, NW China: implications for tectonic evolution of the Beishan Orogenic Collage (United States)

    Wang, Shengdong; Zhang, Kexin; Song, Bowen; Li, Shucai; Li, Ming; Zhou, Jie


    The Niujuanzi ophiolitic mélange (NOM), located in the Beishan Orogenic Collage, marks the termination between the Huaniushan arc and Mingshui-Hanshan Massifs. The NOM is mainly composed of gabbros, diabases, plagiogranites, basalts, and greywacke. Two gabbros have ages of 433.8 ± 3.1 and 354.0 ± 3.3 Ma, two plagiogranites have ages of 429.8 ± 2 and 448.7 ± 2.0 Ma, and a diabase has an age of 433.4 ± 3.2 Ma. The gabbros and diabases are calc-alkaline and tholeiitic, with high Al2O3, CaO, and TiO2 contents and low FeOT contents. The gabbros have high Mg# values (49-82), while the diabases have relatively low Mg# values (46-61). The plagiogranites are calc-alkaline and metaluminous, with high SiO2 and Na2O contents and low Al2O3 and K2O contents. The gabbros and diabases are enriched in large iron lithophile elements and slightly depleted in high field strength elements relative to N-MORB and their trace element characteristics are similar to E-MORB. With respect to rare earth element (REE), they have slightly enriched LREEs relative to HREEs. The majority of the plagiogranite trace elements approximate those of the volcanic arc granite. The plagiogranites have obviously enriched LREEs relative to HREEs, with a slightly to strongly negative Eu anomaly, which is similar to ORG but distinct from volcanic arc and within plate granite. The NOM was formed from the Ordovician to the Carboniferous, representing the expansion period of the Niujuanzi Ocean. The gabbros, diabases, and plagiogranites were formed in a mid-ocean ridge environment. The gabbros and diabases were generated by different degrees of partial melting of the mantle, and the plagiogranites derived from both the crystallization differentiation of basaltic magma and the partial melting of amphibolites in the crust.

  17. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers (United States)

    Fujita, K.; Hikami, M.; Suzuki, A.; Kuroyanagi, A.; Sakai, K.; Kawahata, H.; Nojiri, Y.


    Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont

  18. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers

    Directory of Open Access Journals (Sweden)

    K. Fujita


    Full Text Available Ocean acidification (decreases in carbonate ion concentration and pH in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm and decreased at a higher pCO2 level (970 μatm. Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by

  19. The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys

    International Nuclear Information System (INIS)

    Salleh, M.S.; Omar, M.Z.; Syarif, J.


    Highlights: • The average globule size of α-Al decreased when Mg amount is increased. • T6 heat treatment has increased the strength of the thixoformed alloys. • The elongation after T6 heat treatment is even significantly improved. • Thixoformed alloy with high Mg content shows a brittle type fracture. • Thixoformed alloy in T6 condition shows a ductile type fracture. - Abstract: In this study, the effects of different amounts of magnesium (Mg) on the microstructures and tensile properties of thixoformed Al–5%Si–Cu alloys were investigated. Three different alloys containing various amounts of Mg (0.5, 0.8 and 1.2 wt%) were prepared through the cooling slope casting technique, before they were thixoformed using a compression press. Several of the thixoformed samples were then treated with a T6 heat treatment, that is, solution treatment at 525 °C for 8 h, quenching in warm water at 60 °C, followed by aging at 155 °C for 4 h. All of the samples were then characterised by optical microscopy (OM), scanning electron microscopy (SEM) energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as by tensile tests. The results revealed that magnesium was able to refine the size of α-Al globules and the eutectic silicon in the samples. It was also observed that a compact π-Al 9 FeMg 3 Si 5 phase was formed when the magnesium content was 0.8 wt% and 1.2 wt%. The mechanical properties of the thixoformed alloys improved significantly after the T6 heat treatment. The highest attainment was recorded by the latter alloy (i.e. with 1.2 wt%Mg) with its ultimate tensile strength (UTS) as high as 306 MPa, yield strength (YS), 264 MPa, and elongation to fracture of 1.8%. The fracture of thixoformed alloy with a low Mg content (0.5 wt%) showed a combination of dimple and cleavage fracture, whereas in the alloy that contained the highest Mg content (1.2 wt%), cleavage fracture was observed

  20. The effects of Mg addition on the microstructure and mechanical properties of thixoformed Al–5%Si–Cu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, M.S., E-mail: [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Selangor (Malaysia); Department of Manufacturing Process, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Omar, M.Z., E-mail: [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Selangor (Malaysia); Syarif, J., E-mail: [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Selangor (Malaysia)


    Highlights: • The average globule size of α-Al decreased when Mg amount is increased. • T6 heat treatment has increased the strength of the thixoformed alloys. • The elongation after T6 heat treatment is even significantly improved. • Thixoformed alloy with high Mg content shows a brittle type fracture. • Thixoformed alloy in T6 condition shows a ductile type fracture. - Abstract: In this study, the effects of different amounts of magnesium (Mg) on the microstructures and tensile properties of thixoformed Al–5%Si–Cu alloys were investigated. Three different alloys containing various amounts of Mg (0.5, 0.8 and 1.2 wt%) were prepared through the cooling slope casting technique, before they were thixoformed using a compression press. Several of the thixoformed samples were then treated with a T6 heat treatment, that is, solution treatment at 525 °C for 8 h, quenching in warm water at 60 °C, followed by aging at 155 °C for 4 h. All of the samples were then characterised by optical microscopy (OM), scanning electron microscopy (SEM) energy dispersive X-ray (EDX) spectroscopy and X-ray diffraction (XRD) analysis as well as by tensile tests. The results revealed that magnesium was able to refine the size of α-Al globules and the eutectic silicon in the samples. It was also observed that a compact π-Al{sub 9}FeMg{sub 3}Si{sub 5} phase was formed when the magnesium content was 0.8 wt% and 1.2 wt%. The mechanical properties of the thixoformed alloys improved significantly after the T6 heat treatment. The highest attainment was recorded by the latter alloy (i.e. with 1.2 wt%Mg) with its ultimate tensile strength (UTS) as high as 306 MPa, yield strength (YS), 264 MPa, and elongation to fracture of 1.8%. The fracture of thixoformed alloy with a low Mg content (0.5 wt%) showed a combination of dimple and cleavage fracture, whereas in the alloy that contained the highest Mg content (1.2 wt%), cleavage fracture was observed.

  1. The dual effect of Mg on the long-term alteration rate of AVM nuclear waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Thien, Bruno M.J., E-mail: [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Godon, Nicole; Ballestero, Anthony; Gin, Stephane [Commissariat a l' Energie Atomique (CEA), Laboratoire d' Etude du Comportement a Long Terme des Materiaux, DTCD/DEN, Marcoule, 30207 Bagnols sur Ceze (France); Ayral, Andre [Institut Europeen des Membranes, Universite de Montpellier, cc. 047, Place Eugene Bataillon, 34095 Montpellier (France)


    Inactive Mg-containing nuclear waste glasses simulating actual HLW glasses produced at the AVM facility since 1995 (Marcoule, France), were leached in aqueous solution in order to assess their long term behaviour. The focus was on the effect of Mg. Our findings show that the distribution of Mg between the gel and the secondary crystalline phases strongly influences the glass dissolution rate. The glasses were leached in initially pure water (T = 50 Degree-Sign C, surface/volume ratio (S/V) = 55 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. 'Mg-free' AVM glasses were also leached in initially pure water (50 Degree-Sign C, 200 cm{sup -1}) with and without addition of Mg{sup 2+} in the solution. Accurate identification of Mg-smectite secondary phases and gel composition calculations enable us to explain the different observed behaviours. Glass AVM 10 was the less altered glass in pure water. Its gel is more protective than the other probably because it is mainly balanced by Mg{sup 2+}. The addition of Mg{sup 2+} in the solution triggers the precipitation of smectite (not observed in pure water experiments), which consumes silicon from the gel, leading finally to a significant increase of the glass alteration. We also focused on the AVM 6 glass which was the most altered glass in pure water of available AVM glasses. Contrary to AVM 10, the gel of AVM 6 is mainly balanced by Na{sup +}. The addition of Mg{sup 2+} in the solution allows the replacement of Na by Mg within the gel. This reaction clearly improves the gel properties and allows the rate to decrease more rapidly, in spite of the precipitation of smectite (also observed in pure water experiments). Finally, the two glasses were altered in synthetic groundwater (SGW) with a high Mg-Ca content. As expected from the previous observations, AVM 10 was insensitive to the presence of alkaline earths in the leaching solution whereas AVM 6 glass exhibited a lower rate than in pure water

  2. Early Cretaceous Na-rich granitoids and their enclaves in the Tengchong Block, SW China: Magmatism in relation to subduction of the Bangong-Nujiang Tethys ocean (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Santosh, M.; Qin, Jiang-Feng; Zhao, Shao-Wei


    The Na-rich intermediate-to-felsic granitic rocks provide insights into the generation of magmas in subduction zones. This paper presents zircon LA-ICP-MS U-Pb ages as well as whole-rock geochemical, mineral chemical, and in situ zircon Hf isotopic data on Na-rich granitic rocks from the Tengchong Block, SW China. The granodiorites and associated mafic magmatic enclaves (MMEs) from the Menglian batholith yield zircon U-Pb ages of 116.1 ± 0.8 to 117.8 ± 0.6 Ma and 117.7 ± 0.7 Ma, respectively. Both host granodiorites and enclaves show calc-alkaline and sodium-rich nature, enrichment in large-ion lithophile elements (LILEs), and variable depletion in zircon Hf isotopic compositions. Euhedral amphiboles in both granodiorites and associated enclaves are magnesian-hornblende with high Mg and Ca and contain euhedral plagioclase inclusions of labradorite to andesine (An36-57) composition. The granodiorite was most likely derived through the mixing of partial melts derived from juvenile basaltic lower crust and a minor evolved component of ancient crustal sources. The quartz monzodiorite-granodiorites and associated MMEs from the Xiaotang-Mangdong batholith yield zircon U-Pb ages of 120.3 ± 1.3 to 122.6 ± 0.8 Ma and 120.7 ± 1.5 Ma. These rocks are also sodium-rich and show calc-alkaline trend with negative zircon Hf isotopic compositions (- 5.55 to + 0.58). The MMEs in the host intrusions are monzogabbro with variable and depleted zircon Hf isotopic compositions. The amphiboles in the both host intrusions and the enclaves show Al-rich ferro-tschermakite composition. We infer that the quartz monzodiorite-granodiorites were derived from magmas generated by the melting of ancient basaltic rocks in the lower arc crust induced by the underplating of mantle-derived mafic magmas. The formation of the different types of Na-rich granitic rocks is correlated to the subduction of Bangong-Nujiang Tethyan ocean. A comparison with magmatism in the northern magmatic belt suggests

  3. Modification of an ancient subcontinental lithospheric mantle by continental subduction: Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China (United States)

    Chen, Yi; Su, Bin; Chu, Zhuyin


    Orogenic mantle-derived peridotites commonly originate from the subcontinental lithospheric mantle (SCLM) and thus provide a key target to investigate the modification of the SCLM by a subducting slab. The Maowu ultramafic rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt have formerly been debated as representing cumulates or mantle-derived peridotites. Detailed petrological and geochemical data presented in this study provide new constraints on the origin and formation of the peridotites involving melt depletion in the ancient SCLM and deep crustal metasomatism. The Maowu garnet dunites have refractory bulk compositions characterized by high Mg# (91.9-92.0) and Ni (2537-2892 ppm) values and low Al2O3 (0.26-0.76 wt.%), CaO (0.05-0.32 wt.%), TiO2 (China craton. Many garnet orthopyroxenite veins crosscutting the Maowu dunites preserve abundant metasomatic textures and show variable enrichment in incompatible elements. Mineral and whole-rock chemistry indicate that these veins represent metasomatic products between the wall dunites and silica-rich hydrous melts under UHP conditions. The veins show large variations in platinum-group element (PGE) signatures and Re-Os isotopes. The garnet-poor orthopyroxenite veins are characterized by low Al2O3 ( 6 wt.%) and S (99-306 ppm) contents and show melt-like PGE patterns and high 187Os/188Os ratios (up to 0.36910). These features, combined with the occurrence of interstitial sulfides in the garnet-rich orthopyroxenite veins, suggest that crust-derived sulfur-saturated silicate melts may have significantly modified the PGE signature and destroyed the Re-Os systematics of the SCLM. However, when the crust-derived silicate melts became sulfur-depleted, such melts would not significantly modify the PGE patterns, radiogenic Os-isotope compositions or the Re-depletion model ages of the SCLM. Consequently, deep crust-mantle interactions in continental subduction zones could induce high degrees of Os isotopic

  4. GABA-mediated synchronization in the human neocortex: elevations in extracellular potassium and presynaptic mechanisms. (United States)

    Louvel, J; Papatheodoropoulos, C; Siniscalchi, A; Kurcewicz, I; Pumain, R; Devaux, B; Turak, B; Esposito, V; Villemeure, J G; Avoli, M


    Field potential and extracellular [K(+)] ([K(+)](o)) recordings were made in the human neocortex in an in vitro slice preparation to study the synchronous activity that occurs in the presence of 4-aminopyridine (50 microM) and ionotropic excitatory amino acid receptor antagonists. Under these experimental conditions, negative or negative-positive field potentials accompanied by rises in [K(+)](o) (up to 4.1 mM from a baseline of 3.25 mM) occurred spontaneously at intervals of 3-27 s. Both field potentials and [K(+)](o) elevations were largest at approximately 1000 microm from the pia. Similar events were induced by neocortical electrical stimuli. Application of medium containing low [Ca(2+)]/high [Mg(2+)] (n=3 slices), antagonism of the GABA(A) receptor (n=7) or mu-opioid receptor activation (n=4) abolished these events. Hence, they represented network, GABA-mediated potentials mainly reflecting the activation of type A receptors following GABA release from interneurons. The GABA(B) receptor agonist baclofen (10-100 microM, n=11) reduced and abolished the GABA-mediated potentials (ID(50)=18 microM). Baclofen effects were antagonized by the GABA(B) receptor antagonist CGP 35348 (0.1-1 mM, n=6; ID(50)=0.19 mM). CGP 38345 application to control medium increased the amplitude of the GABA-mediated potentials and the concomitant [K(+)](o) rises without modifying their rate of occurrence. The GABA-mediated potentials were not influenced by the broad-spectrum metabotropic glutamate agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (100 microM, n=10), but decreased in rate with the group I receptor agonist (S)-3,5-dihydroxyphenylglycine (10-100 microM, n=9). Our data indicate that human neocortical networks challenged with 4-aminopyridine generate glutamatergic-independent, GABA-mediated potentials that are modulated by mu-opioid and GABA(B) receptors presumably located on interneuron terminals. These events are associated with [K(+)](o) elevations that may

  5. Metals anomalies in foraminiferal shells as indicators for industrial pollution: a case study from the Mediterranean coast of Israel (United States)

    Titelboim, Danna; Sadekov, Aleksey; Almogi-Labin, Ahuva; Herut, Barak; Kucera, Michal; Abramovich, Sigal


    In recent years we have been witnessing a considerable growth of industrial facilities along coastal areas. Some of these have major economical and national importance yet their operation can introduce a wide range of chemicals that might contaminate the coastal area and impact local ecosystems and our health. Among some of these harmful chemicals are metals that are introduced to the coastal environment by some of these facilities. Here we present a novel approach for monitoring low-level industrial pollution in coastal environments based on anomalies in metal concentration within foraminiferal shells. Living foraminifera are used as bio-indicators of the environmental status of any marine habitat. As unicellular organisms with short life and reproductive cycles, they are extremely sensitive to long and short-term changes. The majority of foraminifera precipitate CaCO3 (low-Mg-calcite, high-Mg calcite or rarely aragonite tests). Their calcareous shells are precipitated by a mechanism that involves direct seawater vacuolization which reflects the chemical composition of the ambient water. For this reason the geochemical composition of their shells is particularly applicable as a tool for marine environmental monitoring. Material for this study was obtained during the monthly campaigns of a biomonitoring project (2012-2015) of a heat polluted area and of a nearby natural clean station off the northern Mediterranean coast of Israel. Essentially, monitoring of water chemistry in both habitats showed no indications of presence of heavy metal contamination. Yet, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of two common local foraminifera the hyaline species Pararotalia calcariformata and the miliolid species Lachlanella sp. 1 that were collected alive from both areas, recorded presence of various metals (Mn, Cu, Zn, Ba, Pb) within their shells. Metal concentrations within the miliolid species were significantly higher than those of

  6. Sepentinized Peridotite Spinel Composition: Northern Central Indian Ridge at 6°39 (United States)

    Ray, D.; Banerjee, R.; Iyer, S. D.; Balaram, V.; Speakman, J.


    Exposures of serpentinized peridotites on the seafloor at slow-spreading ridges have been interpreted either as accretion of ridge segments in a magma-starved condition along the non-transform setting or as preferential outcrops at ridge offsets in transform fault setting. Here we present the mineral chemistry and geochemistry of serpentinites and serpentinized spinel peridotites recovered from an off axis region (corner high) at south of Vityaz transform fault (6°39'S), Northern Central Indian Ridge. Our purpose is to use mineral chemical data of serpentine and spinel to investigate the effect of low temperature alteration processes and degree of partial melting. Serpentine composition shows presence of high Mg-rich lizardite and chrysotile pseudomorphs and these rocks mostly preserve `mesh rim', `window' and `hourglass' textures, representing extensive hydration during low temperature hydrothermal alteration. In thin section, serpentine veins (mainly lensoidal, pinch and swell or anastomosing) are common, sometime crosscutting the `mesh rim' textures to attest to the intensity of serpentinization process. In one sample, a 1.9 cm-thick feldspathic vein crosscut the serpentinite as a porphyroblast and this indicates discontinuity in magmatic crust caused due to less magma input at off-axis region facilitate the intrusion of short-living feeder dykes of highly fractionated late magmatic liquids within the peridotite. In addition, in hand specimen, presence of smaller-scale striations analogous to slickenlines on serpentinite surfaces suggests low-angle faulting, which could have enhanced pervasive serpentinization during their subsequent emplacement. Individual serpentine grain displays very low Ca content (0.01 wt%) suggesting possible absence of any secondary Ca-rich phases also verified by very low Sr content (connotation. Limited data on composition of individual spinel porphyroclast exhibits substantial variation in their Mg# (mole [Mg/ Mg+Fe2]) and Cr# (mole

  7. Intercambio cationico calcio-magnesio-sodio en algunos suelos del Valle del Cauca

    Directory of Open Access Journals (Sweden)

    Torres M. Jorge Ilian


    of PSI on the soil selectivity for Ca2+ or Mg2", High Mg2+ saturations found in Cauca Valle y soils are due to the high concentration of this ion in the irrigation waters or in the wa1Br table and no to soil Mg-selectivity .

  8. Reassessment of the origin of the Dun Mountain Ophiolite, New Zealand : Nd-isotopic and geochemical evolution of magma suites

    International Nuclear Information System (INIS)

    Sivell, W.J.; McCulloch, M.T.


    Magmatic suites with contrasting isotopic and geochemical compositions, sequentially emplaced in different tectonic regimes, comprise the Dun Mountain Ophiolite Belt (DMOB), New Zealand. At D'Urville Island, the northernmost exposure of the DMOB, earliest erupted (stage 1) pillow basalts ε Nd (T) = +6.3 to +7.5, and are incompatible element enriched, like basalts from geochemically anomalous ridge segments. Overlying stage 2 basalts (sheeted flows) show a narrow range of ε Nd (T) = +8.3 + or -0.2, with chemical characteristics of depleted backarc basin basalts. These rocks are intruded by mafic to silicic stage 3 magmas, which have high uniform initial 143 Nd/ 144 Nd ratios (ε Nd (T) = +9.3 + or -0.2) over a wide range of 147 Sm/ 144 Nd values (yielding a precise Early Permian Nd-isotope age of 278 ± 4 Ma (MSWD = 0.48)). Stage 3 magmas show pronounced subduction-related geochemical signatures similar to island arc tholeiites (IAT) from immature arcs. They are closely analogous to some (boninite)-IAT magmas which characterise 'infant arc' eruptive activity in forearc basins of present-day Western Pacific island arc systems. A wide variety of stage 3 magma compositions, ranging from near-primary basaltic dikes (Mg = 74) to extremely fractionated silicic plagiogranites with uniformly very depleted isotopic ratios, is consistent with slow spreading rates which gave rise to polybaric, closed-system fractionation of magmas and periodic chamber abandonment. Some stage 3 rocks with SiO 2 levels in the andesite range have low-TiO 2 contents and high Mg, and may be fractionated equivalents of boninites. High ε Nd (T) values of stage 3 magmas indicate a lack of subducted sediment with inherited crustal residence signatures, and reflect the extent of supra-subduction zone (SSZ) mantle wedge depletion. DMOB stage 3 magmas may represent foreac magmatism that was the precursor to normal subduction-related volcanism established by c. 265 Ma in the Brook Street Arc and derived

  9. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System (United States)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.


    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement

  10. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction (United States)

    Lallemand, Serge


    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite

  11. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis. (United States)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi


    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  12. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: Outlook of Mg isotopes as geothermometer and seawater proxy (United States)

    Hu, Zhongya; Hu, Wenxuan; Wang, Xiaomin; Lu, Yizhou; Wang, Lichao; Liao, Zhiwei; Li, Weiqiang


    studies of carbonate rocks with thermal history. By contrast, Mg isotopes of dolomite are less prone to post-depositional resetting due to a number of properties including high Mg abundance and high thermodynamic stability, and Mg isotopes in dolomite may be a more robust recorder for original carbonate precipitates.

  13. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones (United States)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio


    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  14. Xenoliths from Bunyaruguru volcanic field: Some insights into lithology of East African Rift upper mantle (United States)

    Muravyeva, N. S.; Senin, V. G.


    The mineral composition of mantle xenoliths from kamafugites of the Bunyaruguru volcanic field has been determined. The major and some trace elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, Ni, Ba, Sr, La, Ce, Nd, Nb) has been analyzed in olivine, clinopyroxene, phlogopite, Cr-spinel, titanomagnetite, perovskite and carbonates of xenoliths and their host lavas. Bunyaruguru is one of three (Katwe-Kikorongo, Fort Portal and Bunyaruguru) volcanic fields included in the Toro-Ankole province located on the North end of the West Branch of the East African Rift. The xenoliths from three craters within the Bunyaruguru volcanic field revealed the different character of metasomatic alteration, reflecting the heterogeneity of the mantle on the kilometer scale. The most unusual finding was composite glimmerite-wehrlite xenolith from the crater Kazimiro, which contains the fresh primary high-Mg olivine with inclusions of Cr-spinel that had not been previously identified in this area. The different composition of phenocryst and xenolith minerals indicates that the studied xenoliths are not cumulus of enclosing magma, but the composition of xenoliths characterizes the lithology of the upper mantle of the area. The carbonate melt inclusions in olivine Fo90 demonstrate the existence of primary carbonatitic magmas in Bunyaruguru upper mantle. The results of texture and chemical investigation of the xenolith minerals indicate the time sequence of metasomatic alteration of Bunyaruguru upper mantle: MARID metasomatism at the first stage followed by carbonate metasomatism. The abundances of REE in perovskites from kamafugite are 2-4 times higher than similar values for xenolith. Therefore the kamafugite magma was been generated from a more enriched mantle source than the source of the xenoliths. The evaluation of P-T conditions formation of clinopyroxene xenolith revealed the range of pressure 20-65 kbar and the temperatures range 830-1040 °C. The pressure of clinopyroxene phenocryst

  15. Apxs Chemical Composition of the Kimberley Sandstone in Gale Crater (United States)

    Gellert, R.; Boyd, N.; Campbell, J. L.; VanBommel, S.; Thompson, L. M.; Schmidt, M. E.; Berger, J. A.; Clark, B. C.; Grotzinger, J. P.; Yen, A. S.; Fisk, M. R.


    Kimberley was chosen as a major waypoint of the MSL rover Curiosity on its way to Mount Sharp. APXS data before drilling showed interestingly high K, Fe and Zn. This warranted drilling of the fine-grained sandstone for detailed investigations with SAM and Chemin. With significantly lower Na, Al and higher K, Mg and Fe, the composition of the drill target Windjana is very distinct from the previous ones in the mudstones at Yellowknife Bay. Up to 2000 ppm Br and 4000 ppm Zn post-brush were among the highest measured values in Gale Crater. The excavated fines, stemming from about 6cm, showed lower Br, but even higher Zn. Preliminary Chemin results indicate K-feldspar and magnetite being major mineral phases in Windjana, which is consistent with the pre drill APXS result and derived CIPW norms. Inside the accessible work volume of the arm at the drill site ChemCam exposed a greyish, shinier patch of rock underneath the dust, dubbed Stephen. ChemCam sees a high Mn signal in most of the spots. An APXS integration revealed high MnO as well (~4%), in addition to high Mg, Cl,K,Ni,Zn,Br,Cu,Ge and for the first time an APXS detectable amount of ~300 ppm Co. The surface might reflect a thin surface layer and may underestimate the higher Z elemental concentration since the APXS analysis assumes an infinite sample. Important elemental correlations are likely not impacted. A four spot daytime raster of Stephen before leaving the drill site showed a good correlation of Mn with Zn, Cu and Ni. All spots have 3-3.5% Cl, the highest values measured on Mars so far. While the stratigraphic setting of the Stephen sample is discussed elsewhere, the similarity with Mn deep-sea nodules is striking, e.g. the APXS calibration sample GBW07296. Whatever process formed Stephen, the process of Mn scavenging high Z trace metals from solutions seems to have happened similarly at this site on Mars.

  16. New Environmentalconditions Responsible for the amount of mg Incorporated in Biogenic Carbonates (United States)

    Zuddas, P.; Cherchi, A.; DeGiudici, G. B.; Buosi, C.


    The composition of carbonate minerals formed in past and present oceans is assumed to be significantly controlled by temperature and seawater composition. Several kinetic laboratory investigations have suggested that the temperature is kinetically responsible for the amount of Mg incorporated in both abiotic and biogenic calcites and that variation of kinetic reaction mechanism resulting from the temperature changes are correlated with the variable amount of Mg incorporated in calcites. These results explain why in present-day marine carbonates low-Mg calcite cements are mainly associated with cool water while high-Mg carbonates are dominantly found in warm-water environments. An apparent inverse relationship between the global average paleo-temperature and the Mg/Ca ratio is however observed in the past formed marine carbonate. This apparent contradiction has been interpreted as resulting from a possible changing in the relative seawater geochemical cycles of these cations. Recent monitoring of costal areas in presence of heavy metals and CO2 released from industrial polluted area reveals the presence of porcelanaceous miliolids infested by microscopic boring microflora (cyanobacteria, algae and fungi). Here, benthonic foraminifera have Mg/Ca molar ratio by one order of magnitude higher when compared to the average value of the same genus living under uncontaminated environments. A similar behaviour has been found for Zn, Cd and Pb. In these contaminated environments, temperature and average major seawater composition remain constant, while PCO2 partial pressure (estimated by pH and alkalinity using the ion pairing model) is 3-5 times higher than the average for the open sea nearby. Geochemical models predicts that CO2 increase is affecting carbonate saturation state of surface water in the twenty-first century indicating that calcareous organisms may have difficulty calcifying leading to production of weaker skeletons and greater vulnerability to erosion. The

  17. The Petäjäskoski Formation, a new lithostratigraphic unit in the Paleoproterozoic Peräpohja Belt, northern Finland

    Directory of Open Access Journals (Sweden)

    Markus Kyläkoski


    Full Text Available This paper gives the first description of a newly-recognized, basin-wide metasedimentary unit in the Paleoproterozoic (~2.4–1.9 Ga Peräpohja Belt, northern Finland. The unit, which is named the Petäjäskoski Formation (PFm after the single location where the rocks are known to be exposed, is situated stratigraphically in the middle part of the Kivalo Group between the quartzites of the>2.22 Ga Palokivalo Formation and the mafic volcanic rocks of the ~2.1 Ga Jouttiaapa Formation.The bulk of the PFm comprises phlogopitic-sericitic and albitic schists with abundant hematite as a diagnostic feature. Quartzite and dolomite interbeds are common. Based on drillcore and geophysical data, the succession is several hundreds of meters thick. The unit has prograde, chiefly lower greenschist facies mineral assemblages and, though being commonly intensely deformed, shows well-preserved sedimentary structures that imply deposition in shallow-water tosubaerial environments. Based on the original lithological features, the Petäjäskoski Formation can be defined as a claystone-siltstone-sandstone-dolostone association. On the geochemical and stratigraphic basis, the albite schists likely represent albitized equivalents of the micaceous claystones and siltstones. They are intercalated with stratabound collapse breccias, up to tens of meters in thickness, with clasts composed mainly of bordering albite schist. A mafic sill intruding the Petäjäskoski Formation yielded a U-Pb zircon age of 2140 ± 11 Ma. The older, c. 2220 Ma, differentiated sills are not known to reach the stratigraphic level of thePetäjäskoski Formation and hence, the depositional age of the PFm sediments can be bracketed between c. 2220 and 2140 Ma. Detrital zircon grains dated from a quartzitic sample from the PFmshow an Archean (c. 2650–3470 Ma provenance.The moderate to high MgO (~6–13 wt.%, K2O (~3–8 wt.% and FeOtot(8–15 wt.% contents, low CaO and Na2O contents, and abundant

  18. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth. (United States)

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D


    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  19. Late Early-Cretaceous quartz diorite-granodiorite-monzogranite association from the Gaoligong belt, southeastern Tibet Plateau: Chemical variations and geodynamic implications (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei; Wang, Jiang-Bo


    Geochemical variations in granitic rocks may be controlled by their source rocks, melting reactions and subsequent magmatic processes, which resulted from various geodynamic processes related to subduction, collision, or slab break-off. Here we report new LA-ICP-MS zircon U-Pb ages and Hf isotopes, whole-rock chemistry and Sr-Nd isotopes for the late Early Cretaceous quartz diorite, granodiorite and monzogranite in the Gaoligong belt, southeastern Tibet Plateau. The zircon U-Pb dating yield ages of 113.9 ± 1.6, 111.7 ± 0.8, and 112.8 ± 1.7 Ma for the quartz diorite, granodiorite, and monzogranite, respectively, which are coeval with bimodal magmatism in the central and northern Lhasa sub-terrane. There are the distinct sources regions for the quartz diorite and granodiorite-monzogranite association. The quartz diorites are sodic, calc-alkaline and have high Mg# (52-54) values. They also have elevated initial 87Sr/86Sr (0.707019 to 0.709176) and low εNd(t) (- 5.16 to - 7.63), with variable zircon εHf(t) values (+ 5.65 to - 9.02). Zircon chemical data indicate a typical crustal-derived character with high Th (142-1260 ppm) and U (106-1082 ppm) and moderate U/Yb ratios (0.30 to 2.32) and Y content (705-1888 ppm). Those data suggest that the quartz diorites were derived from partial melting of ancient basaltic lower crust by a mantle-derived magma in source region. The granodiorite-monzogranite association has high-K calc-alkaline, weakly peraluminous characters. They show lower Nb/Ta (5.57 to 13.8), CaO/Na2O (0.62 to 1.21), higher Al2O3/TiO2 (24.4 to 44.4) ratios, more evolved whole-rock Sr-Nd and zircon Hf isotopic signatures, all of which suggest derivation from mixed basaltic and metasedimentary source rocks in a deep crustal zone. We propose that the granitic magmatisms at ca. 113-110 Ma in the Gaologong belt was triggered by the slab break-off of Bangong-Nujiang Tethyan oceanic lithosphere. Supplementary Dataset Table 2. Single-grain zircon Hf isotopic data

  20. Geochronology and geochemistry of the Borohoro pluton in the northern Yili Block, NW China: Implication for the tectonic evolution of the northern West Tianshan orogen (United States)

    Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong


    The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic

  1. Geochronology and Sr–Nd–Hf isotopic composition of the granites, enclaves, and dikes in the Karamay area, NW China: Insights into late Carboniferous crustal growth of West Junggar

    Directory of Open Access Journals (Sweden)

    Di Li


    Full Text Available New whole-rock major and trace elements, and zircon U–Pb and Hf–Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U–Pb dating of the Karamay pluton yields an age of 300.7 ± 2.3 Ma for the enclave and 300.0 ± 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421–0.703526 and positive εHf(t (5.5–14.1 and εNd(t (7.3–8.1 values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive εHf(t (7.6–13.2, 14.2–14.9 and εNd(t (6.8–8.3, ∼6.9 values. They are enriched in LILEs (Rb, Ba and U and LREE and depleted in HFSEs (Nb and Ta with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West Junggar.

  2. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts (United States)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.


    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  3. A middle Permian ophiolite fragment in Late Triassic greenschist- to blueschist-facies rocks in NW Turkey: An earlier pulse of suprasubduction-zone ophiolite formation in the Tethyan belt (United States)

    Topuz, Gültekin; Okay, Aral I.; Schwarz, Winfried H.; Sunal, Gürsel; Altherr, Rainer; Kylander-Clark, Andrew R. C.


    The Eastern Mediterranean region within the Tethyan belt is characterised by two main pulses of suprasubduction-zone ophiolite formation during the Early-Middle Jurassic and Late Cretaceous. Despite vast exposures of the Permo-Triassic accretionary complexes, related suprasubduction-zone ophiolites and the timing of subduction initiation leading to the formation of Permo-Triassic accretionary complexes are unknown so far. Here we report on a 40 km long and 0.3 to 1.8 km wide metaophiolite fragment within transitional greenschist- to blueschist-facies oceanic rocks from NW Turkey. The metaophiolite fragment is made up mainly of serpentinite and minor dykes or stocks of strongly sheared metagabbro with mineral assemblages involving actinolite/winchite, chlorite, epidote, albite, titanite and phengite. The metagabbro displays (i) variable CaO and MgO contents, (ii) anomalously high Mg# (= 100 ∗ molar MgO/(MgO + FeOtot)) of 75-88, and (iii) positive Eu anomalies, together with low contents of incompatible elements such as Ti, P and Zr, suggesting derivation from former plagioclase cumulates. The serpentinites comprise serpentine, ± chlorite, ± talc, ± calcite and relict Cr-Al spinel surrounded by ferrichromite to magnetite. Relict Cr-Al spinels are characterised by (i) Cr/(Cr + Al) ratios of 0.45-0.56 and Mg/(Mg + Fe2 +) ratio of 0.76-0.22, (ii) variable contents of ZnO and MnO, and (iii) extremely low TiO2 contents. Zn and Mn contents are probably introduced into Cr-Al spinels during greenschist- to blueschist metamorphism. Compositional features of the serpentinite such as (i) Ca- and Al-depleted bulk compositions, (ii) concave U-shaped, chondrite-normalised rare earth element patterns (REE) with enrichment of light and heavy REEs, imply that serpentinites were probably derived from depleted peridotites which were refertilised by light rare earth element enriched melts in a suprasubduction-zone mantle wedge. U-Pb dating on igneous zircons from three metagabbro

  4. Complex Tectono-Magmatic Interaction along the George V Transform Fault, South-East Indian Ridge, 140°E, and Implications for Mantle Dynamics (United States)

    Briais, A.; Ruellan, E.; Ceuleneer, G.; Maia, M.


    The 300 km-offset George V Transform Fault (TF) is the westernmost of the major, right-stepping transform faults that offset the South-East Indian Ridge between 140°E and 155°E. All these TFs have multiple shear zones with intra-transform ridge segments (ITRS), mostly unmapped yet. We present the results of the analysis of geophysical and petrological data collected during the STORM cruise (South Tasmania Ocean Ridge and Mantle). The data cover the western shear zone and part of two ITRSs. They reveal a complex interaction between tectonic processes at the plate boundary and near-axis volcanic activity along and across the transform fault. The western TF shear zone consists of two segments offset by a 50 km-long, 15 km-wide, up to 2000 m-high serpentinite massif. We infer that the massif is a push-up resulting from transpression along the transform, due to the lengthening of the western ITRS, with a mechanism similar to the processes currently uplifting the mylonitic massif along the St. Paul TF in the Equatorial Atlantic (1). The western ITRS is relatively shallow and magmatically robust, which is unexpected in a TF system. The bathymetric and backscatter maps also reveal a series of recent off-axis oblique volcanic ridges. Rocks dredged on one of these ridges consist of picrites (i.e. basalts rich in olivine phenocrysts). These observations suggest that the TF there is not magma starved like many mid-ocean ridge transforms, but is the locus of significant primitive melt supply. Such an unexpected production of high-Mg melt might be related to the presence of a mantle thermal anomaly beneath the easternmost SEIR, and/or to a western flow of mantle across the TF. *STORM cruise scientific party: A. Briais, F. Barrere, C. Boulart, D. Brunelli, G. Ceuleneer, N. Ferreira, B. Hanan, C. Hémond, S. Macleod, M. Maia, A. Maillard, S. Merkuryev, S.H. Park, S. Révillon, E. Ruellan, A. Schohn, S. Watson, and Y.S. Yang. (1) Maia et al. 2016 Nature Geo. doi:10.1038/ngeo2759

  5. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN (United States)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.


    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 1019 cm-3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 1020 cm-3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 1019 cm-3. The p-GaN and p-Al0.11Ga0.89N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3-3.5 V and series resistances of 6-10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  6. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility (United States)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey


    The Dovyren Intrusive Complex (DIC, Northern Baikal region, 728 Ma) includes the layered dunite-troctolite-gabbronorite Yoko-Dovyren massif (YDM), associated mafic-ultramafic sills, and dykes of olivine-rich to olivine-free gabbronorite. Major rock types of the DIC are presented, including a diversity of olivine orthocumulates to olivine-plagioclase and gabbroic adcumulates, carbonate-contaminated ultramafics and Cu-Ni-PGE mineralisation. Detailed comparisons of complete cross-sections of the YDM in its centre and at the NE and SW margins demonstrate differences in the cumulate succession, mineral chemistry, and geochemical structure that likely reflect variations in parental magma compositions. Combining petrochemical reconstructions for most primitive rocks and calculations using the COMAGMAT-5 model, it is shown that the central and peripheral parts of the intrusion formed by olivine-laden parental magmas ranged in their temperatures by 100 °C, approximately from 1290 °C ( 11 wt% MgO, olivine Fo88) to 1190 °C ( 8 wt% MgO, olivine Fo86). Thermodynamic modelling suggests that the most primitive high-Mg magma was S-undersaturated, whereas its derivatives became S-saturated at T piles to generate poorly-mineralised plagiodunite. In the troctolite and gabbroic parts of the Dovyren chamber, sulphide immiscibility likely occurred at lower temperatures, producing Cu-rich sulphide precursors, which gave rise to the 'platinum group mineral' (PGM-containing) troctolite and low-mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This

  7. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs. (United States)

    Vargas-Ángel, Bernardo; Richards, Cristi L; Vroom, Peter S; Price, Nichole N; Schils, Tom; Young, Charles W; Smith, Jennifer; Johnson, Maggie D; Brainard, Russell E


    This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2) yr(-1)) of early successional recruitment communities on Calcification Accretion Unit (CAU) plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years) of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA) percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons makes CCA

  8. Comparisons of Unconsolidated Sediments Analyzed by APXS (MSL-Curiosity) within Gale Crater, Mars: Soils, Sands of the Barchan and Linear Dunes of the Active Bagnold Dune Field, and Ripple-field Sands. (United States)

    Thompson, L. M.; O'Connell-Cooper, C.; Spray, J. G.; Gellert, R.; Boyd, N. I.; Desouza, E.


    The MSL-APXS has analyzed a variety of unconsolidated sediments within the Gale impact crater, including soils, sands from barchan [High, Namib dunes], and linear dunes [Nathan Bridges, Mount Desert dunes], within the active Bagnold dune field, and sands from two smaller ripple fields ("mega-ripples"). The Gale "soils" (unsorted, unconsolidated sediments, ranging from fine-grained particles (including dust) to coarser "pebbly" material [>2 mm]), are, to a large degree, similar to Martian basaltic soils quantified by APXS, at Gusev crater (MER-A_Spirit) and Meridiani Planum (MER-B_Opportunity). Some local contributions are indicated by, for example, the enriched K levels (relative to a martian average basaltic soil [ABS]) within coarser Gale soil samples, and a Cr, Mn, Fe enrichment within finer-grained samples. Sands (grain size 62 µm to 2 mm) of the Bagnold dunes, generally, exhibit elevated Mg and Ni, indicating enrichment from olivine and pyroxene, but depleted S, Cl and Zn, indicating high activity levels and low dust. Compositional differences, related both to position within a dune (i.e., crest versus off-crest sand), and type of dune (linear versus barchan), are identified. Off-crest sands have Na, Al, Si, K, P contents similar to (or slightly depleted, relative to) the ABS, enrichment in Mg, and low dust content, whilst crest sands contain very high Mg and Ni (relative to the ABS), low felsic elemental concentrations and very low dust content. Cr is significantly enriched (and, to a lesser degree, Mn, Fe, Ti) in the off-crest sands of the linear dunes. In contrast, barchan dunes off-crest sands have Cr, Mn, Fe, and Ti abundances similar to those in the Gale soils. Additionally, Ni concentrations in barchan dunes off-crest sands are enriched relative to the linear dunes. Analyses from a small, isolated "mega-ripple" reveal a composition similar to that of the Gale soils, including a high dust content. The second mega-ripple, within a larger ripple field, is

  9. Magmatic systems of large continental igneous provinces

    Directory of Open Access Journals (Sweden)

    E. Sharkov


    Full Text Available Large igneous provinces (LIPs formed by mantle superplume events have irreversibly changed their composition in the geological evolution of the Earth from high-Mg melts (during Archean and early Paleoproterozoic to Phanerozoic-type geochemically enriched Fe-Ti basalts and picrites at 2.3 Ga. We propose that this upheaval could be related to the change in the source and nature of the mantle superplumes of different generations. The first generation plumes were derived from the depleted mantle, whereas the second generation (thermochemical originated from the core-mantle boundary (CMB. This study mainly focuses on the second (Phanerozoic type of LIPs, as exemplified by the mid-Paleoproterozoic Jatulian–Ludicovian LIP in the Fennoscandian Shield, the Permian–Triassic Siberian LIP, and the late Cenozoic flood basalts of Syria. The latter LIP contains mantle xenoliths represented by green and black series. These xenoliths are fragments of cooled upper margins of the mantle plume heads, above zones of adiabatic melting, and provide information about composition of the plume material and processes in the plume head. Based on the previous studies on the composition of the mantle xenoliths in within-plate basalts around the world, it is inferred that the heads of the mantle (thermochemical plumes are made up of moderately depleted spinel peridotites (mainly lherzolites and geochemically-enriched intergranular fluid/melt. Further, it is presumed that the plume heads intrude the mafic lower crust and reach up to the bottom of the upper crust at depths ∼20 km. The generation of two major types of mantle-derived magmas (alkali and tholeiitic basalts was previously attributed to the processes related to different PT-parameters in the adiabatic melting zone whereas this study relates to the fluid regime in the plume heads. It is also suggested that a newly-formed melt can occur on different sides of a critical plane of silica undersaturation and can

  10. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan, E-mail: [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A. [Department of Physics, Arizona State University, Tempe, Arizona 85287 (United States)


    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10{sup 19} cm{sup −3} with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10{sup 20} cm{sup −3} show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10{sup 19} cm{sup −3}. The p-GaN and p-Al{sub 0.11}Ga{sub 0.89}N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K.

  11. Comprehensive study of the electronic and optical behavior of highly degenerate p-type Mg-doped GaN and AlGaN

    International Nuclear Information System (INIS)

    Gunning, Brendan P.; Fabien, Chloe A. M.; Merola, Joseph J.; Clinton, Evan A.; Doolittle, W. Alan; Wang, Shuo; Fischer, Alec M.; Ponce, Fernando A.


    The bulk and 2-dimensional (2D) electrical transport properties of heavily Mg-doped p-type GaN films grown on AlN buffer layers by Metal Modulated Epitaxy are explored. Distinctions are made between three primary p-type conduction mechanisms: traditional valence band conduction, impurity band conduction, and 2D conduction within a 2D hole gas at a hetero-interface. The bulk and 2D contributions to the overall carrier transport are identified and the relative contributions are found to vary strongly with growth conditions. Films grown with III/V ratio less than 1.5 exhibit high hole concentrations exceeding 2 × 10 19 cm −3 with effective acceptor activation energies of 51 meV. Films with III/V ratios greater than 1.5 exhibit lower overall hole concentrations and significant contributions from 2D transport at the hetero-interface. Films grown with III/V ratio of 1.2 and Mg concentrations exceeding 2 × 10 20 cm −3 show no detectable inversion domains or Mg precipitation. Highly Mg-doped p-GaN and p-AlGaN with Al fractions up to 27% similarly exhibit hole concentrations exceeding 2 × 10 19 cm −3 . The p-GaN and p-Al 0.11 Ga 0.89 N films show broad ultraviolet (UV) photoluminescence peaks, which intercept the valence band, supporting the presence of a Mg acceptor band. Finally, a multi-quantum-well light-emitting diode (LED) and p-i-n diode are grown, both of which demonstrate rectifying behavior with turn-on voltages of 3–3.5 V and series resistances of 6–10 Ω without the need for any post-metallization annealing. The LED exhibits violet-blue luminescence at 425 nm, while the p-i-n diode shows UV luminescence at 381 nm, and both devices still show substantial light emission even when submerged in liquid nitrogen at 77 K

  12. Neogene Uplift and Magmatism of Anatolia: New Insights from Drainage Analysis and Basalt Geochemistry (United States)

    McNab, F.; Ball, P.; Hoggard, M.; White, N.


    high-Mg basalts have been used. Elevated temperatures of c. 1380 ºC occur beneath Eastern Anatolia with a notable decrease towards the west. Overall, our results imply that the spatial and temporal evolution Anatolian topography is controlled by temperature variations within the asthenospheric mantle.

  13. Magnesium deficiency and metabolic syndrome: stress and inflammation may reflect calcium activation. (United States)

    Rayssiguier, Yves; Libako, Patrycja; Nowacki, Wojciech; Rock, Edmond


    Magnesium (Mg) intake is inadequate in the western diet and metabolic syndrome is highly prevalent in populations around the world. Epidemiological studies suggest that high Mg intake may reduce the risk but the possibility of confounding factors exists, given the strong association between Mg and other beneficial nutriments (vegetables, fibers, cereals). The concept that metabolic syndrome is an inflammatory condition may explain the role of Mg.Mg deficiency results in a stress effect and increased susceptibility to physiological damage produced by stress. Stress activates the hypothalamic-pituitary-adrenal axis (HPA) axis and the sympathetic nervous system. The activation of the renin-angiotensin-aldosterone system is a factor in the development of insulin resistance by increasing oxidative stress. In both humans and rats, aldosteronism results in an immunostimulatory state and leads to an inflammatory phenotype. Stress response induces the release of large quantities of excitatory amino acids and activates the nuclear factor NFkappaB, promoting translation of molecules involved in cell regulation, metabolism and apoptosis. The rise in neuropeptides is also well documented. Stress-induced HPA activation has been identified to play an important role in the preferential body fat accumulation but evidence that Mg is involved in body weight regulation is lacking. One of the earliest events in the acute response to stress is endothelial dysfunction. Endothelial cells actively contribute to inflammation by elaborating cytokines, synthesizing chemical mediators and expressing adhesion molecules. Experimental Mg deficiency in rats induces a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, synthesis of inflammatory cytokines and acute phase proteins, extensive production of free radicals. An increase in extracellular Mg concentration decreases inflammatory effects, while reduction in extracellular Mg results in cell activation. The

  14. Mg/Ca Ratios in Coralline Red Algae as Temperature Proxies for Reconstructing Labrador Current Variability (United States)

    Gamboa, G.; Hetzinger, S.; Halfar, J.; Zack, T.; Kunz, B.; Adey, W.


    Marine ecosystems and fishery productivity in the Northwestern Atlantic have been considerably affected by regional climate and oceanographic changes. Fluctuations of North Atlantic marine climate have been linked in part to a dominant pattern of atmospheric circulation known as the North Atlantic Oscillation, which has a strong influence on transport variability of the Labrador Current (LC). The cold LC originates in the Labrador Sea and flows southbound along the Eastern Canadian coastline causing an important cooling effect on marine waters off the Canadian Atlantic provinces. Although interdecadal and interannual variability of sea surface temperatures (SST) in the LC system have been documented, a long-term pattern has not been identified. In order to better understand the observed ecosystem changes and their relationship with climate variability in the Northwestern Atlantic, a century-scale reconstruction of spatial and temporal variations of the LC is needed. This, however, requires reliable long-term and high-resolution SST records, which are not available from short instrumental observations. Here we present the first century-scale SST reconstructions from the Northwest Atlantic using long-lived coralline red algae. Coralline red algae have a high-Mg calcite skeleton, live in shallow water worldwide and develop annual growth bands. It has previously been demonstrated that subannual resolution SSTs can be obtained from coralline red algal Mg/Ca ratios, a commonly used paleotemperature proxy. Specimens of the long-lived coralline red algae Clathromorphum compactum were collected alive in August 2008 along a latitudinal transect spanning the southern extent of LC flow in Nova Scotia and Newfoundland. This collection is supplemented with specimens from the same region collected in the 1960's. In order to reconstruct spatial and temporal patterns of the LC, selected samples of C. compactum were analyzed for Mg/Ca using Laser Ablation Inductively-Coupled Plasma

  15. Dual Geochemical Characteristics for the Basic Intrusions in the Yangtze Block, South China: New Evidence for the Breakup of Rodinia

    Directory of Open Access Journals (Sweden)

    Shengyuan Shu


    Full Text Available Neoproterozoic intraplate magmatic rocks are widespread in the Yangtze Block (YZB. The contrasting interpretations on their petrogenesis and tectonic evolution induce stimulating discussions on the coeval tectonic setting, including the two competing models of rift-related (R-model and arc-related (A-model. Their main evidence is dominantly from felsic magmatic rocks. In contrast, the less evolved basic rocks are more suitable for tectonic setting discrimination. Here we study the Longtanqing basic intrusions (LTQ that are exposed to the central part of the N–S trending Kangdian rift in the western YZB, by detailed geochemical and geochronological investigations. Zircon U–Pb dating of the two diabases from LTQ yield identical ages within error of 777 ± 17 Ma and 780 ± 5.3 Ma, respectively. LTQ rocks are characterized by low SiO2 (49.83–50.71 wt %, high MgO (5.91–6.53 wt %, and Cr (140–150 ppm contents, supporting the significant mantle affinity. They also display dual geochemical characteristics, including a series of features of continental within-plate basalts (WPB, Ti/V = 37.3–47.5, Zr/Y = 3.4–3.8, Ta/Hf = 0.19–0.23, and the typical signatures of island arc basalt (IAB, such as highly depleted in HFSE and HREE, and enriched in LREE and LILE. Most zircon εHf(t values are positive (1.6–9.4 while the corresponding Hf depleted mantle model ages (TDM1 range from 1.0 Ga to 1.3 Ga. In combination with the occurrence of inherited zircons (991–1190 Ma, it is suggested that their sources are dominantly derived from the lithospheric mantle that was reconstructed in the late Mesoproterozoic. Thus, LTQ is mainly formed by partial melting of the enriched lithospheric mantle, and subsequently assimilated by a juvenile crust during upwelling. The melt compositions are controlled by different degrees of the crystal fractionation of the dominant clinopyroxene and plagioclase with minor amphibole under high fO2 conditions. Combined with

  16. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: Constraints on fluid sources, formation environments, and seepage dynamics (United States)

    Liang, Qianyong; Hu, Yu; Feng, Dong; Peckmann, Jörn; Chen, Linying; Yang, Shengxiong; Liang, Jinqiang; Tao, Jun; Chen, Duofu


    Authigenic carbonates recovered from two newly discovered active cold seeps on the northwestern slope of the South China Sea have been studied using petrography, mineralogy, stable carbon and oxygen isotopic, as well as trace element compositions, together with AMS 14C ages of shells of seep-dwelling bivalves to unravel fluid sources, formation conditions, and seepage dynamics. The two seeps (ROV1 and ROV2), referred to as 'Haima seeps' herein, are approximately 7 kilometers apart, and are typified by abundant carbonate rocks represented bycrusts and nodules. Aragonite and high-Mg calcite are the main carbonate minerals. Based on low δ13Ccarbonate values ranging from -43.0‰ to -27.5‰ (V-PDB) methane is apparently the predominant carbon source of seep carbonates. The corresponding δ18O values, varying from 2.5‰ to 5.8‰ (V-PDB), mostly are higher than calculated values representing precipitation in equilibrium with seawater (2.5‰ to 3.8‰), which probably reflects past destabilization of locally abundant gas hydrates. In addition, we found that carbonates with bivalve shells are generally aragonite-dominated, and bear no barium enrichment but uranium enrichments, reflecting shallow formation depths close to the seafloor. In contrast, carbonate crusts without bivalve shells and nodules contain more calcite, and are characterized by major molybdenum enrichment and different degrees of barium enrichment, agreeing with precipitation at greater depth under strictly anoxic conditions. AMS 14C ages suggest that a major episode of carbonate precipitation occurred between 6.1 ka and 5.1 ka BP at the Haima seeps, followed by a possibly subordinate episode from approximately 3.9 ka to 2.9 ka BP. The common occurrence of dead bivalves at both sites indicates that chemosynthesis-based communities flourished to a greater extent in the past, probably reflecting a decline of seepage activity in recent times. Overall, these results confirm that authigenic carbonates from

  17. Magma Diversity in the Trans-Mexican Volcanic Belt: the role of Mantle Heterogeneities, Slab-derived Fluxes and Crustal Contamination. (United States)

    Schaaf, P.; Valdez, G.; Siebe, C.; Carrasco, G.


    The Plio-Quaternary Trans-Mexican Volcanic Belt (TMVB) is related to subduction of the Cocos and Rivera plates underneath the North American plate. Non-parallelism of the magmatic arc with respect to the trench can be explained by oblique subduction and changes of dip angle. In this contribution we compare geochemical and Sr-Nd-Pb isotope data of five TMVB stratovolcanoes (from east to west: Colima Volcano, Nevado de Toluca, Popocatepetl, La Malinche, and Pico de Orizaba) and associated cinder cones. Volcanic products range in stratovolcanoes from andesites (e.g. Colima, Popocatepetl) to rhyolites (e.g. Pico de Orizaba), and from basalts to andesites in the monogenetic cones. Concentrations of incompatible elements correlate positively with Sr-Nd-Pb isotope ratios from east to west along the arc. 87Sr/86Sr, eNd, and 206Pb/204Pb range from 0.7034-0.7050, +6.9 to minus 1.8, and 18.57-18.78, respectively, displaying considerable differences. In the central TMVB, REE patterns of closely spaced high-Mg basaltic andesites differ substantially. This cannot be explained by fractional crystallization processes or differential partial melting of a homogeneous mantle source. Instead, it points towards small-scale mantle heterogeneities. LILE (e.g. Cs, Rb, Ba, Pb) and HFSE (e.g. Ta, Nb, Zr) display variations of orders in magnitude at different segments along the arc. These variations might correlate with amounts of slab-derived aqueous fluids and intensity of metasomatic reactions between the subducting lithosphere and the overlying mantle wedge. Isotopic ratios of mid-lower crustal xenoliths found in nearly all stratovolcano products reflect the nature of the underlying crust beneath the TMVB. Tertiary-Cretaceous plagiogranites (Colima), Cretaceous limestones (Popocatepetl), and Grenvillian quartzites (Pico de Orizaba)and their increasing radiogenic isotope ratios match well with the observed isotopic signatures of the stratovolcanoes. Moreover, elevated CO2 amounts in

  18. Fate and groundwater impacts of produced water releases at OSPER "B" site, Osage County, Oklahoma (United States)

    Kharaka, Y.K.; Kakouros, E.; Thordsen, J.J.; Ambats, G.; Abbott, M.M.


    For the last 5 a, the authors have been investigating the transport, fate, natural attenuation and ecosystem impacts of inorganic and organic compounds in releases of produced water and associated hydrocarbons at the Osage-Skiatook Petroleum Environmental Research (OSPER) "A" and "B" sites, located in NE Oklahoma. Approximately 1.0 ha of land at OSPER "B", located within the active Branstetter lease, is visibly affected by salt scarring, tree kills, soil salinization, and brine and petroleum contamination. Site "B" includes an active production tank battery and adjacent large brine pit, two injection well sites, one with an adjacent small pit, and an abandoned brine pit and tank battery site. Oil production in this lease started in 1938, and currently there are 10 wells that produce 0.2-0.5 m3/d (1-3 bbl/d) oil, and 8-16 m3/d (50-100 bbl/d) brine. Geochemical data from nearby oil wells show that the produced water source is a Na-Ca-Cl brine (???150,000 mg/L TDS), with high Mg, but low SO4 and dissolved organic concentrations. Groundwater impacts are being investigated by detailed chemical analyses of water from repeated sampling of 41 boreholes, 1-71 m deep. The most important results at OSPER "B" are: (1) significant amounts of produced water from the two active brine pits percolate into the surficial rocks and flow towards the adjacent Skiatook reservoir, but only minor amounts of liquid petroleum leave the brine pits; (2) produced-water brine and minor dissolved organics have penetrated the thick (3-7 m) shale and siltstone units resulting in the formation of three interconnected plumes of high-salinity water (5000-30,000 mg/L TDS) that extend towards the Skiatook reservoir from the two active and one abandoned brine pits; and (3) groundwater from the deep section of only one well, BR-01 located 330 m upslope and west of the site, appear not to be impacted by petroleum operations. ?? 2007.

  19. Effects of kisspeptin1 on electrical activity of an extrahypothalamic population of gonadotropin-releasing hormone neurons in medaka (Oryzias latipes). (United States)

    Zhao, Yali; Wayne, Nancy L


    Kisspeptin (product of the kiss1 gene) is the most potent known activator of the hypothalamo-pituitary-gonadal axis. Both kiss1 and the kisspeptin receptor are highly expressed in the hypothalamus of vertebrates, and low doses of kisspeptin have a robust and long-lasting stimulatory effect on the rate of action potential firing of hypophysiotropic gonadotropin releasing hormone-1 (GnRH1) neurons in mice. Fish have multiple populations of GnRH neurons distinguished by their location in the brain and the GnRH gene that they express. GnRH3 neurons located in the terminal nerve (TN) associated with the olfactory bulb are neuromodulatory and do not play a direct role in regulating pituitary-gonadal function. In medaka fish, the electrical activity of TN-GnRH3 neurons is modulated by visual cues from conspecifics, and is thought to act as a transmitter of information from the external environment to the central nervous system. TN-GnRH3 neurons also play a role in sexual motivation and arousal states, making them an important population of neurons to study for understanding coordination of complex behaviors. We investigated the role of kisspeptin in regulating electrical activity of TN-GnRH3 neurons in adult medaka. Using electrophysiology in an intact brain preparation, we show that a relatively brief treatment with 100 nM of kisspeptin had a long-lasting stimulatory effect on the electrical activity of an extrahypothalamic population of GnRH neurons. Dose-response analysis suggests a relatively narrow activational range of this neuropeptide. Further, blocking action potential firing with tetrodotoxin and blocking synaptic transmission with a low Ca(2+)/high Mg(2+) solution inhibited the stimulatory action of kisspeptin on electrical activity, indicating that kisspeptin is acting indirectly through synaptic regulation to excite TN-GnRH3 neurons. Our findings provide a new perspective on kisspeptin's broader functions within the central nervous system, through its

  20. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.


    compositions extracted from these hybrid sources are higher in normative quartz and hypersthene (i.e., they have a more silica-saturated character) in comparison with basalts derived from prior melt-depleted asthenospheric mantle beneath ridges. These primary arc melts range from silica-rich picrite to boninite and high-Mg basaltic andesite along a residual spinel harzburgite cotectic. Silica enrichment in the mantle sources of arc-related, subalkaline picrite-boninite-andesite suites coupled with the amount of water and depth of melting, are important for the formation of medium-Fe ('calc-alkaline') andesite-dacite-rhyolite suites, key lithologies forming the continental crust.

  1. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions (United States)

    Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang


    Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions

  2. Effect of Hydrochemistry on Mineral Precipitation and Textural Diversity in Serpentinization-driven Alkaline Environments; Insights from Thermal Springs in the Oman Ophiolite. (United States)

    Bach, W.; Giampouras, M.; Garcia-Ruiz, J. M.; Garrido, C. J.; Los, C.; Fussmann, D.; Monien, P.


    Interactions between meteoric water and ultramafic rocks within Oman ophiolite give rise to the formation of thermal spring waters of variable composition and temperature. Discharge of two different types of water forms complex hydrological networks of streams and ponds, in which the waters mix, undergo evaporation, and take up atmospheric CO2. We conducted a pond-by-pond sampling of waters and precipitates in two spring sites within the Wadi Tayin massif, Nasif and Khafifah, and examined how hydrochemistry and associated mineral saturation states affect the variations in mineral phases and textures. Three distinctive types of waters were identified in the system: a) Mg-type (7.9 11.6); Ca-OH-rich waters, and c) Mix-type (9.6 < pH < 11.5); waters arising upon mixing of Mg-type and Ca-type. PHREEQC was used to evaluate the role of mixing in aqueous speciation and the evolution of the saturation index value of different mineral phases. Mineral and textural characterization by X-ray diffraction, Raman spectroscopy and scanning electron microscopy were combined with these hydrogeochemical constraints to determine the factors controlling mineralogical and textural diversity in the system. In Ca-type waters, uptake of CO2 during the exposure of the fluids to the atmosphere is the predominant precipitation mechanism of CaCO3. High Mg:Ca ratios and high supersaturation rate of CaCO3 favor the growth of aragonite over calcite in mixed fluids. Changes in morphology and texture of aragonite crystals and crystal aggregates indicate the variations in the values of supersaturation and supersaturation rate of CaCO3 in the different water types. Brucite precipitation is common and driven by fluid mixing, while interaction with air-derived CO2 causes its alteration to hydromagnesite. The proximity of gabbroic lithologies appears to affect the presence of Al-bearing layered double hydroxides (LDHs). Furthermore, transformation of nesquehonite to dypingite in Mg-type waters record a

  3. Geophysical and geochemical constraints on the geodynamic origin of the Vrancea Seismogenic Zone Romania (United States)

    Fillerup, Melvin A.

    The Vrancea Seismogenic Zone (VSZ) of Romania is a steeply NW-dipping volume (30 x 70 x 200 km) of intermediate-depth seismicity in the upper mantle beneath the bend zone of the Eastern Carpathians. The majority of tectonic models lean heavily on subduction processes to explain the Vrancea mantle seismicity and the presence of a Miocene age calc-alkaline volcanic arc in the East Carpathian hinterland. However, recent deep seismic reflection data collected over the Eastern Carpathian bend zone image an orogen lacking (1) a crustal root and (2) dipping crustal-scale fabrics routinely imaged in modern and ancient subduction zones. The DRACULA I and DACIA-PLAN deep seismic reflection profiles show that the East Carpathian orogen is supported by crust only 30-33 km thick while the Focsani basin (foreland) and Transylvanian basin (hinterland) crust is 42 km and 46 km thick respectively. Here the VSZ is interpreted as the former Eastern Carpathian orogenic root which was removed as a result of continental lithospheric delamination and is seismically foundering beneath the East Carpathian bend zone. Because large volumes of calc-alkaline volcanism are typically associated with subduction settings existing geochemical analyses from the Calimani, Gurghiu, and Harghita Mountains (CGH) have been reinterpreted in light of the seismic data which does not advocate the subduction of oceanic lithosphere. CGH rocks exhibit a compositional range from basalt to rhyolite, many with high-Mg# (Mg/Mg+Fe > 0.60), high-Sr (>1000 ppm), and elevated delta-O18 values (6-8.7 /) typical of arc lavas, and are consistent with mixing of mantle-derived melts with a crustal component. The 143Nd/144Nd (0.5123-0.5129) and 87Sr/86Sr (0.7040-0.7103) ratios similarly suggest mixing of mantle and crustal end members to obtain the observed isotopic compositions. A new geochemical model is presented whereby delamination initiates a geodynamic process like subduction but with the distinct absence of subducted

  4. Insights from Askja sand sheet, Iceland, as a depositional analogue for the Bagnold Dune Field, Gale Crater, Mars. (United States)

    Ukstins, I.; Sara, M.; Riishuus, M.; Schmidt, M. E.; Yingst, R. A.; Berger, J.


    Examining the compositional effect of aeolian transport and sorting processes on basaltic sands is significant for understanding the evolution of the Bagnold dune field, as well as other martian soils and sedimentary units. We use the Askja sand sheet, Iceland, as a testbed to quantify the nature of soil production and aeolian transport processes in a mafic system. Basalts from Askja and surrounding volcanic units, which can have high MgO (5-18 wt %) and high Fe2O3 (5-18 wt %), have been weathered to form mafic volcaniclastic deposits which are incorporated into a 40-km long sand sheet to the E-SE of the caldera, ranging from 10 cm to 10 m thick, and covering 240 km2. Ash and lava from the 2014-2015 Holuhraun eruption were emplaced onto the southeastern part of the sand sheet. The SW section is deflationary and defined by very fine to medium grained basaltic sand with ventifact cobbles and boulders. The central part is inflating and dominated by very fine-grained sand, relict lava fields, and small to large sand ripples (1 to 30 cm). The NE portion is also inflating but accumulation is limited to topographic depressions. Bulk chemistry of >200 sand samples are similar to Martian crust (SiO2: 48-52 wt %, MgO: 5-8 wt %, Fe2O3: 13-15 wt %). MgO concentrations vary with distance along the sand sheet, increasing by 1.5% over 10 km in the downwind direction (E, NE), then maintaining a relatively consistent concentration of 6.75 wt % over 18 km. Mean equancy of grains decreases 15 % to the E over 10 km followed by a plateau at 65 to 75 %. Material at depth tends to be of higher sphericity than material on or near the surface. Notably, MgO increases while the sphericity decreases and both data sets level off at 10 km, which suggests these two variables are related. These indicate input of material with prismoidal morphology around 10 km, and may be due to the Holuhraun eruption.

  5. Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes (United States)

    Futa, K.; Stern, C.R.


    Isotopic compositions of samples from six Quaternary volcanoes located in the northern and southern extremities of the Southern Volcanic Zone (SVZ, 33-46??S) of the Andes and from four centers in the Austral Volcanic Zone (AVZ, 49-54??S) range for 87Sr 86Sr from 0.70280 to 0.70591 and for 143Nd 144Nd from 0.51314 to 0.51255. The ranges are significantly greater than previously reported from the southern Andes but are different from the isotopic compositions of volcanoes in the central and northern Andes. Basalts and basaltic andesites from three centers just north of the Chile Rise-Trench triple junction have 87Sr 86Sr, 143Nd 144Nd, La Yb, Ba La, and Hf Lu that lie within the relatively restricted ranges of the basic magmas erupted from the volcanic centers as far north as 35??S in the SVZ of the Andes. The trace element and Sr and Nd isotopic characteristics of these magmas may be explained by source region contamination of subarc asthenosphere, with contaminants derived from subducted pelagic sediments and seawater-altered basalts by dehydration of subducted oceanic lithosphere. In the northern extremity of the SVZ between 33?? and 34??S, basaltic andesites and andesites have higher 87Sr 86Sr, Rb Cs, and Hf Lu, and lower 143Nd 144Nd than basalts and basaltic andesites erupted farther south in the SVZ, which suggests involvement of components derived from the continental crust. In the AVZ, the most primitive sample, high-Mg andesite from the southernmost volcanic center in the Andes (54??S) has Sr and Nd isotopic compositions and K Rb and Ba La similar to MORB. The high La Yb of this sample suggests formation by small degrees of partial melting of subducted MORB with garnet as a residue. Samples from centers farther north in the AVZ show a regionally regular northward increase in SiO2, K2O, Rb, Ba, Ba La, and 87Sr 86Sr and decrease in MgO, Sr, K Rb, Rb Cs, and 143Nd 144Nd, suggesting increasingly greater degrees of fractional crystallization and associated intra

  6. Stratigraphy, distribution, and evidence for mafic triggering of the ca. 8.5 ka Driftwood Pumice eruption, Makushin Volcano, Alaska, U.S.A (United States)

    Lerner, Allan H.; Crowley, Peter D.; Nicolaysen, Kirsten P.; Hazlett, Richard W.


    Makushin Volcano on Unalaska Island, Alaska, threatens the Aleutian's largest population centers (Unalaska and Dutch Harbor), yet its eruption mechanisms are poorly known. This study presents a detailed stratigraphic and geochemical investigation of Makushin's most recent highly explosive event: the ca. 8.5 ka Driftwood Pumice eruption. The Driftwood Pumice has measured thicknesses of over 2.5 m, and isopach reconstructions estimate a total deposit volume of 0.3 to 1.6 km3, indicating a VEI 4-5 eruption. Proximal deposits consist of normally-graded, tan, dacitic to andesitic pumice, capped by a thinner dark layer of lower-silica andesitic scoria mixed with abundant lithic fragments. This stratigraphy is interpreted as an initial vent-clearing eruption that strengthened into a climactic ejection of pumice and ash and concluded with vent destabilization and the eruption of somewhat more mafic, gas-poor magma. Within the pumice, geochemical trends, disequilibrium mineral populations, and mineral zonation patterns show evidence of magma mixing between a bulk silicic magma and a mafic melt. Euhedral high-Ca plagioclase (An68-91) and high-Mg olivine (Fo69-77) phenocrysts are in disequilibrium with trachydacitic glass (65-68 wt% SiO2) and more abundant sodic plagioclase (An34-55), indicating the former originally crystallized in a more mafic melt. Tephra whole rock compositions become more mafic upwards through the deposit, ranging from a basal low-silica dacite to an andesite (total range: 60.8-63.3 wt% SiO2). Collectively, these compositional variations suggest magma mixing in the Driftwood Pumice (DWP) magma reservoir, with a systematic increase in the amount of a mafic component (up to 25%) upward through the deposit. Olivine-liquid and liquid-only thermometry indicate the mafic magma intruded at temperatures 140-200 °C hotter than the silicic magma. Diffusion rates calculated for 5-7 μm thick, lower-Mg rims on the olivine phenocrysts (Fo60 rim vs Fo76 bulk) suggest

  7. Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea (United States)

    Huang, S.; Conte, M. H.


    Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight

  8. Phase equilibria modelling and zircon dating for Precambrian metapelites from Xinghuadukou Group in Lvlin Forest of Erguna Massif, NE China (United States)

    Xu, Jiulei; Zheng, Changqing; Tajcmanova, Lucie; Zhong, Xin; Xu, Xuechun; Han, Xiaomeng; Wang, Zhaoyuan


    Xinghuadukou Group, the basement metamorphic complex of Erguna Massif in NE China, is considered to be Mesoproterozoic with Sm-Nd age of 1157±32 Ma. However, the new zircon data from these metamorphic supracrustal rocks in Lvlin Forest show that they formed in Neoproterozoic with the age of 800 Ma. Old zircon age with 2.5 Ga, 2.0 Ga and 1.8 Ga, indicate that the Erguna Massif had an affinity to both Columbia and Rodinia continents. Furthermore, we also present 500 Ma metamorphic age in micashists and 500 Ma age of adjacent granitoids that might have thermally influenced its surrounding. No detailed studies have been undertaken on the metamorphic evolution of the Xinghuadukou Complex. The typical paragneissic mineral assemblage of garnet sillimanite mica schist is Grt+Sil+Bt+Mus+Qtz±Kfs. (Zhou et al., 2011) proposed that the Xinghuadukou Complex appears to have undergone similar granulite facies metamorphic conditions based on the similarity of mineral assemblages to the Mashan Complex in the Jiamusi Massif, NE China. However, the new phase equilibria modelling result shows that these rocks are high amphibolite facies product with 650℃. We can easily find K-feldspar formed by partial melting due to the consuming of muscovite. Also the remaining muscovite is directly connected with a fluid channel in thin sections which indicate that the remaining muscovite formed from retrograde with the existence of fluid. The zoned garnet has low MgO and high CaO content in rims and high MgO and low CaO content in core. It seems that this garnet has high pressure and low temperature (HP-LT) in rims and low pressure and high temperature (LP-HT) in core which would point to an anti-clockwise metamorphic evolution. Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Liu, F.L., Qiao, D.W., Ren, S.M. and Liu, J.H., 2011b. A> 1300km late Pan-African metamorphic belt in NE China: new evidence from the Xing'an block and its tectonic implications. Tectonophysics, 509(3): 280-292.

  9. Controls on the organization of the plumbing system of subduction volcanoes : the roles of volatiles and edifice load (United States)

    Roman, A. M.; Bergal-Kuvikas, O.; Shapiro, N.; Taisne, B.; Gordeev, E.; Jaupart, C. P.


    Geochemical data indicate that subduction zone magmas are extracted from the mantle and rises through the crust, with a wide range of volatile contents. The main controls on magma ascent, storage and location of eruptive vents are not well understood. Flow through a volcanic system depends on magma density and viscosity, which depend in turn on chemical composition and volatile content. Thus, one expects that changes of eruption sites in space and time are related to geochemical variations. To test this hypothesis, we have focussed on Klyuchevskoy volcano, Kamchatka, a very active island arc volcano which erupts lavas with a wide range of volatile contents (e.g. 3-7 H20 wt. %). The most primitive high-Mg magmas were able to erupt and build a sizable edifice in an initial phase of activity. As the edifice grew, eruption of these magmas was suppressed in the focal area and occurred in distal parts of the volcano whilst summit eruptions involved differentiated high alumina basalts. Here we propose a new model for the development of the Klyuchevskoy plumbing system which combines edifice load, far field tectonic stress and the presence of volatiles. We calculate dyke trajectories and overpressures by taking into account the exsolution of volatiles in the magma. The most striking result is the progressive deflection of dykes towards the axial area as the edifice size increases. In this model, the critical parameters are the depth of volatile exsolution and the edifice size. Volatile-rich magmas degas at depth and experience a large increase in buoyancy which may overcome edifice-induced stresses at shallow levels. However, as the volcano grows, the stress barrier migrates downwards and may eventually act to stall dykes before gas exsolution takes place. Such conditions are likely to induce the formation of a shallow central reseroir, in which further magma focussing, mixing and contamination may take place. This model accounts for the co-evolution of magma composition

  10. Baseline Assessment of Net Calcium Carbonate Accretion Rates on U.S. Pacific Reefs.

    Directory of Open Access Journals (Sweden)

    Bernardo Vargas-Ángel

    Full Text Available This paper presents a comprehensive quantitative baseline assessment of in situ net calcium carbonate accretion rates (g CaCO3 cm(-2 yr(-1 of early successional recruitment communities on Calcification Accretion Unit (CAU plates deployed on coral reefs at 78 discrete sites, across 11 islands in the central and south Pacific Oceans. Accretion rates varied substantially within and between islands, reef zones, levels of wave exposure, and island geomorphology. For forereef sites, mean accretion rates were the highest at Rose Atoll, Jarvis, and Swains Islands, and the lowest at Johnston Atoll and Tutuila. A comparison between reef zones showed higher accretion rates on forereefs compared to lagoon sites; mean accretion rates were also higher on windward than leeward sites but only for a subset of islands. High levels of spatial variability in net carbonate accretion rates reported herein draw attention to the heterogeneity of the community assemblages. Percent cover of key early successional taxa on CAU plates did not reflect that of the mature communities present on surrounding benthos, possibly due to the short deployment period (2 years of the experimental units. Yet, net CaCO3 accretion rates were positively correlated with crustose coralline algae (CCA percent cover on the surrounding benthos and on the CAU plates, which on average represented >70% of the accreted material. For foreeefs and lagoon sites combined CaCO3 accretion rates were statistically correlated with total alkalinity and Chlorophyll-a; a GAM analysis indicated that SiOH and Halimeda were the best predictor variables of accretion rates on lagoon sites, and total alkalinity and Chlorophyll-a for forereef sites, demonstrating the utility of CAUs as a tool to monitor changes in reef accretion rates as they relate to ocean acidification. This study underscores the pivotal role CCA play as a key benthic component and supporting actively calcifying reefs; high Mg-calcite exoskeletons

  11. Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City (United States)

    Agustín-Flores, Javier; Siebe, Claus; Guilbaud, Marie-Noëlle


    This study focuses on the geology and geochemistry of three closely-spaced monogenetic volcanoes that are located in the NE sector of the Sierra Chichinautzin Volcanic Field near México City. Pelagatos (3020 m.a.s.l.) is a small scoria cone (0.0017 km 3) with lava flows (0.036 km 3) that covered an area of 4.9 km 2. Cerro del Agua scoria cone (3480 m.a.s.l., 0.028 km 3) produced several lava flows (0.24 km 3) covering an area of 17.6 km 2. Dos Cerros is a lava shield which covers an area of 80.3 km 2 and is crowned by two scoria cones: Tezpomayo (3080 m.a.s.l., 0.022 km 3) and La Ninfa (3000 m.a.s.l., 0.032 km 3). The eruptions of Cerro del Agua and Pelagatos occurred between 2500 and 14,000 yr BP. The Dos Cerros eruption took place close to 14,000 yr BP as constrained by radiocarbon dating. Rocks from these three volcanoes are olivine-hypersthene normative basaltic andesites and andesites with porphyritic, aphanitic, and glomeroporphyritic textures. Their mineral assemblages include olivine, clinopyroxene, and orthopyroxene phenocrysts (≤ 10 vol.%) embedded in a trachytic groundmass which consists mainly of plagioclase microlites and glass. Pelagatos rocks also present quartz xenocrysts. Due to their high Cr and Ni contents, and high Mg#s, Pelagatos rocks are considered to be derived from primitive magmas, hence the importance of this volcano for understanding petrogenetic processes in this region. Major and trace element abundances and petrography of products from these volcanoes indicate a certain degree of crystal fractionation during ascent to the surface. However, the magmas that formed the volcanoes evolved independently from each other and are not cogenetically related. REE, HFSE, LILE, and isotopic (Sr, Nd, and Pb) compositions point towards a heterogeneous mantle source that has been metasomatized by aqueous/melt phases from the subducted Cocos slab. There is no clear evidence of important crustal contributions in the compositions of Pelagatos and

  12. Mechanosensitive enteric neurons in the guinea pig gastric corpus

    Directory of Open Access Journals (Sweden)

    Gemma eMazzuoli-Weber


    Full Text Available For long it was believed that a particular population of enteric neurons, referred to as intrinsic primary afferent neuron (IPANs, encodes mechanical stimulation. We recently proposed a new concept suggesting that there are in addition mechanosensitive enteric neurons (MEN that are multifunctional. Based on firing pattern MEN behaved as rapidly, slowly or ultra-slowly adapting RAMEN, SAMEN or USAMEN, respectively. We aimed to validate this concept in the myenteric plexus of the gastric corpus, a region where IPANs were not identified and existence of enteric sensory neurons was even questioned. The gastric corpus is characterized by a particularly dense extrinsic sensory innervation. Neuronal activity was recorded with voltage sensitive dye imaging after deformation of ganglia by compression (intraganglionic volume injection or von Fry hair or tension (ganglionic stretch. We demonstrated that 27% of the gastric neurons were MEN and responded to intraganglionic volume injection. Of these 73% were RAMEN, 25% SAMEN and 2% USAMEN with a firing frequency of 1.7 (1.1/ 2.2 Hz, 5.1 (2.2/7.7 Hz and of 5.4 (5.0/15.5 Hz, respectively. The responses were reproducible and stronger with increased stimulus strength. Even after adaptation another deformation evoked spike discharge again suggesting a resetting mode of the mechanoreceptors. All MEN received fast synaptic input. 55% of all MEN were cholinergic and 45% nitrergic. Responses in some MEN significantly decreased after perfusion of TTX, low Ca++/high Mg++ Krebs solution, capsaicin induced nerve defunctionalization and capsazepine indicating the involvement of TRPV1 expressing extrinsic mechanosensitive nerves. Half of gastric MEN responded to intraganglionic volume injection as well as to ganglionic stretch and 23% responded to stretch only. Tension-sensitive MEN were to a large proportion USAMEN (44%. In summary, we demonstrated for the first time compression and tension-sensitive MEN in the stomach

  13. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems (United States)

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.


    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  14. Characterization of dietary Ni uptake in the rainbow trout, Oncorhynchus mykiss. (United States)

    Leonard, Erin M; Nadella, Sunita R; Bucking, Carol; Wood, Chris M


    We characterized dietary Ni uptake in the gastrointestinal tract of rainbow trout using both in vivo and in vitro techniques. Adult trout were fed a meal (3% of body mass) of uncontaminated commercial trout chow, labeled with an inert marker (ballotini beads). In vivo dietary Ni concentrations in the supernatant (fluid phase) of the gut contents averaged from 2 micromoll(-1) to 24 micromoll(-1), and net overall absorption efficiency of dietary Ni was approximately 50% from the single meal, similar to that for the essential metal Cu, adding to the growing evidence of Ni essentiality. The stomach and mid-intestine emerged as important sites of Ni uptake in vivo, accounting for 78.5% and 18.9% of net absorption respectively, while the anterior intestine was a site of net secretion. Most of the stomach uptake occurred in the first 4h. In vitro gut sac studies using radiolabeled Ni (at 30 micromoll(-1)) demonstrated that unidirectional uptake occurred in all segments, with area-weighted rates being highest in the anterior intestine. Differences between in vivo and in vitro results likely reflect the favourable uptake conditions in the stomach, and biliary secretion of Ni in the anterior intestine in vivo. The concentration-dependent kinetics of unidirectional Ni uptake in vitro were biphasic in nature, with a saturable Michaelis-Menten relationship observed at 1-30 micromoll(-1) Ni (K(m) - 11 micromoll(-1), J(max) - 53 pmolcm(-2)h(-1) in the stomach and K(m) - 42 micromoll(-1), J(max) - 215 pmolcm(-2)h(-1) in the mid-intestine), suggesting mediation by a channel or carrier process. A linear uptake relationship was seen at higher concentrations, indicative of simple diffusion. Ni uptake (at 30 micromoll(-1)) into the blood compartment was significantly reduced in the stomach by high Mg (50 mmoll(-1)), and in the mid-intestine by both Mg (50 mmoll(-1)) and Ca (50 mmoll(-1)). In both regions, kinetic analysis demonstrated reductions in J(max) with unchanged K

  15. Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Abed, Chayma; Bouzidi, Chaker [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Elhouichet, Habib, E-mail: [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis 2092 (Tunisia); Gelloz, Bernard [Graduate School of Engineering, Nagoya University, 2-24-16 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Ferid, Mokhtar [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, BP 95, Hammam-Lif 2050 (Tunisia)


    Highlights: • ZnO nancrystals doped with Mg were prepared from sol–gel method. • Structural and optical properties of ZnO:Mg nanocrystals were investigated. • Good crystalline quality of ZnO nanocrystals was reported after Mg doping. • Good photocatalytic activity of Mg doped ZnO nanocrystals was demonstrated under sun light illumination. - Abstract: Undoped and Mg doped ZnO nanocrystals (NCs) ZnO:x%Mg (x = 1, 2, 3, and 5) were synthesized using sol–gel method. The structural and optical properties were investigated by X-ray diffraction (XRD), Raman spectroscopy, diffuse reflectivity, and photoluminescence (PL). XRD analysis demonstrates that all prepared samples present pure hexagonal wurtzite structure without any Mg related phases. The NCs size varies from 26.82 nm to 42.96 nm with Mg concentrations; it presents an optimal value for 2% of Mg. The Raman spectra are dominated by the E{sub 2high} mode. For highly Mg doping (5%), the occurrence of silent B{sub 1(low)} mode suggested that the Mg ions do substitute at Zn sites in the ZnO lattice The band gap energy was estimated from both Tauc and Urbach methods and found to be 3.39 eV for ZnO:2%Mg. The PL spectra exhibit two emission bands in the UV and visible range. Their evolution with Mg doping reveals the reduction of defect density in ZnO at low Mg doping by filling Zn vacancies. In addition, it was found that further Mg doping, above 2%, improves the photocatalytic activity of ZnO NCs for photodegradation of Rhodamine B (RhB) under sunlight irradiation. The efficient electron–hole separation is the main factor responsible for the enhancement of photocatalytic performance of Mg doped ZnO NCs. Through this work, we show that by varying the Mg contents in ZnO, this material can be a potential candidate for both optoelectronic and photocatalytic applications.

  16. Domain matching epitaxy of cubic In{sub 2}O{sub 3} on r-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Patrick; Trampert, Achim; Ramsteiner, Manfred; Bierwagen, Oliver [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117, Berlin (Germany)


    Undoped, Sn-doped, and Mg-doped In{sub 2}O{sub 3} layers were grown on rhombohedral r-plane sapphire (α-Al{sub 2}O{sub 3} (10.2)) by plasma-assisted molecular beam epitaxy. X-ray diffraction and Raman scattering experiments demonstrated the formation of phase-pure, cubic (110)-oriented In{sub 2}O{sub 3} for Sn- and Mg-concentrations up to 2 x 10{sup 20} and 6 x 10{sup 20} cm{sup -3}, respectively. Scanning electron microscopy images showed facetted domains without any surface-parallel (110) facets. High Mg- or Sn-doping influenced surface morphology and the facet formation. X-ray diffraction Φ-scans indicated the formation of two rotational domains separated by an angle Φ = 86.6 due to the substrate mirror-symmetry around the in-plane-projected Al{sub 2}O{sub 3} c-axis. The in-plane epitaxial relationships to the substrate were determined for both domains. For the first domain it is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 3 anti 4]. For the second domain the inplane epitaxial relation is Al{sub 2}O{sub 3}[01.0] parallel In{sub 2}O{sub 3}[3 anti 34]. A low-mismatch coincidence lattice of indium atoms from the film and oxygen atoms from the substrate rationalizes this epitaxial relation by domain-matched epitaxy. Cross-sectional transmission-electron microscopy showed a columnar domain-structure, indicating the vertical growth of the rotational domains after their nucleation. Coincidence structure of In{sub 2}O{sub 3} (110) (In atoms in red) grown on Al{sub 2}O{sub 3} (10.2) (O atoms in blue) showing two rotational domians. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Geochemistry of Early Paleozoic boninites from the Central Qilian block, Northwest China: Constraints on petrogenesis and back-arc basin development (United States)

    Gao, Zhong; Zhang, Hong-Fei; Yang, He; Luo, Bi-Ji; Guo, Liang; Xu, Wang-Chun; Pan, Fa-Bin


    Early Paleozoic boninites occur in the Central Qilian orogenic belt, Northwest China. Their petrogenesis provides insights into lithosphere process and tectonic evolution of the Qilian block. In this paper, we carry out a study of geochronological, geochemical and Sr-Nd isotopic compositions for the Early Paleozoic boninites in the Lajishan area of the Central Qilian block. The Lajishan boninites (∼483 Ma) have high Al2O3/TiO2 (36.7-64.7) and CaO/TiO2 (31.1-49.6) ratios, and high MgO (7.86-10.47 wt%), Cr (439-599 ppm) and Ni (104-130 ppm) contents, indicating that the boninites result from a refractory mantle source. They are depleted in high field-strength elements (HFSE) and enriched in large ion lithophile elements (LILE), coupled with slightly high initial 87Sr/86Sr values of 0.7059-0.7074 and low εNd(t) values of -1.05 to +2.66, indicating that the mantle source was metasomatized by subducted slab-derived components. We found that an assemblage of low-Ca group and high-Ca group boninites occurred in the Lajishan belt. The high-Ca group boninites were derived from relatively fertile mantle with slightly higher melting degree, whereas the low-Ca group boninites were generated by partial melting of more refractory mantle wedge peridotites with slightly lower melting degree. The assemblage of low-Ca group and high-Ca group boninites reveals that the low-Ca group boninites were generated by the further melting of the more refractory mantle source after the segregation of the high-Ca group boninitic magmas in response to the back-arc basin opening. In the light of reported boninites worldwide, a diagram of Zr/Y vs. CaO/Al2O3 is used to identify boninites in fore-arc and back-arc regions. We suggest that the Lajishan boninites represent the products of back-arc basin development in response to the northward subduction of the Qaidam-West Qinling ocean slab.

  18. The recycling of chromitites in ophiolites from southwestern North America (United States)

    González-Jiménez, José M.; Camprubí, Antoni; Colás, Vanessa; Griffin, William L.; Proenza, Joaquín A.; O'Reilly, Suzanne Y.; Centeno-García, Elena; García-Casco, Antonio; Belousova, Elena; Talavera, Cristina; Farré-de-Pablo, Júlia; Satsukawa, Takako


    Podiform chromitites occur in mantle peridotites of the Late Triassic Puerto Nuevo Ophiolite, Baja California Sur State, Mexico. These are high-Cr chromitites [Cr# (Cr/Cr + Al atomic ratio = 0.61-0.69)] that contain a range of minor- and trace-elements and show whole-rock enrichment in IPGE (Os, Ir, Ru). That are similar to those of high-Cr ophiolitic chromitites crystallised from melts similar to high-Mg island-arc tholeiites (IAT) and boninites in supra-subduction-zone mantle wedges. Crystallisation of these chromitites from S-undersaturated melts is consistent with the presence of abundant inclusions of platinum-group minerals (PGM) such as laurite (RuS2)-erlichmanite (OsS2), osmium and irarsite (IrAsS) in chromite, that yield TMA ≈ TRD model ages peaking at 325 Ma. Thirty-three xenocrystic zircons recovered from mineral concentrates of these chromitites yield ages (2263 ± 44 Ma to 278 ± 4 Ma) and Hf-O compositions [ɛHf(t) = - 18.7 to + 9.1 and 18O values the mantle via subduction. They were captured by the parental melts of the chromitites when the latter formed in a supra-subduction zone mantle wedge polluted with crustal material. In addition, the Puerto Nuevo chromites have clinopyroxene lamellae with preferred crystallographic orientation, which we interpret as evidence that chromitites have experienced high-temperature and ultra high-pressure conditions (the formation of chromitite in the supra-subduction zone mantle wedge underlying the Vizcaino intra-oceanic arc ca. 250 Ma ago, deep-mantle recycling, and subsequent diapiric exhumation in the intra-oceanic basin (the San Hipólito marginal sea) generated during an extensional stage of the Vizcaino intra-oceanic arc ca. 221 Ma ago. The TRD ages at 325 Ma record a partial melting event in the mantle prior to the construction of the Vizcaino intra-oceanic arc, which is probably related to the Permian continental subduction, dated at 311 Ma.

  19. The role of water in generating Fe-depletion and the calc-alkaline trend (United States)

    Zimmer, M. M.; Plank, T.


    Describing a magmatic suite as calc-alkaline (CA) or tholeiitic (TH) is a first order characterization, but existing classification schemes (AFM ternary plots and FeO*/MgO vs. SiO2) may convolute magmatic processes and can result in contradictory classification. The salient feature of TH vs. CA evolution is the extent of Fe enrichment or depletion in the magma. A plot of FeO* vs. MgO provides the most straightforward way to quantify Fe enrichment and to develop models for its origin. We present a new quantitative classification utilizing the FeO*-MgO plot, the tholeiitic index (THI) = Fe3-5/Fe8 (Fe3-5=average FeO* at 3-5 wt% MgO; Fe8=FeO* at 8 wt% MgO). THI of 1.2 indicates 20% FeO* enrichment from a magma's starting composition at Fe8, while THI of 0.8 indicates 20% depletion in FeO*. A magmatic suite is CA if THI is TH if THI is >1. Arcs range from 0.6 to 1.1, back arc basins from 1.1-1.3, and MORBs are \\ge1.6. This classification allows comparison of magmatic evolution on a global basis, regardless of starting composition, and is useful for quantitative comparison to liquid line of descent models. Hypotheses for generating CA magmas include high water contents, high pressure of crystallization, high oxygen fugacity, and high Mg# andesitic starting compositions. In order to test the control of H2O, we compare the THI to average magmatic water contents from undegassed melt inclusions and glasses (S>1000 ppm or CO2>50 ppm) from twenty-eight arc volcanoes and back arc basins, including new water contents from seven Aleutian volcanoes. The resulting negative correlation (R2=0.8) between water concentration and THI (with end-members at 0.8 wt% H2O, THI =1.3 and 6.1 wt% H2O, THI = 0.6) suggests water plays a fundamental role in generating the CA fractionation trend. MORB data plot off the trend at a higher THI, possibly related to lower oxygen fugacity during melting and/or crystallization. Models using the pMelts program are consistent with experimentally- and

  20. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development (United States)

    Frenkel, M. M.; LaVigne, M.; Miller, H. R.; Hill, T. M.; McNichol, A.; Gaylord, M. Lardie


    Bamboo corals, long-lived cold water gorgonin octocorals, offer unique paleoceanographic archives of the intermediate ocean. These Isididae corals are characterized by alternating gorgonin nodes and high Mg-calcite internodes, which synchronously extend radially. Bamboo coral calcite internodes have been utilized to obtain geochemical proxy data, however, growth rate uncertainty has made it difficult to construct precise chronologies for these corals. Previous studies have relied upon a single tie point from records of the anthropogenic Δ14C bomb spike preserved in the gorgonin nodes of live-collected corals to calculate a mean radial extension rate for the outer 50 years of skeletal growth. Bamboo coral chronologies are typically constructed by applying this mean extension rate to the entire coral record, assuming constant radial extension with coral age. In this study, we aim to test this underlying assumption by analyzing the organic nodes of six California margin bamboo corals at high enough resolution (bomb spike, including two tie points at 1957 and 1970, plus the coral collection date (2007.5) for four samples. Radial extension rates between tie points ranged from 10 to 204 μm/year, with a decrease in growth rate evident between the 1957-1970 and 1970-2007.5 periods for all four corals. A negative correlation between growth rate and coral radius (r =-0.7; p=0.04) was determined for multiple bamboo coral taxa and individuals from the California margin, demonstrating a decline in radial extension rate with specimen age and size. To provide a mechanistic basis for these observations, a simple mathematical model was developed based on the assumption of a constant increase in circular cross sectional area with time to quantify this decline in radial extension rate with coral size between chronological tie points. Applying the area-based model to our Δ14C bomb spike time series from individual corals improves chronology accuracy for all live-collected corals

  1. A comparison of amorphous calcium carbonate crystallization in aqueous solutions of MgCl2 and MgSO4: implications for paleo-ocean chemistry (United States)

    Han, Mei; Zhao, Yanyang; Zhao, Hui; Han, Zuozhen; Yan, Huaxiao; Sun, Bin; Meng, Ruirui; Zhuang, Dingxiang; Li, Dan; Liu, Binwei


    Based on the terminology of "aragonite seas" and "calcite seas", whether different Mg sources could affect the mineralogy of carbonate sediments at the same Mg/Ca ratio was explored, which was expected to provide a qualitative assessment of the chemistry of the paleo-ocean. In this work, amorphous calcium carbonate (ACC) was prepared by direct precipitation in anhydrous ethanol and used as a precursor to study crystallization processes in MgSO4 and MgCl2 solutions having different concentrations at 60 °C (reaction times 240 and 2880 min). Based on the morphology of the aragonite crystals, as well as mineral saturation indices and kinetic analysis of geochemical processes, it was found that these crystals formed with a spherulitic texture in 4 steps. First, ACC crystallized into columnar Mg calcite by nearly oriented attachment. Second, the Mg calcite changed from columnar shapes into smooth dumbbell forms. Third, the Mg calcite transformed into rough dumbbell or cauliflower-shaped aragonite forms by local dissolution and precipitation. Finally, the aragonite transformed further into spherulitic radial and irregular aggregate forms. The increase in Ca2+ in the MgSO4 solutions compared with the MgCl2 solutions indicates the fast dissolution and slow precipitation of ACC in the former solutions. The phase transition was more complete in the 0.005 M MgCl2 solution, whereas Mg calcite crystallized from the 0.005 M MgSO4 solution, indicating that Mg calcite could be formed more easily in an MgSO4 solution. Based on these findings, aragonite and Mg calcite relative to ACC could be used to provide a qualitative assessment of the chemistry of the paleo-ocean. Therefore, calcite seas relative to high-Mg calcite could reflect a low concentration MgSO4 paleo-ocean, while aragonite seas could be related to an MgCl2 or high concentration of MgSO4 paleo-ocean.

  2. Sedimentology of polar carbonate systems (United States)

    Frank, T. D.; James, N. P.


    The key attributes, processes, and products associated with carbonate accumulation and diagenesis at tropical and temperate latitudes are well known. Comparatively little work has concentrated on carbonate deposition at the coldest end of the depositional spectrum, the polar shelves. Such deposits are not abundant, but they have the potential to provide unique insights into paleoceanographic and paleoclimatic conditions in regions of the planet that are arguably the most sensitive to global change. We examined skeletal assemblages, facies, stratigraphy, petrography, geochemistry, and diagenesis of Quaternary deposits from the Ross Sea, Antarctica and Permian counterparts from Gondwana (now eastern Australia). These modern and ancient polar carbonate factories possess several unique characteristics that set them apart from better-known systems of the temperate and tropical latitudes. All production is biogenic and there are no significant calcareous phototrophs. Carbonate communities are not capable of building rigid frameworks, and thus their deposits are prone to winnowing and reworking by waves and bottom currents. The seawater, although frigid, is isothermal, and thus deep-water benthic communities can exist near the surface. Carbonate saturation, which is at or below solubility for both aragonite and high-Mg calcite, plays a key role in determining the dominant mineralogy of benthos as well as the preservation potential of skeletal debris. As many taxa precipitate low-Mg calcite in isotopic equilibrium, deposits have potential to provide geochemical proxy information for use in paleoceanographic and paleoclimatic reconstructions. More than any other type of carbonate system, the slow biogenic carbonate production and accumulation in cold waters is achieved firstly by arresting siliciclastic sedimentation and secondly by increasing nutrient availability. Thus, carbonate deposition may occur during the coldest of times, such as during glacial advance when

  3. Cyclic, Early Diagenetic Dolomite Formation in Alkaline Lake Van (United States)

    McCormack, J.; Bontognali, T. R. R.; Immenhauser, A.; Kwiecien, O.


    Modern dolomite-forming environments are commonly constrained to evaporitic marine or marginal marine settings such as lagoons and sabkhas. Beside microbial mediation, high temperatures and Mg2+ concentrations in solution are factors considered important in aiding dolomite formation. Accordingly, previous studies associate the presence of dolomite within deep sediments of alkaline Lake Van (Turkey) with periods of enhanced evaporation, low lake levels and high Mg/Ca ratio. We systematically studied dolomite within the sedimentary record of Lake Van by means of XRD, SEM and stable isotope (δ18O and δ13C) mass spectrometry. First, we considered the origin of the dolomite; next, we focused on the wider implication of its presence. SEM imaging documents large dolomite crystals interwoven with clay minerals and individual crystals with different crystallographic orientations grown together, indicating space-limited growth within the sediment. According to recent climatic reconstructions for the same sequence (ICDP PALEOVAN project), the water depth of the coring site - today at 350 m - unlikely fell below 200 m. Consequently, dolomite formed below a thick water column at constantly low temperatures (supported by heavy δ18O signature). Within this environment, variations in Mg/Ca ratio, pH and alkalinity, which are constantly high, have no effect on the episodic nature of dolomite precipitation. These observations call for a re-evaluation of the palaeoenvironments often invoked to interpret intervals rich in dolomite within ancient sedimentary sequences (e.g., periods of enhanced aridity and evaporation). Further, and in contrast to previous interpretations, our dolomite concentration data backed up by ICDP PALEOVAN reconstructions suggest that intervals rich in dolomite coincide with periods of high lake level and increased humidity. High dolomite concentrations (20 - 85 % relative carbonate content) occur cyclically within the last glacial period and coincide with

  4. Effects of Be, Sr, Fe and Mg interactions on the microstructure and mechanical properties of aluminum based aeronautical alloys (United States)

    Ibrahim, Mohamed Fawzy

    The present work was carried out on a series of heat-treatable aluminum-based aeronautical alloys containing various amounts of magnesium (Mg), iron (Fe), strontium (Sr) and beryllium (Be). Tensile test bars (dendrite arm spacing ~ 24mum) were solutionized for either 5 or 12 hours at 540°C, followed by quenching in warm water (60°C). Subsequently, these quenched samples were aged at 160°C for times up to 12 hours. Microstructural assessment was performed. All heat-treated samples were pulled to fracture at room temperature using a servo-hydraulic tensile testing machine. The results show that Be causes partial modification of the eutectic silicon (Si) particles similar to that reported for Mg addition. Addition of 0.8 wt.% Mg reduced the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, without Sr, a peak corresponding to the formation of a Be-Fe phase (Al8Fe2BeSi) was detected at 611°C. The Be-Fe phase precipitates in a script-like morphology. A new quinary eutectic-like reaction was observed to take place near the end of solidification of high Mg, high Fe, Be-containing alloys. This new reaction is composed mainly of fine particles of Si, Mg2Si, pi-Al 8Mg3FeSi6 and (Be-Fe) phases. The volume fraction of this reaction decreased with the addition of Sr. The addition of Be has a noticeable effect on decreasing the beta-phase length, or volume fraction, this effect may be limited by adding Sr. Beryllium addition also results in the precipitation of the beta-phase in a nodular form, which reduces the harmful effects of these intermetallics on the alloy mechanical properties. Increasing both Mg and Fe levels led to an increase in the amount of the pi-phase; increasing the iron content led to an increase in the volume fraction of the partially soluble beta- and pi-phases, while Mg2Si particles were completely dissolved. The beta-phase platelets were observed to undergo changes in their morphology due to the

  5. Prograde and retrograde metamorphic processes in high-pressure subduction zone serpentinites from East Thessaly, Greece (United States)

    Koutsovitis, Petros


    highly comparable with the P-T estimates from the East Thessaly metabasic rocks (˜350 ° C; P≈10-11 kbars)[5], suggesting that the entire metaophiolitic formation underwent blueschist facies metamorphism, comparable with high-pressure metaophiolitic formations appearing in Evia, Attica and the Cyclades. The East Thessaly serpentinites exhibit significantly high PM-normalized Pb, U enrichments and rather high Cs, La, As and Sb concentrations, which are comparable with subduction-related serpentinites, formed after mantle wedge peridotite hydration, and that have interacted with sedimentary derived fluids [2,6,7,8]. These serpentinites were also partly affected by de-serpentinization retrograde metamorphism (estimated at Phistory can also be indirectly identified through the study of their rodingite intrusions and more specifically through the formation of late-stage vesuvianite-rich dykes at low-moderate temperature conditions (T=250-300 oC) and subsequent derodingitization processes, forming metarodingites. The latter include abundant high-Mg replacive chlorite formed by continuous serpentinization which provided Mg2+ to the infiltrating fluids, causing the partial breakdown of Ca-bearing minerals. References. [1] Pe-Piper & Piper 2002: Borntraeger, Stuttgart, 1-645; [2] Lafay et al 2013: Chem Geol 343, 38-54; [3] Schwartz et al 2013: Lithos 178, 197-210; [4] Guillot, et al 2015: Tectonophysics 646, 1-19; [5] Perraki et al 2002: Geologica Carpathica 53, 164-165; [6] Deschamps, et al 2013: Lithos 178, 96-127; [7] Hattori & Guillot, 2007: G-Cubed 8 (9); [8] Barnes et al 2014: Chemi Geol 389, 29-47; [9] Melfos et al 2009: Geoph. Res. Abst, 11.

  6. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif


    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  7. Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit, northeastern Hunan Province: Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt, South China (United States)

    Yuan, Shunda; Mao, Jingwen; Zhao, Panlao; Yuan, Yabin


    The recently recognized Qinhang metallogenic belt (QHMB) is an economically important intracontinental Mesozoic porphyry-skarn Cu-polymetallic metallogenic belt in South China. However, the origin of the ore-bearing magma and the major factors controlling the different metal assemblages in the QHMB are still unclear. The Qibaoshan deposit is a large Cu-Au-Pb-Zn-Ag-Fe deposit located at the juncture between the northern and central parts of the QHMB. In this study, new zircon U-Pb ages, Hf-O isotopic data, molybdenite Re-Os ages, and whole-rock geochemical data are combined to constrain the timing of the mineralization and the origin and petrogenesis of the ore-bearing porphyry in the Qibaoshan deposit. The ages obtained from both zircon U-Pb and molybdenite Re-Os dating fall in the Late Jurassic (between 152.7 and 148.3 Ma), revealing that this deposit is significantly younger than previously estimated (227-184 Ma). The Qibaoshan ore-bearing quartz porphyry shows variable negative zircon εHf(t) values (-14.8 to -5.5), high δ18O values (8.4 to 10.8‰), and high Mg# values (69.1 to 73.0), indicating that it formed via the partial melting of ancient crust triggered by the injection of mantle-derived magma. Zircon Hf-O isotopic modeling of the mixing of two extreme endmembers indicates that the magmatic source comprised 70-80% reworked ancient crustal components and 20-30% depleted mantle components. Based on comparisons with other ore-bearing porphyries in the QHMB, a magmatic source dominated by crust-derived material and relatively low oxygen fugacities (ΔFMQ -1.8 to ΔFMQ +0.8) was responsible for the high (Pb + Zn)/Cu ratio in the Qibaoshan deposit, and the Pb, Zn and Ag were mainly derived from the reworked ancient crust. Although four analyses of inherited Neoproterozoic zircons ( 800 Ma) have variable positive εHf(t) values (0.72 to 11.21), indicating that Neoproterozoic juvenile crust was involved in the formation of the Qibaoshan ore-bearing quartz

  8. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield, Saudi Arabia (United States)

    Habtoor, Abdelmonem; Ahmed, Ahmed Hassan; Harbi, Hesham


    The Makkah quadrangle is a part of the Jeddah terrane in the Precambrian basement, Western Arabian Shield of Saudi Arabia. Gabal Taftafan mafic-ultramafic complex lies within the central part of the Makkah quadrangle. The Taftafan mafic-ultramafic complex is a well-differentiated rock association which comprises of dunite core, hornblende- and plagioclase-bearing peridotites, troctolite, clinopyroxenite and marginal gabbro, in a distinctive zonal structure. The bulk-rock geochemistry of the Taftafan mafic-ultramafic rocks is characterized by a tholeiitic/sub-alkaline affinity with high Mg in the ultramafic core (0.84) and is systematically decreased towards the marginal gabbro (0.60). The patterns of trace elements show enrichment in the fluid-mobile elements (Sr, Ba) and a pronounced negative Nb anomaly which reflect a hydrous parental magma generated in a subduction tectonic setting. The mafic-ultramafic rocks of the Taftafan complex have low total rare earth elements (REE) displaying sub-parallel patterns leading to the assumption that these rocks are comagmatic and are formed by fractional crystallization from a common magma type. The platinum-group elements (PGE) content of all rock types in the Taftafan complex is very low, with ∑ PPGE > ∑ IPGE; displaying slightly positive slopes of the PGE distribution patterns. The chemistry of ferromagnesian minerals is characterized by a high forsterite (Fo) olivine with wide range (Fo91-67), from ultramafic core to the marginal gabbro, Ca-rich diopsidic clinopyroxene, and calcic hornblende. Orthopyroxene is almost absent from all rock types, or very rare when present. Hornblende and Ca-plagioclase possess the longest crystallization history since they are present in almost all rock types of the complex. Spinels in the dunite and hornblende-bearing peridotite core show homogeneous composition with intermediate Cr# (0.53-0.67). Plagioclase-bearing peridotite and troctolite have two exsolved types of spinel; Al

  9. Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures (United States)

    Liang, Yu-Han

    show, by temperature-dependent photoluminescence, that the activation energy of the acceptors is substantially lower, thus allowing a higher hole concentration than usual to be available for conduction. It is believed that the lower activation energy is a result of an impurity band tail induced by the high Mg concentration. The successful p-type doping of high aluminum-content (Al,Ga)N has allowed us to demonstrate operation of deep ultraviolet LEDs emitting at 274 nm. This achievement paves the way for making lasers that emit in the UV-C region of the spectrum. In this thesis, we performed preliminary work on using our structures to make UV-C lasers based on photonic crystal nanocavity structures. The nanocavity laser structures show that the threshold optical pumping power necessary to reach lasing is much lower than in conventional edge-emitting lasers. Furthermore, the photonic crystal nanocavity structure has a small mode volume and does not need mirrors for optical feedback. These advantages significantly reduce material loss and eliminate mirror loss. This structure therefore potentially opens the door to achieving efficient and compact lasers in the UV-C region of the spectrum.

  10. Geodynamics of kimberlites on a cooling Earth: Clues to plate tectonic evolution and deep volatile cycles (United States)

    Tappe, Sebastian; Smart, Katie; Torsvik, Trond; Massuyeau, Malcolm; de Wit, Mike


    Kimberlite magmatism has occurred in cratonic regions on every continent. The global age distribution suggests that this form of mantle melting has been more prominent after 1.2 Ga, and notably between 250-50 Ma, than during early Earth history before 2 Ga (i.e., the Paleoproterozoic and Archean). Although preservation bias has been discussed as a possible reason for the skewed kimberlite age distribution, new treatment of an updated global database suggests that the apparent secular evolution of kimberlite and related CO2-rich ultramafic magmatism is genuine and probably coupled to lowering temperatures of Earth's upper mantle through time. Incipient melting near the CO2- and H2O-bearing peridotite solidus at >200 km depth (1100-1400 °C) is the petrologically most feasible process that can produce high-MgO carbonated silicate melts with enriched trace element concentrations akin to kimberlites. These conditions occur within the convecting asthenospheric mantle directly beneath thick continental lithosphere. In this transient upper mantle source region, variable CHO volatile mixtures control melting of peridotite in the absence of heat anomalies so that low-degree carbonated silicate melts may be permanently present at ambient mantle temperatures below 1400 °C. However, extraction of low-volume melts to Earth's surface requires tectonic triggers. Abrupt changes in the speed and direction of plate motions, such as typified by the dynamics of supercontinent cycles, can be effective in the creation of lithospheric pathways aiding kimberlite magma ascent. Provided that CO2- and H2O-fluxed deep cratonic keels, which formed parts of larger drifting tectonic plates, existed by 3 Ga or even before, kimberlite volcanism could have been frequent during the Archean. However, we argue that frequent kimberlite magmatism had to await establishment of an incipient melting regime beneath the maturing continents, which only became significant after secular mantle cooling to below

  11. Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India (United States)

    Ganguly, Sohini; Ray, Jyotisankar; Koeberl, Christian; Saha, Abhishek; Thöni, Martin; Balaram, V.


    Based on systematic three-tier arrangement of vesicles, entablature and columnar joints, three distinct quartz normative tholeiitic lava flows (I, II and III) were recognized in the area around Linga, in the Eastern Deccan Volcanic Province (EDVP). Each of the flows exhibits intraflow chemical variations marked by high Mg#-low Ti, and low Mg#-high Ti contents. The MgO (4.27-7.74 wt.%), Mg# (23.45-41.89) and Zr (161.5-246.3 ppm) of Linga flows suggest an evolved chemistry marked by fractional crystallization and crustal contamination processes. Positive Rb and Th anomalies, negative Nb anomalies, relative enrichment of LILE-LREE with respect to Nb, Nb/Th:3.71-6.77 indicate crustal contamination of magma by continental materials through magma-crust interaction during melt migration and contributions from sub-continental lithospheric mantle (SCLM). Negative K, Sr and Ti anomalies corroborate an intracontinental, rift-controlled tectonic setting for the genesis and evolution of Linga basalts. Chondrite-normalized REE patterns reflect low HREE abundances and prominent LREE/HREE, MREE/HREE fractionation thereby pointing towards partial melting of garnet peridotite mantle source. Nb, Zr, Y variations suggest 10-15% partial melting of mantle source for the derivation of parent tholeiitic melt that suffered crystal fractionation of phenocrystal phases and subsequent liquid immiscibility. Critical evaluation of Srinitial and Ndinitial (65 Ma) isotopic compositions (87Sr/86Srinitial between 0.705656 and 0.706980 and 143Nd/144Ndinitial between 0.512523 and 0.512598) suggests that these basalts were derived from an enriched mantle (∼EM I-EM II) source. The εSr (21.84-41.27) and εNd (-0.28 to 1.10) isotopic signatures defined by higher εSr and lower εNd fingerprint a plume-related source. Positive and negative values of εNd indicate an isotopically heterogeneous mantle source marked by mixing of depleted (DM) and enriched mantle (EM I-EM II) components at the source

  12. Implications of Zn/Fe ratios for the sources of Colorado Plateau basalts (United States)

    Rudzitis, S.; Reid, M. R.


    Early Miocene to recent mafic magmatism migrated across the Arizona Transition Zone towards the center of the stable Colorado Plateau at a rate of ~ 3-6 km/Myr (Roy et al., 2009). Present-day volcanic centers are close to a stepwise change in the thickness of the lithosphere between the Colorado Plateau and Basin and Range. Accordingly, volcanic migration might track progressive thinning of the lithosphere towards the center of the Colorado Plateau. This project aims to determine the conditions of melt generation across the transition zone in order to investigate the temporal/spatial correlation between volcanism and thinning of the Colorado Plateau lithosphere. Pressure and temperature estimates for Colorado Plateau basalts can be obtained from the Mg and Si contents of melts (Lee et al, 2009) but require melting of a peridotitic source. Eclogite and pyroxenite xenoliths reported in Colorado Plateau basalts show that melt sources could be olivine-poor. Zn/Fe ratios in melts can help to distinguish contributions from olivine-poor sources because they are sensitive to differences in bulk chemistry and to mineralogy (Le Roux et al., 2010). Specifically, Zn/Fe is not fractionated between melt, olivine, and orthopyroxene, but is highly fractionated when clinopyroxene and garnet are present. Our work to date has focused on laser ablation-IC-PMS analysis of individual olivine grains from high-Mg basalts (>8.0 wt. %) from the San Francisco and Mormon Mountain volcanic fields. Preliminary values of Zn/Fe ratios that represent the averages of multiple analyses of several grains in individual samples range from 7.9 to 9.3 (x10000). Variations of up to 1.7 (x10000) in the ratios exist between individual grains within samples and could be the result of co-crystallization of clinopyroxene with olivine. The lowest values in each sample should approach the Zn/Fe ratios of parental melts, and are, in turn, similar to MORB values and predicted peridotite melts. The results suggest

  13. Deep subduction of hot young oceanic slab required by the Syros eclogites (United States)

    Flemetakis, Stamatis; Moulas, Evangelos; Kostopoulos, Dimitrios; Chatzitheodoridis, Elias


    The Cycladic islands of Syros and Siphnos, Aegean Sea, Greece, represent subducted IAT and BABB remnants of the Neotethyan Pindos Ocean. Garnet porphyroblasts (Ø=1mm) in a glaucophane-zoisite eclogite from Kini locality on Syros are compositionally zoned and display a unique prograde heating path from a high-pressure greenschist-facies core with high XSps and low Mg# via a blueschist-facies mantle with moderate XSps and Mg# to an eclogite-facies rim with low XSps and high Mg#. The outermost 35 μm of the garnet rims show flat XSps with rapidly increasing outwards Mg#. Na-Act-Chl-Ph rimmed by Gln mark the greenschist-blueschist facies transition, whereas Pg rimmed by Omp and the incoming of Rt at the expense of Ttn signify the blueschist-eclogite facies transition. Raman barometry of quartz inclusions in the eclogitic garnet rims coupled with elastic modelling of the garnet host [1], and Zr-in-Rt and Grt-Cpx-Ph thermobarometry revealed near-UHP P-T conditions of the order of 2.6 GPa/660°C (maximum residual pressure was 0.8-0.9GPa). By contrast, the greenschist-blueschist transition lies at ~0.75 GPa/355°C. This pressure is in excellent agreement with the position of the albite = jadeite + quartz boundary calculated at 350°C using the observed omphacite composition corrected for jadeite activity (Koons & Thompson, 1985) [2]. As a result, Cpx inclusions in garnet core signify the early entrance of garnet in the subduction zone history of the slab. Furthermore, the early growth of garnet (in lower pressures) observed in eclogites from Syros lies in great agreement with published slab-geotherms that indicate hot subduction and show a precocious garnet growth (Baxter and Caddick, 2013) [3]. The complete absence of lawsonite and the great abundance of zoisite crystals, based on the stability fields of both minerals (Poli et al., 2009) [4], further constrain the P-T trajectory of the slab. Our new P-T estimates match published T distributions on the slab surface

  14. Effect of Mg/Ca ratios on microbially induced carbonate precipitation (United States)

    Balci, Nurgul; Demirel, Cansu; Seref Sonmez, M.; Kurt, M. Ali


    Influence of Mg/Ca ratios on microbially induced carbonate mineralogy were investigated by series of experiments carried out under various environmental conditions (Mg/Ca ratio, temperature and salinity). Halophilic bacterial cultures used for biomineralization experiments were isolated from hypersaline Lake Acıgöl (Denizli, SW Turkey), displaying extreme water chemistry with an average pH around 8.6 (Balci eta l.,2015). Enriched bacterial culture used in the experiments consisted of Halomonas saccharevitans strain AJ275, Halomonas alimentaria strain L7B; Idiomarina sp. TBZ29, 98% Idiomarina seosensis strain CL-SP19. Biomineralization experiments were set up using above enriched culture with Mg/Ca ratios of 0.05, 1, 4 and 15 and salinity of 8% and 15% experiments at 30oC and 10oC. Additionally, long-term biomineralization experiments were set up to last for a year, for Mg/Ca=4 and Mg/Ca=15 experiments at 30oC. For each experimental condition abiotic experiments were also conducted. Solution chemistry throughout incubation was monitored for Na, K, Mg, Ca, bicarbonate, carbonate, ammonium and phosphate for a month. At the end of the experiments, precipitates were collected and morphology and mineralogy of the biominerals were investigated and results were evaluated using the software DIFFRAC.SUITE EVA. Overall the preliminary results showed chemical precipitation of calcite, halite, hydromagnesite and sylvite. Results obtained from biological experiments indicate that, low Mg/Ca ratios (0.05 and 1) favor chlorapatite precipitation, whereas higher Mg/Ca ratios favor struvite precipitation. Biomineralization of dolomite, huntite and magnesite is favorable at high Mg/Ca ratios (4 and 15), in the presence of halophilic bacteria. Moreover, results indicate that supersaturation with respect to Mg (Mg/Ca=15) combined with NaCl (15%) inhibits biomineralization and forms chemical precipitates. 15% salinity is shown to favor chemical precipitation of mineral phases more than

  15. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010 (United States)

    Torfstein, Adi; Teutsch, Nadya; Tirosh, Ofir; Shaked, Yeala; Rivlin, Tanya; Zipori, Assaf; Stein, Mordechai; Lazar, Boaz; Erel, Yigal


    Atmospheric dust loads and chemical compositions serve as a key link between global climate patterns and marine biogeochemical cycles. The primary source of atmospheric dust in the world today is the Sahara-Arabian desert belt. Although this source was also active during the Quaternary, the interpretation of paleo-dust records and their effects on marine ecosystems is complicated by the scarcely reported atmospheric load patterns of bioavailable phases (i.e., water and acid leachable phases) and present-day contamination of anthropogenic components. This study reports a multi-annual time series of atmospheric dust loads (2006-2016) and their chemical compositions (2006-2010) collected in the north Gulf of Aqaba (north Red Sea) at a weekly to bi-weekly resolution. Major and trace element abundances in each sample are reported for three fractions: water-soluble salts, carbonates and oxides (weak acid leach), and Al-silicates. Dust loads vary seasonally from low values in late summer (∼20-30 μg m-3) to higher values in the fall, and highest values in late winter and early spring (∼150-250 μg m-3). Major and trace element abundances allow to distinguish between the sources and chemical compositions that dominate high and low dust loads in each season. The water leachable fraction (L0) is relatively enriched in Na, Ca, K and Mg, the acid-leachable fraction (L1) is enriched in Ca as well as Na, Al, Mg, Zn, Cd and Pb, and the silicate residue (L2) in Al and Fe. High dust loads occurring mainly during winter and spring months are characterized by low Mg/Ca (L1, L2), low K/Al and Na/Al (L1) and high Ca/Al (L1), high Mg/Al (L2) and relatively un-weathered (L2) contents. High dust load intervals during winter months are characterized by low passing air masses originating from the Sahara, while the ambient winter dust (low dust load) is associated with proximal source regions from the East Sahara and Arabian Peninsula. During late winter and spring months, high dust

  16. Average Potential Temperature of the Upper Mantle and Excess Temperatures Beneath Regions of Active Upwelling (United States)

    Putirka, K. D.


    The question as to whether any particular oceanic island is the result of a thermal mantle plume, is a question of whether volcanism is the result of passive upwelling, as at mid-ocean ridges, or active upwelling, driven by thermally buoyant material. When upwelling is passive, mantle temperatures reflect average or ambient upper mantle values. In contrast, sites of thermally driven active upwellings will have elevated (or excess) mantle temperatures, driven by some source of excess heat. Skeptics of the plume hypothesis suggest that the maximum temperatures at ocean islands are similar to maximum temperatures at mid-ocean ridges (Anderson, 2000; Green et al., 2001). Olivine-liquid thermometry, when applied to Hawaii, Iceland, and global MORB, belie this hypothesis. Olivine-liquid equilibria provide the most accurate means of estimating mantle temperatures, which are highly sensitive to the forsterite (Fo) contents of olivines, and the FeO content of coexisting liquids. Their application shows that mantle temperatures in the MORB source region are less than temperatures at both Hawaii and Iceland. The Siqueiros Transform may provide the most precise estimate of TpMORB because high MgO glass compositions there have been affected only by olivine fractionation, so primitive FeOliq is known; olivine thermometry yields TpSiqueiros = 1430 ±59°C. A global database of 22,000 MORB show that most MORB have slightly higher FeOliq than at Siqueiros, which translates to higher calculated mantle potential temperatures. If the values for Fomax (= 91.5) and KD (Fe-Mg)ol-liq (= 0.29) at Siqueiros apply globally, then upper mantle Tp is closer to 1485 ± 59°C. Averaging this global estimate with that recovered at Siqueiros yields TpMORB = 1458 ± 78°C, which is used to calculate plume excess temperatures, Te. The estimate for TpMORB defines the convective mantle geotherm, and is consistent with estimates from sea floor bathymetry and heat flow (Stein and Stein, 1992), and

  17. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust (United States)

    Stern, R. J.; Mooney, W. D.


    ) and Cr (435 vs. 117 ppm). Despite high Mg# in pyroxene-rich xenoliths, mineral compositions of labradoritic plagioclase (mean ~An64) and relatively Fe-rich pyroxenes (mean OPX ~En63; mean CPX~ WO48 En35 Fs17) indicate that these are somewhat fractionated. Trace element patterns are similar to those expected for convergent-margin magmatic suites. Nd-model ages define a mean of 0.76±0.08 Ga, similar to the age of exposed Arabian Shield upper crust. An isochron plot (147Sm/144Nd vs. 143Nd/144Nd) is consistent with formation in Neoproterozoic time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by Cenozoic magmas, which may also be true for NE Africa and perhaps mafic lower crust on the flanks of the East African Rift. Such an interpretation predicts a strong lower crust for those regions underlain by anhydrous mafic lower crust of Neoproterozoic age.

  18. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.


    The Shapinggou molybdenum deposit is located in the Qinling-Dabie Orogen, which hosts the world's largest molybdenum belt. The igneous rocks at Shapinggou can be divided into two stages (136-127 Ma and 118-114 Ma), the early suite of felsic (136-127 Ma, SiO2 = 58.0 to 72.9 wt%) and mafic rocks (133-128 Ma, SiO2 = 45.2 to 57.0 wt%), and a later suite comprising syenite (117 Ma, SiO2 = 64.2 to 65.0 wt%), quartz syenite porphyry (116 Ma, 62.5 to 70.0 wt%), granite porphyry (112 Ma, SiO2 = 75.5 to 77.6 wt%) and diorite porphyry (111 Ma, SiO2 = 56.6 to 59.7 wt%). The early-stage felsic rocks display high SiO2, Al2O3, Na2O, K2O, Sr, LREE contents, and Sr/Y, (La/Yb)N ratios, initial Sr isotope ratios of 0.7076 to 0.7089, but low MgO, FeOT, Y, Yb contents and negative εNd(t) values, consistent with partial melting of the lower continental crust. The early-stage mafic rocks exhibit low SiO2, high MgO, Ni and Cr contents, consistent with an upper mantle source, but trace element and isotope data suggest a role for crustal contamination. The late-stage syenite and quartz syenite porphyry show high abundances of Na2O, K2O, Al2O3, HFSEs (e.g., Th, U, Zr, Hf) and significant negative Eu anomalies. The late-stage granite porphyry displays high SiO2 contents, and depletions in Ba, Sr, Eu and Ti. The geochemical features of the late-stage intrusions are similar to A-type granites. Crystal fractionation of plagioclase, K-feldspar, biotite/ muscovite, amphibole/ garnet and Fe-Ti oxides controlled the evolution of the magma. The geochemical and isotopic data suggest that the rocks at Shapinggou were likely derived from a mixed source of lithospheric mantle, subducted continental crust of the Yangtze Block (Kongling Group) and partial melts of the Dabie Complex. Early stage rocks represent melts of the source with a lower proportion of Dabie Complex materials, whereas late stage rocks were derived from a source with a higher proportion Dabie Complex component. The geochemical and

  19. Oceanization of the lithospheric mantle: the study case of the spinel peridotites from Monte Maggiore (Corsica, France). (United States)

    Piccardo, G. B.


    The Monte Maggiore peridotite body, cropping out within the Alpine Corsica metamorphic belt, is an ophiolite massif derived from the more internal setting of the Jurassic Ligurian Tethys basin. It is mostly composed by spinel and plagioclase peridotites that are cut by MORB gabbroic dykes. The spinel peridotites, similarly to other ophiolitic peridotites from the Internal Ligurides, have been considered, on the basis of their low abundance of fusible components, low Si and high Mg contents, as refractory residua after MORB-type partial melting related to the formation of the Jurassic basin (e.g. Rampone et al., 1997). Recent studies (e.g. Müntener & Piccardo 2003; Rampone et al. 2008) have evidenced that these depleted spinel peridotites show diffuse melt-rock interaction micro-textures and contrasting bulk vs. mineral chemistry features which cannot be simply reconciled with partial melting. Accordingly, these peridotites have been recognized as reactive peridotites, formed by interaction of pristine peridotites with melts percolating by porous flow. Geochemical data have evidenced the depleted MORB signature of the percolating melts. Recent field studies at Monte Maggiore (Piccardo, 2007; Piccardo & Guarnieri, 2009), have revealed: 1) the presence and local abundance of pyroxenite-bearing, cpx-rich spinel lherzolites and 2) the replacement relationships of the reactive peridotites on the pyroxenite-bearing lherzolite rock-types. The pyroxenite-veined spinel lherzolites record a composite history of subsolidus evolution under lithospheric P-T conditions, thus indicating their provenance from the sub-continental lithospheric mantle. Accordingly, the pristine sub-continental mantle protoliths were infiltrated by MORB melts and transformed by melt-rock interaction to reactive spinel peridotites and refertilized by melt impregnation to plagioclase-enriched peridotites. Available isotopic data on the Mt. Maggiore spinel and plagioclase peridotites and gabbroic rocks

  20. Formation of chondrules in a moderately high dust enriched disk: Evidence from oxygen isotopes of chondrules from the Kaba CV3 chondrite (United States)

    Hertwig, Andreas T.; Defouilloy, Céline; Kita, Noriko T.


    Oxygen three-isotope analysis by secondary ion mass spectrometry of chondrule olivine and pyroxene in combination with electron microprobe analysis were carried out to investigate 24 FeO-poor (type I) and 2 FeO-rich (type II) chondrules from the Kaba (CV) chondrite. The Mg#'s of olivine and pyroxene in individual chondrules are uniform, which confirms that Kaba is one of the least thermally metamorphosed CV3 chondrites. The majority of chondrules in Kaba contain olivine and pyroxene that show indistinguishable Δ17O values (= δ17O - 0.52 × δ18O) within analytical uncertainties, as revealed by multiple spot analyses of individual chondrules. One third of chondrules contain olivine relict grains that are either 16O-rich or 16O-poor relative to other indistinguishable olivine and/or pyroxene analyses in the same chondrules. Excluding those isotopically recognized relicts, the mean oxygen isotope ratios (δ18O, δ17O, and Δ17O) of individual chondrules are calculated, which are interpreted to represent those of the final chondrule melt. Most of these isotope ratios plot on or slightly below the primitive chondrule mineral (PCM) line on the oxygen three-isotope diagram, except for the pyroxene-rich type II chondrule that plots above the PCM and on the terrestrial fractionation line. The Δ17O values of type I chondrules range from ∼-8‰ to ∼-4‰; the pyroxene-rich type II chondrule yields ∼0‰, the olivine-rich type II chondrule ∼-2‰. In contrast to the ungrouped carbonaceous chondrite Acfer 094, the Yamato 81020 CO3, and the Allende CV3 chondrite, type I chondrules in Kaba only possess Δ17O values below -3‰ and a pronounced bimodal distribution of Δ17O values, as evident for those other chondrites, was not observed for Kaba. Investigation of the Mg#-Δ17O relationship revealed that Δ17O values tend to increase with decreasing Mg#'s, similar to those observed for CR chondrites though data from Kaba cluster at the high Mg# (>98) and the low Δ17O

  1. Origin of the mafic microgranular enclaves (MMEs) and their host granitoids from the Tagong pluton in Songpan-Ganze terrane: An igneous response to the closure of the Paleo-Tethys ocean (United States)

    Chen, Qiong; Sun, Min; Zhao, Guochun; Yang, Fengli; Long, Xiaoping; Li, Jianhua; Wang, Jun; Yu, Yang


    The Songpan-Ganze terrane is mainly composed of a Triassic sedimentary sequence and late Triassic-Jurassic igneous rocks. A large number of plutons were emplaced as a result of tectono-magmatic activity related to the late stages of Paleo-Tethys ocean closure and ensuing collision. Granitoids and their hosted mafic enclaves can provide important constraints on the crust-mantle interaction and continental crustal growth. Mesozoic magmatism of Songpan-Ganze remains enigmatic with regard to their magma generation and geodynamic evolution. The Tagong pluton (209 Ma), in the eastern part of the Songpan-Ganze terrane, consists mainly of monzogranite and granodiorite with abundant coeval mafic microgranular enclaves (MMEs) (ca. 208-209 Ma). The pluton comprises I-type granitoid that possesses intermediate to acidic compositions (SiO2 = 61.6-65.8 wt.%), high potassium (K2O = 3.2-4.1 wt.%), and high Mg# (51-54). They are also characterized by arc-type enrichment of LREEs and LILEs, depletion of HFSEs (e.g. Nb, Ta, Ti) and moderate Eu depletions (Eu/Eu* = 0.46-0.63). Their evolved zircon Hf and whole-rock Nd isotopic compositions indicate that their precursor magmas were likely generated by melting of old lower continental crust. Comparatively, the MMEs have lower SiO2 (53.4-58.2 wt.%), higher Mg# (54-67) and show covariation of major and trace elements, coupled with field and petrographic observations, such as the disequilibrium textures of plagioclase and amphibole, indicating that the MMEs and host granitoids were originated from different magma sources but underwent mafic-felsic magma mixing process. Geochemical and isotopic data further suggest that the precursor magma of the MMEs was formed in the continental arc setting, mainly derived from an ancient metasomatized lithospheric mantle wedge. The Triassic granitoids from the Songpan-Ganze terrane show remarkable temporal-spatial-petrogenetic affinities to the counterparts of subduction zones in the Yidun and Kunlun arc

  2. Formation of D- and I-shaped geochemical profiles in saucer-shaped sills due to post- emplacement magma flow induced by thermal stresses (United States)

    Aarnes, I.; Podladchikov, Y. Y.; Neumann, E.


    There are still unresolved problems in the processes of emplacement and crystallization of saucer shaped sill intrusions. We use geochemistry and numerical modelling in order to constrain identify processes in mafic sill intrusions. Profiles sampled through through a saucer-shaped sill complex in the Karoo igneous province, South Africa show a variety of geochemical variations. Some variations are observed repeatedly, i.e. the D- and I-shaped profiles. D-shaped profiles are recognized by having the least evolved composition in the center (high Mg#) with more evolved composition at the upper and lower margins (low Mg#), resulting in a D-shaped Mg# profile. I- shaped profiles are recognized by having no variation in the Mg# through the profile. The formation mechanism of D-shaped profiles is enigmatic, as classical fractional crystallization theory predicts C-shapes to occur. The least evolved composition will be at the margins where crystallization initiates, and with continued cooling and crystallization the center will be progressively more evolved. Hence, we need another formation mechanism. The most common explanation for D-shaped profiles is a movement of early formed phenocrysts towards the center due to flow segregation. However, petrographical evidences from a D-shaped profile in this study show no phenocryst assemblage in the center, and the modal composition is homogeneous through the profile. We propose that differentiation is caused by a melt flow from the central parts of the sill towards the margins driven by underpressure anomalies at the margins. The underpressures develop because of strong cooling gradients at the margins, assuming no volume change due to a rigid crystal network. The less compatible elements associated with the melt phase will be transported into the margins by advection, resulting in a more evolved total system composition from a higher total melt percentage. The central parts will progressively be depleted in the less compatible

  3. Geochronological, geochemical, and Sr-Nd-Hf isotopic characteristics of Cretaceous monzonitic plutons in western Zhejiang Province, Southeast China: New insights into the petrogenesis of intermediate rocks (United States)

    Liu, Liang; Qiu, Jian-Sheng; Zhao, Jiao-Long; Yang, Ze-Li


    We present comprehensive petrological, geochemical, and Sr-Nd-Hf isotopic data for the Matou and Dalai plutons in western Zhejiang Province, Southeast China, with the aim of constraining the petrogenesis of monzonites and to offer new insights into the deep processes of interaction between crustal- and mantle-derived magmas beneath SE China. The Matou pluton comprises quartz monzonite, whereas the Dalai pluton consists of quartz monzodiorite. Zircon U-Pb ages obtained by laser ablation-inductively coupled plasma-mass spectrometry show that both plutons were emplaced at 99-101 Ma. Rocks of both plutons are intermediate to silicic, metaluminous to weakly peraluminous, subalkaline, and K-rich in composition. Samples of the plutons are enriched in large ion lithophile (e.g., Rb, K, and Pb) and light rare earth elements, depleted in high-field strength elements (e.g., Nb, Ta, and Ti), and have small negative or no Eu anomalies. In addition, the rocks have high Mg# values (up to 53.9), high zircon ɛHf(t) values (up to - 1.4), and low Nb/U and Ta/U ratios. Geochemical evidence suggests that both depleted asthenospheric and metasomatically enriched mantle components were involved in the formation of these monzonitic rocks. The presence of inherited zircons with Palaeoproterozoic ages and zircons with unusually low ɛHf(t) values (- 12.9) in the Matou quartz monzonites indicates that ancient crustal materials were also involved in their petrogenesis. In combination with the presence of abundant mafic microgranular enclaves (MMEs) with spheroidal to ellipsoidal-ovoidal shapes and xenocrysts within the more diffused enclaves, and the results of trace element modelling, we suggest that the Matou quartz monzonites were generated by mixing between mantle-derived mafic magmas and crustally derived silicic magmas. The Dalai pluton is relatively homogeneous and contains fewer MMEs than the Matou pluton. Zircons from the Dalai pluton show no inherited components, indicating that

  4. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology (United States)

    Last, William M; Ginn, Fawn M


    spatial trends and regional variations controlled by groundwater input, climate, and geomorphology. Short-term temporal variations in the brine composition, which can have significant effects on the composition of the modern sediments, have also been well documented in several individual basins. From a sedimentological and mineralogical perspective, the wide range of water chemistries exhibited by the lakes leads to an unusually large diversity of modern sediment composition. Over 40 species of endogenic precipitates and authigenic minerals have been identified in the lacustrine sediments. The most common non-detrital components of the modern sediments include: calcium and calcium-magnesium carbonates (magnesian calcite, aragonite, dolomite), and sodium, magnesium, and sodium-magnesium sulfates (mirabilite, thenardite, bloedite, epsomite). Many of the basins whose brines have very high Mg/Ca ratios also have hydromagnesite, magnesite, and nesquehonite. Unlike salt lakes in many other areas of the world, halite, gypsum, and calcite are relatively rare endogenic precipitates in the Great Plains lakes. The detrital fraction of the lacustrine sediments is normally dominated by clay minerals, carbonate minerals, quartz, and feldspars. Sediment accumulation in these salt lakes is controlled and modified by a wide variety of physical, chemical, and biological processes. Although the details of these modern sedimentary processes can be exceedingly complex and difficult to discuss in isolation, in broad terms, the processes operating in the salt lakes of the Great Plains are ultimately controlled by three basic factors or conditions of the basin: (a) basin morphology; (b) basin hydrology; and (c) water salinity and composition. Combinations of these parameters interact to control nearly all aspects of modern sedimentation in these salt lakes and give rise to four 'end member' types of modern saline lacustrine settings in the Great Plains: (a) clastics-dominated playas; (b) salt

  5. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study (United States)

    Eskandari, Amir; Amini, Sadraddin; De Rosa, Rosanna; Donato, Paola


    Damavand intraplate stratovolcano constructed upon a moderately thick crust (58-67 km) over the last 2 Ma. The erupted products are dominantly trachyandesite-trachyte (TT) lavas and pyroclasts, with minor mafic magmas including tephrite-basanite-trachybasalt and alkali olivine basalts emplaced as cinder cones at the base of the stratovolcano. The TT products are characterized by a mineral assemblage of clinopyroxene (diopside-augite), orthopyroxene (clinoenstatite), feldspar (An2-58, Ab6-69, Or2-56), high Ti phlogopite, F-apatite, Fesbnd Ti oxides, and minor amounts of olivine (Fo73-80), amphibole and zircon, whereas olivine (Fo78-88), high Mg# (80-89) diopside, feldspar, apatite and Fesbnd Ti oxide occur in the mafic magmas. The presence of hydrous and anhydrous minerals, normal zonings, mafic cumulates, and the composition of magmatic inclusions in the TT products suggest evolutionary processes in polybaric conditions. In the same way, disequilibrium textures - including orthopyroxene mantled with clinopyroxene, reaction rim of phlogopite and amphibole, the coexistence of olivine and orthopyroxene, reverse, oscillatory and complex zonings of pyroxene and feldspar crystals - suggest magmatic evolutions in open systems with a varying temperature, oxygen fugacity, water as well as pressure and, to a lesser extent, melt chemistry. Mineral assemblages are used to model the physicochemical conditions and assess default parameters for the thermodynamic simulation of crystallization using MELTS software to track the P-T-H2O-ƒO2 evolution of the magma plumbing system. Thermobarometry and MELTS models estimated the initial nucleation depth at 16-17 kb (56-60 km) for olivine (Fo89) and high Al diopside crystals occurring in the mafic primary magma; it then stopped and underwent fractionation between 8 and 10 kb (28-35 km), corresponding with Moho depth, and continued to differentiate in the lower crust, in agreement with the geophysical models. The mafic rocks were formed

  6. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints (United States)

    Lambart, Sarah; Laporte, Didier; Schiano, Pierre


    , high CaO/Al2O3 ratios can also reveal the presence of pyroxenite in the source-regions. Experimental and thermodynamical observations also suggest that the interactions between pyroxenite-derived melts and host peridotites play a crucial role in the genesis of oceanic basalts by generating a wide range of pyroxenites in the upper mantle: partial melting of such secondary pyroxenites is able to reproduce the features of primitive basalts, especially their high MgO contents, and to impart, at least in some cases, the major-element signature of the original pyroxenite melt to the oceanic basalts. Finally, we highlight that the fact the very silica depleted compositions (SiO2 < 42 wt.%) and high TiO2 contents of some ocean island basalts seem to require the contribution of fluids (CO2 or H2O) through melting of either carbonated lithologies (peridotite or pyroxenite) or amphibole-rich veins.

  7. Basaltic magmatism at the Juan de Fuca Ridge, NE Pacific ocean (ODP Leg 168): geological control on chemical zonation (United States)

    Cortesogno, L.; Gaggero, L.; Marescotti, P.


    symmetric increase of incompatible elements in more evolved compositions is consistent with crystal fractionation processes. On the whole, a relative compositional homogeneity arises in most of the Sites but for a wide range at Site 1026 (Mg# = 66 - 57; Zr = 101 - 128 ppm). At Site 1025, the massive Fe-basalt flow (Mg# = 46-52; Zr = 151-163 ppm) begins with more evolved terms. At Site 1027 the lower pillow lavas (Mg#: 58-59, Zr: 28-35) are overlain by more primitive flows (Mg# 64-65, Zr = 65-66 ppm). The top of the sequence is represented by a diabase sill, interpreted as an off-axis diabase (Davis, Fisher, Firth et al., 1997) showing very high Mg# (69-79) and relatively higher Ti, Zr, P contents. References Davis, E.E., Fisher, A.T., Firth, J.V., et al., 1997. Proc. ODP, Init. Repts, 168: College Station, TX (Ocean Drilling Program). Pearce J.A. &Parkinson I.J. 1993 Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prochard, Alabaster, Harris, Neary eds. 1993 magmatic processes and plate tectonics, GSSP 76, 373-403

  8. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus) calcite and potential effects of pCO2 during early life stages (United States)

    LaVigne, M.; Hill, T. M.; Sanford, E.; Gaylord, B.; Russell, A. D.; Lenz, E. A.; Hosfelt, J. D.; Young, M. K.


    Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium) into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2) on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus). We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California). Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD). However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1), skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California) did not exhibit differences in Mg or Sr

  9. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.


    late-stage pervasive metasomatism by halogen-bearing exsolved fluid(s) is provided by the high Mg# (>70) secondary amphiboles and biotites from within the Spirit Lake pluton, where the amphiboles are clear replacement products of primary pyroxenes. Fluid halogen fugacity ratios calculated from the biotite compositions overlap with other global mineralised porphyry systems, despite not being immediately associated with sulphide ores. The evidence suggests complex fluid processes and the coincidental development of the mineralised porphyry system within the pluton. Heat, fluids, and metals were therefore likely supplied by a later phase of magmatism, unrelated to the consolidation of the main Spirit Lake granitoid. These new constraints on magmatic-hydrothermal fluid signatures have wider applicability to potentially tracing proximal barren and mineralised processes, and for distinguishing between formation mechanisms for primary and secondary halogen-bearing minerals.

  10. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting (United States)

    Chen, Ming; Sun, Min


    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  11. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga (United States)

    Donald, Hannah K.; Ries, Justin B.; Stewart, Joseph A.; Fowell, Sara E.; Foster, Gavin L.


    The increase in atmospheric carbon dioxide (CO2) observed since the industrial revolution has reduced surface ocean pH by ∼0.1 pH units, with further change in the oceanic system predicted in the coming decades. Calcareous organisms can be negatively affected by extreme changes in seawater pH (pHsw) such as this due to the associated changes in the oceanic carbonate system. The boron isotopic composition (δ11B) of biogenic carbonates has been previously used to monitor pH at the calcification site (pHcf) in scleractinian corals, providing mechanistic insights into coral biomineralisation and the impact of variable pHsw on this process. Motivated by these investigations, this study examines the δ11B of the high-Mg calcite skeleton of the coralline red alga Neogoniolithon sp. to constrain pHcf, and investigates how this taxon's pHcf is impacted by ocean acidification. δ11B was measured in multiple algal replicates (n = 4-5) cultured at four different pCO2 scenarios - averaging (±1σ) 409 (±6), 606 (±7), 903 (±12) and 2856 (±54) μatm, corresponding to average pHsw (±1σ) of 8.19 (±0.03), 8.05 (±0.06), 7.91 (±0.03) and 7.49 (±0.02) respectively. Results show that skeletal δ11B is elevated relative to the δ11B of seawater borate at all pHsw treatments by up to 18‰. Although substantial variability in δ11B exists between replicate samples cultured at a given pHsw (smallest range = 2.32‰ at pHsw 8.19, largest range = 6.08‰ at pHsw 7.91), strong correlations are identified between δ11B and pHsw (R2 = 0.72, p < 0.0001, n = 16) and between δ11B and B/Ca (R2 = 0.72, p < 0.0001, n = 16). Assuming that skeletal δ11B reflects pHcf as previously observed for scleractinian corals, the average pHcf across all experiments was 1.20 pH units (0.79 to 1.56) higher than pHsw, with the magnitude of this offset varying parabolically with decreasing pHsw, with a maximum difference between pHsw and pHcf at a pHsw of 7.91. Observed relationships between pHsw and

  12. Ages and petrogenesis of Jurassic and Cretaceous intrusive rocks in the Matsu Islands: Implications for lower crust modification beneath southeastern China (United States)

    Chen, Jing-Yuan; Yang, Jin-Hui; Ji, Wei-Qiang


    Major and trace element, whole-rock Sr-, Nd- and Hf-isotope, zircon U-Pb age and Hf-O isotope data are reported for the intrusive rocks from the Matsu Islands in the coastal area of southeastern (SE) China, in order to study the ages, sources and petrogenesis of these rocks and evolution of the lower crust. The rocks include gneissic granite, massive granite, brecciated granite and diabase. Secondary ion mass spectrometer (SIMS) zircon U-Pb dating reveals that the rocks in the Matsu Islands were emplaced at ∼160 Ma, ∼130 Ma and ∼94 Ma. The Jurassic granites (∼160 Ma) have high SiO2 (74.1-74.5 wt%) and K2O + Na2O (8.32-8.33 wt%) contents and high Rb/Sr ratios of 0.6-1.2 and (La/Yb)CN ratios of 12.6-19.4. Their relatively high initial 87Sr/86Sr ratios (0.7074-0.7101), variable and negative εNd(t) values (-9.2 to -5.4), and variable zircon εHf(t) (-17.0 to +5.2) and δ18O (4.7-8.1‰) values indicate they were mainly derived from an ancient lower crustal source, but with involvement of high εHf(t) and low δ18O materials. The Early Cretaceous diabase (∼130 Ma) has SiO2 content of 56.5 wt%, relatively high MgO concentration, low initial 87Sr/86Sr ratio and negative εNd(t) value, similar to geochemical features of other Cretaceous mafic rocks in the coastal area of SE China. Zircons from the diabase have high εHf(t) values (-5.5 to +0.2) and relatively low δ18O values of 4.2-5.0‰. These characteristics indicate that the parental magma of the diabase was generated by partial melting of enriched lithospheric mantle, which have been metasomatised by altered oceanic crust-derived low-δ18O fluids. For the Cretaceous granitoids (∼130 Ma and 94 Ma), they have relatively low SiO2 (68.0-71.3 wt%) and K2O + Na2O (5.30-7.55 wt%) contents and low Rb/Sr ratios and (La/Yb)CN ratios of 5.8-7.1. They have low initial 87Sr/86Sr ratios (0.7071-0.7082), homogeneous εNd(t) (-4.3 to -4.5) and relatively high zircon εHf(t) values (-3.7 to +1.2) and low δ18O values (4

  13. Paleozoic tectonic evolution of the Dananhu-Tousuquan island arc belt, Eastern Tianshan: Constraints from the magmatism of the Yuhai porphyry Cu deposit, Xinjiang, NW China (United States)

    Wang, Yunfeng; Chen, Huayong; Han, Jinsheng; Chen, Shoubo; Huang, Baoqiang; Li, Chen; Tian, Qinglei; Wang, Chao; Wu, Jianxin; Chen, Mingxia


    The Yuhai intrusions (quartz diorite, granite and pyroxene diorite) are located in the eastern part of the Dananhu-Tousuquan island arc belt of the Eastern Tianshan, and associated with the early Paleozoic porphyry Cu mineralization. LA-ICP-MS zircon U-Pb dating yielded emplacement ages of 443.5 ± 4.1 Ma for the quartz diorite, 325.4 ± 2.5 Ma for the granite, and 291 ± 3.0 Ma for the pyroxene diorite. These rocks are tholeiitic to calc-alkaline and metaluminous, with A/CNK values ranging from 0.66 to 1.10. The Silurian ore-bearing Yuhai quartz diorite is rich in LREEs and LILEs (e.g., K, Ba, Pb and Sr), and depleted in HREEs and HFSEs (e.g., Nb, Ta and Ti). These rocks are MgO-rich (1.90-3.80 wt.%; Mg# = 37-72), with high Sr/Y, La/Yb and Ba/Th ratios, positive εNd(t) (6.31-6.84) and εHf(t) (13.26-16.40), low (87Sr/86Sr)i (0.7037-0.7039), and low Nb/U and Ta/U ratios. The data suggest that the quartz diorite was generated by the partial melting of subducted juvenile oceanic slab. The oxygen fugacity (ƒO2) of the quartz diorite, calculated by zircon Ce4+/Ce3+ ratios, is higher than that of the granite and pyroxene diorite, implying that the quartz diorite was more favorable to porphyry Cu mineralization. The Carboniferous Yuhai granite reveals similar geochemical features with the quartz diorite, except for the lower Mg# (27-33), and the more elevated Th/U and Th/La ratios. Furthermore, these rocks also show high εNd(t) (5.2-5.8) and εHf(t) (11.03-14.85) values, and low (87Sr/86Sr)i (0.7036-0.7037). These features indicate that the parental magma of the granite was probably derived from a juvenile lower crust with no significant mantle component involvement. Different from the Yuhai quartz diorite and granite, the early Permian Yuhai pyroxene diorite contains low SiO2 (50.76-55.74 wt.%) and high MgO (3.96-4.33 wt.%; Mg# = 40-44). The εNd(t), εHf(t) and (87Sr/86Sr)i values of the pyroxene diorite are 5.77-6.42, 7.99-12.10 and 0.7035-0.7040, respectively. The

  14. Shallow fractionation signature of phase chemistry in Taburiente lavas, La Palma, Canary Islands: Results of MELTS modeling (United States)

    Guetschow, H. A.; Nelson, B. K.


    also produce high modal volumes of low CaO, high MgO clinopyroxene that are not observed in sections we studied. Removal of such a large quantity of clinopyroxene from the liquid increases the TiO2 and CaO of later-crystallized clinopyroxene to concentrations not observed in our studied sections, and restricts the MgO and FeO* to smaller ranges than observed. Olivine fractionation is restricted to short duration and low abundance late in the crystallization sequence, which is not evident petrographically. The total compositional range of clinopyroxene and olivine crystals observed throughout this suite of rocks is larger than any generated by a single-source MELTS model. Combined with stratigraphically controlled Pb isotope variations it indicates magma mixing and fractionation at low pressures dominates the petrologic diversity in these sections. Hansteen, TH, Klügel, A., Schmincke, H.-U, 1998. Contrib. Min. Pet. 132, 48-64. Klügel, A, 1998. Contrib. Min. Pet. 131, 237-257. Nikogosian, IK, Elliott, T, Touret, JLR. 2002. Chem. Geo. 183, 169-193. Ghiorso, MS, and Sack, RO. Contrib. Min. Pet. 119, 197-212.

  15. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data (United States)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao


    The Char ophiolite belt is located in the western Central Asian Orogenic Belt, a world largest accretionary orogen, which has evolved during more than 800 Ma. The Char belt formed during Kazakhstan - Siberia collision. It has been known for hosting fragments of Late Devonian-Early Carboniferous oceanic crust, MORB, OPB and OIB, of the Paleo-Asian Ocean (Safonova et al., 2012). The Char is surrounded by two Paleozoic island-arc terranes: Zharma-Saur in the west and Rudny Altai in the east, however, until recent times, no island-arc units have been found within it. We were the first to find island-arc units as tectonic sheets occurring adjacent to those consisting of oceanic rocks. In places, island-arc andesites cut oceanic basalts. The Char volcanic and subvolcanic rocks of a probable suprasubduction origin are basalt, microgabbro, dolerite, andesite, tonalite and dacite. The mafic to andesitic volcanics possessing low TiO2 (0.85 wt.%av.) and show MgO vs. major elements crystallization trends suggesting two magma series: tholeiitic and calc-alkaline. The tholeiitic varieties are less enriched in incompatible elements then the calc-alkaline ones. Two samples are high-Mg and low-Ti andesibasalts similar to boninites. The rocks possess moderately LREE enriched rare-earth element patterns and are characterized by negative Nb anomalies present on the multi-element spectra (Nb/Lapm = 0.14-0.47; Nb/Thpm = 0.7-1.6).The distribution of rare-earth elements (La/Smn = 0.8-2.3, Gd/Ybn = 0.7-1.9) and the results of geochemical modeling in the Nb-Yb system suggest high degrees of melting of a depleted harzburgite-bearing mantle source at spinel facies depths. Fractional crystallization of clinopyroxene, plagioclase and opaque minerals also affected the final composition of the volcanic rocks. Clinopyroxene monomineral thermometry indicates crystallization of melts at 1020-1180°C. Melt inclusion composition based numerical calculations show that primary melts were derived at 1350

  16. An example of post-collisional mafic magmatism: the gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria) (United States)

    Aı̈t-Djafer, Saı̈da; Ouzegane, Khadidja; Paul-Liégeois, Jean; Kienast, Jean Robert


    The Tin Zebane gabbro-anorthosite layered mafic intrusion represented by plagioclase-rich cumulates forms a set of small lenticular to round-shaped mainly undeformed bodies intruding the Pan-African high-pressure metamorphic rocks from western Hoggar (Tuareg shield, southwest Algeria). The coarse-grained anorthosites are mainly made of slightly zoned bytownite (An 86-74) with the higher anorthite content at the cores. Anorthosites are interlayered with leucogabbros and gabbros that show preserved magmatic structures and with olivine gabbros characterised by coronitic textures. The primary assemblage in gabbros includes plagioclase (An 93-70), olivine (Fo 77-70), zoned clinopyroxene (En 43-48Fs 05-13Wo 41-49 with Al 2O 3 up to 4.3 wt.%) and rare orthopyroxene (En 73-78). Pyroxenes and olivine are commonly surrounded by Ca-amphibole. The olivine-plagioclase contact is usually marked by a fine orthopyroxene-Cr-spinel-amphibole symplectite. A magnesian pigeonite (En 70-75Fs 19-20Wo 6-10) is also involved in corona. The coronitic minerals have equilibrated with the primary mineral rims at P- T- aH2O conditions of 797 ± 42 °C for aH2O=0.5 and 808 ± 44 °C for aH2O=0.6 at 6.2 ± 1.4 kbar. The Tin Zebane gabbroic rocks are depleted in REE with a positive Eu anomaly, high Sr (>10 ∗ chondrite) and Al 2O 3 concentrations (17-33%) that support plagioclase accumulation with the extreme case represented by the anorthosites. The REE patterns can be modelised using plagioclase, clinopyroxene and orthopyroxene REE signature, without any role played by accessory minerals. High MgO content points to olivine as a major cumulate phase. Anorthositic gabbros Sr and Nd isotopic initial ratios are typical of a depleted mantle source (Sr i=0.70257-0.70278; ɛNd=+5.9 to +7.8). This isotopic signature is identical to that of the 10-km wide 592 Ma old dyke complex composed of alkaline to peralkaline granites and tholeiitic gabbros and one single bimodal complex can be inferred. The source

  17. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.


    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  18. The elemental composition of purple sea urchin (Strongylocentrotus purpuratus calcite and potential effects of pCO2 during early life stages

    Directory of Open Access Journals (Sweden)

    M. LaVigne


    Full Text Available Ocean acidification will likely have negative impacts on invertebrates producing skeletons composed of calcium carbonate. Skeletal solubility is partly controlled by the incorporation of "foreign" ions (e.g. magnesium into the crystal lattice of these skeletal structures, a process that is sensitive to a variety of biological and environmental factors. Here we explore effects of life stage, oceanographic region of origin, and changes in the partial pressure of carbon dioxide in seawater (pCO2 on trace elemental composition in the purple sea urchin (Strongylocentrotus purpuratus. We show that, similar to other urchin taxa, adult purple sea urchins have the ability to precipitate skeleton composed of a range of biominerals spanning low- to high-Mg calcites. Mg / Ca and Sr / Ca ratios were substantially lower in adult spines compared to adult tests. On the other hand, trace elemental composition was invariant among adults collected from four oceanographically distinct regions spanning a range of carbonate chemistry conditions (Oregon, Northern California, Central California, and Southern California. Skeletons of newly settled juvenile urchins that originated from adults from the four regions exhibited intermediate Mg / Ca and Sr / Ca between adult spine and test endmembers, indicating that skeleton precipitated during early life stages is more soluble than adult spines and less soluble than adult tests. Mean skeletal Mg / Ca or Sr / Ca of juvenile skeleton did not vary with source region when larvae were reared under present-day, global-average seawater carbonate conditions (400 μatm; pHT = 8.02 ± 0.03 1 SD; Ωcalcite = 3.3 ± 0.2 1 SD. However, when reared under elevated pCO2 (900 μatm; pHT = 7.73 ± 0.03; Ωcalcite = 1.8 ± 0.1, skeletal Sr / Ca in juveniles exhibited increased variance across the four regions. Although larvae from the northern populations (Oregon, Northern California, Central California did not exhibit differences in Mg or Sr

  19. Geochemical characteristics of granitoids and related mafic granulites from the Pan-African Dahomeyide belt, southeastern Ghana

    International Nuclear Information System (INIS)

    Aidoo, F.


    -23%) and sometimes sericite and microline. The mafic granulites contain SiO 2 content of 43.10-49.40 wt. % with low to moderate Mg# of 37-60. They exhibit fractionated REE patterns with (La/Sm) N = 1.80-5.85 and (La/Yb) N = 3.76-76.30, and negative and positive Eu anomalies (Eu/Eu*'' = 0.68-2.10). The mafic granulites show total REEs content of 17.86-1245.13 ppm with Eu/Eu*'' between 1.01 and 1.36. Two types of mafic granulites are identified with one type displaying un-fractionated (flat), MORB-like REE patterns whereas the other shows slightly fractionated to highly fractionated, IAT-like REE patterns. The primitive mantle-normalised trace element patterns of the granulites show subduction-related geochemical characteristics. The LREE-enriched type show pronounced negative Th, U, Ta, Nb, Zr and Hf anomalies and positive l3a and Sr I) pical arc roots, whereas the un-fractionated type show pronounced Th-U trough, but slightly negative Ta, Nb, Hf, Ti anomalies and positive Ba and Sr anomalies, suggesting subduction inputs in the protolith of the MORB-like granulites. Thus, the mafic granulites show both N-MORB and IAT imprints. The ultramafic rock, AD6, associated with the mafic granulites is composed mainly of pyroxene (60%), plagioclase (13%), olivine (12%), hornblende (6%) and sericite (4%). It contains SiO 2 content of 52.80 wt. %; low TiO 2 (0.25 wt. %) and has very high Mg# of 84. The ultramaf-ic rock also shows total REEs content of 64.85 ppm, very high Cr of 3520 ppm and Ni of 48I ppm. The ultramafic rocks also show typical IAT signatures. In general, the mafic granulites and ultramafic rocks from the suture zone assemblages of the Dahomeyide belt suggest subduction zone magmatism with oceanic crust forming in either a back-arc basin or intra-arc basin environment. The geochemical characteristics of the granitoid gneisses from the external nappes (basement complex) also show subduction-related magmatic activity. Therefore, all the rocks studied

  20. Geology and geochemistry of epithermal precious metal vein systems in the intra-oceanic arcs of Palau and Yap, western Pacific (United States)

    Rytuba, J.J.; Miller, W.R.


    The Palau and Yap arcs are part of an intra-oceanic island-arc-trench system which separates the Pacific and Philippine plates in the western Pacific Ocean. The 350-km-long Palau arc consists of over 200 islands while the 400-km-long Yap arc located to the north has only four major islands exposed. Four of the largest islands in Palau are composed primarily of early Eocene to mid-Miocene volcanic rocks and the four islands comprising Yap contain only Miocene volcanic rocks. Basalt and basaltic andesites of the Babelthuap Formation are the oldest volcanic rocks in Palau and are characterized by high MgO, Ni and Cr and low TiO2 and have a boninitic affinity. They form the central and southeastern parts of Babelthuap Island. Oligocene arc tholeiite flows having an age of 34-35.5 Ma comprise most of the three smaller volcanic islands in Palau and the western part of Babelthuap. The youngest volcanic rocks are dacitic intrusions having an age of 22.7-23.2 Ma. The Yap arc is unusual in that metamorphic rocks up to amphibolite grade form most of the islands. These are underlain by a melange composed of igneous and volcanic clasts as well as clasts from a dismembered copper-gold skarn deposit. Miocene volcanic rocks consisting of flows and volcaniclastic deposits overlie the melange and metamorphic complex. An epithermal precious-metal vein system hosted by flows and flow breccias of the Babelthuap Formation occurs in an area 1.5 km by 1 km on the southeast side of Babelthuap Island. Over 50 veins and mineralized breccias ranging up to 2 m in width and having a strike length up to 500 m contain from trace to 13.0 ppm gold. The veins consist of quartz with varying amounts of sulfides and iron oxides after sulfides and the mineralized breccias consist of brecciated country rock cemented by quartz and iron oxides after sulfides. The veins and mineralized breccias generally dip within 15?? of vertical and have two preferred orientations, north-northwest and north

  1. Magmatism evolution in the Nori'lsk region (Siberian trap province) (United States)

    Krivolutskaya, Nadezhda


    /Yb is 2.7-3.2) demonstrates the most dramatic changes in its thickness (from 450 m on the west to 12 m on the east Lake Lama) and compositions (degree of contamination downs in this destination) [3]. The next overlapping Gd basalts, Hakanchansky and Low Nadezhdinsky suits (widespread on the West) consist of very similar tholeiitic basalts. It is important to emphasize that Hk volcanic rocks are analogous to Nd1 tholeiits ones in terms of high HLE and LREE. In contrast them Tk basalts (TiO2=2-4 mas. %; Gd/Yb=1.3) contain normal LREE concentrations. The latter widespread to the west from Khantajsko-Rybninsky swell separated from Hk and Nd1 suits. Perhaps, during this period two types of magma flowed from different sources were separated in space. The first magma type (Nd) is close to average crust composition and differs significantly from other basalts (Tk-Sm). During the late period of magmatism all surface of plateau Putorana was covered by very similar low-Ti lavas and tuffs. Thus, according to the geological setting and geochemical features, 4 cycles of volcanism in the Noril'sk region can be distinguished: 1) Iv-Sv, 2) Gd, 3) Hk-Nd, 4) Tk, 5) Mr-Sm . What is a place of ore-bearing intrusions in this scenario? Due to the elevated weighted mean MgO content (10-12 mas.%) in the ore-bearing intrusions ( it is believed that the massifs with sulfide mineralization are comagmatic with high-Mg effusive rocks Gd, Tk or Nd suits. But their mineralogo-geochemical features are very different. An additional noril'sk type massifs intrude not only rocks of these suits but Nd and Mr too[2]. So they crystallized from an own portion of magma. They might have been formed after the formation of all volcanic sequences. References 1.Lightfoot P.C. et al. // Contrib.Mineral.Petrology. 1993. V.114. P.171-188. 2.Krivolutskaya N.A., Rudakova A.V. // Geochemistry International. 2009. Vol. 47. No. 7. P. 635-656. 3.Sobolev A.V., Krivolutskaya N.A., Kuzmin D.V. // Petrology. 2009. V. 17. No. 3

  2. Trace element characteristics of mafic and ultramafic meta-igneous rocks from the 3.5 Ga. Warrawoona group: evidence for plume-lithosphere interaction beneath Archaean continental crust

    International Nuclear Information System (INIS)

    Bolhar, R.; Hergt, J.; Woodhead, J.


    compositionally similar volcanic greenstones in the Superior Province (Canada). However, this concept is problematic for two reasons: (1) Modern oceanic crust is typically associated with overlying terrigenous/ pelagic sediments, both of which are introduced into the mantle via subduction. Mixing with mantle and subsequent partial melting invariably produces compositions with HFSE depletion and LREE enrichment at low to moderate degrees of melting. (2) Mixing of subduction-modified lithosphere into the mantle followed by melting should be detectable in volcanic rocks with strong depletions in elements such as Nb and Ti, but increased abundances in the LILE and LREE (La/Sm pm >> 1). Compositionally, the Warrawoona meta-igneous rocks resemble compositions found in modern oceanic plateaus (e.g. Broken Ridge) which incorporated variable amounts of continental lithospheric mantle (CLM). Variability in trace element ratios (e.g. Nb/Ta, Ce/Pb, and Nb/U) may reflect source heterogeneity or the coexistence of tectonically accreted oceanic fragments with differing petrogenetic histories. However, well-defined co-variations in major and trace elements of samples from all three major stratigraphic units point to a common magmatic origin. In an attempt to link Archaean rocks to present day analogues, we conclude that the spatial association of ultramafic and mafic volcanics and crustally contaminated high-Mg, Fe rocks most resembles melting of a plume head with incorporation of CLM-components and volcanic outpouring within a (rifted?) continental environment. Support for the existence of pre-existing continental crust comes from published studies which report on xenocrystic zircons in basalts, underlying granitoids and sediments of pre-Warrawoona age and mafic inclusions within granitoid bodies. Temporal decreases in La/Sm pm and Nb/Th pm ratios, along with unfractionated HREE may be interpreted as adiabatic upwelling of plume material and a decreasing influence of the lithospheric component

  3. Carbonate dissolution rates in high salinity brines: Implications for post-Noachian chemical weathering on Mars (United States)

    Phillips-Lander, Charity M.; Parnell, S. R.; McGraw, L. E.; Elwood Madden, M. E.


    .12 log mol m-2 s-1), while dissolution slowed in both NaCl solutions (0.1 mol kg-1; -8.23 ± 0.10 log mol m-2 s-1 and (5.7 mol kg-1; -8.44 ± 0.11 log mol m-2 s-1), as well as near-saturated MgSO4 brine (2.7 mol kg-1; -8.35 ± 0.05 log mol m-2 s-1). The slowest calcite dissolution rates observed in the near-saturated NaCl brine. Magnesite dissolution rates were ∼5 times faster in the dilute salt solutions relative to UPW, but similar to UPW (-8.47 ± 0.06 log mol m-2 s-1) in near-saturated Na2SO4 brines (-8.41 ± 0.18 log mol m-2 s-1). Magnesite dissolution slowed significantly in near-saturated CaCl2 brine (-9.78 ± 0.10 log mol m-2 s-1), likely due to the significantly lower water activity in these experiments. Overall, magnesite dissolution rates are slower than calcite dissolution rates and follow the trend: All dilute salt solutions >2.5 mol kg-1 Na2SO4 ≈ UPW > 5.7 mol kg-1 NaCl >> 9 mol kg-1 CaCl2. Calcite rates follow the trend 3 mol kg-1 MgCl2 > 2.5 mol kg-1 Na2SO4 ≈ UPW ≈ all dilute salt solutions >2.7 mol kg-1 MgSO4 ≈ 5.7 mol kg-1 NaCl. Magnesite dissolution rates in salt solutions generally decrease with decreasing aH2O in both chloride and sulfate brines, which indicates water molecules act as ligands and participate in the rate-limiting magnesite dissolution step. However, there is no general trend associated with water activity observed in the calcite dissolution rates. Calcite dissolution accelerates in near-saturated MgCl2, but slows in near-saturated NaCl brine despite both brines having similar water activities (aH2O = 0.73 and 0.75, respectively). High Mg calcite was observed as a reaction product in the near-saturated MgCl2, indicating Mg2+ from solution likely substituted for Ca2+ in the initial calcite, releasing additional Ca2+ into solution and increasing the observed calcite dissolution rate. Calcite dissolution rates also increase slightly as Na2SO4 concentration increases, while calcite dissolution rates slow slightly with increasing

  4. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A


    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  5. Petrology of Olkiluoto

    International Nuclear Information System (INIS)

    Kaerki, A.; Paulamaeki, S.


    form groups of their own that can be identified both macroscopically and chemically. The rocks of the T series are various veined gneisses and diatexitic gneisses, together with various mica gneisses and quartz gneisses. One typical feature of this series is the occurrence of strongly pinitized cordierite and sometimes also a small proportion of sillimanite. The T series is an transition series, the end members of which are relatively dark and often cordierite-bearing mica gneisses and migmatites with less than 60% SiO 2 and quartz gneisses with more than 75% SiO 2 , representing clay mineral-rich pelitic materials and greywacke-type impure sandstones, respectively. Certain TGG gneisses that are typically granitic in their modal mineral composition show a chemical similarity to the members of the T series. The members of the S series may be identified from their textures and mineral compositions as quartz gneisses, mica gneisses, migmatites and mafic gneisses. The most essential difference between these and the members of the other series is their high calcium concentration, the figure typically exceeding 2%, with maximum concentrations over 13%, while those in the T series are below 2%. A relatively low alkali content and high manganese content are also typical of this series, the members of which are assumed to have originated from calcareous sedimentary materials. The members of the P series are TGG gneisses, veined gneisses, diatexitic gneisses, mafic gneisses and mica gneisses typically with a small proportion of leucosome. These stand out from the other series by virtue of their high phosphorus content. P2O 5 concentrations exceeding 0.3% are characteristic of the members of the P series, whereas the other common supracrustal rock types at Olkiluoto contain less than 0.2% P2O 5 . Mafic gneisses and metadiabases not included in the above-mentioned three series are represented only by a couple of samples, the characteristic chemical variables of which are high Mg

  6. Investigations on uranium sorption on bentonite and montmorillonite, respectively, and uranium in environmental samples; Untersuchungen zur Uransorption an Bentonit bzw. Montmorillonit sowie von Uran in Umweltproben

    Energy Technology Data Exchange (ETDEWEB)

    Azeroual, Mohamed


    (VI) sorption on four montmorillonite-standard, which are distinguished by the cationic composition of the octahedral sheet, provided further evidence on the mechanism of uranium(VI) sorption on montmorillonit. The uranium(VI) sorption was found to be controlled by the cationic composition of the octahedral sheet and by the dissolution rate of montmorillonite. Higher Mg contents in the octahedral sheet enhance the dissolution kinetics of Montmorillonite and thus lower uranium(VI) sorption with time and vice versa. In addition to Al and Fe octahedron, Mg octahedron contributes to the sorption of uranium(VI) (here 20 up to 50 % depending on Mg content in Montmorillonite). These observations allowed to propose a model for the mechanism of uranium(VI) sorption on the edge surface of montmorillonite. At lower octahedral Mg contents (here SWy- and STx-montmorillonites), at which the distance between Mg octahedra becomes larger, uranium(VI) binds monodentately to AlAl-OH, AlFe-OH, AlMg-OH, FeFe-OH, and FeMg-OH pairs and the Mg octahedra contribute up to approximately 20 % to the sorption of uranium(VI). At high Mg contents in the octahedral sheet, where the distance between Mg octahedra becomes small and MgMg-OH pairs can occur, uranium(VI) forms monodentate surface complexes with AlAl-OH, AlFe-OH, AlMg-OH, FeFe-OH, FeMg-OH, and MgMg-OH pairs and the Mg octahedra can even stronger contribute to uranium(VI) sorption (up to about 50 %). The second focus of this work concerned the environmental analytics of uranium. In this regard, extensive investigations of environmental samples from tailings disposal sites near Mailuu-Suu city (Kyrgyzstan) were carried out. Previous radiological examinations in Mailuu-Suu showed that uranium can migrate from tailings as a result of rain events to the ground water and river water and eventually to the foods [Vandenhove et al., 2006]. Therefore, it was very important to investigate, uranium speciation in water samples and the processes which controlling

  7. Petrogenesis and zircon U-Pb dating of skarnified pyroxene-bearing dioritic rocks in Bisheh area, south of Birjand, eastern Iran

    Directory of Open Access Journals (Sweden)

    Malihe Nakhaei


    during the melting of the source (Reagan and Gill, 1989. This pattern followed that of calc-alkaline magmas derived from a sub-arc mantle, with scarce or no garnet in the source. Furthermore, Bisheh subvolcanic bodies were enriched in Rb, Ba and Th, indicating that they had experienced interaction with the continental crust (Kuşcu et al., 2002. The chondrite-normalized rare earth element pattern of the studied rocks shows a high ratio of light rare earth elements (LREE to heavy rare earth elements (HREE. All the samples have been plotted in the VAG field. The dioritic rocks from the Bisheh have relatively high Mg# (0.4-0.56, which is consistent with derivation from mantle melts contaminated by continental crust (Rapp and Watson, 1995. The initial 87Sr/86Sr of Bisheh pyroxene diorite porphyry was 0.70606 and the (143Nd/144Ndi isotope compositions and εNd value of these rocks was 0.512424 and -3.05, respectively. These values show that the magma originated from an enriched mantle with crustal contamination. Acknowledgements The authors are grateful to Professor Sun-Lin Chung from the Department of Geosciences, National Taiwan University, for supporting the researchers in the use of U-Th-Pb zircon age dating. References Berberian, M. and King, G.C., 1981. Towards a palaeogeography and tectonics evolution of Iran. Canadian Journal of Earth Science, 18(2: 210–265. Esmaeily, D., Nedelec, A., Valizadeh, M.V., Moore, F. and Cotton, J., 2005. Petrology of the Jurassic Shah-Kuh granite (eastern Iran, with reference to tin mineralization. Journal of Asian Earth Sciences, 25(6: 961-980. Tarkian, M., Lotfi, M. and Baumann, A., 1983. Tectonic, magmatism and the formation of mineral deposits in the central Lut, east Iran. Geological Survey of Iran, geodynamic project (geotraverse in Iran, Tehran, Report 51, 519 pp. Moradi Noghondar, M., Karimpour, M.H., Farmer, G.L. and Stern, C.R., 2011-2012. Sr-Nd isotopic characteristic, U-Pb zircon geochronology, and petrogenesis of Najmabad

  8. Mineral chemistry and geothemobarometry of mantle harzburgites in the Eastern Metamorphic Complex of Khoy ophiolite -NW Iran

    Directory of Open Access Journals (Sweden)

    Morovvat Faridazad


    clinopyroxene (Nimis and Taylor, 2000 barometer is used. Using this calibration and temperatures from single pyroxene thermometer a pressure of ~22±2.4 Kbar for equilibrium clinopyroxene and associated minerals in the studied harzburgites was estimated. Discussion Mineral chemistry studies indicate that these harzburgites may be related to oceanic settings. Moreover, the high Mg# in orthopyroxenes and clinopyroxenes and the high Fo% in olivines are indications of their tectonite origin. Calculation of partial melting degree using spinels compositions indicate that they are experienced 7.6-10.4 partial melting. In this regard, they are consistent with the partial melting degree in the Atlantic and Indian oceans. The spreading rate studies indicate that harzburgites are produced in the region with slow spreading rate. Their tectonic setting is more consistent with MOR peridotites. Based on geothemobarometry studies an overall ~1100±100°C temperature and ~22±2.4Kbar pressure are estimated which are consistent with mantle spinel lherzolite facies. Acknowledgements The author would like to thank the reviewers for the constructive comments which greatly contributed to the improvement of the manuscript. References Hellebrand, E., Snow, J.E., Dick, H.J.B., and Hofmann, A.W., 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean ridge peridotites. Nature, 410(6829: 677–681. Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95(B3: 2661-2678. Kananian, A., Ataei, M., Mirmohammadi, M., and Emamalipour, A., 2010. Petrography, mineral chemistry and genesis of Aland and Gheshlagh Chromite deposits, Khoy ophiolite (NW of Iran. Iranian Journal of Crystallography and Mineralogy, 18(3: 369-380. (in Persian with English abstract Kornprobst, J., Ohnenstetter, D., Ohnenstetter, M., Ohnenstetter, M., 1981. Na and Cr contents