WorldWideScience

Sample records for kabuli chickpea germplasm

  1. Comparative analysis of kabuli chickpea transcriptome with desi and wild chickpea provides a rich resource for development of functional markers.

    Directory of Open Access Journals (Sweden)

    Gaurav Agarwal

    Full Text Available Chickpea (Cicer arietinum L. is an important crop legume plant with high nutritional value. The transcriptomes of desi and wild chickpea have already been sequenced. In this study, we sequenced the transcriptome of kabuli chickpea, C. arietinum (genotype ICCV2, having higher commercial value, using GS-FLX Roche 454 and Illumina technologies. The assemblies of both Roche 454 and Illumina datasets were optimized using various assembly programs and parameters. The final optimized hybrid assembly generated 43,389 transcripts with an average length of 1065 bp and N50 length of 1653 bp representing 46.2 Mb of kabuli chickpea transcriptome. We identified a total of 5409 simple sequence repeats (SSRs in these transcript sequences. Among these, at least 130 and 493 SSRs were polymorphic with desi (ICC4958 and wild (PI489777 chickpea, respectively. In addition, a total of 1986 and 37,954 single nucleotide polymorphisms (SNPs were predicted in kabuli/desi and kabuli/wild genotypes, respectively. The SNP frequency was 0.043 SNP per kb for kabuli/desi and 0.821 SNP per kb for kabuli/wild, reflecting very low genetic diversity in chickpea. Further, SSRs and SNPs present in tissue-specific and transcription factor encoding transcripts have been identified. The experimental validation of a selected set of polymorphic SSRs and SNPs exhibited high intra-specific polymorphism potential between desi and kabuli chickpea, suggesting their utility in large-scale genotyping applications. The kabuli chickpea gene index assembled, and SSRs and SNPs identified in this study will serve as useful genomic resource for genetic improvement of chickpea.

  2. Nutritional evaluation of kabuli and desi type chickpeas (cicer ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... value of kabuli and desi type chickpeas using in vitro gas production technique in sheep. ... India Mexico, Morocco, Myanmar, Pakistan, Spain, Syria,. Tanzania, Tunisia ... contains 29% protein, 59% carbohydrate, 3% fiber, 5% oil ... production data were fitted to the model of Orskov and McDonald. (1979).

  3. Evaluation of Kabuli chickpea (Cicer arietinum L. cultivars response to sowing date

    Directory of Open Access Journals (Sweden)

    seyd karim moosavi

    2009-06-01

    Full Text Available In order to study the effect of terminal drought stress on some quantitative traits and tolerance of three kabuli chickpea genotypes, an experiment was carried out at Kohdasht, Iran, on a loam soil using, a split plot experimental design with three replications. Three sowing dates (autumn, winter and spring were assigned to main plots and three Kabuli chickpea genotypes (ILC482, Greet and Hashem to sub plots. Results indicated that delay in sowing date decreased dry matter (66%, and grain yield (89%. Grain yield reduction was mainly due to reduced number of pod/plant (60%, 100 seed weight (32%. Considering the stress tolerance index (STI Greet had the highest grain yield under the optimum condition (1464 kg/ha as well as under terminal drought stress condition (302 kg/ha. It also performed to be resistant to terminal drought stress and height temperature conditions, according to stress susceptibility index (SSI .

  4. Differential response of kabuli and desi chickpea genotypes toward inoculation with PGPR in different soils

    Science.gov (United States)

    Imran, Asma; Mirza, Muhammad S.; Shah, Tariq M.; Malik, Kauser A.; Hafeez, Fauzia Y.

    2015-01-01

    Pakistan is among top three chickpea producing countries but the crop is usually grown on marginal lands without irrigation and fertilizer application which significantly hampers its yield. Soil fertility and inoculation with beneficial rhizobacteria play a key role in nodulation and yield of legumes. Four kabuli and six desi chickpea genotypes were, therefore, evaluated for inoculation response with IAA-producing Ochrobactrum ciceri Ca-34T and nitrogen fixing Mesorhizobium ciceri TAL-1148 in single and co-inoculation in two soils. The soil type 1 was previously unplanted marginal soil having low organic matter, P and N contents compared to soil type 2 which was a fertile routinely legume-cultivated soil. The effect of soil fertility status was pronounced and fertile soil on average, produced 31% more nodules, 62% more biomass and 111% grain yield than marginal soil. Inoculation either with O. ciceri alone or its co-inoculation with M. ciceri produced on average higher nodules (42%), biomass (31%), grains yield (64%) and harvest index (72%) in both chickpea genotypes over non-inoculated controls in both soils. Soil 1 showed maximum relative effectiveness of Ca-34T inoculation for kabuli genotypes while soil 2 showed for desi genotypes except B8/02. Desi genotype B8/02 in soil type 1 and Pb-2008 in soil type 2 showed significant yield increase as compared to respective un-inoculated controls. Across bacterial inoculation treatments, grain yield was positively correlated to growth and yield contributing parameters (r = 0.294* to 0.838*** for desi and r = 0.388* to 0.857** for kabuli). PCA and CAT-PCA analyses clearly showed a site-specific response of genotype x bacterial inoculation. Furthermore, the inoculated bacterial strains were able to persist in the rhizosphere showing colonization on root and within nodules. Present study shows that plant growth promoting rhizobacteria (PGPR) inoculation should be integrated with national chickpea breading program in

  5. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement.

    Science.gov (United States)

    Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis

    2017-02-01

    Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Extraction and characterization of chickpea (Cicer arietinum) albumin and globulin.

    Science.gov (United States)

    Liu, L H; Hung, T V; Bennett, L

    2008-06-01

    Albumin and globulin fractions of 1 Desi and 2 Kabuli varieties of chickpeas (Cicer arietinum) were extracted with water and salt solutions (K(2)SO(4) and NaCl). The extractable yields and particularly the albumin-globulin ratio varied greatly with the extraction medium and chickpea variety. Depending on the procedure employed, albumin could be extracted as a major fraction of chickpea proteins. Higher levels of essential amino acids and sulfur containing amino acids were found in albumins than in globulins of all chickpeas investigated. The common structural characteristics of both Kabuli and Desi chickpea albumins and globulins were clearly identified by densitometric profiles of their sodium dodecyl sulfate polyacrylamide gel patterns. Albumins contained subunits with higher molecular weights than those of globulins. The in vitro digestibility of the chickpea proteins by papain, pepsin, chymotrypsin, and trypsin indicated that globulins were more susceptible to proteolytic hydrolysis.

  7. Study of phytoaccumulation of selenium by two different genotypes of chickpea plant using INAA

    International Nuclear Information System (INIS)

    Srivastava, Alok; Prerna, Agarwal; Pathania, D.; Nayyar, H.; Swain, K.K.; Ajith, Nicy; Reddy, A.V.R.; Acharya, R.

    2011-01-01

    The phytoaccumulation efficacy of two geno types of chickpea plant member of the legume family has been studied using instrumental neutron activation analysis. The present work shows that both the desi as well as the kabuli variety of the chickpea plant have potential for application as a bioremediator as well as fortifier. The kabuli variety seems to be a better bioremediator. (author)

  8. Characterization of chickpea germplasm conserved in the Indian National Genebank and development of a core set using qualitative and quantitative trait data

    Directory of Open Access Journals (Sweden)

    Sunil Archak

    2016-10-01

    Full Text Available Chickpea is the third most important pulse crop as a source of dietary protein. Ever-increasing demand in Asian countries calls for breeding superior desi-type varieties, in turn necessitating the availability of characterized germplasm to breeders. The Indian National Genebank, located at the National Bureau of Plant Genetic Resources, New Delhi, conserves 14,651 accessions of chickpea. The entire set was characterized in a single large-scale experiment. High variation was observed for eight quantitative and 12 qualitative agro-morphological traits. Allelic richness procedure was employed to assemble a core set comprising 1103 accessions, 70.0% of which were of Indian origin. Comparable values of total variation explained by the first three principal components in the entire collection (51.1% and the core (52.4% together with conservation of nine pairwise r values among quantitative traits in the core collection and a coincidence rate around 99.7% indicated that the chickpea core was indeed an excellent representation of the entire chickpea collection in the National Genebank. The chickpea core exhibited greater diversity than the entire collection in agro-morphological traits, as assessed by higher variance and Shannon–Weaver diversity indices, indicating that the chickpea core maximized the phenotypic diversity available in the Indian chickpea germplasm. The chickpea core, comprising mainly indigenous desi genotypes, is expected to be an excellent resource for chickpea breeders. Information on the chickpea core can be accessed at http://www.nbpgr.ernet.in/pgrportal.

  9. Physicochemical, thermal and functional characterisation of protein isolates from Kabuli and Desi chickpea (Cicer arietinum L.): a comparative study with soy (Glycine max) and pea (Pisum sativum L.).

    Science.gov (United States)

    Withana-Gamage, Thushan S; Wanasundara, Janitha P D; Pietrasik, Zeb; Shand, Phyllis J

    2011-04-01

    Chickpea (Cicer arietinum L.) seeds are a good source of protein that has potential applications in new product formulation and fortification. The main objectives of this study were to analyse the physicochemical, thermal and functional properties of chickpea protein isolates (CPIs) and compare them with those of soy (SPI) and pea (PPI) protein isolates. Extracted CPIs had mean protein contents of 728-853 g kg(-1) (dry weight basis). Analysis of their deconvoluted Fourier transform infrared spectra gave secondary structure estimates of 25.6-32.7% α-helices, 32.5-40.4% β-sheets, 13.8-18.9% turns and 16.3-19.2% disordered structures. CPIs from CDC Xena, among Kabuli varieties, and Myles, among Desi varieties, as well as SPI had the highest water-holding and oil absorption capacities. The emulsifying properties of Kabuli CPIs were superior to those of PPI and Desi CPIs and as good as those of SPI. The heat-induced gelation properties of CPIs showed a minimum protein concentration required to form a gel structure ranging from 100 to 140 g L(-1) . Denaturation temperatures and enthalpies of CPIs ranged from 89.0 to 92.0 °C and from 2.4 to 4.0 J g(-1) respectively. The results suggest that most physicochemical, thermal and functional properties of CPIs compare favourably with those of SPI and are better than those of PPI. Hence CPI may be suitable as a high-quality substitute for SPI in food applications. Copyright © 2011 Society of Chemical Industry.

  10. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Parween, Sabiha; Nawaz, Kashif; Roy, Riti; Pole, Anil K; Venkata Suresh, B; Misra, Gopal; Jain, Mukesh; Yadav, Gitanjali; Parida, Swarup K; Tyagi, Akhilesh K; Bhatia, Sabhyata; Chattopadhyay, Debasis

    2015-08-11

    Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.

  11. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Gowda Cholenahalli LL

    2008-10-01

    Full Text Available Abstract Background Plant genetic resources (PGR are the basic raw materials for future genetic progress and an insurance against unforeseen threats to agricultural production. An extensive characterization of PGR provides an opportunity to dissect structure, mine allelic variations, and identify diverse accessions for crop improvement. The Generation Challenge Program http://www.generationcp.org conceptualized the development of "composite collections" and extraction of "reference sets" from these for more efficient tapping of global crop-related genetic resources. In this study, we report the genetic structure, diversity and allelic richness in a composite collection of chickpea using SSR markers, and formation of a reference set of 300 accessions. Results The 48 SSR markers detected 1683 alleles in 2915 accessions, of which, 935 were considered rare, 720 common and 28 most frequent. The alleles per locus ranged from 14 to 67, averaged 35, and the polymorphic information content was from 0.467 to 0.974, averaged 0.854. Marker polymorphism varied between groups of accessions in the composite collection and reference set. A number of group-specific alleles were detected: 104 in Kabuli, 297 in desi, and 69 in wild Cicer; 114 each in Mediterranean and West Asia (WA, 117 in South and South East Asia (SSEA, and 10 in African region accessions. Desi and kabuli shared 436 alleles, while wild Cicer shared 17 and 16 alleles with desi and kabuli, respectively. The accessions from SSEA and WA shared 74 alleles, while those from Mediterranean 38 and 33 alleles with WA and SSEA, respectively. Desi chickpea contained a higher proportion of rare alleles (53% than kabuli (46%, while wild Cicer accessions were devoid of rare alleles. A genotype-based reference set captured 1315 (78% of the 1683 composite collection alleles of which 463 were rare, 826 common, and 26 the most frequent alleles. The neighbour-joining tree diagram of this reference set represents

  12. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part I: broad chemical composition.

    Science.gov (United States)

    Wood, Jennifer A; Knights, Edmund J; Campbell, Grant M; Choct, Mingan

    2014-05-01

    Ease of milling is an important quality trait for chickpeas (Cicer arietinum L.) and involves two separate processes: removal of the seed coat and splitting of cotyledons. Four chickpea genotypes (two desi types, one kabuli type and one interspecific hybrid with 'wild' C. echinospermum parentage) of differing ease of milling were examined to identify associated seed composition differences in the seed coat, cotyledons and their junctions (abaxial and adaxial). Several components in different fractions were associated with ease of milling chickpea seeds: primarily soluble and insoluble non-starch polysaccharides (including pectins) and protein at the seed coat and cotyledon junctions, and the lignin content of the seed coat. This study shows that the chemical composition of chickpea does vary with seed type (desi and kabuli) and within desi genotypes in ways that are consistent with physical explanations of how seed structure and properties relate to milling behaviour. © 2013 Society of Chemical Industry.

  13. Marker-trait association study for protein content in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Jadhav, A A; Rayate, S J; Mhase, L B; Thudi, M; Chitikineni, A; Harer, P N; Jadhav, A S; Varshney, R K; Kulwal, P L

    2015-06-01

    Chickpea (Cicer arietinum L.) is the second most important cool season food legume cultivated in arid and semiarid regions of the world. The objective of the present study was to study variation for protein content in chickpea germplasm, and to find markers associated with it. A set of 187 genotypes comprising both international and exotic collections, and representing both desi and kabuli types with protein content ranging from 13.25% to 26.77% was used. Twenty-three SSR markers representing all eight linkage groups (LG) amplifying 153 loci were used for the analysis. Population structure analysis identified three subpopulations, and corresponding Q values of principal components were used to take care of population structure in the analysis which was performed using general linear and mixed linear models. Marker-trait association (MTA) analysis identified nine significant associations representing four QTLs in the entire population. Subpopulation analyses identified ten significant MTAs representing five QTLs, four of which were common with that of the entire population. Two most significant QTLs linked with markers TR26.205 and CaM1068.195 were present on LG3 and LG5. Gene ontology search identified 29 candidate genes in the region of significant MTAs on LG3. The present study will be helpful in concentrating on LG3 and LG5 for identification of closely linked markers for protein content in chickpea and for their use in molecular breeding programme for nutritional quality improvement.

  14. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.

  15. Analysis of genetic diversity in chickpea ( Cicer arietinum L ...

    African Journals Online (AJOL)

    Genetic diversity of seven chickpea (Cicer arietinum L.) cultivars of Pakistani origin ... effective method to determine the variations among the chickpea cultivars. ... to broaden the germplasm base in the future for chickpea breeding programs.

  16. PLATELET AGGREGATION AND ANTI-INFLAMMATORY EFFECTS OF GARDEN PEA, DESI CHICKPEA AND KABULI CHICKPEA

    Czech Academy of Sciences Publication Activity Database

    ZIA-UL-HAQ, M.; ALI KHAN, B.; Landa, Přemysl; Kutil, Zsófia; AHMED, S.; QAYUM, M.; Ahmad, S.

    2012-01-01

    Roč. 69, č. 4 (2012), s. 707-711 ISSN 0001-6837 Institutional research plan: CEZ:AV0Z50380511 Keywords : platelet aggregation * Garden pea * Desi chickpea Subject RIV: EF - Botanics Impact factor: 0.665, year: 2012 http://home.ueb.cas.cz/publikace/2012_Haq_ACTA_POLONIAE_PHARMACEUTICA_707.pdf

  17. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2016-03-01

    Full Text Available Identification of potential genes/alleles governing complex seed-protein content (SPC trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study, high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium decay] was utilized. This led to identification of seven most effective genomic loci (genes associated [10 to 20% with 41% combined PVE (phenotypic variation explained] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line mapping population (ICC 12299 x ICC 4958 by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22% was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait

  18. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  19. Induced mutations in chickpea (Cicer arietinum L.) II. frequency and spectrum of chlorophyll mutations

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    A comparative study of frequency and spectrum of chlorophyll mutations induced by two physical (gamma rays, fast neutrons) and two chemical mutagens (NMU, EMS) in relation to the effects in M1 plants and induction of mutations in M2 was made in four chickpea (Cicer arietinum L.) varieties, two desi (G 130 & H 214) one Kabuli (C 104) and one green seeded (L 345). The treatments included three doses each of gamma rays (400, 500 & 600 Gy) and fast neutrons (5, 10 & 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU [0.01% (20h), & 0.02% (8h)] and EMS [0.1% (20h) & 0.2% (8h)]. The frequencies and spectrum of three different kinds of induced chlorophyll mutations in the order albina (43.5%), chlorina (27.3%) and xantha (24.2%) were recorded. Chemical mutagens were found to be efficient in inducing chlorophyll mutations in chickpea. Highest frequency of mutations was observed in green seeded var. L 345 (83% of M1 families and 19.9/1000 M2 plants). Kabuli var. C 104 was least responsive for chlorophyll mutations

  20. Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor

    Science.gov (United States)

    Chickpea (Cicer arietieum) is a widely cultivated food legume and one of the Neolitic founder crops domesticated in the Fertile Crescent. Cultivated chickpea is classified into two types, a ‘desi’ type with smaller and darker seed coats, and a light-colored large-seeded ‘kabuli’ type, with the two t...

  1. Exploiting Genomic Resources for Efficient Conservation and Use of Chickpea, Groundnut, and Pigeonpea Collections for Crop Improvement

    Directory of Open Access Journals (Sweden)

    C. L. Laxmipathi Gowda

    2013-11-01

    Full Text Available Both chickpea ( L. and pigeonpea [ (L. Millsp.] are important dietary source of protein while groundnut ( L. is one of the major oil crops. Globally, approximately 1.1 million grain legume accessions are conserved in genebanks, of which the ICRISAT genebank holds 49,485 accessions of cultivated species and wild relatives of chickpea, pigeonpea, and groundnut from 133 countries. These genetic resources are reservoirs of many useful genes for present and future crop improvement programs. Representative subsets in the form of core and mini core collections have been used to identify trait-specific genetically diverse germplasm for use in breeding and genomic studies in these crops. Chickpea, groundnut, and pigeonpea have moved from “orphan” to “genomic resources rich crops.” The chickpea and pigeonpea genomes have been decoded, and the sequences of groundnut genome will soon be available. With the availability of these genomic resources, the germplasm curators, breeders, and molecular biologists will have abundant opportunities to enhance the efficiency of genebank operations, mine allelic variations in germplasm collection, identify genetically diverse germplasm with beneficial traits, broaden the cultigen’s genepool, and accelerate the cultivar development to address new challenges to production, particularly with respect to climate change and variability. Marker-assisted breeding approaches have already been initiated for some traits in chickpea and groundnut, which should lead to enhanced efficiency and efficacy of crop improvement. Resistance to some pests and diseases has been successfully transferred from wild relatives to cultivated species.

  2. Genome-wide development and deployment of informative intron-spanning and intron-length polymorphism markers for genomics-assisted breeding applications in chickpea.

    Science.gov (United States)

    Srivastava, Rishi; Bajaj, Deepak; Sayal, Yogesh K; Meher, Prabina K; Upadhyaya, Hari D; Kumar, Rajendra; Tripathi, Shailesh; Bharadwaj, Chellapilla; Rao, Atmakuri R; Parida, Swarup K

    2016-11-01

    The discovery and large-scale genotyping of informative gene-based markers is essential for rapid delineation of genes/QTLs governing stress tolerance and yield component traits in order to drive genetic enhancement in chickpea. A genome-wide 119169 and 110491 ISM (intron-spanning markers) from 23129 desi and 20386 kabuli protein-coding genes and 7454 in silico InDel (insertion-deletion) (1-45-bp)-based ILP (intron-length polymorphism) markers from 3283 genes were developed that were structurally and functionally annotated on eight chromosomes and unanchored scaffolds of chickpea. A much higher amplification efficiency (83%) and intra-specific polymorphic potential (86%) detected by these markers than that of other sequence-based genetic markers among desi and kabuli chickpea accessions was apparent even by a cost-effective agarose gel-based assay. The genome-wide physically mapped 1718 ILP markers assayed a wider level of functional genetic diversity (19-81%) and well-defined phylogenetics among domesticated chickpea accessions. The gene-derived 1424 ILP markers were anchored on a high-density (inter-marker distance: 0.65cM) desi intra-specific genetic linkage map/functional transcript map (ICC 4958×ICC 2263) of chickpea. This reference genetic map identified six major genomic regions harbouring six robust QTLs mapped on five chromosomes, which explained 11-23% seed weight trait variation (7.6-10.5 LOD) in chickpea. The integration of high-resolution QTL mapping with differential expression profiling detected six including one potential serine carboxypeptidase gene with ILP markers (linked tightly to the major seed weight QTLs) exhibiting seed-specific expression as well as pronounced up-regulation especially in seeds of high (ICC 4958) as compared to low (ICC 2263) seed weight mapping parental accessions. The marker information generated in the present study was made publicly accessible through a user-friendly web-resource, "Chickpea ISM-ILP Marker Database

  3. Technical note: Equilibrium moisture content of kabuli chickpea, black sesame, and white sesame seeds

    Science.gov (United States)

    Sesame and chickpeas are important crops for Ethiopia as both are major exports providing small farmers and the country much revenue. There is a lack of information on fundamental equilibrium moisture content (EMC) relationships for these products which would help facilitate better monitoring and st...

  4. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part II: protein, lipid and mineral composition.

    Science.gov (United States)

    Wood, Jennifer A; Knights, Edmund J; Campbell, Grant M; Choct, Mingan

    2014-05-01

    Part I introduced the concept of easy- and difficult-to-mill chickpea genotypes, the broad chemical composition of their seed fractions and proposed mechanistic explanations for physical differences consistent with observed variation in milling ease. Part II continues this research by delving deeper into the amino acid, fatty acid and mineral components. No association between fatty acid composition and ease of milling was observed. However, particular amino acids and mineral elements were identified that further support roles of lectins, pectins and mineral-facilitated binding in the adhesion of chickpea seed coat and cotyledons. These differences suggest underlying mechanisms that could be exploited by breeding programmes to improve milling performance. This study shows that the content and composition of amino acids, fatty acids and minerals within different chickpea tissues vary with seed type (desi and kabuli) and within desi genotypes in ways that are consistent with physical explanations of how seed structure and properties relate to milling behaviour. © 2013 Society of Chemical Industry.

  5. Identification of candidate genes for dissecting complex branch number trait in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Upadhyaya, Hari D; Das, Shouvik; Kumar, Vinod; Gowda, C L L; Sharma, Shivali; Tyagi, Akhilesh K; Parida, Swarup K

    2016-04-01

    The present study exploited integrated genomics-assisted breeding strategy for genetic dissection of complex branch number quantitative trait in chickpea. Candidate gene-based association analysis in a branch number association panel was performed by utilizing the genotyping data of 401 SNP allelic variants mined from 27 known cloned branch number gene orthologs of chickpea. The genome-wide association study (GWAS) integrating both genome-wide GBS- (4556 SNPs) and candidate gene-based genotyping information of 4957 SNPs in a structured population of 60 sequenced desi and kabuli accessions (with 350-400 kb LD decay), detected 11 significant genomic loci (genes) associated (41% combined PVE) with branch number in chickpea. Of these, seven branch number-associated genes were further validated successfully in two inter (ICC 4958 × ICC 17160)- and intra (ICC 12299 × ICC 8261)-specific mapping populations. The axillary meristem and shoot apical meristem-specific expression, including differential up- and down-regulation (4-5 fold) of the validated seven branch number-associated genes especially in high branch number as compared to the low branch number-containing parental accessions and homozygous individuals of two aforesaid mapping populations was apparent. Collectively, this combinatorial genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in seven potential known/candidate genes [PIN1 (PIN-FORMED protein 1), TB1 (teosinte branched 1), BA1/LAX1 (BARREN STALK1/LIKE AUXIN1), GRAS8 (gibberellic acid insensitive/GAI, Repressor of ga13/RGA and Scarecrow8/SCR8), ERF (ethylene-responsive element-binding factor), MAX2 (more axillary growth 2) and lipase] governing chickpea branch number. The useful information generated from this study have potential to expedite marker-assisted genetic enhancement by developing high-yielding cultivars with more number of productive (pods and seeds) branches in chickpea. Copyright © 2016 Elsevier

  6. A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies

    Czech Academy of Sciences Publication Activity Database

    Ruperao, P.; Chan, C.K.K.; Azam, S.; Karafiátová, Miroslava; Hayashi, S.; Čížková, Jana; Šimková, Hana; Vrána, Jan; Doležel, Jaroslav; Varshney, R.K.; Edwards, D.

    2014-01-01

    Roč. 12, č. 6 (2014), s. 778-786 ISSN 1467-7644 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : chickpea * genome assembly * cytogenetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.752, year: 2014

  7. BIOCHEMICAL AND MORPHOLOGICAL EVALUTION OF LOCAL ACCESSIONES OF CHICKPEA (CICER ARIETINUM L. FROM EX SITU COLLECTION OF IPGR – SADOVO

    Directory of Open Access Journals (Sweden)

    Sofia Petrova

    2017-12-01

    Full Text Available In the last decades an increased interest has been observed to chickpea and its role in the healthy diet. The seeds from chickpea are food of great biological value for human because they are rich in protein, carbohydrates, fats, minerals and vitamins. The aim of the present study is to make biochemical and morphological evaluation of local chickpea accessiones from the National Collection. A complex biochemical evaluation of the studied accessiones of chickpea by indicators is made - crude protein, crude fiber, crude ash and absolute dry substance. Nine accessiones - six Bulgarian varieties and three local populations, are distinguished with a proven positive difference to standard by indicators crude protein and crude fiber. All of them have erect growth habit, normal leaf type, rhombic form of pods and the plants do not lay down. Two old varieties and two local populations are stood out with minimal and not proven differences by the indicator crude ash. All accessiones are close to the standard by indicator absolute dry substance. Many of the materials have erect habitats, the plant do not lay down and have no anthocyanin pigment on it, with a cream-colored and "kabuli" shape of the seeds and are with no shattering pods.

  8. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows.

    Science.gov (United States)

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-05

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n=4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (Pmolecular spectral data of chickpeas can be distinguished from the barley. The two chickpeas did not differ in CP content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r=0.94, Pmolecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  9. Induced mutations in chickpea (Cicer arietinum L.) I. comparative mutagenic effectiveness and efficiency of physical & chemical mutagens

    International Nuclear Information System (INIS)

    Kharkwal, M.C.

    1998-01-01

    Mutagenic effectiveness usually means the rate of mutation as related to dose. Mutagenic efficiency refers to the mutation rate in relation to damage. Studies on comparative mutagenic effectiveness and efficiency of two physical (gamma rays and fast neutrons) and two chemical mutagens (NMU and EMS) on two desi (G 130 & H 214), one kabuli (C 104) and one green seeded (L 345) chickpea (Cicer arietinum L.) have been reported. The treatments included three doses each of gamma rays (400, 500 and 600 Gy) and fast neutrons (5, 10 and 15 Gy) and two concentrations with two different durations of two chemical mutagens, NMU 0.01% 20h and 0.02% 8h) and EMS (0.1% 20h and 0.2% 8h). Results indicated that chemical mutagens, particularly NMU are not only more effective but also efficient than physical mutagens in inducing mutations in chickpea. Mutagenic effectiveness and efficiency showed differential behaviour depending upon mutagen and varietal type. Chemical mutagens were more efficient than physical in inducing cholorophyll as well as viable and total number of mutations. Among the mutagens NMU was the most potent, while in the physical, gamma rays were more effective. Out of four mutagens, NMU was the most effective and efficient in inducing a high frequency and wide spectrum of chlorophyll mutations in the M2 followed by fast neutrons. While gamma rays showed least effectiveness, EMS was least efficient mutagens. Major differences in the mutagenic response of the four cultivars were observed. The varieties of desi type were more resistant towards mutagenic treatment than kabuli and green seeded type

  10. Genotype x environment interaction and stability analysis for yield ...

    African Journals Online (AJOL)

    etc

    2015-05-06

    May 6, 2015 ... 4Ethiopian Institute of Agriculture Research, Debre Zeit Agriculture Research Center, Ethiopia. Received .... interaction on seed yield of Kabuli -chickpea genotypes .... becomes important for the chickpea breeders in terms of.

  11. Effect of Bacillus Species Rhizobacteria on Kabuli Chickpea Plants Growth under Pots and Field Conditions

    OpenAIRE

    Ait Kaki, Asma; Benhassine, Sara; Milet, Asma; Kara Ali, Monira; Moula, Nassim; Kacem Chaouche, Nordine

    2018-01-01

    In the present research, some Bacillus strains were produced at the industrial scale in order to be tested on chickpea growth, under pots and field conditions. Bacteria reached high sporulation yields ranging from 0.8×109-2.5×109 and 8×109-10×109 spores mL-1 in flasks and 500 L bioreactor culture conditions, respectively. Under pots experiment, B. amyloliquefaciens (9SRTS) and B. amyloliquefaciens (CWBI) increased significantly the root mass (0.31 and 0.37 vs. 0.066 g, respectively) and reduc...

  12. Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage.

    Science.gov (United States)

    Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tej Kumar; Satheesh, Viswanathan; Kohli, Deshika; Basavarajappa, Santosh Halasabala; Chellapilla, Bharadwaj; Kumar, Jitendra; Jain, Pradeep Kumar; Srinivasan, R

    2018-05-01

    The heat stress transcription factors (Hsfs) play a prominent role in thermotolerance and eliciting the heat stress response in plants. Identification and expression analysis of Hsfs gene family members in chickpea would provide valuable information on heat stress responsive Hsfs. A genome-wide analysis of Hsfs gene family resulted in the identification of 22 Hsf genes in chickpea in both desi and kabuli genome. Phylogenetic analysis distinctly separated 12 A, 9 B, and 1 C class Hsfs, respectively. An analysis of cis-regulatory elements in the upstream region of the genes identified many stress responsive elements such as heat stress elements (HSE), abscisic acid responsive element (ABRE) etc. In silico expression analysis showed nine and three Hsfs were also expressed in drought and salinity stresses, respectively. Q-PCR expression analysis of Hsfs under heat stress at pod development and at 15 days old seedling stage showed that CarHsfA2, A6, and B2 were significantly upregulated in both the stages of crop growth and other four Hsfs (CarHsfA2, A6a, A6c, B2a) showed early transcriptional upregulation for heat stress at seedling stage of chickpea. These subclasses of Hsfs identified in this study can be further evaluated as candidate genes in the characterization of heat stress response in chickpea.

  13. Genome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea).

    Science.gov (United States)

    Sharma, Ranu; Rawat, Vimal; Suresh, C G

    2017-12-01

    The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this resistance gene family during their independent evolution into two families. Comparative genomics analysis elucidated its evolutionary relationship with other fabaceae species. Around 50% NBS-LRRs reside in macro-syntenic blocks underlining positional conservation along with sequence conservation of NBS-LRR genes in chickpea. Transcriptome sequencing data provided evidence for their transcription and tissue-specific expression. Four cis -regulatory elements namely WBOX, DRE, CBF, and GCC boxes, that commonly occur in resistance genes, were present in the promoter regions of these genes. Further, the findings will provide a strong background to use candidate disease resistance NBS-encoding genes and identify their specific roles in chickpea.

  14. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    Science.gov (United States)

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Effects of seeding date and seeding rate on yield, proximate composition and total tannins content of two Kabuli chickpea cultivars

    Directory of Open Access Journals (Sweden)

    Roberto Ruggeri

    2017-09-01

    Full Text Available Experiments were conducted in open field to assess the effect of seeding season and density on the yield, the chemical composition and the accumulation of total tannins in grains of two chickpea (Cicer arietinum L. cultivars (Pascià and Sultano. Environmental conditions and genetic factors considerably affected grain yield, nutrient and total tannins content of chickpea seeds, giving a considerable range in its qualitative characteristics. Results confirmed cultivar selection as a central factor when a late autumn-early winter sowing is performed. In effect, a more marked resistance to Ascochyta blight (AB of Sultano, allowed better agronomic performances when favourable-to-AB climatic conditions occur. Winter sowing appeared to be the best choice in the Mediterranean environment when cultivating to maximise the grain yield (+19%. Spring sowing improved crude protein (+10% and crude fibre (+8% content, whereas it did not significantly affect the accumulation of anti-nutrients compounds such as total tannins. The most appropriate seeding rate was 70 seeds m–2, considering that plant density had relatively little effect on the parameters studied.

  16. Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers.

    Directory of Open Access Journals (Sweden)

    Manish Roorkiwal

    Full Text Available To estimate genetic diversity within and between 10 interfertile Cicer species (94 genotypes from the primary, secondary and tertiary gene pool, we analysed 5,257 DArT markers and 651 KASPar SNP markers. Based on successful allele calling in the tertiary gene pool, 2,763 DArT and 624 SNP markers that are polymorphic between genotypes from the gene pools were analyzed further. STRUCTURE analyses were consistent with 3 cultivated populations, representing kabuli, desi and pea-shaped seed types, with substantial admixture among these groups, while two wild populations were observed using DArT markers. AMOVA was used to partition variance among hierarchical sets of landraces and wild species at both the geographical and species level, with 61% of the variation found between species, and 39% within species. Molecular variance among the wild species was high (39% compared to the variation present in cultivated material (10%. Observed heterozygosity was higher in wild species than the cultivated species for each linkage group. Our results support the Fertile Crescent both as the center of domestication and diversification of chickpea. The collection used in the present study covers all the three regions of historical chickpea cultivation, with the highest diversity in the Fertile Crescent region. Shared alleles between different gene pools suggest the possibility of gene flow among these species or incomplete lineage sorting and could indicate complicated patterns of divergence and fusion of wild chickpea taxa in the past.

  17. Breeding experiments in chickpea (Cicer Arietinum L.), III. Chemical composition and In-vitro nutritional evaluation of chickpea developed lines compare with local varieties

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Eisa, M.A.M.

    1994-01-01

    Seed yield/plant, chemical composition and in vitro nutritional value of 4 developed lines of chickpea crop were studied in comparison with 3 recommended local varieties. According to appearance and size of size of the seeds, the line 1 and line 2 were compared with the local variety giza 1, while line 3 with giza 2 and line 4 with giza 88. Data showed that L 2 was better than giza 1 in grain yield/plant, in chemical composition and in nutritive value, too. Although L 1 was little less than giza 1 in yield quality, higher yield quantity of L 1 may correct the situation for its side. The L 3 surpassed the comparing variety Giza 2 in yield/plant, in chemical composition and in nutritive value. The L 4 can not be considered a promising variety because of its less quality and lower seed yield potentiality comparing with Giza 88. Thus, the new lines L 1 , L 2 and L 3 are considered good addition to the chickpea germplasm in Egypt. 4 tabs

  18. Relative infestation of some local and developed chickpea genotypes by cowpea weevil

    International Nuclear Information System (INIS)

    Moustafa, R.A.K.; Abdelkawy, F.K.

    1993-01-01

    Six chickpea genotypes, half of them are local varieties (Giza 1, Giza 88 and Giza 2) and the other three were developed either by hybridization or through a mutation breeding programme L 1, L 2 and L 3) were evaluated for resistant to cowpea weevil callosobruchus maculatus (F.). Giza 1, Giza 88, L 1 and L 2 are large seeded type, while Giza 2 and L 3 have small seeds. Results indicated that L 1 was more resistant to cowpea weevil than the other large seeded genotypes. On the other hand, L 3 exhibited much more resistant to this pest than Giza 2. However L 1 and L 3 are characterized by high seed yield/plant and have rounded seeds with smooth cream test a. These traits are desirable for the common consumers in Egypt. This means that L 1 and L 3 as a new chickpea germplasm may be of value for the egyptian farmers planting this crop. 3 tab

  19. Molecular spectroscopic features of protein in newly developed chickpea: Relationship with protein chemical profile and metabolism in the rumen and intestine of dairy cows

    Science.gov (United States)

    Sun, Baoli; Khan, Nazir Ahmad; Yu, Peiqiang

    2018-05-01

    The first aim of this study was to investigate the nutritional value of crude protein (CP) in CDC [Crop Development Centre (CDC), University of Saskatchewan] chickpea varieties (Frontier kabuli and Corinne desi) in comparison with a CDC barley variety in terms of: 1) CP chemical profile and subfractions; (2) in situ rumen degradation kinetics and intestinal digestibility of CP; 2) metabolizable protein (MP) supply to dairy cows; and (3) protein molecular structure characteristics using advanced molecular spectroscopy. The second aim was to quantify the relationship between protein molecular spectral characteristics and CP subfractions, in situ rumen CP degradation characteristics, intestinal digestibility of CP, and MP supply to dairy cows. Samples (n = 4) of each variety, from two consecutive years were analyzed. Chickpeas had higher (P content (21.71-22.11 vs 12.96% DM), with higher (P content, and any of the measured in situ degradation and molecular spectral characteristics of protein. The content of RUP was positively (r = 0.94, P content of CP (R2 = 0.91) D-fraction (R2 = 0.82), RDP (R2 = 0.77), RUP (R2 = 0.77), TDP (R2 = 0.98), MP (R2 = 0.80), and FMV (R2 = 0.80) can be predicted from amide II peak height. Despite extensive ruminal degradation, chickpea is a good source of MP for dairy cows, and molecular spectroscopy can be used to rapidly characterize feed protein molecular structures and predict their digestibility and nutritive value.

  20. Genotypic variability and mutant identification in cicer arietinum L. by seed storage protein profiling

    International Nuclear Information System (INIS)

    Hameed, A.; Iqbal, N.; Shah, T.M.

    2012-01-01

    A collection of thirty-four chickpea genotypes, including five kabuli and twenty-nine desi, were analyzed by SDS-PAGE for seed storage protein profiling. Total soluble seed proteins were resolved on 12% gels. A low level of variability was observed in desi as compared to kabuli genotypes. Dendrogram based on electrophoretic data clustered the thirty-four genotypes in four major groups. As large number of desi genotypes illustrated identical profiles, therefore could not be differentiated on the basis of seed storage protein profiles. One kabuli genotype ILC-195 found to be the most divergent showing 86% similarity with all other genotypes. ILC-195 can be distinguished from its mutant i.e., CM-2000 and other kabuli genotypes on the basis of three peptides i.e. SSP-66, SSP-43 and SSP-39. Some proteins peptides were found to be genotype specific like SSP-26 for ICCV-92311. Uniprot and NCBI protein databases were searched for already reported and characterized seed storage proteins in chickpea. Among 33 observed peptides, only six seed storages proteins from chickpea source were available in databases. On the basis of molecular weight similarity, identified peptides were SSP-64 as Serine/Threonine dehydratase, SSP-56 as Alpha-amylase inhibitor, SSP-50 as Provicillin, SSP-39 as seed imbibition protein, SSP-35 as Isoflavane reductase and SSP-19 as lipid transport protein. Highest variability was observed in vicillin subunits and beta subunits of legumins and its polymorphic forms. In conclusion, seed storage profiling can be economically used to asses the genetic variation, phylogenetic relationship and as markers to differentiate mutants from their parents. (author)

  1. Genotype x environment interaction and stability analysis for yield ...

    African Journals Online (AJOL)

    etc

    2015-05-06

    . Combined analysis of variance (ANOVA) for yield and yield components revealed highly significant .... yield stability among varieties, multi-location trials with ... Mean grain yield (kg/ha) of 17 Kabuli-type chickpea genotypes ...

  2. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  3. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  4. Effect of Symbiosis of Arbuscular Mycorhiza and Like-endo Mycorhiza on Yield and Uptake of MacroandMicro Elements in Chickpea Genotypes (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    M. J Arshadi

    2017-12-01

    Full Text Available Introduction Improving of nutrients absorption by biological approaches, in addition to emphasis on sustainable agriculture, will increase or stabilize crop yield. It seems that microorganisms such as mycorrhiza and rhizobium can improve the nutrients absorption in crops such as chickpea. Rhizobiums are effective to provide biological nitrogen for crops and mycorrhizal fungi are involved to supply biological phosphorus to the plants. Among them, the endo myccorihza (or Vesicular Arbuscular Mycorrhiza that is abbreviated VAM, in creation of symbiosis with the roots of crops such as legumes have been more successful. Of course, the mycorrhizal fungi and rhizobium bacteria before creating symbiosis with host plant, directly affect in the overlay in rhizosphere environment of host plant. Creating colonies in the roots by mycorrhizal fungi leads to conducive for forming nodulation of rhizobium. In other words, mycorrhiza fungi creats favorable conditions for the production of rhizobium nodules on the roots and also they affect on greater availability of phosphorus for nitrogenase enzymes involved in rhizobium bacteria. In contrast, rhizobiums affect in better absorption of nitrogen and followed by the synthesis of amino acids and amino acid availability for required mycorrhiza. It seems that this symbiotic relationship between plants, mycorrhizal and rhizobium can be either normal or adverse environmental conditions, which is effective in promoting the product of crop. However, the Triplet symbiosis of chickpea, mycorrhiza and rhizobium and also chickpea genotypes response to this symbiosis should be examined. Materials and Methods This study was conducted to investigate the inoculation of kabuli seeds of chickpea genotypes with arbuscular mycorrhiza and like - endomycorhiza, in 2014, in split plot by arrangement of two factors with a randomized complete block design and three replications in Research Field, Faculty of Agriculture, Ferdowsi

  5. Discovery of Putative Herbicide Resistance Genes and Its Regulatory Network in Chickpea Using Transcriptome Sequencing

    Directory of Open Access Journals (Sweden)

    Mir A. Iquebal

    2017-06-01

    the role of cytochrome P450, xyloglucan endotransglucosylase/hydrolase, glutamate dehydrogenase, methyl crotonoyl carboxylase and of thaumatin-like genes in herbicide resistance.Conclusion: Reported DEGs can be used as genomic resource for future discovery of candidate genes associated with herbicide tolerance. Reported markers can be used for future association studies in order to develop marker assisted selection (MAS for refinement. In endeavor of chickpea variety development programme, these findings can be of immense use in improving productivity of chickpea germplasm.

  6. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP).

    Science.gov (United States)

    Hajibarat, Zahra; Saidi, Abbas; Hajibarat, Zohreh; Talebi, Reza

    2015-07-01

    To evaluate the genetic diversity among 48 genotypes of chickpea comprising cultivars, landraces and internationally developed improved lines genetic distances were evaluated using three different molecular marker techniques: Simple Sequence Repeat (SSR); Start Codon Targeted (SCoT) and Conserved DNA-derived Polymorphism (CDDP). Average polymorphism information content (PIC) for SSR, SCoT and CDDP markers was 0.47, 0.45 and 0.45, respectively, and this revealed that three different marker types were equal for the assessment of diversity amongst genotypes. Cluster analysis for SSR and SCoT divided the genotypes in to three distinct clusters and using CDDP markers data, genotypes grouped in to five clusters. There were positive significant correlation (r = 0.43, P SSR markers. These results suggest that efficiency of SSR, SCOT and CDDP markers was relatively the same in fingerprinting of chickpea genotypes. To our knowledge, this is the first detailed report of using targeted DNA region molecular marker (CDDP) for genetic diversity analysis in chickpea in comparison with SCoT and SSR markers. Overall, our results are able to prove the suitability of SCoT and CDDP markers for genetic diversity analysis in chickpea for their high rates of polymorphism and their potential for genome diversity and germplasm conservation.

  7. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  8. An Update on Genetic Resistance of Chickpea to Ascochyta Blight

    Directory of Open Access Journals (Sweden)

    Mamta Sharma

    2016-03-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. is an important and widespread disease of chickpea (Cicer arietinum L. worldwide. The disease is particularly severe under cool and humid weather conditions. Breeding for host resistance is an efficient means to combat this disease. In this paper, attempts have been made to summarize the progress made in identifying resistance sources, genetics and breeding for resistance, and genetic variation among the pathogen population. The search for resistance to AB in chickpea germplasm, breeding lines and land races using various screening methods has been updated. Importance of the genotype × environment (GE interaction in elucidating the aggressiveness among isolates from different locations and the identification of pathotypes and stable sources of resistance have also been discussed. Current and modern breeding programs for AB resistance based on crossing resistant/multiple resistant and high-yielding cultivars, stability of the breeding lines through multi-location testing and molecular marker-assisted selection method have been discussed. Gene pyramiding and the use of resistant genes present in wild relatives can be useful methods in the future. Identification of additional sources of resistance genes, good characterization of the host–pathogen system, and identification of molecular markers linked to resistance genes are suggested as the key areas for future study.

  9. Spatial and temporal patterns of chickpea genotypes (Cicer arietinum L. root growth under waterlogging stress

    Directory of Open Access Journals (Sweden)

    ali ganjali

    2009-06-01

    Full Text Available The dynamic of root growth of chickpea genotypes; including Rupali (Desi and Flip 97-530 (Kabuli were evaluated under waterlogging stress in a Glasshouse experiment at CSIRO, Perth, WA. during 2005. Root growth boxes (0.1×0.24×1.0 m with one wall of glass were used as experimental units. Data were analyzed based on Randomized Complete Block Design with three replications. Waterlogging was induced when the first root reached 50cm. The water level was maintained on the soil surface for 12 days. After that, waterlogging was finished by draining the root growth boxes. In soil profile, root growth rate were calculated based on recorded information on transparent films during growing season. There was positive and strong linear correlation between the root traits that were measured in soil (direct measurment and transparent films (indirect measurment. Decay and death of roots caused a severe decrease on root growth rate during waterlogging, but root growth rate was sharply increased at the end of recovery period on 0-40 cm layer of soil surface. In both genotypes, spatial and temporal patterns of the root growth were different. Root growth rate was highest on distinc time for each layer of soil profile. In both genotypes, RLD decreased with increasing soil depth. Results showed that more distribution of root system on upper soil layers (0-40 cm is a strategy for chickpea plants, and so, soil management is very important on this layer. In stress and non stress environments, Flip 97-530 showed better root characteristics than the Rupali during growing season, so this genotype is probably more tolerate to water logging stress.

  10. Viruses involved in chickpea stunt

    NARCIS (Netherlands)

    Horn, N.M.

    1994-01-01

    Chickpea stunt is the most important virus disease of chickpea ( Cicer arietinum L). This disease is characterized by leaf chlorosis or leaf reddening (depending on the chickpea cultivar), plant stunting, internode shortening, reduction in size of

  11. Finger on the Pulse: Pumping Iron into Chickpea.

    Science.gov (United States)

    Tan, Grace Z H; Das Bhowmik, Sudipta S; Hoang, Thi M L; Karbaschi, Mohammad R; Johnson, Alexander A T; Williams, Brett; Mundree, Sagadevan G

    2017-01-01

    Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops-this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM) remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice.

  12. Finger on the Pulse: Pumping Iron into Chickpea

    Directory of Open Access Journals (Sweden)

    Grace Z. H. Tan

    2017-10-01

    Full Text Available Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops—this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice.

  13. Screening of ten advanced chickpea lines for blight and wilt resistance

    International Nuclear Information System (INIS)

    Jamil, F.F.; Haq, I.; Sarwar, N.; Alam, S.S.; Khan, J.A.; Hanif, M.; Khan, I.A.; Sarwar, M.; Haq, M.A.

    2002-01-01

    Ten advanced chickpea lines developed at NIAB were screened for resistance to Ascochyta blight and Fusarium wilt diseases in different sets of experiments conducted under controlled environment. Inoculation of plants by spore suspension of virulent strains of Ascochyta rabiei revealed that one line (97313) was resistant tolerant, two lines (97305, 97392) were tolerant, six lines (97306, 97310, 97311, 97303, 97302, 97393) were tolerant/susceptible and one line (97301) was susceptible. Screening of the same lines against Fusarium wilt by water culture method showed that two lines (97301, 97313) were moderately resistant, four lines (97302, 97303, 97306, 97393) were tolerant and the remaining four lines were susceptible. Screening through phytotoxic culture filtrates revealed that two lines (97302, 97313) were less sensitive to culture filtrates of Ascochyta rabiei and Fusarium oxysporum than the resistant check (CM88). These lines were also analyzed spectrophotometrically for peroxidase enzyme activity. Maximum enzyme activity was detected after 48 hours of inoculation with A. rabiei in three lines (97305, 97311, 97313) and resistant check (CM88) while enzyme activity in the remaining lines reached its maximum after 72 hours of inoculation which was comparable to the susceptible check (Pb-1). These studies lead to the conclusion that one line (97313) exhibited resistance against both the diseases and can be used as a source of resistance for further improvement of chickpea germplasm. (author)

  14. chickpea

    International Development Research Centre (IDRC) Digital Library (Canada)

    crop, chickpea has the potential to improve both soil health ... more farmers, particularly women, and provide greater household food security and income? In response, the researchers working through ... and low productivity, will be tested.

  15. Integrated management of Fusarium wilt of chickpea (Cicer ...

    African Journals Online (AJOL)

    user

    2013-07-17

    Jul 17, 2013 ... Key words: Integrated management, Fusarium wilt, Fusarium oxysporum f. sp. ciceris, chickpea (Cicer arietinum L.), antagonists, botanicals, fungicides. INTRODUCTION. Chickpea (Cicer arietinum L.) is a vital source of plant- derived edible protein in many countries. Chickpea also has advantages in the ...

  16. Impact of Genomic Technologies on Chickpea Breeding Strategies

    Directory of Open Access Journals (Sweden)

    Rajeev K. Varshney

    2012-08-01

    Full Text Available The major abiotic and biotic stresses that adversely affect yield of chickpea (Cicer arietinum L. include drought, heat, fusarium wilt, ascochyta blight and pod borer. Excellent progress has been made in developing short-duration varieties with high resistance to fusarium wilt. The early maturity helps in escaping terminal drought and heat stresses and the adaptation of chickpea to short-season environments. Ascochyta blight continues to be a major challenge to chickpea productivity in areas where chickpea is exposed to cool and wet conditions. Limited variability for pod borer resistance has been a major bottleneck in the development of pod borer resistant cultivars. The use of genomics technologies in chickpea breeding programs has been limited, since available genomic resources were not adequate and limited polymorphism was observed in the cultivated chickpea for the available molecular markers. Remarkable progress has been made in the development of genetic and genomic resources in recent years and integration of genomic technologies in chickpea breeding has now started. Marker-assisted breeding is currently being used for improving drought tolerance and combining resistance to diseases. The integration of genomic technologies is expected to improve the precision and efficiency of chickpea breeding in the development of improved cultivars with enhanced resistance to abiotic and biotic stresses, better adaptation to existing and evolving agro-ecologies and traits preferred by farmers, industries and consumers.

  17. Food allergy and cross-reactivity-chickpea as a test case.

    Science.gov (United States)

    Bar-El Dadon, Shimrit; Pascual, Cristina Y; Reifen, Ram

    2014-12-15

    Chickpea has become one of the most abundant crops consumed in the Mediterranean and also in western world. Chickpea allergy is reported in specific geographic areas and is associated with lentil and/or pea allergy. We investigated cross-reactivity between chickpea and pea/lentil/soybean/hazelnut. The IgE-binding profiles of chickpea globulin and pea/lentil/soybean/hazelnut extracts were analyzed by immunoblotting and immunoblot-inhibition studies. Inhibition-assay with pea/lentil completely suppressed IgE-binding to chickpea globulin allergens, while not so in the reciprocal inhibition. Pre-absorption of sera with chickpea globulin caused the disappearance of IgE-binding to protein on an immunoblot of soybean/hazelnut protein extract. These results suggest that cross-reactivity exists between chickpea and pea/lentil/soybean/hazelnut. Chickpea allergy is associated with lentil and/or pea allergy, but evidently may not present independently. This, together with the described asymmetric cross-reactivity and phylogenetic aspects, suggest that chickpea allergy is merely an expression of cross-reactivity, caused by pea and/or lentil as the "primary" allergen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Improving competitive ability of chickpea with sowthistle

    OpenAIRE

    Cici, S.-Z.-H.; Kristiansen, P.; Sindel, B.M.

    2005-01-01

    An experiment was conducted to examine the extent of root and canopy interference of chickpea (Cicer arietinum L.) with sowthistle (Sonchus oleraceus L.). Sowthistle was surrounded with either two or eight chickpea plants. There were different types of competition: no competition, shoot competition, root competition and full competition (root and shoot). The performance of sowthistle grown in full competition with two chickpea plants was the same as that grown with root competition only. Al...

  19. Effects of gamma irradiation on the shoot length of Cicer seeds

    International Nuclear Information System (INIS)

    Toker, Cengiz; Uzun, Bulent; Canci, Huseyin; Oncu Ceylan, F.

    2005-01-01

    The effects of radiation on the shoot and root lengths of germinated seedling of irradiated seeds of Cicer species, i.e. three kabuli types and four desi types of cultivated chickpea (Cicer arietinum Ladiz.) and 2 annual wild types (C. reticulatum Ladiz. and C. bijugum K.H. Rech.) were investigated. The seeds were irradiated with a 60 Co gamma source using 0, 200, 300 and 400 Gy doses at 1.66 kGy h -1 . At 200 Gy minor effects could be observed, but at 400 Gy an obvious depression of shoot length was observed. The kabuli types were more affected than the desi ones. The critical dose that prevented the shoot and root elongation varied among species and also ranged from genotypes to genotype within species

  20. Viral diseases affecting chickpea crops in Eritrea

    Directory of Open Access Journals (Sweden)

    SAFAA G. KUMARI

    2008-07-01

    Full Text Available A survey to identify virus diseases affecting chickpea crops in the major production areas of Eritrea was conducted during November 2005. The survey covered 31 randomly selected chickpea fi elds. Virus disease incidence was determined on the basis of laboratory testing of 100–200 randomly collected samples from each fi eld against antisera of 9 legume viruses. Serological tests indicated that the Luteoviruses were the most common, with an overall incidence of 5.6%, followed by Faba bean necrotic yellows virus (FBNYV, genus Nanovirus, family Nanoviridae (4.1% and Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae (0.9%. The reverse transcription polymerase chain reaction (RT-PCR test showed that the most common luteoviruses in Eritrea are Chickpea chlorotic stunt virus (CpCSV followed by Beet western yellows virus (BWYV, genus Polerovirus, family Luteoviridae. Based on the fi eld symptoms observed, 29 fi elds had, at the time of the survey, a virus disease incidence of 1% or less and only two fi elds had an incidence of about 5%, whereas on the basis of laboratory testing, 19 fi elds had more than 6% virus incidence (three of these had an incidence of 29.5, 34.5 and 40.5%. This is the fi rst survey of chickpea viruses in Eritrea and the fi rst report of BWYV, CpCDV, CpCSV and FBNYV naturally infecting chickpea in Eritrea.

  1. Remobilisation of carbon and nitrogen supports seed filling in chickpea subjected to water deficit

    International Nuclear Information System (INIS)

    Davies, S.L.; Plummer, J.A.

    2000-01-01

    In the Mediterranean-type environment of south-western Australia, pod filling of chickpea occurs when net photosynthesis and nitrogen fixation is low as a result of the onset of terminal drought. Remobilization of carbon (C) and nitrogen (N) from vegetative parts to developing seed may be an important alternative source of C and N for seed filling. The contribution of stored pre-podding C and N to seed filling was studied by labelling the vegetative tissues with the stable isotopes, 13 C and 15 N, prior to podding and following their subsequent movement to the seed. In ICCV88201, an advanced desi breeding line, 9% of the C and 67% of the N in the seed were derived from pre-podding C and N in well-watered plants compared with 13% of the seed C and 88% of the seed N in water-stressed plants. Furthermore, the contribution of pre-podding C and N was higher for earlier set compared with later set seeds. Pre-podding C and N were derived predominantly from the leaves with relatively little from the stems, roots, and pod walls. Genotypic variation in remobilization ability was identified in contrasting desi (Tyson) and kabuli (Kaniva) cultivars. In well-watered Tyson, 9% of the seed C and 85% of the seed N were remobilised from vegetative tissues compared with 7% of the seed C and 62% of seed N in well-watered Kaniva. Water deficit decreased the amount of C remobilized by 3% in Tyson compared with 66% in Kaniva, whereas the total amount of N remobilized was decreased by 11% in Tyson and 48% in Kaniva. This was related to the maintenance of greater sink strength in Tyson, in which the number of filled pods was reduced by 66% in stressed plants compared with a 91% decrease in Kaniva. This indicates that better drought tolerance in desi genotypes is partly a consequence of better remobilization and higher pod number. These studies show that C and N assimilated prior to podding can supplement the supply of current assimilates to the filling seed in both well-watered and water

  2. Chickpea seeds germination rational parameters optimization

    Science.gov (United States)

    Safonova, Yu A.; Ivliev, M. N.; Lemeshkin, A. V.

    2018-05-01

    The paper presents the influence of chickpea seeds bioactivation parameters on their enzymatic activity experimental results. Optimal bioactivation process modes were obtained by regression-factor analysis: process temperature - 13.6 °C, process duration - 71.5 h. It was found that in the germination process, the proteolytic, amylolytic and lipolytic enzymes activity increased, and the urease enzyme activity is reduced. The dependences of enzyme activity on chickpea seeds germination conditions were obtained by mathematical processing of experimental data. The calculated data are in good agreement with the experimental ones. This confirms the optimization efficiency based on experiments mathematical planning in order to determine the enzymatic activity of chickpea seeds germination optimal parameters of bioactivated seeds.

  3. The Tropical and Subtropical Germplasm Repositories of The National Germplasm System

    Science.gov (United States)

    Germplasm collections are viewed as a source of genetic diversity to support crop improvement and agricultural research, and germplasm conservation efforts. The United States Department of Agriculture's National Plant Germplasm Repository System (NPGS) is responsible for administering plant genetic ...

  4. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics

    OpenAIRE

    Verma, Mohit; Kumar, Vinay; Patel, Ravi K.; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database fea...

  5. Purification of free arginine from chickpea (Cicer arietinum) seeds.

    Science.gov (United States)

    Cortés-Giraldo, Isabel; Megías, Cristina; Alaiz, Manuel; Girón-Calle, Julio; Vioque, Javier

    2016-02-01

    Chickpea is a grain legume widely consumed in the Mediterranean region and other parts of the world. Chickpea seeds are rich in proteins but they also contain a substantial amount of free amino acids, especially arginine. Hence chickpea may represent a useful source of free amino acids for nutritional or pharmaceutical purposes. Arginine is receiving great attention in recent years because it is the substrate for the synthesis of nitric oxide, an important signaling molecule involved in numerous physiological and pathological processes in mammals. In this work we describe a simple procedure for the purification of arginine from chickpea seeds, using nanofiltration technology and an ion-exchange resin, Amberlite IR-120. Arginine was finally purified by precipitation or crystallization, yielding preparations with purities of 91% and 100%, respectively. Chickpea may represent an affordable green source of arginine, and a useful alternative to production by fermentation or protein hydrolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Saline water irrigation of quinoa and chickpea

    DEFF Research Database (Denmark)

    Hirich, A.; Jelloul, A.; Choukr-Allah, R.

    2014-01-01

    A pot experiment was conducted in the south of Morocco to evaluate the response of chickpea and quinoa to different irrigation water salinity treatments (1, 4, 7 and 10 dS m-1 for chickpea and 1, 10, 20 and 30 dS m-1 for quinoa). Increasing salinity affected significantly (P

  7. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  8. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review.

    Science.gov (United States)

    Jukanti, A K; Gaur, P M; Gowda, C L L; Chibbar, R N

    2012-08-01

    Chickpea (Cicer arietinum L.) is an important pulse crop grown and consumed all over the world, especially in the Afro-Asian countries. It is a good source of carbohydrates and protein, and protein quality is considered to be better than other pulses. Chickpea has significant amounts of all the essential amino acids except sulphur-containing amino acids, which can be complemented by adding cereals to the daily diet. Starch is the major storage carbohydrate followed by dietary fibre, oligosaccharides and simple sugars such as glucose and sucrose. Although lipids are present in low amounts, chickpea is rich in nutritionally important unsaturated fatty acids such as linoleic and oleic acids. β-Sitosterol, campesterol and stigmasterol are important sterols present in chickpea oil. Ca, Mg, P and, especially, K are also present in chickpea seeds. Chickpea is a good source of important vitamins such as riboflavin, niacin, thiamin, folate and the vitamin A precursor β-carotene. As with other pulses, chickpea seeds also contain anti-nutritional factors which can be reduced or eliminated by different cooking techniques. Chickpea has several potential health benefits, and, in combination with other pulses and cereals, it could have beneficial effects on some of the important human diseases such as CVD, type 2 diabetes, digestive diseases and some cancers. Overall, chickpea is an important pulse crop with a diverse array of potential nutritional and health benefits.

  9. Important macro and microelements in chickpea and lentil

    International Nuclear Information System (INIS)

    Ahmad, M.; Hussain, M.; Shafique, M.

    2002-01-01

    Important macro and microelements in different genotypes of chickpea and lentil were determined. Maximum concentrations (mg/100g) of Na, K, Ca, Mg, P, Fe, Zn, Mn and Cu were observed in chickpea genotypes C-727 (24.23), Pb-91 (1686.9), CM-98 (87.02), Pb-91 (228.29), Pb-91 (181.13), Paidar-91 (6.78), CM-89 (3.34), Paidar-91 (1.60) and CM-72 (1.29) and lentil genotypes TCL-85-1 (34.43), 46-3-3-1 (1250.3), 583-2 (85.0), 46-3-3-1 (200.59), Precoz (329.1), 583-2 (6.95), TCL-85-1 (4.40), 46-3-3-1 (1.37) and 79-1 (0.73). K, Mg, Mn and Cu were higher in chickpea, Na and P contents were higher in lentil whereas Ca, Fe and Zn contents were comparable in both the pulses. Coefficient of variability (CV) in different elements varied from 4.76% (Mn) to 15.09 % (Na) in chickpea and 7.66% (Na) to 21.39% (P) in lentil. Correlations between protein content and different minerals in chickpea and lentil were not significant. Field fortification of staples for minerals versus post-harvest addition is discussed. (author)

  10. Yield gap analysis of Chickpea under semi-arid conditions: A simulation study

    OpenAIRE

    seyed Reza Amiri Deh ahmadi; mehdi parsa; mohammad bannayan aval; mahdi nassiri mahallati

    2016-01-01

    Yield gap analysis provides an essential framework to prioritize research and policy efforts aimed at reducing yield constraints. To identify options for increasing chickpea yield, the SSM-chickpea model was parameterized and evaluated to analyze yield potentials, water limited yields and yield gaps for nine regions representing major chickpea-growing areas of Razavi Khorasan province. The average potential yield of chickpea for the locations was 2251 kg ha-1, while the water limited yield wa...

  11. Pyrosequencing data reveals tissue-specific expression of lineage-specific transcripts in chickpea

    OpenAIRE

    Garg, Rohini; Jain, Mukesh

    2011-01-01

    Chickpea is a very important crop legume plant, which provides a protein-rich supplement to cereal-based diets and has the ability to fix atmospheric nitrogen. Despite its economic importance, the functional genomic resources for chickpea are very limited. Recently, we reported the complete transcriptome of chickpea using next generation sequencing technologies. We analyzed the tissue-specific expression of chickpea transcripts based on RNA-seq data. In addition, we identified two sets of lin...

  12. Serological and molecular detection of Bean leaf roll and Chickpea chlorotic stunt luteoviruses in chickpea from Iran

    Directory of Open Access Journals (Sweden)

    Hajiyusef Tara

    2017-06-01

    Full Text Available Chickpea (Cicer arietinum L. is an important legume crop and widely cultivated in northwestern provinces of Iran. During a survey in the 2015 growing season a total of 170 selected chickpea plants with general yellowing symptoms including stunting and leaf bronzing were collected. Serological Elisa and tissue blot immunoassay (TIBA tests revealed the presence of Bean leaf roll virus (BLRV and Chickpea chlorotic stunt virus (CpCSV as the predominant viruses in the region. Some serologically positive samples of BLRV and CpCSV were selected and rechecked by RT-PCR. The results of amplified PCR products using a specific pair of primers towards the Cp gene region of the viruses were approximately 413 bp for CpCSV and 391 bp for BLRV. Results obtained from sequence comparison of BLRV (IR-F-Lor-5 isolate form two subgroups with eight other BLRV isolates from GeneBank indicating a high homology of 96% with isolates from Argentina, Germany, Tunisia, USA, Spain, and Colombia. An isolate from Norabad (Iran (IR-Nor had 98% homology with HQ840727 Libyan isolate. CpCSV sequence comparison with six other GeneBank isolates indicated 98% homology with isolates from Tunisia and Azerbaijan. The overall results of this research revealed the CpCSV and BLRV (luteoviruses associated with the yellowing disease syndrome of chickpea crops in the surveyed region.

  13. Development of ESTs from chickpea roots and their use in diversity analysis of the Cicer genus

    Directory of Open Access Journals (Sweden)

    Eshwar K

    2005-08-01

    Full Text Available Abstract Background Chickpea is a major crop in many drier regions of the world where it is an important protein-rich food and an increasingly valuable traded commodity. The wild annual Cicer species are known to possess unique sources of resistance to pests and diseases, and tolerance to environmental stresses. However, there has been limited utilization of these wild species by chickpea breeding programs due to interspecific crossing barriers and deleterious linkage drag. Molecular genetic diversity analysis may help predict which accessions are most likely to produce fertile progeny when crossed with chickpea cultivars. While, trait-markers may provide an effective tool for breaking linkage drag. Although SSR markers are the assay of choice for marker-assisted selection of specific traits in conventional breeding populations, they may not provide reliable estimates of interspecific diversity, and may lose selective power in backcross programs based on interspecific introgressions. Thus, we have pursued the development of gene-based markers to resolve these problems and to provide candidate gene markers for QTL mapping of important agronomic traits. Results An EST library was constructed after subtractive suppressive hybridization (SSH of root tissue from two very closely related chickpea genotypes (Cicer arietinum. A total of 106 EST-based markers were designed from 477 sequences with functional annotations and these were tested on C. arietinum. Forty-four EST markers were polymorphic when screened across nine Cicer species (including the cultigen. Parsimony and PCoA analysis of the resultant EST-marker dataset indicated that most accessions cluster in accordance with the previously defined classification of primary (C. arietinum, C. echinospermum and C. reticulatum, secondary (C. pinnatifidum, C. bijugum and C. judaicum, and tertiary (C. yamashitae, C. chrossanicum and C. cuneatum gene-pools. A large proportion of EST alleles (45% were only

  14. Agrobacterium-mediated transformation of chickpea with α-amylase ...

    Indian Academy of Sciences (India)

    Madhu

    Chickpea is a good source of carbohydrate (48.2–67.6%), protein. (12.4–31.5%), starch (41–50%), fat (6%) and nutritionally ... Production of chickpea has remained constantly low because of ..... Geervani P and Umadevi T 1989 Effect of maturation of nutrient .... Tewari-Singh N, Sen J, Kiesecker H, Reddy V S, Jacobsen H J.

  15. Varietal Response of Chickpea (Cicer arietinum L.) Towards the Allelopathy of Different Weeds

    International Nuclear Information System (INIS)

    Rahamdad, K.; Ijaz, A.K.

    2015-01-01

    In a laboratory trial three chickpea varieties viz, Karak-I, Karak-III and Shenghar were tested against the phytotoxicity of five weed species: Parthenium hysterophorus L., Phragmites australis (Cav.) Trin., Datura alba L., Cyperus rotundus L. and Convolvulus arvensis L.in January 2013. The weed extracts were prepared at the rate of 120 g/L (w/v) after shade dry. The results indicated highly significant inhibitory effect of all the tested weed species on the chickpea varieties. The results also showed that the chickpea variety Karak-III was more susceptible to the phototoxicity of the tested weed extracts. Among the extract, C. arvensis proved much toxic in term of inhibition of germination by giving only 43.33% germination in comparison with control where 97.50% germination was recorded. On the other hand, the effect of P. australis extract was found a little stimulator by speeding the seed germination in all varieties and giving a low (2.21) mean germination time (MGT) value. From the current results it can be concluded that the infestation of C. arvensis can pollute the soil by accumulating toxic chemicals that leads to the germination failure and growth suppression in chickpea. Therefore, the prevention and removal of C. arvensis in the chickpea growing areas could be recommended. In addition, P. australis must be tested against chickpea weeds (chickpea varieties withstand against its phototoxicity), so that it can be popularized as bio herbicide in chickpea if it gave promising results in controlling chickpea weeds. (author)

  16. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates.

    Science.gov (United States)

    Yust, María del Mar; Millán-Linares, María del Carmen; Alcaide-Hidalgo, Juan María; Millán, Francisco; Pedroche, Justo

    2012-07-01

    Some dietary proteins possess biological properties which make them potential ingredients of functional or health-promoting foods. Many of these properties are attributed to bioactive peptides that can be released by controlled hydrolysis using exogenous proteases. The aim of this work was to test the improvement of hypocholesterolaemic and antioxidant activities of chickpea protein isolate by means of hydrolysis with alcalase and flavourzyme. All hydrolysates tested exhibited better hypocholesterolaemic activity when compared with chickpea protein isolate. The highest cholesterol micellar solubility inhibition (50%) was found after 60 min of treatment with alcalase followed by 30 min of hydrolysis with flavourzyme. To test antioxidant activity of chickpea proteins three methods were used: β-carotene bleaching method, reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging effect since antioxidant activity of protein hydrolysates may not be attributed to a single mechanism. Chickpea hydrolysates showed better antioxidant activity in all assays, especially reducing power and DPPH scavenging effect than chickpea protein isolate. The results of this study showed the good potential of chickpea protein hydrolysates as bioactive ingredients. The highest bioactive properties could be obtained by selecting the type of proteases and the hydrolysis time. Copyright © 2012 Society of Chemical Industry.

  17. Fusarium Wilt Affecting Chickpea Crop

    Directory of Open Access Journals (Sweden)

    Warda Jendoubi

    2017-03-01

    Full Text Available Chickpea (Cicer arietinum L. contributes 18% of the global production of grain legume and serves as an important source of dietary protein. An important decrease in cropping area and production has been recorded during the last two decades. Several biotic and abiotic constraints underlie this decrease. Despite the efforts deployed in breeding and selection of several chickpea varieties with high yield potential that are tolerant to diseases, the situation has remained the same for the last decade. Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris (Foc is the major soilborne fungus affecting chickpeas globally. Fusarium wilt epidemics can devastate crops and cause up to 100% loss in highly infested fields and under favorable conditions. To date, eight pathogenic races of Foc (races 0, 1A, 1B/C, 2, 3, 4, 5 and 6 have been reported worldwide. The development of resistant cultivars is the most effective method to manage this disease and to contribute to stabilizing chickpea yields. Development of resistant varieties to fusarium wilt in different breeding programs is mainly based on conventional selection. This method is time‐consuming and depends on inoculum load and specific environmental factors that influence disease development. The use of molecular tools offers great potential for chickpea improvement, specifically by identifying molecular markers closely linked to genes/QTLs controlling fusarium wilt.

  18. Development of Pea (Pisum sativum L.) and Chickpea (Cicer ...

    African Journals Online (AJOL)

    The research objectives were: to evaluate the quality of a pea snack prepared using four different methods of cooking, namely, frying, baking, steaming and microwave; to determine the effect of blending dried green pea with chickpea dhal on the quality of a fried pea snack. Green pea and chickpea snacks were prepared ...

  19. Nutritional value of raw and extruded chickpeas (Cicer arietinum L.) for growing chickens

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, A.; Viveros, A.; Centeno, C.; Arija, I.; Marzo, F.

    2008-07-01

    The effects of the inclusion of different concentrations (0, 100, 200 and 300 g kg-1) of raw and extruded chickpeas on performance, digestive organ sizes, and protein and fat digestibilities were studied in one experiment with growing broiler chickens (0 to 21 days of age). Data were analyzed as a 3 x 2 factorial arrangement with three levels of chickpea with or without extrusion. A corn-soybean based diet was used as a positive control. Increasing chickpea content in the diet did not affect weight gain, feed consumption and feed to gain ratio. Relative pancreas and liver weights, and relative lengths of duodenum, jejunum and ceca were significantly (P<0.05) increased in response to increasing chickpea concentration in the diet. The inclusion of graded concentrations of chickpea increased (P<0.05) the apparent ileal digestibility (AID) of crude protein (CP) and apparent excreta digestibility (AED) of crude fat (CF) only in the case of the intermediate level of chickpea used (200 g kg-1). Extrusion improved weight gain and lowered relative pancreas weight (P< 0.05) respect to birds fed raw chickpea-based diets. AID of CP and AED of CF were improved (P<0.001) by extrusion. We concluded that the inclusion of up to 300 g kg-1 chickpea in chicken diets did not affect performance, and caused a negative effect on the relative weight of some digestive organs. (Author) 45 refs.

  20. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    Sagel, Z.; Tutluer, M. I.; Peskircioglu, H.; Kantoglu, Y.; Kunter, B.

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoy Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parent varieties were ILC-482, AK-7114 and AKCIN-91 had been used in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350 and 400 Gy for field experiments, respectively. As a result of these experiments, two promising mutant lines were chosen and given to the Seed Registration and Certification Center for official registration These two promising mutants were tested at five different locations of Turkey, in 2004 and 2005 years. After 2 years of registration experiments one of outstanding mutants was officially released as mutant chickpea variety under the name TAEK-SAGEL, in 2006. Some basic characteristics of this mutant are; earliness (95-100 day), high yield capacity (180-220 kg/da), high seed protein (22-25 %), first pot height (20-25 cm), 100 seeds weight (42-48 g), cooking time (35-40 min) and resistance to Ascochyta blight.

  1. A canopy architectural model to study the competitive ability of chickpea with sowthistle.

    Science.gov (United States)

    Cici, S-Zahra-Hosseini; Adkins, Steve; Hanan, Jim

    2008-06-01

    Improving the competitive ability of crops is a sustainable method of weed management. This paper shows how a virtual plant model of competition between chickpea (Cicer arietinum) and sowthistle (Sonchus oleraceus) can be used as a framework for discovering and/or developing more competitive chickpea cultivars. The virtual plant models were developed using the L-systems formalism, parameterized according to measurements taken on plants at intervals during their development. A quasi-Monte Carlo light-environment model was used to model the effect of chickpea canopy on the development of sowthistle. The chickpea-light environment-sowthistle model (CLES model) captured the hypothesis that the architecture of chickpea plants modifies the light environment inside the canopy and determines sowthistle growth and development pattern. The resulting CLES model was parameterized for different chickpea cultivars (viz. 'Macarena', 'Bumper', 'Jimbour' and '99071-1001') to compare their competitive ability with sowthistle. To validate the CLES model, an experiment was conducted using the same four chickpea cultivars as different treatments with a sowthistle growing under their canopy. The growth of sowthistle, both in silico and in glasshouse experiments, was reduced most by '99071-1001', a cultivar with a short phyllochron. The second rank of competitive ability belonged to 'Macarena' and 'Bumper', while 'Jimbour' was the least competitive cultivar. The architecture of virtual chickpea plants modified the light inside the canopy, which influenced the growth and development of the sowthistle plants in response to different cultivars. This is the first time that a virtual plant model of a crop-weed interaction has been developed. This virtual plant model can serve as a platform for a broad range of applications in the study of chickpea-weed interactions and their environment.

  2. Genomics-based plant germplasm research (GPGR)

    Institute of Scientific and Technical Information of China (English)

    Jizeng Jia; Hongjie Li; Xueyong Zhang; Zichao Li; Lijuan Qiu

    2017-01-01

    Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR) or "Genoplasmics" is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  3. The Nutritional Value and Health Benefits of Chickpeas and Hummus

    Directory of Open Access Journals (Sweden)

    Taylor C. Wallace

    2016-11-01

    Full Text Available The 2015–2020 Dietary Guidelines for Americans advocate for increasing vegetable intake and replacing energy-dense foods with those that are nutrient-dense. Most Americans do not eat enough vegetables, and particularly legumes, each day, despite their well-established benefits for health. Traditional hummus is a nutrient-dense dip or spread made from cooked, mashed chickpeas, blended with tahini, olive oil, lemon juice, and spices. Consumers of chickpeas and/or hummus have been shown to have higher nutrient intakes of dietary fiber, polyunsaturated fatty acids, vitamin A, vitamin E, vitamin C, folate, magnesium, potassium, and iron as compared to non-consumers. Hummus consumers have also been shown to have higher Healthy Eating Index 2005 (HEI-2005 scores. This may be, in part, due to hummus’ higher Naturally Nutrient Rich (NNR score as compared to other dips and spreads. Emerging research suggests that chickpeas and hummus may play a beneficial role in weight management and glucose and insulin regulation, as well as have a positive impact on some markers of cardiovascular disease (CVD. Raw or cooked chickpeas and hummus also contain dietary bioactives such as phytic acid, sterols, tannins, carotenoids, and other polyphenols such as isoflavones, whose benefits may extend beyond basic nutrition requirements of humans. With chickpeas as its primary ingredient, hummus—and especially when paired with vegetables and/or whole grains—is a nutritious way for Americans to obtain their recommended servings of legumes. This manuscript reviews the nutritional value and health benefits of chickpeas and hummus and explores how these foods may help improve the nutrient profiles of meals.

  4. Biochemical analysis of induced resistance in chickpea against broomrape (Orobanche foetida by rhizobia inoculation

    Directory of Open Access Journals (Sweden)

    Yassine MABROUK

    2016-05-01

    Full Text Available This study examined the capacity of Rhizobium sp. strain PchAZM to reduce parasitism of chickpea by Orobanche foetida under greenhouse conditions, and assessed the relative impact of rhizobia on the expression of chickpea defense response against broomrape. Growth chamber experiments using Petri dishes revealed that rhizobia infection on chickpea roots reduced broomrape seed germination, and restricted the broomrape attachment to host roots while retarding tubercle formation and development by the parasite. In pot experiments, chickpea roots inoculated with rhizobia reduced the total number of broomrape by up to 90%. Broomrape necrosis was observed both before and after parasite attachment to inoculated chickpea roots in Petri dishes and pot experiments. Reduction in infection was accompanied by enhanced levels of the defence-related enzymes phenylalanine ammonia lyase (PAL and peroxidase (POX. Increased levels of phenolics were recorded in the roots of rhizobia-inoculated plants grown in the presence of broomrape. The results suggest that rhizobia could be used for protection of chickpea against O. foetida.

  5. Effect of chickpea in association with Rhizobium to crop productivity and soil fertility

    Directory of Open Access Journals (Sweden)

    Botir Khaitov

    2016-04-01

    Full Text Available The growth, development and yield of chickpea (Cicer ariеtinum L. is strongly influenced by abiotic factors such as salinity and drought in the arid conditions. The use of efficient plant growth promoting bacteria in chickpea production is the best solution to overcome those stresses. In the present study, 10 chickpea rhizobial strains were isolated and purified from the nodules of chickpea genotype grown on middle salinated soils with different chickpea cultivation histories, 3 of them were more efficient in salt tolerance and showed higher nodulation abilities. Local chickpea genotype Uzbekistan-32 was inoculated with selected Rhizobium bacterial strains before planting them to the field condition. Inoculation of plants with strains Rhizobium sp. R4, R6 and R9 significantly increased shoot, root dry matter, and nodule number by 17, 12, and 20% above the uninoculated plants, respectively. The shoot length increased by 52%, root length by 43%, shoot dry weight by 36%, and root dry weight by 64%. Inoculation significantly increased the pod number by 28% and yield up to 55% as compared to control plant. The effective indigenous rhizobial strains isolated in this study from chickpeas on middle salinated soils of Uzbekistan have the characters of broad host range, high nodulation efficiency, efficient N fixation, great salt tolerance. Soil nitrogen, phosphorus and carbon content of the soil at the end of experiments were positive in all the treatments compare control. In this study, we are focused with consideration of the relationship between chickpea and its symbiotic nitrogen-fixing root nodule bacterial strains and how it functions to influence plant productivity and soil fertility.

  6. Energy inputs and outputs in a chickpea production system in ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum L.) is one of the most important grain legumes which traditionally cultivated in marginal areas and saline soils. In this study, chickpea production in Kurdistan, Iran and the energy equivalences of input used in production were investigated. The aims of this study were to determine the amount of ...

  7. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Pradhan, Seema; Bandhiwal, Nitesh; Shah, Niraj; Kant, Chandra; Gaur, Rashmi; Bhatia, Sabhyata

    2014-01-01

    Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  8. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  9. Germinated, toasted and cooked chickpea as ingredients for breadmaking

    OpenAIRE

    Ouazib, Meriem; Garzón, Raquel; Farid Zaidi, Farid; Rosell, Cristina M.

    2016-01-01

    The effect of processing (germination, toasting and cooking) of chickpea beans was investigated on the resulting flours characteristics and their potential for obtaining gluten free breads. Rheological properties of dough were recorded using Mixolab�� and breads were analyzed for their instrumental quality, nutritional and sensory properties. Chickpea based doughs showed low consistency and their rheological behavior was defined by the starch gelatinization and gelification. The bread made wi...

  10. Chickpea (Cicer arietinum) proteins induce allergic responses in nasobronchial allergic patients and BALB/c mice.

    Science.gov (United States)

    Verma, Alok Kumar; Kumar, Sandeep; Tripathi, Anurag; Chaudhari, Bhushan P; Das, Mukul; Dwivedi, Premendra D

    2012-04-05

    Allergy to chickpea or Garbanzo bean (Cicer arietinum) has been reported in the Indian population. Little information is found regarding allergenic events involved in the chickpea allergy; therefore, chickpea allergenicity assessment was undertaken. In vivo and ex vivo studies were carried out using BALB/c mice. Chickpea skin prick test positive patients have been used to extend this study in humans. Identification of allergens was carried out by simulated gastric fluids assay for pepsin resistant polypeptides and validated by IgE western blotting using chickpea sensitive humans and sensitized mice sera. Our data have shown the occurrence of a systemic anaphylactic reaction resulting in reduced body temperature after challenge along with significantly increased levels of IgE, IgG1, MMCP-1, CCL-2 as well as histamine. Further, increased Th1/Th2 (mixed) cytokine response was observed in spleen cell culture supernatants. Jejunum, lungs and spleen showed prominent histopathological changes specific for allergic inflammation. Immunoblotting with pooled sera of either sensitized mice or human sera recognized seven similar IgE binding polypeptides that may be responsible for chickpea induced hypersensitivity reactions. This study has addressed the allergenic manifestations associated with chickpea consumption and identifies the proteins responsible for allergenicity which may prove useful in diagnosis and management of allergenicity of legumes especially chickpea. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. PANCREATIC HYPERTROPHY IN RATS CAUSED BY CHICKPEA (Cicer arietinum L. PROTEIN INTAKE

    Directory of Open Access Journals (Sweden)

    O. L. TAVANO

    2008-10-01

    Full Text Available

    The objectives of this work were demonstrate the occurrence of pancreatic hypertrophy in rats, caused by chickpea protein intake, and the possible relation to the presence of trypsin inhibitors in the protein samples. The principal protein fractions of chickpea were isolated, the effect of heating was also tested (121°C/15 min. The heated chickpea diets did not cause significant pancreatic hypertrophy in rats, in relation to the casein control group. Only unheated chickpea flour and albumin diets caused pancreatic weight increases correlating to the presence of trypsin inhibitors in these samples. Apart from the trypsin inhibitor activity the other chickpea protein components appear not to exert any alteration in pancreatic weight.

  12. [Obtaining a fermented chickpea extract (Cicer arietinum L.) and its use as a milk extensor].

    Science.gov (United States)

    Morales de León, J; Cassís Nosthas, M L; Cecin Salomón, P

    2000-06-01

    Chickpea (Cicer arietinum L) is cultivated in the North part of México and it is considered a good source of vegetal protein of low cost (20% average), nevertheless, the 80% used for the exportation and only the 20% less was used for animal feeding. The main objective in this study is to obtain a fermented chickpea extract for using in dairy extensor. Chickpea water absorbtion kinetics were carried out in e temperature conditions:while the conditions were established, chickpea was grounded and fermented in different amounts with its natural flora, L. casei, L. plantarum and a mixture culture of both microorganism in logarithmic phase. The results showed that the presence of microorganism of chickpea natural flora interferes during the fermentation, so before the inoculation it was necessary treat the chickpea extract (CE) terminally in a dilution 1:4 during 20 min at 7.7 kg/cm2 of pressure. The use of a mixture culture of 5% of L. casei and 5% L. plantarum inoculated in MRS broth was used to decrease fermentation time. Its addition in logarithmic phase to the sterile chickpea extract increased the lactic acid production and decreased the pH value in 6 h which was less time that one obtained with each of lactobacillus. The fermented extract obtained finally, presented similar sensory characteristics to the ones of dairy products. Therefore, chickpea is a good alternative as a extensor for this kind of products.

  13. Notice of release of Amethyst Germplasm hoaty tansyaster: Selected class of natural germplasm

    Science.gov (United States)

    Derek J. Tilley

    2015-01-01

    The US Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Aberdeen Plant Materials Center, Aberdeen, Idaho, announces the release of Amethyst Germplasm hoary tansyaster (Machaeronthero canescens (Pursh) A. Gray [Asteraceae]}, a selected class natural track germplasm identified by NRCS accession number 9076670 for conservation plantings in...

  14. A BAC/BIBAC-based physical map of chickpea, Cicer arietinum L

    Directory of Open Access Journals (Sweden)

    Abbo Shahal

    2010-09-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is the third most important pulse crop worldwide. Despite its importance, relatively little is known about its genome. The availability of a genome-wide physical map allows rapid fine mapping of QTL, development of high-density genome maps, and sequencing of the entire genome. However, no such a physical map has been developed in chickpea. Results We present a genome-wide, BAC/BIBAC-based physical map of chickpea developed by fingerprint analysis. Four chickpea BAC and BIBAC libraries, two of which were constructed in this study, were used. A total of 67,584 clones were fingerprinted, and 64,211 (~11.7 × of the fingerprints validated and used in the physical map assembly. The physical map consists of 1,945 BAC/BIBAC contigs, with each containing an average of 28.3 clones and having an average physical length of 559 kb. The contigs collectively span approximately 1,088 Mb. By using the physical map, we identified the BAC/BIBAC contigs containing or closely linked to QTL4.1 for resistance to Didymella rabiei (RDR and QTL8 for days to first flower (DTF, thus further verifying the physical map and confirming its utility in fine mapping and cloning of QTL. Conclusion The physical map represents the first genome-wide, BAC/BIBAC-based physical map of chickpea. This map, along with other genomic resources previously developed in the species and the genome sequences of related species (soybean, Medicago and Lotus, will provide a foundation necessary for many areas of advanced genomics research in chickpea and other legume species. The inclusion of transformation-ready BIBACs in the map greatly facilitates its utility in functional analysis of the legume genomes.

  15. Evolution of high yielding chickpea varieties, having improved plant type and disease resistance, through induced mutations

    International Nuclear Information System (INIS)

    Sadiq, M.; Hussan, M.; Haq, M.A.

    1989-01-01

    The breeding programme on the use of induced mutations, in chickpea for genetic variability for better plant type, grain yield and disease resistance has been started. The chickpea mutant variety is one of the leading varieties being extensively grown throughout Pakistan and has played its role in stabilizing the chickpea production in the country. Four chickpea varieties were treated, each with two dosed of gamma rays. The main purpose of the mutagenic treatment of these varieties/cultivars, was induce multiple resistance. (A.B.)

  16. Saponins from soy and chickpea: stability during beadmaking and in vitro bioaccessibility

    Science.gov (United States)

    This study investigated the stability of saponins during the making and simulated digestion of soy and soy-chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy-chickpea breads, and recovery of type A and B saponins was great...

  17. Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea

    OpenAIRE

    G. O. Magomedov; M. K. Sadigova; S. I. Lukina; V. Y. Kustov

    2013-01-01

    The study of fractional changes and amino acid composition of proteins in the application of chickpea disintegration wave grinding. Comparative analysis of six varieties of chickpea before and after grinding.

  18. Expansion in chickpea (Cicer arietinum L.) seed during soaking and cooking

    Science.gov (United States)

    Sayar, Sedat; Turhan, Mahir; Köksel, Hamit

    2016-01-01

    The linear and volumetric expansion of chickpea seeds during water absorption at 20, 30, 50, 70, 85 and 100°C was studied. Length, width and thickness of chickpea seeds linearly increased with the increase in moisture content at all temperatures studied, where the greatest increase was found in length. Two different mathematical approaches were used for the determination of the expansion coefficients. The plots of the both linear and volumetric expansion coefficients versus temperature exhibited two linear lines, the first one was through 20, 30 and 50ºC and the second one was trough 70, 85 and 100ºC. The crossing point (58ºC) of these lines was very close to the gelatinisation temperature (60ºC) of chickpea starch.

  19. Yield gap analysis of Chickpea under semi-arid conditions: A simulation study

    Directory of Open Access Journals (Sweden)

    seyed Reza Amiri Deh ahmadi

    2016-05-01

    Full Text Available Yield gap analysis provides an essential framework to prioritize research and policy efforts aimed at reducing yield constraints. To identify options for increasing chickpea yield, the SSM-chickpea model was parameterized and evaluated to analyze yield potentials, water limited yields and yield gaps for nine regions representing major chickpea-growing areas of Razavi Khorasan province. The average potential yield of chickpea for the locations was 2251 kg ha-1, while the water limited yield was 1026 kg ha-1 indicating a 54% reduction in yield due to adverse soil moisture conditions. Also, the average irrigated and rainfed actual yields were respectively 64% and 79% less than simulated potential and water limited yields. Maximum and minimum yield gap between potential yield and actual yield were observed in Quchan and Torbat-jam respectively. Generally, yield gap showed an increasing trend from the north (including Nishabur, Mashhad, Quchan and Daregaz regions to the south of the province (Torbat- Jam and Gonabad. In addition, yield gap between simulated water limited potential yield and rainfed actual yield were very low because both simulated water limiting potential and average rainfed actual yields were low in these regions. Yield gap analysis provides an essential framework to prioritize research and policy efforts aimed at reducing yield constraints. To identify options for increasing chickpea yield, the SSM-chickpea model was parameterized and evaluated to analyze yield potentials, water limited yields and yield gaps for nine regions representing major chickpea-growing areas of Razavi Khorasan province. The average potential yield of chickpea for the locations was 2251 kg ha-1, while the water limited yield was 1026 kg ha-1 indicating a 54% reduction in yield due to adverse soil moisture conditions. Also, the average irrigated and rainfed actual yields were respectively 64% and 79% less than simulated potential and water limited yields

  20. Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the U.S. Pacific Northwest

    Directory of Open Access Journals (Sweden)

    George J. Vandemark

    2018-06-01

    Full Text Available Diseases and health complications caused by mineral deficiencies afflict billions of people globally. Developing pulse crops with elevated seed mineral concentrations can contribute to reducing the incidence of these deficiencies. The objectives of this study were to estimate variance components conditioning seed mineral concentrations of chickpea and lentil grown in Washington and Idaho, determine correlations between different mineral concentrations and between mineral concentrations and yield, 100-seed weight, and days to flowering, and compare seed mineral concentrations between chickpeas and lentils grown in adjacent plots. Genotype effects, although significant in chickpea and lentil for all minerals except selenium, tended to be minimal compared to location, year, and their interaction effects. In both chickpeas and lentils high positive correlations were observed between seed concentrations of phosphorus and potassium, phosphorus and zinc, and potassium and zinc. Correlations between mineral concentration and yield, and mineral concentration and days to 50% flowering were similar for chickpeas and lentils across the majority of minerals. These results may reflect similarities between the two crops in physiological processes for mineral uptake and partitioning. Lentils had higher concentrations of iron and zinc than chickpea when the two crops were grown in adjacent plots, whereas chickpeas had higher concentrations of calcium and manganese. Plant genotypes that are more efficient at obtaining minerals from growing environments will be useful as parental materials to develop improved chickpea and lentil cultivars that have good yield potential coupled with high seed mineral concentrations. Keywords: Chickpea, Lentil, Mineral, Nutrition, Pulse

  1. IDENTIFICATION OF PHARMACEUTICAL EXCIPIENT BEHAVIOR OF CHICKPEA (CICER ARIETINUM) STARCH IN GLICLAZIDE IMMEDIATE RELEASE TABLETS.

    Science.gov (United States)

    Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi

    2016-01-01

    In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose

  2. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. I. Chickpea and faba bean

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Oweis, T.

    2005-01-01

    Two varieties of chickpea (Cicer arietinum L.) and faba bean (Vicia faba), differing in drought tolerance according to the classification of the International Center for Agronomic Research in Dry Areas (ICARDA), were irrigated with waters of three different salinity levels in a lysimeter experiment

  3. Chickpea regeneration and genetic transformation

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... Chick- pea is good as a source of carbohydrate (48.2 - 67.6%), protein (12.4 - 31.5%), fat (6%) and nutritionally important minerals. Among the legumes, chickpea is the best hypo- cholesteremic agent, followed by black gram and green gram. Direct shoot organogenesis and establishment of plantlets from ...

  4. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  5. Effect of disintegration wave grinding on fractional protein and amino acid composition of chickpea

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2013-01-01

    Full Text Available The study of fractional changes and amino acid composition of proteins in the application of chickpea disintegration wave grinding. Comparative analysis of six varieties of chickpea before and after grinding.

  6. Conceptual design of a chickpea harvesting header

    Directory of Open Access Journals (Sweden)

    H. Golpira

    2013-07-01

    Full Text Available Interest in the development of stripper headers is growing owing to the excessive losses of combine harvesters and costs of manually harvesting for chickpeas. The design of a new concept can enhance the mechanized process for chickpea harvesting. A modified stripper platform was designed, in which passive fingers with V-shape slots removes the pods from the anchored plant. The floating platform was accompanied by a reel to complete the harvesting header. Black-box modeling was used to redesign the functional operators of the header followed by an investigation of the system behavior. Physical models of the platform and reel were modified to determine the crucial variables of the header arrangement during field trials. The slot width was fixed at 40 mm, finger length at 40 mm, keyhole diameter at 10 mm and entrance width at 6 mm; the batted reel at peripheral diameter of 700 mm and speed at 50 rpm. A tractor-mounted experimental harvester was built to evaluate the work quality of the stripper header. The performance of the prototype was tested with respect to losses and results confirmed the efficiency of the modified stripper header for chickpea harvesting. Furthermore, the header with a 1.4 m working width produced the spot work rates of 0.42 ha h-1.

  7. Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia?

    NARCIS (Netherlands)

    Verkaart, Simone; Munyua, Bernard G.; Mausch, Kai; Michler, Jeffrey D.

    2017-01-01

    We analyse the impact of improved chickpea adoption on welfare in Ethiopia using three rounds of panel data. First, we estimate the determinants of improved chickpea adoption using a double hurdle model. We apply a control function approach with correlated random effects to control for possible

  8. Effects of Temperature Stresses on the Resistance of Chickpea Genotypes and Aggressiveness of Didymella rabiei Isolates

    Directory of Open Access Journals (Sweden)

    Seid Ahmed Kemal

    2017-09-01

    Full Text Available Chickpea (Cicer arietinum L. is an important food and rotation crop in many parts of the world. Cold (freezing and chilling temperatures and Ascochyta blight (Didymella rabiei are the major constraints in chickpea production. The effects of temperature stresses on chickpea susceptibility and pathogen aggressiveness are not well documented in the Cicer-Didymella pathosystem. Two experiments were conducted under controlled conditions using chickpea genotypes and pathogen isolates in 2011 and 2012. In Experiment 1, four isolates of D. rabiei (AR-01, AR-02, AR-03 and AR-04, six chickpea genotypes (Ghab-1, Ghab-2, Ghab-3, Ghab-4, Ghab-5 and ICC-12004 and four temperature regimes (10, 15, 20, and 25°C were studied using 10 day-old seedlings. In Experiment 2, three chickpea genotypes (Ghab-1, Ghab-2, and ICC-12004 were exposed to 5 and 10 days of chilling temperature exposure at 5°C and non-exposed seedlings were used as controls. Seedlings of the three chickpea genotypes were inoculated with the four pathogen isolates used in Experiment 1. Three disease parameters (incubation period, latent period and disease severity were measured to evaluate treatment effects. In Experiment 1, highly significant interactions between genotypes and isolates; genotypes and temperature; and isolate and temperature were observed for incubation and latent periods. Genotype x isolate and temperature x isolate interactions also significantly affected disease severity. The resistant genotype ICC-12004 showed long incubation and latent periods and low disease severity at all temperatures. The highly aggressive isolate AR-04 caused symptoms, produced pycnidia in short duration as well as high disease severity across temperature regimes, which indicated it is adapted to a wide range of temperatures. Short incubation and latent periods and high disease severity were observed on genotypes exposed to chilling temperature. Our findings showed that the significant interactions of

  9. Improving Published Descriptions of Germplasm.

    Science.gov (United States)

    Published descriptions of new germplasm, such as in the Journal of Plant Registrations (JPR) and, prior to mid-2007, in Crop Science, are important vehicles for allowing researchers and other interested parties to learn about such germplasm and the methods used to generate them. Launched in 2007, JP...

  10. The impact of using chickpea flour and dried carp fish powder on pizza quality.

    Science.gov (United States)

    El-Beltagi, Hossam S; El-Senousi, Naglaa A; Ali, Zeinab A; Omran, Azza A

    2017-01-01

    Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum) flour and dried carp fish powder (Cyprinus carpio). Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids) and dried carp fish powder (higher contents of protein, fats, ash, oleic acid and total essential amino acids) complementing wheat flour to enhance nutritional value of pizza. Total plate count and thiobarbituric acid were increased (Ppizza were investigated. Dried carp fish powder increased (Ppizza. Chickpea flour increased iron and zinc contents of the pizza. Water activity (aw) was decreased in fish powder and chickpea pizza. Pizza firmness and gumminess were significantly (pPizza chewiness was the same (P>0.05) across the levels of two protein sources. Springiness was decreased (Ppizza at the expense of wheat flour had no effect (P>0.05) on all sensorial parameters except for odor values. The results could be useful in utilization of chickpea flour and carp fish powder in designing nutritious pizza for consumers.

  11. Compatible Rhizosphere-Competent Microbial Consortium Adds Value to the Nutritional Quality in Edible Parts of Chickpea.

    Science.gov (United States)

    Yadav, Sudheer K; Singh, Surendra; Singh, Harikesh B; Sarma, Birinchi K

    2017-08-02

    Chickpea is used as a high-energy and protein source in diets of humans and livestock. Moreover, chickpea straw can be used as alternative of forage in ruminant diets. The present study evaluates the effect of beneficial microbial inoculation on enhancing the nutritional values in edible parts of chickpea. Two rhizosphere-competent compatible microbes (Pseudomonas fluorescens OKC and Trichoderma asperellum T42) were selected and applied to seeds either individually or in consortium before sowing. Chickpea seeds treated with the microbes showed enhanced plant growth [88.93% shoot length at 60 days after sowing (DAS)] and biomass accumulation (21.37% at 120 DAS). Notably, the uptake of mineral nutrients, viz., N (90.27, 91.45, and 142.64%), P (14.13, 58.73, and 56.84%), K (20.5, 9.23, and 35.98%), Na (91.98, 101.66, and 36.46%), Ca (16.61, 29.46, and 16%), and organic carbon (28.54, 17.09, and 18.54%), was found in the seed, foliage, and pericarp of the chickpea plants, respectively. Additionally, nutritional quality, viz., total phenolic (59.7, 2.8, and 17.25%), protein (9.78, 18.53, and 7.68%), carbohydrate content (26.22, 30.21, and 26.63%), total flavonoid content (3.11, 9.15, and 7.81%), and reducing power (112.98, 75.42, and 111.75%), was also found in the seed, foliage, and pericarp of the chickpea plants. Most importantly, the microbial-consortium-treated plants showed the maximum increase of nutrient accumulation and enhancement in nutritional quality in all edible parts of chickpea. Nutritional partitioning in different edible parts of chickpea was also evident in the microbial treatments compared to their uninoculated ones. The results thus clearly demonstrated microbe-mediated enhancement in the dietary value of the edible parts of chickpea because seeds are consumed by humans, whereas pericarp and foliage (straw) are used as an alternative of forage and roughage in ruminant diets.

  12. Performance of chickpea genotypes under Swat valley conditions

    International Nuclear Information System (INIS)

    Khan, A.; Rahim, M.; Ahmad, F.; Ali, A.

    2004-01-01

    Twenty-two genetically diverse chickpeas genotypes were studied for their physiological efficiency to select the most desirable genotype/genotypes for breeding program on chickpea. Genotype 'CM7-1' was found physiologically efficient stain with maximum harvest index (37.33%) followed by genotype 'CM1571-1-A' with harvest index of 35.73%. Genotype '90206' produced maximum biological yield (7463 kg ha/sup -1/) followed by genotypes 'CM31-1' and 'E-2034' with biological yield of 7352 and 7167 kg ha/sup -1/, respectively. Harvest index and economic yield showed significant positive correlation value of (r=+0.595), while negative correlation value of (r = -0.435) was observed between harvest index and biological yield. (author)

  13. Achievements of nuclear applications in chick-pea breeding

    International Nuclear Information System (INIS)

    Kharwal, M.C.

    1994-01-01

    Due to narrow and limited genetic variability available in chick-pea, this crop is ideally suited for genetic improvement through mutation breeding. Thus, the use of nuclear tools for regenerating some of the lost useful variability in this crop particularly for an improved plant type of increased yield and disease resistance appears to offer greater scope and promise. Practical results already achieved through the use of nuclear tools which fulfill these expectations to a large extent are confirmed by the extensive studies on mutation breeding in chick-pea crop carried out at the Indian Agricultural Research Institute, New Delhi; at the Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan and at the Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh

  14. Characterization of Botrytis cinerea isolates from chickpea: DNA ...

    African Journals Online (AJOL)

    Characterization of Botrytis cinerea isolates from chickpea: DNA polymorphisms, cultural, morphological and virulence characteristics. Suresh Pande, Mamta Sharma, G. Krishna Kishore, L. Shivram, U. Naga Mangala ...

  15. Nutritional composition of Chickpea (Cicerarietinum-L and value added products - a review

    Directory of Open Access Journals (Sweden)

    Harsha Hirdyani

    2014-12-01

    Full Text Available Chickpea (Cicer arietinum L. is an important pulse crop grown and consumed all over the world, especially in the Afro-Asian countries. It is a good source of carbohydrates and protein, and the protein quality is considered to be better than other pulses. Chickpea has significant amounts of all the essential amino acids. Starch is the major storage carbohydrate followed by dietary fibre, lipids are present in low amounts but chickpea is rich in nutritionally important unsaturated fatty acids like linoleic and oleic acid.It can be utilized to develop nutritious value added products and hence products can also be used as nutritious food for low income group in developing countries and for patients suffering with life style diseases.

  16. Identification of putative and potential cross-reactive chickpea (Cicer arietinum) allergens through an in silico approach.

    Science.gov (United States)

    Kulkarni, Anuja; Ananthanarayan, Laxmi; Raman, Karthik

    2013-12-01

    Allergy has become a key cause of morbidity worldwide. Although many legumes (plants in the Fabaceae family) are healthy foods, they may have a number of allergenic proteins. A number of allergens have been identified and characterized in Fabaceae family, such as soybean and peanut, on the basis of biochemical and molecular biological approaches. However, our understanding of the allergens from chickpea (Cicer arietinum L.), belonging to this family, is very limited. In this study, we aimed to identify putative and cross-reactive allergens from Chickpea (C. arietinum) by means of in silico analysis of the chickpea protein sequences and allergens sequences from Fabaceae family. We retrieved known allergen sequences in Fabaceae family from the IUIS Allergen Nomenclature Database. We performed a protein BLAST (BLASTp) on these sequences to retrieve the similar sequences from chickpea. We further analyzed the retrieved chickpea sequences using a combination of in silico tools, to assess them for their allergenicity potential. Following this, we built structure models using FUGUE: Sequence-structure homology; these models generated by the recognition tool were viewed in Swiss-PDB viewer. Through this in silico approach, we identified seven novel putative allergens from chickpea proteome sequences on the basis of similarity of sequence, structure and physicochemical properties with the known reported legume allergens. Four out of seven putative allergens may also show cross reactivity with reported allergens since potential allergens had common sequence and structural features with the reported allergens. The in silico proteomic identification of the allergen proteins in chickpea provides a basis for future research on developing hypoallergenic foods containing chickpea. Such bioinformatics approaches, combined with experimental methodology, will help delineate an efficient and comprehensive approach to assess allergenicity and pave the way for a better understanding of

  17. Analysis of acetohydroxyacid synthase1 gene in chickpea conferring resistance to imazamox herbicide.

    Science.gov (United States)

    Jain, Parul; Tar'an, Bunyamin

    2014-11-01

    Chickpea (Cicer arietinum L.) production in the Canadian prairies is challenging due to a lack of effective weed management mainly because of poor competition ability of the crop and limited registered herbicide options. Chickpea genotype with resistance to imidazolinone (IMI) herbicides has been identified. A point mutation in the acetohydroxyacid synthase1 (AHAS1) gene at C581 to T581, resulting in an amino acid substitution from Ala194 to Val194 (position 205, standardized to arabidopsis), confers the resistance to imazamox in chickpea. However, the molecular mechanism leading to the resistance is not fully understood. In many plant species, contrasting transcription levels of AHAS gene has been implicated in the resistant and susceptible genotypes in response to IMI. The objectives of this research were to compare the AHAS gene expression and AHAS enzyme activity in resistant and susceptible chickpea cultivars in response to imazamox herbicide treatment. Results from RT-qPCR indicated that there is no significant change in the transcript levels of AHAS1 between the susceptible and the resistant genotypes in response to imazamox treatment. Protein hydrophobic cluster analysis, protein-ligand docking analysis, and AHAS enzyme activity assay all indicated that the resistance to imazamox in chickpea is due to the alteration of interaction of the AHAS1 enzyme with the imazamox herbicide.

  18. Molecular identification of Fusarium spp. causing wilt of chickpea and the first report of Fusarium redolens in Turkey

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important food legume crop and Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris is one of the most important diseases of chickpea in Turkey. Fusarium redolens is known to cause wilt-like disease of chickpea in other countries, but has not been reported fr...

  19. Dynamics of Colonization and Expression of Pathogenicity Related Genes in Fusarium oxysporum f.sp. ciceri during Chickpea Vascular Wilt Disease Progression.

    Directory of Open Access Journals (Sweden)

    Medha L Upasani

    Full Text Available Fusarium wilt caused by Fusarium oxysporum f.sp. ciceri (Foc is a constant threat to chickpea productivity in several parts of the world. Understanding the molecular basis of chickpea-Foc interaction is necessary to improve chickpea resistance to Foc and thereby the productivity of chickpea. We transformed Foc race 2 using green fluorescent protein (GFP gene and used it to characterize pathogen progression and colonization in wilt-susceptible (JG62 and wilt-resistant (Digvijay chickpea cultivars using confocal microscopy. We also employed quantitative PCR (qPCR to estimate the pathogen load and progression across various tissues of both the chickpea cultivars during the course of the disease. Additionally, the expression of several candidate pathogen virulence genes was analyzed using quantitative reverse transcriptase PCR (qRT-PCR, which showed their characteristic expression in wilt-susceptible and resistant chickpea cultivars. Our results suggest that the pathogen colonizes the susceptible cultivar defeating its defense; however, albeit its entry in the resistant plant, further proliferation is severely restricted providing an evidence of efficient defense mechanism in the resistant chickpea cultivar.

  20. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2016-03-01

    Full Text Available This work was designed to evaluate whether external application of nitric oxide (NO in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L. plants. SNAP (50 μM was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl. Salt stress negatively affected growth and biomass yield, leaf relative water content (LRWC and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars, hydrogen peroxide (H2O2 and malondialdehyde (MDA, as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD, catalase (CAT, ascorbate peroxidase (APX, and glutathione reductase (GR in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt-induced oxidative damage by enhancing the biosynthesis of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system.

  1. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.

    Science.gov (United States)

    Ercan, Pınar; El, Sedef Nehir

    2016-08-15

    The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genetic Similarity between Cotton Leafroll Dwarf Virus and Chickpea Stunt Disease Associated Virus in India

    Directory of Open Access Journals (Sweden)

    Arup Kumar Mukherjee

    2016-12-01

    Full Text Available The cotton leafroll dwarf virus (CLRDV is one of the most devastating pathogens of cotton. This malady, known as cotton blue disease, is widespread in South America where it causes huge crop losses. Recently the disease has been reported from India. We noticed occurrence of cotton blue disease and chickpea stunt disease in adjoining cotton and chickpea fields and got interested in knowing if these two viral diseases have some association. By genetic studies, we have shown here that CLRDV is very close to chickpea stunt disease associated virus (CpSDaV. We were successful in transmitting the CLRDV from cotton to chickpea. Our studies indicate that CpSDaV and CLRDV in India are possibly two different strains of the same virus. These findings would be helpful in managing these serious diseases by altering the cropping patterns.

  3. Study of agronomic characteristics and advantage indices in intercropping of additive series of Chickpea (Cicer arietinum L. and Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    esmaeil rezaei-chiyaneh

    2015-12-01

    Full Text Available Study of agronomic characteristics and advantage indices in intercropping of additive series of Chickpea (Cicer arietinum L. and Black Cumin (Nigella sativa L. Abstract In order to evaluate quantitive and qualitive yield of Chickpea (Cicer arietinum L. and Black Cumin (Nigella sativa L. in intercropping of additive series, a field experiment was arranged in a randomized complete block design with three replications in West Azerbaijan province- city Nagadeh, Iran during growing reason of 2012-2013. Treatments included 100% Black Cumin + 10% Chickpea, 100% Black Cumin + 20% Chickpea, 100% Black Cumin + 30% Chickpea, 100% Black Cumin + 40% Chickpea and 100% Black Cumin + 50% Chickpea and sole cropping of Chickpea and Black Cumin. Different Planting Ratio had significant effect on studied traits of Chickpea and Black Cumin (exception Essential oil yield of Black Cumin. Yield and components yield in monoculture of each crop was more than other treatments. The highest grain yield and biological yield of chickpea were achieved in monoculture with 1105 and 14479 kg.ha-1, respectively. The results showed that the maximum seed yield and biological yield of Black Cumin were obtained at monoculture with 750 and 2310 kg.ha-1, respectively. The highest of percentage of grain protein (23% and essential oil percentage (1.47% were related to treatment 100% Black Cumin + 50% Chickpea, respectively. Based on this results, the highest land equivalent ratio (LER=1.74, actual yield loss (AYL=6.45 and intercropping advantage (IA=1.70 were obtained by treatment 100% Black Cumin + 10% Chickpea, respectively. Therefore, it seems that treatment 100% Black Cumin + 10% Chickpea is remarkably effective to increase the economic income and land use efficiency.

  4. Comparative transcriptome analysis of nodules of two Mesorhizobium-chickpea associations with differential symbiotic efficiency under phosphate deficiency.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Inoue, Komaki; Chu, Ha Duc; Nguyen, Kien Huu; Van Ha, Chien; Watanabe, Yasuko; Burritt, David J; Herrera-Estrella, Luis; Mochida, Keiichi; Tran, Lam-Son Phan

    2017-09-01

    Phosphate (Pi) deficiency is known to be a major limitation for symbiotic nitrogen fixation (SNF), and hence legume crop productivity globally. However, very little information is available on the adaptive mechanisms, particularly in the important legume crop chickpea (Cicer arietinum L.), which enable nodules to respond to low-Pi availability. Thus, to elucidate these mechanisms in chickpea nodules at molecular level, we used an RNA sequencing approach to investigate transcriptomes of the nodules in Mesorhizobium mediterraneum SWRI9-(MmSWRI9)-chickpea and M. ciceri CP-31-(McCP-31)-chickpea associations under Pi-sufficient and Pi-deficient conditions, of which the McCP-31-chickpea association has a better SNF capacity than the MmSWRI9-chickpea association during Pi starvation. Our investigation revealed that more genes showed altered expression patterns in MmSWRI9-induced nodules than in McCP-31-induced nodules (540 vs. 225) under Pi deficiency, suggesting that the Pi-starvation-more-sensitive MmSWRI9-induced nodules required expression change in a larger number of genes to cope with low-Pi stress than the Pi-starvation-less-sensitive McCP-31-induced nodules. The functional classification of differentially expressed genes (DEGs) was examined to gain an understanding of how chickpea nodules respond to Pi starvation, caused by soil Pi deficiency. As a result, more DEGs involved in nodulation, detoxification, nutrient/ion transport, transcriptional factors, key metabolic pathways, Pi remobilization and signalling were found in Pi-starved MmSWRI9-induced nodules than in Pi-starved McCP-31-induced nodules. Our findings have enabled the identification of molecular processes that play important roles in the acclimation of nodules to Pi deficiency, ultimately leading to the development of Pi-efficient chickpea symbiotic associations suitable for Pi-deficient soils. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea.

  6. Biological control of chickpea wilt caused by fusarium oxysporum f.sp.ciceris

    International Nuclear Information System (INIS)

    Yousif, F. A.; Suliman, W. S.

    2010-01-01

    This study was conducted in an attempt to control chickpea (Cicer arietinum L.) wilt, caused by fusarium oxysporum f.sp. ciceris, using antagonistic properties of soil microorganisms. It also aimed at avoiding problems resulting from the use of chemical fungicides. A trichoderma sp. was isolated from the rhizosphere of a resistant chickpea variety (ICCV-2) and a bacillus sp. from the rhizosphere and rhizoplane of the same variety. Both microorganisms proved to be effective in controlling the disease. In addition, trichoderma harzianum, which was obtained from Giza Research Station in Egypt, was also antagonistic to fusarium oxysporum f. sp. ciceris Wilt incidence was significantly reduced when chickpea was grown in posts containing soil mixed with any of the three antagonists or when chickpea seeds were initially treated with the seed-dressing fungicide vincit at 2 ml/kg seeds. Trichoderma harzianum proved to be the best bioagent as it gave the lowest disease incidence. In the field, the two trichoderma spp. were as effective as vincit in causing reduction in the wilt incidence. At the higher concentration of 140 g/m''2, the two antagonists were effective throughout the growth period, but they were less effective at the lower concentration of 70 g/m''2 particularly at the seedling stage.(Author)

  7. Phenotyping chickpeas and pigeonpeas for adaptation to drought

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2012-06-01

    Full Text Available The chickpea and pigeonpea are protein rich grain legumes used for human consumption in many countries. Grain yield of these crops is low to moderate in the semi-arid tropics with large variation due to high GxE interaction. In the Indian subcontinent chickpea is grown in the post-rainy winter season on receding soil moisture, and in other countries during the cool and dry post winter or spring seasons. The pigeonpea is sown during rainy season which flowers and matures in postrainy season. The rainy months are hot and humid with diurnal temperature varying between 25-35oC (maximum and 20-25oC (minimum with an erratic rainfall. The available soil water during postrainy season is about 200-250 mm which is bare minimum to meet the normal evapotranspiration. Thus occurrence of drought is frequent and at varying degrees. To enhance productivity of these crops cultivars tolerant to drought need to be developed. ICRISAT conserves a large number of accessions of chickpea (>20,000 and pigeonpea (>15,000. However only a small proportion (<1% has been used in crop improvement programs mainly due to non-availability of reliable information on traits of economic importance. To overcome this core and mini core collections (10% of core, 1% of entire collection have been developed. Using the mini core approach, trait specific donor lines were identified for agronomic, quality and stress related traits in both crops. Composite collections were developed both in chickpea (3000 accessions and pigeonpea (1000 accessions, genotyped using SSR markers and genotype based reference sets of 300 accessions selected for each crop. Screening methods for different drought tolerant traits such as early maturity (drought escape, large and deep root system, high water use efficiency, smaller leaflets, reduced canopy temperature, carbon isotope discrimination, high leaf chlorophyll content (drought avoidance and breeding strategies for improving drought tolerance have been

  8. Pembuatan Meringue Pavlova Mengunakan Air Rendaman Kacang Chickpeas Sebagai Pengganti Putih Telur

    Directory of Open Access Journals (Sweden)

    Chairul Salim

    2018-04-01

    Full Text Available Abstrak Meringue adalah campuran dasar putih telur yang dikocok bersama gula hingga mengembang. Teksturnya yang creamy membuatnya menjadi favorit bagi terciptanya beberapa produk pastry lainnya seperti pavlova, mousse, baked alaska, macaron, souffle, dacquoise dan bahkan sponge cake. Pavlova adalah makanan penutup yang terbuat dari meringue lalu diisi dengan pastry cream dan dihias dengan menggunakan stroberi dan atau kiwi dan markisa pure. Meski menggunakan putih telur, sebenarnya masih ada sekelompok orang yang belum bisa menikmati produk meringue dan olahan yang lezat. Beberapa dari orang-orang yang alergi terhadap telur atau yang mengadopsi gaya hidup vegan. Alergi telur biasanya disebabkan oleh kandungan protein telur yang terkandung dalam albumin. Chickpea memiliki kandungan gizi yang unik dibandingkan dengan kacang polong dan produk nabati lainnya, dalam buncis mengandung protein dengan proporsi lebih tinggi sekitar 17% -30%. Kandungan protein lain yang juga ditemukan pada buncis adalah albumin dan globulin. Dalam penelitian ini metode yang digunakan adalah metode penelitian eksperimental. Dalam penelitian eksperimental ini, perancangan eksperimental yang dilakukan adalah pemanfaatan kacang tanah kacang tanah sebagai pengganti putih telur dalam pembuatan meringue pavlova. Perlakuan yang diberikan hanya satu yaitu 100% pengganti putih telur dengan kacang kacang kacang 100% sebagai bahan utama pembuatan pavlova meringue. Meringue pavlova yang terbuat dari 100% buncis memiliki kualitas yang bersaing dengan meringue pavlova yang terbuat dari 100% putih telur dan bisa diterima dengan baik oleh konsumen. Keywords: Meringue, Chickpeas, Pavlova Abstract Meringue is a basic mixture of egg whites whipped together with sugar until fluffy. Creamy texture makes it a favorite for creation into several other pastry products like pavlova, mousse, baked alaska, macaron, souffle, dacquoise and even sponge cake. Pavlova is a dessert made from meringue then

  9. Allelopathic Effects of Four Chickpea Cultivars on Vegetative Growth of Sunflower and Corn under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    k Hajmohammadnia Ghalibaf

    2011-02-01

    Full Text Available Abstract In order to study the effects of four chickpea cultivar (Cicer arietinum L. on vegetative growth of sunflower (Helianthus annus and corn (Zea mays, two separate experiments was conducted at Research Greenhouse of Ferdowsi University of Mashhad in 2005. Experiments were done in a factorial arrangement of treatments with two factors based on completely randomized design with 4 replications. Factors included chickpea cultivars (Karag12-60-31, Filip 84-482, Gam, ILC 482, and no residue control and planting date of corn and sunflowers within root residues of chick pea (seeds planted simultaneously, 2 weeks, and 4 weeks after harvesting of chickpea shoots. Seeds of corn and sunflower were planted within root residues of chickpea. Results showed that root residues of chickpea cultivars influenced height and shoot weight of sunflower significantly. The lowest sunflower height was obtained when they were planted within root residues of Flip and ILC cultivars, which decreased 13.7 and 11.1% relative to control, respectively. Planting date of sunflower within root residues of chick pea cultivars had a significant effect on sunflower leaf area, shoot weight, and its root/shoot ratio. So that, lowest leaf area, shoot weight, and also highest root/shoot ratio was obtained in third planting date. Results showed that lowest plant height, leaf area, root weight, shoot weight, and also highest root/shoot ratio of corn (6 weeks after planting was obtained after planting within chickpea cultivars, Gam and ILC. Also the effect of corn planting date was significant. The lowest root and shoot weight, and root/shoot ratio of corn was obtained in the earliest corn planting date. Therefore, corn plants showed more sensitive than sunflower after planting within chickpea cultivars, and the highest inhibitory effects resulted in the earliest corn planting date. Keywords: Pea cultivars, Integrated management, Crop rotation

  10. Biological N2 Fixation by Chickpea in inter cropping System on Sand Soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. in cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes , where benefit is found ,it is mainly due to sparing of soil N rather than direct transfer from the legume. inter cropped wheat has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system induced an increase of wheat grain yield against the sole system. regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between organic sources reflected the superiority of under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil system. While totally organic materials had accumulates more N in grain than those of underrated treated control. In the same time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. Among the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (% Ndfa) shoots and seeds of chickpea plant: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  11. Effect of the Chickpea (Cicer arietinum L. Flour Addition on Physicochemical Properties of Wheat Bread

    Directory of Open Access Journals (Sweden)

    Simona Man

    2015-05-01

    Full Text Available Chickpea flour is a good source of proteins, fibers, minerals and other bioactive compounds and it could be an ideal ingredient for improve the nutritional value of bread and bakery products. The aim of this study was to supplement wheat flour (WF with various levels of chickpea flour (CF in order to obtain bread with good nutritional and quality characteristics. Four experimental variants obtained by substituting wheat flour with different proportions (0%, 10%, 20%, and 30% of chickpea flour were used. The results showed a valuable increment in bread protein and fiber content. The volume of the breads decreased as the level of chickpea flour (CF increased due the dilution of gluten content in the blend and due to the interactions among fiber components, water and gluten. Nevertheless, substitution at 10%, 20% and 30%, gives parameter values at least as good as the control sample (WFB and produces acceptable bread, in terms of weight, volume and sensorial properties.

  12. Chemical composition, nutritional value and in vitro starch digestibility of roasted chickpeas.

    Science.gov (United States)

    Simsek, Senay; Herken, Emine Nur; Ovando-Martinez, Maribel

    2016-06-01

    Chickpea is considered a wholesome and nutritious food due to its nutritional properties and glycemic response. Such properties can be influenced by the thermal treatment used to cook this legume and produce a snack named leblebi. From the consumers' point of view, it is desirable to improve texture and palatability of the chickpea by the processing steps used to make leblebi. However, consumers are increasingly concerned with the nutritional value of snack foods. Nutritional components and digestibility properties of single and double heat-treated chickpea, single and double roasted leblebi and white leblebi were studied. High sodium, starch damage and soluble dietary fiber content were observed in white leblebi; while the other samples showed significantly (P good nutritional quality and low glycemic response. White leblebi had relatively high sodium content and glycemic response. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Identification of conserved microRNAs and their targets in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Hu, Jihong; Sun, Lulu; Ding, Yi

    2013-04-01

    The microRNAs (miRNAs) are a new class of non-protein coding small RNAs that regulate gene expression at the post-transcriptional level in plants. Although thousands of miRNAs have been identified in many plant species, little studies have been reported about chickpea microRNAs. In this study, 28 potential miRNA candidates belonging to 20 families were identified from 16 ESTs and 12 GSSs in chickpea using a comparative genome-based computational analysis. A total of 664 miRNA targets were predicted and some of them encoded transcription factors as well as genes that function in stress response, signal transduction, methylation and a variety of other metabolic processes. These findings lay the foundation for further understanding of miRNA function in the development of chickpea.

  14. UHT PROCESSED CHICKPEA LIQUID MEAL: A NOVEL CONCEPT OF A CONVENIENT LIQUID FOOD

    Directory of Open Access Journals (Sweden)

    Robert W. Hosken

    2002-04-01

    Full Text Available Chickpea liquid meal (CLM is a new concept of a convenient liquid food. It is a complex colloidal system, which is composed of dehulled chickpea flour as the major ingredient and with the addition of other ingredients (protein, fat, sucrose, dried glucose syrup, maltodextrin, vitamins, minerals, etc. The product is expected to have a balanced nutritional composition; acceptable flavor, taste and thickness; homogenous and smooth texture; stable colloid; and can be stored for a long of period (commercially sterile. This paper presents an overview of the literature information on the production, nutritional quality and functional properties of the chickpea, and the technology of liquid meal, which is applicable to CLM. It also outlines possible problems that influence consumer acceptability of the product. Some preliminary results of our study are also reported.

  15. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Shokeen Bhumika

    2011-02-01

    Full Text Available Abstract Background Chickpea (Cicer arietinum L. is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. Results A microsatellite enriched library of chickpea (enriched for (GT/CAn and (GA/CTn repeats was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded × JG-62 (double podded] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3% were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map

  16. Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gaur, Rashmi; Sethy, Niroj K; Choudhary, Shalu; Shokeen, Bhumika; Gupta, Varsha; Bhatia, Sabhyata

    2011-02-17

    Chickpea (Cicer arietinum L.) is an economically important cool season grain legume crop that is valued for its nutritive seeds having high protein content. However, several biotic and abiotic stresses and the low genetic variability in the chickpea genome have continuously hindered the chickpea molecular breeding programs. STMS (Sequence Tagged Microsatellite Sites) markers which are preferred for the construction of saturated linkage maps in several crop species, have also emerged as the most efficient and reliable source for detecting allelic diversity in chickpea. However, the number of STMS markers reported in chickpea is still limited and moreover exhibit low rates of both inter and intraspecific polymorphism, thereby limiting the positions of the SSR markers especially on the intraspecific linkage maps of chickpea. Hence, this study was undertaken with the aim of developing additional STMS markers and utilizing them for advancing the genetic linkage map of chickpea which would have applications in QTL identification, MAS and for de novo assembly of high throughput whole genome sequence data. A microsatellite enriched library of chickpea (enriched for (GT/CA)n and (GA/CT)n repeats) was constructed from which 387 putative microsatellite containing clones were identified. From these, 254 STMS primers were designed of which 181 were developed as functional markers. An intraspecific mapping population of chickpea, [ICCV-2 (single podded) × JG-62 (double podded)] and comprising of 126 RILs, was genotyped for mapping. Of the 522 chickpea STMS markers (including the double-podding trait, screened for parental polymorphism, 226 (43.3%) were polymorphic in the parents and were used to genotype the RILs. At a LOD score of 3.5, eight linkage groups defining the position of 138 markers were obtained that spanned 630.9 cM with an average marker density of 4.57 cM. Further, based on the common loci present between the current map and the previously published chickpea

  17. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Chandra Kant

    Full Text Available A hallmark trait of chickpea (Cicer arietinum L., like other legumes, is the capability to convert atmospheric nitrogen (N2 into ammonia (NH3 in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO, Cluster of Orthologous Groups (COG and Kyoto Encyclopedia of Genes and Genomes (KEGG metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea.

  18. Sources of resistance in chickpea (cicer arietinum l.) land races against ascochyta rabiei causal agent of ascochyta blight disease

    International Nuclear Information System (INIS)

    Duzdemir, O.; Selvi, B.; Yanar, Y.

    2014-01-01

    Ascochyta blight disease, caused by the fungus Ascochyta rabiei, is a major yield limiting factor of chickpea in Turkey and around the world. This study was conducted to identify sources of genetic resistance against chickpea blight caused by Ascochyta rabiei. For this purpose, 68 chickpea land races of different origins were evaluated in both field and growth chamber conditions during 2008-2009 growing seassons. Two standard cultivars were used as a reference, Inci (resistant) and Canitez (susceptible). Disease severity scoring was conducted on a 1-9 rating scale 21 days after inoculation in growth chamber test and at flowering and pot filling stages in field tests. Analysis of variance (ANOVA) test showed a significant difference among the chickpea landraces in ascochyta blight resistance at p<0.05. None of the chickpea land races was highly resistant to the pathogen in growth chamber and field conditions. Only two landraces (10A and 28B) were moderately resistant to the disease. Some of the landraces resulted in a particular plant to exhibit no disease symptoms, indicating that the variation within chickpea land races was high. Therefore, seeds of this plant were harvested separately and preserved for further evaluations. (author)

  19. Nutritional and chemical alteration of raw, irradiated and cooked chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Ferreira, Andrea C. Penati; Arthur, Valter; Brazzaca, Solange Guidolin Canniatti

    2007-01-01

    The work objective was analyzing the centesimal and mineral composition to verifying the alterations on the nutritional characteristics caused by the cooking process. Also were carried out analysis of the iron availability in vitro, protein digestibility in vitro and the profile of amino acids in the raw and cooked in the control and irradiated seeds (doses of 2 kGy, 4 kGy, 6 kGy, 8 kGy and 10 kGy). The results of the mineral analysis showed that only phosphorus decrease with cooking process and it decreased ash and carbohydrates available. In the control and in the doses of 4 kGy and 6 kGy the cooking has not influenced the digestibility of the protein, but the treatments that received radiation doses of 2 kGy, 8 kGy and 10 kGy were influenced. The cooked chickpea has shown better digestibility in higher doses of radiation although the treatments have shown low digestibility. The raw chickpea presented a better dialysis of iron in the control and in the doses 2 kGy and 4 kGy and the cooked chickpea presented improvement according to the increase of radiation doses. In relation to the essential amino acids, the chickpea has presented an adequate nutritional value, except for the methionine. (author)

  20. Nutritional and chemical alteration of raw, irradiated and cooked chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andrea C. Penati; Arthur, Valter [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)]. E-mails: andrea@dtr.com.br; acpferre@cena.usp.br; arthur@cena.usp.br; Brazzaca, Solange Guidolin Canniatti [Escola Superior de Agricultura Luis de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil)]. E-mail: sgcbraza@esalq.usp.br

    2007-07-01

    The work objective was analyzing the centesimal and mineral composition to verifying the alterations on the nutritional characteristics caused by the cooking process. Also were carried out analysis of the iron availability in vitro, protein digestibility in vitro and the profile of amino acids in the raw and cooked in the control and irradiated seeds (doses of 2 kGy, 4 kGy, 6 kGy, 8 kGy and 10 kGy). The results of the mineral analysis showed that only phosphorus decrease with cooking process and it decreased ash and carbohydrates available. In the control and in the doses of 4 kGy and 6 kGy the cooking has not influenced the digestibility of the protein, but the treatments that received radiation doses of 2 kGy, 8 kGy and 10 kGy were influenced. The cooked chickpea has shown better digestibility in higher doses of radiation although the treatments have shown low digestibility. The raw chickpea presented a better dialysis of iron in the control and in the doses 2 kGy and 4 kGy and the cooked chickpea presented improvement according to the increase of radiation doses. In relation to the essential amino acids, the chickpea has presented an adequate nutritional value, except for the methionine. (author)

  1. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  2. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing.

    Science.gov (United States)

    Jain, Mukesh; Chevala, V V S Narayana; Garg, Rohini

    2014-11-01

    MicroRNAs (miRNAs) are essential components of complex gene regulatory networks that orchestrate plant development. Although several genomic resources have been developed for the legume crop chickpea, miRNAs have not been discovered until now. For genome-wide discovery of miRNAs in chickpea (Cicer arietinum), we sequenced the small RNA content from seven major tissues/organs employing Illumina technology. About 154 million reads were generated, which represented more than 20 million distinct small RNA sequences. We identified a total of 440 conserved miRNAs in chickpea based on sequence similarity with known miRNAs in other plants. In addition, 178 novel miRNAs were identified using a miRDeep pipeline with plant-specific scoring. Some of the conserved and novel miRNAs with significant sequence similarity were grouped into families. The chickpea miRNAs targeted a wide range of mRNAs involved in diverse cellular processes, including transcriptional regulation (transcription factors), protein modification and turnover, signal transduction, and metabolism. Our analysis revealed several miRNAs with differential spatial expression. Many of the chickpea miRNAs were expressed in a tissue-specific manner. The conserved and differential expression of members of the same miRNA family in different tissues was also observed. Some of the same family members were predicted to target different chickpea mRNAs, which suggested the specificity and complexity of miRNA-mediated developmental regulation. This study, for the first time, reveals a comprehensive set of conserved and novel miRNAs along with their expression patterns and putative targets in chickpea, and provides a framework for understanding regulation of developmental processes in legumes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Biological N2 fixation by chickpea in inter cropping system on sand soil

    International Nuclear Information System (INIS)

    Ismail, M. M.; Moursy, A. A. A.; Kotb, E. A.; Farid, I. M.

    2012-12-01

    A field experiment was carried out at the plant nutrition and fertilization unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea incorporating. The benefits of N 2 fixation by legumes to cereals growing in inter crops or to grasses growing in mixed swards are high clear. In cases the benefit to the N status of cereals has bee seen when they are inter cropped with legumes, where benefit is found, it is mainly due to sparing of soil N rather than direct transfer from the legume. Inter cropped wheat, has a high grains yield as compared to those recorded under sole crop. The application of inter cropping system an increase of wheat grain yield against the sole system, regardless the cultivation system, the over all means of fertilizer rates indicated (50% MF + 50% OM) treatment was superiority (100% OM) and (75% MF + 25% OM) or those recorded with either un fertilizer when wheat grain yield considered. Comparison heed between or gain sources reflected the superiority of compost under sole cultivation, while chickpea straw was the best under inter cropping. Inter cropped has a high grain N uptake compared to soil systems. While totally organic materials had accumulates more N in grains than those of untreated treated control. In the some time, the overall mean indicated the superiority of compost treatment combined with 50% mineral fertilizer under inter cropping system over those of either only organic materials treatment or those combined with 75% mineral fertilizer. Plants treated of chickpea straw and compost, achieved the best value of straw weight. A mong the organic manure treatments, chickpea straw and compost seem to be the best ones. Nitrogen derived from air (%Ndfa) shoots and seeds of chickpea plants: In case of cow manure and maize stalk, the best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general

  4. Characterization of chickpea (Cicer arietinum L.) lectin for biological activity.

    Science.gov (United States)

    Gautam, Ajay Kumar; Gupta, Neha; Narvekar, Dakshita T; Bhadkariya, Rajni; Bhagyawant, Sameer S

    2018-05-01

    Lectins are proteins that are subject of intense investigations. Information on lectin from chickpea ( Cicer arietinum L.) with respect to its biological activities are very limited. In this study, we purified lectin from the seeds of chickpea employing DEAE-cellulose and SP-Sephadex ion exchange chromatography and identified its molecular subunit mass as 35 kDa. The free radical scavenging activity of lectin measured by the DPPH assay has IC 50 of 0.88 µg/mL. Lectin exerted antifungal activity against Candida krusei , Fusarium oxysporium oxysporium , Saccharomyces cerevisiae and Candida albicans , while antibacterial activity against E. coli , B. subtilis , S. marcescens and P. aeruginosa. The minimum inhibitory concentrations were 200, 240, 160 and 140 µg for C. krusei, F. oxysporium , S. cerevisiae and C. albicans respectively. Lectin was further examined for its antiproliferative potential against cancerous cell line. The cell viability assay indicated a high inhibition activity on Ishikawa, HepG2, MCF-7 and MDA-MB-231 with IC 50 value of 46.67, 44.20, 53.58 and 37.46 µg/mL respectively. These results can provide a background for future research into the benefits of chickpea lectin to pharmacological perspective.

  5. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    Farid, I.M.; Moursy, A.A.A.; Kotb, E.A.; Ismail, M.

    2012-01-01

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  6. The impact of using chickpea flour and dried carp fish powder on pizza quality

    OpenAIRE

    El-Beltagi, Hossam S.; El-Senousi, Naglaa A.; Ali, Zeinab A.; Omran, Azza A.

    2017-01-01

    Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum) flour and dried carp fish powder (Cyprinus carpio). Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids) and dried carp fish powder (high...

  7. JAZ repressors: Possible Involvement in Nutrients Deficiency Response in Rice and Chickpea

    Directory of Open Access Journals (Sweden)

    Ajit P. Singh

    2015-11-01

    Full Text Available Jasmonates (JA are well-known phytohormones which play important roles in plant development and defence against pathogens. Jasmonate ZIM domain (JAZ proteins are plant-specific proteins and act as transcriptional repressors of JA-responsive genes. JA regulates both biotic and abiotic stress responses in plants; however, its role in nutrient deficiency responses is very elusive. Although, JA is well-known for root growth inhibition, little is known about behaviour of JAZ genes in response to nutrient deficiencies, under which root architectural alteration is an important adaptation. Using protein sequence homology and a conserved-domains approach, here we identify ten novel JAZ genes from the recently sequenced Chickpea genome, which is one of the most nutrient efficient crops. Both rice and chickpea JAZ genes express in tissue- and stimuli-specific manners. Many of which are preferentially expressed in root. Our analysis further showed differential expression of JAZ genes under macro (NPK and micronutrients (Zn, Fe deficiency in rice and chickpea roots. While both rice and chickpea JAZ genes showed a certain level of specificity towards type of nutrient deficiency, generally majority of them showed induction under K deficiency. Generally, JAZ genes showed an induction at early stages of stress and expression declined at later stages of macro-nutrient deficiency. Our results suggest that JAZ genes might play a role in early nutrient deficiency response both in monocot and dicot roots, and information generated here can be further used for understanding the possible roles of JA in root architectural alterations for nutrient deficiency adaptations

  8. Estimation of N2 fixation in winter and spring sown chickpea and in lentil grown under rainfed conditions using 15 N

    International Nuclear Information System (INIS)

    Kurdali, F.; Khalifa, Kh.; Al-Asfari, F.

    1996-03-01

    A field experiment was conducted under rainfed conditions to asses N 2 fixation in one cultivar of lentil and in two cultivars of chickpea (Gab 1 for winter and spring sowing, and Baladi for spring sowing). Moreover, the effect of P fertilizer on dry matter production, percentages and amounts of different N sources was studied using 15 N isotope dilution method. Wheat was used as a reference crop. The rate of N 2 fixation affected by several factors such as plant species, cultivar, date of sowing, P-fertilizer and the growing season. The highest amount of N 2 fixation obtained in winter sown chickpea was 126 Kg N ha -1 . Whereas, that of spring sowing for the same cultivar was 30 Kg N ha -1 . For Baladi cultivar, the highest amount of N-fixed was 55 Kg N ha -1 . While it was 104 Kg N ha -1 in lentil. Generally, N 2 -fixation affected positively by P-application. In the first growing season, N 2 -fixation increased from 33 to %58 by P application in spring sown chickpea (Baladi), and from 20 to %35 in spring sown chickpea (Gab 1). Whereas, no significant differences were observed upon P application in winter sown chickpea and in lentil. In the second growing season, P-fertilizer increased the percentage of N 2 fixation from 54 to %64 in winter sown chickpea, and from 45 to %64 in spring sown chickpea (Gab 1), and from 49 to %60 in spring sown chickpea (Baladi). While, in lentil it was from 66 to %72. The rate of N 2 fixation in winter sown chickpea was clearly higher than that of spring sowings. Moreover, this last one absorbed more N from the soil. Our results indicate the importance of winter sown chickpea in terms of N 2 fixation, seed yield and the reduction of soil N-uptake, besides a positive P-fertilizer response, especially when suitable rain fall occurs during the season. Moreover, the importance of these results from agronomical point of view was discussed. (author). 24 refs., 6 figs., 7 tabs

  9. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-09

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.

  10. The value of crop germplasm and value accounting system

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaowei; DING Guangzhou; CHANG Ying

    2007-01-01

    The value evaluation and accounting of crop germplasm not only provides the theory and method for the price of germplasm, thus makes further lawful and fair transactions, but also ensures the benefits of crop germplasm owners and is also instructive in keeping the foodstuff safety. This paper founded a multidimensional value accounting system, which included physical accounting, value accounting and quality index accounting; individual accounting and total accounting; quantity accounting and quality accounting.

  11. Effect of incorporation of plantain and chickpea flours on the quality characteristics of biscuits

    OpenAIRE

    Yadav, Ritika B.; Yadav, Baljeet S.; Dhull, Nisha

    2011-01-01

    Blends of plantain and chickpea flours each with concentrations of 0, 10, 20, 30 and 40% along with of refined wheat flour were used for development of biscuits. The flours were evaluated for their chemical and functional properties. Plantain flour had highest crude fiber (3.6%) and carbohydrate content (80.8%), whereas chickpea flour had highest protein content (19.3%) and fat content (4.4%). Plantain flour showed highest water absorption (167.7%) whereas lowest oil absorption capacity (144....

  12. The impact of using chickpea flour and dried carp fish powder on pizza quality.

    Directory of Open Access Journals (Sweden)

    Hossam S El-Beltagi

    Full Text Available Pizza being the most popular food worldwide, quality and sensory appeal are important considerations during its modification effort. This study was aimed to evaluate the quality of pizza made using two different sources of proteins, chickpea (Cicer arietinum flour and dried carp fish powder (Cyprinus carpio. Analysis indicated nutrients richness specificity of chickpea flour (higher fiber, energy, iron, zinc, linoleic acid and total nonessential amino acids and dried carp fish powder (higher contents of protein, fats, ash, oleic acid and total essential amino acids complementing wheat flour to enhance nutritional value of pizza. Total plate count and thiobarbituric acid were increased (P0.05 across the levels of two protein sources. Springiness was decreased (P0.05 on all sensorial parameters except for odor values. The results could be useful in utilization of chickpea flour and carp fish powder in designing nutritious pizza for consumers.

  13. Cold stress alters transcription in meiotic anthers of cold tolerant chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Kamal Dev; Nayyar, Harsh

    2014-10-11

    Cold stress at reproductive phase in susceptible chickpea (Cicer arietinum L.) leads to pollen sterility induced flower abortion. The tolerant genotypes, on the other hand, produce viable pollen and set seed under cold stress. Genomic information on pollen development in cold-tolerant chickpea under cold stress is currently unavailable. DDRT-PCR analysis was carried out to identify anther genes involved in cold tolerance in chickpea genotype ICC16349 (cold-tolerant). A total of 9205 EST bands were analyzed. Cold stress altered expression of 127 ESTs (90 up-regulated, 37 down-regulated) in anthers, more than two third (92) of which were novel with unknown protein identity and function. Remaining about one third (35) belonged to several functional categories such as pollen development, signal transduction, ion transport, transcription, carbohydrate metabolism, translation, energy and cell division. The categories with more number of transcripts were carbohydrate/triacylglycerol metabolism, signal transduction, pollen development and transport. All but two transcripts in these categories were up-regulated under cold stress. To identify time of regulation after stress and organ specificity, expression levels of 25 differentially regulated transcripts were also studied in anthers at six time points and in four organs (anthers, gynoecium, leaves and roots) at four time points. Limited number of genes were involved in regulating cold tolerance in chickpea anthers. Moreover, the cold tolerance was manifested by up-regulation of majority of the differentially expressed transcripts. The anthers appeared to employ dual cold tolerance mechanism based on their protection from cold by enhancing triacylglycerol and carbohydrate metabolism; and maintenance of normal pollen development by regulating pollen development genes. Functional characterization of about two third of the novel genes is needed to have precise understanding of the cold tolerance mechanisms in chickpea anthers.

  14. Effects of Supplemental Irrigation on Yield and Growth Indices of Three

    Directory of Open Access Journals (Sweden)

    M. Parsa

    2012-04-01

    Full Text Available In order to investigate the effects of different irrigation regimes on yield and growth indices of three chickpea cultivars, an experiment was conducted during the 2007 growing season at Mashhad (Iran. Six irrigation regimes including I1; full irrigation, I2; irrigation at branching, I3; irrigation at flowering, I4; irrigation at pod formation, I5; irrigation at seed filling stage and I6; dry farming without irrigation (main factors. Three Kabuli chickpea cultivars ILC482, Jam, Karaj 12-60-31 (sub factors in a spilt block experiment based on randomized block design with three replications. There were significant differences between supplemental irrigation levels on grain yield. The results showed that grain yield in supplemental irrigation at flowering stage was more than to supplemental irrigation at branching, podding and seed filling stages (respectively 3.3, 3.1 and 23%. Within the three cultivars, grain yield, biological yield and harvest index were highest and lowest in ILC482 and Karaj 12-60-31 cultivars respectively. The results showed that supplemental irrigation at flowering stage increased dry matter, leaf area index, crop growth rate, relative growth rate and net assimilation rate. The results showed that flowering stage in chickpea cultivars was sensitive to drought stress so, ILC482 cultivar also showed more tolerance to water stress condition.

  15. Fate and effects of lindane in a chickpea field

    International Nuclear Information System (INIS)

    Meguenni, H.; Bennaceur, M.; Sennaqui, Z.; Ghezal, F.

    1997-01-01

    The effect of lindane on non-target organisms and the concentrations of its residues in soil and the chickpea crop were investigated over three years. Lindane had adverse effects on some elements of the ecosystem. Ants (Formicidae), spiders (Aranae) and beetles (Carabidae), to a lesser extent, were more affected than Collembola. Organic matter, buried in non-degradable open-mesh bags in the plots, was slightly more degraded in the control plots than in the sprayed plots suggesting that the soil microflora and microfauna had been inhibited by the lindane. However, it was shown by chemical analyses that lindane was degraded in both soils and plants to one tenth of the original concentrations after application in 2 months and 1 month, respectively. Some concentrations (0.2-1.2 mg kg -1 ) of lindane were found in the harvested grain of the chickpea plants. (author). 1 ref., 6 tabs

  16. Chemical Composition and Rumen Degradation Characteristics of Different Chickpea (Cicer Arietinum L. Lines Straw

    Directory of Open Access Journals (Sweden)

    Numan Kılıçalp

    2017-06-01

    Full Text Available This study aimed to identfy chemical composition, ruminal degradation characeristics and metabolizable energy (ME content of five different chickpea line and a check cultivar’s straw using nylon bag technique. Feed samples were incubated as three replicates of each fistulated Holstein heifer for 0, 8, 12, 24, 36, 48, 72 and 96 h. Degradation characteristics of dry matter (DM and neutral detergent fiber (NDF in rumen were determined by using this mathematical expression D=a+b(1-e-ct. Crude protein (CP, acid detergent fiber (ADF, neutral detergent fiber (NDF, and ash contents of straw were ranged from 5.61 to 7.42%, 51.33 to 56.0%, 63.67 to 67.0%, and 8.0 to 9.0% respectively. Besides Rapidly soluble fraction (a, potantial degradability (a+b and effective dry matter degradability (EDDM were ranged from 17.86 to 21.41, 54.40 to 59.43, 49.65 to 54.91% respectively. Estimated ME of chickpea entries straw were ranged from 5.96 to 7.37 MJ/kg. Metabolizable energy content of control chickpea cultivar was significantly higher than the other chickpea straw of lines. The research values of ME revealed that significant differences were determined among the lines in terms of energy content. In addition to, a strong relationship between straw NDF level and ME content were determined.

  17. Chickpea chlorotic stunt virus: A New Polerovirus Infecting Cool-Season Food Legumes in Ethiopia.

    Science.gov (United States)

    Abraham, A D; Menzel, W; Lesemann, D-E; Varrelmann, M; Vetten, H J

    2006-05-01

    ABSTRACT Serological analysis of diseased chickpea and faba bean plantings with yellowing and stunting symptoms suggested the occurrence of an unknown or uncommon member of the family Luteoviridae in Ethiopia. Degenerate primers were used for reverse transcriptase-polymerase chain reaction amplification of the viral coat protein (CP) coding region from both chickpea and faba bean samples. Cloning and sequencing of the amplicons yielded nearly identical (96%) nucleotide sequences of a previously unrecognized species of the family Luteoviridae, with a CP amino acid sequence most closely related (identity of approximately 78%) to that of Groundnut rosette assistor virus. The complete genome (5,900 nts) of a faba bean isolate comprised six major open reading frames characteristic of polero-viruses. Of the four aphid species tested, only Aphis craccivora transmitted the virus in a persistent manner. The host range of the virus was confined to a few species of the family Fabaceae. A rabbit antiserum raised against virion preparations cross-reacted unexpectedly with Beet western yellows virus-like viruses. This necessitated the production of murine monoclonal antibodies which, in combination with the polyclonal antiserum, permitted both sensitive and specific detection of the virus in field samples by triple-antibody sandwich, enzyme-linked immunosorbent assay. Because of the characteristic field and greenhouse symptoms in chickpea, the name Chickpea chlorotic stunt virus is proposed for this new member of the genus Polerovirus (family Luteoviridae).

  18. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    Science.gov (United States)

    Sreevidya, M.; Gopalakrishnan, S.; Kudapa, H.; Varshney, R.K.

    2016-01-01

    The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40) but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40), hydrocyanic acid (except VAI-7 and VAI-40), indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea. PMID:26887230

  19. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea

    Directory of Open Access Journals (Sweden)

    M. Sreevidya

    2016-03-01

    Full Text Available Abstract The main objective of the present study was to isolate and characterize actinomycetes for their plant growth-promotion in chickpea. A total of 89 actinomycetes were screened for their antagonism against fungal pathogens of chickpea by dual culture and metabolite production assays. Four most promising actinomycetes were evaluated for their physiological and plant growth-promotion properties under in vitro and in vivo conditions. All the isolates exhibited good growth at temperatures from 20 °C to 40 °C, pH range of 7–11 and NaCl concentrations up to 8%. These were also found highly tolerant to Bavistin, slightly tolerant to Thiram and Captan (except VAI-7 and VAI-40 but susceptible to Benlate and Ridomil at field application levels and were found to produce siderophore, cellulase, lipase, protease, chitinase (except VAI-40, hydrocyanic acid (except VAI-7 and VAI-40, indole acetic acid and β-1,3-glucanase. When the four actinomycetes were evaluated for their plant growth-promotion properties under field conditions on chickpea, all exhibited increase in nodule number, shoot weight and yield. The actinomycetes treated plots enhanced total N, available P and organic C over the un-inoculated control. The scanning electron microscope studies exhibited extensive colonization by actinomycetes on the root surface of chickpea. The expression profiles for indole acetic acid, siderophore and β-1,3-glucanase genes exhibited up-regulation for all three traits and in all four isolates. The actinomycetes were identified as Streptomyces but different species in the 16S rDNA analysis. It was concluded that the selected actinomycetes have good plant growth-promotion and biocontrol potentials on chickpea.

  20. Molecular Identification and Genetic Characterization of Macrophomina phaseolina Strains Causing Pathogenicity on Sunflower and Chickpea

    Directory of Open Access Journals (Sweden)

    Ali N. Khan

    2017-07-01

    Full Text Available Macrophomina phaseolina is the most devastating pathogen which causes charcoal rot and root rot diseases in various economically important crops. Three strains M. phaseolina 1156, M. phaseolina 1160, and M. phaseolina PCMC/F1 were tested for their virulence on sunflower (Helianthus annuus L. and chickpea (Cicer arietinum L.. The strains showed high virulence on both hosts with a disease score of 2 on chickpea and sunflower. The strains also increased the hydrogen per oxide (H2O2 content by 1.4- to 1.6-fold in root as well as shoot of chickpea and sunflower. A significant increase in antioxidant enzymes was observed in fungal infected plants which indicated prevalence of oxidative stress during pathogen propagation. The M. phaseolina strains also produced hydrolytic enzymes such as lipase, amylase, and protease with solubilization zone of 5–43 mm, 5–45 mm, and 12–35 mm, respectively. The M. phaseolina strains were identified by 18S rRNA and analyzed for genetic diversity by using random amplified polymorphic DNA (RAPD markers. The findings based on RAPD markers and 18S rRNA sequence analysis clearly indicate genetic variation among the strains collected from different hosts. The genetically diverse strains were found to be pathogenic to sunflower and chickpea.

  1. Determining nutrients degradation kinetics of chickpea (Cicer arietinum straw using nylon bag technique in sheep

    Directory of Open Access Journals (Sweden)

    A. Mirzaei-Aghsaghali

    2012-05-01

    Full Text Available Straw a by-product from grain legume crops is produced in large quantities in Iran. Straw is constant component of ruminant diets on small holder farms; however, there is little information about its nutritive value. Accordingly experiment was conducted to determine the chemical composition and ruminal organic matter (OM and crude protein (CP degradability of chickpea straw using nylon bags (in situ technique. Replicated samples were incubated at 0, 2, 4, 8, 12, 24, 48 and 72 hours in three rumen canulated Ghezel rams with 50±3 kg body weight. Dry matter (DM, CP, ether extract (EE, OM, crude fiber (CF and nitrogen free extract (NFE content of chickpea straws were 92.2, 6.1, 5.5, 92.0, 34.3 and 46.2%, respectively. The soluble fraction (a of the OM and CP of chickpea straw was 17.5 and 40.8% and potential degradability (a+b of OM and CP was 56.7 and 72.0%, respectively. Effective degradability at different passage rates (2, 5 and 8% per hours for OM was 51.0 44.9 and 40.7% and for CP were 68.4, 64.3 and 61.3%, respectively. In conclusion, based on chemical composition and degradation characteristics, chickpea straw could have moderate nutritive value for ruminants.

  2. High-efficiency Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) and regeneration of insect-resistant transgenic plants.

    Science.gov (United States)

    Mehrotra, Meenakshi; Sanyal, Indraneel; Amla, D V

    2011-09-01

    To develop an efficient genetic transformation system of chickpea (Cicer arietinum L.), callus derived from mature embryonic axes of variety P-362 was transformed with Agrobacterium tumefaciens strain LBA4404 harboring p35SGUS-INT plasmid containing the uidA gene encoding β-glucuronidase (GUS) and the nptII gene for kanamycin selection. Various factors affecting transformation efficiency were optimized; as Agrobacterium suspension at OD(600) 0.3 with 48 h of co-cultivation period at 20°C was found optimal for transforming 10-day-old MEA-derived callus. Inclusion of 200 μM acetosyringone, sonication for 4 s with vacuum infiltration for 6 min improved the number of GUS foci per responding explant from 1.0 to 38.6, as determined by histochemical GUS assay. For introducing the insect-resistant trait into chickpea, binary vector pRD400-cry1Ac was also transformed under optimized conditions and 18 T(0) transgenic plants were generated, representing 3.6% transformation frequency. T(0) transgenic plants reflected Mendelian inheritance pattern of transgene segregation in T(1) progeny. PCR, RT-PCR, and Southern hybridization analysis of T(0) and T(1) transgenic plants confirmed stable integration of transgenes into the chickpea genome. The expression level of Bt-Cry protein in T(0) and T(1) transgenic chickpea plants was achieved maximum up to 116 ng mg(-1) of soluble protein, which efficiently causes 100% mortality to second instar larvae of Helicoverpa armigera as analyzed by an insect mortality bioassay. Our results demonstrate an efficient and rapid transformation system of chickpea for producing non-chimeric transgenic plants with high frequency. These findings will certainly accelerate the development of chickpea plants with novel traits.

  3. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  4. Screening of soybean germplasm for resistance against colletotrichum truncatum infection

    International Nuclear Information System (INIS)

    Hossain, I.; Islam, M.R.; Hamiduzzaman, M.M.

    2001-01-01

    One hundred and five soybean germplasms of exotic and national origin were evaluated for their reaction to anthracnose under field condition in Bangladesh. In the field 36 materials were found to be free from infection of C. truncatum (highly resistant) while 19, 37, 3, 5 and 5 germplasms were graded as resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible, respectively. Percentage of seed-borne infection by colletotrichum truncatum varied from one germplasm to another. In total 43 germplasms were completely free from seed-borne infection, whereas up to 5% infection was recorded in 25 samples, 6-30% in 32 samples and 31-36% infection was found in five samples. (author)

  5. Integrated management of Fusarium wilt of chickpea ( Cicer ...

    African Journals Online (AJOL)

    The present study was carried out to assess the efficacy of an integrated management strategy for Fusarium wilt of chickpea that combined the use of microbial antagonist, botanical extract and fungicide. Before setting the experiment in field micro plots, a series of in vitro and in vivo experiments were conducted to select a ...

  6. Comprehensive transcriptome assembly of Chickpea (Cicer arietinum L. using sanger and next generation sequencing platforms: development and applications.

    Directory of Open Access Journals (Sweden)

    Himabindu Kudapa

    Full Text Available A comprehensive transcriptome assembly of chickpea has been developed using 134.95 million Illumina single-end reads, 7.12 million single-end FLX/454 reads and 139,214 Sanger expressed sequence tags (ESTs from >17 genotypes. This hybrid transcriptome assembly, referred to as Cicer arietinumTranscriptome Assembly version 2 (CaTA v2, available at http://data.comparative-legumes.org/transcriptomes/cicar/lista_cicar-201201, comprising 46,369 transcript assembly contigs (TACs has an N50 length of 1,726 bp and a maximum contig size of 15,644 bp. Putative functions were determined for 32,869 (70.8% of the TACs and gene ontology assignments were determined for 21,471 (46.3%. The new transcriptome assembly was compared with the previously available chickpea transcriptome assemblies as well as to the chickpea genome. Comparative analysis of CaTA v2 against transcriptomes of three legumes - Medicago, soybean and common bean, resulted in 27,771 TACs common to all three legumes indicating strong conservation of genes across legumes. CaTA v2 was also used for identification of simple sequence repeats (SSRs and intron spanning regions (ISRs for developing molecular markers. ISRs were identified by aligning TACs to the Medicago genome, and their putative mapping positions at chromosomal level were identified using transcript map of chickpea. Primer pairs were designed for 4,990 ISRs, each representing a single contig for which predicted positions are inferred and distributed across eight linkage groups. A subset of randomly selected ISRs representing all eight chickpea linkage groups were validated on five chickpea genotypes and showed 20% polymorphism with average polymorphic information content (PIC of 0.27. In summary, the hybrid transcriptome assembly developed and novel markers identified can be used for a variety of applications such as gene discovery, marker-trait association, diversity analysis etc., to advance genetics research and breeding

  7. Technological properties, antioxidant activity and total phenolic and flavonoid content of pigmented chickpea (Cicer arietinum L.) cultivars.

    Science.gov (United States)

    Heiras-Palazuelos, Mar J; Ochoa-Lugo, Mirna I; Gutiérrez-Dorado, Roberto; López-Valenzuela, José A; Mora-Rochín, Saraid; Milán-Carrillo, Jorge; Garzón-Tiznado, José A; Reyes-Moreno, Cuauhtémoc

    2013-02-01

    Chickpeas are rich sources of highly nutritious protein and dietary fibre; the health benefits of consuming legumes such as antioxidant activity (AoxA) could be effective for the expansion of their food uses. The technological properties and antioxidant potential of five pigmented chickpea cultivars were evaluated. Protein content of the grains varied from 24.9 to 27.4 g/100 g sample (dw). The cooking time (CT) of the whole grains ranged from 90.5 to 218.5 min; the lowest CT corresponded to Black ICC3761 cultivar. The total phenolic content (TPC) and AoxA [oxygen radical absorbance capacity (ORAC) value] varied from 1.23 to 1.51 mg GAE/g sample (dw) and from 5011 to 5756 μmol TE/100 g sample (dw), respectively; Red ICC13124 showed the highest ORAC value. The differences in technological properties and AoxA among cultivars could be used in chickpea breeding programmes. Chickpea cultivars could contribute significantly to the management and/or prevention of degenerative diseases associated with free radical damage.

  8. Induction of high yielding and high protein containing chickpea mutant variety through gamma radiation

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khan, A.J.; Tariq, M.

    1997-01-01

    Pure seeds of a blight susceptible but high yielding chickpea variety 6153 were irradiated at 20 Kr(0.2 kGy) dose of gamma radiation and the mutant line CMN-446-4 was selected in M3 generation on the basis of high yield and disease resistance. After confirmation of its resistance to blight in M4 and M5, the mutant line CMN-446-4 along with other promising chickpea mutants were evaluated in various yield trials at different locations. The mutant line CMN-446-4 was got evaluated in chickpea national uniform yield trial conducted over two locations in the country during 1993-94. The mutant line, on average, ranked 3rd by producing significantly higher yield of 1528 kg/ha as compared to the two checked varieties Punjab-91 and Paidar-91 which yielded 1316 and 1391 kg/ha respectively. The mutant CMN-446-4 has significantly greater percentage of protein content (25.22%) compared to its parental variety having (20.12%). (author)

  9. Management options for rainfed chickpea (Cicer arietinum L. in northeast Ethiopia under climate change condition

    Directory of Open Access Journals (Sweden)

    Adem Mohammed

    2017-01-01

    Full Text Available Chickpea (Cicer arietinum L. is one of the important cool season food legumes in the semi-arid north-eastern Ethiopia. Climate change is projected to alter the growing conditions of chickpea in this region and there would be substantial reduction in grain yield of the crop due to drought. The overall objectives of the study were to identify crop management and genetic options that could increase rain-fed chickpea productivity. For this, a simulation study has been conducted using CROPGRO-model in two sites (Sirinka and Chefa found in the semi-arid north-eastern Ethiopia. Change in planting date and cultivars having different maturity have been tested for their effectiveness to increase chickpea productivity. According to the prediction result, short duration cultivar is found to increase grain yield at Sirinka by about 11%, 10% and 11% in the baseline, 2030 s and 2050 s, respectively whereas long duration cultivar is found to decrease grain yield by about 6%, 9% and 11% as compared to the standard cultivar (control. On the other hand, short duration cultivar is found to decrease grain yield at Chefa by about 9%, 4% and 5% whereas long duration cultivar is found to increase grain yield by about 1%, 2% and 4% across the respective time periods. Early sowing (SSD − 20 days is found to significantly increase grain yield of short duration cultivar at Sirinka by about 48%, 48% and 54% and that of long duration cultivar by 31%, 33% and 39% in the baseline, 2030 s and 2050 s, respectively. Early sowing (SSD − 20 days is also found to increase grain yield of short duration cultivar at Chefa by about 26%, 27% and −1% and that of long duration cultivar by 37%, 32% and −2% across the respective time periods. However, the highest increase in chickpea grain yield can be achieved through combined application of early sowing and suitable cultivars. On the other hand, delayed sowing is found to significantly decrease chickpea grain yield in the

  10. Genotype x Environmental Interactions and Adaptation Abilities of Chickpea (Cicer arietinum L.) in Cukurova Conditions

    OpenAIRE

    MART, Dürdane

    2015-01-01

    During the study, at which genotype x environmental interactions and adaptation capacity of 18 chickpea varieties that took place at yield trials conducted in years 2001, 2002 and 2003 at two different locations (Doğankent, Taşçı) in Çukurova region were studied, it has been observed that studied characteristics are significantly affected from trial locations. Chickpea varieties used in the yield trial, demonstrated different adaptation capacities to different environmental conditions in term...

  11. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  12. Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Thudi, Mahendar; Khan, Aamir W; Kumar, Vinay; Gaur, Pooran M; Katta, Krishnamohan; Garg, Vanika; Roorkiwal, Manish; Samineni, Srinivasan; Varshney, Rajeev K

    2016-01-27

    Chickpea (Cicer arietinum L.) is the second most important grain legume cultivated by resource poor farmers in South Asia and Sub-Saharan Africa. In order to harness the untapped genetic potential available for chickpea improvement, we re-sequenced 35 chickpea genotypes representing parental lines of 16 mapping populations segregating for abiotic (drought, heat, salinity), biotic stresses (Fusarium wilt, Ascochyta blight, Botrytis grey mould, Helicoverpa armigera) and nutritionally important (protein content) traits using whole genome re-sequencing approach. A total of 192.19 Gb data, generated on 35 genotypes of chickpea, comprising 973.13 million reads, with an average sequencing depth of ~10 X for each line. On an average 92.18 % reads from each genotype were aligned to the chickpea reference genome with 82.17 % coverage. A total of 2,058,566 unique single nucleotide polymorphisms (SNPs) and 292,588 Indels were detected while comparing with the reference chickpea genome. Highest number of SNPs were identified on the Ca4 pseudomolecule. In addition, copy number variations (CNVs) such as gene deletions and duplications were identified across the chickpea parental genotypes, which were minimum in PI 489777 (1 gene deletion) and maximum in JG 74 (1,497). A total of 164,856 line specific variations (144,888 SNPs and 19,968 Indels) with the highest percentage were identified in coding regions in ICC 1496 (21 %) followed by ICCV 97105 (12 %). Of 539 miscellaneous variations, 339, 138 and 62 were inter-chromosomal variations (CTX), intra-chromosomal variations (ITX) and inversions (INV) respectively. Genome-wide SNPs, Indels, CNVs, PAVs, and miscellaneous variations identified in different mapping populations are a valuable resource in genetic research and helpful in locating genes/genomic segments responsible for economically important traits. Further, the genome-wide variations identified in the present study can be used for developing high density SNP arrays for

  13. Genetic and environmental factors contribute to variation in cell wall composition in mature desi chickpea (Cicer arietinum L.) cotyledons.

    Science.gov (United States)

    Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R

    2018-03-13

    Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  14. Leaf transpiration plays a role in phosphorus acquisition among a large set of chickpea genotypes.

    Science.gov (United States)

    Pang, Jiayin; Zhao, Hongxia; Bansal, Ruchi; Bohuon, Emilien; Lambers, Hans; Ryan, Megan H; Siddique, Kadambot H M

    2018-01-09

    Low availability of inorganic phosphorus (P) is considered a major constraint for crop productivity worldwide. A unique set of 266 chickpea (Cicer arietinum L.) genotypes, originating from 29 countries and with diverse genetic background, were used to study P-use efficiency. Plants were grown in pots containing sterilized river sand supplied with P at a rate of 10 μg P g -1 soil as FePO 4 , a poorly soluble form of P. The results showed large genotypic variation in plant growth, shoot P content, physiological P-use efficiency, and P-utilization efficiency in response to low P supply. Further investigation of a subset of 100 chickpea genotypes with contrasting growth performance showed significant differences in photosynthetic rate and photosynthetic P-use efficiency. A positive correlation was found between leaf P concentration and transpiration rate of the young fully expanded leaves. For the first time, our study has suggested a role of leaf transpiration in P acquisition, consistent with transpiration-driven mass flow in chickpea grown in low-P sandy soils. The identification of 6 genotypes with high plant growth, P-acquisition, and P-utilization efficiency suggests that the chickpea reference set can be used in breeding programmes to improve both P-acquisition and P-utilization efficiency under low-P conditions. © 2018 John Wiley & Sons Ltd.

  15. Genotypic variation in the response of chickpea to arbuscular mycorrhizal fungi and non-mycorrhizal fungal endophytes.

    Science.gov (United States)

    Bazghaleh, Navid; Hamel, Chantal; Gan, Yantai; Tar'an, Bunyamin; Knight, Joan Diane

    2018-04-01

    Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.

  16. Growth and antioxidant system under drought stress in Chickpea (Cicer arietinum L. as sustained by salicylic acid

    Directory of Open Access Journals (Sweden)

    B.K. Sarma

    2011-12-01

    Full Text Available Drought is one of the major factors limiting chickpea production in arid and semi arid regions. There is meagre information available regarding genotypic variation for drought tolerance in chickpea genotypes. Present investigation was carried out to find out the influence of salicylic acid (SA on drought tolerance in four chickpea genotypes. Reduction in relative injury was observed in plants treated with SA @1.5 mM as compared to control seedlings. Relationship between relative water content (RWC, membrane permeability (MP, ascorbic acid (AsA, proline, lipid peroxidation (LPO, hydrogen peroxide (H2O2, catalase (CAT, peroxidase (POX, superoxide dismutase (SOD, ascorbate peroxidase (APX was determined in order to find out whether these parameters can be used as selection criteria for drought tolerance in this crop. Results indicate wide variation in tolerance to drought stress amongst chickpea cultivars at both the critical stages i.e. pre- and post-anthesis. On the basis of growth and antioxidant activity better genotypes Tyson and ICC-4958 appear to be adapted to drought stress tolerance. Early drought stress (pre-anthesis drought was found to be more damaging than the late drought stress (post- anthesis drought.

  17. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur. Copyright © 2015. Published by Elsevier Ltd.

  18. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance.

    Science.gov (United States)

    Jain, Deepti; Chattopadhyay, Debasis

    2010-02-09

    Chickpea (C. arietinum L.) ranks third in food legume crop production in the world. However, drought poses a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Unfortunately, cultivated chickpea has a high morphological but narrow genetic diversity, and understanding the genetic processes of this plant is hindered by the fact that the chickpea genome has not yet been sequenced and its EST resources are limited. In this study, two chickpea varieties having contrasting levels of drought-tolerance were analyzed for differences in transcript profiling during drought stress treatment by withdrawal of irrigation at different time points. Transcript profiles of ESTs derived from subtractive cDNA libraries constructed with RNA from whole seedlings of both varieties were analyzed at different stages of stress treatment. A series of comparisons of transcript abundance between two varieties at different time points were made. 319 unique ESTs available from different libraries were categorized into eleven clusters according to their comparative expression profiles. Expression analysis revealed that 70% of the ESTs were more than two fold abundant in the tolerant cultivar at any point of the stress treatment of which expression of 33% ESTs were more than two fold high even under the control condition. 53 ESTs that displayed very high fold relative expression in the tolerant variety were screened for further analysis. These ESTs were clustered in four groups according to their expression patterns. Annotation of the highly expressed ESTs in the tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Results from this study may help in targeting useful genes for improving drought tolerance in chickpea.

  19. Pattern of Water Use and Seed Yield under Terminal Drought in Chickpea Genotypes

    Directory of Open Access Journals (Sweden)

    Jiayin Pang

    2017-08-01

    Full Text Available Drought, particularly terminal drought, reduces the yield of chickpea (Cicer arietinum L.. Terminal drought tolerance and water use patterns were evaluated under controlled conditions in 10 genotypes of desi chickpea. Withholding water from early podding reduced vegetative growth, reproductive growth, seed yield, and water use efficiency for seed yield in all genotypes. The genotype Neelam, which produced the highest seed yield when water was withheld, used the least water when well-watered; however, its aboveground biomass at maturity did not differ significantly from six of the nine other genotypes. Indeed, the water-stressed Neelam had the lowest daily transpiration rate during the early stages of water stress and the highest during the later stages, thereby maintaining the highest soil water content in the first 16 days after water was withheld, which enabled higher pod production, lower pod abortion, and better seed filling. Genotypes differed in the threshold value of the fraction of transpirable soil water when flowering and seed set ceased in the water-stress treatment. We conclude that a conservative water use strategy benefits seed yield of chickpea exposed to water shortage during early podding.

  20. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils.

    Science.gov (United States)

    Wani, Parvaze Ahmad; Khan, Mohammad Saghir

    2010-11-01

    Pollution of the agricultural land by the toxic chromium is a global threat that has accelerated dramatically since the beginning of industrial revolution. Toxic chromium affects both the microbial diversity as well as reduces the growth of the plants. Understanding the effect of the chromium reducing and plant growth promoting rhizobacteria on chickpea crop will be useful. Chromium reducing and plant growth promoting Bacillus species PSB10 significantly improved growth, nodulation, chlorophyll, leghaemoglobin, seed yield and grain protein of chickpea crop grown in the presence of different concentrations of chromium compared to the plants grown in the absence of bio-inoculant. The strain also reduced the uptake of chromium in roots, shoots and grains of chickpea crop compared to plants grown in the absence of bio-inoculant. This study thus suggested that the Bacillus species PSB10 due to its intrinsic abilities of growth promotion and attenuation of the toxic effects of chromium could be exploited for remediation of chromium from chromium contaminated sites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Identification and Characterization of Wilt and Salt Stress-Responsive MicroRNAs in Chickpea through High-Throughput Sequencing

    Science.gov (United States)

    Deokar, Amit Atmaram; Bhardwaj, Ankur R.; Agarwal, Manu; Katiyar-Agarwal, Surekha; Srinivasan, Ramamurthy; Jain, Pradeep Kumar

    2014-01-01

    Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5′ RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress. PMID:25295754

  2. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments.

    Directory of Open Access Journals (Sweden)

    Chien Van Ha

    Full Text Available The plant-specific NAC transcription factors (TFs play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control, dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR. Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.

  3. Control of root rot of chickpea caused by Sclerotium rolfsii by different agents and gamma radiation

    International Nuclear Information System (INIS)

    Rasha Mohammed Fathy El- Said, R.M.F.

    2012-01-01

    Sclerotium rolfsii causes root rot disease in several crops including chickpea that result in low yield. Artificial infection of chickpea seedlings by S. rolfsii in vitro demonstrated that different tissues of the plant completely disintegrated by fungal infection. In vitro and green house pot experiments demonstrated that inducers in combination with fungicides, oils and bio agents resulted in about 80 % suppression of root rot disease. Treatments have no phyto toxic effect on chickpea seedlings at low doses. Gliocladium virens and Gliocladium deliquescens were effective as biocontrol agents against Sclerotium rolfsii. The percent of survival plants, fresh weight, dry weight and plant height of chickpea plants increased with different treatments with inducers compared with the control. Chlorophyll a, b, and total chlorophyll amounts increased to the maximum values. The activity of two plant enzymes, peroxidase and polyphenol oxidase increased. In this study, gamma irradiation of chickpea seeds at doses 5, 10, 15, 20, 25 and 30 Gy have negative effect on survival, plant height, fresh weight and dry weight of chickpea. The effect of gamma irradiation at doses 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kGy on the antagonistic effect of Gliocladium virens and Gliocladium deliquescens against S. rolfsii were investigated. The results revealed that gamma irradiation increase the antagonistic effect of Gliocladium virens and Gliocladium deliquescens against S. rolfsii . Effect of gamma irradiation at doses of 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 and 5 kGy on the mycelial growth and pathogenicity of S. rolfsii were investigated. The results revealed that gamma irradiation at doses 0.25 up to 3.0 kGy increase the pathogenicity of S. rolfsii but gamma irradiation at dose 5.0 kGy completely inhibited the growth of S. rolfsii. Extracellular polygalacturonase was characterized and purified by precipitation with 70 % ammonium sulfate, dialysis and gel filtration through Sephadex 75

  4. Notice of release for Eagle Germplasm western yarrow (selected germplasm, natural track)

    Science.gov (United States)

    Scott M. Lambert; Stephen B. Monsen; Nancy Shaw

    2011-01-01

    The United States Department of Agriculture, Forest Service, Rocky Mountain Research Station; United States Department of the Interior, Bureau of Land Management, Idaho State Office; Utah State University, Agricultural Experiment Station; and University of Idaho, Agricultural Experiment Station, announce the release of a selected germplasm (natural track) of western...

  5. Responsiveness of cold tolerant chickpea characteristics in fall and spring planting: II. yield and yield components

    Directory of Open Access Journals (Sweden)

    ahmad nezami

    2009-06-01

    Full Text Available Previous research in Mashhad collection chickpeas (MCC has shown that there are some cold tolerant genotypes for fall planting in the highlands. To obtain more detailed information about the reaction of these genotypes to fall and spring planting, the yield and yield component responses of 33 chickpea genotypes (32 cold tolerant genotypes and one susceptible genotypes to four planting dates (28 Sep., 16 Oct., 2 Nov., and 7 Mar. were evaluated in 2000-2001 growing season. The experiment was conducted at the experimental field of college of agriculture, Ferdowsi University of Mashhad as a split plot design with two replications. The planting dates were imposed as main plot and chickpea genotypes as subplot. Effects of planting date and genotype on percent of plant survival (PPS after winter, number. of pod per plant, 100 seed weight, yield and Harvest Index (HI were significant (p

  6. Review on management of horticultural plant germplasm resources and construction of related database

    Directory of Open Access Journals (Sweden)

    Pan Jingxian

    2017-02-01

    Full Text Available The advances of databases on horticulture germplasm resources from China and abroad was briefly reviewed and the key technologies were discussed in details,especially in descriptors of data collection of germplasm resources. The prospective and challenges of databases were also discussed. It was evident that there was an urgent need to develop the databases of horticulture germplasm resources,with increasing diversity of germplasm,more user friendly and systematically access to the databases.

  7. Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L. varieties differing in drought tolerance

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasis

    2010-02-01

    Full Text Available Abstract Background Chickpea (C. arietinum L. ranks third in food legume crop production in the world. However, drought poses a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Unfortunately, cultivated chickpea has a high morphological but narrow genetic diversity, and understanding the genetic processes of this plant is hindered by the fact that the chickpea genome has not yet been sequenced and its EST resources are limited. In this study, two chickpea varieties having contrasting levels of drought-tolerance were analyzed for differences in transcript profiling during drought stress treatment by withdrawal of irrigation at different time points. Transcript profiles of ESTs derived from subtractive cDNA libraries constructed with RNA from whole seedlings of both varieties were analyzed at different stages of stress treatment. Results A series of comparisons of transcript abundance between two varieties at different time points were made. 319 unique ESTs available from different libraries were categorized into eleven clusters according to their comparative expression profiles. Expression analysis revealed that 70% of the ESTs were more than two fold abundant in the tolerant cultivar at any point of the stress treatment of which expression of 33% ESTs were more than two fold high even under the control condition. 53 ESTs that displayed very high fold relative expression in the tolerant variety were screened for further analysis. These ESTs were clustered in four groups according to their expression patterns. Conclusions Annotation of the highly expressed ESTs in the tolerant cultivar predicted that most of them encoded proteins involved in cellular organization, protein metabolism, signal transduction, and transcription. Results from this study may help in targeting useful genes for improving drought tolerance in chickpea.

  8. In vitro conservation of Dendrobium germplasm.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Zeng, Songjun; Galdiano, Renato Fernandes; Dobránszki, Judit; Cardoso, Jean Carlos; Vendrame, Wagner A

    2014-09-01

    Dendrobium is a large genus in the family Orchidaceae that exhibits vast diversity in floral characteristics, which is of considerable importance to orchid breeders, biotechnologists and collectors. Native species have high value as a result of their medicinal properties, while their hybrids are important as ornamental commodities, either as cut flowers or potted plants and are thus veritable industrial crops. Thus, preservation of Dendrobium germplasm is valuable for species conservation, breeding programs and the floriculture industry. Cryopreservation represents the only safe, efficient and cost-effective long-term storage option to facilitate the conservation of genetic resources of plant species. This review highlights 16 years of literature related to the preservation of Dendrobium germplasm and comprises the most comprehensive assessment of thorough studies performed to date, which shows reliable and reproducible results. Air-drying, encapsulation-dehydration, encapsulation-vitrification, vitrification and droplet-vitrification are the current cryopreservation methodologies that have been used to cryopreserve Dendrobium germplasm. Mature seeds, pollen, protoplasts, shoot primordia, protocorms and somatic embryos or protocorm-like bodies (PLBs) have been cryopreserved with different levels of success. Encapsulation-vitrification and encapsulation-dehydration are the most used protocol, while PLBs represent the main explant explored.

  9. (Gossypium barbadense) germplasm resources

    Indian Academy of Sciences (India)

    Navya

    2017-03-28

    Mar 28, 2017 ... Running title: Marker-trait associations in sea-island cotton ... In this study, Gossypium barbadense germplasm accessions with ... origins (n = 123) were used to perform association analysis of fiber traits with 120 polymorphic simple ... Because fiber yield and quality traits are complex quantitative traits, ...

  10. Glycemic Response to Black Beans and Chickpeas as Part of a Rice Meal: A Randomized Cross-Over Trial.

    Science.gov (United States)

    Winham, Donna M; Hutchins, Andrea M; Thompson, Sharon V

    2017-10-04

    Legumes, such as black beans ( Phaseolus vulgaris L.) and chickpeas ( Cicer arietinum L.), have a low glycemic index, and may reduce the glycemic load of meals in which they are included. Although the low glycemic response of beans consumed alone has been documented, few studies have examined the glycemic response to traditional food combinations such as black beans and rice or chickpeas and rice. This randomized cross-over study examined the glycemic and insulinemic impact of 50 grams of available carbohydrate from three test meals: plain white rice (control), black beans with rice, and chickpeas with rice among healthy adult women ( n = 12, 18-65 years). Treatments were consumed on different mornings, a minimum of 7 days apart. Blood samples were collected at time 0 (fasting), and at 30, 60, 90, and 120 min postprandial, and were subsequently analyzed for glucose and insulin concentrations. Glucose response based on the incremental area under the curve showed a significant difference by treatment ( p = 0.027). Changes in blood glucose concentrations were significantly different for the black bean meal and the chickpea meal in comparison to rice alone at 60 min ( p = 0.026 and p = 0.024), 90 min ( p = 0.001 and p = 0.012) and 120 min post prandial ( p = 0.024; black bean meal). Findings indicate that combinations of black beans and chickpeas with white rice improve glycemic response, providing evidence that has promising implications for dietary guidance to reduce postprandial glucose and related health risks through traditional food patterns.

  11. Response of chickpea ( Cicer arietinum L.) to inoculation with native ...

    African Journals Online (AJOL)

    The results from the field and pot experiments indicated that chickpea crop yield can be improved using proper Mesorhizobium inoculation. Inoculation had a pronounced effect on grain yield, yield component, total N uptake, grain protein content, percentage N derived from the atmosphere (%Ndfa) for the seed, and amount ...

  12. Nutritional Profile and Carbohydrate Characterization of Spray-Dried Lentil, Pea and Chickpea Ingredients

    Directory of Open Access Journals (Sweden)

    Susan M. Tosh

    2013-07-01

    Full Text Available Although many consumers know that pulses are nutritious, long preparation times are frequently a barrier to consumption of lentils, dried peas and chickpeas. Therefore, a product has been developed which can be used as an ingredient in a wide variety of dishes without presoaking or precooking. Dried green peas, chickpeas or lentils were soaked, cooked, homogenized and spray-dried. Proximate analyses were conducted on the pulse powders and compared to an instant mashed potato product. Because the health benefits of pulses may be due in part to their carbohydrate content, a detailed carbohydrate analysis was carried out on the pulse powders. Pulse powders were higher in protein and total dietary fibre and lower in starch than potato flakes. After processing, the pulse powders maintained appreciable amounts of resistant starch (4.4%–5.2%. Total dietary fibre was higher in chickpeas and peas (26.2% and 27.1% respectively than lentils (21.9%, whereas lentils had the highest protein content (22.7%. Pulse carbohydrates were rich in glucose, arabinose, galactose and uronic acids. Stachyose, a fermentable fibre, was the most abundant oligosaccharide, making up 1.5%–2.4% of the dried pulse powders. Spray-drying of cooked, homogenized pulses produces an easy to use ingredient with strong nutritional profile.

  13. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea.

    Science.gov (United States)

    Zaheer, Ahmad; Mirza, Babur S; Mclean, Joan E; Yasmin, Sumera; Shah, Tariq Mahmud; Malik, Kauser A; Mirza, M Sajjad

    2016-01-01

    Serratia species-affiliated DNA sequences have recently been discovered in the root nodules of two chickpea cultivars; however, little is known about their potential influence on chickpea plant growth. All Serratia-affiliated sequences (1136) could be grouped into two clusters at 98% DNA similarity. The major cluster, represented by 96% of sequences, was closely associated with Serratia marcescens sequences from GenBank. In the current study, we isolated two Serratia strains, 5D and RTL100, from root nodules of a field-grown Desi cultivar from Faisalabad and Thal areas, respectively. In vitro, strain 5D showed significantly higher phosphate (P) solubilization and lactic acid production than RTL100, whereas a comparable concentration of phytohormone was produced by both isolates. The application of Serratia strain 5D as an inoculum resulted in 25.55% and 30.85% increases in the grain yield of crops grown on fertile soil in irrigated areas and nutrient-deficient soil in rainfed areas, respectively, compared to the non-inoculated control. Results of plant inoculations indicated that Serratia sp. 5D and RTL100 can serve as effective microbial inoculants, particularly in nutrient-deficient soils in rainfed areas, where chickpea is the only major crop grown during the entire year. Copyright © 2016 Institut Pasteur. All rights reserved.

  14. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Tapping the US sweet sorghum collection to identify biofuel germplasm

    Science.gov (United States)

    The narrow genetic base in sweet sorghum [Sorghum bicolor (L.) Moench] breeding programs is limiting the development of new varieties for biofuel production. Therefore, the identification of genetically diverse sweet sorghum germplasm in the U.S. National Plant Germplasm System (NPGS) collection is...

  16. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation.

    Science.gov (United States)

    Velez, Pilar A; Talano, Melina A; Paisio, Cintia E; Agostini, Elizabeth; González, Paola S

    2017-09-01

    The presence of chromium in soils not only affects the physiological processes of plants but also the microbial rhizosphere composition and metabolic activities of microorganisms. Hence, the inoculation of plants with Cr(VI)-tolerant rhizospheric microorganisms as an alternative to reduce Cr phytotoxicity was studied. In this work, chickpea germination was reduced by Cr(VI) concentrations of 150 and 250 mg/L (6 and 33%, respectively); however lower Cr(VI) concentrations negatively affected the biomass. On the other hand, its symbiont, Mesorhizobium ciceri, was able to grow and remove different Cr(VI) concentrations (5-20 mg/L). The inoculation of chickpea plants with this strain exposed to Cr(VI) showed a significantly enhanced plant growth. In addition, inoculated plants accumulated higher Cr concentration in roots than those noninoculated. It is important to note that Cr was not translocated to shoots independently of inoculation. These results suggest that Mesorhizobium's capability to remove Cr(VI) could be exploited for bioremediation. Moreover, chickpea plants would represent a natural system for phytoremediation or phytostabilization of Cr in situ that could be improved with M. ciceri inoculation. This strategy would be considered as a phytoremediation tool with great economic and ecological relevance.

  17. mQTL-seq and classical mapping implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea.

    Science.gov (United States)

    Kumar, Kamal; Purayannur, Savithri; Kaladhar, Vemula Chandra; Parida, Swarup Kumar; Verma, Praveen Kumar

    2018-03-01

    Ascochyta blight (AB) caused by the fungal pathogen Ascochyta rabiei is a serious foliar disease of chickpea (Cicer arietinum L.). Despite many genetic studies on chickpea-Ascochyta interaction, genome-wide scan of chickpea for the identification of AB-associated quantitative trait loci (QTLs) and their gene(s) has not been accomplished. To elucidate narrow QTLs for AB resistance, here, we report the use of multiple QTL-sequencing approach on 2 sets of extreme AB phenotype bulks derived from Cicer intraspecific and interspecific crosses. Two major QTLs, qABR4.1 and qABR4.2, and a minor QTL, qABR4.3, were identified on assembled chickpea pseudomolecule 4. We narrowed qABR4.1 to a "robust region" at 4.568-4.618 Mb through mapping on a larger intraspecific cross-derived population and comparative analysis. Among 4 genes, the CaAHL18 gene showed higher expression under Ascochyta stress in AB resistant parent suggesting that it is the candidate gene under "robust qABR4.1." Dual-luciferase assay with CaAHL18 polymorphic cis-regulatory sequences showed that allelic variation is associated with higher expression. Thus, our findings on chickpea-Ascochyta interaction have narrowed down AB resistance associated QTLs on chickpea physical map. The narrowed QTLs and gene-associated markers will help in biotechnological and breeding programs for chickpea improvement. © 2018 John Wiley & Sons Ltd.

  18. Powdery mildew reaction of hop cultivars and USDA germplasm, 2015

    Science.gov (United States)

    This research was conducted to identify possible sources of resistance to the disease powdery mildew in publicly-available hop germplasm and cultivars. Germplasm with the highest levels of downy mildew resistance in the USDA collection and various cultivars of interest were screened for their reac...

  19. Effects of Fungicides, Essential Oils and Gamma Irradiated Bioagents on Chickpea Root Rot Caused by Sclerotium rolfsii

    International Nuclear Information System (INIS)

    El-Batal, A.I.; Fathy, R.M.; Ismail, A.A.; Mubark, H.M.; Mahmoud, Y.A.

    2011-01-01

    Sclerotium rolfsii (S. rolfsii) causes root rot disease in several crops including Cicer arietinum (chickpea) that results in low yield. In vitro experiments on fungicides, vitavax and monceren T, and essential oils, clove and mint oils, were conducted to control root rot disease of chickpea caused by S. rolfsii. The treatments resulted in 80 % suppression of root rot disease. Gliocladium virens (G. virens) and Gliocladium deliquescens (G. deliquescens) were effective as biocontrol agents against S. rolfsii. The results showed that these treatments greatly reduced the root rot disease in chickpea. In this study, the effect of gamma irradiation at doses 0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 kGy on the pathogenecity of G. virens and G. deliquescens against S. rolfsii were investigated. The results revealed that gamma irradiation increased the pathogenecity of G. virens and G. deliquescens against S. rolfsii

  20. Diversity Analysis and Physico-Morphlogical Characteritics of Indigenous Germplasm of Lablab Bean

    OpenAIRE

    Ram Bahadur KC; Bal Krishna Joshi; Surya Prasad Dahal

    2016-01-01

    Germplasm characterization is an important component of crop breeding program. In characterizing indigenous beans lablab which is used for vegetables as well pulses in Nepal. Twenty three lablab beans germplasm were evaluated for different qualitative and quantitive physico-morphological charecteristics for two years during 2011 and 2012 at Horticulture Research Station, Malepatan, Pokhara. The germplasm showed considerable variations in most of the qualitative and quantitative traits. Leaf ...

  1. The Detection and Characterization of QoI-Resistant Didymella rabiei Causing Ascochyta Blight of Chickpea in Montana

    Directory of Open Access Journals (Sweden)

    Ayodeji S. Owati

    2017-06-01

    Full Text Available Ascochyta blight (AB of pulse crops (chickpea, field pea, and lentils causes yield loss in Montana, where 1.2 million acres was planted to pulses in 2016. Pyraclostrobin and azoxystrobin, quinone outside inhibitor (QoI fungicides, have been the choice of farmers for the management of AB in pulses. However, a G143A mutation in the cytochrome b gene has been reported to confer resistance to QoI fungicides. A total of 990 isolates of AB-causing fungi were isolated and screened for QoI resistance. Out of these, 10% were isolated from chickpea, 81% were isolated from field peas, and 9% isolated from lentil. These were from a survey of grower’s fields and seed lots (chickpea = 17, field pea = 131, and lentil = 21 from 23 counties in Montana sent to the Regional Pulse Crop Diagnostic Laboratory, Bozeman, MT, United States for testing. Fungicide-resistant Didymella rabiei isolates were found in one chickpea seed lot each sent from Daniels, McCone and Valley Counties, MT, from seed produced in 2015 and 2016. Multiple alignment analysis of amino acid sequences showed a missense mutation that replaced the codon for amino acid 143 from GGT to GCT, introducing an amino acid change from glycine to alanine (G143A, which is reported to be associated with QoI resistance. Under greenhouse conditions, disease severity was significantly higher on pyraclostrobin-treated chickpea plants inoculated with QoI-resistant isolates of D. rabiei than sensitive isolates (p-value = 0.001. This indicates that where resistant isolates are located, fungicide failures may be observed in the field. D. rabiei-specific polymerase chain reaction primer sets and hydrolysis probes were developed to efficiently discriminate QoI- sensitive and - resistant isolates.

  2. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    Science.gov (United States)

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  3. Chemical and nutritional evaluation of two germplasms of the tribal pulse, Bauhinia racemosa Lamk.

    Science.gov (United States)

    Mohan, V R; Janardhanan, K

    1994-12-01

    Two germplasms of the tribal pulse, Bauhinia racemosa Lamk. viz., Ayyanarkoil Forest and Mundanthurai Wildlife Sanctuary, were analysed for proximate composition, total (true) seed proteins, seed protein fractions, amino acid composition, fatty acids, minerals and antinutritional factors. Crude proteins, crude lipids, ash and nitrogen free extractives constituted 19.84%, 9.52%, 3.31% and 60.65%, respectively in Ayyanarkoil Forest germplasm; whereas, in Mundanthurai Wildlife Sanctuary germplasm they constituted 19.31%, 8.94%, 3.81% and 61.30%, respectively. The caloric values were found to be 407.64 KCal (Ayyanarkoil Forest) and 402.90 KCal (Mundanthurai Wildlife Sanctuary) germplasms. Essential amino acids like isoleucine, tyrosine, phenylalanine and lysine were found to be high in the seed proteins of both the germplasms. The fatty acids, palmitic, oleic and linoleic acids, were found to be relatively higher in the seed lipids of both the germplasms. Both the germplasms seemed to be a rich source of calcium, potassium, magnesium, zinc, manganese and iron. Antinutritional substances like total free phenols, tannins, L-DOPA and phytohaemagglutinating activity also were investigated.

  4. Marker-trait association study for protein content in chickpea (Cicer

    Indian Academy of Sciences (India)

    Gene ontology search identified 29 candidate genes in the region of significant MTAs on LG3. The present study will be helpful in concentrating on LG3 and LG5 for identification of closely linked markers for protein content in chickpea and for their use in molecular breeding programme for nutritional quality improvement.

  5. Androgenesis in chickpea: Anther culture and expressed sequence tags derived annotation

    DEFF Research Database (Denmark)

    Panchangam, Sameera Sastry; Mallikarjuna, Nalini; Gaur, Pooran M.

    2014-01-01

    Double haploid technique is not routinely used in legume breeding programs, though recent publications report haploid plants via anther culture in chickpea (Cicer arietinum L.). The focus of this study was to develop an efficient and reproducible protocol for the production of double haploids wit...

  6. Present status of some virus diseases affecting legume crops in Tunisia, and partial characterization of Chickpea chlorotic stunt virus

    Directory of Open Access Journals (Sweden)

    Asma NAJAR

    2011-09-01

    Full Text Available Field surveys were conducted in Tunisia during the 2005‒2006, 2006‒2007 and 2009‒2010 growing seasons to identify viruses which produce yellowing, reddening and/or stunting symptoms of chickpea, faba bean and pea crops. Tissue blot immunoassay (TBIA results showed that Chickpea chlorotic stunt virus (CpCSV was the most common virus, followed by Faba bean necrotic yellows virus, Bean leafroll virus and Beet western yellows virus. The coat protein (CP gene nucleotide sequence of seven CpCSV isolates collected from different regions of Tunisia was compared with sequences of five other isolates in the NCBI database. A homology tree of the CP nucleotide sequences was prepared and CpCSV isolates were grouped into two clusters. The first group contained two Tunisian CpCSV chickpea isolates collected from Bizerte and Kef; sequenced regions showed a high nucleotiode homology (95% to that of the Ethiopian and Sudanese CpCSV isolates. The second group included five Tunisian isolates: two from chickpea, two from pea and one from faba bean, which showed a high homology (96% when compared with the Moroccan, Egyptian and Syrian CpCSV isolates.

  7. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells

    Directory of Open Access Journals (Sweden)

    Wen Li

    2016-08-01

    Full Text Available In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man–Rogosa and Sharp (MRS broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  8. Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea.

    Science.gov (United States)

    Parmar, Naincy; Singh, Narpinder; Kaur, Amritpal; Virdi, Amardeep Singh; Thakur, Sheetal

    2016-11-01

    The aim of the present study was to evaluate the effect of canning on color, protein and phenolic profile of grains of kidney bean, field pea and chickpea varieties/accession. Color of grains of different pulses was enhanced after canning. Grains L* (lightness) decreased while a* (redness to yellowness) and b* (greenness to blueness) increased after canning in all the pulses. Protein profiling of grains of different pulses after canning revealed that kidney bean and chickpea, respectively, had the least and the most thermally susceptible polypeptides. Kidney bean and chickpea showed higher Percentage washed drained weight (PWDW) than field pea. Pulse with more grain hardness and PWDW showed higher degree of grain splitting during canning. Grain splitting was also higher in dark colored accessions/varieties as compared to the light colored. Ferulic acid was the most predominant compound present in raw grains of different pulses. Raw kidney bean grains showed higher accumulation of catechin, chlorogenic, protocatechuic acid, p-coumaric acid and ferulic acid than those of chickpea and field pea. Canning caused reduction in all the phenolic compounds except gallic acid and most prominent effect of canning on protocatechuic acid, chlorogenic and ferulic acid was observed. Copyright © 2016. Published by Elsevier Ltd.

  9. Novel fermented chickpea milk with enhanced level of γ-aminobutyric acid and neuroprotective effect on PC12 cells.

    Science.gov (United States)

    Li, Wen; Wei, Mingming; Wu, Junjun; Rui, Xin; Dong, Mingsheng

    2016-01-01

    In this study, novel fermented chickpea milk with high γ -aminobutyric acid (GABA) content and potential neuroprotective activity was developed. Fermentation starter that can produce GABA was selected from 377 strains of lactic acid bacteria isolated from traditional Chinese fermented foods. Among the screened strains, strain M-6 showed the highest GABA-producing capacity in De Man-Rogosa and Sharp (MRS) broth and chickpea milk. M-6 was identified as Lactobacillus plantarum based on Gram staining, API carbohydrate fermentation pattern testing, and 16s rDNA sequencing. The complete gene encoding glutamate decarboxylase was cloned to confirm the presence of the gene in L. plantarum M-6. The fermentation condition was optimized by response surface methodology. Results demonstrated that L. plantarum M-6 produced the highest GABA content of 537.23 mg/L. The optimal condition included an inoculum concentration of 7%, presence of 0.2% (m/v) monosodium glutamate and 55 µ M pyridoxal-5-phosphate, incubation temperature of 39 °C and fermentation time of 48 h . GABA-enriched chickpea milk exerted protective effects on PC12 cells against MnCl2 -induced injury. GABA-enriched chickpea milk improved cell viability and markedly attenuated the release of lactate dehydrogenase compared with the impaired cells.

  10. Fusarium oxysporum mediates systems metabolic reprogramming of chickpea roots as revealed by a combination of proteomics and metabolomics.

    Science.gov (United States)

    Kumar, Yashwant; Zhang, Limin; Panigrahi, Priyabrata; Dholakia, Bhushan B; Dewangan, Veena; Chavan, Sachin G; Kunjir, Shrikant M; Wu, Xiangyu; Li, Ning; Rajmohanan, Pattuparambil R; Kadoo, Narendra Y; Giri, Ashok P; Tang, Huiru; Gupta, Vidya S

    2016-07-01

    Molecular changes elicited by plants in response to fungal attack and how this affects plant-pathogen interaction, including susceptibility or resistance, remain elusive. We studied the dynamics in root metabolism during compatible and incompatible interactions between chickpea and Fusarium oxysporum f. sp. ciceri (Foc), using quantitative label-free proteomics and NMR-based metabolomics. Results demonstrated differential expression of proteins and metabolites upon Foc inoculations in the resistant plants compared with the susceptible ones. Additionally, expression analysis of candidate genes supported the proteomic and metabolic variations in the chickpea roots upon Foc inoculation. In particular, we found that the resistant plants revealed significant increase in the carbon and nitrogen metabolism; generation of reactive oxygen species (ROS), lignification and phytoalexins. The levels of some of the pathogenesis-related proteins were significantly higher upon Foc inoculation in the resistant plant. Interestingly, results also exhibited the crucial role of altered Yang cycle, which contributed in different methylation reactions and unfolded protein response in the chickpea roots against Foc. Overall, the observed modulations in the metabolic flux as outcome of several orchestrated molecular events are determinant of plant's role in chickpea-Foc interactions. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Notice of release of Mountain Home germplasm Sandberg bluegrass (selected germplasm, natural track)

    Science.gov (United States)

    Scott M. Lambert; Stephen B. Monsen; Nancy Shaw

    2011-01-01

    Mountain Home germplasm Sandberg bluegrass is a small, densely tufted short-lived perennial bunchgrass adapted to low elevation, semi-arid sites with long, hot growing seasons. Mountain Home's drought tolerance, competitive nature, and ease of establishment make it an excellent choice for post-fire restoration of cheatgrass (Bromus tectorum L.) dominated...

  12. 'CM 88' - A multiple disease resistant chickpea mutant variety

    International Nuclear Information System (INIS)

    Haq, M.A.; Hassan, Mahmudul; Sadiq, M.

    2001-01-01

    Full text: Chickpea is the most important grain legume crop of Pakistan. Ascochyta blight (Ascochyta rabiei) and Fusarium wilt (Fusarium oxysporum F. sp cicer) are most serious diseases, having the potential to devastate a crop. A multiple disease resistant and high yielding mutant CM 88 has been developed through 100 Gy gamma irradiation treatment of variety 'C 727'. This was once a widely grown and popular variety, which lost its resistance to Ascochyta and was replaced. The selection of mutants was performed in the M2 generation grown in the Ascochyta blight nursery and sixteen mutants were selected. In the subsequent generations CM 88 proved resistant to both Ascochyta blight and Fusarium wilt, and exhibited superiority in agronomic characteristics. CM 88 was also tested for many years in the various yield trials on research stations and farmers fields throughout the country. In these trials it out yielded both the parent and standard varieties. The mutant CM 88 has been approved by the Punjab Seed Council on 27 October 1994 for general cultivation in the Punjab Province, especially the Thal area which accounts for more than 70% of the area under chickpea cultivation. (author)

  13. Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pandey, Aarti; Chakraborty, Subhra; Datta, Asis; Chakraborty, Niranjan

    2008-01-01

    Dehydration or water-deficit is one of the most important environmental stress factors that greatly influences plant growth and development and limits crop productivity. Plants respond and adapt to such stress by altering their cellular metabolism and activating various defense machineries. Mechanisms that operate signal perception, transduction, and downstream regulatory events provide valuable information about the underlying pathways involved in environmental stress responses. The nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. To gain a better understanding of dehydration response in plants, we have developed a comparative nuclear proteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water and the changes in the nuclear proteome were examined using two-dimensional gel electrophoresis. Approximately 205 protein spots were found to be differentially regulated under dehydration. Mass spectrometry analysis allowed the identification of 147 differentially expressed proteins, presumably involved in a variety of functions including gene transcription and replication, molecular chaperones, cell signaling, and chromatin remodeling. The dehydration responsive nuclear proteome of chickpea revealed a coordinated response, which involves both the regulatory as well as the functional proteins. This study, for the first time, provides an insight into the complex metabolic network operating in the nucleus during dehydration.

  14. Evaluation of chickpea and groundnut for N2 fixation and yield in Bangladesh

    International Nuclear Information System (INIS)

    Sattar, M.A.; Podder, A.K.; Das, M.L.; Shaikh, M.A.Q.; Danso, S.K.A.

    1998-01-01

    Field experiments on chickpea and groundnut were variously carried out at four locations in Bangladesh. Generally consistent trends were obtained in terms of positive effects of inoculation with rhizobia, and genotypic diversity for components of N 2 fixation and yield. Inoculation of groundnut increased average nodule number by 77% at Rajshahi, 99% at Mymensingh and 148% at Jamalput. The increases in nodule dry weight, plant dry weight, pod and stover yields due to inoculation ranged from 93 to 146%, 55 to 77%, 43 to 50% and 29 to 80%, respectively. At all three locations, significant differences were found amongst the genotypes for nodulation, dry matter production and yield. Mutant genotype 62-30 was superior for most components, and statistically better than the present variety Dacca-1 for all characteristics investigated. Inoculant application to chickpea resulted in at least a doubling of nodule number at Ishurdi and Mymensingh; on average, there was a three-fold increase in nodule mass as a result of inoculation. Seed-yield increases due to inoculation ranged from 24 to 50%. Inoculated cv. G-97 recorded a seed yield of about 1.5 t/ha at Ishurdi, 47% higher than that produced by Nabin, a variety widely cultivated in Bangladesh. Total-N yield and the amount of N fixed by G-97 with inoculant were also higher than for Hyprosola, which is known for high yield and protein content. In a screening trial at Mymensingh the commercial chickpea Nabin and Hyprosola were consistently inferior to advanced lines produced by mutation breeding. Of 12 mutant groundnut genotypes tested, D1-15KR/62-30 maintained superiority for almost all components. Most of the mutants performed better than the commercial variety Dacca-1. The data show the potential for increasing chickpea and groundnut yields in Bangladesh by improving N 2 fixation via selection of superior genotype in conjunction with compatible rhizobia

  15. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization

    Directory of Open Access Journals (Sweden)

    Livinder KAUR

    2013-05-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. and Botrytis grey mould (BGM caused by Botrytis cinerea (Pers. ex Fr. are important diseases of the aerial plant parts of chickpea in most chickpea growing areas of the world. Although conventional approaches have contributed to reducing disease, the use of new technologies is expected to further reduce losses through these biotic stresses. Reliable screening techniques were developed: ‘field screening technique’ for adult plant screening, ‘cloth chamber technique’ and ‘growth chamber technique’ for the study of races of the pathogen and for segregating generations. Furthermore, the ‘cut twig technique’ for interspecific population for AB and BGM resistance was developed. For introgression of high levels of AB and BGM resistance in cultivated chickpea from wild relatives, accessions of seven annual wild Cicer spp. were evaluated and identified: C. judaicum accessions 185, ILWC 95 and ILWC 61, C. pinnatifidum accessions 188, 199 and ILWC 212 as potential donors. C. pinnatifidum accession188 was crossed with ICCV 96030 and 62 F9 lines resistant to AB and BGM were derived. Of the derived lines, several are being evaluated for agronomic traits and yield parameters while four lines, GL 29029, GL29206, GL29212, GL29081 possessing high degree of resistance were crossed with susceptible high yielding cultivars BG 256 to improve resistance and to undertake molecular studies. Genotyping of F2 populations with SSR markers from the chickpea genome was done to identify markers potentially linked with AB and BGM resistance genes. In preliminary studies, of 120 SSR markers used, six (Ta 2, Ta 110, Ta 139, CaSTMS 7, CaSTMS 24 and Tr 29 were identified with polymorphic bands between resistant derivative lines and the susceptible parent. The study shows that wild species of Cicer are the valuable gene pools of resistance to AB and BGM. The resistant derivative lines generated here can

  16. Diversity and population structure of red rice germplasm in Bangladesh.

    Science.gov (United States)

    Islam, M Z; Khalequzzaman, M; Prince, M F R K; Siddique, M A; Rashid, E S M H; Ahmed, M S U; Pittendrigh, B R; Ali, M P

    2018-01-01

    While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI) genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR) markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC) indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35). While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V), a similar SSR analysis yielded only three major groups (I, II, and III), and a model-based population structure analysis yielded four (A, B, C and D). Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA), as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207) among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular breeding programs.

  17. Optimal germination condition impacts on the antioxidant activity and phenolic acids profile in pigmented desi chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Domínguez-Arispuro, D M; Cuevas-Rodríguez, E O; Milán-Carrillo, J; León-López, L; Gutiérrez-Dorado, R; Reyes-Moreno, C

    2018-02-01

    Legume sprouts are considered natural, healthy products that provide a source of bioactive compounds to fight against chronic diseases. This study aims to identify the optimal germination temperature (GT) and germination time (Gt) to maximize total phenolic and flavonoid contents (TPC, FC), and antioxidant activity (AoxA) of desi chickpea. Response surface methodology was used as an optimization tool. An experimental design with two factors (GT and Gt) and five levels was used (13 treatments). The sprouts from each treatment were lyophilized, tempered, and milled to obtain germinated chickpea flours (GCF). To predict the phytochemicals composition and AoxA in GCF, regression models were developed. Maximum TPC, FC, and AoxA were attained during germination 33.7 °C for 171 h. Optimized germinated chickpea flour produced applying the optimal germination conditions resulted in an increase of protein and total dietary fibre content, TPC, FC, phenolic acids profile, and AoxA. Germination at optimal conditions also increased the level of coumaric, ferulic, synapic, ellagic, and syringic acids. This study demonstrated that germination carried out under optimal conditions enhanced the nutraceutical value of desi chickpea seeds.

  18. The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE

    Directory of Open Access Journals (Sweden)

    Steinhauer Diana

    2011-02-01

    Full Text Available Abstract Background The combination of high-throughput transcript profiling and next-generation sequencing technologies is a prerequisite for genome-wide comprehensive transcriptome analysis. Our recent innovation of deepSuperSAGE is based on an advanced SuperSAGE protocol and its combination with massively parallel pyrosequencing on Roche's 454 sequencing platform. As a demonstration of the power of this combination, we have chosen the salt stress transcriptomes of roots and nodules of the third most important legume crop chickpea (Cicer arietinum L.. While our report is more technology-oriented, it nevertheless addresses a major world-wide problem for crops generally: high salinity. Together with low temperatures and water stress, high salinity is responsible for crop losses of millions of tons of various legume (and other crops. Continuously deteriorating environmental conditions will combine with salinity stress to further compromise crop yields. As a good example for such stress-exposed crop plants, we started to characterize salt stress responses of chickpeas on the transcriptome level. Results We used deepSuperSAGE to detect early global transcriptome changes in salt-stressed chickpea. The salt stress responses of 86,919 transcripts representing 17,918 unique 26 bp deepSuperSAGE tags (UniTags from roots of the salt-tolerant variety INRAT-93 two hours after treatment with 25 mM NaCl were characterized. Additionally, the expression of 57,281 transcripts representing 13,115 UniTags was monitored in nodules of the same plants. From a total of 144,200 analyzed 26 bp tags in roots and nodules together, 21,401 unique transcripts were identified. Of these, only 363 and 106 specific transcripts, respectively, were commonly up- or down-regulated (>3.0-fold under salt stress in both organs, witnessing a differential organ-specific response to stress. Profiting from recent pioneer works on massive cDNA sequencing in chickpea, more than 9,400 Uni

  19. The research progress on plant mutant germplasm resources in China

    International Nuclear Information System (INIS)

    He Cexi; Ji Linzhen; Zhao Shirong

    1991-07-01

    Mutants induced by nuclear radiation or other mutagens are new artificial germplasm resources. Some mutants have been applied in plant breeding and great achievements have been reached. The status and progress on the collection, identification and utilization of mutants in China are introduced. A proposal for developing mutant germplasm resources with good agronomic characters is suggested

  20. Trichoderma inoculation augments grain amino acids and mineral nutrients by modulating arsenic speciation and accumulation in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Tripathi, Rudra D; Nautiyal, Chandra S

    2015-07-01

    Trichoderma reesei is an industrially important fungi which also imparts stress tolerance and plant growth promotion in various crops. Arsenic (As) contamination of field soils is one of the challenging problems in agriculture, posing potential threats for both human health and the environment. Plants in association with microbes are a liable method to improve metal tolerance and enhance crop productivity. Chickpea (Cicer arietinum L.), is an important grain legume providing cheap source of protein in semi-arid regions including As affected areas. In this study we report the role of T. reesei NBRI 0716 (NBRI 0716) in supporting chickpea growth and improving soil quality in As simulated conditions. NBRI 0716 modulated the As speciation and its availability to improve grain yield and quality (amino acids and mineral content) in chickpea (C. arietinum L.) plants grown in As spiked soil (100 mg As kg(-1) soil). Arsenic accumulation and speciation results indicate that arsenate [As(V)] was the dominant species in chickpea seeds and rhizosphere soil. The Trichoderma reduced total grain inorganic As (Asi) by 66% and enhanced dimethylarsonic acid (DMA) and monomethylarsinic acid (MMA) content of seed and rhizosphere soil. The results indicate a probable role of NBRI 0716 in As methylation as the possible mechanism for maneuvering As stress in chickpea. Analysis of functional diversity using carbon source utilization (Biolog) showed significant difference in diversity and evenness indices among the soil microbial rhizosphere communities. Microbial diversity loss caused by As were prevented in the presence of Trichoderma NBRI 0716. Copyright © 2015. Published by Elsevier Inc.

  1. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    Science.gov (United States)

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Bringing benefits of chickpea to more men and women farmers in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-03

    Jun 3, 2016 ... Ethiopian and Canadian researchers are finding ways to expand chickpea production technologies in the Ethiopian highlands, where authorities had not expected this crop to be viable. In the first six months, the project has expanded its reach from 45 farmers in the previous research phase to 794 farmers; ...

  3. Integrated Management of Damping-off, Root and/or Stem Rot Diseases of Chickpea and Efficacy of the Suggested Formula

    Directory of Open Access Journals (Sweden)

    Montaser Fawzy ABDEL-MONAIM

    2011-08-01

    Full Text Available Eleven fungal isolates were isolated from naturally infected chickpea roots collected from different locations in New Valley Governorate (Egypt. The isolated fungi were purified and identified as Rhizoctonia solani (5 isolates, Fusarium solani (4 isolates and Sclerotinia sclerotiorum (2 isolates. The isolated fungi proved their pathogenicity on cv. Giza 3. Response of chickpea cvs. Giza 1, Giza 2, Giza 3, Giza 4, Giza 88, Giza 195, Giza 531 to infection by the tested fungi was significantly varied. Giza 1 was the most resistant one followed by Giza 531, while the other tested cvs. were highly susceptible. Seven biocontrol agents, namely Bacillus subtilis, B. megaterium, B. cereus, Trichoderma viride, T. harzianum, Aspergillus sp., Penicillium sp. isolated from chickpea rhizosphere, were tested for their antagonistic action against the tested pathogens. B. subtilis isolate BSM1, B. megaterium isolate TVM5, T. viride isolate TVM2 and T. harzianum isolate THM4 were the most antagonistic ones to the tested fungi in vitro, while the other isolates were moderate or weak antagonists. The most antagonistic isolates as well as the commercial biocide Rhizo-N were applied as seed treatment for controlling damping-off, root and/or stem rot diseases caused by the tested fungi under greenhouse conditions. The obtained data showed that all tested antagonistic isolates were able to cause significant reduction of damping-off, root and/or stem rot diseases in chickpea plants. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 proved to be the most effective isolates for controlling the diseases. Under field condition, the obtained data indicated that all the tested antagonistic isolates significantly reduced damping-off, root and/or stem rot. T. viride (isolate TVM2 and B. megaterium (isolate BMM5 recorded the highest reduction of damping-off, root and/or stem rot in all sowing dates. Sowing of treated seeds with bioagents in first of November gave the

  4. Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L. and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-09-01

    Full Text Available Salinity causes disturbance in symbiotic performance of plants, and increases susceptibility of plants to soil-borne pathogens. Endophytic bacteria are an essential determinant of cross-tolerance to biotic and abiotic stresses in plants. The aim of this study was to isolate non–rhizobial endophytic bacteria from the root nodules of chickpea (Cicer arietinum L., and to assess their ability to improve plant growth and symbiotic performance, and to control root rot in chickpea under saline soil conditions. A total of 40 bacterial isolates from internal root tissues of chickpea grown in salinated soil were isolated. Four bacterial isolates, namely Bacillus cereus NUU1, Achromobacter xylosoxidans NUU2, Bacillus thuringiensis NUU3, and Bacillus subtilis NUU4 colonizing root tissue demonstrated plant beneficial traits and/or antagonistic activity against F. solani and thus were characterized in more detail. The strain B. subtilis NUU4 proved significant plant growth promotion capabilities, improved symbiotic performance of host plant with rhizobia, and promoted yield under saline soil as compared to untreated control plants under field conditions. A combined inoculation of chickpea with M. ciceri IC53 and B. subtilis NUU4 decreased H2O2 concentrations and increased proline contents compared to the un-inoculated plants indicating an alleviation of adverse effects of salt stress. Furthermore, the bacterial isolate was capable to reduce the infection rate of root rot in chickpea caused by F. solani. This is the first report of F. solani causing root rot of chickpea in a salinated soil of Uzbekistan. Our findings demonstrated that the endophytic B. subtilis strain NUU4 provides high potentials as a stimulator for plant growth and as biological control agent of chickpea root rot under saline soil conditions. These multiple relationships could provide promising practical approaches to increase the productivity of legumes under salt stress.

  5. Studies on fact of 14C-lindane in soil and chickpea plants under laboratory conditions

    International Nuclear Information System (INIS)

    Meguenni, H.

    1997-01-01

    The degradation of 14 C-lindane (γ-1,2,3,4,5,6 - hexachlorocyclohexane) was investigated under laboratory conditions. Chickpea plants and soil were treated with 14 C-lindane. The results indicated a decrease of lindane on the plant surface from 36.6% to 6.5% and a corresponding increase in extractable residues from within the plant from 12.5% to 34.5% during the 60 days of the trial. In the soil, extractable residues decreased from 47.4% to 31.2%. Bound residues in both plant and soil remained low throughout the trial. After 60 days, the chickpea plants took up 16.4% of the lindane applied to the soil. (author). 2 refs, 7 figs

  6. Agronomic response of cultivars of chickpea (Cicer arietinum L. under different soil moisture conditions in province Granma

    Directory of Open Access Journals (Sweden)

    Yanitza Meriño Hernández

    2017-07-01

    Full Text Available To objective of evaluate the response of two cultivars of chickpea (Nac-29 and Nac-5 HA under different soil moisture conditions, field research was carried out in productive teaching plot of the University of Granma. Sowing was carried out on November 22, 2014. Two treatments were used: T1 (Control and T2 (varieties of chickpea in water stress with three replicates, distributed in a randomized block design with split plot arrangements (The large plots corresponded to the two moisture conditions and the small plots to varieties. The variables were: length and diameter of pods, number of grains per plant, number of grains per pods, weight of 100 seeds and agricultural yield. The results obtained were statistically processed using the STATISTICA version 8.0 for Windows program and in case of significant differences, a variance analysis was performed using the Tukey Multiple Range test. The results showed that, with the cultivation of the chickpea, better results are obtained when the plants are subjected to water stress conditions.

  7. Effect of low doses of gamma irradiation and N-fertilizer on N-sources in chickpea, using 15N

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Shamma, M.; Al-Ayyobi, Z.

    1998-07-01

    A pot experiment was conducted to study the effect of low doses of gamma irradiation on the performance of winter chickpea in the presence of different levels of ammonium sulfate. The results showed an apparent effect of radiation and N-fertilizer on nodulation and N sub 2 -fixation. High levels of N-NH sup + sup 4 decreased N sub 2 - fixation but not nodule formation. However, the Presowing irradiation of chickpea with 10 Gy reduced the negative effect on N - fertilizer on N sub 2 - fixation (Author)

  8. Effect of fermented, hardened, and dehulled of chickpea (Cicer arietinum) meals in digestibility and antinutrients in diets for tilapia (Oreochromis niloticus)

    International Nuclear Information System (INIS)

    Valdez-González, F.J.; Gutiérrez-Dorado, R.; García-Ulloa, M.; Cuevas-Rodríguez, B.; Rodríguez-González, H.

    2018-01-01

    Among the most typical feed sources for tilapia, plants represent a low-cost source in substituting for traditional high-cost feed ingredients. Fermentation, hardening and dehulling are common grains processing techniques to make plant nutrients available and more digestible to fish. Apparent digestibility coefficients (ADC) of dry matter and protein, and antinutrients (phytic acid and tannins) in fermented, hardened and dehulled chickpea (Cicer arietinum) meals were determined for juvenile Nile tilapia (Oreochromis niloticus). The highest ADC was obtained with processed (fermented, hardened and dehulled) chickpea meals compared with non-processed. Results indicated that fermentation increased the protein content by 13.1%, decreased the content of ash and phytic acid (47.5 and 45%, respectively), and increased the ingredient apparent digestibility of dry matter (ADM) by 23.2%, and the ingredient apparent digestibility of protein (ADP) by 41.9%. Dehulling meal increased the protein (5.7%) and lipid (6.4%) content of chickpea grains; decreased fiber, ash and tannin content (75.3%, 19.1%, and 84.5%, respectively); and increased ADM by 12.8%, and ADP by 10.4%. We conclude that fermented, hardened and dehulled chickpea meals represent a potential alternative in diets for juvenile O. niloticus.

  9. Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions.

    Science.gov (United States)

    Oliveira, Rui S; Carvalho, Patrícia; Marques, Guilhermina; Ferreira, Luís; Nunes, Mafalda; Rocha, Inês; Ma, Ying; Carvalho, Maria F; Vosátka, Miroslav; Freitas, Helena

    2017-10-01

    Chickpea (Cicer arietinum L.) is a widely cropped pulse and an important source of proteins for humans. In Mediterranean regions it is predicted that drought will reduce soil moisture and become a major issue in agricultural practice. Nitrogen (N)-fixing bacteria and arbuscular mycorrhizal (AM) fungi have the potential to improve plant growth and drought tolerance. The aim of the study was to assess the effects of N-fixing bacteria and AM fungi on the growth, grain yield and protein content of chickpea under water deficit. Plants inoculated with Mesorhizobium mediterraneum or Rhizophagus irregularis without water deficit and inoculated with M. mediterraneum under moderate water deficit had significant increases in biomass. Inoculation with microbial symbionts brought no benefits to chickpea under severe water deficit. However, under moderate water deficit grain crude protein was increased by 13%, 17% and 22% in plants inoculated with M. mediterraneum, R. irregularis and M. mediterraneum + R. irregularis, respectively. Inoculation with N-fixing bacteria and AM fungi has the potential to benefit agricultural production of chickpea under water deficit conditions and to contribute to increased grain protein content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar

    Science.gov (United States)

    Mekky, Reham H.; Fayed, Mostafa R.; El-Gindi, Mohamed R.; Abdel-Monem, Azza R.; Contreras, María del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea (Cicer arietinum) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, ‘Giza 1’ seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of ‘Giza 1’ seeds in vivo, the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl4-induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content

  11. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar.

    Science.gov (United States)

    Mekky, Reham H; Fayed, Mostafa R; El-Gindi, Mohamed R; Abdel-Monem, Azza R; Contreras, María Del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea ( Cicer arietinum ) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, 'Giza 1' seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of 'Giza 1' seeds in vivo , the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl 4 )-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl 4 -induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of

  12. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar

    Directory of Open Access Journals (Sweden)

    Essam Abdelsattar

    2016-09-01

    Full Text Available Chickpea (Cicer arietinum is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, ‘Giza 1’ seeds exhibited stronger antioxidant activity and high total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of ‘Giza 1’ seeds in vivo, the extraction procedure was reproduced here. The extract was standardized using liquid chromatography (LC coupled to diode array detector (DAD and tandem mass spectrometry (MS/MS to evaluate their hepatoprotective effect on CCl4-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotranferase, aspartate aminotranferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl4-induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of

  13. Suitable gamma ray dose determination in order to induce genetic variation in kaboli chickpea (Cicer Arietinum L)

    International Nuclear Information System (INIS)

    Naserian Khiabani, B.; Ahari Mostafavi, H.; Fathollahi, H.; Vedadi, S.; Mosavi Shalmani, M. A.

    2008-01-01

    In spite of chickpea's use in Iran and its ability of being replaced to adjust the shortage of protein in dietary habits, yield production is very low. One of the main reasons for chickpea's low yield production is its sensitiveness to some diseases, pest and environmental stresses. Genetic variation in chickpea is very low, because of its self pollination. In breeding programs, genetic variation plays an essential role so that the induction of genetic variation in plant population is very important for the plant breeders. The induced mutation through different kinds of mutagens is one of the important ways of genetic variation. In this research, first the sensitiveness of four cultivars (ILC.486, Philip86, Bivinich, Jam) were assessed to different gamma ray doses (100, 200, 300, 400 Gy). The results showed that with an increase in gamma ray dose, the growth rate of chickpea's genotypes decreases. In this respect, the decrease of growth rate has a linear relationship with the gamma ray dose and it is independent from the genotypes. The root length is more sensitive to gamma ray doses than its shoot, and it was observed that at the low doses the root growth decreases, comparing to the shoot growth. On the other hand, in high doses of gamma ray growth abrasion (Ageotropism, Albinism and etc.) were observed. Some traits variation (such as leaf shape, leaf size, leaf color, Albinism, etc.) were seen in M 2 generation, and finally to continue the project, three doses of gamma ray (150,200,250) were selected for the next year

  14. Improved Phytophthora resistance in commercial chickpea (Cicer arietinum) varieties negatively impacts symbiotic gene signalling and symbiotic potential in some varieties.

    Science.gov (United States)

    Plett, Jonathan M; Plett, Krista L; Bithell, Sean L; Mitchell, Chris; Moore, Kevin; Powell, Jeff R; Anderson, Ian C

    2016-08-01

    Breeding disease-resistant varieties is one of the most effective and economical means to combat soilborne diseases in pulse crops. Commonalities between pathogenic and mutualistic microbe colonization strategies, however, raises the concern that reduced susceptibility to pathogens may simultaneously reduce colonization by beneficial microbes. We investigate here the degree of overlap in the transcriptional response of the Phytophthora medicaginis susceptible chickpea variety 'Sonali' to the early colonization stages of either Phytophthora, rhizobial bacteria or arbuscular mycorrhizal fungi. From a total of 6476 genes differentially expressed in Sonali roots during colonization by any of the microbes tested, 10.2% were regulated in a similar manner regardless of whether it was the pathogenic oomycete or a mutualistic microbe colonizing the roots. Of these genes, 49.7% were oppositely regulated under the same conditions in the moderately Phytophthora resistant chickpea variety 'PBA HatTrick'. Chickpea varieties with improved resistance to Phytophthora also displayed lower colonization by rhizobial bacteria and mycorrhizal fungi leading to an increased reliance on N and P from soil. Together, our results suggest that marker-based breeding in crops such as chickpea should be further investigated such that plant disease resistance can be tailored to a specific pathogen without affecting mutualistic plant:microbe interactions. © 2016 John Wiley & Sons Ltd.

  15. Diversity and population structure of red rice germplasm in Bangladesh.

    Directory of Open Access Journals (Sweden)

    M Z Islam

    Full Text Available While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35. While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V, a similar SSR analysis yielded only three major groups (I, II, and III, and a model-based population structure analysis yielded four (A, B, C and D. Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA, as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207 among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular

  16. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    Science.gov (United States)

    Jiménez-Fernández, Daniel; Landa, Blanca B; Kang, Seogchan; Jiménez-Díaz, Rafael M; Navas-Cortés, Juan A

    2013-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  17. Role of steaming and toasting on the odor, protein characteristics of chickpea (Cicer arietinum L.) flour, and product quality.

    Science.gov (United States)

    Ravi, R; Ajila, C M; Rao, U J S Prasada

    2011-03-01

    Proteins play an important role in imparting functional attributes like texture and shape, which determine the sensory quality of the foods. Boondi, a deep fried product from chickpea (Cicer arietinum L.) flour dispersion, is a popular snack food in India. Chickpea dhal (splits) or flour was subjected to various processing conditions like steaming and toasting, to determine their effect on the chickpea flour protein characteristics and on the product quality. Dhal and flour subjected to different heat treatments showed differences in their odor profiles. The SDS-PAGE of sodium phosphate buffer extracts of steamed dhal or flour showed that the high molecular weight (HMW) proteins of 66 to 100 kDa that were present in the untreated dhal were found to be absent in steamed dhal extracts. However, SDS buffer extracts on SDS-PAGE of these steamed samples did not show any difference between untreated and thermally treated dhal samples. Phosphate buffer extracts of the thermally treated flours were subjected to gel filtration chromatography and the results indicated that the HMW protein fraction content decreased significantly in the treated dhal or flour samples compared to control. Boondi prepared from the thermally treated dhal samples resulted in the loss of spherical shape of boondi. Thus, the results indicate that thermal treatment of chickpea dhal and flour influence changes in protein characteristics, the sensory profile and quality of boondi.

  18. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races.

    Directory of Open Access Journals (Sweden)

    Daniel Jiménez-Fernández

    Full Text Available BACKGROUND: Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. METHODOLOGY: We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. FINDINGS: The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized 'JG-62' xylem vessels of root and stem but in 'WR-315', it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. CONCLUSIONS: The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.

  19. Regeneration in selected Cucurbita spp. germplasm

    OpenAIRE

    Gisbert Domenech, Maria Carmen; Picó Sirvent, María Belén N:2949; Nuez Viñals, Fernando

    2011-01-01

    Gisbert Domenech, MC.; Picó Sirvent, MBN.; Nuez Viñals, F. (2011). Regeneration in selected Cucurbita spp. germplasm. Report- Cucurbit Genetics Cooperative. 33-34:53-54. http://hdl.handle.net/10251/62926 Senia 53 54 33-34

  20. Identification of quantitative trait loci (QTL) controlling cold tolerance in chickpea recombinant RIL population (CRIL2) from Cicer arietinum L. x Cicer reticulatum

    Science.gov (United States)

    Published yields for chickpea (Cicer arietinum L.) are higher when the crop is planted in the fall rather than in the spring seasons (Singh et al 1989, Singh et al 1997). Because of its lack of cold hardiness alleles to survive freezing temperatures, chickpea is planted in the spring in temperate re...

  1. Evaluation of Watermelon Germplasm for Resistance to Phytophthora Blight Caused by Phytophthora capsici

    Directory of Open Access Journals (Sweden)

    Min-Jeong Kim

    2013-03-01

    Full Text Available This study was conducted to determine the Phytophthora rot resistance of 514 accessions of watermelon germplasm, Citrullus lanatus var lanatus. About 46% of the 514 accessions tested were collections from Uzbekistan, Turkey, China, U.S.A., and Ukraine. Phytophthora capsici was inoculated to 45-day-old watermelon seedlings by drenching with 5 ml of sporangial suspension (10⁶ sporangia/ml. At 7 days after inoculation, 21 accessions showed no disease symptoms while 291 accessions of susceptible watermelon germplasm showed more than 60.1% disease severity. A total of 510 accessions of watermelon germplasm showed significant disease symptoms and were rated as susceptible to highly susceptible 35 days after inoculation. The highly susceptible watermelon germplasm exhibited white fungal hyphae on the lesion or damping off with water-soaked and browning symptoms. One accession (IT032840 showed moderate resistance and two accessions (IT185446 and IT187904 were resistant to P. capsici. Results suggest that these two resistant germplasm can be used as a rootstock and as a source of resistance in breeding resistant watermelon varieties against Phytophthora.

  2. Mechanisms of physiological adjustment of N2 fixation in Cicer arietinum L. (chickpea) during early stages of water deficit: single or multi-factor controls.

    Science.gov (United States)

    Nasr Esfahani, Maryam; Sulieman, Saad; Schulze, Joachim; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2014-09-01

    Drought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions. By analyzing carbon and nitrogen metabolism, we studied the mechanisms of physiological adjustment of nitrogen fixation in chickpea plants nodulated with Mesorhizobium ciceri during both drought stress and subsequent recovery. The nitrogenase activity, levels of several key carbon (in nodules) and nitrogen (in both nodules and leaves) metabolites and antioxidant compounds, as well as the activity of related nodule enzymes were examined in M. ciceri-inoculated chickpea plants under early drought stress and subsequent recovery. Results indicated that drought reduced nitrogenase activity, and that this was associated with a reduced expression of the nifK gene. Furthermore, drought stress promoted an accumulation of amino acids, mainly asparagine in nodules (but not in leaves), and caused a cell redox imbalance in nodules. An accumulation of organic acids, especially malate, in nodules, which coincided with the decline of nodulated root respiration, was also observed under drought stress. Taken together, our findings indicate that reduced nitrogenase activity occurring at early stages of drought stress involves, at least, the inhibition of respiration, nitrogen accumulation and an imbalance in cell redox status in nodules. The results of this study demonstrate the potential that the genetic engineering-based improvement of SNF efficiency could be applied to reduce the impact of drought on the productivity of chickpea, and perhaps other legume crops. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  3. Assessments of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm.

    Science.gov (United States)

    The USDA-ARS National Plant Germplasm System maintains a Zimbabwe sorghum collection of 1,235 accessions from different provinces. This germplasm has not been extensively employed in U.S. breeding programs due to the lack of phenotypic and genetic characterization. Therefore, 68 accessions from th...

  4. SeedStor: A Germplasm Information Management System and Public Database.

    Science.gov (United States)

    Horler, R S P; Turner, A S; Fretter, P; Ambrose, M

    2018-01-01

    SeedStor (https://www.seedstor.ac.uk) acts as the publicly available database for the seed collections held by the Germplasm Resources Unit (GRU) based at the John Innes Centre, Norwich, UK. The GRU is a national capability supported by the Biotechnology and Biological Sciences Research Council (BBSRC). The GRU curates germplasm collections of a range of temperate cereal, legume and Brassica crops and their associated wild relatives, as well as precise genetic stocks, near-isogenic lines and mapping populations. With >35,000 accessions, the GRU forms part of the UK's plant conservation contribution to the Multilateral System (MLS) of the International Treaty for Plant Genetic Resources for Food and Agriculture (ITPGRFA) for wheat, barley, oat and pea. SeedStor is a fully searchable system that allows our various collections to be browsed species by species through to complicated multipart phenotype criteria-driven queries. The results from these searches can be downloaded for later analysis or used to order germplasm via our shopping cart. The user community for SeedStor is the plant science research community, plant breeders, specialist growers, hobby farmers and amateur gardeners, and educationalists. Furthermore, SeedStor is much more than a database; it has been developed to act internally as a Germplasm Information Management System that allows team members to track and process germplasm requests, determine regeneration priorities, handle cost recovery and Material Transfer Agreement paperwork, manage the Seed Store holdings and easily report on a wide range of the aforementioned tasks. © The Author(s) 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  5. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  6. Methods for acquisition, storage, and evaluation of leguminous tree germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Felker, P.

    1980-01-01

    Simple methods for establishing, maintaining, and planting of a small scale tree legume (Prosopis) germplasm collection by one or two people are described. Suggestions are included for: developing an understanding of the worldwide distribution of genus; becoming acquainted with basic and applied scientists working on the taxa; devising seed cleaning, fumigation, cataloging, and storage techniques; requesting seed from international seed collections; collecting seed from native populations; and for field designs for planting the germplasm collection.

  7. Evaluation of antagonistic and plant growth promoting activities of chitinolytic endophytic actinomycetes associated with medicinal plants against Sclerotium rolfsii in chickpea.

    Science.gov (United States)

    Singh, S P; Gaur, R

    2016-08-01

    To evaluate the potential of chitinolytic endophytic Actinomycetes isolated from medicinal plants in order to diminish the collar rot infestation induced by Sclerotium rolfsii in chickpea. Sixty-eight chitinolytic endophytic Actinomycetes were recovered from various medicinal plants and evaluated for their chitinase activity. Among these isolates, 12 were screened for their plant growth promoting abilities and antagonistic potential against Sc. rolfsii. Further, these isolates were validated in vivo for their ability to protect chickpea against Sc. rolfsii infestation under greenhouse conditions. The isolates significantly (P plant mortality (42-75%) of chickpea. On the basis of 16S rDNA profiling, the selected antagonistic strains were identified as Streptomyces diastaticus, Streptomyces fradiae, Streptomyces olivochromogenes, Streptomyces collinus, Streptomyces ossamyceticus and Streptomyces griseus. This study is the first report of the isolation of endophytic Actinomycetes from various medicinal plants having antagonistic and plant growth promoting abilities. The isolated species showed potential for controlling collar rot disease on chickpea and could be useful in integrated control against diverse soil borne plant pathogens. Our investigation suggests that endophytic Actinomycetes associated with medicinal plants can be used as bioinoculants for developing safe, efficacious and environment-friendly biocontrol strategies in the near future. © 2016 The Society for Applied Microbiology.

  8. Nitrogen fixation in different chickpea cultivars as affected by iron application N-15 Technique

    Energy Technology Data Exchange (ETDEWEB)

    Gadalla, A M; Soliman, S M; Abdelmonem, M [Soil and Water Dept., Atomic Energy Authority, Cairo, (Egypt)

    1995-10-01

    With development of new cultivars of winter chickpea, it became important to evaluate the potential of these cultivars to fix nitrogen from air, and the effect of different agronomic factors on this important process. Greenhouse experiment was conducted to screen five cultivars of chickpea for N 2- fixation ability as affected by iron application. These cultivars were Giza 1,2,531 and 88 as compared with L 3 which was developed from the genotype NEC 1055 by irradiation. N 2- fixation was estimated using N-15 technique. Plant materials were collected after 55 days from planing. Plants samples were analysed for total N-15 atom excess. Results show that Giza 88 gave the highest dry matter as well as nitrogen fixation. Nitrogen derived from air (NDFA) ranged from 27 to 50% due to variety difference and iron treatment. 1 fig., 3 tabs.

  9. Nitrogen fixation in different chickpea cultivars as affected by iron application N-15 Technique

    International Nuclear Information System (INIS)

    Gadalla, A.M.; Soliman, S.M.; Abdelmonem, M.

    1995-01-01

    With development of new cultivars of winter chickpea, it became important to evaluate the potential of these cultivars to fix nitrogen from air, and the effect of different agronomic factors on this important process. Greenhouse experiment was conducted to screen five cultivars of chickpea for N 2- fixation ability as affected by iron application. These cultivars were Giza 1,2,531 and 88 as compared with L 3 which was developed from the genotype NEC 1055 by irradiation. N 2- fixation was estimated using N-15 technique. Plant materials were collected after 55 days from planing. Plants samples were analysed for total N-15 atom excess. Results show that Giza 88 gave the highest dry matter as well as nitrogen fixation. Nitrogen derived from air (NDFA) ranged from 27 to 50% due to variety difference and iron treatment. 1 fig., 3 tabs

  10. Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Gu, Hanyan; Jia, Yuying; Wang, Xiansheng; Chen, Quanjia; Shi, Shubing; Ma, Lin; Zhang, Jusong; Zhang, Hua; Ma, Hao

    2012-04-01

    Late-embryogenesis abundant (LEA) proteins have been reported to be closely correlated with the acquisition of desiccation tolerance during seed development and response of plant to drought, salinity, and freezing, etc. In this study, a LEA gene, CarLEA4 (GenBank accession no. GU247511), was isolated from chickpea based on a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol (PEG). CarLEA4 contained two exons and one intron within genomic DNA sequence and encoded a putative polypeptide of 152 amino acids. CarLEA4 had a conserved pfam domain, and showed high similarity to the group 4 LEA proteins in secondary structure. It was localized in the nucleus. The transcripts of CarLEA4 were detected in many chickpea organs including seedling leaves, stems, roots, flowers, young pods, and young seeds. CarLEA4 was inhibited by leaf age and showed expression changes in expression during seed development, pod development and germination. Furthermore, the expression of CarLEA4 was strongly induced by drought, salt, heat, cold, ABA, IAA, GA(3) and MeJA. Our results suggest that CarLEA4 encodes a protein of LEA group 4 and may be involved in various plant developmental processes and abiotic stress responses.

  11. Investigation and Analysis of Genetic Diversity of Diospyros Germplasms Using SCoT Molecular Markers in Guangxi.

    Science.gov (United States)

    Deng, Libao; Liang, Qingzhi; He, Xinhua; Luo, Cong; Chen, Hu; Qin, Zhenshi

    2015-01-01

    Knowledge about genetic diversity and relationships among germplasms could be an invaluable aid in diospyros improvement strategies. This study was designed to analyze the genetic diversity and relationship of local and natural varieties in Guangxi Zhuang Autonomous Region of China using start codon targeted polymorphism (SCoT) markers. The accessions of 95 diospyros germplasms belonging to four species Diospyros kaki Thunb, D. oleifera Cheng, D. kaki var. silverstris Mak, and D. lotus Linn were collected from different eco-climatic zones in Guangxi and were analyzed using SCoT markers. Results indicated that the accessions of 95 diospyros germplasms could be distinguished using SCoT markers, and were divided into three groups at similarity coefficient of 0.608; these germplasms that belong to the same species were clustered together; of these, the degree of genetic diversity of the natural D. kaki var. silverstris Mak population was richest among the four species; the geographical distance showed that the 12 natural populations of D. kaki var. silverstris Mak were divided into two groups at similarity coefficient of 0.19. Meanwhile, in order to further verify the stable and useful of SCoT markers in diospyros germplasms, SSR markers were also used in current research to analyze the genetic diversity and relationship in the same diospyros germplasms. Once again, majority of germplasms that belong to the same species were clustered together. Thus SCoT markers were stable and especially useful for analysis of the genetic diversity and relationship in diospyros germplasms. The molecular characterization and diversity assessment of diospyros were very important for conservation of diospyros germplasm resources, meanwhile for diospyros improvement.

  12. Tracer studies on P use efficiency by mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.) and chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Singh, S.; Kamath, M.B.

    1991-01-01

    Mustard and chickpea derived a large fraction of their P requirement from applied phosphate compared to safflower crop at flowering. Consequently mean per cent P utilization was maximum in mustard (17.7) followed by chickpea (13.0) and safflower (9.5). However, P uptake at maturity was higher for oilseeds than for the pulse. Grain yield response per kg of applied P was higher at lower rate of P application regardless of the crop. (author). 11 refs., 4 tabs., 2 figs

  13. Physico-chemical, textural, and sensory effects of chickpea (Cicer arietinum) flour fortified yogurt

    Science.gov (United States)

    Yogurt is a popular dairy product made by the bacterial fermentation of milk. It is considered nutritious and has probiotics as a result of fermentation that benefit digestive health when consumed. Protein fortification of foods is an effective way to deliver increased satiety to consumers. Chickpea...

  14. Properties and stability of deep-fat fried chickpea products

    Directory of Open Access Journals (Sweden)

    Bozdemir, S.

    2015-03-01

    Full Text Available The aims of this study were to develop new snack foods prepared from deep frying whole chickpeas and evaluating the properties and storage stability of the new products. The most remarkable results found were: moisture content (3.48–9.19%, water activity (0.1833–0.5936, hardness (3243–4056 g, L (42.01–65.79, a* (10.56–19.24, b* (30.80–42.20, free fatty acidity (0.2195–0.3467%, pero xide value (3.167–5.25 meq O2·kg−1, total phenolic (22.34–37.34 mgGA·100g−1 chickpea, antioxidant capacity (6.53–31.61 mmol Trolox·100g−1 chickpea, absorbed fat (13.46–13.92%, and caloric value (453.17–488.49 kcal·100g−1 chickpea. Hexanal, 2,5-dimethylpyrazine, nonanal, benzaldehyde, p-cymene, and carvacrol were the major volatile compounds determined. The color, hardness, moisture content, water activity, free fatty acids, and peroxide value of the products were monitored for three months at room temperature. Consumer acceptance tests were conducted to reveal the changes which occurred during the storage period. All the products developed and evaluated in this study show potential in the market and industry, with the plain type being the preferred product.Los objetivos de este estudio fueron el desarrollo de nuevos aperitivos elaborados mediante fritura de garbanzos enteros y la evaluación de las propiedades y estabilidad de los nuevos productos durante el almacenamiento. Los resultados mas destacados fueron: contenido de humedad (3,48–9,19%, actividad de agua (0,1833–0,5936, dureza (3243–4056 g, L (42,01 a 65,79, a* (10.56–19,24, b* (30,80–42,20, ácidos grasos libres (0,2195–0,3467%, índice de peróxido (3,167 a 5,25 meq O2·kg −1, fenoles total (22,34–37,34 mgGA·100g−1 garbanzo, capacidad antioxidante (6.53– 31.61 mmol Trolox·100 g−1 garbanzos, grasa absorbida (13,46–13,92%, y el valor calórico (453,17 a 488,49 kcal·100 g−1 de garbanzos. Además, los componentes volátiles más importantes

  15. Gel-based and gel-free search for plasma membrane proteins in chickpea (Cicer arietinum L.) augments the comprehensive data sets of membrane protein repertoire.

    Science.gov (United States)

    Barua, Pragya; Subba, Pratigya; Lande, Nilesh Vikram; Mangalaparthi, Kiran K; Prasad, T S Keshava; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-06-30

    Plasma membrane (PM) encompasses total cellular contents, serving as semi-porous barrier to cell exterior. This living barrier regulates all cellular exchanges in a spatio-temporal fashion. Most of the essential tasks of PMs including molecular transport, cell-cell interaction and signal transduction are carried out by their proteinaceous components, which make the PM protein repertoire to be diverse and dynamic. Here, we report the systematic analysis of PM proteome of a food legume, chickpea and develop a PM proteome reference map. Proteins were extracted from highly enriched PM fraction of four-week-old seedlings using aqueous two-phase partitioning. To address a population of PM proteins that is as comprehensive as possible, both gel-based and gel-free approaches were employed, which led to the identification of a set of 2732 non-redundant proteins. These included both integral proteins having bilayer spanning domains as well as peripheral proteins associated with PMs through posttranslational modifications or protein-protein interactions. Further, the proteins were subjected to various in-silico analyses and functionally classified based on their gene ontology. Finally an inventory of the complete set of PM proteins, identified in several monocot and dicot species, was created for comparative study with the generated PM protein dataset of chickpea. Chickpea, a rich source of dietary proteins, is the second most cultivated legume, which is grown over 10 million hectares of land worldwide. The annual global production of chickpea hovers around 8.5 million metric tons. Recent chickpea genome sequencing effort has provided a broad genetic basis for highlighting the important traits that may fortify other crop legumes. Improvement in chickpea varieties can further strengthen the world food security, which includes food availability, access and utilization. It is known that the phenotypic trait of a cultivar is the manifestation of the orchestrated functions of its

  16. Evaluation of drought stress tolerance in promising lines of chickpea (Cicer arietinum L. using drought resistance indices

    Directory of Open Access Journals (Sweden)

    Akbar Shabani

    2018-06-01

    Full Text Available Introduction Chickpea (Cicer arietinum L. is an annual grain legume or “pulse crop” that is 2th legume after soybean in the world and was cultivated in 60 country. Legume, spatially chickpea is the most important tolerant crop in arid and semi-arid country in western of Asia such as Iran. Chickpea can growth in poor soil and undesirable environment conditions. Drought is an important factors that influencing chickpea production and quality. As area of cultivation is in dryland conditions thus aim of researches is reach to tolerant genotypes. The objective of current study was to evaluate the genetic variation and drought resistance advanced genotypes in chickpea Materials and methods For investigation of genetic variation and drought resistance, 64 advanced genotypes were evaluated in a simple latis (LD with two replications under normal and drought stress conditions in deputy of Dryland Agricultural Research Institute of Kermanshah during 2013-2014 cropping season. Plant spacing was as plots with four rows in 4 m in length, 30 cm apart. The seed were sowed in row with 10 cm distance and the seeding rate was 33 seeds per m2 for all plots. At maturity stage after separation of border effects from each plot, grain yield was measured. Statistical analysis was performed using SAS, SPSS and STATISTICA packages. some drought resistance indices such as mean productivity (MP, geometric mean productivity (GMP, harmonic mean (HAM, stress tolerance index (STI, stress susceptibility index (SSI, yield index (YI, K1 and K2 were measured based on yield in both conditions. Also we used stress tolerance score (STS method for selection genotypes according to all indices. Results and discussion Study on correlation between Yp, Ys and drought resistance indices showed that Yp and Ys had positive and significant correlated with MP, GMP, STI, YI, HAM, K1 and K2 thus these indices were the most suitable drought tolerance criteria for screening of chickpea

  17. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea.

    Science.gov (United States)

    Srivastava, Sangeeta; Zheng, Yun; Kudapa, Himabindu; Jagadeeswaran, Guru; Hivrale, Vandana; Varshney, Rajeev K; Sunkar, Ramanjulu

    2015-06-01

    Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Core Collection Based Backcrossing: An Efficient Approach for Breeding,Germplasm Enhacement and Gene Discovery

    Institute of Scientific and Technical Information of China (English)

    J.Z. Jia; R.H. Zhou; X.Y. Zhang; L. Zhang; Y.L. Li; J. Wang; X.Z. Liu; L.F. Gao; S.B. Liu

    2007-01-01

    @@ Plant germplasm underpins much of crop development. Millions of germplasm accessions have been collected and conserved ex situ, and the major challenge is now how to exploit and utilize this abundant resource.

  19. Molecular evidence for the occurrence of beet western yellows virus on chickpea in Morocco.

    NARCIS (Netherlands)

    Fortass, M.; Wilk, van der F.; Heuvel, van de J.F.J.M.; Goldbach, R.W.

    1997-01-01

    A luteovirus isolate infecting chickpea in Morocco was experimentally transmitted by Myzus persicae to Physalis floridana, on which it produced mild symptoms. When tested in western blots against antisera to known legume luteoviruses, this isolate reacted strongly to beet western yellows virus

  20. Antioxidant responses of chickpea plants subjected to boron toxicity.

    Science.gov (United States)

    Ardic, M; Sekmen, A H; Tokur, S; Ozdemir, F; Turkan, I

    2009-05-01

    This study investigated oxidative stress and the antioxidant response to boron (B) of chickpea cultivars differing in their tolerance to drought. Three-week-old chickpea seedlings were subjected to 0.05 (control), 1.6 or 6.4 mm B in the form of boric acid (H(3)BO(3)) for 7 days. At the end of the treatment period, shoot length, dry weight, chlorophyll fluorescence, B concentration, malondialdehyte content and the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) were measured. The 1.6 mm B treatment did not cause significant changes in shoot length of cultivars, although shoot length increased in the drought-tolerant Gökce and decreased in the drought-sensitive Küsmen after 6.4 mm B treatment. Dry weights of both cultivars decreased with 6.4 mm B treatment. Chlorophyll fluorescence (Fv/Fm) did not change in Gökce at either B level. Nor did it change in Küsmen with 1.6 mm B but Fv/Fm decreased with 6.4 mm B. Boron concentration in the shoots of both cultivars increased significantly with increasing levels of applied B. Significant increases in total SOD activity were observed in shoots of both cultivars given 1.6 and 6.4 mm B. Shoot extracts exhibited five activity bands, two of which were identified as MnSOD and Cu/ZnSOD. In comparison to the control group, all enzyme activities (except APX and SOD) decreased with 1.6 mm B stress. GR activity decreased, while activities of CAT, POX and APX did not change with 6.4 mm B in Küsmen. On the other hand, activities of CAT, APX and SOD increased in Gökce at both B levels. In addition, lipid peroxidation was higher in Küsmen than in Gökce, indicating more damage by B to membrane lipids in the former cultivar. These results suggest that (i) Gökce is tolerant and Küsmen is sensitive to B, and (ii) B tolerance of Gökce might be closely related to increased capacity of the antioxidative system (total SOD, CAT and APX) to

  1. A high yielding, better quality chickpea mutant variety 'NIFA-95'

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khattak, S.U.K.; Iqbal, M.M.

    2001-01-01

    Chickpea or gram (Cicer arietinum L.) is an important legume crop of Pakistan, grown on over one million hectares annually. The national average yield of the crop is very low (0.5 t/ha) and thus the country had to spent about 2 billion rupees ($ 50 million) on import of pulses. The main causes of low yield are non-availability of genetic sources for resistance to various diseases especially gram blight Ascochyta rabiei (Pass.) Lab., insect pest (Pod borer) and non-adoption of proper production technology by the farmers. This calls for earnest efforts of breeders to evolve high yielding and disease resistant varieties of chickpea for provision of quality seeds to the farming community to increase production of this important crop. Seeds of a highly blight susceptible variety '6153' were irradiated at 200 Gy dose of gamma radiation in 1985 and the promising mutant line CMN-446-4 was selected in M3 generation on the basis of disease resistance, greater number of pods and better plant type. After confirmation of its resistance to blight in M 4 and M 5 , the mutant line was evaluated in various trials at different locations. In the advanced and zonal yield trials during 1993-95, the line CMN-446-4 produced the highest grain yield of 2,600 kg/ha as compared to the rest of the mutants and varieties. The line was also evaluated in the chickpea national uniform yield trial, conducted on over 11 locations in the country during 1993-94. In this trial, the mutant line ranked 3rd by producing an average yield of 1,528 kg/ha as compared to the two check varieties 'Punjab-91' (1,316 kg/ha) and 'Paidar-91' (1,391 kg/ha). The mutant line CMN-446-4 is moderately resistant to gram blight, highly resistant to stored pest (pulse beetle), contains 25.3% more protein as compared to the parental variety 6153 and is also better in nitrogen fixing capacity.The proposal for release of the mutant line CMN-446-4 as a new variety under the name 'NIFA-95' for general cultivation in the rainfed

  2. Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae

    Science.gov (United States)

    Plants of Medicago polymorpha in Riverside and San Diego, California were collected with severe rust caused by Uromyces ciceris-arietini. Reported hosts of U. ciceris-arietini are Cicer arietinum (chickpea) and Medicago polyceratia. To confirm the potential new host range, a monouredinial isolate RM...

  3. Effect of Iron Availability on Induction of Systemic Resistance to Fusarium Wilt of Chickpea by Pseudomonas spp.

    Science.gov (United States)

    Saikia, Ratul; Srivastava, Alok K; Singh, Kiran; Arora, Dilip K; Lee, Min-Woong

    2005-03-01

    Selected isolates of Pseudomonas fluorescens (Pf4-92 and PfRsC5) and P. aeruginosa (PaRsG18 and PaRsG27) were examined for growth promotion and induced systemic resistance against Fusarium wilt of chickpea. Significant increase in plant height was observed in Pseudomonas treated plants. However, plant growth was inhibited when isolates of Pseudomonas were used in combination with Fusarium oxysporum f. sp. ciceri (FocRs1). It was also observed that the Pseudomonas spp. was colonized in root of chickpea and significantly suppressed the disease in greenhouse condition. Rock wool bioassay technique was used to study the effect of iron availability on the induction of systemic resistance to Fusarium wilt of chickpea mediated by the Pseudomonas spp. All the isolates of Pseudomonas spp. showed greater disease control in the induced systemic resistance (ISR) bioassay when iron availability in the nutrient solution was low. High performance liquid chromatography (HPLC) analysis indicated that all the bacterial isolates produced more salicylic acid (SA) at low iron (10µM EDDHA) than high iron availability (10µFe(3+) EDDHA). Except PaRsG27, all the three isolates produced more pseudobactin at low iron than high iron availability.

  4. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.

    Science.gov (United States)

    Wangsomnuk, P P; Khampa, S; Wangsomnuk, P; Jogloy, S; Mornkham, T; Ruttawat, B; Patanothai, A; Fu, Y B

    2011-12-12

    Jerusalem artichoke (Helianthus tuberosus) is a wild relative of the cultivated sunflower (H. annuus); it is an old tuber crop that has recently received renewed interest. We used RAPD markers to characterize 147 Jerusalem artichoke accessions from nine countries. Thirty RAPD primers were screened; 13 of them detected 357 reproducible RAPD bands, of which 337 were polymorphic. Various diversity analyses revealed several different patterns of RAPD variation. More than 93% of the RAPD variation was found within accessions of a country. Weak genetic differentiation was observed between wild and cultivated accessions. Six groups were detected in this germplasm set. Four ancestral groups were found for the Canadian germplasm. The most genetically distinct accessions were identified. These findings provide useful diversity information for understanding the Jerusalem artichoke gene pool, for conserving Jerusalem artichoke germplasm, and for choosing germplasm for genetic improvement.

  5. Investigation and Analysis of Crop Germplasm Resources in Coastal Areas of Shandong Province

    Institute of Scientific and Technical Information of China (English)

    Dong WANG; Shoujin FAN; Libin ZHANG; Hui ZHANG; Yingjie LIN; Hanfeng DING; Xiaodong ZHANG; Runfang LI; Zhan LI; Yumin MA; Yu ZHANG; Nana LI; Weijing CHEN; Zhongxue FAN

    2017-01-01

    This study focused on the investigation of crop germplasm resources in coastal areas of Shandong Province, including 132 villages in 82 towns of 34 counties. The survey collected local varieties and wild resources of grain crops, economic crops, vegetables and fruit trees, and a total of 848 samples were collected, belonging to 54 species of 39 genera in 15 families. In this study, the current situation and growth and decline conditions of crop germplasm resources were investigated, and their botanical classification and utilization importance were analyzed. Furthermore, the conservation, development and utilization of crop germplasm resources in coastal areas of Shandong Province were also discussed in this paper.

  6. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.

    Science.gov (United States)

    Deokar, Amit A; Kondawar, Vishwajith; Kohli, Deshika; Aslam, Mohammad; Jain, Pradeep K; Karuppayil, S Mohan; Varshney, Rajeev K; Srinivasan, Ramamurthy

    2015-01-01

    The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.

  7. First report of dodder (Cuscuta pentagona) on chickpea (Cicer arietinum) in the United States

    Science.gov (United States)

    Chickpea (Cicer arietinum L.) is an important rotational and an emerging specialty crop in the Pacific Northwest of the United States, in California, and in the Northern Great Plains of the USA and Canada. Dodders (Cuscuta spp.) are widespread parasitic weeds on many crops worldwide. Several Cusc...

  8. Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Peng, Hui; Cheng, Huiying; Yu, Xingwang; Shi, Qinghua; Zhang, Hua; Li, Jiangui; Ma, Hao

    2010-02-01

    Actins are ubiquitous and highly conserved proteins that play key roles in cell formation and cellular activities. In this study, an actin gene was isolated from chickpea for the first time and designated as CarACT1 (for Cicer arietinum L. actin gene 1; Genbank accession no. EU529707). It encoded a putative protein with 377 amino acids and contained five exons and four introns within genomic DNA sequence. CarACT1 was localized in cytoplasm and showed high similarity to other well known actins from various species. Reverse transcription-polymerase chain reaction (RT-PCR) assay proved that CarACT1 transcripts were ubiquitously accumulated in all major organs, such as seedling roots, stems, leaves, flowers, young pods, and seeds, as well as in diverse developmental stages, such as leaf senescence, seed development and germination. Our results suggested that CarACT1 is an actin gene with physiological functions and may be served as a potential reference gene for transcription level of interesting genes in chickpea.

  9. Evaluation of Lettuce Germplasm Resistance to Gray Mold Disease for Organic Cultivations

    Directory of Open Access Journals (Sweden)

    Chang Ki Shim

    2014-03-01

    Full Text Available This study was conducted to evaluate the resistance of 212 accessions of lettuce germplasm to gray mold disease caused by Botrytis cinerea. The lettuce germplasm were composed of five species: Lactuca sativa (193 accessions, L. sativa var. longifolia (2 accessions, L. sativa var. crispa (2 accessions, L. saligna (2 accessions, and L. serriola (1 accession; majority of these originated from Korea, Netherlands, USA, Russia, and Bulgaria. After 35 days of spray inoculation with conidial suspension (3×10⁷ conidia/ml of B. cinerea on the surface of lettuce leaves, tested lettuce germplasm showed severe symptoms of gray mold disease. There were 208 susceptible accessions to B. cinerea counted with 100% of disease incidence and four resistant accessions, IT908801, K000598, K000599, and K021055. Two moderately resistant accessions of L. sativa, K021055 and IT908801, showed 20% of disease incidence of gray mold disease at 45 days after inoculation; and two accessions of L. saligna, K000598 and K000599, which are wild relatives of lettuce germplasm with loose-leaf type, showed complete resistance to B. cinerea. These four accessions are candidates for breeding lettuce cultivars resistant to gray mold disease.

  10. Variation for seed phytosterols in sunflower germplasm

    Science.gov (United States)

    Sunflower (Helianthus annuus L.) seeds and oils are rich sources of phytosterols, which are important compounds for human nutrition. There is limited information on variability for seed phytosterols in sunflower germplasm. The objective of the present research was to evaluate kernel phytosterol cont...

  11. Study of agronomic characteristics and advantage indices in intercropping of additive series of Chickpea (Cicer arietinum L.) and Black Cumin (Nigella sativa L.)

    OpenAIRE

    esmaeil rezaei-chiyaneh; Esmaeil Gholinezhad

    2015-01-01

    Study of agronomic characteristics and advantage indices in intercropping of additive series of Chickpea (Cicer arietinum L.) and Black Cumin (Nigella sativa L.) Abstract In order to evaluate quantitive and qualitive yield of Chickpea (Cicer arietinum L.) and Black Cumin (Nigella sativa L.) in intercropping of additive series, a field experiment was arranged in a randomized complete block design with three replications in West Azerbaijan province- city Nagadeh, Iran during growing r...

  12. Phytosterol variability in almond germplasm

    OpenAIRE

    Fernández Cuesta, A.; Kodad, Ossama; Socias i Company, Rafel; Velasco, L.

    2012-01-01

    Phytosterols are important dietary components that contribute to reducing serum cholesterol levels. The objective of this research was to assess genetic diversity for total content and profile of free and esterified phytosterols in a world germplasm collection of almond [Prunus amygdalus Batsch; syn. P. dulcis (Mill.) D.A. Webb]. Steryl glycosides and acylated steryl glycosides were not measured. Fruit from 160 almond accessions were collected in 2009 and 2010. Kernel phytosterol ...

  13. A rapid tool for determination of titanium dioxide content in white chickpea samples.

    Science.gov (United States)

    Sezer, Banu; Bilge, Gonca; Berkkan, Aysel; Tamer, Ugur; Hakki Boyaci, Ismail

    2018-02-01

    Titanium dioxide (TiO 2 ) is a widely used additive in foods. However, in the scientific community there is an ongoing debate on health concerns about TiO 2 . The main goal of this study is to determine TiO 2 content by using laser induced breakdown spectroscopy (LIBS). To this end, different amounts of TiO 2 was added to white chickpeas and analyzed by using LIBS. Calibration curve was obtained by following Ti emissions at 390.11nm for univariate calibration, and partial least square (PLS) calibration curve was obtained by evaluating the whole spectra. The results showed that Ti calibration curve at 390.11nm provides successful determination of Ti level with 0.985 of R 2 and 33.9ppm of limit of detection (LOD) value, while PLS has 0.989 of R 2 and 60.9ppm of LOD. Furthermore, commercial white chickpea samples were used to validate the method, and validation R 2 for simple calibration and PLS were calculated as 0.989 and 0.951, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Growth and Nitrogen Fixation in Silicon and/or Potassium Fed Chickpeas Grown under Drought and Well Watered Conditions

    Directory of Open Access Journals (Sweden)

    Fawaz Kurdali

    2013-08-01

    Full Text Available A pot experiment was conducted to study the effects of silicon (Si and/or potassium (K on plant growth, nitrogen uptake and N2-fixation in water stressed (FC1 and well watered (FC2 chickpea plants using 15N and 13C isotopes. Three fertilizer rates of Si (Si50, Si100 and Si200 and one fertilizer rate of K were used. For most of the growth parameters, it was found that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of almost all studied parameters. The Si100K+ (FC1 and Si50K+ (FC2 treatments gave high enough amounts of N2-fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N2-fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leave’s dry matter in response to the solely added Si (Si50K- and Si100K- is associated with lower Δ13C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE. Hence, Δ13C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be also considered an important element for the symbiotic performance of chickpea plants. It can be concluded that the synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.

  15. INCREASING SALT TOLERANCE OF CHICKPEA (CICER ARIETINUM) PLANTS BY INTERACTION EFFECTS OF GAMMA IRRADIATION AND GIBBERELLIC ACID

    International Nuclear Information System (INIS)

    2007-01-01

    The effect of gamma radiation on growth, photosynthetic pigments and some of the antioxidant enzymes of chickpea (Cicer arietinum L.) seeds were investigated. After irradiation with different doses of gamma radiation (20 and 40 Gy), seeds were soaked for 24 hours in either GA 3 , NaCl solution or in a mixture of both. NaCl induced reduction in growth as well as decrease in photosynthetic pigment content of the produced seedlings. However, GA 3 caused amelioration in growth inhibition and an increase in the pigment contents. Irradiated chickpea seeds treated with GA 3 evolved defence antioxidant mechanisms to combat the danger of salt stress by increasing the superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) activities while malonaldehyde (MDA) contents were decreased

  16. Evaluation of Intego Solo (ethaboxam) for management of metalaxyl-resistant Pythium spp. in chickpea

    Science.gov (United States)

    Pythium damping-off and Pythium root rot, caused by numerous species of Pythium, can be a major limiting factor in the emergence and stand establishment of chickpea. Pythium spp. infect the germinating seed and seedling, often resulting in seed rot and subsequent damping-off in northern Idaho. Cur...

  17. Nodulation, dry matter production and N2 fixation by fababean and chickpea as affected by soil moisture and potassium fertilizer

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Ain, F.; Al-Ahamma, M.

    2003-01-01

    The impact of three rates of K-fertilizer (0, 75, and 150 kg K 2 O/ha)on nodulation, dry matter production and N 2 fixation by fababean (Vicia faba L.) and chickpea (Cirer arietinum L.) was evaluated in a pot experiment. The plants were subjected to three soil moisture regimes (low, 45-50%; moderate, 55-60% and high 75-80% of field capacity). 15 N-isotope dilution method was employed to evaluate N 2 fixation using a non-fixing chickpea genotype as a reference crop. Water restriction drastically affected dry matter production, nodulation and N 2 fixation by both plant species. The negative effect of water stress on %N 2 fixed was more prominent in chickpea (11-58%) than in fababean (68-81%) under low and high % of field capacity, respectively. Plant species differed in their response to K-fertilizer as a mean to enhance growth and overcome the stress conditions. The higher level of K fertilizer increased both dry matter production and total N 2 fixed in fababean, but did not have any impact on chickpea. %N 2 fixed, however, appeared to be unaffected by K fertilizer as a mean of alleviating drought stress in both plant species. Therefore, it appears that, under the experimental conditions, the beneficial effect of potassium on water-stressed fababean resulted from stimulation the growth rather than improving the N 2 -fixation efficiency. However, under well-watered plants, a high requirement of the symbiotic system to potassium is needed to ensure and optimal growth and N 2 -fixation. (author)

  18. Physiological variability and in vitro antifungal activity against Botrytis cinerea causing botrytis gray mold of chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosen, M. I.; Ahmed, A. U.; Islam, M. R.

    2010-07-01

    Physiological variability was studied in 10 isolates of Botrytis cinerea causing botrytis gray mold of chickpea, collected from diverse agro climatic areas in Bangladesh. The optimum temperature and pH for the best mycelial radial growth of B. cinerea were 20 degree centigrade and 4.5, respectively. The mycelial radial growth increased with the temperature up to 20 degree centigrade thereafter it decreased gradually up to 30 degree centigrade and no growth was observed at 35 degree centigrade. Chickpea dextrose agar (CDA) medium supported the highest mycelial radial growth (79.17 mm). The quickest (in 5 days) sclerotia initiation was recorded on chickpea destrose agar and lentil dextrose agar (LDA) culture media while the highest number of spores (2.5104 mL{sup -}1) were recorded on LDA medium. The antagonist Trichoderma harzianum was found to be a good bio-control agent against B. cinerea. Among the seven fungicides Bavistin 50 WP (Carbendazim), CP-Zim 50 WP (Carbendazim), Sunphanate 70 WP (Thiophanate methyl) and Rovral 50 WP (Iprodione) were the most effective to inhibit the mycelial radial growth of B. cinerea at 500 mg L{sup -}1 concentration. (Author) 13 refs.

  19. MALE F ERTILITY IN UGANDA BANANA GERMPLASM

    African Journals Online (AJOL)

    Uidentiflcation du niveau de fertilité mâle dans le germplasm bananier à Kabanyolo, Ouganda, a été effectuée en fendant ... characteristic sterility; most of the presently cultivated .... hybrids (AB) and pollen output values from literature are for ...

  20. Evaluation of a miniaturized NIR spectrometer for cultivar identification: The case of barley, chickpea and sorghum in Ethiopia.

    Science.gov (United States)

    Kosmowski, Frédéric; Worku, Tigist

    2018-01-01

    Crop cultivar identification is fundamental for agricultural research, industry and policies. This paper investigates the feasibility of using visible/near infrared hyperspectral data collected with a miniaturized NIR spectrometer to identify cultivars of barley, chickpea and sorghum in the context of Ethiopia. A total of 2650 grains of barley, chickpea and sorghum cultivars were scanned using the SCIO, a recently released miniaturized NIR spectrometer. The effects of data preprocessing techniques and choosing a machine learning algorithm on distinguishing cultivars are further evaluated. Predictive multiclass models of 24 barley cultivars, 19 chickpea cultivars and 10 sorghum cultivars delivered an accuracy of 89%, 96% and 87% on hold-out sample. The Support Vector Machine (SVM) and Partial least squares discriminant analysis (PLS-DA) algorithms consistently outperformed other algorithms. Several cultivars, believed to be widely adopted in Ethiopia, were identified with perfect accuracy. These results advance the discussion on cultivar identification survey methods by demonstrating that miniaturized NIR spectrometers represent a low-cost, rapid and viable tool. We further discuss the potential utility of the method for adoption surveys, field-scale agronomic studies, socio-economic impact assessments and value chain quality control. Finally, we provide a free tool for R to easily carry out crop cultivar identification and measure uncertainty based on spectral data.

  1. Genotype and environment effects on sensory, nutritional, and physical traits in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Maria J. Cobos

    2016-12-01

    Full Text Available The development of chickpea cultivars with high quality grains for human consumption is an important objective in breeding programs. Genotype and environment effects on seed quality traits (sensorial, nutritional and physical were studied in chickpea dry grain. Twenty genotypes were grown in winter and spring sowings over two campaigns in four different locations in southern Spain. Significant differences were observed in oil, acid detergent fiber (ADF and protein content between sowing times (S. In winter, oil and ADF content were higher, while protein content was lower. Although, in general, highly significant variation was detected for genotype (G, environment (E and single interactions (GE, GS and ES, the genotype effect was stronger for ADF, neutral detergent fiber (NDF, oil, starch and protein content, and for physical and sensory traits (r2>27%. In contrast, environment played an important role in variation in the content of amylose and amylopectin (r2=71.7%. No high relationships were found between the sensory and nutritional or physical characteristics studied. In general, our results suggest a high genetic gain for seed quality in nutritional, physical and sensory traits in chickpea. Genotypes with good seed sensory quality should be selected in the final stages of the breeding program, because it is not feasible to evaluate very large numbers of samples. However, in some cases, moderate correlations were found between sensory and either nutritional or physical traits. Therefore, indirect selection to increase the frequency of genes for sensory traits in an early stage should be considered.

  2. Genotype and environment effects on sensory, nutritional, and physical traits in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Cobos, M.J.; Izquierdo, M. A.; Sanz, A.T.; Gil, J.; Flores, F.; Rubio, J.

    2016-01-01

    The development of chickpea cultivars with high quality grains for human consumption is an important objective in breeding programs. Genotype and environment effects on seed quality traits (sensorial, nutritional and physical) were studied in chickpea dry grain. Twenty genotypes were grown in winter and spring sowings over two campaigns in four different locations in southern Spain. Significant differences were observed in oil, acid detergent fiber (ADF) and protein content between sowing times (S). In winter, oil and ADF content were higher, while protein content was lower. Although, in general, highly significant variation was detected for genotype (G), environment (E) and single interactions (GE, GS and ES), the genotype effect was stronger for ADF, neutral detergent fiber (NDF), oil, starch and protein content, and for physical and sensory traits (r2>27%). In contrast, environment played an important role in variation in the content of amylose and amylopectin (r2=71.7%). No high relationships were found between the sensory and nutritional or physical characteristics studied. In general, our results suggest a high genetic gain for seed quality in nutritional, physical and sensory traits in chickpea. Genotypes with good seed sensory quality should be selected in the final stages of the breeding program, because it is not feasible to evaluate very large numbers of samples. However, in some cases, moderate correlations were found between sensory and either nutritional or physical traits. Therefore, indirect selection to increase the frequency of genes for sensory traits in an early stage should be considered.

  3. Genotype and environment effects on sensory, nutritional, and physical traits in chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Cobos, M.J.; Izquierdo, M. A.; Sanz, A.T.; Gil, J.; Flores, F.; Rubio, J.

    2016-07-01

    The development of chickpea cultivars with high quality grains for human consumption is an important objective in breeding programs. Genotype and environment effects on seed quality traits (sensorial, nutritional and physical) were studied in chickpea dry grain. Twenty genotypes were grown in winter and spring sowings over two campaigns in four different locations in southern Spain. Significant differences were observed in oil, acid detergent fiber (ADF) and protein content between sowing times (S). In winter, oil and ADF content were higher, while protein content was lower. Although, in general, highly significant variation was detected for genotype (G), environment (E) and single interactions (GE, GS and ES), the genotype effect was stronger for ADF, neutral detergent fiber (NDF), oil, starch and protein content, and for physical and sensory traits (r2>27%). In contrast, environment played an important role in variation in the content of amylose and amylopectin (r2=71.7%). No high relationships were found between the sensory and nutritional or physical characteristics studied. In general, our results suggest a high genetic gain for seed quality in nutritional, physical and sensory traits in chickpea. Genotypes with good seed sensory quality should be selected in the final stages of the breeding program, because it is not feasible to evaluate very large numbers of samples. However, in some cases, moderate correlations were found between sensory and either nutritional or physical traits. Therefore, indirect selection to increase the frequency of genes for sensory traits in an early stage should be considered.

  4. Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Singh, P.; Sri Rama, Y.V.

    1989-01-01

    Information on the relationship between biomass production, radiation use and water use of chickpea (Cicer arietinum L.) is essential to estimate biomass production in different water regimes. Experiments were conducted during three post-rainy seasons on a Vertisol (a typic pallustert) to study the effect of water deficits on radiation use, radiation use efficiency (RUE), transpiration and transpiration efficiency (TE) of chickpea. Different levels of soil water availability were created, either by having irrigated and non-irrigated plots or using a line source. Biomass production was linearly related to both cumulative intercepted solar radiation and transpiration in both well watered and water deficit treatments. Soil water availability did not affect RUE (total dry matter produced per unit of solar radiation interception) when at least 30% of extractable soil water (ESW) was present in the rooting zone, but below 30% ESW, RUE decreased linearly with the decrease in soil water content. RUE was also significantly correlated (R 2 = 0.61, P < 0.01) with the ratio of actual to potential transpiration (T/Tp) and it declined curvilinearly with the decrease in T/Tp. TE decreased with the increase in saturation deficit (SD) of air. Normalization of TE with SD gave a conservative value of 4.8 g kPa kg −1 . To estimate biomass production of chickpea in different environments, we need to account for the effect of plant water deficits on RUE in a radiation-based model and the effect of SD on TE in a transpiration-based model. (author)

  5. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea (Cicer arietinum L.) genotypes.

    Science.gov (United States)

    Singh, Jogendra; Singh, Vijayata; Sharma, P C

    2018-05-01

    The growth of chickpea ( Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.

  6. Apparent digestibility coefficient of chickpea, maize, high-quality protein maize, and beans diets in juvenile and adult Nile tilapia ( Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Magnolia Montoya-Mejía

    Full Text Available ABSTRACT The objective of our study was to assess the apparent digestibility of plant ingredients in diets for juvenile (50 g and adult (220 g Nile tilapia (Oreochromis niloticus. Dietary dry matter and protein apparent digestibility coefficients of four plant-derived feedstuffs (chickpea, maize, high-quality maize protein, and beans were tested. The beans diet had the lowest apparent digestibility coefficient of dry matter (ADCDM (69.41%, while no significant differences were detected in ADCDM among the other diets; ADCDM was significantly higher in adults compared with juveniles (77.02 vs. 73.76%. Apparent dry matter digestibility coefficient of ingredients (ADCI was significantly higher in the chickpea (70.48% and high-quality protein maize (71.09% ingredients, and lower in the beans (52.79% ingredient. Apparent dry matter digestibility coefficient of ingredients was significantly higher in juveniles compared with adults (72.56 vs. 56.80%. The protein digestibility of diet (ADCCP was significantly higher in the reference diet (93.68%, while the lowest corresponded to the maize (87.86% and beans (87.29% diets. Significantly lower apparent digestibility coefficient of protein (ADCICP was obtained with the high-quality maize protein (59.11% and maize (49.48% ingredients, while higher ADCICP was obtained with the chickpea and beans ingredients (71.31 and 63.89%, respectively. The apparent digestibility coefficient of ingredient crude protein ADCICP was significantly higher in juveniles compared with adults (67.35 vs. 53.46. Digestibility is generally higher in juveniles, and we recommend using chickpea as an ingredient in diets for Nile tilapia.

  7. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Meena, Mukesh Kumar; Ghawana, Sanjay; Sardar, Atish; Dwivedi, Vikas; Khandal, Hitaishi; Roy, Riti; Chattopadhyay, Debasis

    2015-01-01

    Calcium ion (Ca2+) is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants' response process. Calcineurin B-like proteins (CBLs) are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea) genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS) suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL) were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA) at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.

  8. Anthracnose disease evaluation of sorghum germplasm from Honduras

    Science.gov (United States)

    Germplasm collections are important resources for sorghum improvement and 17 accessions from Honduras were inoculated with Colletotrichum sublineolum and evaluated at the Tropical Agriculture Research Station in Isabela, Puerto Rico during the 2005 and 2006 growing seasons to identify sources of ant...

  9. Evaluation of Maize Germplasm for Resistance to Aflatoxin Accumulation

    Directory of Open Access Journals (Sweden)

    Michael H. Blanco

    2012-03-01

    Full Text Available Aflatoxin contamination of maize grain threatens human food and animal feed safety. Breeding for reduced grain aflatoxin accumulation is one of the best strategies presently available to lower grain aflatoxin accumulation. Previously identified sources of germplasm with reduced grain aflatoxin accumulation are excessively tall and late maturing. The objective of this research was to screen germplasm and identify potential sources of aflatoxin resistance. KO679Y and CUBA117:S15-101-001-B-B-B-B inbreds were evaluated for aflatoxin accumulation alongside resistant and susceptible checks with both performing well. These two lines were also evaluated in various crosses. KO679Y performed especially well in crosses with Mp494 and Mp717, resulting in low ear rot and very low aflatoxin levels, but not well in other crosses. A breeding cross including CUBA117:S15-101-001-B-B-B-B as a parent accumulated low levels of aflatoxin both years it was evaluated. Lines resulting from these crosses are being advanced for further evaluation and improvement. KO679Y and CUBA117:S15-101-001-B-B-B-B may prove useful for breeders seeking germplasm sources for ear rot and mycotoxin reduction, especially KO679Y which matures a week earlier and is approximately 25% shorter than current lines resistant to grain aflatoxin accumulation.

  10. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L..

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Meena

    Full Text Available Calcium ion (Ca2+ is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants' response process. Calcineurin B-like proteins (CBLs are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.

  11. Effect of radiation and soaking on trypsin inhibitor and protein content of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Sattar, A.; Atta, S.; Akhtar, M.A.

    1990-01-01

    Composition of Ascochyta-blight resistant chickpea for proximate components, vitamins, energy and trypsin inhibitor, was determined. The influence of irradiation and soaking at ambient temperatures (25-35deg C) on trypsin inhibitor activity (TIA) and protein content of chickpea, was investigated. A significant linear relation (r = -0.960 to -0.987) was found between the loss of TIA and soaking time of irradiated and unirradiated seeds (p < 0.05) and the rate of loss increased with increasing radiation dose (0.25-1.00 kGy). However, effect of radiation alone was negligible. Maximum decrease (30.7%) in TIA (from 330.0 to 228.6 TiU/g) occurred during soaking for 12 h of 1.00 kGy sample. The protein contents increased from an initial value of 21.7% to 23.4% and 22.7% as a result of soaking for 12 h in tap and distilled waters, respectively. Radiation treatment exhibited little or no effect. (author)

  12. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L.) Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.).

    Science.gov (United States)

    Das, Alok; Datta, Subhojit; Thakur, Shallu; Shukla, Alok; Ansari, Jamal; Sujayanand, G K; Chaturvedi, Sushil K; Kumar, P A; Singh, N P

    2017-01-01

    Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer ( Helicoverpa armigera H.) wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt ( cryI ) genes. We designed a plant codon optimized chimeric Bt gene ( cry1Aabc ) using three domains from three different cry1A genes (domains I, II, and III from cry1Aa , cry1Ab , and cry1Ac , respectively) and expressed it under the control of a constitutive promoter in chickpea ( cv . DCP92-3) to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic) shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L) with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering) were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay) led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  13. Expression of a Chimeric Gene Encoding Insecticidal Crystal Protein Cry1Aabc of Bacillus thuringiensis in Chickpea (Cicer arietinum L. Confers Resistance to Gram Pod Borer (Helicoverpa armigera Hubner.

    Directory of Open Access Journals (Sweden)

    Alok Das

    2017-08-01

    Full Text Available Domain swapping and generation of chimeric insecticidal crystal protein is an emerging area of insect pest management. The lepidopteran insect pest, gram pod borer (Helicoverpa armigera H. wreaks havoc to chickpea crop affecting production. Lepidopteran insects were reported to be controlled by Bt (cryI genes. We designed a plant codon optimized chimeric Bt gene (cry1Aabc using three domains from three different cry1A genes (domains I, II, and III from cry1Aa, cry1Ab, and cry1Ac, respectively and expressed it under the control of a constitutive promoter in chickpea (cv. DCP92-3 to assess its effect on gram pod borer. A total of six transgenic chickpea shoots were established by grafting into mature fertile plants. The in vitro regenerated (organogenetic shoots were selected based on antibiotic kanamycin monosulfate (100 mg/L with transformation efficiency of 0.076%. Three transgenic events were extensively studied based on gene expression pattern and insect mortality across generations. Protein expression in pod walls, immature seeds and leaves (pre- and post-flowering were estimated and expression in pre-flowering stage was found higher than that of post-flowering. Analysis for the stable integration, expression and insect mortality (detached leaf and whole plant bioassay led to identification of efficacious transgenic chickpea lines. The chimeric cry1Aabc expressed in chickpea is effective against gram pod borer and generated events can be utilized in transgenic breeding program.

  14. Effect of Tillage in Day or Night and Application of Reduced Dosage of Imazethapyr and Trifluralin on Weed Control, Yield and Yield Components of Chickpea

    Directory of Open Access Journals (Sweden)

    A Abbasian

    2015-07-01

    Full Text Available This Experiment was arranged as a strip-plot on the base of a completely randomized block design with three replications to study the effect of tillage (whether in day or night or in day by light-proof cover and application of reduced dosage of imazethapyr and trifluralin on weed control, yield and yield components of chickpea. Main plots consisted of tillage methods and subplots consisted of trifluralin (at doses of 480, 960 and 1440 g ai /ha and imazethapyr (at doses of 50, 100 and 150 g ai /ha, plus weed free and weedy checks. Results showed weed biomass in day tillage, night tillage and in light-proof cover tillage were respectively 86, 127 and 148 g m-2. Therefore tillage at night or by light-proof cover in day time showed not enough efficiency in weed control. Weed biomass increased when application dose of herbicides decreased. Chickpea grain yield showed significant differences when different doses of herbicides applied. The minimum and the maximum seed yield were obtained respectively in weed free (by 208 g m-2 and weedy checks (by 123 g m-2. Reduced dosage of imazethapyr and trifluralin could control weeds good enough by no significant decrease in chickpea yield. Efficacy of imazethapyr to control weeds grown in chickpea was significantly better than that of trifluralin

  15. Use of plumules cryopreservation to save coconut germplasm in ...

    African Journals Online (AJOL)

    SAM

    2014-04-16

    Apr 16, 2014 ... (PNT/GPA), Brazilian Green Tall (BGD/NVB), Cameroon Red Dwarf (CRD/NRC), Vanuatu Tall ... erosion based on it particular germplasm conservation. Its mode of ..... Tolerance of coffee (Coffea spp) seeds to ultra-low.

  16. Use of Neutron Probe to Quantify the Soil Moisture Flux in Layers of Cultivated Soil by Chickpea

    International Nuclear Information System (INIS)

    El- Gendy, R.W.

    2008-01-01

    This work aims to use the neutron moisture meter and the soil moisture retention curve to quantify the soil moisture flux in the soil profile of Nubarria soil in Egypt at 15, 30, 45, and 60-cm depths during the growth season of Chickpea. This method depends on the use of in situ θ measurements via neutron moisture meter and soil matric suction using model of the soil moisture retention curve at different soil depths, which can be determined in situ. Total hydraulic potential values at the different soil depths were calculated as a function (θ) using the derivative model. The gradient of hydraulic potential at any soil depth can be obtained by detecting of the hydraulic potential within the soil profile. The soil water fluxes at the different soil depths were calculated using In situ measured unsaturated hydraulic conductivity and the gradient of hydraulic potential, which correlated with soil moisture contents as measured by neutron probe. Values of hydraulic potentials after and before irrigation indicate that the direction of soil moisture movement was downward after irrigation and was different before next irrigation. Collecting active roots for water absorption of chickpea were defined from direction of soil water movement from up and down to a certain soil depth was 19 cm depth from the soil surface. Active rooting depth was 53 cm depth, which separates between evapotranspiration and gravity effects The soil water fluxes after and before the next irrigation of chickpea were 1.2453, 0.8613, 0.8197 and 0.6588 cm/hr and 0.0037, - 0.0270,- 0.1341, and 0.2545 cm/hr at 15, 30, 45 and 60 cm depths, respectively. The negative values at 30 and 45 cm depth before the next irrigation indicates there were up ward movement for soil water flux, where finding collecting active roots for water absorption of chickpea at 19 cm depth. Direction of soil water movement, soil water flux, collecting active roots for water absorption and active rooting depth can be determined using

  17. Regeneration of Algerian germplasm by stigma/style somatic ...

    African Journals Online (AJOL)

    ... days in most of the cultured genotypes. Formed embryos were cultured in a single tube before in vivo acclimatization. After sanitary assays, regenerated plants were shown to be free from the agents detected in the mother trees. Key words: Algeria, citrus germplasm, plant regeneration, sanitation, somatic embryogenesis.

  18. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    Science.gov (United States)

    Rashid, M. H.; Hossain, M. Ashraf; Kashem, M. A.; Kumar, Shiv; Rafii, M. Y.; Latif, M. A.

    2014-01-01

    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance. PMID:24723819

  19. Vanadium toxicity in chickpea (Cicer arietinum L.) grown in red soil: Effects on cell death, ROS and antioxidative systems.

    Science.gov (United States)

    Imtiaz, Muhammad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Nawaz, Muhammad Amjad; Rizwan, Muhammad; Mehmood, Sajid; Yousaf, Balal; Yuan, Yuan; Ditta, Allah; Mumtaz, Muhammad Ali; Ali, Muhammad; Mahmood, Sammina; Tu, Shuxin

    2018-04-17

    The agricultural soil contaminated with heavy metals induces toxic effects on plant growth. The present study was conducted to evaluate the effects of vanadium (V) on growth, H 2 O 2 and enzyme activities, cell death, ion leakage, and at which concentration; V induces the toxic effects in chickpea plants grown in red soil. The obtained results indicated that the biomass (fresh and dry) and lengths of roots and shoots were significantly decreased by V application, and roots accumulated more V than shoots. The enzyme activities (SOD, CAT, and POD) and ion leakage were increased linearly with increasing V concentrations. However, the protein contents, and tolerance indices were significantly declined with the increasing levels of V. The results about the cell death indicated that the cell viability was badly damaged when plants were exposed to higher V, and induction of H 2 O 2 might be involved in this cell death. In conclusion, all the applied V levels affected the enzymatic activities, and induced the cell death of chickpea plants. Furthermore, our results also confirmed that vanadium ≥ 130 mg kg -1 induced detrimental effects on chickpea plants. Additional investigation is needed to clarify the mechanistic explanations of V toxicity at the molecular level and gene expression involved in plant cell death. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Efficacy of Combined Formulations of Fungicides with Different Modes of Action in Controlling Botrytis Gray Mold Disease in Chickpea

    Directory of Open Access Journals (Sweden)

    M. H. Rashid

    2014-01-01

    Full Text Available Botrytis gray mold (BGM caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L. and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur in Bangladesh for three years (2008, 2009, and 2010. Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%, and Protaf 250EC, propiconazole (0.05%], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%; Secure 600 WG, phenomadone + mancozeb (0.2%; and Companion, mancozeb 63% + carbendazim 12% (0.2%]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1–9 scale and the highest increase (38% of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.

  1. IAA-producing rhizobacteria from chickpea (Cicer arietinum L.) induce changes in root architecture and increase root biomass.

    Science.gov (United States)

    Fierro-Coronado, Rosario Alicia; Quiroz-Figueroa, Francisco Roberto; García-Pérez, Luz María; Ramírez-Chávez, Enrique; Molina-Torres, Jorge; Maldonado-Mendoza, Ignacio Eduardo

    2014-10-01

    Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 μmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass.

  2. Variation for yield, water-use efficiency, and canopy morphology among nine alfalfa germplasms

    International Nuclear Information System (INIS)

    Ray, I.M.; Townsend, M.S.; Henning, J.A.

    1998-01-01

    Alfalfa (Medicago sativa L.) production under irrigated and rainfed conditions may benefit from improvements in water-use efficiency (WUE), the amount of forage and root biomass produced per unit of water transpired. If benefits from improved WUE are to be realized, correlations between important agronomic traits and key physiological traits associated with WUE must be determined. This study characterized variation for dry matter yield, forage maturity, leaf-to-stem ratio (LSR), carbon isotope discrimination (delta), canopy temperature, ash content, and specific leaf mass (SLM) in alfalfa. Associations between traits were also determined. Nine alfalfa germplasms representing eight of the nine historical genetic diversity groups, and a very fall-dormant (VFD) population, were established in seeded, irrigated plots for 2 yr near Las Cruces, NM. Significant variation (P less than or equal to 0.10) was detected for all traits and was greatest for delta and maturity, intermediate for yield, canopy temperature, ash content, and LSR, and least for SLM. The African, Peruvian, and Indian germplasms exhibited a higher delta than either the Turkistan, VFD, M. varia Martyn., or Ladak germplasms. Carbon isotope discrimination was positively correlated with forage yield (r = 0.64; P less than or equal to 0.10; n = 9) and forage maturity (r = 0.66; P less than or equal to 0.05; n = 9). No association was detected between delta and either canopy temperature, ash content, SLM, or LSR. The results indicate that differences in stomatal conductance or photosynthetic capacity exist among the nine populations, and that germplasms with low delta tended to have slower growth and development rates under irrigated conditions. Neither canopy temperature, ash content, nor SLM provided suitable alternate measurements of delta among the nine alfalfa germplasms

  3. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition.

    Science.gov (United States)

    Sreerama, Yadahally N; Neelam, Dennis A; Sashikala, Vadakkoot B; Pratape, Vishwas M

    2010-04-14

    Milled fractions of chickpea ( Cicer arietinum L.) and horse gram ( Macrotyloma uniflorum L. Verdc.) were evaluated for their nutritional and antinutritional characteristics. Crude protein content of these fractions ranged from 22.6-23.8 g 100(-1) g in cotyledon to 7.3-9.1 g 100(-1) g in seed coat fractions. The fat content of chickpea fractions (1.6-7.8 g 100(-1) g) was higher than that of horse gram fractions (0.6-2.6 g 100(-1) g). Crude fiber content was higher in seed coat fractions of both legumes than embryonic axe and cotyledon fractions. Seed coat fractions had high dietary fiber content (28.2-36.4 g 100(-1) g), made up of mainly insoluble dietary fiber. Most of the phytic acid and oligosaccharides were located in the cotyledon fractions, whereas phenolic compounds in higher concentrations were found in seed coats. Significantly higher concentrations of proteinaceous and phenolic inhibitors of digestive enzymes were found in cotyledon and seed coat fractions, respectively. The kinetic studies, using Michaelis-Menten and Lineweaver-Burk derivations, revealed that seed coat phenolics inhibit alpha-amylase activity by mixed noncompetitive (chickpea) and noncompetitive (horse gram) inhibition mechanisms. In the case of trypsin, chickpea and horse gram seed coat phenolics showed noncompetitive and uncompetitive modes of inhibition, respectively. These results suggest the wide variability in the nutrient and antinutrient composition in different milled fractions of legumes and potential utility of these fractions as ingredients in functional food product development.

  4. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    Directory of Open Access Journals (Sweden)

    Victoria Guadalupe Aguilar-Raymundo

    2018-02-01

    Full Text Available Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29, pH (6.35–7.11 and acidity (1.56–3.56 changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product.

  5. Physicochemical and Rheological Properties of a Dairy Dessert, Enriched with Chickpea Flour

    Science.gov (United States)

    Aguilar-Raymundo, Victoria Guadalupe; Vélez-Ruiz, Jorge Fernando

    2018-01-01

    Dairy desserts are complex mixtures and matrices including main components such as milk, sugar, starch, hydrocolloids, colorants and flavors, with a proteinaceous structure; they are widely consumed and present a semisolid consistency. In this work, the physicochemical and rheological properties of a dairy dessert with the addition of chickpea flour (raw and cooked, at four concentrations) were studied to determine the effect of the flour. The results indicated that luminosity (L*: 62.75–83.29), pH (6.35–7.11) and acidity (1.56–3.56) changed with the type of flour. The flow properties of the custards exhibited a non-Newtonian behavior that was well fitted by three flow models. The studied custard systems were stored for twelve days at 4 °C. The physicochemical and flow properties of the custards changed notably as a function of flour addition and storage time. From all samples, only four were analyzed with oscillatory tests, showing their mechanical spectra with elastic behavior. The dessert texture was also measured, founding that those formulated with Blanco Noroeste chickpea flour exhibited the highest values of hardness (0.356–0.391 N) through the twelve days. It can be concluded that those custard systems with the highest content of flour presented a very good response as a potential new dairy product. PMID:29463036

  6. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    2008-04-02

    Apr 2, 2008 ... crop, because of its adaptation to short growth duration, low water requirement, soil fertility and because it can be used in ... profiles have been characterized in case of several crop plant germplasm ...... Nucleic Acids Res. 18,.

  7. Modulation in radiation-induced changes in peroxidase activity with gibberellic acid in seedling's growth in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Khan, M.R.; Qureshi, A.S.

    2002-01-01

    Changes in the effects of gamma irradiation (10 to 110 Kr) with gibberellic acid (GA/sub 3/) for peroxidase activity, in relation to early days of seedling's growth in Kabulic chickpea cultivar, Noor-91, were evaluated. Stimulation in peroxidase activity over control was recorded at all the irradiation treatments from 3rd to 8th day of seedling's development. Increase in peroxidase activity at 10 and 20 Kr was due to the increase in metabolic activity, while higher doses of gamma radiation account for the damaging action and production of peroxy radicals. However, stimulation in fresh weight was observed only at 10 Kr of gamma irradiation. Postmutagenic application of Ga/sub 3/ protect the seedlings from radiation injury, by increasing the peroxides activity, and increased the fresh weight of chickpea seedlings. (author)

  8. Response of legumes to salt stress: effect on growth and nitrogen fixation of chickpea (cicer arietinum var. cm-72)

    International Nuclear Information System (INIS)

    Niazi, B.H.; Rashid, H.

    1995-01-01

    In a green house experiment, chickpea (CM-72) was subjected to different salinity levels un-inoculated and rhizobial inoculation to study effectiveness (nodule formation) and growth of the plant. In a set of inoculated plants, the plants died at 6.0 ds m/sup -1/ and beyond at flowering stage showing their toward salinity. Plant height, dry matter yield (DMY), N-content (mg/plant) decreased with increasing salinity levels in both inoculated and un-inoculated plants at all growth stages. Nodulation was adversely affected due to presence of salinity in the growth medium. Percent crude protein increased with increasing salinity. Percent crude protein comparatively increased in inoculated plants than un-inoculated ones. Chickpea is sensitive to salinity. Seed treatment with rhizobial inoculum may improve the protein content of plant under saline conditions. (author)

  9. Screening of Gladiolus germplasm for agronomic performance and ...

    African Journals Online (AJOL)

    A field experiment was conducted to evaluate the agronomic performance and resistance of Gladiolus germplasm against corm rot disease caused by Fusarium oxysporum Schlecht. f. sp. gladioli (L. Masey) W.C. Snyder & H.N. Hans. Among the 23 Gladiolus varieties tested, Glad Red exhibited the highest spike length of 55 ...

  10. Diversity Analysis and Physico-Morphlogical Characteritics of Indigenous Germplasm of Lablab Bean

    Directory of Open Access Journals (Sweden)

    Ram Bahadur KC

    2016-12-01

    Full Text Available Germplasm characterization is an important component of crop breeding program. In characterizing indigenous beans lablab which is used for vegetables as well pulses in Nepal. Twenty three lablab beans germplasm were evaluated for different qualitative and quantitive physico-morphological charecteristics for two years during 2011 and 2012 at Horticulture Research Station, Malepatan, Pokhara. The germplasm showed considerable variations in most of the qualitative and quantitative traits. Leaf size, vine color, flower color, pod color, pod shape, pod type and seed color varied among the genotypes. Variation was also observed in yield attributing characters eg, pod length and width, 10 fresh pod weight, seeds per pod and 100-seed weight. Days to 50% flowering ranged from 81 to 130 days indicating the presence of early varieties. Fresh pod weight of 10 pods was ranged from 45.0 g to 162.5 g. Multivariate analysis indicated four groups in these genotypes, among with ML-02 and ML-10 were distinct in comparioson with other genotypes. Simple selection may be considered to develop high yielding, early type varieties from these gentopypes.

  11. Fingerprinting for discriminating tea germplasm using inter-simple sequence repeat (ISSR) markers

    International Nuclear Information System (INIS)

    Liu, B.Y.; Li, Y.Y.; Wang, P.S.; Wang, L.Y.; Wang, P.S.

    2012-01-01

    For the discrimination of tea germplasm at the inter-specific level, 134 tea varieties preserved in the China National Germplasm Tea Repositories (CNGTR) were analyzed using inter simple sequence repeat (ISSR) markers. Eighteen primers were chosen from 60 screened for ISSR amplification, generating 99.4% polymorphic bands. The mean Nei's gene diversity (H) and the overall mean Shannon's Information index (I) were 0.396 and 0.578, respectively, indicating a wide gene pool. Using the presence, sometimes absence of unique ISSR markers, it was possible to discriminate 32 of the genotypes tested. No single primer could discriminate all the 134 genotypes. However, UBC811 provided rich band patterns and it can discriminate 35 genotypes. The combination of two and three primers could discriminate 99 and 121 genotypes, respectively. Furthermore, the combination of band patterns or the DNA fingerprinting based on specific ISSR markers generated by UBC811, UBC835, ISSR2 and ISSR3 could discriminate all 134 genotypes tested. ISSR markers also provide a powerful tool to discriminate tea germplasm at the inter-specific level. (author)

  12. M7 germplasm release: A tetraploid clone derived from Solanum infundibuliforme for use in expanding the germplasm base for french fry processing

    Science.gov (United States)

    A new source of russet germplasm has been identified as a parent for processing and fresh market breeding programs. It was derived via bilateral sexual polyploidization following a cross between a diploid cultivated potato and the diploid wild species Solanum infundibuliforme. This clone, designated...

  13. Genetic diversity of wild germplasm of "yerba mate" (Ilex paraguariensis St. Hil.) from Uruguay.

    Science.gov (United States)

    Cascales, Jimena; Bracco, Mariana; Poggio, Lidia; Gottlieb, Alexandra Marina

    2014-12-01

    The "yerba mate" tree, Ilex paraguariensis St. Hil., is a crop native to subtropical South America, marketed for the elaboration of the highly popular "mate" beverage. The Uruguayan germplasm occupies the southernmost area of the species distribution range and carries adaptations to environments that considerably differ from the current production area. We characterized the genetic variability of the germplasm from this unexplored area by jointly analyzing individuals from the diversification center (ABP, Argentina, Brazil and Paraguay) with 19 nuclear and 11 plastidic microsatellite markers. For the Uruguayan germplasm, we registered 55 alleles (18 % private), and 80 genotypes (44 % exclusive), whereas 63 alleles (28.6 % private) and 81 genotypes (42 % exclusive) were recorded for individuals from ABP. Only two plastidic haplotypes were detected. Distance-based and multilocus genotype analyses showed that individuals from ABP intermingle and that the Uruguayan germplasm is differentiated in three gene-pools. Significant positive correlations between genetic and geographic distances were detected. Our results concur in that ABP individuals harbor greater genetic variation than those from the tail of the distribution, as to the number of alleles (1.15-fold), He (1.19-fold), Rs (1.39-fold), and the between-group genetic distances (1.16-fold). Also the shape of the genetic landscape interpolation analysis suggests that the genetic variation decays southward towards the Uruguayan territory. We showed that Uruguayan germplasm hosts a combination of nuclear alleles not present in the central region, constituting a valuable breeding resource. Future conservation efforts should concentrate in collecting numerous individuals of "yerba mate" per site to gather the existent variation.

  14. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  15. Evaluation of Advanced Chickpea (Cicer Arietinum L.) Accessions Based on Drought Tolerance Indices and SSR Markers Against Different Water Treatments

    International Nuclear Information System (INIS)

    Maqbool, M. A.; Aslam, M.

    2016-01-01

    Chickpea is mainly grown on marginal lands and encounter the problem of erratic rainfall that causes lack of water availability especially at terminal growth stages. Forty advanced chickpea genotypes were grown under irrigated, rainfed and tunnel conditions for two years (2012-13 and 2013-14). Data were collected for seed yield and analyzed by analysis of variance. Highly significant differences among genotypes and water treatments were observed for seed yield. However, across the year differences were insignificant for seed yield of chickpea. Seed yield under rainfed was higher than under irrigated conditions. Forty genotypes were assembled in four distinct groups on the basis of PCA biplot for different drought tolerance indices. These four distinct groups were representative of genotypic performance under normal and stressed conditions. Twenty eight SSR primers were used for sortation of genotypes either as drought tolerant or susceptible and to find association with results of drought tolerance indices. Only nine SSR markers were found to be polymorphic while others were either monomorphic or not amplified. H3DO5 and TA8 with Group-I, TR19 and ICCM0035 with Group-II, ICCM0035 with Group-III and TA25 was strongly correlated with results of Group-IV. Genotypes of group-I were drought tolerant whereas, CH16/06, CH81/06 and D097-11 within this groups were more tolerant. (author)

  16. 32P uptake and translocation in chickpea (Cicer arietinum L.) inoculated with vesicular-arbuscular mycorrhiza

    International Nuclear Information System (INIS)

    Chaturvedi, C.; Singh, Renu

    1990-01-01

    32 P uptake in chickpea (Cicer arietinum L.) cultivars L-550 and C-235 as affected by vesicualr-arbuscular mycorrhiza (G. caledonicum) and Rhizobium was investigated in P deficient soils. Test plants coinoculated with the above two symbionts exhibited higher 32 P uptake than inoculated with either symbiont alone. Uninoculated plants showed minimum level of 32 P uptake. (author). 1 tab., 7 refs

  17. Mating system and pollen dispersal in Eugenia dysenterica (Myrtaceae) germplasm collection: tools for conservation and domestication.

    Science.gov (United States)

    Rodrigues, Eduardo B; Collevatti, Rosane G; Chaves, Lázaro J; Moreira, Lucas R; Telles, Mariana P C

    2016-04-01

    Eugenia dysenterica DC. (Myrtaceae) is a perennial tree producing edible fruits and ornamental flowers of potential value widely distributed in Brazilian "Cerrados" (savannas), but available genetic resources and potential for future breeding programs must be evaluated. Here we evaluated the reproductive system and pollen-mediated gene flow in one generation of Eugenia dysenterica germplasm collection of Agronomy School, Federal University of Goiás (in Goiânia city, Central Brazil). We collected leaves from all adults from the germplasm collection (682 plants) and seeds (542) from 23 mother-trees. Genotypes were obtained for seven microsatellite loci. Genetic diversity was high and did not significantly differ between adults (H e = 0.777) and progeny arrays (H e = 0.617). Our results showed that E. dysenterica has an allogamous mating system in the germplasm collection (t m = 0.957), but with high and significant biparental inbreeding (t m - t s = 0.109). Because sibs are very close to each other, mating between closely related individuals is likely. Paternity correlation was also relatively high, indicating a 11.9 % probability that a randomly chosen pair of outcrossed progeny from the same array are full sibs. The maximum pollen dispersal distance (224 m), estimated using assignment test, corresponded to the boundaries of the orchard. We were able to assign the paternity to only 64 % of the 349 seeds analyzed, indicating potential pollen immigration to the germplasm collection. The variance effective population size estimated for one maternal family in the germplasm collection (N ev = 3.42) is very close to the theoretical maximum value for half-sibs (Nev = 4.0). Because E. dysenterica has a long life cycle and generation time, the maintenance of an effective population size of at least 100 in the germplasm collection is suggested, which can be achieved by maintaining a seed-trees number around 30 individuals.

  18. Field Screening of Cassava (Manihot esculenta Crantz) Germplasm ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Marmey P., Beeching J. R., Hamon S. and Charrier A. (1994). Evaluation of cassava (Manihot esculenta Crantz) germplasm collection using RAPD markers. Euphytica 74: 203–209. Roa A. C., Maya, M. M., Duque M. M., Tohme J., Allen A. C. and Bonierbale M. W. (1997). AFLP analysis of relationships among cassava and ...

  19. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry

    NARCIS (Netherlands)

    Peace, C.P.; Luby, J.; Weg, van de W.E.; Bink, M.C.A.M.; Iezzoni, A.F.

    2014-01-01

    Horticultural crop improvement would benefit from a standardized, systematic, and statistically robust procedure for validating quantitative trait loci (QTLs) in germplasm relevant to breeding programs. Here, we describe and demonstrate a strategy for developing reference germplasm sets of

  20. Mutagenic effectiveness and efficiency of EMS, sodium azide and gamma radiation in chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Barshile, J.D.; Apparao, B.J.

    2006-01-01

    Mutagenic effectiveness and efficiency of Ethyl Methane Sulphonate (EMS), Sodium Azide (SA) and gamma radiation on two cultivars of chickpea (Cicer arietinum L), Vijay and Vishwas were evaluated by the biological damages caused by them in M 1 generation and on the basis of frequency of chlorophyll mutations produced in the M 2 generation. All mutagenic treatments of EMS, SA and gamma radiation decreased germination, seedling height, plant survival and pollen fertility in both the cultivars. The extent of effect was dose dependent. LD 50 values of mutagen were found to be helpful for planning experimental mutagenesis in chickpea. Frequency of chlorophyll mutations in M 2 generation was less in Vijay as compared to Vishwas. Mutagenic effectiveness is inversely proportional to the increasing concentrations/doses of mutagens in both the cultivars, except for gamma radiation treatments in the cultivar Vishwas. All three mutagens (except EMS in the Vijay and gamma radiation in the cultivar Vishwas) exhibited gradual decrease in mutagenic efficiency, with an increase in their concentration/dose. (author)

  1. National Plant Germplasm System: Critical Role of Customer Service

    Science.gov (United States)

    The National Plant Germplasm System (NPGS) conserves plant genetic resources, not only for use by future generations, but for immediate use by scientists and educators around the world. With a great deal of interaction between genebank curators and users of plant genetic resources, customer service...

  2. Integration of Gamma Irradiation and Some Botanical oils To Protect Cowpea And Chickpea Seeds From Infestation With The Bruchid Beetle Callosobruchus Maculatus

    International Nuclear Information System (INIS)

    Hassan, R.S.; Mikhaiel, A.A.; Sileem, Th.M.

    2013-01-01

    The lethal effect of gamma radiation doses of 0.75 or 1.0 kGy on the adults Callosobruchus maculates reared on cowpeas and chickpeas were slow during the first and third days post-treatments. By increasing the dose to 1.5 kGy, the values of the percent mortality of adults in both seeds 24 h posttreatment were 53 and 40%, respectively. On the other hand, the dose 2 kGy caused sooner mortality for adults post-treatment for cowpeas. Different concentrations from eight plant oils; lemon grass, pinus sylvestris, parsley, fennel, geranium, peppermint, petitgrain and sweet basil, were used for protection of cowpea and chickpea seeds from infestation by Callosobruchus maculates. The results showed that sweet basil and geranium caused 89 and 79 % larval mortality, respectively, in case of cowpeas at concentration 0.5 % with exposure period of 48 hour while 71.0 and 63.33% adult mortality was occurred at the same concentration of both oils in chickpeas. The latent effects of tested plant oils on adult stage when beetles of C. maculatus were fed on seeds treated with the lowest two concentrations (0.0312, 0.0625%) of tested oils, the number of eggs laid per female was decreased in female exposed to all tested oils especially in case of cowpea treated with sweet basil and lemongrass. Most of the tested oils caused high reduction in larval penetration in both types of seeds. The adult weight was non significantly reduced at all treatments. The use of different plant oils leads to reduction in the progeny comparing to the control and sweet basil or geranium was found to be highly effective in decreasing the percentage of emergence (30 and 40% , respectively). No harmful effect was observed on germination of plant oils treated cowpea and chickpea seeds with concentration 2%.

  3. Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops

    Directory of Open Access Journals (Sweden)

    Sangam Dwivedi

    2014-09-01

    Full Text Available Microbiota in the gut play essential roles in human health. Prebiotics are non-digestible complex carbohydrates that are fermented in the colon, yielding energy and short chain fatty acids, and selectively promote the growth of Bifidobacteria and Lactobacillae in the gastro-intestinal tract. Fructans and inulin are the best-characterized plant prebiotics. Many vegetable, root and tuber crops as well as some fruit crops are the best-known sources of prebiotic carbohydrates, while the prebiotic-rich grain crops include barley, chickpea, lentil, lupin, and wheat. Some prebiotic-rich crop germplasm have been reported in barley, chickpea, lentil, wheat, yacon, and Jerusalem artichoke. A few major quantitative trait loci and gene-based markers associated with high fructan are known in wheat. More targeted search in genebanks using reduced subsets (representing diversity in germplasm is needed to identify accessions with prebiotic carbohydrates. Transgenic maize, potato and sugarcane with high fructan, with no adverse effects on plant development, have been bred, which suggests that it is feasible to introduce fructan biosynthesis pathways in crops to produce health-imparting prebiotics. Developing prebiotic-rich and super nutritious crops will alleviate the widespread malnutrition and promote human health. A paradigm shift in breeding program is needed to achieve this goal and to ensure that newly-bred crop cultivars are nutritious, safe and health promoting.

  4. Evolution of rice and pulse varieties with improved quality through induced mutations. Part of a coordinated programme on the use of nuclear techniques for seed protein improvement

    International Nuclear Information System (INIS)

    Mia, M.M.

    1980-03-01

    Three mutant varieties, 16 hybrids of advanced generation, 6 recommended varieties and many local collections of rice in Bangladesh were screened for protein content. The 25 varieties or strains showed a variation of protein content between 8.9 - 11.7% and also wide ranges of variation in amylose content, starch-iodine-blue value and water absorption by grain. Amino acid compositions of some promising varieties were also investigated. 60 rice germplasms tested also showed a wide range of variation in protein content (6-13%) and variations of other seed characteristics. 3000 local collections showed a variation range of 5-13% protein content. Mutation breedings were carried out on chickpeas and lentils on a large scale. Dry seed was treated with 60 Co gamma ray and mutants were detected, selected, particularly for high protein content, and evaluated in M 2 -M 8 generations. Of the 10 selected mutant lines of each of the pulses, variations of various agronomic characters were observed. However, induced variation in protein content was only remarkable in chickpea. The most promising chickpea mutant showed 19% higher yield and 12% higher protein content than the mother variety, and was proposed to be released as a variety

  5. Verification of genetic identity of introduced cacao germplasm in ...

    African Journals Online (AJOL)

    In the present study, high-throughput genotyping with SNP markers was used to fingerprint 160 cacao trees in the germplasm collection at the Cocoa Research Institute of Ghana (CRIG). ... Keywords: Cacao, conservation, chocolate, DNA fingerprint, molecular marker, tropical plant, off-type, true-to-type, West Africa.

  6. Emerging crops in the USDA arid lands germplasm collection

    Science.gov (United States)

    The USDA National Plant Germplasm System maintains collections of several emerging crops for arid lands at the National Arid Land Plant Genetic Resources Unit in Parlier, CA (NALPGRU). The guayule, jojoba, and prickly pear collections are most active in terms of current research and crop development...

  7. High-throughput genotyping for species identification and diversity assessment in germplasm collections.

    Science.gov (United States)

    Mason, Annaliese S; Zhang, Jing; Tollenaere, Reece; Vasquez Teuber, Paula; Dalton-Morgan, Jessica; Hu, Liyong; Yan, Guijun; Edwards, David; Redden, Robert; Batley, Jacqueline

    2015-09-01

    Germplasm collections provide an extremely valuable resource for breeders and researchers. However, misclassification of accessions by species often hinders the effective use of these collections. We propose that use of high-throughput genotyping tools can provide a fast, efficient and cost-effective way of confirming species in germplasm collections, as well as providing valuable genetic diversity data. We genotyped 180 Brassicaceae samples sourced from the Australian Grains Genebank across the recently released Illumina Infinium Brassica 60K SNP array. Of these, 76 were provided on the basis of suspected misclassification and another 104 were sourced independently from the germplasm collection. Presence of the A- and C-genomes combined with principle components analysis clearly separated Brassica rapa, B. oleracea, B. napus, B. carinata and B. juncea samples into distinct species groups. Several lines were further validated using chromosome counts. Overall, 18% of samples (32/180) were misclassified on the basis of species. Within these 180 samples, 23/76 (30%) supplied on the basis of suspected misclassification were misclassified, and 9/105 (9%) of the samples randomly sourced from the Australian Grains Genebank were misclassified. Surprisingly, several individuals were also found to be the product of interspecific hybridization events. The SNP (single nucleotide polymorphism) array proved effective at confirming species, and provided useful information related to genetic diversity. As similar genomic resources become available for different crops, high-throughput molecular genotyping will offer an efficient and cost-effective method to screen germplasm collections worldwide, facilitating more effective use of these valuable resources by breeders and researchers. © 2015 John Wiley & Sons Ltd.

  8. Comparative efficacy of different fungicides against fusarium wilt of chickpea (cicer arietinum l.)

    International Nuclear Information System (INIS)

    Maitlo, S.A.

    2014-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris (Foc) is the most serious and widespread disease of chickpea, causing a 100% loss under favorable conditions. Fourteen fungicides were evaluated against wilt pathogen In vitro with five different concentrations ranging from 1-10000 ppm. Among these only Carbendazim and Thiophanate-methyl was found as the most effective at all used concentrations. Other fungicides like Aliette, Nativo, Hombre-excel and Dividend star were found to be moderately effective. Whereas, remaining fungicides were ineffective against the targeted pathogen. Generally, a positive co-relation was observed between increasing concentrations of the tested fungicides and inhibition of Foc. Based on In vitro results Carbendazim, Thiophanate-methyl, Aliette, Dividend-star, Hombre-excel, Score and Nativo were selected for pot and field experiments. The higher concentrations of the few fungicides completely inhibited the pathogen as well as found to be phytotoxic and suppressed the plant growth while lower concentrations promoted the growth of chickpea plants. On over all bases, the Carbendazim and Thiophanate-methyl, followed by Aliette and Nativo were more effective in reducing the impact of pathogen as well as enhancing the plant growth in greenhouse experiment. Under field conditions, all fungicides except Score remarkably decreased the disease development and subsequently increased the plant growth as well as grain yield as compared to untreated plants. (author)

  9. Genetic diversity in radish germplasm for morphological traits and seed storage proteins

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Siddiqui, S.U.; Masood, M.S.; Javaid, A.; Iqbal, M.; Sayal, O.U.

    2011-01-01

    Genetic variation of forty-nine local and exotic radish genotypes including two checks was studied for morphological traits and seed storage protein electrophoresis using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) markers. A high variation in germplasm for root shape, root length, root colour (internal and external), flesh texture and root type was observed. Among these genotypes, the genetic variation was apparent for most of the characters like plant biomass, root weight, leaf length, root length and root diameter that indicated the potential for crop improvement in these traits through simple selection. Exotic germplasm exhibited higher variation for plant biomass, root weight and root length which could be utilized through breeding programme. Cluster analysis on the basis of genetic diversity for seven quantitative traits resulted into four clusters. No clustering was found on the basis of origin. Low level of variance was observed for SDS-PAGE electrophoresis that suggested acquisition of more germplasm. On the basis of high yield and crispy root texture some genotypes (10076, 10362, 10429, 10658, 10662 and 10667) were identified for further testing under wide range of agro-ecological conditions. (author)

  10. Effect of Rhizobium and Phosphate Solubilizing Bacterial Inoculants on Symbiotic Traits, Nodule Leghemoglobin, and Yield of Chickpea Genotypes

    Directory of Open Access Journals (Sweden)

    G. S. Tagore

    2013-01-01

    Full Text Available A field experiment was carried out during the rabi season of 2004-05 to find out the effect of Rhizobium and phosphate solubilizing bacterial (PSB inoculants on symbiotic traits, nodule leghemoglobin, and yield of five elite genotypes of chickpea. Among the chickpea genotypes, IG-593 performed better in respect of symbiotic parameters including nodule number, nodule fresh weight, nodule dry weight, shoot dry weight, yield attributes and yield. Leghemoglobin content (2.55 mg g−1 of fresh nodule was also higher under IG-593. Among microbial inoculants, the Rhizobium + PSB was found most effective in terms of nodule number (27.66 nodules plant−1, nodule fresh weight (144.90 mg plant−1, nodule dry weight (74.30 mg plant−1, shoot dry weight (11.76 g plant−1, and leghemoglobin content (2.29 mg g−1 of fresh nodule and also showed its positive effect in enhancing all the yield attributing parameters, grain and straw yields.

  11. Genetic analysis of wild and cultivated germplasm of pigeonpea ...

    African Journals Online (AJOL)

    To compare the efficiency of the use of single versus multiple markers, the genetic diversity was quantified among 12 diverse pigeonpea germplasm comprised of eight wild and four cultivated using both random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers, and how well these two types ...

  12. Structural modelling and molecular dynamics of a multi-stress responsive WRKY TF-DNA complex towards elucidating its role in stress signalling mechanisms in chickpea.

    Science.gov (United States)

    Konda, Aravind Kumar; Farmer, Rohit; Soren, Khela Ram; P S, Shanmugavadivel; Setti, Aravind

    2017-07-28

    Chickpea is a premier food legume crop with high nutritional quality and attains prime importance in the current era of 795 million people being undernourished worldwide. Chickpea production encounters setbacks due to various stresses and understanding the role of key transcription factors (TFs) involved in multiple stresses becomes inevitable. We have recently identified a multi-stress responsive WRKY TF in chickpea. The present study was conducted to predict the structure of WRKY TF to identify the DNA-interacting residues and decipher DNA-protein interactions. Comparative modelling approach produced 3D model of the WRKY TF with good stereochemistry, local/global quality and further revealed W19, R20, K21, and Y22 motifs within a vicinity of 5 Å to the DNA amongst R18, G23, Q24, K25, Y36, Y37, R38 and K47 and these positions were equivalent to the 2LEX WRKY domain of Arabidopsis. Molecular simulations analysis of reference protein -PDB ID 2LEX, along with Car-WRKY TF modelled structure with the DNA coordinates derived from PDB ID 2LEX and docked using HADDOCK were executed. Root Mean Square (RMS) Deviation and RMS Fluctuation values yielded consistently stable trajectories over 50 ns simulation. Strengthening the obtained results, neither radius of gyration, distance and total energy showed any signs of DNA-WRKY complex falling apart nor any significant dissociation event over 50 ns run. Therefore, the study provides first insights into the structural properties of multi-stress responsive WRKY TF-DNA complex in chickpea, enabling genome wide identification of TF binding sites and thereby deciphers their gene regulatory networks.

  13. Characterization of a chickpea (Cicer arietinum L.) NAC family gene, CarNAC5, which is both developmentally- and stress-regulated.

    Science.gov (United States)

    Peng, Hui; Cheng, Hui-Ying; Yu, Xin-Wang; Shi, Qing-Hua; Zhang, Hua; Li, Jian-Gui; Ma, Hao

    2009-01-01

    It has been documented that the plant-specific NAC (for NAM, ATAF1,2 and CUC2) transcription factors play an important role in plant development and stress responses. In this study, a chickpea NAC gene CarNAC5 (for Cicer arietinum L. NAC gene 5) was isolated from a cDNA library from chickpea leaves treated by polyethylene glycol (PEG). CarNAC5, as a single/low copy gene, contained three exons and two introns within genomic DNA sequence and encoded a polypeptide with 291 amino acids. CarNAC5 protein had a conserved NAC domain in the N-terminus and showed high similarity to other NACs, especially ATAF subgroup members. The CarNAC5:GFP fusion protein was localized in the nucleus of onion epidermal cells. Furthermore, CarNAC5 protein activated the reporter genes LacZ and HIS3 in yeast. The transactivation activity was mapped to the C-terminal region. The transcripts of CarNAC5 appeared in many chickpea tissues including seedling leaves, stems, roots, flowers, seeds and pods, but mostly accumulated in flowers. Meanwhile, CarNAC5 was strongly expressed during seed maturation and in embryos of the early germinating seeds. It was also significantly induced by drought, heat, wounding, salicylic acid (SA), and indole-3-acetic acid (IAA) treatments. Our results suggest that CarNAC5 encodes a novel NAC-domain protein and acts as a transcriptional activator involved in plant developmental regulation and various stress responses.

  14. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set.

    Science.gov (United States)

    Pang, Jiayin; Turner, Neil C; Khan, Tanveer; Du, Yan-Lei; Xiong, Jun-Lan; Colmer, Timothy D; Devilla, Rosangela; Stefanova, Katia; Siddique, Kadambot H M

    2017-04-01

    Flower and pod production and seed set of chickpea (Cicer arietinum L.) are sensitive to drought stress. A 2-fold range in seed yield was found among a large number of chickpea genotypes grown at three dryland field sites in south-western Australia. Leaf water potential, photosynthetic characteristics, and reproductive development of two chickpea genotypes with contrasting yields in the field were compared when subjected to terminal drought in 106kg containers of soil in a glasshouse. The terminal drought imposed from early podding reduced biomass, reproductive growth, harvest index, and seed yield of both genotypes. Terminal drought at least doubled the percentage of flower abortion, pod abscission, and number of empty pods. Pollen viability and germination decreased when the fraction of transpirable soil water (FTSW) decreased below 0.18 (82% of the plant-available soil water had been transpired); however, at least one pollen tube in each flower reached the ovary. The young pods which developed from flowers produced when the FTSW was 0.50 had viable embryos, but contained higher abscisic acid (ABA) concentrations than those of the well-watered plants; all pods ultimately aborted in the drought treatment. Cessation of seed set at the same soil water content at which stomata began to close and ABA increased strongly suggested a role for ABA signalling in the failure to set seed either directly through abscission of developing pods or seeds or indirectly through the reduction of photosynthesis and assimilate supply to the seeds. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Role of indole-3-butyric acid or/and putrescine in improving productivity of chickpea (Cicer arientinum L.) plants.

    Science.gov (United States)

    Amin, A A; Gharib, F A; Abouziena, H F; Dawood, Mona G

    2013-12-15

    The response of chickpea (Cicer arientinum L. cv. Giza 3) to treatment with two plant growth regulators putrescine (Put) and Indole-3-butyric acid (IBA) at 25, 50 and 100 mg L(-1) applied either alone or in combinations was studied. Spraying of Put and IBA either individually or in combination significantly increased the plant height, number and dry weight of branches, leaves and pods/plant and leaf area/plant at the two growth stages. Total photosynthetic pigments in fresh leaves were significantly promoted as a result of application of Put or IBA. Generally, application of Put and/or IBA at 100 mg L(-1) produced the highest numbers of pods which resulted in substantially the highest seed yield. Put and IBA increased the seed yield by 21.3 and 19.2%, respectively, while the combination of Put at 100 mgL(-1) and IBA at 50 mgL(-1) increased it by 27.4%. Greatest increases in straw and biological yield/fed (38.3 and 30.4%, respectively) were noted with the combination treatment of IBA 100 mg L(-1) plus Put at 100 mg L(-1). Put and IBA significantly increased the nitrogen, phosphorus, potassium, total soluble sugars and total free amino acids in chickpea seeds over control, but the effects were less marked than those of their combination. This response was greater following treatment with IBA than with Put. It could be conclude that spraying Put or/and IBA on chickpea plants have promotion effects on the seeds yield criteria which have promising potential as sources of low-cost protein and minerals for possible use as food/feed supplements.

  16. Comparison of antioxidant enzyme activities and DNA damage in chickpea (Cicer arietinum L.) genotypes exposed to vanadium.

    Science.gov (United States)

    Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Rizwan, Muhammad Shahid; Arif, Muhammad Saleem; Yousaf, Balal; Ashraf, Muhammad; Shuanglian, Xiong; Rizwan, Muhammad; Mehmood, Sajid; Tu, Shuxin

    2016-10-01

    The present study was done to elucidate the effects of vanadium (V) on photosynthetic pigments, membrane damage, antioxidant enzymes, protein, and deoxyribonucleic acid (DNA) integrity in the following chickpea genotypes: C-44 (tolerant) and Balkasar (sensitive). Changes in these parameters were strikingly dependent on levels of V, at 60 and 120 mg V L(-1) induced DNA damage in Balkasar only, while photosynthetic pigments and protein were decreased from 15 to 120 mg V L(-1) and membrane was also damaged. It was shown that photosynthetic pigments and protein production declined from 15 to 120 mg V L(-1) and the membrane was also damaged, while DNA damage was not observed at any level of V stress in C-44. Moreover, the antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were increased in both genotypes of chickpea against V stress; however, more activities were observed in C-44 than Balkasar. The results suggest that DNA damage in sensitive genotypes can be triggered due to exposure of higher vanadium.

  17. Identification of resistant sources in chickpea against fusarium wilt

    International Nuclear Information System (INIS)

    Ahmad, M.A.; Ayub, N.; Akram, A.

    2010-01-01

    Wilt caused by Fusarium oxysporum Schlechtend.Fr. f. sp. ciceris is a devastating disease of chickpea in Pakistan. In the present study 321 genotypes from different sources were evaluated under controlled condition to identify genetic sources of resistance against this disease at seedling and reproductive stage. Disease reaction at two stages revealed considerable variation among the genotypes. At seedling stage disease incidence varied from 0 to 29.3% whereas at reproductive stage ranged from 0 to 57%. At seedling stage 173 genotypes were resistant, 54 were tolerant and 94 were susceptible, whereas at reproductive stage, 102 genotypes were resistant, 36 were tolerant and 183 were susceptible. Eighty two genotypes showed steady resistance at both stages. These genotypes may be exploited for the development of resistant cultivars against wilt. (author

  18. Nuclear phosphoproteome of developing chickpea seedlings (Cicer arietinum L.) and protein-kinase interaction network.

    Science.gov (United States)

    Kumar, Rajiv; Kumar, Amit; Subba, Pratigya; Gayali, Saurabh; Barua, Pragya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-06-13

    Nucleus, the control centre of eukaryotic cell, houses most of the genetic machineries required for gene expression and their regulation. Post translational modifications of proteins, particularly phosphorylation control a wide variety of cellular processes but its functional connectivity, in plants, is still elusive. This study profiled the nuclear phosphoproteome of a grain legume, chickpea, to gain better understanding of such event. Intact nuclei were isolated from 3-week-old seedlings using two independent methods, and nuclear proteins were resolved by 2-DE. In a separate set of experiments, phosphoproteins were enriched using IMAC method and resolved by 1-DE. The separated proteins were stained with phosphospecific Pro-Q Diamond stain. Proteomic analyses led to the identification of 107 putative phosphoproteins, of which 86 were non-redundant. Multiple sites of phosphorylation were predicted on several key elements, which included both regulatory and functional proteins. The analysis revealed an array of phosphoproteins, presumably involved in a variety of cellular functions, viz., protein folding (24%), signalling and gene regulation (22%), DNA replication, repair and modification (16%), and metabolism (13%), among others. These results represent the first nucleus-specific phosphoproteome map of a non-model legume, which would provide insights into the possible function of protein phosphorylation in plants. Chickpea is grown over 10 million hectares of land worldwide, and global production hovers around 8.5 million metric tons annually. Despite its nutritional merits, it is often referred to as 'orphan' legume and has remained outside the realm of large-scale functional genomics studies. While current chickpea genome initiative has primarily focused on sequence information and functional annotation, proteomics analyses are limited. It is thus important to study the proteome of the cell organelle particularly the nucleus, which harbors most of the genetic

  19. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    Wani, A.A.; Anis, M.

    2001-01-01

    In pulses especially in chickpea (Cicer arietinum L.), genetic variability has been exhausted due to natural selection and hence conventional breeding methods are not very fruitful. Mutation techniques are the best methods to enlarge the genetically conditioned variability of a species within a short time and have played a significant role in the development of many crop varieties. Investigations on the effects of ionizing radiations and chemical mutagens in induction of macro-mutations have received much attention owing to their utmost importance in plant breeding. The present study reports a bold seeded mutant in chickpea, the most dominating pulse crop on the Indian subcontinent. Fresh seeds of chickpea variety 'Pusa-212' were procured from IARI, New Delhi and treated with different doses/concentrations of gamma rays ( 60 Co source at NBRI, Lucknow) and ethyl methanesulphonate (EMS), individually as well as in combination, to raise the M1 generation. Seeds of M 1 plants were sown to raise M2 plant progenies. A bold seeded mutant was isolated from 400 Gy gamma ray treatments. The mutant was confirmed as true bred, all the mutant seeds gave rise to morphologically similar plants in M 3 , which were quite distinct from the control. The bold seeded mutant showed 'gigas' characteristics and vigorous growth. The plant remained initially straight but later on attained a trailing habit due to heavy secondary branching. The leaves, petioles, flowers, pods and seeds were almost double that of the parent variety, in size. The flowering occurred 10 days later than the parent and maturity was also delayed accordingly. Observations were recorded on various quantitative traits. Plant height and number of primary branches showed a significant improvement over the parent. It is interesting to note that the number of pods and number of seeds per pod significantly decreased. However, the hundred seed weight (31.73±0.59g) in the mutant plants was more than double in the parent

  20. Bird-resistant pollination bags for sorghum breeding and germplasm maintenance

    Science.gov (United States)

    Bird damage is a problem in sorghum breeding and germplasm maintenance operations. Paper pollination bags are damaged by rain and provide minimal deterrent to birds. To overcome these limitations we fabricated pollination bags from spun polyethylene fiber sheeting. Seed loss by bird damage was elimi...

  1. Chickpea WRKY70 Regulates the Expression of a Homeodomain-Leucine Zipper (HD-Zip) I Transcription Factor CaHDZ12, which Confers Abiotic Stress Tolerance in Transgenic Tobacco and Chickpea.

    Science.gov (United States)

    Sen, Senjuti; Chakraborty, Joydeep; Ghosh, Prithwi; Basu, Debabrata; Das, Sampa

    2017-11-01

    Drought and salinity are the two major environmental constraints that severely affect global agricultural productivity. Plant-specific HD-Zip transcription factors are involved in plant growth, development and stress responses. In the present study, we explored the functional characteristics and regulation of a novel HD-Zip (I) gene from chickpea, CaHDZ12, in response to water-deficit and salt-stress conditions. Transgenic tobacco lines over-expressing CaHDZ12 exhibited improved tolerance to osmotic stresses and increased sensitivity to abscisic acid (ABA). Physiological compatibility of transgenic lines was found to be more robust compared to the wild-type plants under drought and salinity stress. Additionally, expression of several stress-responsive genes was significantly induced in CaHDZ12 transgenic plants. On the other hand, silencing of CaHDZ12 in chickpea resulted in increased sensitivity to salt and drought stresses. Analysis of different promoter deletion mutants identified CaWRKY70 transcription factor as a transcriptional regulator of CaHDZ12 expression. In vivo and in vitro interaction studies detected an association between CaWRKY70 and CaHDZ12 promoter during stress responses. Epigenetic modifications underlying histone acetylation at the CaHDZ12 promoter region play a significant role in stress-induced activation of this gene. Collectively, our study describes a crucial and unique mechanistic link between two distinct transcription factors in regulating plant adaptive stress response. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Accumulation of heavy metals by chickpea grown in fly Ash treated soil: effect on antioxidants

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vimal Chandra; Singh, Jay Shankar [Department of Environmental Science, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, Uttar Pradesh (India); Kumar, Akhilesh; Tewari, D.D. [Department of Botany, Maharani Lal Kunwari Post Graduate College, Balrampur, Uttar Pradesh (India)

    2010-12-15

    Chickpea grown in fly ash (FA) treated soil (25, 50, and 100% FA) was used to evaluate the effect of FA on antioxidants, metal concentration (Fe, Zn, Cu, Cr, and Cd), photosynthetic pigments (chlorophyll a (chl-a), chlorophyll b (chl-b), total chlorophyll (total chl), and carotenoids), growth and yield performance. All antioxidants in roots, shoots and leaves of chickpea increase with increasing FA doses to combat FA stress. The activities of antioxidants were more in the root tissues to cope with stress induced in the plants as compared to shoot and leaf. Concentration of metals was found maximum in roots than the shoots and seeds. The highest concentration of Fe and lowest level of Cd were recorded in all treatments of FA for different parts of the plant. The treated crop showed reduced level of chlorophyll but enhanced level of carotenoids and protein. However, root length, number of nodules and biomass in 25 and 50% FA treatments did not differ significantly in comparison to respective control plants. These results suggest that heavy metals of FA causes oxidative stress in this crop and the antioxidant enzymes could help a pivotal role against oxidative injury. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.

    Science.gov (United States)

    Subba, Pratigya; Barua, Pragya; Kumar, Rajiv; Datta, Asis; Soni, Kamlesh Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-11-01

    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.

  4. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  5. Minimum number and best combinations of harvests to evaluate accessions of tomato plants from germplasm banks

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Abreu

    2006-01-01

    Full Text Available This study presents the minimum number and the best combination of tomato harvests needed to compare tomato accessions from germplasm banks. Number and weight of fruit in tomato plants are important as auxiliary traits in the evaluation of germplasm banks and should be studied simultaneously with other desirable characteristics such as pest and disease resistance, improved flavor and early production. Brazilian tomato breeding programs should consider not only the number of fruit but also fruit size because Brazilian consumers value fruit that are homogeneous, large and heavy. Our experiment was a randomized block design with three replicates of 32 tomato accessions from the Vegetable Germplasm Bank (Banco de Germoplasma de Hortaliças at the Federal University of Viçosa, Minas Gerais, Brazil plus two control cultivars (Debora Plus and Santa Clara. Nine harvests were evaluated for four production-related traits. The results indicate that six successive harvests are sufficient to compare tomato genotypes and germplasm bank accessions. Evaluation of genotypes according to the number of fruit requires analysis from the second to the seventh harvest. Evaluation of fruit weight by genotype requires analysis from the fourth to the ninth harvest. Evaluation of both number and weight of fruit require analysis from the second to the ninth harvest.

  6. Characters analysis of the Macadamia cv. Ikaika (333) germplasm ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... germplasm resource. Liqing Du, Hui Zeng*, ... needed by human body, but is rich in mineral and vitamin as well. .... It was suggested that climate and orchard management are the main .... than that in South Africa at their 5th, 6th and 7th year respectively, but .... In Chan HT (Ed.), Handbook of tropical foods .

  7. The RNA-Seq based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.

    Science.gov (United States)

    Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K

    2018-04-10

    Chickpea is one of the world's largest cultivated food legume and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across the plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivar, ICC 4958 has been used to generate RNA-Seq data from 27 samples at five major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after QC were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. This article is protected by copyright. All rights reserved.

  8. Agronomic characteristic of a dwarf germplasm sunflower line

    OpenAIRE

    Vassilevska-Ivanova Roumiana; Tcekova Zoja

    2005-01-01

    A new sunflower (Helianthus annuus L) dwarf line, HA-ARG-1, has been developed after interspecific hybridization between cultivated sunflower H. annuus and wild annual silver-leaf sunflower H. argophyllus. Plants were selected for reduced height and multiple branching characteristics. The agronomic, morphologic and oil content characteristics of the line were analyzed. Isolation of similar dwarfed lines illustrates the importance of using the wild sunflower germplasms in the development of sp...

  9. Use of gamma-rays mutagenesis in obtaining chickpea (Cicer arietinum L.) forms resistant to unfavorable environmental factors

    International Nuclear Information System (INIS)

    Cliciuc, D.

    2013-01-01

    Following experimental use of γ irradiation on chickpea, mutant forms with a series of morpho-physiological treats were obtained. During the study period, these mutants have been subjected to several stress factors like disease, drought, storm wind in which they presented a different resistance. Some of these mutants showed an increased sensitivity in certain environmental conditions and others have presented an increased resistance.

  10. Tissue specific expression of potent insecticidal, Allium sativum leaf agglutinin (ASAL) in important pulse crop, chickpea (Cicer arietinum L.) to resist the phloem feeding Aphis craccivora.

    Science.gov (United States)

    Chakraborti, Dipankar; Sarkar, Anindya; Mondal, Hossain Ali; Das, Sampa

    2009-08-01

    The phloem sap-sucking hemipteran insect, Aphis craccivora, commonly known as cowpea aphid, cause major yield loss of important food legume crop chickpea. Among different plant lectins Allium sativum leaf agglutinin (ASAL), a mannose binding lectin was found to be potent antifeedant for sap sucking insect A. craccivora. Present study describes expression of ASAL in chickpea through Agrobacterium-mediated transformation of "single cotyledon with half embryo" explant. ASAL was expressed under the control of CaMV35S promoter for constitutive expression and phloem specific rolC promoter for specifically targeting the toxin at feeding site, using pCAMBIA2301 vector containing plant selection marker nptII. Southern blot analysis demonstrated the integration and copy number of chimeric ASAL gene in chickpea and its inheritance in T(1) and T(2) progeny plants. Expression of ASAL in T(0) and T(1) plants was confirmed through northern and western blot analysis. The segregation pattern of ASAL transgene was observed in T(1) progenies, which followed the 3:1 Mendelian ratio. Enzyme linked immunosorbant assay (ELISA) determined the level of ASAL expression in different transgenic lines in the range of 0.08-0.38% of total soluble protein. The phloem tissue specific expression of ASAL gene driven by rolC promoter has been monitored by immunolocalization analysis of mature stem sections. Survival and fecundity of A. craccivora decreased to 11-26% and 22-42%, respectively when in planta bioassay conducted on T(1) plants compared to untransformed control plant which showed 85% survival. Thus, through unique approach of phloem specific expression of novel insecticidal lectin (ASAL), aphid resistance has been successfully achieved in chickpea.

  11. Evaluation of potato germplasm (Population A & B) for resistance to ...

    African Journals Online (AJOL)

    Treatments consisted of germplasm materials introduced from International Potato Centre (CIP) headquarters in Lima, Peru from two populations arranged in a completely randomised block design with three replications. At Loreto, late blight was more severe during the long rains than in the short rains while at Kabete late ...

  12. Genetic structure and diversity of the Neem Germplasm Bank from ...

    African Journals Online (AJOL)

    Particular

    2013-05-15

    May 15, 2013 ... ... fragment length polymorphism; AMOVA, molecular variance analysis. ... are technically simple, suitable for large-scale germplasm ... Brazil, our study aims to evaluate the genetic structure and genetic ... voltage of 100 V for 90 min. Gel was .... which does not justify an extra effort in labor (Bekessy et.

  13. An empirical assessment of the effects of the 1994 In Trust Agreements on IRRI Germplasm Acquisition and Distribution

    Directory of Open Access Journals (Sweden)

    Elisabetta Gotor

    2009-12-01

    Full Text Available The objective of this paper is to assess the possible influence of the 1994 In Trust Agreements (ITAs on acquisition and distribution of germplasm held by the International Research Rice Institute (IRRI genebank. The agreements, legally affirmed the ‘public good’ status of the collections that were placed ‘In Trust’ for the benefit of the world community under agreements with FAO. They initiated a formal system of multilateral access to CGIAR-held ex situ genetic resources. The hypothesis that the consequences of the ITAs lead to an enhancement of CGIAR germplasm utilization is tested here using a basic conceptual framework to infer on factors determining the distribution of germplasm. Subsequently a Bayesian empirical model is applied to IRRI accessions distribution’s time-series to provide formal evidence to the hypothesis. Results show that there is a discernible ‘change’ point that would support a significant drop in germplasm distribution followed by a new growing trend around the establishment of the ITAs. This had followed a period beginning around 1989 and leading up to the establishment of the ITAs of a large number of requests for restoration of germplasm back to countries of origin and a reduction in acquisitions. As a result the number of accessions held by IRRI reached a low point around 1994. The number of accessions might not have been built back up without the establishment of a stable policy environment that was provided by the ITAs.

  14. Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes.

    Science.gov (United States)

    Kotula, Lukasz; Khan, Hammad A; Quealy, John; Turner, Neil C; Vadez, Vincent; Siddique, Kadambot H M; Clode, Peta L; Colmer, Timothy D

    2015-08-01

    The reproductive phase in chickpea (Cicer arietinum L.) is affected by salinity, but little is known about the underlying cause. We investigated whether high concentrations of Na(+) and Cl(-) in the reproductive structures influence reproductive processes. Chickpea genotypes contrasting in tolerance were subjected to 0, 35 or 50 mm NaCl applied to soil in pots. Flower production and abortion, pod number, percentage of empty pods, seed number and size were evaluated. The concentrations of Na(+) , K(+) and Cl(-) were measured in various plant tissues and, using X-ray microanalysis, in specific cells of developing reproductive structures. Genotypic variation in reproductive success measured as seed yield in saline conditions was associated with better maintenance of flower production and higher numbers of filled pods (and thus seed number), whereas seed size decreased in all genotypes. Despite the variation in reproductive success, the accumulation of Na(+) and Cl(-) in the early reproductive tissues of developing pods did not differ between a tolerant (Genesis836) and a sensitive (Rupali) genotype. Similarly, salinity tolerance was not associated with the accumulation of salt ions in leaves at the time of reproduction or in seeds at maturity. © 2015 John Wiley & Sons Ltd.

  15. Characterization of a Syrian Chickpea chlorotic stunt virus strain and production of polyclonal antibodies for its detection

    Directory of Open Access Journals (Sweden)

    Yaseen ALNAASAN

    2013-05-01

    Full Text Available Reverse transcription-polymerase chain reaction analysis with two primer sets of luteoviruses was used to characterize an isolate of Chickpea chlorotic stunt virus (CpCSv, genus Polerovirus, family Luteoviridae (SC402-08 collected from Lattakia, Syria, during the 2007‒2008 chickpea growing season. Sequence analysis revealed that the coat protein gene of the isolate shared nucleotide sequence identities ranging from 97 to 98% with the CpCSv isolates from Egypt, morocco and Syria. The capsid protein was separated as a protein of approximately 20 kDa in sodium dodecyl sulphate polyacrylamide gel electrophoresis, and was visually detected by its reaction with CpCSV monoclonal antibody in Western blot. SC402-08 isolate of CpCSV was purified from faba bean-infected plants, and yielded 112–182 μg of purified virions kg-1 of infected tissue. The purified preparation was injected into a white rabbit, and an antiserum was obtained and used to detect CpCSv in infected tissues by tissue-blot immunoassay. The antiserum obtained was able to detect CpCSv by the immunoassay up to a dilution of 1:1,024,000.

  16. Effect of drought stress and subsequent recovery on protein, carbohydrate contents, catalase and peroxidase activities in three chickpea (Cicer arietinum) cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2011-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effects of drought stress and subsequent recovery on protein, carbohydrate content, catalase (CAT), and peroxidase (POX) activities in three varieties of chickpea (drought

  17. Karzai pääses raketirünnakust eluga / Hendrik Vosman

    Index Scriptorium Estoniae

    Vosman, Hendrik

    2008-01-01

    Afganistani pealinnas Kabulis toimunud sõjaväeparaadile Talibani korraldatud raketirünnakus hukkus kolm inimest, president Hamid Karzai pääses vigastusteta. Kabulis viibinud Euroopa Parlamendi saadiku Katrin Saksa arvamus

  18. Gene expression and yeast two-hybrid studies of transcription factors mediating drought stress response in root tissues of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomic assisted breeding in chickpea has been effective in providing a yield advantage of up to 24 %, thus having a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR was used to study the differential gene expression of selected TFs, identified from large-scale gene expression analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant, ICC 1882 (sensitive, JG 11 (elite and JG 11+ (introgression line were used for the study. Subsequently, a candidate single repeat MYB gene (1R-MYB that was remarkably induced in the drought tolerant genotypes under drought stress was cloned and subjected to Y2H analysis by screening a root cDNA library. The protein-protein interaction study identified three interacting peptides, a galactinol-sucrose galactosyltransferase 2, a CBL (Calcineurin B-like-interacting serine/threonine-protein kinase 25 and an ABA responsive 17-like, which were confirmed by the co-transformation of candidate plasmids in yeast. These findings provide preliminary insights into the ability of 1R-MYB TF to co-regulate drought tolerance mechanism in chickpea roots.

  19. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  20. Modification of whole flours of navy bean, pinto bean, black bean and chickpea by steam jet cooking and drum drying

    Science.gov (United States)

    Whole bean flours of navy bean, pinto bean, black bean and chickpea were processed by excess steam jet cooking, drum drying, and milling to a state resembling the raw flours. Analysis of the structure and size of the particles, color, solubility and pasting characteristics, dietary fiber, and protei...

  1. Characterization of Carambola (Averrhoa carambola L. Plant Collection of Cibinong Plant Germplasm Garden Based on Phenotypic and Genetic Characters

    Directory of Open Access Journals (Sweden)

    Dody Priadi

    2016-04-01

    Full Text Available Indonesia as a rich biodiversity country has many superior fruit plant germplasms such as sweet star fruit or carambola (Averrhoa carambola L.. Some varieties of carambola which collected at the Germplasm Garden of Research Center for Biotechnology-LIPI have been used for parent trees of fruit plant production. Therefore, they have to be characterized both phenotypically and genetically. The objective of the study was to analyze the relationship between eight varieties of carambola i.e. Malaysia, Penang, Rawasari, Bangkok, Sembiring, Dewabaru, Demak and Dewimurni at the germplasm garden based on phenotypic and genetic characters. Phenotypic characters were observed directly in the field, whereas genetic characters were observed with RAPD markers using 10 primers. Phylogenetic analysis was done using NT-SYS software showed that there were three clusters of carambola varieties. Meanwhile, Malaysia and Penang varieties have closed relationships (96% compared with the other varieties. The result of the study would be dedicated to updating and completing the existing fruit plant collection database of Plants Germplasm Garden. 

  2. Effectiveness of FitoMas-E in the cultivation of chickpea under two soil moisture levels

    Directory of Open Access Journals (Sweden)

    Yanitza Meriño Hernández

    2018-01-01

    Full Text Available To evaluate the effect of FitoMas-E on the performance of the chickpea, in conditions of drought stress, was the objective of this investigation. An experiment was conducted in the Intensive Garden "Río de Guisa" in the municipality of Guisa during the period from November to February 2014. Four treatments were applied, distributed in a randomized block design with three repetitions, on a "Pardo mullido grisaceo" soil, comparing the application of FitoMas-E under two soil moisture regimes, with and without water stress. The yield of grain and its components were evaluated at the time of harvest maturity, to analyze the responses of these variables to the treatments applied. An analysis of variance was performed using the statistical package STASTISTICA version 8.0 for Windows and the means of the treatments were compared using the Tukey Multiple Range test. The variables that showed a greater response to the treatments imposed were the number of legumes per plant, number of seeds per plant, the mass of 100 seeds and the yield of grain, which ranged between 0.9 and 0.93 t ha-1 for the treatments 2 and 4 respectively. The results obtained in this research showed that the chickpea crop achieved the best productive indicators when the plants were under water stress conditions and received the application of FitoMas-E.

  3. A new set of ESTs from chickpea (Cicer arietinum L. embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Directory of Open Access Journals (Sweden)

    Shefali Gupta

    Full Text Available Considering the economic importance of chickpea (C. arietinum L. seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  4. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Science.gov (United States)

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  5. Updates to the Cool Season Food Legume Genome Database: Resources for pea, lentil, faba bean and chickpea genetics, genomics and breeding

    Science.gov (United States)

    The Cool Season Food Legume Genome database (CSFL, www.coolseasonfoodlegume.org) is an online resource for genomics, genetics, and breeding research for chickpea, lentil,pea, and faba bean. The user-friendly and curated website allows for all publicly available map,marker,trait, gene,transcript, ger...

  6. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents.

    Directory of Open Access Journals (Sweden)

    Luciano Rogério Braatz de Andrade

    Full Text Available A few breeding companies dominate the maize (Zea mays L. hybrid market in Brazil: Monsanto® (35%, DuPont Pioneer® (30%, Dow Agrosciences® (15%, Syngenta® (10% and Helix Sementes (4%. Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs, using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic, contributed to the development of the commercial Brazilian germplasms.

  7. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents.

    Science.gov (United States)

    Andrade, Luciano Rogério Braatz de; Fritsche Neto, Roberto; Granato, Ítalo Stefanine Correia; Sant'Ana, Gustavo César; Morais, Pedro Patric Pinho; Borém, Aluízio

    2016-01-01

    A few breeding companies dominate the maize (Zea mays L.) hybrid market in Brazil: Monsanto® (35%), DuPont Pioneer® (30%), Dow Agrosciences® (15%), Syngenta® (10%) and Helix Sementes (4%). Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM) Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs), using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic), contributed to the development of the commercial Brazilian germplasms.

  8. Genetic Vulnerability and the Relationship of Commercial Germplasms of Maize in Brazil with the Nested Association Mapping Parents

    Science.gov (United States)

    Fritsche Neto, Roberto; Granato, Ítalo Stefanine Correia; Sant’Ana, Gustavo César; Morais, Pedro Patric Pinho; Borém, Aluízio

    2016-01-01

    A few breeding companies dominate the maize (Zea mays L.) hybrid market in Brazil: Monsanto® (35%), DuPont Pioneer® (30%), Dow Agrosciences® (15%), Syngenta® (10%) and Helix Sementes (4%). Therefore, it is important to monitor the genetic diversity in commercial germplasms as breeding practices, registration and marketing of new cultivars can lead to a significant reduction of the genetic diversity. Reduced genetic variation may lead to crop vulnerabilities, food insecurity and limited genetic gains following selection. The aim of this study was to evaluate the genetic vulnerability risk by examining the relationship between the commercial Brazilian maize germplasms and the Nested Association Mapping (NAM) Parents. For this purpose, we used the commercial hybrids with the largest market share in Brazil and the NAM parents. The hybrids were genotyped for 768 single nucleotide polymorphisms (SNPs), using the Illumina Goldengate® platform. The NAM parent genomic data, comprising 1,536 SNPs for each line, were obtained from the Panzea data bank. The population structure, genetic diversity and the correlation between allele frequencies were analyzed. Based on the estimated effective population size and genetic variability, it was found that there is a low risk of genetic vulnerability in the commercial Brazilian maize germplasms. However, the genetic diversity is lower than those found in the NAM parents. Furthermore, the Brazilian germplasms presented no close relations with most NAM parents, except B73. This indicates that B73, or its heterotic group (Iowa Stiff Stalk Synthetic), contributed to the development of the commercial Brazilian germplasms. PMID:27780247

  9. Evaluating citrus germplasm for huanglongbing (HLB) resistance: USDA-ARS Inoculation Program

    Science.gov (United States)

    The Asian citrus psyllid (ACP), Diaphorina citri, is an important pest because it vectors bacteria responsible for a serious disease of citrus known as huanglongbing (citrus greening disease). USDA-ARS researchers recently established a program for screening citrus germplasm for resistance to the di...

  10. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    Science.gov (United States)

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  11. Buffel grass morphoagronomic characterization from cenchrus germplasm active bank.

    OpenAIRE

    BRUNO, L. R. G. P.; ANTONIO, R. P.; ASSIS, J. G. de A.; MOREIRA, J. N.; LIRA, I. C. de S. A.

    2017-01-01

    his study aimed to characterize buffel grass accessions of the Cenchrus Germplasm Active Bank (CGAB) from Embrapa Semi - Arid in a morphoagronomic way, checking the descriptors variability and efficiency in accessions on two consecutive cuts. Twenty - five accessions and five buffel grass cultivars were used in randomized complete block design with three replications. Evaluations were conducted after two consecutive cuts, each evaluation performed 90 days after each ...

  12. Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation

    NARCIS (Netherlands)

    Maesen, van der L.J.G.

    1972-01-01

    1. The history of the chickpea or gram, Cicer arietinum L., has been described from Homer's time and the earliest finds, 5450 B.C. in Hacilar, Turkey, up to the present day. The crop was first domesticated in Asia Minor and was introduced in India

  13. Discussion of submitted posters for Section 2.3 (Rangeland Germplasm Resources)

    Science.gov (United States)

    As part of the IX International Rangeland Congress held in Rosario, Argentina, a total of 70 posters from 17 countries were submitted to Section 2.3 (Rangeland Germplasm Resources). These posters documented research conducted in five major regions of the world: South America, North America, Africa...

  14. Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Sharma, Mamta; Nagavardhini, Avuthu; Thudi, Mahendar; Ghosh, Raju; Pande, Suresh; Varshney, Rajeev K

    2014-06-10

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India. We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected. The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful

  15. Genetic variability in common wheat germplasm based on coefficients of parentage

    Directory of Open Access Journals (Sweden)

    Fernanda Bered

    2002-01-01

    Full Text Available The characterization of genetic variability and an estimate of the genetic relationship among varieties are essential to any breeding program, because artificial crosses among less similar parents allow a larger segregation and the combination of different favorable alleles. Genetic variability can be evaluated in different ways, including the Coefficient of Parentage (COP, which estimates the probability of two alleles in two different individuals being identical by descent. In this study, we evaluated the degree of genetic relationship among 53 wheat genotypes, and identified the ancestor genotypes which contributed the most to the current wheat germplasm, as a prediction of the width of the genetic base of this cereal. The results revealed a mean COP of 0.07 and the formation of 22 similarity groups. The ancestor genotypes Ciano 67 and Mentana were those which contributed the most to the current wheat germplasm. According to the COP analyses, the genetic base of wheat rests on a small number of ancestral genotypes.

  16. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Science.gov (United States)

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  17. Potential of recycling gamma-irradiated sewage sludge for use as a fertilizer: a study on chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    Pandya, G.A.; Sachidanand, S.; Modi, V.V.

    1989-01-01

    The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses. (author)

  18. Capability of multiple selection criteria to evaluate contrasting spring wheat germplasms under arid conditions

    International Nuclear Information System (INIS)

    Al-Suhaibani, N. A.; SALAH, E.; El-Hendawy, S. E.; Al-Gaadi, K.; Rehman, S. U.

    2015-01-01

    Selection criteria that would evaluate a large number of germplasm in a rapid and non-destructive manner would be considered advantageous in plant breeding programs. Trade-off between traditional and non-destructive screening criteria in evaluating 90 wheat accessions under water shortage was tested using multivariate statistical techniques. Only three irrigations during the growing cycle of germplasm were applied with the amount of water totalling 2550 m /sup 3/ ha /sup -1/. Sequential path analysis identified one traditional trait (grain weight per plant) and two non-destructive traits (leaf area index and stomatal conductance) as important first-order traits that influenced final grain yield. The three traits, taken together, explained 96.8 percentage of the total variation in grain yield. Total dry weight per plant, green leaf area per plant, harvest index, grain number per plant, leaf water content and canopy temperature were identified as important second-order traits that influenced grain yield. Although canopy temperature was ranked as a second-order trait, it explained 64.4 percentage of the total variation in stomatal conductance. Approximately 78.0 percentage of the total variation in grain weight or leaf area index was explained by the leaf water content (66.2 percentage) and total dry weight (11.5 percentage). The 90 examined spring wheat germplasms were grouped into five clusters based on all agro-physiological traits using the centroid linkage method. The tested wheat germplasm that produce high grain yield under water shortage were characterised by good performance of certain rapid, easy and non-destructive physiological traits such as high leaf area index, high stomatal conductance and low canopy temperature. Therefore, these three traits could be used in combination as quick and easy screening criteria to select suitable genotypes for water-limiting conditions. (author)

  19. Registration of Mp718 and Mp719 germplasm lines of maize

    Science.gov (United States)

    Maize (Zea mays L.) germplasm lines Mp718 (Reg. No. GP-xxxx, PI 662045) and Mp719 (Reg. No. GP-xxxx, PI 662046) were developed and released by USDA-ARS in cooperation with the Mississippi Agricultural and Forestry Experiment Station, Mississippi State, Mississippi, as sources of resistance to aflat...

  20. Available and unavailable carbohydrate content of black gram(Vigna Mungo) and chick-pea (Cicer Arietinum) as affected by soaking and cooking processes

    International Nuclear Information System (INIS)

    Zia-ur-Rehman; Rashid, M.; Salariya, A.M.

    2003-01-01

    The effects of soaking (Tap water, sodium bicarbonate solution) and cooking in tap water were investigated on available and unavailable carbohydrate contents and starch digestibility of black grams and chick-peas. Available carbohydrates including total soluble sugars, reducing sugars, non-reducing sugars and starch contents of these two legumes decreased to various extents as a result of soaking and cooking. From 3.43 - 25.63% total soluble sugars and 4.26 - 22.70% starch contents were lost on soaking black grams and chick-peas in tap water and sodium bicarbonate solution. Maximum amounts of total soluble sugars (28.43 - 59.64%) and starch contents (29.93 - 67.40%) were lost on cooking the water and alkali soaked legumes. However, these losses were comparatively less in case of water soaking process. Soaking and cooking processes also brought about some changes in the profile of unavailable carbohydrates of black grams and chick-peas. Soaking in sodium bicarbonate solution led to an appreciable increase of hemicellulose (42.50 - 54.31%) and NDF (28.69 - 30.68%) but not in legumes soaked in tap water. However, cooking process caused reduction in NDF (19.25 - 41.04%), ADF (5.48 - 25.31%), cellulose (12.88 - 28.42%) and hemicellulose (31.86 - 59.37%). Lignin contents of these legumes increased to some extents on cooking whereas it remained unchanged as a result of soaking. Starch digestibility of black grams and chick peas was markedly improved after cooking. However, no appreciable improvement in starch digestibility was observed after soaking these legumes in tap water or alkaline solution.(author)

  1. Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer arietinum L.)

    OpenAIRE

    Kun Cheng; Hua Gao; Rong-Rong Wang; Yang Liu; Yu-Xue Hou; Xiao-Hong Liu; Kun Liu; Wei Wang

    2017-01-01

    The objective of this research is to implement extraction and degradation methods for the obtainment of 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl] soyasapogenol B (chickpeasaponin B1) from chickpea. The effects of microwave-assisted extraction (MAE) processing parameters—such as ethanol concentration, solvent/solid ratio, extraction temperature, microwave irradiation power, and irradiation time—were evaluated. Using 1g of material with 8 mL of 70% aqueous ethanol and an extraction t...

  2. Germplasm Management in the Post-genomics Era-a case study with lettuce

    Science.gov (United States)

    High-throughput genotyping platforms and next-generation sequencing technologies revolutionized our ways in germplasm characterization. In collaboration with UC Davis Genome Center, we completed a project of genotyping the entire cultivated lettuce (Lactuca sativa L.) collection of 1,066 accessions ...

  3. BUFFEL GRASS MORPHOAGRONOMIC CHARACTERIZATION FROM Cenchrus GERMPLASM ACTIVE BANK

    OpenAIRE

    BRUNO, LEILA REGINA GOMES PASSOS; ANTONIO, RAFAELA PRISCILA; ASSIS, JOSÉ GERALDO DE AQUINO; MOREIRA, JOSÉ NILTON; LIRA, IRLANE CRISTINE DE SOUZA ANDRADE

    2017-01-01

    ABSTRACT This study aimed to characterize buffel grass accessions of the Cenchrus Germplasm Active Bank (CGAB) from Embrapa Semi-Arid in a morphoagronomic way, checking the descriptors variability and efficiency in accessions on two consecutive cuts. Twenty-five accessions and five buffel grass cultivars were used in randomized complete block design with three replications. Evaluations were conducted after two consecutive cuts, each evaluation performed 90 days after each cut. Characterizatio...

  4. Influence of pH value on microstructure of oil-in-water emulsions stabilized by chickpea protein flour.

    Science.gov (United States)

    Felix, Manuel; Isurralde, Nadia; Romero, Alberto; Guerrero, Antonio

    2018-01-01

    Food industry is highly interested in the development of healthier formulations of oil-in-water emulsions, stabilized by plant proteins instead of egg or milk proteins. These emulsions would avoid allergic issues or animal fat. Among other plant proteins, legumes are a cost-competitive product. This work evaluates the influence of pH value (2.5, 5.0 and 7.5) on emulsions stabilized by chickpea-based emulsions at two different protein concentration (2.0 and 4.0 wt%). Microstructure of chickpea-based emulsions is assessed by means of backscattering, droplet size distributions and small amplitude oscillatory shear measurements. Visual appearances as well as confocal laser scanning microscopy images are obtained to provide useful information on the emulsions structure. Interestingly, results indicate that the pH value and protein concentration have a strong influence on emulsion microstructure and stability. Thus, the system which contains protein surfaces positively charged shows the highest viscoelastic properties, a good droplet size distribution profile and non-apparent destabilization phenomena. Interestingly, results also reveal the importance of rheological measurements in the prediction of protein interactions and emulsion stability since this technique is able to predict destabilization mechanisms sooner than other techniques such as backscattering or droplet size distribution measurements.

  5. Comparison of chickpea rhizobia isolates from diverse Portuguese natural populations based on symbiotic effectiveness and DNA fingerprint.

    Science.gov (United States)

    Laranjo, M; Branco, C; Soares, R; Alho, L; Carvalho, M D E; Oliveira, S

    2002-01-01

    To test the hypothesis that differences in chickpea yields obtained in four distinct Portuguese regions (Beja, Elvas-Casas Velhas, Elvas-Estação Nacional de Melhoramento de Plantas (ENMP) and Evora) could be due to variation between the natural rhizobia populations. Estimation of the size of the different rhizobial populations showed that Elvas-ENMP population was the largest one. Elvas-ENMP population also revealed a higher proportion of isolates carrying more than one plasmid. Assessment of genetic diversity of the native rhizobia populations by a DNA fingerprinting PCR method, here designated as DAPD (Direct Amplified Polymorphic DNA), showed a higher degree of variation in Elvas-ENMP and Beja populations. The symbiotic effectiveness (SE) of 39 isolates was determined and ranged 13-34%. Statistical analysis showed that SE was negatively correlated with plasmid number of the isolate. The largest indigenous rhizobia population was found in Elvas-ENMP. DAPD pattern and plasmid profile analysis both suggested a higher genetic diversity among the populations of Elvas-ENMP and Beja. No relationship was found between SE of the isolates and their origin site. The large native population, rather than the symbiotic performance of individual rhizobia, could contribute to the higher chickpea yields obtained in Elvas-ENMP.

  6. Evaluation of chickpea genotypes for resistance to Ascochyta blight (Ascochyta rabiei disease in the dry highlands of Kenya

    Directory of Open Access Journals (Sweden)

    Paul K. KIMURTO

    2013-05-01

    Full Text Available Chickpea (Cicer arietinum is an edible legume grown widely for its nutritious seed, which is rich in protein, minerals, vitamins and dietary fibre. It’s a new crop in Kenya whose potential has not been utilized fully due to abiotic and biotic stresses that limit its productivity. The crop is affected mainly by Ascochyta blight (AB which is widespread in cool dry highlands causing up to 100% yield loss. The objective of this study was to evalu- ate the resistance of selected chickpea genotypes to AB in dry highlands of Kenya. The study was done in 2 sites (Egerton University-Njoro and Agricultural Training centre-ATC-Koibatek for one season during long rains of 2010/2011 growing season. Thirty six genotypes from reference sets and mini-core samples introduced from ICR- SAT were evaluated. There were significant (P<0.001 differences in AB responses and grain yield performance in test genotypes in both sites. AB was more severe at Egerton-Njoro (mean score 5.7 than ATC-Koibatek (mean score 4.25, with subsequent low grain yield. Genotypes ICC7052, ICC4463, ICC4363, ICC2884, ICC7150, ICC15294 and ICC11627 had both highest grain yield in decreasing order (mean range 1790-1053 Kg ha-1 and best resist- ance to AB. Further evaluation is needed in other multi-locations and their use in breeding program determined especially because of their undesirable black seed color. Commercial varieties (LDT068, LDT065, Chania desi 1, and Saina K1 were all susceptible to AB, but with grain yield >1200 Kg ha-1. The findings of the study showed that chickpea should be sown during the short rains (summer in the dry highlands of Kenya when conditions are drier and warmer and less favorable for AB infection. However yield could be increased by shifting the sowing date from dry season to long rain (winter thus avoiding terminal drought if AB resistant cultivars with acceptable agronomic traits could be identified.

  7. Organic and Inorganic Nitrogen Fertilization Effects on Some Physiological and Agronomical Traits of Chickpea (Cicer arietinum L. in Irrigated Condition

    Directory of Open Access Journals (Sweden)

    Ali Namvar

    2013-09-01

    Full Text Available The effects of organic and inorganic nitrogen fertilization on some physiological and agronomical traits of chickpea (Cicer arietinum L. cv. ILC 482, investigated at the Experimental Farm of the Agriculture Faculty, University of Mohaghegh Ardabili. The trial was laid out in spilt plot design based on randomized complete block with four replications. Experimental factors were mineral nitrogen fertilizer at four levels (0, 50, 75 and 100 kg urea/ha in the main plots, and two levels of inoculation with Rhizobium bacteria (with and without inoculation as sub plots. N application and Rh. inoculation showed positive effects on physiological and agronomical traits of chickpea. The highest value of leaf RWC recorded in 50 kg urea/ha that was statistically in par with 75 kg urea/ha application while, usage of 75 kg urea/ha showed the maximum stem RWC. The maximum CMS obtained form application of 75 kg urea/ha. Chlorophyll content, leaf area index and grains protein content showed their maximum values in the highest level of nitrogen usage (100 kg urea/ha. Moreover, inoculated plants had the highest magnitudes of all physiological traits. In the case of agronomical traits, the highest values of plant height, number of primary and secondary branches, number of pods per plant, number of grains per plant, grain and biological yield were obtained from the highest level of nitrogen fertilizer (100 kg urea/ha and Rh. inoculation. Application of 75 kg urea/ha was statistically in par with 100 kg urea/ha in all of these traits. The results pointed out that some N fertilization (i.e. between 50 and 75 kg urea/ha as starter can be beneficial to improve growth, development, physiological traits and total yield of inoculated chickpea.

  8. Purification and characterization of a novel trypsin-like protease from green-seeded chickpea (Cicer arientum).

    Science.gov (United States)

    Shamsi, Tooba Naz; Parveen, Romana; Sen, Priyankar; Fatima, Sadaf

    2017-05-28

    The present study describes the purification and physicochemical and biochemical characterization of trypsin-like protease from green-seeded chickpea (Cicer arientum). The crude extract of chickpea trypsin (CpT) was obtained by homogenization followed by differential ammonium sulfate precipitation. The CpT was purified by ion-exchange chromatography on diethylaminoethyl (DEAE) column, pre-equilibrated with 20 mM tris-CaCl 2 buffer (pH 8.2) with a flow rate of 0.5 mL min -1 . The molecular weight and purity of ∼23 kDa of CpT were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Activity of protease was determined using Nα-benzoyl-DL-arginine-p-nitroanilide as chromogenic substrate and CpT purified showed a specific inhibitor activity of 26978.7697 U mg -1 , fold purity of 9.8, and the yield of 70.2%. The characterization was performed for thermal stability, pH profile, and effect of various inhibitors on enzymatic activity. The protein isolated showed stability in the neutral to mild alkaline pH range and thermostability up to 50°C. CpT confirmed its serine nature as it was appreciably inhibited by serine protease inhibitors (maximum 6%), whereas metalloprotease inhibitors barely affected the activity of the enzyme (85%). To the best of our knowledge, it is first reported on purification of protease with trypsin-like properties, from this source.

  9. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  10. SSR-Based DNA Fingerprinting and Diversity Assessment Among Indian Germplasm of Euryale ferox: an Aquatic Underutilized and Neglected Food Crop.

    Science.gov (United States)

    Kumar, Nitish; Shikha, Divya; Kumari, Swati; Choudhary, Binod Kumar; Kumar, Lokendra; Singh, Indu Shekhar

    2017-10-30

    Euryale ferox is native to Southeast Asia and China, and it is one of the important aquatic food crops propagated mostly in eastern part of India. The aim of the present study was to characterize and evaluate the genetic diversity of ex situ collections of E. ferox germplasm from different geographical states of India using microsatellite (simple sequence repeats (SSRs)) markers. Ten SSR markers were analyzed to assess DNA fingerprinting and genetic diversity of 16 cultivated germplasm of E. ferox. Total 37 polymorphic alleles were recorded with an average of 3.7 allele frequency per primer. The polymorphic information content value varied from 0.204 to 0.735 with mean of 0.448. A high range of heterozygosity (Ho 0.228; He 0.512) was detected in the present study. The neighbor-joining (N-J) tree and the principle coordinate analysis showed that the germplasm divided in to three main clusters. The results of the present investigation comply that SSR markers are effective for computing genetic assessment of genetic diversity and similarity with classifying cultivated varieties of E. ferox. Evaluation of genetic diversity among Indian E. ferox germplasm could provide useful information for genetic improvement.

  11. Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.; Iqbal, A.; Awan, F.S.; Khan, I.A.

    2010-01-01

    Productivity of wheat varieties being bred for the last many years is stagnant in Pakistan, apparently because of the narrowed genetic base of their parental lines. As a part of the national wheat germplasm characterization programme, we examined genetic diversity among 75 accessions of wheat using RAPD markers and assessed the relationship and genetic distance between them. The accessions surveyed were comprised of land race populations of Triticum aestivum L., collected from various districts of the Balochistan province of Pakistan, which is considered a reservoir of genetic diversity, particularly for wheat. The genetic similarity revealed by RAPD markers among the wheat accessions was medium to high. The accessions collected from Sibi and Pishin districts had the greatest similarity. The polymorphism revealed in the wheat accessions, appeared to be distributed with the location of collections. The high degree of similarity even among the presumably land race material emphasizes the need for the expansion of germplasm resources and development of wheat varieties with diverse genetic background, which could substantiate the wheat breeding programmes to increase its productivity. (author)

  12. Isolation, identification of antagonistic rhizobacterial strains obtained from chickpea (cicer arietinum l.) field and their in-vitro evaluation against fungal root pathogens

    International Nuclear Information System (INIS)

    Shahzaman, S.; Haq, I.U.; Mukhtar, T.; Naeem, M.

    2015-01-01

    Plant growth promoting rhizobacteria (PGPR), are associated with roots, found in the rhizosphere and can directly or indirectly enhance the plant growth. In this study soil was collected from rhizosphere of chickpea fields of different areas of Rawalpindi division of Pakistan. PGPR were isolated, screened and characterized. Eight isolates of rhizobacteria (RHA, RPG, RFJ, RC, RTR, RT and RK) were isolated from Rawalpindi division and were characterized. The antagonistic activity of these PGPR isolates against root infecting fungi (Fusarium oxysporum and Verticillium spp.,) was done and production of indole acetic acid (IAA), siderophore and P-solubilization was evaluated. The isolates RHA, RPG, RFJ, RC, RRD and RT were found to be positive in producing siderophore, IAA and P-solubilization. Furthermore, most of the isolates showed antifungal activity against Fusarium oxysporum, and Verticillium spp. The rhizobacterial isolates RHA, RPG, RFJ, RC, RRD, RTR, RT and RK were used as bio-inoculants that might be beneficial for chickpea cultivation as the rhizobacterial isolates possessed the plant growth promoting characters i.e. siderophore, IAA production, phosphate solubilization. In in vitro tests, Pseudomonas sp. and Bacillus spp. inhibited the mycelial growth of the fungal root pathogens. The isolates (RHA and RPG) also significantly increased (60-70%) seed germination, shoot length, root length of the chickpea. The incidence of fungi was reduced by the colonization of RHA and RPG which enhanced the seedling vigor index and seed germination. The observations revealed that isolates RHA and RPG is quite effective to reduce the fungal root infection in greenhouse, and also increases seed yields significantly. These rhizobacterial isolates appear to be efficient yield increasing as well as effective biocontrol agent against fungal root pathogen. (author)

  13. Landscape design and allocation for demonstrating the distinctive germplasm resources of SHNU offers in 2015 Shanghai International Flower Show

    Directory of Open Access Journals (Sweden)

    CHEN Jiaying

    2015-10-01

    Full Text Available Combing with its theme——″The Delicate Horticulture & The Beautiful Homeland″,the 2015 Shanghai International Flower Show offers SHNU a special outdoor stand for distinctive germplasm resources to shine in different aspects of subject creativity.Many properties of the landscaping,such as landscape arrangement,season reflection,color configuration,personal training,identification,landscaping,season reflection,afforested maintenance,were discused and analyzed in this study.A proposal on how to improve the achievements in scientific research and application of the splendid germplasm resources to a further step was provided as well.The practice of the doemonstration for SHNU′s of germplasm resources in the show gave us a lot of inspirations such as doing more study and develop more plant varieties in order to meeting the social demands,furthermore,promoting the development of the horticulture industry.

  14. Unlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat.

    Science.gov (United States)

    Muleta, Kebede T; Bulli, Peter; Zhang, Zhiwu; Chen, Xianming; Pumphrey, Michael

    2017-11-01

    Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm collections through predicting the genomic estimated breeding values (GEBVs) for all traits that have been measured. Here, we evaluated the effects of various scenarios of population genetic properties and marker density on the accuracy of GEBVs in the context of applying GS for wheat ( L.) germplasm use. Empirical data for adult plant resistance to stripe rust ( f. sp. ) collected on 1163 spring wheat accessions and genotypic data based on the wheat 9K single nucleotide polymorphism (SNP) iSelect assay were used for various genomic prediction tests. Unsurprisingly, the results of the cross-validation tests demonstrated that prediction accuracy increased with an increase in training population size and marker density. It was evident that using all the available markers (5619) was unnecessary for capturing the trait variation in the germplasm collection, with no further gain in prediction accuracy beyond 1 SNP per 3.2 cM (∼1850 markers), which is close to the linkage disequilibrium decay rate in this population. Collectively, our results suggest that larger germplasm collections may be efficiently sampled via lower-density genotyping methods, whereas genetic relationships between the training and validation populations remain critical when exploiting GS to select from germplasm collections. Copyright © 2017 Crop Science Society of America.

  15. Grouping and clustering of maize Lancaster germplasm inbreds according to the results of SNP-analysis

    Directory of Open Access Journals (Sweden)

    K. V. Derkach

    2017-08-01

    Full Text Available The objective of this article is the grouping and clustering of maize inbred lines based on the results of SNP-genotyping for the verification of a separate cluster of Lancaster germplasm inbred lines. As material for the study, we used 91 maize (Zea mays L. inbred lines, including 31 Lancaster germplasm lines and 60 inbred lines of other germplasms (23 Iodent inbreds, 15 Reid inbreds, 7 Lacon inbreds, 12 Mix inbreds and 3 exotic inbreds. The majority of the given inbred lines are included in the Dnipro breeding programme. The SNP-genotyping of these inbred lines was conducted using BDI-III panel of 384 SNP-markers developed by BioDiagnostics, Inc. (USA on the base of Illumina VeraCode Bead Plate. The SNP-markers of this panel are biallelic and are located on all 10 maize chromosomes. Their range of conductivity was >0.6. The SNP-analysis was made in completely automated regime on Illumina BeadStation equipment at BioDiagnostics, Inc. (USA. A principal component analysis was applied to group a general set of 91 inbreds according to allelic states of SNP-markers and to identify a cluster of Lancaster inbreds. The clustering and determining hierarchy in 31 Lancaster germplasm inbreds used quantitative cluster analysis. The share of monomorphic markers in the studied set of 91 inbred lines equaled 0.7%, and the share of dimorphic markers equaled 99.3%. Minor allele frequency (MAF > 0.2 was observed for 80.6% of dimorphic markers, the average index of shift of gene diversity equaled 0.2984, PIC on average reached 0.3144. The index of gene diversity of markers varied from 0.1701 to 0.1901, pairwise genetic distances between inbred lines ranged from 0.0316–0.8000, the frequencies of major alleles of SNP-markers were within 0.5085–0.9821, and the frequencies of minor alleles were within 0.0179–0.4915. The average homozygosity of inbred lines was 98.8%. The principal component analysis of SNP-distances confirmed the isolation of the Lancaster

  16. Chickpea and cowpea grain improvement using mutation and other advanced genetic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Filippone, E; Monti, L [Department of Agronomy and Plant Genetics, Univ. of Naples Federico 2, Naples (Italy)

    1997-12-01

    The use of genetic engineering methodologies in breeding programmes seems to be very promising to find new resistance-related genes present in other phyla, to clone and transfer them into plants; and, to shorten the time to obtain an improved genotype since only a single gene is involved in this process. The main ``bottle-neck`` to apply this scheme in chickpea and cowpea is the absence of a reliable protocol of regeneration and genetic transformation. In this frame, following some pilot experiments on these grain legumes to induce regeneration and gene transfer, we attempted to find a regeneration medium, assay the effect of different hormones on young tissues; and, to select the best procedures for transfer of genes into the plant genome.

  17. Chickpea and cowpea grain improvement using mutation and other advanced genetic techniques

    International Nuclear Information System (INIS)

    Filippone, E.; Monti, L.

    1997-01-01

    The use of genetic engineering methodologies in breeding programmes seems to be very promising to find new resistance-related genes present in other phyla, to clone and transfer them into plants; and, to shorten the time to obtain an improved genotype since only a single gene is involved in this process. The main ''bottle-neck'' to apply this scheme in chickpea and cowpea is the absence of a reliable protocol of regeneration and genetic transformation. In this frame, following some pilot experiments on these grain legumes to induce regeneration and gene transfer, we attempted to find a regeneration medium, assay the effect of different hormones on young tissues; and, to select the best procedures for transfer of genes into the plant genome

  18. Mixture Design Applied to the Development of Chickpea-Based Gluten-Free Bread with Attractive Technological, Sensory, and Nutritional Quality.

    Science.gov (United States)

    Santos, Fernanda G; Fratelli, Camilly; Muniz, Denise G; Capriles, Vanessa D

    2018-01-01

    The aim of the study was utilized chickpea to create appealing, nutritious, and palatable gluten-free bread (GFB). The performance of chickpea flour (CF) in single and composite GFB formulations was studied with a mixture design and response surface methodology. Six simplex-centroid designs for 3 ingredients were used to identify the ideal proportions of CF in various blends with cassava starch (CS), maize starch (MS), potato starch (PS), and rice flour (RF) achieving the best physical properties. For each design, 3 single, 3 binary, and 3 ternary formulations were prepared. The results showed that CF alone is suitable for bread production, resulting in GFB with higher volume and crumb firmness and lower crumb moisture than single formulations of other raw materials. However, the interactions between CF and PS or CS enhanced the loaf volume and decreased the crumb firmness values. The GFB prepared with only CF was accepted (overall acceptability score of 7.1- on a 10-cm scale). Nevertheless, the composite formulations prepared with CF75:PS25 or CF75:CS25 (flour basis) received overall acceptability scores of 8.2, like those of their white GFB, prepared with RF50:PS50 blend (flour basis), and wheat bread counterparts, used as positive controls. Compared to white GFB, both composite formulations presented nearly a twofold increase in ash and protein contents and a threefold increase in total fiber content. These results show that blends of CF75:PS25 or CF75:CS25 can be used to develop GFB with a good physical and sensory properties, as well as an enhanced nutritional composition. Gluten-free bread (GFB) made with 75% chickpea flour (CF) blend with 25% potato or cassava starch showed improved total minerals, protein and dietary fiber content and bread quality characteristics. Therefore, CF is a valuable ingredient for food technologists in manufacturing better-tasting and healthy GFB, which is important for consumers with gluten-related disorders since GFB often lack

  19. Rhizobium pusense sp. nov., isolated from the rhizosphere of chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Panday, Digvijay; Schumann, Peter; Das, Subrata K

    2011-11-01

    A novel bacterial strain, designated NRCPB10(T), was isolated from rhizosphere soil of chickpea (Cicer arietinum L.) in Pusa, New Delhi, India. The 16S rRNA gene sequence of strain NRCPB10(T) showed highest similarity (98.9 %) to that of Rhizobium radiobacter NCPPB 2437(T), followed by Rhizobium larrymoorei AF3-10(T) (97.7 %) and Rhizobium rubi IFO 13261(T) (97.4 %). Phylogenetic analysis of strain NRCPB10(T) based on the housekeeping genes recA and atpD confirmed its position as distinct from recognized Rhizobium species. Levels of DNA-DNA relatedness between strain NRCPB10(T) and R. radiobacter ICMP 5785(T), R. larrymoorei LMG 21410(T) and R. rubi ICMP 6428(T) were 51.0, 32.6 and 27.3 %, respectively. Cellular fatty acids of strain NRCPB10(T) were C(18 : 1)ω7c (58.9 %), C(16 : 0) (15.5 %), C(19 : 0) cyclo ω8c (11.5 %), iso-C(16 : 1) (5.8 %), C(16 : 0) 3-OH (4.5 %), C(16 : 1)ω7c (2.1 %) and C(18 : 0) (1.3 %). The G+C content of the genomic DNA of strain NRCPB10(T) was 59.0 mol%. Strain NRCPB10(T) did not nodulate chickpea plants or induce tumours in tobacco plants. Phenotypic and physiological properties along with SDS-PAGE of whole-cell soluble proteins differentiated strain NRCPB10(T) from its closest phylogenetic neighbours. On the basis of data from the present polyphasic taxonomic study, strain NRCPB10(T) is considered to represent a novel species of the genus Rhizobium, for which the name Rhizobium pusense sp. nov. is proposed. The type strain is NRCPB10(T) ( = LMG 25623(T) = JCM 16209(T) = NCIMB 14639(T)).

  20. Conjoint effect of oil-seed cakes and Pseudomonas fluorescens on the growth of chickpea in relation to the management of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Rose Rizvi

    2012-12-01

    Full Text Available Soil application of organics has been explored as an alternative means of organic management of plant-parasitic nematodes. Efficiency of different oil-seed cakes of neem (Azadirachta indica, castor (Ricinus communis, groundnut (Arachis hypogaea, linseed (Linum usitatissimum, sunflower (Helianthus annuus and soybean (Glycine max were evaluated in field conditions with association of Pseudomonas fluorescens in relation to growth parameters of chickpea and population of plant-parasitic nematodes. Their efficacious nature was highly effective in reducing the population of these dominant soil nematodes. Significant improvement was observed in plant-growth parameters such as plant weight, percent pollen fertility, pod numbers, root-nodulation and chlorophyll content of chickpea, seemed to be due to reduction in disease incidence and might be due to growth promoting substances secreted by P. fluorescens. The multiplication rate of nematodes was less in the presence of P. fluorescens as compared to its absence. Most effective combination of P. fluorescens was observed with neem cake.

  1. Identification of elite pure-lines from local lentil germplasm using diversity index based on quantitative traits

    International Nuclear Information System (INIS)

    Sultana, T.; Nadeem, S.; Fatima, Z.

    2010-01-01

    Three hundred and seventeen accessions of lentil collected from all over the country were evaluated for six quantitative traits to investigate inter and intra-accession diversity in association with geographic pattern. Variation indicated that areas with high geographic diversity that is supposed to present high biological diversity are yet to be explored. Classification of germplasm gave rise to some elite lines for specific characters and the accessions for days to flowering (45), days to maturity (7), plant height (12), pods per cluster (17) and seed weight (27) have been selected and suggested for exploitation in breeding programme. Twelve clusters were observed with varying degrees of intercluster dissimilarity that suggested the selection of diverse superior parents for hybridization. Some of the characters associated with origin as high seed weight of germplasm collected from Baluchistan is needed to exploit for specific trait/s. Germplasm distribution revealed that Punjab and Sindh represented a high collections along with high diversity, whereas other areas are yet to be explored. Similarly zone 3a, 6, 7, 9 and 10 along with high mountains lack complete representation that indicated the importance for future collection mission to these areas. (author)

  2. Gluten-free snacks using plantain-chickpea and maize blend: chemical composition, starch digestibility, and predicted glycemic index.

    Science.gov (United States)

    Flores-Silva, Pamela C; Rodriguez-Ambriz, Sandra L; Bello-Pérez, Luis A

    2015-05-01

    An increase in celiac consumers has caused an increasing interest to develop good quality gluten-free food products with high nutritional value. Snack foods are consumed worldwide and have become a normal part of the eating habits of the celiac population making them a target to improve their nutritive value. Extrusion and deep-frying of unripe plantain, chickpea, and maize flours blends produced gluten-free snacks with high dietary fiber contents (13.7-18.2 g/100 g) and low predicted glycemic index (28 to 35). The gluten-free snacks presented lower fat content (12.7 to 13.6 g/100 g) than those reported in similar commercial snacks. The snack with the highest unripe plantain flour showed higher slowly digestible starch (11.6 and 13.4 g/100 g) than its counterpart with the highest chickpea flour level (6 g/100 g). The overall acceptability of the gluten-free snacks was similar to that chili-flavored commercial snack. It was possible to develop gluten-free snacks with high dietary fiber content and low predicted glycemic index with the blend of the 3 flours, and these gluten-free snacks may also be useful as an alternative to reduce excess weight and obesity problems in the general population and celiac community. © 2015 Institute of Food Technologists®

  3. Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Peng, Hui; Yu, Xingwang; Cheng, Huiying; Shi, Qinghua; Zhang, Hua; Li, Jiangui; Ma, Hao

    2010-01-01

    The plant-specific NAC (for NAM, ATAF1,2 and CUC2) proteins have been found to play important roles in plant development and stress responses. In this study, a NAC gene CarNAC1 (for Cicer arietinum L. NAC gene 1) was isolated from a cDNA library constructed with chickpea seedling leaves treated by polyethylene glycol. CarNAC1 encoded a putative protein with 239 amino acids and contained 3 exons and 2 introns within genomic DNA sequence. CarNAC1 had a conserved NAC domain in the N-terminus and the CarNAC1:GFP (green fluorescent protein) fusion protein was localized in the nucleus of onion epidermal cells. Additionally, CarNAC1 exhibited the trans-activation activity which was mapped to the C-terminus. The CarNAC1 transcript was detected in many chickpea organs including seedling leaves, stems, roots, flowers, and young pods, but less accumulated in young seeds. CarNAC1 was induced by leaf age and showed changes in expression during seed development and germination. Furthermore, the expression of CarNAC1 was strongly induced by drought, salt, cold, wounding, H(2)O(2), ethephon, salicylic acid, indole-3-acetic acid, and gibberellin. Our results suggest that CarNAC1 encodes a novel NAC-domain protein and may be a transcriptional activator involved in plant development and various stress responses.

  4. Evaluation of high yielding soybean germplasm under water limitation.

    Science.gov (United States)

    Prince, Silvas J; Murphy, Mackensie; Mutava, Raymond N; Zhang, Zhengzhi; Nguyen, Na; Kim, Yoon Ha; Pathan, Safiullah M; Shannon, Grover J; Valliyodan, Babu; Nguyen, Henry T

    2016-05-01

    Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germplasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments. © 2015 Institute of Botany, Chinese Academy of Sciences.

  5. Establishing the Bases for Introducing the Unexplored Portuguese Common Bean Germplasm into the Breeding World

    Science.gov (United States)

    Leitão, Susana T.; Dinis, Marco; Veloso, Maria M.; Šatović, Zlatko; Vaz Patto, Maria C.

    2017-01-01

    Common bean (Phaseolus vulgaris L.) is among the most important grain legumes for human consumption worldwide. Portugal has a potentially promising common bean germplasm, resulting from more than five centuries of natural adaptation and farmers' selection. Nevertheless, limited characterization of this resource hampers its exploitation by breeding programs. To support a more efficient conservation of the national bean germplasm and promote its use in crop improvement, we performed, for the first time, a simultaneous molecular marker (21 microsatellites and a DNA marker for phaseolin-type diversity analysis) and seed and plant morphological characterization (14 traits) of 175 accessions from Portuguese mainland and islands traditional bean-growing regions. A total of 188 different alleles were identified and an average pairwise Cavalli-Sforza and Edwards' chord genetic distance of 0.193 was estimated among accessions. To relate the Portuguese germplasm with the global common bean diversity, 17 wild relatives and representative accessions from the Andean and Mesoamerican gene pools were evaluated at the molecular level. No correlation was detected between the variability found and the geographic origin of accessions. Structure analysis divided the collection into three main clusters. Most of the Portuguese accessions grouped with the race representatives and wild relatives from the Andean region. One third of the national germplasm had admixed genetic origin and might represent putative hybrids among gene pools from the two original centers of domestication in the Andes and Mesoamerica. The molecular marker-based classification was largely congruent with the three most frequent phaseolin haplotype patterns observed in the accessions analyzed. Seed and plant morphological characterization of 150 Portuguese common bean accessions revealed a clear separation among genetic structure and phaseolin haplotype groups of accessions, with seed size and shape and the number of

  6. Activity of the Recommended and Optimized Rates of Pyridate on Chickpea - Mesorhizobium mediterraneum Symbiosis

    Directory of Open Access Journals (Sweden)

    Mehdi PARSA

    2014-03-01

    Full Text Available Crop-rhizobium symbiosis can be influenced by leaching of herbicides which is unavoidable after their application. Due to an adjuvant which might help to develop the low-use-rate of herbicide, an experiment was carried out to compare the impact of the recommended rate (1200 g active ingredient ha-1 and the optimized rate (282.15 g active ingredient ha-1 of pyridate on the biological properties of eight chickpea cultivars inoculated with Mesorhizobium mediterraneum, grown in pots. Based on the required rate of herbicide to give 95% control of common lambsquarters (Chenopodium album L. value, the efficacy of pyridate improved up to 3.87-fold by adding methylated rapeseed oil to spray solution. The ‘Desi’ cultivar had significantly higher nodulation than ‘Kabuli’ cultivar. In general, toxicity of the recommended rate was higher than the optimized rate. With the exception of root dry weight, all of the measured parameters were significantly affected by the recommended rate of pyridate in varying degrees. The symbiotic properties of chickpea cultivars were affected more than 10% at the recommended dose. The reduced nodulation ranged from 29% to 73% among cultivars exposed to pyridate at the recommended dose. The ‘Desi’ cultivar was more sensitive than the ‘Kabuli’ to the recommended rate of pyridate. We may conclude that effective low-use-rate of pyridate via applying of activator adjuvants should be noted.

  7. Effects of drought stress on morphological traits in chickpea (Cicer arientinum L. genotypes in greenhouse

    Directory of Open Access Journals (Sweden)

    ali masoomi

    2009-06-01

    Full Text Available This research was conducted in a research greenhouse at the College of Agriculture in Ferdowsi University of Mashhad to investigate the impact of five drought levels (-0.3, -3, -6, -9 and -12 bar on physiological and morphological characteristics of nine chickpea genotypes including MCC101, MCC174, MCC276, MCC477, MCC327, MCC476, JAM, Karaj12-60-31and ILC482. The experiment used 5×9 factorial laid out in randomized complete design with 4 replications. The genotypes were exposed to drought stress 10 days after emergence. Some traits were measured during growth season (including plant height, leaf number, flower and pod number, length and number of lateral branch that all of them shown significant differences in the first stage of stress between genotypes and then the effects of drought were appeared. In majority of genotypes reduction in the flowering and podding time were observed. Flower number is a favor parameter in the assessment of drought tolerance genotypes. Most measured traits imposed significant differences in all levels of drought stress, genotypes and interaction of them at the end of growth season. The highest amount of all measured parameters were observed in the field capacity (-0.3 bar. Among the levels of water potential tested -3 and -6 bar were the best treatment for evaluating drought stress of chickpea genotypes. Pod and seed weight did not form in heavy drought stress. Among genotypes tested ILC482, MCC276 and MCC 477 were the best genotypes in terms of responsing to drought stress.

  8. Evaluation of Accessions and Varieties of Chickpea (Cicer arietinum L. Based on Agro-physiological Traits

    Directory of Open Access Journals (Sweden)

    Sh Cheghamirza

    2013-12-01

    Full Text Available In order to study of genetic variation and identification of yield components in chickpea, a trial consists of 96 accessions of chickpea received from Iranian gen bank (Seed and Plant Improvement Institute along with five checks (Arman, Bivanij, Jam, Hashem and ILC-482 was conducted based on an augmented design in 2005-06 cropping season at research farm of agricultural college, Razi University, Kermanshah, Iran. For evaluating of accessionst the morphological, physiological and phonological traits during plant growth were measured. The result of ANOVA and mean comparisons showed significant differences among accessions for some of the traits i.e., days to first flower opening (DF-1, days to 50% flower opening (DF-50%, days to first pod opening (DP-1, days to 50% pod opening (DP-50%, days to maturity (DM, days to 90% maturity (DM90%, plant height (PH, height of first pod (PH-1P, number of pod per plant (NPPP, number of single seed per pod (1SP, number of double seed per pod (2 SP, and pod width (WP, number of see per pod (NSPP and 100 seed weight (100SW, Correlation coefficient analysis showedthe grain yield significantly correlated with biomass (r=0.84**, 1SP (r=0.80** and harvest index (HI, r=0.44**. Stepwise regression analysis showed that the NPPP, number of seed per pod (NSPP, 100SW, biomass, HI, canopy width (CanW and DP-1 positively affected on grain yield, while PH-1P and DF-1 negatively affected on grain yield.

  9. New carrot and garlic germplasm to advance breeding and understand crop origins

    Science.gov (United States)

    The genetic variation provided by diverse plant germplasm is the basic building material used for crop improvement that shapes the crops we grow today. Wild carrot from the U.S. provided the cytoplasm used to develop a reliable system to produce hybrid carrots that account for most of the commercial...

  10. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm

    Science.gov (United States)

    Genetic diversity in crop germplasm is an important resource for crop improvement, but information on genetic diversity is rare for Jerusalem artichoke, especially for traits related to water use efficiency. The objectives of this study were to investigate genetic variations for water use and water...

  11. Genetics of the ovule fuzzless trait in Gossypium arboreum germplasm line PI 615737

    Science.gov (United States)

    The diploid cotton species Gossypium arboreum possesses many favorable agronomic traits such as drought tolerance and disease resistance, which can be utilized in the development of improved upland cotton cultivars. The USDA National Plant Germplasm System maintains more than 1,600 G. arboreum acces...

  12. Genetic diversity of sweet sorghum germplasm in Mexico using AFLP and SSR markers

    Science.gov (United States)

    The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers ...

  13. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Science.gov (United States)

    Paço, Ana; Brígido, Clarisse; Alexandre, Ana; Mateos, Pedro F; Oliveira, Solange

    2016-01-01

    The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under

  14. Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions.

    Science.gov (United States)

    Lande, Nilesh Vikram; Subba, Pratigya; Barua, Pragya; Gayen, Dipak; Keshava Prasad, T S; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-08-08

    Chloroplast, the energy organelle unique to plant cells, is a dynamic entity which integrates an array of metabolic pathways and serves as first level for energy conversion for the entire ecological hierarchy. Increasing amount of sequence data and evolution of mass spectrometric approaches has opened up new avenues for opportune exploration of the global proteome of this organelle. In our study, we aimed at generation of a comprehensive catalogue of chloroplast proteins in a grain legume, chickpea and provided a reference proteome map. To accurately assign the identified proteins, purity of chloroplast-enriched fraction was stringently monitored by multiple chemical and immunological indexes, besides pigment and enzyme analyses. The proteome analysis led to the identification of 2451 proteins, including 27 isoforms, which include predicted and novel chloroplast constituents. The identified proteins were validated through their sequence analysis. Extensive sequence based localization prediction revealed more than 50% proteins to be chloroplast resident by at least two different algorithms. Chromosomal distribution of identified proteins across nuclear and chloroplast genome unveiled the presence of 55 chloroplast encoded gene. In depth comparison of our dataset with the non-redundant set of chloroplast proteins identified so far across other species revealed novel as well as overlapping candidates. Pulses add large amount of nitrogen to the soil and has very low water footprint and therefore, contributes to fortification of sustainable agriculture. Chickpea is one of the earliest cultivated legumes and serves as an energy and protein source for humans and animals. Chloroplasts are the unique organelles which conduct photosynthesis. Investigation on chloroplast proteome is of particular significance, especially to plant biologists, as it would allow a better understanding of chloroplast function in plants. Generation of a saturated proteome map would not only

  15. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Directory of Open Access Journals (Sweden)

    Ana Paço

    Full Text Available The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials. The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants

  16. Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants.

    Science.gov (United States)

    Yadav, Reena; Mehrotra, Meenakshi; Singh, Aditya K; Niranjan, Abhishek; Singh, Rani; Sanyal, Indraneel; Lehri, Alok; Pande, Veena; Amla, D V

    2017-01-01

    Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) has been performed using cotyledonary node explants (CNs), which release phenolics upon excision that are detrimental to the viability of Agrobacterium tumefaciens and result in low transformation frequency. Twelve low molecular weight phenolic compounds and salicylic acid were identified in the exudates released upon excision during the preparation of cotyledonary nodes by reverse phase high-performance liquid chromatography (RP-HPLC). Zone inhibition assays performed with the explant exudates released at periodic intervals after excision showed the inhibition of A. tumefaciens. Agroinoculation of freshly excised cotyledonary nodes of chickpea showed 98-99 % inhibition of colony forming units (cfu). Osmium tetraoxide fixation of excised tissues showed enhanced accumulation of phenolics in the sub-epidermal regions causing enzymatic browning, affecting the viability and performance of A. tumefaciens for T-DNA delivery. The periodic analysis of exudates released from excised CNs showed enhanced levels of gallic acid (0.2945 ± 0.014 μg/g), chlorogenic acid (0.0978 ± 0.0046 μg/g), and quercetin (0.0971 ± 0.0046 μg/g) fresh weight, which were detrimental to A. tumefaciens. Quantitative assays and the elution profile showed the maximum leaching of phenolics, flavonoids, and salicylic acid immediately after the excision of explants and continued till 4 to 8 h post-excision. Pre-treatment of excised explants with inhibitors of polyphenol oxidase like L-cysteine, DTT, and sodium thiosulfate before co-cultivation showed the recovery of A. tumefaciens cfu, decreased the accumulation of phenolics, and improved transformation frequency. Our results show the hypersensitive response of excision stress for the expression of defense response-related genes and synthesis of metabolites in grain legume chickpea against pathogen infestation including Agrobacterium.

  17. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding.

    Science.gov (United States)

    He, Jianbo; Meng, Shan; Zhao, Tuanjie; Xing, Guangnan; Yang, Shouping; Li, Yan; Guan, Rongzhan; Lu, Jiangjie; Wang, Yufeng; Xia, Qiuju; Yang, Bing; Gai, Junyi

    2017-11-01

    The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was

  18. Chickpea supplementation prior to colitis onset reduces inflammation in dextran sodium sulfate-treated C57Bl/6 male mice.

    Science.gov (United States)

    Monk, Jennifer M; Wu, Wenqing; McGillis, Laurel H; Wellings, Hannah R; Hutchinson, Amber L; Liddle, Danyelle M; Graf, Daniela; Robinson, Lindsay E; Power, Krista A

    2018-03-09

    The potential for a chickpea supplemented diet (rich in fermentable non-digestible carbohydrates and phenolic compounds) to modify the colonic microenvironment and attenuate the severity of acute colonic inflammation was investigated. C57Bl/6 male mice were fed a control basal diet (BD) or BD supplemented with 20% cooked chickpea flour for 3 weeks prior to acute colitis onset induced by 7-day exposure to dextran sodium sulfate (DSS, 2% w/v in drinking water) and colon and serum levels of inflammatory mediators were assessed. Despite an equal degree of DSS-induced epithelial barrier histological damage and clinical symptoms between dietary groups, biomarkers of the ensuing inflammatory response were attenuated by CK pre-feeding including reduced colon tissue activation of NFκB and inflammatory cytokine production (TNFα and IL-18). Additionally, colon protein expression of anti-inflammatory (IL-10) and epithelial repair (IL-22 and IL-27) cytokines were increased by CK pre-feeding. Furthermore, during acute colitis CK pre-feeding increased markers of enhanced colonic function including mRNA expression of Relmβ and IgA. Collectively, CK pre-feeding modulated the baseline function of the colonic microenvironment, whereby upon induction of acute colitis, the severity of the inflammatory response was attenuated.

  19. Phospholipid mediated activation of calcium dependent protein kinase 1 (CaCDPK1 from chickpea: a new paradigm of regulation.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Dixit

    Full Text Available Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1 from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V(max of the enzyme activity by these phospholipids significantly decreased the K(m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K(½ = 114 nM compared to PA (K(½ = 335 nM. We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

  20. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  1. New additions to the National Plant Germplasm System's Beta collection: Southern Morocco collection

    Science.gov (United States)

    The USDA Agricultural Research Service’s National Plant Germplasm System’s (NPGS) Beta collection is comprised of 2,541 accessions from 14 species. The largest number of accessions is from Beta vulgaris ssp. vulgaris, (domesticated beet crops – table, leaf (Swiss chard), fodder and, primarily, sugar...

  2. Genomewide association study of ionomic traits on diverse soybean populations from germplasm collections

    Science.gov (United States)

    The elemental content of a soybean seed is a determined by both genetic and environmental factors and is an important component of its nutritional value. The elemental content is stable, making the samples stored in germplasm repositories an intriguing source of experimental material. To test the ef...

  3. Nucleotide sequence of a chickpea chlorotic stunt virus relative that infects pea and faba bean in China.

    Science.gov (United States)

    Zhou, Cui-Ji; Xiang, Hai-Ying; Zhuo, Tao; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2012-07-01

    We determined the genome sequence of a new polerovirus that infects field pea and faba bean in China. Its entire nucleotide sequence (6021 nt) was most closely related (83.3% identity) to that of an Ethiopian isolate of chickpea chlorotic stunt virus (CpCSV-Eth). With the exception of the coat protein (encoded by ORF3), amino acid sequence identities of all gene products of this virus to those of CpCSV-Eth and other poleroviruses were Polerovirus, and the name pea mild chlorosis virus is proposed.

  4. Phenotypical and biochemical characterisation of resistance for parasitic weed (Orobanche foetida Poir.) in radiation-mutagenised mutants of chickpea.

    Science.gov (United States)

    Brahmi, Ines; Mabrouk, Yassine; Brun, Guillaume; Delavault, Philippe; Belhadj, Omrane; Simier, Philippe

    2016-12-01

    Some radiation-mutagenised chickpea mutants potentially resistant to the broomrape, Orobanche foetida Poir., were selected through field trials. The objectives of this work were to confirm resistance under artificial infestation, in pots and mini-rhizotron systems, and to determine the developmental stages of broomrape affected by resistance and the relevant resistance mechanisms induced by radiation mutagenesis. Among 30 mutants tested for resistance to O. foetida, five shared strong resistance in both pot experiments and mini-rhizotron systems. Resistance was not complete, but the few individuals that escaped resistance displayed high disorders of shoot development. Results demonstrated a 2-3-fold decrease in stimulatory activity of root exudates towards broomrape seed germination in resistant mutants in comparison with non-irradiated control plants and susceptible mutants. Resistance was associated with an induction of broomrape necrosis early during infection. When infested, most of the resistant mutants shared enhanced levels of soluble phenolic contents, phenylalanine ammonia lyase activity, guaiacol peroxidase activity and polyphenol oxidase activity, in addition to glutathione and notably ascorbate peroxidase gene expression in roots. Results confirmed enhanced resistance in chickpea radiation-mutagenised mutants, and demonstrated that resistance is based on alteration of root exudation, presumed cell-wall reinforcement and change in root oxidative status in response to infection. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Ageing mechanisms in chickpea seeds: Relationship of sugar hydrolysis and lipid peroxidation with Amadori and Millard reactions

    Directory of Open Access Journals (Sweden)

    mahdi shaaban

    2017-05-01

    Full Text Available This experiment was performed in order to study on ageing mechanisms of chickpea seeds (Cicer arietinum L. in natural storage and accelerated ageing conditions in seed laboratory of Gorgan Agricultural Science and Natural Resources, Gorgan, Iran at 2015. Experiment was in completely randomized design arrangement with four replications. Treatments were 2 and 4 years natural storage and 1-5 days of accelerated ageing with control treatment. The results showed that with increasing of natural storage and accelerated ageing duration, germination percentage was decreased. Increasing of ageing duration decreased soluble sugars, non-reducing sugars and soluble proteins but lipid peroxidation, reducing sugars, protein carbonylation and Amadori and Millard reaction were increased. In natural storage condition lipid peroxidation was more than sugar hydrolysis but in accelerated ageing condition sugar hydrolysis was more than lipid peroxidation. These results show that the main reason of Amadori and Millard reaction in chickpea seeds in natural storage condition is lipid peroxidation and in accelerated ageing condition is sugar hydrolysis. Also, the results showed that Amadori reaction in natural storage condition was more than Amadori reaction and in accelerated ageing condition Millard reaction was more than Amadori reaction. The results of the present study showed that sever Millard reaction after Amadori reaction induced higher damage on seed and results to more decrease of seed viability and reduce of seed germination percentage in accelerated ageing than natural storage.

  6. Chemical Diversity in Lippia alba (Mill.) N. E. Brown Germplasm

    OpenAIRE

    Arie Fitzgerald Blank; Lídia Cristina Alves Camêlo; Maria de Fátima Arrigoni-Blank; José Baldin Pinheiro; Thiago Matos Andrade; Edenilson dos Santos Niculau; Péricles Barreto Alves

    2015-01-01

    The aim of this study was to perform chemical characterization of Lippia alba accessions from the Active Germplasm Bank of the Federal University of Sergipe. A randomized block experimental design with two replications was applied. The analysis of the chemical composition of the essential oils was conducted using a gas chromatograph coupled to a mass spectrometer. The chemical composition of the essential oils allowed the accessions to be allocated to the following six groups: group 1: linalo...

  7. Diversity of Sex Types and Seasonal Sexual Plasticity in a Cucumber Germplasm Collection

    Directory of Open Access Journals (Sweden)

    Dou Xinxin

    2015-09-01

    Full Text Available The sex type of a cucumber plant is determined by the proportion of male, female and hermaphrodite flowers that it bears and is an important factor that affects fruit yield. In this paper, the sex types and seasonal sexual stabilities of 322 accessions of cucumber germplasm were identified. This germplasm collection displayed a great variety of sex types. We used an updated 10-type sex classification system based on the flower types present and the proportion of nodes with pistillate flowers (PNPF. The PNPF ranges of all the accessions were 2.12%–100% in spring and 0–100% in autumn. A total of 81.37% of the accessions had PNPFs of 10%–50% in spring, but most (84.78% accessions were reduced to 0–20% PNPF in autumn. The range of reduction of PNPF from spring to autumn was 0–67.91%. In other words, most of the germplasm was normal monoecious (31.68% or subandroecious (62.73% in spring, but 94.10% of the accessions were subandroecious in autumn. According to the statistical evaluation of the difference in PNPFs between the two seasons, each accession could be classified into one of three groups: seasonally stable, seasonally sensitive and highly seasonally sensitive, accounting for 10.56%, 20.50% and 68.94% of the accessions, respectively. With a few exceptions, the seasonal PNPF differences were positively correlated with the PNPFs in a given season for most accessions. These results provided useful information and materials for sex expression mechanism research and for breeding cucumbers with high and stable yields.

  8. Genome-wide identification and structure-function studies of proteases and protease inhibitors in Cicer arietinum (chickpea).

    Science.gov (United States)

    Sharma, Ranu; Suresh, C G

    2015-01-01

    Proteases are a family of enzymes present in almost all living organisms. In plants they are involved in many biological processes requiring stress response in situations such as water deficiency, pathogen attack, maintaining protein content of the cell, programmed cell death, senescence, reproduction and many more. Similarly, protease inhibitors (PIs) are involved in various important functions like suppression of invasion by pathogenic nematodes, inhibition of spores-germination and mycelium growth of Alternaria alternata and response to wounding and fungal attack. As much as we know, no genome-wide study of proteases together with proteinaceous PIs is reported in any of the sequenced genomes till now. Phylogenetic studies and domain analysis of proteases were carried out to understand the molecular evolution as well as gene and protein features. Structural analysis was carried out to explore the binding mode and affinity of PIs for cognate proteases and prolyl oligopeptidase protease with inhibitor ligand. In the study reported here, a significant number of proteases and PIs were identified in chickpea genome. The gene expression profiles of proteases and PIs in five different plant tissues revealed a differential expression pattern in more than one plant tissue. Molecular dynamics studies revealed the formation of stable complex owing to increased number of protein-ligand and inter and intramolecular protein-protein hydrogen bonds. The genome-wide identification, characterization, evolutionary understanding, gene expression, and structural analysis of proteases and PIs provide a framework for future analysis when defining their roles in stress response and developing a more stress tolerant variety of chickpea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Genetic diversity and spatial structure in cacao (Theobroma cacao L.) germplasm from Bolivia

    Science.gov (United States)

    Cacao (Theobroma cacao L.) is an important economic crop widely cultivated in the Bolivian Amazon. The germplasm group used by the Bolivian farmers was called “Cacao Nacional Boliviano” (CNB). Wild cacao populations are also found in the Beni River and in the valleys of Andes foot hills. Using DNA...

  10. Chickpea (Cicer arietinum L.) physiological, chemical and growth responses to irrigation with saline water

    DEFF Research Database (Denmark)

    Hirich, Abdelaziz; Omari, Halima El; Jacobsen, Sven-Erik

    2014-01-01

    and soluble sugars as osmolytes produced by chickpea to mitigate the effect of salinity stress. The added value of these results is that the crop's responses to salinity are quantified. The obtained values can be used to determine 'threshold values'; should the salinity of the irrigation water go above...... these threshold values one may expect the crop yield parameters to be affected. The quantified responses also indicate the rate of change of yield parameters in response to the irrigation water salinity level. This could help in avoiding significant yield reduction when deciding on the irrigation water salinity...

  11. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum Germplasm Bank, by Diversity Arrays Technology “Genotyping-by-Sequencing” Platform (DArTseq

    Directory of Open Access Journals (Sweden)

    Leticia A. Egea

    2017-07-01

    Full Text Available Garlic (Allium sativum is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions; (ii create a core collection; (iii relate genotype to agronomical features; and (iv describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming.

  12. Development of a core set of SSR markers for the characterization of Gossypium germplasm

    Science.gov (United States)

    Molecular markers such as simple sequence repeats (SSR) are a useful tool for characterizing genetic diversity of Gossypium germplasm collections. Genetic profiles by DNA fingerprinting of cotton accessions can only be compared among different collections if a common set of molecular markers are us...

  13. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianping [Univ. of Florida, Gainesville, FL (United States); Sandhu, Hardev [Univ. of Florida, Gainesville, FL (United States)

    2017-03-23

    1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypically and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars

  14. Traditional Turkish Fermented Cereal Based Products: Tarhana, Boza and Chickpea Bread

    Directory of Open Access Journals (Sweden)

    Hasan Tangüler

    2014-04-01

    Full Text Available Fermented products are one of the important foodstuffs in many countries of the world. People have gradually recognized the nutritional, functional and therapeutic value of these products and this has made them even more popular. Today, almost all consumers have a significant portion of their nutritional requirements fulfilled through these products. Scientific and technological knowledge is quite well developed for some fermented products such as wine, beer, cheese, and bread. These products are produced universally. However, scientific knowledge for some traditional foods produced locally in Turkey is still poor and not thorough. Numerous traditional, cereal-based fermented foods are produced in Turkey. The aim of this paper is to provide knowledge regarding the characterization, raw materials used for production, production methods, fermentation conditions and microorganisms which are effective in the fermentation of traditional foods. The study will focus on Boza, Tarhana, and Chickpea bread which are foods widely produced in Turkey.

  15. Root distribution pattern and nitrogen uptake of some wheat and triticale germplasms in relation to rates and methods of nitrogen application

    International Nuclear Information System (INIS)

    Meena, N.L.; Seth, Jagdish

    1975-01-01

    A field experiment was conducted under irrigated conditions with four germplasms viz. Triticale(70-2), and wheat varieties HD 4502(durum), Kalyan Sona and Moti (aestivums) at the Indian Agricultural Research Institute Farm, New Delhi, during rabi season of 1972-73. The treatments comprised of three rates of nitrogen viz. 0,60 and 120 kg/ha and two methods of nitrogen application viz. (1) soil + foliar and (2) soil. The root distribution of the four germplasms, studied by 32 P injection technique was increased both vertically and horizontally with the addition of nitrogen. Root distribution of triticale was observed to be deep and spreading in habit, while durum proved to be shallow rooted and compact in nature. The total uptake of nitrogen was significantly increased with higher rates of nitrogen in all the germplasms. The maximum uptake of nitrogen was observed in the durum wheat. (author)

  16. Mutant lines of currant tomato, valuable germplasm with multiple disease resistance

    International Nuclear Information System (INIS)

    Govorova, G.F.; Khrustaleva, V.V.; Shcherbakov, V.K.

    1987-01-01

    Studies were carried out for two years on eight mutant lines of currant tomato at the Krymsk Experimental Breeding Station of the N.I. Vavilov All-Union Scientific Research Institute of Plant-Growing (VIR). The station is situated in an area of commercial field tomato growing (Krasnodar region). The mutant lines of currant tomato (VIR specimen No. k-4053) were obtained through chronic gamma-irradiation. A disease resistance evaluation of the mutants was carried out for Verticillium wilt (Verticillium albo-atrum Rein. and Berth.), for black bacterial spotting (Xanthomonas vesicatoria Dows.), for tobacco mosaic virus Nicotiana 1 Smith), for streak virus (Nicotiana 1), for the combination TMV with X and Y potato viruses, for cucumber virus (Cucumis 1), and also for top rot. Fifty plants of each mutant line were evaluated and checks were made three times in each season. A comparison of the currant tomato mutants with the standard tomato varieties demonstrates the better resistance shown by the mutant germplasm to the main pathogens. The degree to which some currant tomato mutants were affected by Verticillium was lower than that of the most VerticiIlium-resistant samples of tomato evaluated between 1975 and 1981. The mutants of currant tomato should therefore be of interest as germplasm in breeding tomatoes for improved multiple disease resistance

  17. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  18. The efficacy of Beauveria bassiana, jasmonic acid and chlorantraniliprole on larval populations of Helicoverpa armigera in chickpea crop ecosystems.

    Science.gov (United States)

    Younas, Aneela; Wakil, Waqas; Khan, Zaeema; Shaaban, Muhammad; Prager, Sean Michael

    2017-02-01

    A robust integrated pest management (IPM) programme is needed to reduce the use of insecticides in controlling Helicoverpa armigera. Therefore, a 2 year field study was conducted to evaluate the use of alternative control measures (biochemical use) for H. armigera relative to exclusively using chemical insecticides. The entomopathogenic fungus Beauveria bassiana, jasmonic acid and the insecticide chlorantraniliprole were each applied twice during the chickpea growing season. All three applied materials (either alone or combined) significantly (P ≤ 0.05) reduced the larval population of H. armigera and pod infestation. Effects increased with time, and the maximum difference was observed 7 days after the second application in each year. The lowest numbers of larvae per plant and pod infestation were in the B. bassiana 3.21 × 10 6 + chlorantraniliprole treatment in both 2009/2010 and 2010/2011 year. The reduction in the larval population and pod infestation increased chickpea yield and the highest yield in both seasons, and the maximum yield was obtained in the B. bassiana 3.21 × 10 6 + chlorantraniliprole treatment. The populations of natural enemies were highest in the jasmonic acid treatment. The results suggest that B. bassiana, jasmonic acid and chlorantraniliprole may be useful components for the H. armigera IPM strategy. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. effect of two rock phosphates and inoculation with VA mycorrhizae and phosphate solubilizing bacteria on the chickpea-rhizobium symbiosis

    International Nuclear Information System (INIS)

    Soliman, S.M.; Galal, Y.G.M.; El-Ghandour, I.A.

    2004-01-01

    A pot experiment was conducted tracing the effect of two types of phosphorus applied at different rates on the release of nitrogen from fertilizer and its impact on biological nitrogen fixation . chickpea (Cicer Arietinum c v. Cicer 36-ICARDA) was inoculated with peat-based inoculum of phosphorin (Bacillus Megatherium phosphate solubilizing bacteria), Mycorrhizae (VAM) and a mixture of phosphorin and VAM. three types of P fertilizer, i.e.superphosphate, rock P 1 (Safaga) and rock P2 (Abou-Trtour) were applied at rate of 25 and 50 mg Pkg -1 soil in the presence or absence of inoculum. labelled ammonium sulfate with 15 N 10% atom excess was applied at rates of 15 and 30 mg N kg -1 soil for chickpea and barley (reference crop) respectively . Addition of phosphorus fertilizers, especially at the high rates, positively affected the growth and dry weight as compared to the unfertilized control. infections with VAM mixed with phosphorin under low level of rock P (Abou-tarour) gave the highest values of dry weight and N and P uptake when compared with both superphosphate-P source and control. biological N 2 fixed was higher in dual inoculation treatments (i.e.phosphorin +VAM) than those receiving a single inoculum. the percentages of N 2 -fixed ranged from 24 to 53 according to inoculation treatments, P sources and levels

  20. New additions to the National Plant Germplasm System’s Beta collection: Southern Morocco expedition

    Science.gov (United States)

    The USDA Agricultural Research Service’s National Plant Germplasm System’s (NPGS) Beta collection is comprised of 2,541 accessions from 14 species. The largest number of accessions is from Beta vulgaris ssp. vulgaris, (domesticated beet crops – table, leaf (Swiss chard), fodder and, primarily, sugar...

  1. Variation in cooking and eating quality traits in Japanese rice germplasm accessions.

    Science.gov (United States)

    Hori, Kiyosumi; Suzuki, Keitaro; Iijima, Ken; Ebana, Kaworu

    2016-03-01

    The eating quality of cooked rice is important and determines its market price and consumer acceptance. To comprehensively describe the variation of eating quality in 183 rice germplasm accessions, we evaluated 33 eating-quality traits including amylose and protein contents, pasting properties of rice flour, and texture of cooked rice grains. All eating-quality traits varied widely in the germplasm accessions. Principal-components analysis (PCA) revealed that allelic differences in the Wx gene explained the largest proportion of phenotypic variation of the eating-quality traits. In 146 accessions of non-glutinous temperate japonica rice, PCA revealed that protein content and surface texture of the cooked rice grains significantly explained phenotypic variations of the eating-quality traits. An allelic difference based on simple sequence repeats, which was located near a quantitative trait locus (QTL) on the short arm of chromosome 3, was associated with differences in the eating quality of non-glutinous temperate japonica rice. These results suggest that eating quality is controlled by genetic factors, including the Wx gene and the QTL on chromosome 3, in Japanese rice accessions. These genetic factors have been consciously selected for eating quality during rice breeding programs in Japan.

  2. Assessment of genetic diversity in lettuce (Lactuca sativa L.) germplasm using RAPD markers.

    Science.gov (United States)

    Sharma, Shubhangi; Kumar, Pankaj; Gambhir, Geetika; Kumar, Ramesh; Srivastava, D K

    2018-01-01

    The importance of germplasm characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programmes. In the present study, genetic variability and relationships among 25 Lactuca sativa L. genotypes were tested using random amplified polymorphic DNA (RAPD) molecular markers. A total of 45 random decamer oligonucleotide primers were examined to generate RAPD profiles, out of these reproducible patterns were obtained with 22 primers. A total of 87 amplicon were obtained, out of which all were polymorphic and 7 were unique bands. The level of polymorphism across genotypes was 100% as revealed by RAPD. Genetic similarity matrix, based on Jaccard's coefficients ranged from 13.7 to 84.10% indicating a wide genetic base. Dendrogram was constructed by unweighted pair group method with arithmetic averages method. RAPD technology could be useful for identification of different accessions as well as assessing the genetic similarity among different genotypes of lettuce. The study reveals the limited genetic base and the needs to diversify using new sources from the germplasm.

  3. Genetic diversity of a brazilian wine grape germplasm collection based on morphoagronomic traits

    Directory of Open Access Journals (Sweden)

    Patrícia Coelho de S. Leão

    2010-12-01

    Full Text Available The objectives of this study were to evaluate the performance of cultivars, to quantify the variability and to estimate the genetic distances of 66 wine grape accessions in the Grape Germplasm Bank of the EMBRAPA Semi-Arid, in Juazeiro, BA, Brazil, through the characterization of discrete and continuous phenotypic variables. Multivariate statistics, such as, principal components, Tocher's optimization procedure, and the graphic of the distance, were efficient in grouping more similar genotypes, according to their phenotypic characteristics. There was no agreement in the formation of groups between continuous and discrete morpho-agronomic traits, when Tocher's optimization procedure was used. Discrete variables allowed the separation of Vitis vinifera and hybrids in different groups. Significant positive correlations were observed between weight, length and width of bunches, and a negative correlation between titratable acidity and TSS/TTA. The major part (84.12% of the total variation present in the original data was explained by the four principal components. The results revealed little variability between wine grape accessions in the Grape Germplasm Bank of Embrapa Semi-Arid.

  4. RAPD analysis of the genetic diversity of mango (Mangifera indica) germplasm in Brazil.

    Science.gov (United States)

    Souza, I G B; Valente, S E S; Britto, F B; de Souza, V A B; Lima, P S C

    2011-12-14

    We evaluated genetic variability of mango (Mangifera indica) accessions maintained in the Active Germplasm Bank of Embrapa Meio-Norte in Teresina, Piauí, Brazil, using RAPDs. Among these accessions, 35 originated from plantings in Brazil, six from the USA and one from India. Genomic DNA, extracted from leaf material using a commercial purification kit, was subjected to PCR with the primers A01, A09, G03, G10, N05, and M16. Fifty-five polymorphic loci were identified, with mean of 9.16 ± 3.31 bands per primer and 100% polymorphism. Application of unweighted pair group method using arithmetic average cluster analysis demonstrated five genotypic groups among the accessions examined. The genotypes Rosa 41, Rosa 48 and Rosa 49 were highly similar (94% similarity), whereas genotypes Sensation and Rosa 18 were the most divergent (only 7% similarity). The mango accessions were found to have considerable genetic variability, demonstrating the importance of analyzing each genotype in a collection in order to efficiently maintain the germplasm collection.

  5. Flowering of taro germplasm (Colocasia esculenta (L. Schott in Cuba

    Directory of Open Access Journals (Sweden)

    Yadelys Figueroa Águila

    2016-01-01

    Full Text Available Research was done at the Center for Tropical Crop Research (INIVIT, to evaluate inflorescence of taro germplasm (104 accessions in Cuba´s climatic conditions. Sampling was made every 7 days in the 2013-2014 period to evaluate inflorescence; accessions were characterized according to flowering parameters. The results showed that natural flowering by the 26-accession sample (25%, was observed to early blossom from July to October in 18 accessions (69.2%. Increased temperature and relative humidity lasted until November, when inflorescence ends.

  6. Semi-high throughput screening for potential drought-tolerance in lettuce (Lactuca sativa) germplasm collections

    Science.gov (United States)

    This protocol describes a method by which a large collection of the leafy green vegetable lettuce (Lactuca sativa L.) germplasm was screened for likely drought-tolerance traits. Fresh water availability for agricultural use is a growing concern across the United States as well as many regions of th...

  7. Effect of growing location on seed oil composition in the cultivated peanut germplasm collection

    Science.gov (United States)

    A particularly important component of seed oils is the content of oleic acid as this fatty acid has several health benefits and contributes to increased oil stability, i.e. longer shelf life. We measured 8846 available accessions of the USDA peanut germplasm collection to gauge the range of variatio...

  8. Isoflavones extracted from chickpea Cicer arietinum L. sprouts induce mitochondria-dependent apoptosis in human breast cancer cells.

    Science.gov (United States)

    Chen, Hua; Ma, Hai-Rong; Gao, Yan-Hua; Zhang, Xue; Habasi, Madina; Hu, Rui; Aisa, Haji Akber

    2015-02-01

    Isoflavones are important chemical components of the seeds and sprouts of chickpeas. We systematically investigated the effects of isoflavones extracted from chickpea sprouts (ICS) on the human breast cancer cell lines SKBr3 and Michigan Cancer Foundation-7 (MCF-7). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that ICS (10-60 µg/mL) significantly inhibited the proliferation of both cell lines in a time-dependent and dose-dependent fashion. Wright-Giemsa staining as well as annexin V-fluorescein isothiocyanate and propidium iodide (Annexin V/PI) staining showed that ICS significantly increased cytoclasis and apoptotic body formation. Quantitative Annexin V/PI assays further showed that the number of apoptotic cells increased in a dose-dependent manner following ICS treatment. Semiquantitative reverse transcription PCR showed that ICS increased the expression of the apoptosis-promoting gene Bcl-2-associated X protein and decreased the expression of the antiapoptotic gene Bcl-2. Western blot analysis showed that treatment of SKBr3 and MCF-7 cells with ICS increased the expression of caspase 7, caspase 9, P53, and P21 in a dose-dependent manner. Flow cytometry assays using the fluorescent probe 3,3'-dihexyloxacarbocyanine iodide showed a dose-dependent decrease in mitochondrial membrane potential following ICS treatment. Treatment using ICS also induced a dose-dependent increase in reactive oxygen species production. This is the first study to demonstrate that ICS may be a chemopreventive or therapeutic agent against breast cancer. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Alterações químicas e nutricionais do grão-de-bico (Cicer arietinum L. cru irradiado e submetido à cocção Nutritional and chemical alteration of raw, irradiated and cooked chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Andréa Cristina Penati Ferreira

    2006-03-01

    Full Text Available O presente trabalho teve por objetivos analisar, em grãos não submetidos à irradiação, a composição centesimal e mineral, para verificar as alterações provocadas pela cocção. Em grãos crus e cozidos, não irradiados (controle e irradiados (doses de 2, 4, 6, 8 e 10 kGy, foram realizadas também as análises de: disponibilidade de ferro in vitro, digestibilidade da proteína in vitro e perfil de aminoácidos. Os resultados das análises dos minerais demonstraram que ocorreu diminuição significativa (pThe work objective was analyzing, in chickpea seeds not irradiated, the centesimal and mineral composition to verifying the alterations on the nutritional characteristics caused by the cooking process. Also were carried out analysis of the iron availability in vitro, protein digestibility in vitro and the profile of amino acids in the raw and cooked in the control and irradiated seeds (doses of 2, 4, 6, 8 and 10 kGy. The results of the mineral analysis showed that only phosphorus decrease significantly (p<0.05 with cooking process. At the centesimal composition, ash and carbohydrates available decreased significantly (p<0,05. In the control and in the doses of 4 and 6 kGy the cooking hasn't influenced the digestibility of the protein, but the treatments that received radiation doses of 2, 8 and 10 kGy were influenced. The cooked chickpea has shown better digestibility in higher doses of radiation although the treatments have shown low digestibility. The raw chickpea presented a better dialysis of iron in the control and in the doses 2 and 4 kGy and the cooked chickpea presented improvement according to the increase of radiation doses. In relation to essential amino acids, chickpea has presented an adequate nutritional value, except for methionine.

  10. Differences between easy- and difficult-to-mill chickpea (Cicer arietinum L.) genotypes. Part III: free sugar and non-starch polysaccharide composition.

    Science.gov (United States)

    Wood, Jennifer A; Knights, Edmund J; Campbell, Grant M; Choct, Mingan

    2014-05-01

    Parts I and II of this series of papers identified several associations between the ease of milling and the chemical compositions of different chickpea seed fractions. Non-starch polysaccharides were implicated; hence, this study examines the free sugars and sugar residues. Difficult milling is associated with: (1) lower glucose and xylose residues (less cellulose and xyloglucans) and more arabinose, rhamnose and uronic acid in the seed coat, suggesting a more flexible seed coat that resists cracking and decortication; (2) a higher content of soluble and insoluble non-starch polysaccharide fractions in the cotyledon periphery, supporting a pectic polysaccharide mechanism comprising arabinogalacturonan, homogalacturonan, rhamnogalalcturonan, and glucuronan backbone structures; (3) higher glucose and mannose residues in the cotyledon periphery, supporting a lectin-mediated mechanism of adhesion; and (4) higher arabinose and glucose residues in the cotyledon periphery, supporting a mechanism involving arabinogalactan-proteins. This series has shown that the chemical composition of chickpea does vary in ways that are consistent with physical explanations of how seed structure and properties relate to milling behaviour. Seed coat strength and flexibility, pectic polysaccharide binding, lectins and arabinogalactan-proteins have been implicated. Increased understanding in these mechanisms will allow breeding programmes to optimise milling performance in new cultivars. © 2013 Society of Chemical Industry.

  11. WRKY domain-encoding genes of a crop legume chickpea (Cicer arietinum): comparative analysis with Medicago truncatula WRKY family and characterization of group-III gene(s).

    Science.gov (United States)

    Kumar, Kamal; Srivastava, Vikas; Purayannur, Savithri; Kaladhar, V Chandra; Cheruvu, Purnima Jaiswal; Verma, Praveen Kumar

    2016-06-01

    The WRKY genes have been identified as important transcriptional modulators predominantly during the environmental stresses, but they also play critical role at various stages of plant life cycle. We report the identification of WRKY domain (WD)-encoding genes from galegoid clade legumes chickpea (Cicer arietinum L.) and barrel medic (Medicago truncatula). In total, 78 and 98 WD-encoding genes were found in chickpea and barrel medic, respectively. Comparative analysis suggests the presence of both conserved and unique WRKYs, and expansion of WRKY family in M. truncatula primarily by tandem duplication. Exclusively found in galegoid legumes, CaWRKY16 and its orthologues encode for a novel protein having a transmembrane and partial Exo70 domains flanking a group-III WD. Genomic region of galegoids, having CaWRKY16, is more dynamic when compared with millettioids. In onion cells, fused CaWRKY16-EYFP showed punctate fluorescent signals in cytoplasm. The chickpea WRKY group-III genes were further characterized for their transcript level modulation during pathogenic stress and treatments of abscisic acid, jasmonic acid, and salicylic acid (SA) by real-time PCR. Differential regulation of genes was observed during Ascochyta rabiei infection and SA treatment. Characterization of A. rabiei and SA inducible gene CaWRKY50 showed that it localizes to plant nucleus, binds to W-box, and have a C-terminal transactivation domain. Overexpression of CaWRKY50 in tobacco plants resulted in early flowering and senescence. The in-depth comparative account presented here for two legume WRKY genes will be of great utility in hastening functional characterization of crop legume WRKYs and will also help in characterization of Exo70Js. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Genetic characterization of guava (psidium guajava l.) Germplasm in the United States using microsatellite markers

    Science.gov (United States)

    Genetic diversity of thirty five Psidium guajava accessions maintained at the USDA, National Plants Germplasm System, Hilo, HI, was characterized using 20 simple sequence repeat (SSR) markers. Diversity analysis detected a total of 178 alleles ranging from four to 16. The observed mean heterozygosit...

  13. Rebuilding Hawaii’s Anthurium germplasm collection for cultivar and species preservation, breeding, and biotechnological research

    Science.gov (United States)

    Anthurium is the third most important floriculture crop in Hawaii, grown mainly as a cut flower. The University of Hawaii (UH) has a well-established anthurium breeding program since 1950, with a germplasm collection assembled from backyard growers, hobbyists, researchers and collection trips from c...

  14. Purification, crystallization and X-ray characterization of a Kunitz-type trypsin inhibitor protein from the seeds of chickpea (Cicer arietinum)

    International Nuclear Information System (INIS)

    Sharma, Urvashi; Suresh, C. G.

    2011-01-01

    The purification, characterization and crystallization of a trypsin inhibitor protein isolated from chickpea seeds are reported. A Kunitz-type trypsin inhibitor protein (CPTI) purified from chickpea seeds was estimated to have a molecular mass of 18 kDa on SDS–PAGE. The IC 50 value of CPTI was determined to be 2.5 µg against trypsin. The inhibitory activity of CPTI is 114 TIU (trypsin inhibitory units) per milligram of protein, which is high compared with those of other known Kunitz-type trypsin inhibitors from legumes. CPTI crystallized in three different orthorhombic crystal forms: P2 1 2 1 2 form A, P2 1 2 1 2 form B and P2 1 2 1 2 1 . The crystals of P2 1 2 1 2 form A, with unit-cell parameters a = 37.2, b = 41.2, c = 104.6 Å, diffracted to 2.0 Å resolution at the home source and to 1.4 Å on beamline BM14 at the ESRF. Data were also collected from crystals grown in the presence of iodine. The Matthews coefficient for these crystals was calculated to be 2.37 Å 3 Da −1 , corresponding to a solvent content of 42%. The other two crystal forms (P2 1 2 1 2 form B and P2 1 2 1 2 1 ) diffracted comparatively poorly

  15. Rebelling against the (Insulin Resistance: A Review of the Proposed Insulin-Sensitizing Actions of Soybeans, Chickpeas, and Their Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Jaime L. Clark

    2018-03-01

    Full Text Available Insulin resistance is a major risk factor for diseases such as type 2 diabetes and metabolic syndrome. Current methods for management of insulin resistance include pharmacological therapies and lifestyle modifications. Several clinical studies have shown that leguminous plants such as soybeans and pulses (dried beans, dried peas, chickpeas, lentils are able to reduce insulin resistance and related type 2 diabetes parameters. However, to date, no one has summarized the evidence supporting a mechanism of action for soybeans and pulses that explains their ability to lower insulin resistance. While it is commonly assumed that the biological activities of soybeans and pulses are due to their antioxidant activities, these bioactive compounds may operate independent of their antioxidant properties and, thus, their ability to potentially improve insulin sensitivity via alternative mechanisms needs to be acknowledged. Based on published studies using in vivo and in vitro models representing insulin resistant states, the proposed mechanisms of action for insulin-sensitizing actions of soybeans, chickpeas, and their bioactive compounds include increasing glucose transporter-4 levels, inhibiting adipogenesis by down-regulating peroxisome proliferator-activated receptor-γ, reducing adiposity, positively affecting adipokines, and increasing short-chain fatty acid-producing bacteria in the gut. Therefore, this review will discuss the current evidence surrounding the proposed mechanisms of action for soybeans and certain pulses, and their bioactive compounds, to effectively reduce insulin resistance.

  16. Dry matter yield, carbon isotope discrimination and nitrogen uptake in silicon and/ or potassium fed chickpea and barley plants grown under water and non-water stress conditions

    International Nuclear Information System (INIS)

    Kurd Ali, F.; Al-Chammaa, M.; Mouasess, A.

    2012-09-01

    A pot experiment was conducted to study the effects of silicon (Si) and/or potassium (K) on dry matter yield, nitrogen uptake and carbon isotope discrimination Δ 13 C in water stressed (FC1) and well watered (FC2) chickpea plants using 15 N and 13 C isotopes. Three fertilizer rates of Si (Si 5 0, Si 1 00 and Si 2 00) and one fertilizer rate of K were used. The results showed that: In chickpeas, it was found, for most of the growth parameters, that Si either alone or in combination with K was more effective to alleviate water stress than K alone. Increasing soil water level from FC1 to FC2 often had a positive impact on values of most studied parameters. The Si 1 00K + (FC1) and Si 5 0K + (FC2) treatments gave high enough amounts of N 2 -fixation, higher dry matter production and greater nitrogen yield. The percent increments of total N 2 -fixed in the above mentioned treatments were 51 and 47% over their controls, respectively. On the other hand, increasing leaves dry matter in response to the solely added Si (Si 5 0K - and Si 1 00K - ) is associated with lower Δ 13 C under both watering regimes. This may indicate that Si fertilization had a beneficial effect on water use efficiency (WUE). Hence, Δ 13 C could be an adequate indicator of WUE in response to the exogenous supply of silicon to chickpea plants. Our results highlight that Si is not only involved in amelioration of growth and in maintaining of water status but it can be considered as an important element for the symbiotic performance of chickpea plants. It can be concluded that synergistic effect of silicon and potassium fertilization with adequate irrigation improves growth and nitrogen fixation in chickpea plants.In barley plants, solely added K or in combination with adequate rate of Si (Si 1 00) were more effective in alleviating water stress and producing higher yield in barley plants than solely added Si. However, the latter nutrient was found to be more effective than the former in producing

  17. Maize germplasm of eastern Croatia with native resistance to western corn rootworm (Diabrotica virgifera virgifera LeConte

    Directory of Open Access Journals (Sweden)

    Brkić Andrija

    2017-01-01

    Full Text Available The western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR is a serious maize pest in Croatia. The species was first registered in Europe in the early 1990s and since then became one of the most dangerous maize pests, especially in parts of Central and Southeast Europe. Larvae that feed on the maize roots cause the most serious damages in maize fields. Management of this pest is difficult and expensive, with possible serious impact on the environment. Native (or host-plant resistance of maize against WCR could provide new economically and ecologically sustainable options in WCR management. Main goal of this study was to assess the variability of maize germplasm, correlations among resistance traits, and detect potential sources of resistance that could be used in breeding programs in order to develop hybrids with higher level of resistance against WCR. To our knowledge, the first native resistant hybrid is yet to be registered. Results showed great variability of estimated germplasm. Effect of the genotype was significant in all environments, as well as many interactions between genotype and the environment. Significant interactions emphasize the importance of the environment in WCR native resistance research. Significant positive correlations among all traits were detected. Several inbred lines were selected as a potentially useful germplasm for resistance breeding programs.

  18. Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays

    Directory of Open Access Journals (Sweden)

    Lucía Gutiérrez

    2011-11-01

    Full Text Available Malting quality comprises one of the most economically relevant set of traits in barley ( L.. It is a complex phenotype, expensive and difficult to measure, that would benefit from a marker-assisted selection strategy. Malting quality is a target of the U.S. Barley Coordinated Agricultural Project (CAP and development of winter habit malting barley varieties is a key objective of the U.S. barley research community. The objective of this work was to detect quantitative trait loci (QTL for malting quality traits in a winter breeding program that is a component of the U.S. Barley CAP. We studied the association between five malting quality traits and 3072 single nucleotide polymorphisms (SNPs from the barley oligonucleotide pool assay (BOPA 1 and 2, assayed in advanced inbred lines from the Oregon State University (OSU breeding program from three germplasm arrays (CAP I, CAP II, and CAP III. After comparing 16 models we selected a structured association model with posterior probabilities inferred from software STRUCTURE (QK approach to use on all germplasm arrays. Most of the marker-trait associations are germplasm- and environment-specific and close to previously mapped genes and QTL relevant for malt and beer quality. We found alleles fixed by random genetic drift, novel unmasked alleles, and genetic-background interaction. In a relatively small population size study we provide strong evidence for detecting true QTL.

  19. Adaptation to mid-season drought in a sweetpotato (Ipomoea batatas [L.] Lam germplasm collection grown in Mozambique

    Directory of Open Access Journals (Sweden)

    Makunde Godwill S.

    2017-02-01

    Full Text Available Drought has negative effects on sweetpotato production. Two experiments with two watering treatments (irrigated and water-stressed were conducted at Umbeluzi Research Station in 2015. The objectives were to (i determine response of 48 sweetpotato germplasms to mid-season drought, (ii determine best traits for improvement of storage root yield under mid-season drought and (iii assess the selection criteria for identifying drought tolerance in sweetpotato germplasms. The irrigated and water- stressed trials received 640 and 400 mm of water, respectively, throughout the season. Water stress was imposed from 30 to 70 days after planting. Each treatment had two replicates arranged in a randomized complete block design. Data collected on storage root and vine yield and derived drought tolerance indices including harvest index were subjected to analysis of variance in R. Sweetpotato germplasms with high storage root yield under mid-season drought were associated with a high harvest index. Harvest index stability and the geometric mean are key to identifying cultivars with high and stable storage root yield under both treatments. MUSGP0646-126, Irene and Ivone combined both low TOL, SSI, HI and high yield storage root yield across the treatments and over seasons. The use of drought and harvest indices is encouraged for selecting improved cultivars for varied production environments and their regular use in accelerated breeding schemes is suggested.

  20. Study of Genetic Diversity of grain yield-associated traits in Iranian and Exotic Safflower (Carthamus tinctorius Germplasm

    Directory of Open Access Journals (Sweden)

    M. M. Majidi

    2015-09-01

    Full Text Available Safflower (Carthamus tinctorius L. is cultivated in a wide range of geographical conditions in the world from Africa to Europe, India and China. Previous studies have shown that diversity in indigenous Iranian germplasm is limited for some traits therefore germplasm collections from other origins need to be considered. An experiment was conducted to evaluate agronomic and morphological traits of 100 Iranian and exotic safflower genotypes during 2011- 2012 at the Research Farm of Isfahan University of Technology, Isfahan, Iran, using a simple lattice design of 10 × 10. The results of analysis of variance showed that the differences among genotypes were highly significant (p < 0.01 for days to flowering, seed yield, plant height, number of heads per plant, number of seeds per head, 1000-seed weight, oil content and harvest index, indicating high variability in the studied germplasm. The highest and lowest heritabilities were observed for 1000-seed weight and seed yield, respectively, indicating that indirect improving for seed yield would be more beneficial. Genetic and phenotypic correlation coefficients showed that number of heads per plant, number of seeds per head and harvest index had significantly positive correlations with seed yield. The results of stepwise regression and path analysis showed that number of heads per plant, number of seeds per head and 1000-seed weight are the most important components of seed yield, among which, number of heads per plant had the greatest direct positive effect on seed yield. These traits could be used as criteria for indirect selection in safflower breeding programs. Factor analysis recognized three factors which explained 72.56 percent of total variations. These factors were defined as phenological, physiological source and efficiency factors. Cluster analysis based on the agronomic and morphological traits grouped the genotypes into three clusters. Iranian accessions were clearly discriminated from

  1. Molecular characterisation of a germplasm bank for Theobroma genus using the RAPD technique

    Directory of Open Access Journals (Sweden)

    Yovany Moreno

    2004-07-01

    Full Text Available RAPD markers (Random Amplified Polymorphic DNA were used for analysing 145 individuals (128 T. grandiflorum and 17 T. bicolor from the ex situ Theobroma genus germplasm bank at Instituto Sinchi, located at San José del Guaviare. 5 primers able to generated polymorphism were selected from an initial set of 20, generating 114 bands that enable to us to distinguish between more than 99% of individuals analysed: 57 bands for T. grandiflorum (84.2% polymorphic, 45 bands for T. bicolor (26.7% polymorphic and 12 bands shared between the two species (58.3% polymorphic. A high degree of intra-specific similarity particularly in T. bicolor was established from the similarity matrix obtained by using the Dice index and represented in a UPGMA dendrogram and the principal components analysis (PCA. The comparison of this analysis with a previous morpho-agronomic evaluation of some T. grandiflorum individuals revealed that the groups generated on the basis of its agronomic and morphological traits were heterogeneous at molecular level. The obtained information will be used as a tool in strategies regarding maintenance, enrichment and use of the germplasm bank. Key words: Theobroma grandiflorum, Theobroma bicolour, RAPD, molecular characterisation.

  2. Characterization of Sugar Concentration Among Edible Podded Accessions in the USDA Phaseolus vulgaris Germplasm Collection

    Science.gov (United States)

    The objective is to gain knowledge regarding variation in sugar and flavor content among a sample of dry bean and green pod-type accessions from the USDA Phaseolus Germplasm Core Collection, Pullman, WA. The results could be used to market product quality and offer unique opportunities to expand ma...

  3. Molecular characterization of peach [Prunus persica (L.) Batsch] germplasm in the United States using microsatellite markers

    Science.gov (United States)

    Peach [Prunus persica (L.) Batsch] is an important medicinal fruit with immense health benefits and antioxidant activity. In this study, microsatellite markers were used as DNA fingerprinting tools for the identification and characterization of peach germplasm in the United States. Eleven microsatel...

  4. 2D random walk representation of Begonia x tuberhybrida multiallelic loci used for germplasm identification

    Czech Academy of Sciences Publication Activity Database

    Wiesner, Ivo; Wiesnerová, Dana

    2010-01-01

    Roč. 54, č. 2 (2010), s. 353-356 ISSN 0006-3134 R&D Projects: GA AV ČR 1QS500510566 Institutional research plan: CEZ:AV0Z50510513 Keywords : begonia germplasm identification * random walk * primary sequence analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.582, year: 2010

  5. Ft. Collins Sugar Beet Germplasm Evaluated for Resistance to Rhizomania and Storability in Idaho, 2010

    Science.gov (United States)

    Sugar beet germplasm and commercial check cultivars were evaluated in a sprinkler-irrigated sugar beet field near Kimberly, ID where sugar beet was grown in 2009. The field trial relied on natural inoculum for rhizomania development. The seed was treated with clothianidin (2.1 oz a.i. per 100,000 ...

  6. Germplasm enhancement for adaptation to climate changes

    Directory of Open Access Journals (Sweden)

    Marcelo J Carena

    2011-01-01

    Full Text Available Billions of dollars and crops are being lost to drying high moisture grain; drought, cold, and salt susceptibility; andto processing poor quality grain. Maize is a model crop for adaptation to climate changes. Breeding for adaptation is best doneunder challenging environmental conditions where strengths and weaknesses are quickly identified and most stable genotypes areselected. The North Dakota State University (NDSU maize breeding program is strategically located to develop products underextreme weather. It currently exploits northern U.S. environments that allow screening for adaptation traits that are as important asyield. The program focuses on germplasm adaptation and its integration into cultivar development, particularly those carryingunique alleles not present in the B73 and NAM genomes. There is a need for projects that are vital to agricultural research and willmeet present and future demands of superior genotypes tolerant to climate changes in the U.S. and abroad.

  7. Germplasm morgue or gold mine? Enhancing the value of plant genetic resource collections for plant breeding

    Science.gov (United States)

    Genetic diversity is the raw material that plant breeders require to develop cultivars that are productive, nutritious, pest and stress tolerant, and water and nutrient use efficient. The USDA-ARS National Plant Germplasm System (NPGS) contains a wealth of genetic diversity, including improved varie...

  8. Molecular characterisation and interpretation of genetic diversity within globally distributed germplasm collections of tall fescue (Festuca arundinacea Schreb.) and meadow fescue (F. pratensis Huds.).

    Science.gov (United States)

    Hand, Melanie L; Cogan, Noel O I; Forster, John W

    2012-04-01

    Allohexaploid tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum [Schreb.] Darbysh.) is an agriculturally important grass cultivated for pasture and turf world-wide. Genetic improvement of tall fescue could benefit from the use of non-domesticated germplasm to diversify breeding populations through the incorporation of novel and superior allele content. However, such potential germplasm must first be characterised, as three major morphotypes (Continental, Mediterranean and rhizomatous) with varying degrees of hybrid interfertility are commonly described within this species. As hexaploid tall fescue is also a member of a polyploid species complex that contains tetraploid, octoploid and decaploid taxa, it is also possible that germplasm collections may have inadvertently sampled some of these sub-species. In this study, 1,040 accessions from the publicly available United States Department of Agriculture tall fescue and meadow fescue germplasm collections were investigated. Sequence of the chloroplast genome-located matK gene and the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) permitted attribution of accessions to the three previously known morphotypes and also revealed the presence of tall fescue sub-species of varying ploidy levels, as well as other closely related species. The majority of accessions were, however, identified as Continental hexaploid tall fescue. Analysis using 34 simple sequence repeat markers was able to further investigate the level of genetic diversity within each hexaploid tall fescue morphotype group. At least two genetically distinct sub-groups of Continental hexaploid tall fescue were identified which are probably associated with palaeogeographic range expansion of this morphotype. This work has comprehensively characterised a large and complex germplasm collection and has identified genetically diverse accessions which may potentially contribute valuable alleles at agronomic loci for tall fescue cultivar

  9. El nombre 'Forastero' no más: A new protocol for meaningful cacao germplasm classification.

    Science.gov (United States)

    The title of this article (The name ‘Forastero’ no more) is to convey an attempt in this paper to try to convince the cacao scientific community not to use the term Forastero to identify cacao germplasm of non-Criollo origin. The term Forastero originated in Latin America to differentiate the intro...

  10. Microsatellite fingerprinting in the International Cocoa Genebank, Trinidad: Accession and plot homogeneity information for germplasm management

    Science.gov (United States)

    The International Cocoa Genebank, Trinidad (ICG,T) is the largest public domain field gene bank collection of cacao and the correct identity of each tree is crucial for germplasm movement, evaluation and phenotypic characterization. Nine microsatellite loci were used to assess the identity of 1480 t...

  11. Effects of α-Galactooligosaccharides from Chickpeas on High-Fat-Diet-Induced Metabolic Syndrome in Mice.

    Science.gov (United States)

    Dai, Zhuqing; Lyu, Wanyong; Xie, Minhao; Yuan, Qingxia; Ye, Hong; Hu, Bing; Zhou, Li; Zeng, Xiaoxiong

    2017-04-19

    The gut microbiota has the ability to modulate host energy homeostasis, which may regulate metabolic disorders. Functional oligosaccharide may positively regulate the intestinal microbiota. Therefore, effects of α-galactooligosaccharides (α-GOS) from chickpea on high-fat-diet (HFD)-induced metabolic syndrome and gut bacterial dysbiosis were investigated. After 6 weeks of intervention, HFD led to significant increases in levels of blood glucose, total cholesterol, triglyceride, glycated serum protein, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol of mice compared to normal-chow-fed mice. Meanwhile, all of the α-GOS-treated groups significantly decreased above parameters compared to the HFD group. HFD could significantly decrease the content of all bacteria, especially Bacteroides (9.82 ± 0.09 versus 10.3 ± 0.10; p bacterial ecosystem in a positive way.

  12. Isoenzymatic variation in the germplasm of Brazilian races of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Gimenes Marcos Aparecido

    2000-01-01

    Full Text Available There are more than 200 races of maize (Zea mays L. divided into three groups (ancient commercial races, the recent commercial races, and indigenous races. Although the indigenous races have no commercial value, they have many important characteristics which can be incorporated into maize breeding programs. Most Brazilian indigenous germplasm race stocks were collected at least 40 years ago, and nothing is known of the genetic variability present in this germplasm. The genetic variability was assayed in 15 populations from four indigenous races of maize (Caingang, Entrelaçado, Lenha and Moroti and five indigenous cultivars, using five isoenzymatic systems encoded by 14 loci. The analysis revealed a low level of variability among the samples studied. Overall, the mean number of alleles/polymorphic locus was three, 64.3% of the loci analyzed being polymorphic and the estimated heterozygosity was 0.352. The mean number of alleles/polymorphic locus per population was 1.6. A mean of 47.5% of the loci were polymorphic. The mean expected heterozygosity was 0.195, the mean genetic identity was 0.821 and the proportion of total genetic diversity partitioned among populations (Gst was 0.156. A founder effect could explain the low variability detected.

  13. THE INFLUENCE OF RECIPE COMPONENTS ON QUALITY PARAMETERS OF AERATED DOUGH AND WHOLEGRAIN BREAD FROM CHICKPEA SEEDS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available The article presents the results of studying the effect of using table salt, apple juice and citric acid on quality parameters of aerated dough and bread prepared by mechanical leavening. The wholegrain flour from chickpea seeds has been used to prepare dough. The amount of salt is in the range from 1 to 3 %, apple juice from 5 to 25%, citric acid 0.05 to 0.2 % over the weight of the flour. The working mechanism of recipe components on the process of foaming while kneading of the semi-finished products of chickpea flour has been identified. The increase of their amount leads to increase of active acidity of the test and brings the protein pH to isoelectric point. Thus increasing the foaming capacity of the albuminous substances while kneading the semis. It has been founded that the maximum foaming capacity of the semis is achieved at pH 5.5. At the same time a decrease in the bulk density of the dough and the increase in specific volume of the baked product. In this case, the samples are characterized by lower bulk density (0.32 g / cm3 , and maximum specific volume of finished product (365 cm3 / 100 g. The reasonable amount of components in the bread recipe: table salt 1.5 %, apple juice 5.0 %, citric acid 0.1 % over weight of flour has been recommended. The data obtained form the basis for the development of technology of aerated bread "Atreus" with higher nutritional and biological value. The degree of satisfaction of adult daily need of 100 g of the product is, %: protein 17, dietary fiber 39, magnesium 21, phosphorus 28, iron 30, potassium, thiamine and riboflavin 18. The product is recommended for mass consumption in order to enrich dietary intake with protein, dietary fiber. minerals and vitamins.

  14. Analysis of the Volatile Profile of Core Chinese Mango Germplasm by Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ma

    2018-06-01

    Full Text Available Despite abundant published research on the volatile characterization of mango germplasm, the aroma differentiation of Chinese cultivars remains unclear. Using headspace solid phase microextraction (HS-SPME coupled with gas chromatography–mass spectrometry (GC-MS, the composition and relative content of volatiles in 37 cultivars representing the diversity of Chinese mango germplasm were investigated. Results indicated that there are distinct differences in the components and content of volatile compounds among and within cultivars. In total, 114 volatile compounds, including 23 monoterpenes, 16 sesquiterpenes, 29 non-terpene hydrocarbons, 25 esters, 11 aldehydes, five alcohols and five ketones, were identified. The total volatile content among cultivars ranged from 211 to 26,022 μg/kg fresh weight (FW, with 123-fold variation. Terpene compounds were the basic background volatiles, and 34 cultivars exhibited abundant monoterpenes. On the basis of hierarchical cluster analysis (HCA and principal component analysis (PCA, terpinolene and α-pinene were important components constituting the aroma of Chinese mango cultivars. Most obviously, a number of mango cultivars with high content of various aroma components were observed, and they can serve as potential germplasms for both breeding and direct use.

  15. The puzzle of Italian rice origin and evolution: determining genetic divergence and affinity of rice germplasm from Italy and Asia.

    Directory of Open Access Journals (Sweden)

    Xingxing Cai

    Full Text Available The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (H(e = 0.63-0.65 in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships.

  16. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher

  17. Assessment of the Adaptation Strategiesin Rainfed Chickpea in Response to Future Climate Change in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Amir Hajarpoor

    2016-11-01

    Full Text Available Introduction Chickpea (Cicer arietinum L. is cultivated on alarge scale in arid and semiarid environments. Terminal drought and heat stress, among other abiotic and biotic stresses, are the major constraints of yield in most regions of chickpea production. The study of the effects of climate change could help to develop adaptation strategies to promote and stabilize crop yield. This research was aimed to assess adoption strategies in rainfed chickpea in response to Zanjan province’s climate change using a crop simulation model along with providing simulated yield maps using geographical information system (GIS. Materials and methods To study the effects of climate change and simulation the adaptation strategies, the model of Soltani and Sinclair (Soltani & Sinclair, 2011 was used. This model simulates phenological development, leaf development and senescence, mass partitioning, plant nitrogen balance, yield formation and soil water balance. For each location, a baseline period of daily weather data was available (Table 1. Investigated scenarios were historical climate (control and future climate scenarios that included both direct effects of doubling CO2 (350 to 700 ppm and its indirect effects (10% reduced rainfall, 4ºC increase in temperature. The crop model was performed for the different years of baseline period for current and future climate under typical management and cultivar and also under three adaptation strategies in the future climate including Management adaptation (M, Genetic adaptation (G and a combination of both Management and Genetic adaptation (M & G as described below (Table 2: Management – In various studies changing the planting dates as the simplest and least-cost adaptation strategy has been emphasized (Luo et al., 2009; hence a shift in planting dates i.e. sowing 15 days in advance was explored in this study to reduce the risk of the late season drought. Genetics – Changes in genotype have been suggested to be

  18. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Science.gov (United States)

    Muñoz, Nacira; Liu, Ailin; Kan, Leo; Li, Man-Wah; Lam, Hon-Ming

    2017-01-01

    Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea) to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes. PMID:28165413

  19. Potential Uses of Wild Germplasms of Grain Legumes for Crop Improvement

    Directory of Open Access Journals (Sweden)

    Nacira Muñoz

    2017-02-01

    Full Text Available Challenged by population increase, climatic change, and soil deterioration, crop improvement is always a priority in securing food supplies. Although the production of grain legumes is in general lower than that of cereals, the nutritional value of grain legumes make them important components of food security. Nevertheless, limited by severe genetic bottlenecks during domestication and human selection, grain legumes, like other crops, have suffered from a loss of genetic diversity which is essential for providing genetic materials for crop improvement programs. Illustrated by whole-genome-sequencing, wild relatives of crops adapted to various environments were shown to maintain high genetic diversity. In this review, we focused on nine important grain legumes (soybean, peanut, pea, chickpea, common bean, lentil, cowpea, lupin, and pigeonpea to discuss the potential uses of their wild relatives as genetic resources for crop breeding and improvement, and summarized the various genetic/genomic approaches adopted for these purposes.

  20. Evaluation of fall armyworm resistance in maize germplasm lines using visual leaf injury rating and predator survey

    Science.gov (United States)

    After examining ear-colonizing pest resistance, 20 maize lines from the USDA-ARS germplasm enhancement of Maize (GEM) Program were evaluated for whorl-feeding fall armyworm (FAW) (Spodoptera frugiperda) resistance using four maize inbred lines as the resistant and susceptible controls. Both FAW inju...

  1. Characterization of Resistance to Cephus cinctus (Hymenoptera: Cephidae) in Barley Germplasm.

    Science.gov (United States)

    Varella, Andrea C; Talbert, Luther E; Achhami, Buddhi B; Blake, Nancy K; Hofland, Megan L; Sherman, Jamie D; Lamb, Peggy F; Reddy, Gadi V P; Weaver, David K

    2018-04-02

    Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.

  2. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Directory of Open Access Journals (Sweden)

    Saba Jasim Aljumaili

    2018-01-01

    Full Text Available Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak with 3 released varieties as a control using the 32 simple sequence repeat (SSR markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon’s information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He of 0.60 and mean Nei’s gene diversity index of 0.36. The dendrogram based on UPGMA and Nei’s genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816 from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  3. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers.

    Science.gov (United States)

    Jasim Aljumaili, Saba; Rafii, M Y; Latif, M A; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index ( I ) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity ( H e ) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development.

  4. Genetic Diversity of Aromatic Rice Germplasm Revealed By SSR Markers

    Science.gov (United States)

    Jasim Aljumaili, Saba; Sakimin, Siti Zaharah; Arolu, Ibrahim Wasiu; Miah, Gous

    2018-01-01

    Aromatic rice cultivars constitute a small but special group of rice and are considered the best in terms of quality and aroma. Aroma is one of the most significant quality traits of rice, and variety with aroma has a higher price in the market. This research was carried out to study the genetic diversity among the 50 aromatic rice accessions from three regions (Peninsular Malaysia, Sabah, and Sarawak) with 3 released varieties as a control using the 32 simple sequence repeat (SSR) markers. The objectives of this research were to quantify the genetic divergence of aromatic rice accessions using SSR markers and to identify the potential accessions for introgression into the existing rice breeding program. Genetic diversity index among the three populations such as Shannon information index (I) ranged from 0.25 in control to 0.98 in Sabah population. The mean numbers of effective alleles and Shannon's information index were 0.36 and 64.90%, respectively. Similarly, the allelic diversity was very high with mean expected heterozygosity (He) of 0.60 and mean Nei's gene diversity index of 0.36. The dendrogram based on UPGMA and Nei's genetic distance classified the 53 rice accessions into 10 clusters. Analysis of molecular variance (AMOVA) revealed that 89% of the total variation observed in this germplasm came from within the populations, while 11% of the variation emanated among the populations. These results reflect the high genetic differentiation existing in this aromatic rice germplasm. Using all these criteria and indices, seven accessions (Acc9993, Acc6288, Acc6893, Acc7580, Acc6009, Acc9956, and Acc11816) from three populations have been identified and selected for further evaluation before introgression into the existing breeding program and for future aromatic rice varietal development. PMID:29736396

  5. Development of STS and CAPS markers for variety identification and genetic diversity analysis of tea germplasm in Taiwan.

    Science.gov (United States)

    Hu, Chih-Yi; Tsai, You-Zen; Lin, Shun-Fu

    2014-12-01

    Tea (Camellia sinensis) is an important economic crop in Taiwan. Particularly, two major commercial types of tea (Paochong tea and Oolong tea) which are produced in Taiwan are famous around the world, and they must be manufactured with specific cultivars. Nevertheless, many elite cultivars have been illegally introduced to foreign countries. Because of the lower cost, large amount of "Taiwan-type tea" are produced and imported to Taiwan, causing a dramatic damage in the tea industry. It is very urgent to develop the stable, fast and reliable DNA markers for fingerprinting tea cultivars in Taiwan and protecting intellectual property rights for breeders. Furthermore, genetic diversity and phylogenetic relationship evaluations of tea germplasm in Taiwan are imperative for parental selection in the cross-breeding program and avoidance of genetic vulnerability. Two STS and 37 CAPS markers derived from cytoplasmic genome and ESTs of tea have been developed in this study providing a useful tool for distinguishing all investigated germplasm. For identifying 12 prevailing tea cultivars in Taiwan, five core markers, including each one of mitochondria and chloroplast, and three nuclear markers, were developed. Based on principal coordinate analysis and cluster analysis, 55 tea germplasm in Taiwan were divided into three groups: sinensis type (C. sinensis var. sinensis), assamica type (C. sinensis var. assamica) and Taiwan wild species (C. formosensis). The result of genetic diversity analysis revealed that both sinensis (0.44) and assamica (0.41) types had higher genetic diversity than wild species (0.25). The close genetic distance between the first (Chin-Shin-Oolong) and the third (Shy-Jih-Chuen) prevailing cultivars was found, and many recently released varieties are the descents of Chin-Shin-Oolong. This implies the potential risk of genetic vulnerability for tea cultivation in Taiwan. We have successfully developed a tool for tea germplasm discrimination and genetic

  6. An informational view of accession rarity and allele specificity in germplasm banks for management and conservation.

    Science.gov (United States)

    Reyes-Valdés, M Humberto; Burgueño, Juan; Singh, Sukhwinder; Martínez, Octavio; Sansaloni, Carolina Paola

    2018-01-01

    Germplasm banks are growing in their importance, number of accessions and amount of characterization data, with a large emphasis on molecular genetic markers. In this work, we offer an integrated view of accessions and marker data in an information theory framework. The basis of this development is the mutual information between accessions and allele frequencies for molecular marker loci, which can be decomposed in allele specificities, as well as in rarity and divergence of accessions. In this way, formulas are provided to calculate the specificity of the different marker alleles with reference to their distribution across accessions, accession rarity, defined as the weighted average of the specificity of its alleles, and divergence, defined by the Kullback-Leibler formula. Albeit being different measures, it is demonstrated that average rarity and divergence are equal for any collection. These parameters can contribute to the knowledge of the structure of a germplasm collection and to make decisions about the preservation of rare variants. The concepts herein developed served as the basis for a strategy for core subset selection called HCore, implemented in a publicly available R script. As a proof of concept, the mathematical view and tools developed in this research were applied to a large collection of Mexican wheat accessions, widely characterized by SNP markers. The most specific alleles were found to be private of a single accession, and the distribution of this parameter had its highest frequencies at low levels of specificity. Accession rarity and divergence had largely symmetrical distributions, and had a positive, albeit non-strictly linear relationship. Comparison of the HCore approach for core subset selection, with three state-of-the-art methods, showed it to be superior for average divergence and rarity, mean genetic distance and diversity. The proposed approach can be used for knowledge extraction and decision making in germplasm collections of

  7. Chickpea (Cicer arietinum steep liquor as a leavening agent: Effect on dough rheology and sensory properties of bread

    Directory of Open Access Journals (Sweden)

    Saad Ahmed M.

    2015-01-01

    Full Text Available Dough fermentation is one of the oldest process in food technologies. It has been recently intensively studied for its impact on the sensory, structural, nutritional and shelf life properties of leavened baked products. The goals of this work were to investigate chickpea steep liquor (CSL as a dough-leavening agent and to study the effect of CSL on the dough rheology and sensory properties of leavened bread. CSL was prepared by submerging chickpea seeds in boiled distilled water (1:2, w/v for 24 h at 37оC, and then obtained liquor was filtered and freeze-dried to obtain CSL. The addition of CSL to wheat flour (WF brought changes in the dough mixing behavior as measured by the farinograph. An increase in the farinograph water absorption of WF dough was observed when 4.5% CSL and 1.5% yeast was added, while arrival time was not affected. Addition of CSL to the dough at a content of 4.5, 9.0 and 13.5 g CSL/300 g WF caused an increase in dough stability. The CSL addition also increased mechanical tolerance index, dough weakening and mixing time. Dough development time for all blends was higher than the control (1.2-1.5 min, while between the CSL samples no significant difference was observed. The loaf weight slightly increased from 146.2 g for control to 152.2 g for CSL fermented bread, whereas the loaf volume and specific volume of CSL-fermented bread were lower than the control. The combination of yeast and CSL increased the acceptability of bread with the increasing level of both leavening agents’. The results show that CSL could be used as an alternative to yeast for syngas fermentation. On the other hand, CLS is rich in nutrients and lower in cost compared to yeast.

  8. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Meena

    2015-09-01

    Full Text Available Calcium signaling plays an important role in adaptation and developmental processes in plants and animals. A class of calcium sensors, known as Calcineurin B-like (CBL proteins sense specific temporal changes in cytosolic Ca2+ concentration and regulate activities of a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs. Although a number of CIPKs have been shown to play crucial roles in the regulation of stress signaling, no study on the function of CIPK25 or its orthologues has been reported so far. In the present study, an orthologue of Arabidopsis CIPK25 was cloned from chickpea (Cicer arietinum. CaCIPK25 gene expression in chickpea increased upon salt, dehydration, and different hormonal treatments. CaCIPK25 gene showed differential tissue-specific expression. 5'-upstream activation sequence (5'-UAS of the gene and its different truncated versions were fused to a reporter gene and studied in Arabidopsis to identify promoter regions directing its tissue-specific expression. Replacement of a conserved threonine residue with an aspartic acid at its catalytic site increased the kinase activity of CaCIPK25 by 2.5-fold. Transgenic tobacco plants overexpressing full-length and the high active versions of CaCIPK25 displayed a differential germination period and longer root length in comparison to the control plants. Expression of CaCIPK25 and its high active form differentially increased salt and water-deficit tolerance demonstrated by improved growth and reduced leaf chlorosis suggesting that the kinase activity of CaCIPK25 was required for these functions. Expressions of the abiotic stress marker genes were enhanced in the CaCIPK25-expressing tobacco plants. Our results suggested that CaCIPK25 functions in root development and abiotic stress tolerance.

  9. INVENTORY OF HERPETOFAUNA IN REGIONAL GERMPLASM PRESERVATION IN PULP AND PAPER INDUSTRY OGAN KOMERING ILIR REGENCY SOUTH SUMATRA

    Directory of Open Access Journals (Sweden)

    Denny Noberio

    2015-11-01

    Full Text Available The research aims to determine of herpetofauna in Regional Germplasm Preservation, PT. Bumi Mekar Hijau, Ogan Komering Ilir Regency, South Sumatra. The research was conducted in May until June 2015, conducted on 4 transect observation purposively determined by considering the type of habitat herpetofauna and the results of a preliminary survey. The method used in this research is the Visual Encounter Survey (VES. Observations carried out in the morning and evening. The total number of herpetofauna were found during the observation as many as 15 species of 9 families. The number of amphibians was found as many as 6 species of 3 families and reptiles as many as 9 species of 6 families. There are two species categorized as Vulnerable in IUCN 2015 and Appendix II CITES which are the Siebenrockiella crassicollis and Cuora amboinensis cuoro   Keywords : Inventory, herpetofauna, regional germplasm preservation, industrial plantation forest

  10. Effect of irradiation and germination on trypsin inhibitor and protein content of chickpea (Cicer arietinum L.)

    International Nuclear Information System (INIS)

    Sattar, A.; Atta, S.; Akhtar, M.A.

    1990-01-01

    Effect of irradiation (0.005-0.20 kGy) and subsequent germination on trypsin inhibitor activity (TIA) and protein content of chickpea, was studied. The results revealed a significant linear relation (r = -0.981 to -0.992) between the loss of TIA and germination time, and the rate of TIA destruction increased with irradiation dose (p < 0.05). Maximum destruction (43.8%) of the TIA occurred on germination for 120 hr of 0.20 kGy sample (from 330.0 to 185.3 TIU/g). Initially protein content was 21.7% and the value significantly increased to maximum levels of 27.5% and 27.9% in distilled and tap water respectively during germination for 120 hr of 0.10 kGy sample (p < 0.05). Protein contents were not affected by irradiation

  11. Study of Seed Germination and Morphological Characteristics of Wild Oat(Avena ludoviciana and Mustard (Sinapis arvensis Seedling, Affected by Aqueous Extracts of Black Cumin (Bunium persicum L, Chickpea (Cicer arietinum L and Mixed of Extracts

    Directory of Open Access Journals (Sweden)

    R Moradi

    2012-02-01

    Full Text Available Abstract In order to evaluate the effects of shoot aqueous extracts of chickpea, black cumin and their mixed aqueous extracts on seed germination and seedling morphological characteristics of wild oat and mustard as two common weed, an experiment was conducted with a factorial arrangement based on completely randomized design with three replications. The experimental treatments were aqueous extracts in five levels (0, 10, 20, 40 and 60 percentage, Weed species in two levels (wild oat and mustard and extract concentration in five levels (0, 10, 20. 40 and 60 percentage. Result indicated that the highest and the lowest percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio (R/H, were obtained in control treatment and 60% concentration, respectively. Aqueous extract of black cumin and mixed extracts had the highest and the lowest effect on percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio, respectively. Between two weed species, wild oat had the lowest percentage of seed germination and length of radicle compared with mustard. Mustard had the lowest seed germination rate, dry weight of radicle and hypocotyle and length of hypocotyle compare with wild oat. Generally, it was concluded that chickpea and black cumin aqueous extracts have highly inhibitory in terms of weed control that can be useful for sustainable agriculture. Keywords: Allelopathy, Black cumin, Chickpea, Extract, Mustard, Wild oat

  12. Effect of sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (Cicer arietinum L. (cultivar 3279 ILC

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effect of different sowing dates and different irrigation regimes on morphological characteristics and grain yield of chickpea (cultivar 3279 ILC (Cicer arietinum L., an experiment was conducted at Agricultural Research-Education Station of Shahid Rejaee, Neyshaboor during 2001-2002. Four irrigation regimes (without irrigation, one time irrigation (at early flowering, two times irrigation (at early flowering and 50% flowering and control (irrigation every 10 days and Four sowing dates early planting (autumn, Entezari, and late planting (spring and delayed were compared in a spilt plot layout based on randomized complete block design with four replications per treatment. The results showed that all chickpea plants with delayed sowing date on combination of without irrigation, one time irrigation (at early flowering and two times irrigation (at early flowering and 50% flowering were dead. By delaying sowing date, duration between the time of starting flowering and maturity became shorter. Plant height, distance of the first pod from earth surface, distance between nods, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one, two and with no seed per plant, number of seeds per plant, seed weight per plant, 100 seed weight and grain yield were increased when the number of irrigation increased. By increasing the growing season, plant height, distance of the first pod from earth surface, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with two and without seeds per plant, number of seeds per plant and seed weight per plant were increased. The autumn sowing date had the highest and the spring date had the lowest grain yield. The highest plant height, number of nods per plant, number of stems per plant, number of pods per plant, number of pods with one and with no seed per plant, number of seeds per plant and grain yield were obtained at

  13. Evidence and Consequence of a Highly Adapted Clonal Haplotype within the Australian Ascochyta rabiei Population

    Directory of Open Access Journals (Sweden)

    Yasir Mehmood

    2017-06-01

    Full Text Available The Australian Ascochyta rabiei (Pass. Labr. (syn. Phoma rabiei population has low genotypic diversity with only one mating type detected to date, potentially precluding substantial evolution through recombination. However, a large diversity in aggressiveness exists. In an effort to better understand the risk from selective adaptation to currently used resistance sources and chemical control strategies, the population was examined in detail. For this, a total of 598 isolates were quasi-hierarchically sampled between 2013 and 2015 across all major Australian chickpea growing regions and commonly grown host genotypes. Although a large number of haplotypes were identified (66 through short sequence repeat (SSR genotyping, overall low gene diversity (Hexp = 0.066 and genotypic diversity (D = 0.57 was detected. Almost 70% of the isolates assessed were of a single dominant haplotype (ARH01. Disease screening on a differential host set, including three commonly deployed resistance sources, revealed distinct aggressiveness among the isolates, with 17% of all isolates identified as highly aggressive. Almost 75% of these were of the ARH01 haplotype. A similar pattern was observed at the host level, with 46% of all isolates collected from the commonly grown host genotype Genesis090 (classified as “resistant” during the term of collection identified as highly aggressive. Of these, 63% belonged to the ARH01 haplotype. In conclusion, the ARH01 haplotype represents a significant risk to the Australian chickpea industry, being not only widely adapted to the diverse agro-geographical environments of the Australian chickpea growing regions, but also containing a disproportionately large number of aggressive isolates, indicating fitness to survive and replicate on the best resistance sources in the Australian germplasm.

  14. Effects of Foliar Application of Nitrogen, Zinc and Manganese on Yield, Yield Components and Grain Quality of Chickpea in Two Growing Seasons

    Directory of Open Access Journals (Sweden)

    B. Shirani

    2015-09-01

    Full Text Available To study the effects of foliar application of zinc, manganese and nitrogen on yield, yield components and grain quality of chickpea (Cicer arientinum L. two experiments, one in autumn and the other in spring were conducted at Research Farm, Shahrekord University in 2009-2010 growing season each as a randomized complete block design with three replications. The treatments were foliar application of zinc sulfate, manganese sulfate zinc sulfate and manganese sulfate mixture, nitrogen and distilled water (as control. The results showed that planting season had a significant effect on plant height, 100-seed weight and seed yield. All measured traits, except plant height, increased in winter compared to spring growing season. This increase was more than 12% for grain yield. Foliar application of nutrients significantly affected seed yield and seed yield components. Foliar application of nitrogen, presumably, through significant increase in number of pods per plant, number of seeds per plant and 100-seed weight, increased the grain yield by 6.2% compared to control. Foliar application × planting season interactions were significant for plant height and number of pods per plant. Foliar application of nitrogen caused a significant increase in grain yield and protein content. Foliar application of zinc sulphate significantly increased Zn content of grains however it did not affect seed yield. In conclusion, foliar application of nitrogen could be suggested for increasing protein and grain yield in chickpea under similar conditions to that of the present study.

  15. Phytosanitary evaluation of olive germplasm in Albania

    Directory of Open Access Journals (Sweden)

    M. Luigi

    2009-09-01

    Full Text Available A survey on viruses was carried out in 2008 in the main olive-growing areas of Albania (Kruja, Sauk and Vlora. Fifty samples from 14 local and 2 exotic olive cultivars were collected from 10 commercial orchards and one collection field and inspected for Arabis mosaic virus (ArMV, Cherry leaf roll virus (CLRV, Strawberry latent ringspot virus (SLRV, Olive latent virus 1 (OLV-1, Olive leaf yellowing-associated virus (OLYaV, Cucumber mosaic virus (CMV, Olive latent virus-2 (OLV-2 and Tobacco necrosis virus strain D (TNV-D by a one-step RT-PCR assay using virus-specifi c primers. None of these viruses were found in the source plants except SLRSV and OLYaV, which were detected in a ‘K. M. Berat’ olive tree grown in the collection field. These findings are important because the incidence of olive virus diseases is low in Albania but high in other Mediterranean countries. Thus, all efforts should be to directed to maintaining the Albanian olive germplasm pathogen-free and in the best agronomical and phytosanitary condition possible.

  16. Incorporating different proportions of exotic maize germplasm into two adapted populations

    Directory of Open Access Journals (Sweden)

    Manoel Xavier dos Santos

    2000-06-01

    Full Text Available Maize breeders frequently wish to use exotic germplasm in their breeding programs without losing specific characteristics of their adapted material. The objective of this study was to determine the optimal proportions of exotic germplasm to incorporate into adapted populations (F2 = 50% exotic, BC1 = 25% exotic, BC2 = 12.5% exotic and BC3 = 6.25% exotic to form the initial foundation population and to determine the heterosis between adapted x exotics. We used six exotic populations of different origins and two adapted populations representing a Brazilian heterotic pattern. In 1993-94 and 1994-95, the parents, F1, F2, BC1, BC2, BC3 and four checks were evaluated in six environments in central Brazil using an 8 x 9 simple rectangular lattice design. Higher mean values for yield were obtained as the proportion of exotic germplasm decreased. Some backcrosses produced more than the adapted populations BR 105 (7.59 ton/ha and BR 106 (8.43 ton/ha. The best results were obtained when incorporating 6.25 or 12.5% of exotic genes. This trend was true for root lodging, stalk lodging and ear diseases but not for plant and ear height. The midparent heterosis for yield varied from -16.1 to 40.3%. Midparent heterosis with positive and negative values were also found for the other traits. The results indicate the potential of exotic germplasm for developing good hybrids. After choosing the best exotic source, some recurrent selection might be appropriate in order to adapt and improve the exotic populations.Os melhoristas de milho que utilizam germoplasmas exóticos nos programas de melhoramento têm a preocupação de não perder as características desejáveis dos materiais adaptados. Buscando atender esta demanda, o presente trabalho teve por objetivo determinar a proporção ideal de germoplasma exótico que deve ser incorporado em populações melhoradas (F2 = 50% exótico; RC1 = 25% exótico; RC2 = 12,5% exótico; RC3 = 6,25% exótico, para formar as popula

  17. Primary metabolism of chickpea is the initial target of wound inducing early sensed Fusarium oxysporum f. sp. ciceri race I.

    Directory of Open Access Journals (Sweden)

    Sumanti Gupta

    Full Text Available BACKGROUND: Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. METHODOLOGY/PRINCIPAL FINDINGS: Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. CONCLUSIONS/SIGNIFICANCE: The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms.

  18. Genetic divergence among Brazilian turmeric germplasm using morpho-agronomical descriptors

    Directory of Open Access Journals (Sweden)

    Mário Sérgio Sigrist

    2011-01-01

    Full Text Available Turmeric (Curcuma longa L. is a vegetatively-propagated crop which is used as a natural dye in the food industryand also presents many biological active compounds. Turmeric conventional breeding is difficult and often limited to germplasmselection. The aim of this study was to evaluate the genetic divergence among turmeric accessions available in Brazil using sevenmorpho-agronomical descriptors. Overall genetic divergence was low, although some divergent genotypes were identified. Fourmain groups of genotypes were identified and could be further used in breeding programs. Canonical variable analysis suggestedthat some descriptors were more important to discriminate accessions and also that one of the descriptors could be discarded. Theresults provided useful insights for better management of the germplasm collection, optimizing conservational and breeding efforts.

  19. Environmental Influences on the Growing Season Duration and Ripening of Diverse Miscanthus Germplasm Grown in Six Countries

    Directory of Open Access Journals (Sweden)

    Christopher Nunn

    2017-05-01

    Full Text Available The development of models to predict yield potential and quality of a Miscanthus crop must consider climatic limitations and the duration of growing season. As a biomass crop, yield and quality are impacted by the timing of plant developmental transitions such as flowering and senescence. Growth models are available for the commercially grown clone Miscanthus x giganteus (Mxg, but breeding programs have been working to expand the germplasm available, including development of interspecies hybrids. The aim of this study was to assess the performance of diverse germplasm beyond the range of environments considered suitable for a Miscanthus crop to be grown. To achieve this, six field sites were planted as part of the EU OPTIMISC project in 2012 in a longitudinal gradient from West to East: Wales—Aberystwyth, Netherlands—Wageningen, Stuttgart—Germany, Ukraine—Potash, Turkey—Adana, and Russia—Moscow. Each field trial contained three replicated plots of the same 15 Miscanthus germplasm types. Through the 2014 growing season, phenotypic traits were measured to determine the timing of developmental stages key to ripening; the tradeoff between growth (yield and quality (biomass ash and moisture content. The hottest site (Adana showed an accelerated growing season, with emergence, flowering and senescence occurring before the other sites. However, the highest yields were produced at Potash, where emergence was delayed by frost and the growing season was shortest. Flowering triggers varied with species and only in Mxg was strongly linked to accumulated thermal time. Our results show that a prolonged growing season is not essential to achieve high yields if climatic conditions are favorable and in regions where the growing season is bordered by frost, delaying harvest can improve quality of the harvested biomass.

  20. Genetic diversity of "Pimenta Longa" genotypes (Piper spp., Piperaceae) of the Embrapa Acre germplasm collection

    OpenAIRE

    Wadt, Lúcia Helena de Oliveira; Ehringhaus, Christiane; Kageyama, Paulo Yoshio

    2004-01-01

    The commonly known Pimenta longa is a commercially valuable natural resource found wild in Acre, Brazil. Specifically, three Piperaceae species with contested taxonomic status were studied, Piper hispidinervum, Piper aduncum, and Piper hispidum, to assesses the inter- and intra-specific genetic relationship of 49 Piper genotypes kept in the Pimenta longa germplasm collection at Embrapa Acre, using sixty six Random Amplified Polymorphic DNA (RAPD) markers. The DNA polymorphism level detected w...