WorldWideScience

Sample records for ka-band gan amplifier

  1. A Ka-band 22 dBm GaN amplifier MMIC

    Institute of Scientific and Technical Information of China (English)

    Wang Dongfang; Chen Xiaojuan; Yuan Tingting; Wei Ke; Liu Xinyu

    2011-01-01

    A Ka-band GaN amplifier MMIC has been designed in CPW technology,and fabricated with a domestic GaN epitaxial wafer and process.This is,to the best of our knowledge,the first demonstration of domestic Kaband GaN amplifier MMICs.The single stage CPW MMIC utilizes an AIGaN/GaN HEMT with a gate-length of 0.25 μm and a gate-width of 2 × 75 μm.Under Vds =10 V,continuous-wave operating conditions,the amplifier has a 1.5 GHz operating bandwidth.It exhibits a linear gain of 6.3 dB,a maximum output power of 22 dBm and a peak PAE of 9.5% at 26.5 GHz.The output power density of the AIGaN/GaN HEMT in the MMIC reaches 1 W/mm at Ka-band under the condition of Vds =10 V.

  2. Design and Analysis of a 34 dBm Ka-Band GaN High Power Amplifier MMIC

    NARCIS (Netherlands)

    Heijningen, M. van; Vliet, F.E. van; Quay, R.; Raay, F. van; Seelmann-Eggebert, M.

    2006-01-01

    This paper presents the design and analysis issues related to the use of recent GaN technologies for realizing high power millimeter wave MMICs. Two GaN Ka-band amplifier MMICs have been designed, fabricated and characterized. The small-signal and power measurement results are presented for both amp

  3. MMIC for High-Efficiency Ka-BAnd GaN Power Amplifiers (2007043) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses the need for high-efficiency, high-output power amplifiers operating in the Ka-band frequencies. For space communications, the power...

  4. High-Efficiency, Ka-band Solid-State Power Amplifier Utilizing GaN Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop an efficient, solid-state power amplifier (SSPA), operating at Ka-band frequencies, for high data rate, long range space...

  5. High power Ka band TWT amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Golkowski, C.; Ivers, J.D.; Nation, J.A.; Wang, P.; Schachter, L.

    1999-07-01

    Two high power 35 GHz TWT amplifiers driven by a relativistic pencil, 850 kV, 200A electron beam have been assembled and tested. The first had a dielectric slow wave structure and was primarily used to develop diagnostics, and to gain experience in working with high power systems in Ka band. The source of the input power for the amplifier was a magnetron producing a 30 kW, 200ns long pulse of which 10 kW as delivered to the experiment. The 30 cm long dielectric (Teflon) amplifier produced output power levels of about 1 MW with a gain of about 23 dB. These results are consistent with expectations from PIC code simulations for this arrangement. The second amplifier, which is a single stage disk loaded slow wave structure, has been designed. It consists of one hundred uniform cells with two sets of ten tapered calls at the ends to lower the reflection coefficient. The phase advance per cell is {pi}/2. The amplifier passband extends from 28 to 40 GHz. It is designed to increase the output power to about 20 MW. The amplifier is in construction and will be tested in the near future. Details of the design of both systems will be provided and initial results from the new amplifier presented.

  6. Design of High Power Density Amplifiers: Application to Ka Band

    Science.gov (United States)

    Passi, Davide; Leggieri, Alberto; Di Paolo, Franco; Bartocci, Marco; Tafuto, Antonio

    2017-06-01

    Recent developments in the design of high-power-high-frequency amplifiers are assessed in this paper by the analysis and measurements of a high power density amplifier operating in the Ka Band. Design procedure is presented and a technical investigation is reported. The proposed device has shown over 23% of useful frequency bandwidth. It is an ensemble of 16 monolithic solid state power amplifiers that employees mixed technologies as spatial and planar combiners. Test performed have given maximum delivered power of 47.2 dBm.

  7. High Performance Ka Band Power Amplifiers for Future EVA Radio Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal, AlphaSense, Inc. and the University of Washington detail the development of a novel, high performance Ka band power amplifier for EVA radio...

  8. A Novel Ku-Band/Ka-Band and Ka-Band/E-Band Multimode Waveguide Couplers for Power Measurement of Traveling-Wave Tube Amplifier Harmonic Frequencies

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.

    2015-01-01

    This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).

  9. Design of a Ka-band gyro-TWT amplifier for broadband operation

    Energy Technology Data Exchange (ETDEWEB)

    Alaria, Mukesh Kumar; Sinha, A. K. [Microwave Tubes Area, CSIR-Central Electronics Engineering Research Institute, Pilani 333031 (India); Choyal, Y. [Department of Physics, Devi Ahilya Vishwavidyalaya, Indore (India)

    2013-07-15

    In this paper, the design of a Ka-band periodically ceramic loaded gyro-TWT amplifier has been carried out. The design predict that the interaction structure can produce more than 80 kW output power, 50 dB saturated gain, and 3 dB bandwidth for 65 kV and 5 A electron beam with velocity ratio (α) of 1.2. This paper describes the design and simulation of a high performance 35 GHz TE{sub 01} mode gyro-TWT that applies the same technique of employing a periodic dielectric loaded interaction structure to achieve stability and wide bandwidth. The design of input coupler with loaded interaction structure for Ka-band Gyro-TWT has been carried out using Ansoft hfss. The return loss (S{sub 11}) and transmission loss (S{sub 21}) of the Ka-band gyro-TWT input coupler have been found to be −27.3 dB and −0.05 dB, respectively. The design of output window for Ka-band Gyro-TWT has been carried out using cst microwave studio.

  10. Particle simulation of a ka-band gyrotron traveling wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Xu Shouxi; Liu Pukun; Zhang Shichang; Du Chaohai; Xue Qianzhong; Geng Zhihui; Su Yinong [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, P.O. Box 2652, Beijing 100190 (China)

    2011-08-15

    The design of a ka-band gyrotron traveling wave (gyro-TWT) amplifier is presented. The gyro-TWT amplifier with a severed structure operates in the fundamental harmonic TE{sub 01} circular electric mode. The beam-wave interaction is studied by using a particle-in-cell (PIC) code. The simulations predict that the amplifier can produce an output peak power of over 155 kW, 22% efficiency, 23 dB gain, and a 3 dB bandwidth of 2 GHz for a 70 kV, 10 A electron beam with an axial velocity spread {Delta}v{sub z}/v{sub z}=5%.

  11. Robust AlGaN/GaN low noise amplifier MMICs for C-, Ku- and Ka-band space applications

    NARCIS (Netherlands)

    Suijker, E.M.; Rodenburg, M.; Hoogland, J.A.; Heijningen, M. van; Seelmann-Eggebert, M.; Quay, R.; Brückner, P.; Vliet, F.E. van

    2009-01-01

    The high power capabilities in combination with the low noise performance of Gallium Nitride (GaN) makes this technology an excellent choice for robust receivers. This paper presents the design and measured results of three different LNAs, which operate in C-, Ku-, and Ka-band. The designs are reali

  12. Analysis of a Novel Ka-band Folded Waveguide Amplifier for Traveling-Wave Tubes

    Institute of Scientific and Technical Information of China (English)

    LIAO Ming-Liang; WEI Yan-Yu; HE Jun; GONG Yu-Bin; WANG Wen-Xiang; Gun-Sik Park

    2009-01-01

    A novel Ka-band folded waveguide (FW) amplifier for traveling wave tubes (TWT) is investigated. The dispersion curve and interaction impedance are obtained and compared to the normal FW circuit by numerical simulation. The interaction impedance is higher than a normal circuit through the whole band. We also study the beam-wave interaction in this novel circuit, and the nonlinear large-signal performance is analyzed by a 3-D particle-in-cell code MACIC3D. A much higher continuous-wave (CW) output power with a considerably shorter circuit compared to a normal circuit is predicted by our simulation. Moreover, the novel FW even has a broader 3-dB bandwidth. It therefore will be useful in designing a miniature but high-power and broadband millimeter-wave TWT.

  13. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  14. Solid State KA-Band, Solid State W-Band and TWT Amplifiers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I of the proposal describes plans to develop a state of the art transmitter for the W-Band and KA -Band Cloud Radar system. Our focus will be concentrated in...

  15. High-power X- and Ka-band Gallium Nitride Amplifiers with Exceptional Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Achieving very high-power amplification with maximum efficiency at X- and Ka-band is challenging using solid-state technology. Gallium Arsenide (GaAs) has been the...

  16. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    Science.gov (United States)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  17. Ka-Band AlGaN/GaN HEMT high power and driver amplifier MMICs

    NARCIS (Netherlands)

    Heijningen, M. van; Vliet, F.E. van; Quay, R.; Raay, F. van; Kiefer, R.; Mueller, S.; Krausse, D.; Seelmann-Eggebert, M.; Mikulla, M.; Schlechtweg, M.

    2005-01-01

    In this paper the MMIC technology, design and characterization of a high power amplifier and driver amplifier MMIC at 30 GHz in AlGaN/GaN HEMT technology are presented. The MMICs are designed using CPW technology on a 390 μm thick SiC substrate. The measured small-signal gain of the driver is 14 dB

  18. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Prototype Combiner Spurious Mode Suppression and Power Constraints

    Science.gov (United States)

    Khan, P.; Epp, L.

    2006-01-01

    Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15

  19. High Efficiency Traveling-Wave Tube Power Amplifier for Ka-Band Software Defined Radio on International Space Station-A Platform for Communications Technology Development

    Science.gov (United States)

    Simons, Rainee N.; Force, Dale A.; Kacpura, Thomas J.

    2013-01-01

    The design, fabrication and RF performance of the output traveling-wave tube amplifier (TWTA) for a space based Ka-band software defined radio (SDR) is presented. The TWTA, the SDR and the supporting avionics are integrated to forms a testbed, which is currently located on an exterior truss of the International Space Station (ISS). The SDR in the testbed communicates at Ka-band frequencies through a high-gain antenna directed to NASA s Tracking and Data Relay Satellite System (TDRSS), which communicates to the ground station located at White Sands Complex. The application of the testbed is for demonstrating new waveforms and software designed to enhance data delivery from scientific spacecraft and, the waveforms and software can be upgraded and reconfigured from the ground. The construction and the salient features of the Ka-band SDR are discussed. The testbed is currently undergoing on-orbit checkout and commissioning and is expected to operate for 3 to 5 years in space.

  20. Radiation Hard Multichannel AlN/GaN HEMT for High Efficiency X- and Ka-Band Power Amplifiers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is directed to the development of low-loss, high power-density Aluminum Nitride (AlN)/Gallium Nitride (GaN) heterostructure based transistors for...

  1. High-Efficiency, High-Power Ka-Band Elliptic-Beam Traveling-Wave-Tube Amplifier for Long-Range Space RF Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space telecommunications require amplifiers that are efficient, high-power, wideband, small, lightweight, and highly reliable. Currently, helix traveling wave tube...

  2. Demonstration of Multi-Gbps Data Rates at Ka-Band Using Software-Defined Modem and Broadband High Power Amplifier for Space Communications

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Landon, David G.; Sun, Jun Y.; Winn, James S.; Laraway, Stephen; McIntire, William K.; Metz, John L.; Smith, Francis J.

    2011-01-01

    The paper presents the first ever research and experimental results regarding the combination of a software-defined multi-Gbps modem and a broadband high power space amplifier when tested with an extended form of the industry standard DVB-S2 and LDPC rate 9/10 FEC codec. The modem supports waveforms including QPSK, 8-PSK, 16-APSK, 32-APSK, 64-APSK, and 128-QAM. The broadband high power amplifier is a space qualified traveling-wave tube (TWT), which has a passband greater than 3 GHz at 33 GHz, output power of 200 W and efficiency greater than 60 percent. The modem and the TWTA together enabled an unprecedented data rate at 20 Gbps with low BER of 10(exp -9). The presented results include a plot of the received waveform constellation, BER vs. E(sub b)/N(sub 0) and implementation loss for each of the modulation types tested. The above results when included in an RF link budget analysis show that NASA s payload data rate can be increased by at least an order of magnitude (greater than 10X) over current state-of-practice, limited only by the spacecraft EIRP, ground receiver G/T, range, and available spectrum or bandwidth.

  3. High Efficiency Ka-Band Spatial Combiner

    Directory of Open Access Journals (Sweden)

    D. Passi

    2014-12-01

    Full Text Available A Ka-Band, High Efficiency, Small Size Spatial Combiner (SPC is proposed in this paper, which uses an innovatively matched quadruple Fin Lines to microstrip (FLuS transitions. At the date of this paper and at the Author's best knowledge no such FLuS innovative transitions have been reported in literature before. These transitions are inserted into a WR28 waveguide T-junction, in order to allow the integration of 16 Monolithic Microwave Integrated Circuit (MMIC Solid State Power Amplifiers (SSPA's. A computational electromagnetic model using the finite elements method has been implemented. A mean insertion loss of 2 dB is achieved with a return loss better the 10 dB in the 31-37 GHz bandwidth.

  4. Fade Mitigation Techniques at Ka-Band

    Science.gov (United States)

    Dissanayake, Asoka (Editor)

    1996-01-01

    Rain fading is the dominant propagation impairment affecting Ka-band satellite links and rain fade mitigation is a key element in the design of Ka-band satellite networks. Some of the common fade mitigation techniques include: power control, diversity, adaptive coding, and resource sharing. The Advanced Communications Technology Satellite (ACTS) provides an excellent opportunity to develop and test Ka-band rain impairment amelioration techniques. Up-link power control and diversity are discussed in this paper.

  5. Design of a Ka-band 10 W Adaptive RF Predistortion Linearization Power Amplifier%Ka频段10W自适应射频预失真线性化固态功放研制

    Institute of Scientific and Technical Information of China (English)

    李凯; 张科; 张能波

    2014-01-01

    The characteristic of radio frequency power amplifier ( RFPA) will change with the channel switching,environment temperature,working conditions and other factors. In order to guarantee the steady operation of the predistortion RFPA,the predistortion system with adaptive performance is very important. This paper proposes a detection method of adaptive feedback,and uses the multidirectional search algorithm to minimize the amplitude distortion and phase distortion of the RFPA′s output signal to optimize the pre-distortion system,to make the system operate in optimum state all the time. An adaptive RF predistortion linearization solid-state power amplifier operating at the Ka-band is developed. In 3 GHz operation fre-quency band,the three-order intermodulation of the developed RFPA is effectively enhanced to be better than -32 dBc at -40℃ ~ 60℃. The test results show that the power amplifier has the characteristics of wide operation frequency band and wide temperature adaptability.%射频功率放大器的特性会随信道切换、环境温度、工作状态等多种因素发生变化,为了保证功率放大器的优良工作特性,具有自适应性能的预失真系统就显得非常重要。提出了一种自适应反馈检测方法,以减小放大器输出信号的幅度失真和相位失真作为系统自适应的优化目标,采用多方向搜索优化算法对预失真系统进行优化调整,使系统始终处于最优工作状态。研制了工作于 Ka 频段10 W自适应射频预失真线性化固态功放原理样机,当工作温度为-40℃~+60℃时,在3 GHz的工作带宽内,三阶交调指标优于-32 dBc。测试结果表明该功放具有工作频带宽、温度适应性广等特点。

  6. Rain Fade Compensation Alternatives for Ka Band Communication Satellites

    Science.gov (United States)

    Acosta, Roberto J.

    1997-01-01

    Future satellite communications systems operating in Ka-band frequency band are subject to degradation produced by the troposphere which is much more severe than those found at lower frequency bands. These impairments include signal absorption by rain, clouds and gases, and amplitude scintillation's arising from refractive index irregularities. For example, rain attenuation at 20 GHz is almost three times that at 11 GHz. Although some of these impairments can be overcome by oversizing the ground station antennas and high power amplifiers, the current trend is using small (less than 20 inches apertures), low-cost ground stations (less than $1000) that can be easily deployed at user premises. As a consequence, most Ka-band systems are expected to employ different forms of fade mitigation that can be implemented relatively easily and at modest cost. The rain fade mitigation approaches are defined by three types of Ka-band communications systems - a low service rate (less than 1.5 Mb/s), a moderate service rate (1.5 to 6 Mb/s) system and a high service rate (greater than 43 Mb/s) system. The ACTS VSAT network, which includes an adaptive rain fade technique, is an example of a moderate service rate.

  7. Mars Global Surveyor Ka-Band Frequency Data Analysis

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4 GHz) downlink. The signals are simultaneously transmitted from a 1.5-in diameter parabolic high gain antenna (HGA) on MGS and received by a beam-waveguide (BWG) R&D 34-meter antenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. The projected 5-dB link advantage of Ka-band relative to X-band was confirmed in previous reports using measurements of MGS signal strength data acquired during the first two years of the link experiment from December 1996 to December 1998. Analysis of X-band and Ka-band frequency data and difference frequency (fx-fka)/3.8 data will be presented here. On board the spacecraft, a low-power sample of the X-band downlink from the transponder is upconverted to 32 GHz, the Ka-band frequency, amplified to I-W using a Solid State Power Amplifier, and radiated from the dual X/Ka HGA. The X-band signal is amplified by one of two 25 W TWTAs. An upconverter first downconverts the 8.42 GHz X-band signal to 8 GHz and then multiplies using a X4 multiplier producing the 32 GHz Ka-band frequency. The frequency source selection is performed by an RF switch which can be commanded to select a VCO (Voltage Controlled Oscillator) or USO (Ultra-Stable Oscillator) reference. The Ka-band frequency can be either coherent with the X-band downlink reference or a hybrid combination of the USO and VCO derived frequencies. The data in this study were chosen such that the Ka-band signal is purely coherent with the X-band signal, that is the downconverter is driven by the same frequency source as the X-band downlink). The ground station used to acquire the data is DSS-13, a 34-meter BWG antenna which incorporates a series of mirrors inside beam waveguide tubes which guide the energy to a subterranean pedestal room, providing a stable environment

  8. Modulation transfer functions at Ka band

    Science.gov (United States)

    Hesany, Vahid; Sistani, Bita; Salam, Asif; Haimov, Samuel; Gogineni, Prasad; Moore, Richard K.

    The modulation transfer function (MTF) is often used to describe the modulation of the radar signal by the long waves. MTFs were measured at 35 GHz (Ka band) with a switched-beam vector slope gauge/scatterometer on the research platform NORDSEE as part of the SAXON-FPN experiment. Three independent measurements of the scattering were available for each height measurement. This provided the opportunity to average the time series to reduce the effects of fading noise and sea spikes, or, alternatively, to append the time series to achieve more degrees of freedom in the spectral estimates. For upwind measurements, the phase of the VV-polarized Ka-band MTF was always positive, which implies that the maximum of the radar return originates from the forward face of the long-scale waves. This phase increases with increasing wind speed. The magnitude of the MTF decreases with increasing wind speed.

  9. 5 Watt GaN HEMT Power Amplifier for LTE

    Directory of Open Access Journals (Sweden)

    K. Niotaki

    2014-04-01

    Full Text Available This work presents the design and implementation of a stand-alone linear power amplifier at 2.4 GHz with high output power. A GaN HEMT transistor is selected for the design and implementation of the power amplifier. The device exhibits a gain of 11.7 dB and a drain efficiency of 39% for an output power of 36.7 dBm at 2.4 GHz for an input power of 25dBm. The carrier to intermodulation ratio is better than 25 dB for a two tone input signal of 25 dBm of total power and a spacing of 5 MHz. The fabricated device is also tested with LTE input signals of different bandwidths (5MHz to 20MHz.

  10. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy

    2013-04-11

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.

  11. Computer Aided Design of Ka-Band Waveguide Power Combining Architectures for Interplanetary Spacecraft

    Science.gov (United States)

    Vaden, Karl R.

    2006-01-01

    Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.

  12. High Power High Efficiency Ka-Band Power Combiners for Solid-State Devices

    Science.gov (United States)

    Freeman, Jon C.; Wintucky, Edwin G.; Chevalier, Christine T.

    2006-01-01

    Wide-band power combining units for Ka-band are simulated for use as MMIC amplifier applications. Short-slot couplers as well as magic-tees are the basic elements for the combiners. Wide bandwidth (5 GHz) and low insertion (approx.0.2 dB) and high combining efficiencies (approx.90 percent) are obtained.

  13. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  14. An Octave Bandwidth, High PAE, Linear, Class J GaN High Power Amplifier

    Science.gov (United States)

    2012-03-12

    versus the modeled small-signal gain and return loss response of the Class J amplifier using a 45-W CREE GaN HEMT . The amplifier has a gain of 13 to...AFFTC-PA-12055 An Octave Bandwidth, High PAE, Linear, Class J GaN High Power Amplifier Kris Skowronski, Steve Nelson, Rajesh Mongia, Howard...Technical Paper 3. DATES COVERED (From - To) 11/11 – 03/12 (etc.) 4. TITLE AND SUBTITLE An Octave Bandwidth, High PAE, Linear, Class J GaN High

  15. Aeronautical applications of steerable K/Ka-band antennas

    Science.gov (United States)

    Helmken, Henry; Prather, Horton

    1995-01-01

    The expected growth of wideband data and video transmission via satellite will press existing satellite Ku-band services and push development of the Ka-band region. Isolated ground based K/Ka-band terminals can experience severe fading due to rain and weather phenomena. However, since aircraft generally fly above the severe weather, they are attractive platforms for developing commercial K/Ka-band communication links.

  16. The Mars Global Surveyor Ka-Band Link Experiment (MGS/KaBLE-II)

    Science.gov (United States)

    Morabito, D.; Butman, S.; Shambayati, S.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft, launched on November 7, 1996, carries an experimental space-to-ground telecommunications link at Ka-band (32 GHz) along with the primary X-band (8.4-GHz) downlink. The signals are simultaneously transmitted from a 1.5-m-diameter parabolic antenna on MGS and received by a beam-waveguide (BWG) research and development (R&D) 34-meter a ntenna located in NASA's Goldstone Deep Space Network (DSN) complex near Barstow, California. This Ka-band link experiment (KaBLE-II) allows the performances of the Ka-band and X-band signals to be compared under nearly identical conditions. The two signals have been regularly tracked during the past 2 years. This article presents carrier-signal-level data (P_c/N_o) for both X-band and Ka-band acquired over a wide range of station elevation angles, weather conditions, and solar elongation angles. The cruise phase of the mission covered the period from launch (November 7, 1996) to Mars orbit capture (September 12, 1997). Since September 12, 1997, MGS has been in orbit around Mars. The measurements confirm that Ka-band could increase data capacity by at least a factor of three (5 dB) as compared with X-band. During May 1998, the solar corona experiment, in which the effects of solar plasma on the X-band and Ka-band links were studied, was conducted. In addition, frequency and difference frequency (f_x - f_(Ka)/3.8), ranging, and telemetry data results are presented. MGS/KaBLE-II measured signal strengths (for 54 percent of the experiments conducted) that were in reasonable agreement with predicted values based on preflight knowledge, and frequency residuals that agreed between bands and whose statistics were consistent with expected noise sources. For passes in which measured signal strengths disagreed with predicted values, the problems were traced to known deficiencies, for example, equipment operating under certain conditions, such as a cold Ka-band solid-state power amplifier (SSPA

  17. A high efficiency C-band internally-matched harmonic tuning GaN power amplifier

    Science.gov (United States)

    Lu, Y.; Zhao, B. C.; Zheng, J. X.; Zhang, H. S.; Zheng, X. F.; Ma, X. H.; Hao, Y.; Ma, P. J.

    2016-09-01

    In this paper, a high efficiency C-band gallium nitride (GaN) internally-matched power amplifier (PA) is presented. This amplifier consists of 2-chips of self-developed GaN high-electron mobility transistors (HEMTs) with 16 mm total gate width on SiC substrate. New harmonic manipulation circuits are induced both in the input and output matching networks for high efficiency matching at fundamental and 2nd-harmonic frequency, respectively. The developed amplifier has achieved 72.1% power added efficiency (PAE) with 107.4 W output power at 5 GHz. To the best of our knowledge, this amplifier exhibits the highest PAE in C-band GaN HEMT amplifiers with over 100 W output power. Additionally, 1000 hours' aging test reveals high reliability for practical applications.

  18. Performance of a Ka-band transponder breadboard for deep-space applications

    Science.gov (United States)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-08-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  19. Ka-Band MMIC T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is specifically written to address the need for improved Ka-band T/R modules. The solicitation calls for investigation and development of core...

  20. Ka-Band MMIC T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II proposal is presented as the follow on to the Phase I SBIR contract number NNC06CB21C entitled "Ka-band MMIC T/R Module" For active microwave...

  1. A comparative study of RADAR Ka-band backscatter

    Science.gov (United States)

    Mapelli, D.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, Paolo; Calleja, Eduardo; Rommen, B.; Giudici, D.; Monti Guarnieri, A.

    2014-10-01

    Ka-band RADAR frequency range has not yet been used for Synthetic Aperture Radar (SAR) from space so far, although this technology may lead to important applications for the next generation of SAR space sensors. Therefore, feasibility studies regarding a Ka-band SAR instrument have been started [1][2], for the next generation of SAR space sensors. In spite of this, the lack of trusted references on backscatter at Ka-band revealed to be the main limitation for the investigation of the potentialities of this technology. In the framework of the ESA project "Ka-band SAR backscatter analysis in support of future applications", this paper is aimed at the study of wave interaction at Ka-band for a wide range of targets in order to define a set of well calibrated and reliable Ka-band backscatter coefficients for different kinds of targets. We propose several examples of backscatter data resulting from a critical survey of available datasets at Ka-band, focusing on the most interesting cases and addressing both correspondences and differences. The reliability of the results will be assessed via a preliminary comparison with ElectroMagnetic (EM) theoretical models. Furthermore, in support of future technological applications, we have designed a prototypal software acting as a "library" of earth surface radar response. In our intention, the output of the study shall contribute to answer to the need of a trustworthy Ka-Band backscatter reference. It will be of great value for future technological applications, such as support to instrument analysis, design and requirements' definition (e.g.: Signal to Noise Ratio, Noise Equivalent Sigma Zero).

  2. Ka-band MMIC subarray technology program (Ka-Mist)

    Science.gov (United States)

    Pottinger, W.

    1995-09-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  3. Ka-band MMIC microstrip array for high rate communications

    Science.gov (United States)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  4. X-/Ka-band dichroic plate noise temperature reduction

    Science.gov (United States)

    Veruttipong, W.; Lee, P.

    1994-11-01

    The X-/Ka-band (8.4 GHz/32.0 GHz) dichroic plate installed as DSS 13 contributes an estimated 3 K to the system noise temperature at 32.0 GHz. Approximately 1 percent of the Ka-band incident field is reflected by the plate into the 300-K environment of the DSS-13 pedestal room. A low-cost, easily implemented method of reducing the noise temperature is presented. Using a curved reflector, the reflected field can be re-focused into an 80-K cold load, reducing the noise temperature contribution of the dichroic plate by about 2 K.

  5. Additive manufacturing of Ka-band antennas for wireless communications

    DEFF Research Database (Denmark)

    Armendariz, Unai; Rommel, Simon; Rodríguez Páez, Juan Sebastián

    2016-01-01

    This paper presents the design and fabrication of WR-28 waveguide horn antennas operating in the Ka-band frequency range between 26.5 GHz and 40 GHz through 3D printing. Three different antennas are fabricated from polylactide acid filaments in conductive and non-conductive variants; the latter...

  6. Experimental radio frequency link for Ka-band communications applications

    Science.gov (United States)

    Fujikawa, Gene; Conray, Martin J.; Saunders, Alan L.; Pope, Dale E.

    1988-01-01

    An experimental radio frequency link has been demonstrated to provide two-way communication between a remote user ground terminal and a ground-based Ka-band transponder. Bit-error-rate performance and radio frequency characteristics of the communication link were investigated.

  7. A C-band GaN based linear power amplifier with 55.7% PAE

    Science.gov (United States)

    Luo, Weijun; Chen, Xiaojuan; Zhang, Hui; Liu, Guoguo; Zheng, Yingkui; Liu, Xinyu

    2010-04-01

    A C-band linear power amplifier is successfully developed with a one-chip 2 mm AlGaN/GaN high electron mobility transistors (HEMTs). Two kinds of matching circuits for the linear power amplifier are compared. Besides, stabilization methods for the amplifier are also discussed. At 5.4 GHz, the developed GaN HEMTs linear power amplifier delivers a 37.2 dBm (5.2 W) cw P1 dB output power with 9 dB linear gain and 55.7% maximum power-added efficiency (PAE) with a drain voltage of 25 V. To our best knowledge, the achieved PAE is the state-of-the-art result ever reported for 2 mm gate width single die GaN-based hybrid microwave integrated power amplifier at C-band.

  8. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Steven Ross; Follstaedt, David Martin; Wright, Alan Francis; Baca, Albert G.; Briggs, Ronald D.; Provencio, Paula Polyak; Missert, Nancy A.; Allerman, Andrew Alan; Marsh, Phil F.; Koleske, Daniel David; Lee, Stephen Roger; Shul, Randy John; Seager, Carleton Hoover; Tigges, Christopher P.

    2005-12-01

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaN on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the

  9. An X-band four-way combined GaN solid-state power amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chi; Hao Yue; Feng Hui; Gu Wenping; Li Zhiming; Hu Shigang; Ma Teng, E-mail: ccachi@163.co [National Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-01-15

    An X-band four-way combined GaN solid-state power amplifier module is fabricated based on a self-developed AlGaN/GaN HEMT with 2.5-mm gate width technology on SiC substrate. The module consists of an AlGaN/GaN HEMT, Wilkinson power hybrids, a DC-bias circuit and microstrip matching circuits. For the stability of the amplifier module, special RC networks at the input and output, a resistor between the DC power supply and a transistor gate at the input and 3{lambda}/4 Wilkinson power hybrids are used for the cancellation of low frequency self-oscillation and crosstalk of each amplifier. Under V{sup ds} = 27 V, V{sup gs} = -4.0 V, CW operating conditions at 8 GHz, the amplifier module exhibits a line gain of 5 dB with a power added efficiency of 17.9%, and an output power of 42.93 dBm; the power gain compression is 2 dB. For a four-way combined solid-state amplifier, the power combining efficiency is 67.5%. It is concluded that the reduction in combining efficiency results from the non-identical GaN HMET, the loss of the hybrid coupler and the circuit fabricating errors of each one-way amplifier. (semiconductor integrated circuits)

  10. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    Science.gov (United States)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  11. GaN Monolithic Power Amplifiers for Microwave Backhaul Applications

    Directory of Open Access Journals (Sweden)

    Roberto Quaglia

    2016-06-01

    Full Text Available Gallium nitride integrated technology is very promising not only for wireless applications at mobile frequencies (below 6 GHz but also for network backhaul radiolink deployment, now under deep revision for the incoming 5G generation of mobile communications. This contribution presents three linear power amplifiers realized on 0.25 μ m Gallium Nitride on Silicon Carbide monolithic integrated circuits for microwave backhaul applications: two combined power amplifiers working in the backhaul band around 7 GHz, and a more challenging third one working in the higher 15 GHz band. Architectures and main design steps are described, highlighting the pros and cons of Gallium Nitride with respect to the reference technology which, for these applications, is represented by gallium arsenide.

  12. X-band inverse class-F GaN internally-matched power amplifier

    Science.gov (United States)

    Zhao, Bo-Chao; Lu, Yang; Han, Wen-Zhe; Zheng, Jia-Xin; Zhang, Heng-Shuang; Ma, Pei-jun; Ma, Xiao-Hua; Hao, Yue

    2016-09-01

    An X-band inverse class-F power amplifier is realized by a 1-mm AlGaN/GaN high electron mobility transistor (HEMT). The intrinsic and parasitic components inside the transistor, especially output capacitor Cds, influence the harmonic impedance heavily at the X-band, so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane. Experiment results show that, in the continuous-wave mode, the power amplifier achieves 61.7% power added efficiency (PAE), which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT. To the best of our knowledge, this is the first inverse class-F GaN internally-matched power amplifier, and the PAE is quite high at the X-band. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016801).

  13. Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications

    Science.gov (United States)

    Venkatesan, Jaikrishna; Mysoor, Narayan R.; Hashemi, Hassein; Aflatouni, Firooz

    2010-01-01

    A fully integrated, front-end Ka-band monolithic microwave integrated circuit (MMIC) was developed that houses an LNA (low noise amplifier) stage, a down-conversion stage, and output buffer amplifiers. The MMIC design employs a two-step quadrature down-conversion architecture, illustrated in the figure, which results in improved quality of the down-converted IF quadrature signals. This is due to the improved sensitivity of this architecture to amplitude and phase mismatches in the quadrature down-conversion process. Current sharing results in reduced power consumption, while 3D-coupled inductors reduce the chip area. Improved noise figure is expected over previous SiGe-based, frontend designs

  14. NASA SCaN Overview and Ka-Band Actvities

    Science.gov (United States)

    Stegeman, James D.; Midon, Marco Mario; Davarian, Faramaz; Geldzahler, Barry

    2014-01-01

    The Ka- and Broadband Communications Conference is an international forum attended by worldwide experts in the area of Ka-Band Propagation and satellite communications. Since its inception, NASA has taken the initiative of organizing and leading technical sections on RF Propagation and satellite communications, solidifying its worldwide leadership in the aforementioned areas. Consequently, participation in this conference through the contributions described below will maintain NASA leadership in Ka- and above RF Propagation as it relates to enhancing current and future satellite communication systems supporting space exploration.

  15. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  16. High-Efficiency Ka-Band Waveguide Two-Way Asymmetric Power Combiner

    Science.gov (United States)

    Wintucky, E. G.; Simons, R. N.; Freeman, J. C.; Chevalier, C. T.

    2011-01-01

    NASA is planning a number of Space Exploration, Earth Observation and Space Science missions where Ka-band solid-state power amplifiers (SSPAs) could have a role. Monolithic microwave integrated circuit (MMIC) based SSPAs with output powers on the order of 10 W at Ka-band frequencies would be adequate to satisfy the data transmission rate requirements at the distances involved. MMICs are a type of integrated circuit fabricated on a GaAs wafer, which operates at micro wave frequencies and performs the function of signal amplification. The highest power Ka-band (31.8 to 32.3 GHz) SSPA to have flown in space had an output power of 2.6 W with an overall efficiency of 14.3 percent. This SSPA was built around discrete GaAs pHEMT (high electron mobility transistor) devices and flew aboard the Deep Space One spacecraft. State-of-the-art GaAs pHEMT-based MMIC power amplifiers (PAs) can deliver RF power at Ka-band frequencies anywhere from 3 W with a power added efficiency (PAE) of 32 percent to 6 W with a PAE of 26 percent. However, to achieve power levels higher than 6 W, the output of several MMIC PAs would need to be combined using a high-efficiency power combiner. Conventional binary waveguide power combiners, based on short-slot and magic-T circuits, require MMIC PAs with identical amplitude and phase characteristics for high combining efficiency. However, due to manufacturing process variations, the output powers of the MMIC PAs tend to be unequal, and hence the need to develop unequal power combiners. A two-way asymmetric magic-T based power combiner for MMIC power amplifiers, which can take in unequal inputs, has been successfully designed, fabricated, and characterized over NASA s Deep Space Network (DSN) frequency range of 31.8 to 32.3 GHz. The figure is a transparent view of the a sym - metric combiner that shows the 4-port configuration and the internal structure. The rod, post, and iris are positioned by design to achieve the desired asymmetric power ratio

  17. Automated rain rate estimates using the Ka-band ARM Zenith Radar (KAZR

    Directory of Open Access Journals (Sweden)

    A. Chandra

    2014-02-01

    Full Text Available The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from profiling Ka-band (35-GHz ARM zenith radars (KAZR. A 1-D simple, steady state microphysical model is used to estimate the impact of microphysical processes and attenuation on the profiles of the radar observables at 35-GHz and thus provide criteria for identifying when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for saturation and wet radome effects. The proposed algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while lower rain rates by the Ze–R (reflectivity-rain rate relation is implemented. Observations collected by the KAZR, disdrometer and scanning weather radars during the DYNAMO/AMIE field campaign at Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The results indicate that the proposed algorithm can be used to derive robust statistics of rain rates in the tropics from KAZR observations.

  18. Automated rain rate estimates using the Ka-band ARM zenith radar (KAZR)

    Science.gov (United States)

    Chandra, A.; Zhang, C.; Kollias, P.; Matrosov, S.; Szyrmer, W.

    2015-09-01

    The use of millimeter wavelength radars for probing precipitation has recently gained interest. However, estimation of precipitation variables is not straightforward due to strong signal attenuation, radar receiver saturation, antenna wet radome effects and natural microphysical variability. Here, an automated algorithm is developed for routinely retrieving rain rates from the profiling Ka-band (35-GHz) ARM (Atmospheric Radiation Measurement) zenith radars (KAZR). A 1-dimensional, simple, steady state microphysical model is used to estimate impacts of microphysical processes and attenuation on the profiles of radar observables at 35-GHz and thus provide criteria for identifying situations when attenuation or microphysical processes dominate KAZR observations. KAZR observations are also screened for signal saturation and wet radome effects. The algorithm is implemented in two steps: high rain rates are retrieved by using the amount of attenuation in rain layers, while low rain rates are retrieved from the reflectivity-rain rate (Ze-R) relation. Observations collected by the KAZR, rain gauge, disdrometer and scanning precipitating radars during the DYNAMO/AMIE field campaign at the Gan Island of the tropical Indian Ocean are used to validate the proposed approach. The differences in the rain accumulation from the proposed algorithm are quantified. The results indicate that the proposed algorithm has a potential for deriving continuous rain rate statistics in the tropics.

  19. Rain Fade Compensation for Ka-Band Communications Satellites

    Science.gov (United States)

    Mitchell, W. Carl; Nguyen, Lan; Dissanayake, Asoka; Markey, Brian; Le, Anh

    1997-01-01

    This report provides a review and evaluation of rain fade measurement and compensation techniques for Ka-band satellite systems. This report includes a description of and cost estimates for performing three rain fade measurement and compensation experiments. The first experiment deals with rain fade measurement techniques while the second one covers the rain fade compensation techniques. The third experiment addresses a feedback flow control technique for the ABR service (for ATM-based traffic). The following conclusions were observed in this report; a sufficient system signal margin should be allocated for all carriers in a network, that is a fixed clear-sky margin should be typically in the range of 4-5 dB and should be more like 15 dB in the up link for moderate and heavy rain zones; to obtain a higher system margin it is desirable to combine the uplink power control technique with the technique that implements the source information rate and FEC code rate changes resulting in a 4-5 dB increase in the dynamic part of the system margin. The experiments would assess the feasibility of the fade measurements and compensation techniques, and ABR feedback control technique.

  20. Ka-Band Transponder for Deep-Space Radio Science

    Science.gov (United States)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  1. Design of Ka-band antipodal finline mixer and detector

    Institute of Scientific and Technical Information of China (English)

    Yao Changfei; Xu Jinping; Chen Mo

    2009-01-01

    This paper mainly discusses the analysis and design of a finline single-ended mixer and detector. In the circuit, for the purpose of eliminating high-order resonant modes and improving transition loss, metallic via holes are implemented along the mounting edge of the substrate embedded in the split-block of the WG-finline-microstrip transition. Meanwhile, a Ka band slow-wave and bandstop filter, which represents a reactive termination, is designed for the utilization of idle frequencies and operation frequencies energy. Full-wave analysis is carried out to optimize the input matching network of the mixer and the detector circuit using lumped elements to model the nonlinear diode. The exported S-matrix of the optimized circuit is used for conversion loss and voltage sensitivity analysis.The lowest measured conversion loss is 3.52 dB at 32.2 GHz; the conversion loss is flat and less than 5.68 dB in the frequency band of 29-34 GHz. The highest measured zero-bias voltage sensitivity is 1450 mV/mW at 38.6 GHz,and the sensitivity is better than 1000 mV/mW in the frequency band of 38-40 GHz.

  2. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    Science.gov (United States)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  3. Studying NASA's Transition to Ka-Band Communications for Low Earth Orbit

    Science.gov (United States)

    Chelmins, David; Reinhart, Richard; Mortensen, Dale; Welch, Bryan; Downey, Joseph; Evans, Mike

    2014-01-01

    As the S-band spectrum becomes crowded, future space missions will need to consider moving command and telemetry services to Ka-band. NASAs Space Communications and Navigation (SCaN) Testbed provides a software-defined radio (SDR) platform that is capable of supporting investigation of this service transition. The testbed contains two S-band SDRs and one Ka-band SDR. Over the past year, SCaN Testbed has demonstrated Ka-band communications capabilities with NASAs Tracking and Data Relay Satellite System (TDRSS) using both open- and closed-loop antenna tracking profiles. A number of technical areas need to be addressed for successful transition to Ka-band. The smaller antenna beamwidth at Ka-band increases the criticality of antenna pointing, necessitating closed loop tracking algorithms and new techniques for received power estimation. Additionally, the antenna pointing routines require enhanced knowledge of spacecraft position and attitude for initial acquisition, versus an S-band antenna. Ka-band provides a number of technical advantages for bulk data transfer. Unlike at S-band, a larger bandwidth may be available for space missions, allowing increased data rates. The potential for high rate data transfer can also be extended for direct-to-ground links through use of variable or adaptive coding and modulation. Specific examples of Ka-band research from SCaN Testbeds first year of operation will be cited, such as communications link performance with TDRSS, and the effects of truss flexure on antenna pointing.

  4. A Ka-band (32 GHz) beacon link experiment (KABLE) with Mars Observer

    Science.gov (United States)

    Riley, A. L.; Hansen, D. M.; Mileant, A.; Hartop, R. W.

    1987-02-01

    A proposal for a Ka-Band (32 GHz) Link Experiment (KABLE) with the Mars Observer mission was submitted to NASA. The experiment will rely on the fourth harmonic of the spacecraft X-band transmitter to generate a 33.6 GHz signal. The experiment will rely also on the Deep Space Network (DSN) receiving station equipped to simultaneously receive X- and Ka-band signals. The experiment will accurately measure the spacecraft-to-Earth telecommunication link performance at Ka-band and X-band (8.4 GHz).

  5. Design and Validation of High Date Rate Ka-Band Software Defined Radio for Small Satellite

    Science.gov (United States)

    Xia, Tian

    2016-01-01

    The Design and Validation of High Date Rate Ka- Band Software Defined Radio for Small Satellite project will develop a novel Ka-band software defined radio (SDR) that is capable of establishing high data rate inter-satellite links with a throughput of 500 megabits per second (Mb/s) and providing millimeter ranging precision. The system will be designed to operate with high performance and reliability that is robust against various interference effects and network anomalies. The Ka-band radio resulting from this work will improve upon state of the art Ka-band radios in terms of dimensional size, mass and power dissipation, which limit their use in small satellites.

  6. High Performance Ka-band Phase Shifters for Space Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a novel MEMS-based digital phase shifter targeted for Ka-band operation, but scalable down to X-band and up to W-band. This novel phase shifter will...

  7. Advances in Ka-Band Communication System for CubeSats and SmallSats

    Science.gov (United States)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  8. Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ka Band Parabolic Deployable Antenna (KaPDA) for Interplanetary CubeSat Communications allowing moving up from UHF, S or X to get higher gain for a given diameter.

  9. NASA's Evolution to Ka-Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin; Stocklin, Frank; Geldzahler, Barry; Friedman, Daniel; Celeste, Peter

    2010-01-01

    This slide presentation reviews the exploration of NASA using a Ka-band system for spacecraft communications in Near-Earth orbits. The reasons for changing to Ka-band are the higher data rates, and the current (X-band spectrum) is becoming crowded. This will require some modification to the current ground station antennas systems. The results of a Request for Information (RFI) are discussed, and the recommended solution is reviewed.

  10. REAL-TIME FADE MITIGATION USING RADIOMETRIC MEASUREMENTS FOR FUTURE KA-BAND SERVICES AT DLR.

    OpenAIRE

    2009-01-01

    Due to the congestion of popular C- and Ku-band frequencies, the satellite communication systems are rapidly moving toward the higher frequencies. Most of the commercial communication satellites in the near future will operate Ka-band transponders. One of the inevitable part of such systems are ground stations which support In-Orbit-testing and the traffic routine for the satellites. The main problem at Ka-band link planning is the link availability reduction due to rain fade and scintillatio...

  11. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    Science.gov (United States)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; Lopez-Fernandez, J. A.; Lovell, J.; Majid, W.; Natusch, T.; Neidhardt, A.; Phillips, C.; Porcas, R.; Romero-Wolf, A.; Saldana, L.; Schreiber, U.; Sotuela, I.; Takeuchi, H.; Trinh, J.; Tzioumis, A.; deVincente, P.

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  12. A Ka-band Celestial Reference Frame with Applications to Deep Space Navigation

    Science.gov (United States)

    Jacobs, Christopher S.; Clark, J. E.; García-Miró, C.; Horiuchi, S.; Sotuela, I.

    2011-10-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of ~200 micro-arcsec (μas) in α cos δ and ~300 μas in δ. There is evidence for systematic errors at the 100 μas level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  13. A Ka-Band Celestial Reference Frame with Applications to Deep Space Navigation

    Science.gov (United States)

    Jacobs, Christopher S.; Clark, J. Eric; Garcia-Miro, Cristina; Horiuchi, Shinji; Sotuela, Ioana

    2011-01-01

    The Ka-band radio spectrum is now being used for a wide variety of applications. This paper highlights the use of Ka-band as a frequency for precise deep space navigation based on a set of reference beacons provided by extragalactic quasars which emit broadband noise at Ka-band. This quasar-based celestial reference frame is constructed using X/Ka-band (8.4/32 GHz) from fifty-five 24-hour sessions with the Deep Space Network antennas in California, Australia, and Spain. We report on observations which have detected 464 sources covering the full 24 hours of Right Ascension and declinations down to -45 deg. Comparison of this X/Ka-band frame to the international standard S/X-band (2.3/8.4 GHz) ICRF2 shows wRMS agreement of approximately 200 micro-arcsec in alpha cos(delta) and approximately 300 micro-arcsec in delta. There is evidence for systematic errors at the 100 micro-arcsec level. Known errors include limited SNR, lack of instrumental phase calibration, tropospheric refraction mis-modeling, and limited southern geometry. The motivation for extending the celestial reference frame to frequencies above 8 GHz is to access more compact source morphology for improved frame stability and to support spacecraft navigation for Ka-band based NASA missions.

  14. The Potential for a Ka-band (32 GHz) Worldwide VLBI Network

    Science.gov (United States)

    Jacobs, C. S.; Bach, U.; Colomer, F.; Garcia-Miro, C.; Gomez-Gonzalez, J.; Gulyaev, S.; Horiuchi, S.; Ichikawa, R.; Kraus, A.; Kronschnabl, G.; hide

    2012-01-01

    Ka-band (32 GHz, 9mm) Very Long Baseline Interferometric (VLBI) networking has now begun and has tremendous potential for expansion over the next few years. Ka-band VLBI astrometry from NASA's Deep Space Network has already developed a catalog of 470 observable sources with highly accurate positions. Now, several antennas worldwide are planning or are considering adding Ka-band VLBI capability. Thus, there is now an opportunity to create a worldwide Ka-band network with potential for high resolution imaging and astrometry. With baselines approaching a Giga-lambda, a Ka-band network would be able to probe source structure at the nano-radian (200 as) level ( 100X better than Hubble) and thus gain insight into the astrophysics of the most compact regions of emission in active galactic nuclei. We discuss the advantages of Ka-band, show the known sources and candidates, simulate projected baseline (uv) coverage, and discuss potential radio frequency feeds. The combination of these elements demonstrates the feasibility of a worldwide Ka network within the next few years!

  15. Ka-Band Link Study and Analysis for a Mars Hybrid RF/Optical Software Defined Radio

    Science.gov (United States)

    Zeleznikar, Daniel J.; Nappier, Jennifer M.; Downey, Joseph A.

    2014-01-01

    The integrated radio and optical communications (iROC) project at the NASA Glenn Research Center (GRC) is investigating the feasibility of a hybrid RF and optical communication subsystem for future deep space missions. The hybrid communications subsystem enables the advancement of optical communications while simultaneously mitigating the risk of infusion by combining an experimental optical transmitter and telescope with a reliable Ka-band RF transmitter and antenna. The iROC communications subsystem seeks to maximize the total data return over the course of a potential 2-year mission in Mars orbit beginning in 2021. Although optical communication by itself offers potential for greater data return over RF, the reliable Ka-band link is also being designed for high data return capability in this hybrid system. A daily analysis of the RF link budget over the 2-year span is performed to optimize and provide detailed estimates of the RF data return. In particular, the bandwidth dependence of these data return estimates is analyzed for candidate waveforms. In this effort, a data return modeling tool was created to analyze candidate RF modulation and coding schemes with respect to their spectral efficiency, amplifier output power back-off, required digital to analog conversion (DAC) sampling rates, and support by ground receivers. A set of RF waveforms is recommended for use on the iROC platform.

  16. Overview of Ka-band communications technology requirements for the space exploration initiative

    Science.gov (United States)

    Miller, Edward F.

    1991-12-01

    In the Space Exploration Initiative, Ka-band frequencies are likely to carry the bulk of the communications traffic both in the vicinity of and on the return links from the moon and Mars. The four exploration architectures identified by the Synthesis Group are examined and Ka-band technology requirements to meet the data traffic needs and schedule are identified. Specific Ka-band technology requirements identified are: transmitters - 0.5 to 200 W with high efficiency; antennas - 5m and 9m diameter, with multiple beams and/or scanning beams; and spacecraft receivers - noise figure of 2 dB. For each component, the current state of technology is assessed and needed technology development programs are identified. It is concluded that to meet the schedules of lunar and Mars precursor missions beginning in approximately the year 2000, aggressive technology development and advanced development programs are required immediately for Ka-band communications systems components. Additionally, the greater data transmission rates for the cargo and piloted phases of the exploration program require further Ka-band communications technology developments targeted for operations beginning in about 2010.

  17. Fabrication of band-pass filter using YBCO film at Ka-band frequency; YBCO hakumaku wo mochiita Ka-band taiiki tsuka fuiruta no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitake, T.; Hattori, W.; Murakami, S.; Suzuki, S. [NEC Corp., Tokyo (Japan)

    1999-11-10

    In this report, Ka band microstrip band pass filter was produced experimentally using an YBCO system high temperature superconductivity thin film as examination initial stage high temperature superconductivity a thin film superscription communication element. With it, the following were examined: Evaluation method and frequency characteristics of the filter. Especially, the examination on structure of the package and system of measurement using refrigerating machine becomes important in order to evaluate the filter with the high frequency. (NEDO)

  18. 5-W Microwave Integrated Circuits (MIC) Gallium Nitride (GaN) Class F Power Amplifier Operating at 2.8 GHz

    Science.gov (United States)

    2010-09-01

    List of Symbols, Abbreviations, and Acronyms 15  Distribition List 16 iv List of Figures Figure 1. I-V characteristics GaN HEMT packaged device...characteristics GaN HEMT packaged device: (a) Cree large-signal model and (b) measured data (Vgs values of –2.8 V to 0.1 V in steps of 0.1 V). S...Two-Stage Quasi-Class-E Power Amplifier in GaN HEMT Technology. IEEE Microwave And Wireless Components Letters 2006, 16, 28–30. 4. Wu, D. Y

  19. Design of a Ka-Band Propagation Terminal for Atmospheric Measurements in Polar Regions

    Science.gov (United States)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer [2] located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation [3] receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  20. Mars Reconnaissance Orbiter: Ka Band Radio Science Experiments and the Effect of the Troposphere

    Science.gov (United States)

    Asmar, Sami W.; Morabito, David

    2006-01-01

    This viewgraph presentation reviews the possibilities of utilizing the telecommunication links between spacecraft and Earth to examine changes in the phase/frequency, amplitude, and polarization of radio signals to investigate, specifically for the Mars Reconnaissance Orbiter (MRO)mission utilizes X-band coherent (uplink and downlink) carrier Doppler and range for its gravity investigation Gravity team will also take advantage of Ka-band downlink signal Tropospheric calibration data from Advanced Water Vapor Radiometer (AWVR) will be used. The calibration of the received Ka band signal for the effect of the troposphere is discussed.

  1. Design of a Ka-band Propagation Terminal for Atmospheric Measurements in Polar Regions

    Science.gov (United States)

    Houts, Jacquelynne R.; Nessel, James A.; Zemba, Michael J.

    2016-01-01

    This paper describes the design and performance of a Ka-Band beacon receiver developed at NASA Glenn Research Center (GRC) that will be installed alongside an existing Ka-Band Radiometer located at the east end of the Svalbard Near Earth Network (NEN) complex. The goal of this experiment is to characterize rain fade attenuation to improve the performance of existing statistical rain attenuation models. The ground terminal developed by NASA GRC utilizes an FFT-based frequency estimation receiver capable of characterizing total path attenuation effects due to gaseous absorption, clouds, rain, and scintillation by directly measuring the propagated signal from the satellite Thor 7.

  2. Mars Reconnaissance Orbiter: Ka Band Radio Science Experiments and the Effect of the Troposphere

    Science.gov (United States)

    Asmar, Sami W.; Morabito, David

    2006-01-01

    This viewgraph presentation reviews the possibilities of utilizing the telecommunication links between spacecraft and Earth to examine changes in the phase/frequency, amplitude, and polarization of radio signals to investigate, specifically for the Mars Reconnaissance Orbiter (MRO)mission utilizes X-band coherent (uplink and downlink) carrier Doppler and range for its gravity investigation Gravity team will also take advantage of Ka-band downlink signal Tropospheric calibration data from Advanced Water Vapor Radiometer (AWVR) will be used. The calibration of the received Ka band signal for the effect of the troposphere is discussed.

  3. Results from Two Years of Ka-Band Propagation Characterization at Svalbard, Norway

    Science.gov (United States)

    Nessel, James A.; Morse, Jacquelynne Rose; Zemba, Michael

    2014-01-01

    Over the several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) Polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system performance, particularly at low elevation angles ((is) less than 10 deg) where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 6 frequencies around 26.5 GHz at multiple elevation angles: 45 deg, 20 deg, and 10 deg. Two year data collection results indicate comparable performance to previously characterized northern latitude sites in the United States, i.e., Fairbanks, Alaska. It is observed that cloud cover at the Svalbard site remains the dominant loss mechanism for Ka-band links, resulting in a margin requirement of 4.1 dB to maintain link availability of 99% at 10 deg elevation.

  4. Steerable K/Ka-Band Antenna For Land-Mobile Satellite Applications

    Science.gov (United States)

    Densmore, Arthur; Jamnejad, Vahraz; Woo, Kenneth

    1994-01-01

    Prototype steerable microwave antenna tracks and communicates with geostationary satellite. Designed to mount on roof of vehicle and only 10 cm tall. K/Ka-band antenna rugged and compact to suit rooftop mobile operating environment. More-delicate signal-processing and control equipment located inside vehicle.

  5. Evaluation and Performance Analysis of 3D Printing Technique for Ka-Band Antenna Production

    DEFF Research Database (Denmark)

    Armendariz, Unai; Rommel, Simon; Rodríguez Páez, Juan Sebastián

    2016-01-01

    This paper presents the design and fabrication of 3D printed WR-28 waveguide horn antennas operating in the Ka-band frequency range between 26.5GHz and 40GHz. Three antennas are fabricated from polylactide acid filaments in conductive and non-conductive variants; the latter is covered...

  6. SYSTEM MODELLING OF DTH BROADCASTING AT KA BAND MULTIBEAM SATELLITE SYSTEM OVER INDIA

    Directory of Open Access Journals (Sweden)

    Swastik Sahoo

    2015-12-01

    Full Text Available A major application of satellite is broadcasting and in India this is done at Ku band. But with the increase of demand of number of channels Ku band is getting saturated. So, to satisfy this requirement an approach is to go to higher frequency band, i.e. Ka band. As India is allocated with seven fixed GEO locations, so the purpose is to calculate what is the suitable satellite position for India at Ka band, what is the best EIRP available at that position and what will be the smallest ground antenna diameter and satellite antenna diameter at Ka band. Broadcasting is done at 20GHz Ka band downlink frequency. At this frequency, as the signal will face lots of impairments during propagation, so the attenuation caused by variety of factors are discussed here. To overcome the attenuation maximum EIRP is given. The link equation is taken as a reference to calculate quality of the signal, G/T ratio and EIRP of the satellite. The extreme west region of India is being taken as earth station and after some brief calculations all the results are discussed. Out of seven allocated GEO locations, 74⁰E gives best output in terms of minimum loss & small antenna diameters.

  7. Ka-Band PAA for Satellite Telemetry System for RLVs & Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed antenna is a Radial-Waveguide Array (RWA) that will operate at Ka band, 25.5-27.5 GHz in transmit and receive for left-hand, right-hand. This Phase I...

  8. Results from Three Years of Ka-Band Propagation Characterization at Svalbard, Norway

    Science.gov (United States)

    Nessel, James; Zemba, Michael; Morse, Jacquelynne

    2015-01-01

    Over the next several years, NASA plans to launch several earth science missions which are expected to achieve data throughputs of 5-40 terabits per day transmitted from low earth orbiting spacecraft to ground stations. The current S-band and X-band frequency allocations in use by NASA, however, are incapable of supporting the data rates required to meet this demand. As such, NASA is in the planning stages to upgrade its existing Near Earth Network (NEN) polar ground stations to support Ka-band (25.5-27 GHz) operations. Consequently, it installed and operated a Ka-band radiometer at the Svalbard site. Svalbard was chosen as the appropriate site for two primary reasons: (1) Svalbard will be the first site to be upgraded to Ka-band operations within the NEN Polar Network enhancement plan, and (2) there exists a complete lack of Ka-band propagation data at this site (as opposed to the Fairbanks, AK NEN site, which has 5 years of characterization collected during the Advanced Communications Technology becomes imperative that characterization of propagation effects at these NEN sites is conducted to determine expected system Satellite (ACTS) campaign). processing and provide the Herein, we discuss the data three-year measurement results performance, particularly at low elevation angles ((is) less than 10 deg) from the ongoing Ka-band propagation characterization where spacecraft signal acquisition typically occurs. Since May 2011, NASA Glenn Research Center has installed and operated a Ka-band radiometer at the NEN site located in Svalbard, Norway. The Ka-band radiometer monitors the water vapor line, as well as 4 frequencies around 26.5 GHz at a fixed 10 deg elevation angle. Three-year data collection results indicate good campaign at Svalbard, Norway. Comparison of these results with the ITU models and existing ERA profile data indicates very good agreement when the 2010 rain maps and cloud statistics are used. Finally, the Svalbard data is used to derive the expected

  9. Dichroic Filter for Separating W-Band and Ka-Band

    Science.gov (United States)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  10. A Wide-band, Ka-band Amplifier and Radar System for Precipitation Retrievals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is committed to measuring precipitation on a global scale. In 1997, NASA launched the Tropical Rain Measuring Mission which carried the first spaceborne...

  11. Ka-Band TWT High-Efficiency Power Combiner for High-Rate Data Transmission

    Science.gov (United States)

    Wintucky, Edwin G.; Simons, Rainee; Vaden, Karl R.; Lesny, Gary G.; Glass, Jeffrey L.

    2007-01-01

    A four-port magic-T hybrid waveguide junction serves as the central component of a high-efficiency two-way power combiner circuit for transmitting a high-rate phase-modulated digital signal at a carrier frequency in the Ka-band (between 27 and 40 GHz). This power combiner was developed to satisfy a specific requirement to efficiently combine the coherent outputs of two traveling-wavetube (TWT) amplifiers that are typically characterized by power levels on the order of 100 W or more. In this application, the use of a waveguide-based power combiner (instead of a coaxial-cable- or microstrip-based power combiner, for example) is dictated by requirements for low loss, high power-handling capability, and broadband response. Combiner efficiencies were typically 90 percent or more over both the linear and saturated output power regions of operation of the TWTs . Figure 1 depicts the basic configuration of the magic-T hybrid junction. The coherent outputs of the two TWTs enter through ports 1 and 4. As a result of the orientations of the electromagnetic fields, which also provides a needed high port-to-port isolation, of these two input signals and the interior design of the magic-T junction, the input powers are divided so as to add in phase at one output port (port 2), and to be opposite in phase and hence cancel each other at the opposite coplanar output port (port 3). The net result is that the output power at port 2 is essentially double that of the output of one TWT, minus the power lost in the magic-T hybrid junction. Optimum performance as a high-efficiency power combiner thus requires a balance of both power and phase at the input ports of the magic-T. Replicas of this two-way combiner can be arranged in a binary configuration to obtain a 2n-way (where n is an integer) combiner. For example, Figure 2 illustrates the use of three two-way combiners to combine the outputs of four TWTs.

  12. 宽带GaN功率放大器的建模与预失真%Modeling and Pre-distortion of Broadband GaN Power Amplifier

    Institute of Scientific and Technical Information of China (English)

    丁元明; 李正杰; 王雪

    2012-01-01

    对正交频分复用传输系统中宽带GaN功率放大器的建模与预失真线性化方法进行研究.应用一个带有记忆的多项式模型来建模GaN功率放大器及其逆特性,并通过递推最小二乘法(RLS)辨识模型参数,然后利用预失真间接结构实现了GaN功率放大器的预失真器.最后,仿真验证预失真方法的有效性,结果表明记忆多项式模型可以对GaN功率放大器进行建模并实现线性化.%A modeling and predistortion linearization method is proposed for broadband GaN power amplifiers in the orthogonal frequency division multiplexing transmission (OFDM) system. Apply a memory polynomial model to modeling GaN power amplifier and its inverse characteristics, and by using the recursive least squares (RLS) identify the model parameters, and then the predistortion indirect structure realize a predistorter of the GaN amplifier. Finally, simulation results prove the effectiveness of the predistortion method, and the results show that memory polynomial model can be modeled on GaN power amplifier and realize the linearization.

  13. Experimental characterization of negative refractive index material NRM at Ka band

    CERN Document Server

    Chatterjee, Sougata

    2016-01-01

    In this paper, we discuss the experimental characterization of a negative refractive material NRM at Ka band using LR labyrinth Ring and wire array WA. We describe in detail the the LR and wire array characterization separately, and after that the combined experimental results, for NRM are reported. The LRs analytical and simulation study is not new but design in Ka band and different experimental procedure for the characterization of the negative refractive index is the novelty of this paper. For performing a negative refractive index experiment we made prism of 150 Prism angle . We get enhanced transmittance of more than 20 dB from background, at a negative angle of refraction. The values of the negative refractive index in a band of about 1 G Hz around 31 GHz are retrieved from the experimental data.

  14. DESIGN, FABRICATION AND RF CHARACTERIZATION OF KA-BAND SILICON IMPATT DIODE

    Directory of Open Access Journals (Sweden)

    TAPAS KUMAR PAL,

    2010-09-01

    Full Text Available A silicon (p+nn+ SDR IMPATT diode for Ka-band operation has been designed by using a double iterative DC and Small signal simulation which involves simultaneous solution of Poisson’s equation and Carrier continuity equation, satisfying appropriate boundary conditions in the depletion layer edges. Using the design parameters,silicon epitaxial n/n+ wafers of appropriate thickness and resistivity of the epitaxial layer have been selected for fabrication of (p+nn+ SDR IMPATT diode for Ka-band operation. The (p+nn+ SDR IMPATT diode has been fabricated through diffusion technique. The optimized process steps of fabrication, starting from wafer cleaningto packaging have been described in details. The DC V-I and RF characteristics of fabricated IMPATT diode have been measured by using an integrated heat sink cum resonant cap waveguide cavity.

  15. Ka-band InSAR Imaging and Analysis Based on IMU Data

    Directory of Open Access Journals (Sweden)

    Shi Jun

    2014-02-01

    Full Text Available Compared with other bands, the millimeter wave Interferometric Synthetic Aperture Radar (InSAR has high accuracy and small size, which is a hot topic in InSAR research. On the other hand, shorter wavelength causes difficulties in 2D imaging and interferometric phase extraction. In this study, the imaging and phase performance of the streaming Back Projection (BP method combined with IMU data are analyzed and discussed on the basis of actual Ka-band InSAR data. It is found that because the wavelength of the Ka-band is short, it is more sensitive to the antenna phase-center history. To ensure the phase-preserving capacity, the IMU data must be used with accurate motion error compensation. Furthermore, during data processing, we verify the flat-earth-removing capacity of the BP algorithm that calculates and compensates the master and slave antenna phase centers individually.

  16. Reconfigurable phased antenna array for extending cubesat operations to Ka-band: Design and feasibility

    Science.gov (United States)

    Buttazzoni, G.; Comisso, M.; Cuttin, A.; Fragiacomo, M.; Vescovo, R.; Vincenti Gatti, R.

    2017-08-01

    Started as educational tools, CubeSats have immediately encountered the favor of the scientific community, subsequently becoming viable platforms for research and commercial applications. To ensure competitive data rates, some pioneers have started to explore the usage of the Ka-band beside the conventional amateur radio frequencies. In this context, this study proposes a phased antenna array design for Ka-band downlink operations consisting of 8×8 circularly polarized subarrays of microstrip patches filling one face of a single CubeSat unit. The conceived structure is developed to support 1.5 GHz bandwidth and dual-task missions, whose feasibility is verified by proper link budgets. The dual-task operations are enabled by a low-complexity phase-only control algorithm that provides pattern reconfigurability in order to satisfy both orbiting and intersatellite missions, while remaining adherent to the cost-effective CubeSat paradigm.

  17. A satellite system for multimedia personal communications at Ka-band and beyond

    Science.gov (United States)

    Vatalaro, F.; Losquadro, G.

    1995-01-01

    The main characteristics of the satellite extremely high frequency (EHF) communication of multimedia mobile services (SECOMS) system are given and the results of the preliminary analysis are included. The SECOMS provides a first generation Ka band system with coverage over Western Europe, in order to satisfy business user needs of very large bandwidths and terminal mobility. The satellite system also provides a second generation EHF enhanced system with increased capacity and enlarged coverage, to serve all of Europe and the nearby countries.

  18. A K/Ka band radiating element for Tx/Rx phased array

    KAUST Repository

    Sandhu, Ali Imran

    2017-01-20

    The paper presents a K/Ka band radiating element for TX/RX phased arrays. Dual band operations is obtained using a single radiating surface: a novel radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The array elements are optimized to scan the beam in excess of 50° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  19. Miniaturized UHF, S-, and Ka-band RF MEMS Filters for Small Form Factor, High Performance EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II of this SBIR, Harmonic Devices (HDI) proposes to develop miniaturized MEMS filters at UHF, S-band and Ka-band to address the requirements of NASA's...

  20. Ka-Band Site Characterization of the NASA Near Earth Network in Svalbard, Norway

    Science.gov (United States)

    Acosta, R.; Morse, J.; Nessel, J.; Zemba, M.; Tuttle, K.; Caroglanian, A.; Younes, B.; Pedersen, Sten-Chirstian

    2011-01-01

    Critical to NASA s rapid migration toward Ka-Band is the comprehensive characterization of the communication channels at NASA's ground sites to determine the effects of the atmosphere on signal propagation and the network's ability to support various classes of users in different orbits. Accordingly, NASA has initiated a number of studies involving the ground sites of its Near Earth and Deep Space Networks. Recently, NASA concluded a memorandum of agreement (MOA) with the Norwegian Space Centre of the Kingdom of Norway and began a joint site characterization study to determine the atmospheric effects on Ka-Band links at the Svalbard Satellite Station in Norway, which remains a critical component of NASA s Near Earth Communication Network (NEN). System planning and design for Ka-band links at the Svalbard site cannot be optimally achieved unless measured attenuation statistics (e.g. cumulative distribution functions (CDF)) are obtained. In general, the CDF will determine the necessary system margin and overall system availability due to the atmospheric effects. To statistically characterize the attenuation statistics at the Svalbard site, NASA has constructed a ground-based monitoring station consisting of a multi-channel total power radiometer (25.5 - 26.5 GHz) and a weather monitoring station to continuously measure (at 1 second intervals) attenuation and excess noise (brightness temperature). These instruments have been tested in a laboratory environment as well as in an analogous outdoor climate (i.e. winter in Northeast Ohio), and the station was deployed in Svalbard, Norway in May 2011. The measurement campaign is planned to last a minimum of 3 years but not exceeding a maximum of 5 years.

  1. Proposal for a Joint NASA/KSAT Ka-band RF Propagation Terminal at Svalbard, Norway

    Science.gov (United States)

    Volosin, Jeffrey; Acosta, Roberto; Nessel, James; McCarthy, Kevin; Caroglanian, Armen

    2010-01-01

    This slide presentation discusses the placement of a Ka-band RF Propagation Terminal at Svalbard, Norway. The Near Earth Network (NEN) station would be managed by Kongsberg Satellite Services (KSAT) and would benefit NASA and KSAT. There are details of the proposed NASA/KSAT campaign, and the responsibilities each would agree to. There are several reasons for the placement, a primary reason is comparison with the Alaska site, Based on climatological similarities/differences with Alaska, Svalbard site expected to have good radiometer/beacon agreement approximately 99% of time.

  2. Ka-band Dielectric Waveguide Antenna Array for Millimeter Wave Active Imaging System

    Science.gov (United States)

    Fang, Weihai; Fei, Peng; Nian, Feng; Yang, Yujie; Feng, Keming

    2014-11-01

    Ka-band compact dielectric waveguide antenna array for active imaging system is given. Antenna array with WR28 metal waveguide direct feeding is specially designed with small size, high gain, good radiation pattern, easy realization, low insertion loss and low mutual coupling. One practical antenna array for 3-D active imaging system is shown with theoretic analysis and experimental results. The mutual coupling of transmitting and receiving units is less than -30dB, the gain from 26.5GHz to 40GHz is (12-16) dB. The results in this paper provide guidelines for the designing of millimeter wave dielectric waveguide antenna array.

  3. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  4. Sea surface Ka-band radar cross-section from field observations in the Black Sea

    Science.gov (United States)

    Yurovsky, Yury; Kudryavtsev, Vladimir; Grodsky, Semyon; Chapron, Bertrand

    2016-04-01

    An interest in Ka-band radar backscattering from the ocean surface is growing due to better spatial resolution and more accurate Doppler anomaly estimate. But, available empirical models of Ka-band cross-section are quite scarce and sometime controversial. Here we present multi-year (2009-2015) field measurements of Ka-band co-polarized (VV and HH) sea surface normalized radar cross-section (NRCS) from research platform in the Black sea collected in a wide range of observation and sea state conditions. The data are fitted by polynomial function of incidence angle, azimuth and wind speed with accounting for measured radar antenna pattern. This empirical NRCS is compared with published Ka- and Ku-band data. Our Ka-band NRCS is close to Ku-band, but is 5-7 dB higher than 'pioneer' measurements by Masuko et al. (1986). Following the two-scale Bragg paradigm, the NRCS is split into polarized (Bragg) and non-polarized components and analyzed in terms of polarization ratio (VV/HH) and polarization difference (VV-HH) to estimate wave spectra at the Bragg wave number. Non-polarized component dominates at low incidence angles 60°) NRCS azimuth dependency is unimodal (upwind peak) for HH and bimodal (with up- and downwind peaks) for VV polarization. This again can be attributed to different backscattering mechanisms for VV and HH polarizations. With decreasing of incidence angle, up- to downwind ratio tends to 1, and under light wind conditions (4-6 m/s) can be less than 1. The same situation is observed for polarization difference, which reflects Bragg backscattering properties only. This effect can be explained by enhanced roughness on upwind (windward) face of the tilting wave. Retrieval of Bragg roughness properties shows that omni-directional saturation spectra at ~1000 rad/m are 2-3 times higher (0.01 at 10 m/s wind speed) than the spectra obtained from optical measurements of regular sea surface without wave breaking. This suggests that observed difference can arise

  5. A CDMA architecture for a Ka-band Personal Access Satellite System

    Science.gov (United States)

    Motamedi, Masoud; Sue, Miles K.

    1990-01-01

    A Code Division Multiple Access (CDMA) architecture is currently being studied for use in a Ka-band Personal Access Satellite System (PASS). The complete architecture consisting of block diagrams of the user terminal, the supplier station, the network management center, and the satellite is described along with the access methods and frequency/time plans. The complexity of developing this system using the CDMA architecture is compared to that of a Frequency Division Multiple Access (FDMA) architecture. The inherent advantages and disadvantages of the two architectures are compared and their respective capacities are discussed.

  6. Deep-Space Ka-Band Link Priority Data Protection: Pre-Emptive Retransmission vs. Margin

    Science.gov (United States)

    Shambayati, Shervin

    2009-01-01

    In this paper the performance of two preemptive retransmission schemes for protection of priority data over deep-space Ka-band links is evaluated. The first scheme merges the correctly received bit from each transmission to create the most complete set of priority data for each pass (bit merge). The second scheme (symbol combining) combines the soft symbols received from each transmission of the priority data to increase the priority data's signal to noise ratio (SNR), thus increasing the liklihood of the correct reception.

  7. Analysis of Standards Efficiency in Digital Television Via Satellite at Ku and Ka Bands

    Directory of Open Access Journals (Sweden)

    Landeros-Ayala Salvador

    2013-06-01

    Full Text Available In this paper, an analysis on the main technical features of digital television standards for satellite transmission is carried out. Based on simulations and link budgets, the standard with the best operational performance is defined, based on simulations and link budget analysis, as well as a comparative efficiency analysis is conducted for the Ku and Ka bands for both transparent and regenerative transponders in terms of power, bandwidth, information rate and link margin, including clear sky, uplink rain, downlink rain and rain in both.

  8. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    Science.gov (United States)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  9. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    OpenAIRE

    Coco, S; Di Maggio, F.; A. Laudani; I. Pomona

    2008-01-01

    This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB) for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase nois...

  10. Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators

    OpenAIRE

    Lenk, Friedrich; Schott, Matthias; Heinrich, Wolfgang

    2001-01-01

    Accurate oscillator phase-noise simulation is a key problem in MMIC design, which is not solved satisfactory so far and needs further investigation. In this paper, a Ka-band MMIC oscillator with GaInP/GaAs HBT and on-chip resonator is treated as an example. Measured phase noise reaches -90 dBc/Hz and below at 100 kHz offset. To evaluate phase-noise predic-tion, the circuit is simulated using different commercial simulation tools and HBT models. Con-siderable differences in simulation results ...

  11. Evaluation of Deep Space Ka-Band Data Transfer using Radiometeorological Forecasts and Radiometer Measurements

    Science.gov (United States)

    Montopoli, Mario; Marzano, Frank S.; Biscarini, Marianna; Milani, Luca; Cimini, Domenico; De Sanctis, Klaide; Di Fabio, Saverio

    2016-04-01

    Deep space exploration is aimed at acquiring information about the solar system. In this scenario, telecommunications links between Earth ground receiving stations and extra-terrestrial satellite platforms have to be designed in order to ensure the optimal transfer of the acquired scientific data back to the Earth. A significant communication capacity has to be planned when very large distances, as those characterising deep space links, are involved thus fostering more ambitious scientific mission requirements. At the current state of the art, two microwave channel frequencies are used to perform the deep space data transfer: X band (~ 8.4 GHz) and Ka band (~ 32 GHz) channel. Ka-band transmission can offer an advantage over X-band in terms of antenna performance with the same antenna effective area and an available data transfer bandwidth (50 times higher at Ka band than X band). However, Earth troposphere-related impairments can affects the space-to-Earth carrier signals at frequencies higher than 10 GHz by degrading its integrity and thus reducing the deep space channel temporal availability. Such atmospheric impairments, especially in terms of path attenuation, their statistic and the possibility to forecast them in the next 24H at the Earth's receiving station would allow a more accurate design of the deep space link, promoting the mitigation of the detrimental effects on the link availability. To pursue this aim, meteorological forecast models and in situ measurements need to be considered in order to characterise the troposphere in terms of signal path attenuation at current and future time. In this work, we want to show how the synergistic use of meteorological forecasts, radiative transfer simulations and in situ measurements such as microwave radiometry observations, rain gauges and radiosoundings, can aid the optimisation of a deep space link at Ka band and improve its performance with respect to usual practices. The outcomes of the study are in the

  12. FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  13. A novel Ka-band coaxial transit-time oscillator with a four-gap buncher

    Energy Technology Data Exchange (ETDEWEB)

    Song, Lili; He, Juntao; Ling, Junpu [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2015-05-15

    A novel Ka-band coaxial transit-time oscillator (TTO) with a four-gap buncher is proposed and investigated. Simulation results show that an output power of 1.27 GW and a frequency of 26.18 GHz can be achieved with a diode voltage of 447 kV and a beam current of 7.4 kA. The corresponding power efficiency is 38.5%, and the guiding magnetic field is 0.6 T. Studies and analysis indicate that a buncher with four gaps can modulate the electron beam better than the three-gap buncher in such a Ka-band TTO. Moreover, power efficiency increases with the coupling coefficient between the buncher and the extractor. Further simulation demonstrates that power efficiency can reach higher than 30% with a guiding magnetic field of above 0.5 T. Besides, the power efficiency exceeds 30% in a relatively large range of diode voltage from 375 kV to 495 kV.

  14. Electromagnetic Properties of Graphene-like Films in Ka-Band

    Directory of Open Access Journals (Sweden)

    Sofia Voronovich

    2014-05-01

    Full Text Available We studied electromagnetic properties of pyrolytic carbon (PyC films with thicknesses from 9 nm to 110 nm. The PyC films consisted of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers were synthesized by chemical vapor deposition (CVD at 1100 °C on a quartz substrate. The reflectance and transmittance of these films in Ka-band, 26–37 GHz, were studied both experimentally and theoretically. The discovered remarkably high absorption loss of up to 50% of incident power, along with chemical stability, makes PyC films attractive for electromagnetic (EM interference shielding in space and airspace communication systems, as well as in portable electronic devices occupying this frequency slot. Since, in practical applications, the PyC film should be employed for coating of dielectric surfaces, two important issues to be addressed are: (i which side (front or back of the substrate should be covered to ensure maximum absorption losses; and (ii the frequency dependence of absorbance/transmittance/reflectance of binary PyC/quartz structures in the Ka-band.

  15. Ferroelectric switch for a high-power Ka-band active pulse compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2013-12-18

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW μs-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  16. Ka-Band Atmospheric Phase Stability Measurements in Goldstone, CA; White Sands, NM; and Guam

    Science.gov (United States)

    Zemba, Michael J.; Morse, Jacquelynne Rose; Nessel, James A.

    2014-01-01

    As spacecraft communication links are driven to higher frequencies (e.g. Ka-band) both by spectrum congestion and the appeal of higher data rates, the propagation phenomena at these frequencies must be well characterized for effective system design. In particular, the phase stability of a site at a given frequency will govern whether or not the site is a practical location for an antenna array, particularly if uplink capabilities are desired. Propagation studies to characterize such phenomena must be done on a site-by-site basis due to the wide variety of climates and weather conditions at each ground terminal. Accordingly, in order to statistically characterize the atmospheric effects on Ka-Band links, site test interferometers (STIs) have been deployed at three of NASA's operational sites to directly measure each site's tropospheric phase stability. Using three years of results from these experiments, this paper will statistically characterize the simultaneous atmospheric phase noise measurements recorded by the STIs deployed at the following ground station sites: the Goldstone Deep Space Communications Complex near Barstow, CA; the White Sands Ground Terminal near Las Cruces, NM; and the Guam Remote Ground Terminal on the island of Guam.

  17. On the Design of Laser Structured Ka Band Multi-Chip Module

    Directory of Open Access Journals (Sweden)

    Ghulam Mehdi

    2013-09-01

    Full Text Available The rapid prototyping of millimeter wave (MMW multi-chip module (MCM on low-cost ceramic-polymer composite substrate using laser ablation process is presented. A Ka band MCM front-end receiver is designed, fabricated and tested. The complete front-end receiver module except the IF and power distribution sections is realized on the single prescribed substrate. The measured receiver gain, noise figure and image rejection is 37 dB, 4.25 dB and 40 dB respectively. However, it deduced from the experimental results of the two front-end modules that the complex permittivity characteristics of the substrate are altered after the laser ablation process. The effective permittivity alteration phenomenon is further validated through the characterization and comparison of various laser ablated and chemically etched Ka band parallel-coupled band-pass filters. A simple and experimentally verified method is worked out to utilize the laser ablation structuring process on the prescribed substrate. It is anticipated that the proposed method can be applied to other laminated substrates as well with the prescribed manufacturing process.

  18. Evolution of Monolithic Technology for Wireless Communications: GaN MMIC Power Amplifiers For Microwave Radios

    Directory of Open Access Journals (Sweden)

    Vittorio Camarchia

    2014-09-01

    Full Text Available This paper presents the progress of monolithic technology for microwaveapplication, focusing on gallium nitride technology advances in the realization of integratedpower amplifiers. Three design examples, developed for microwave backhaul radios, areshown. The first design is a 7 GHz Doherty developed with a research foundry, while thesecond and the third are a 7 GHz Doherty and a 7–15 GHz dual-band combined poweramplifiers, both based on a commercial foundry process. The employed architectures, themain design steps and the pros and cons of using gallium nitride technology are highlighted.The measured performance demonstrates the potentialities of the employed technology, andthe progress in the accuracy, reliability and performance of the process.

  19. Deep Space Ka-band Link Management and the MRO Demonstration: Long-term Weather Statistics Versus Forecasting

    Science.gov (United States)

    Davarian, Faramaz; Shambayati, Shervin; Slobin, Stephen

    2004-01-01

    During the last 40 years, deep space radio communication systems have experienced a move toward shorter wavelengths. In the 1960s a transition from L- to S-band occurred which was followed by a transition from S- to X-band in the 1970s. Both these transitions provided deep space links with wider bandwidths and improved radio metrics capability. Now, in the 2000s, a new change is taking place, namely a move to the Ka-band region of the radio frequency spectrum. Ka-band will soon replace X-band as the frequency of choice for deep space communications providing ample spectrum for the high data rate requirements of future missions. The low-noise receivers of deep space networks have a great need for link management techniques that can mitigate weather effects. In this paper, three approaches for managing Ka-band Earth-space links are investigated. The first approach uses aggregate annual statistics, the second one uses monthly statistics, and the third is based on the short-term forecasting of the local weather. An example of weather forecasting for Ka-band link performance prediction is presented. Furthermore, spacecraft commanding schemes suitable for Ka-band link management are investigated. Theses schemes will be demonstrated using NASA's Mars Reconnaissance Orbiter (MRO) spacecraft in the 2007 to 2008 time period, and the demonstration findings will be reported in a future publication.

  20. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    Science.gov (United States)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  1. Dual Ka-band radar field campaign for GPM/DPR algorithm development

    Science.gov (United States)

    Nakagawa, K.; Nishikawa, M.; Nakamura, K.; Komachi, K.; Hanado, H.; Kawamura, S.; Sugitani, S.; Minda, H.; Shimizu, S.; Oki, R.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  2. A new low-cost 10 ns pulsed Ka-band radar

    Science.gov (United States)

    Eskelinen, Pekka; Ylinen, Juhana

    2011-07-01

    Two Gunn oscillators, conventional intermediate frequency building blocks, and a modified GaAs diode detector are combined to form a portable monostatic 10 ns instrumentation radar for outdoor Ka-band radar cross section measurements. At 37.8 GHz the radar gives +20 dBm output power and its tangential sensitivity is -76 dBm. Processing bandwidth is 125 MHz, which also allows for some frequency drift in the Gunn devices. Intra-pulse frequency chirp is less than 15 MHz. All functions are steered by a microcontroller. First measurements convince that the construction has a reasonable ability to reduce close-to-ground surface clutter and gives an effective way of resolving target detail. This is beneficial especially when amplitude fluctuations disturb measurements with longer pulses. The new unit operates on 12 V dc, draws a current of less than 3 A, and weighs 5 kg.

  3. Performance Analyses of the Radio Orbital Angular Momentum Steering Technique Based on Ka-Band Antenna

    Directory of Open Access Journals (Sweden)

    Mingtuan Lin

    2017-01-01

    Full Text Available The misalignment in the orbital angular momentum- (OAM- based system would distort the radiation patterns of twisted beams carrying OAM, consequently making the OAM-based communication infeasible. To tackle the misalignment problem, a radio OAM steering technique based on a uniform circular array (UCA is illustrated. Subsequently, simulations are conducted to explore the influence of the OAM steering on the OAM mode quality and transmission performance. Furthermore, UCAs working at Ka-band with formulated feeding networks are designed and fabricated to analyze the performance of the OAM steering. The influences of OAM steering on mode quality and orthogonality are then evaluated in the experiment. Overall, the analyses of OAM steering technique are beneficial for the development of radio OAM study.

  4. Thermal Deformation and RF Performance Analyses for the SWOT Large Deployable Ka-Band Reflectarray

    Science.gov (United States)

    Fang, H.; Sunada, E.; Chaubell, J.; Esteban-Fernandez, D.; Thomson, M.; Nicaise, F.

    2010-01-01

    A large deployable antenna technology for the NASA Surface Water and Ocean Topography (SWOT) Mission is currently being developed by JPL in response to NRC Earth Science Tier 2 Decadal Survey recommendations. This technology is required to enable the SWOT mission due to the fact that no currently available antenna is capable of meeting SWOT's demanding Ka-Band remote sensing requirements. One of the key aspects of this antenna development is to minimize the effect of the on-orbit thermal distortion to the antenna RF performance. An analysis process which includes: 1) the on-orbit thermal analysis to obtain the temperature distribution; 2) structural deformation analysis to get the geometry of the antenna surface; and 3) the RF performance with the given deformed antenna surface has been developed to accommodate the development of this antenna technology. The detailed analysis process and some analysis results will be presented and discussed by this paper.

  5. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    Science.gov (United States)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  6. Cryo-Cooled Sapphire Oscillator for the Cassini Ka-Band Experiment

    Science.gov (United States)

    Wang, Rabi T.; Dick, G. John

    1997-01-01

    We present features for an ultra-stable sapphire cryogenic oscillator which has been designed to support the Cassini Ka-band Radio Science experiment. The design of this standard is new in several respects. It is cooled by a commercial cryocooler instead of liquid cryogens to increase operating time, and it uses a technology to adjust the temperature turn-over point to extend the upper operating temperature limit and to enable construction of multiple units with uniform operating characteristics. Objectives are 3 x 10(exp -15) stability for measuring times 1 second less than or equal to (tau) less than or equal to 100 seconds, phase noise of -85 dBc/Hz from offset frequencies of 1 Hz to 1000 Hz at 10 GHz carrier frequency, and a one year continuous operating period.

  7. Low phase noise GaAs HBT VCO in Ka-band

    Science.gov (United States)

    Ting, Yan; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang; Yue, Wu; Yifeng, Liu

    2015-02-01

    Design and fabrication of a Ka-band voltage-controlled oscillator (VCO) using commercially available 1-μm GaAs heterojunction bipolar transistor technology is presented. A fully differential common-emitter configuration with a symmetric capacitance with a symmetric inductance tank structure is employed to reduce the phase noise of the VCO, and a novel π-feedback network is applied to compensate for the 180° phase shift. The on-wafer test shows that the VCO exhibits a phase noise of -96.47 dBc/Hz at a 1 MHz offset and presents a tuning range from 28.312 to 28.695 GHz. The overall dc current consumption of the VCO is 18 mA with a supply voltage of -6 V The chip area of the VCO is 0.7 × 0.7 mm2.

  8. Design of a Cryocooled Sapphire Oscillator for the Cassini Ka-Band Experiment

    Science.gov (United States)

    Dick, G. J.; Wang, R. T.

    1998-04-01

    We present design aspects of a cryogenic sapphire oscillator that is being developed for ultra-high short-term stability and low phase noise in support of the Cassini Ka-band (32-GHz) radio science experiment. With cooling provided by a commercial cryocooler instead of liquid helium, this standard is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3 x 10^(-15) (1 second ≤ τ ≤ 100 seconds) and a phase noise of -73 dBc/Hz at 1 Hz measured at 34 GHz. Test results are reported for several subsystems, including the cryocooler, vibration isolation system, and ruby compensating element.

  9. Radiating Elements for Shared Aperture Tx/Rx Phased Arrays at K/Ka Band

    KAUST Repository

    Sandhu, A.I.

    2016-04-11

    A dual band, Tx/Rx, self-diplexing phased array is presented. The antenna has been designed to cover Tx/Rx satellite communications at K/Ka band with a frequency ratio 1.5:1. To obtain dual band operations with a single radiating surface, a novel dual band radiator is adopted and placed in a configuration in which dual band and single band elements are interleaved. The proposed configuration reduces the number of radiating elements required by other solutions while avoiding the insurgence of grating lobes. The tightly packed arrangement of the elements poses many integration issues, which are solved with a novel integration technique. The array elements are optimized to scan the beam in excess of ° in both bands. A subarray with 49 Rx elements and 105 Tx elements was built and measured confirming the results obtained in simulations.

  10. Ka-band bistatic ground-based SAR using noise signals

    Science.gov (United States)

    Lukin, K.; Mogyla, A.; Vyplavin, P.; Palamarchuk, V.; Zemlyaniy, O.; Tarasenko, V.; Zaets, N.; Skretsanov, V.; Shubniy, A.; Glamazdin, V.; Natarov, M.; Nechayev, O.

    2008-01-01

    Currently, one of the actual problems is remote monitoring of technical state of large objects. Different methods can be used for that purpose. The most promising of them relies on application of ground based synthetic aperture radars (SAR) and differential interferometry. We have designed and tested Ground Based Noise Waveform SAR based on noise radar technology [1] and synthetic aperture antennas [2]. It enabled to build an instrument for precise all-weather monitoring of large objects in real-time. We describe main performance of ground-based interferometric SAR which uses continuous Ka-band noise waveform as a probe signal. Besides, results of laboratory trials and evaluation of its main performance are presented as well.

  11. First Airswot Ka-Band Radar Backscatter Returns over a Complex California Wetland

    Science.gov (United States)

    Baney, O. N.; Smith, L. C.; Pitcher, L. H.; Gleason, C. J.; Chu, V. W.; Bennett, M. M.; Pavelsky, T.; Sadowy, G. A.

    2014-12-01

    In anticipation of the launch of the NASA Surface Water Ocean Topography (SWOT) mission, this project was conducted around the Piute Ponds of Edwards Air Force Base within the Mojave Desert, California to characterize ground conditions simultaneously with two AirSWOT flights collected May 14th, 2014. Both SWOT and AirSWOT employ a Ka-band interferometer to map water surface elevations and extent, but the ability of Ka-band radar to discriminate shorelines and flooded vegetation is not well known. Presumed bright returns from moist soils surrounding surface water bodies have also been speculated to confound interpretation of SWOT/AirSWOT data. The Piute Ponds are a dynamic area of constantly changing water conditions, providing a convenient test site for field studies to assess open water, dry shorelines, vegetation edges, islands, flooded vegetation and soil moisture in conjunction with AirSWOT backscatter and visible/near-infrared camera imagery. Islands were characterized into dry islands and flooded vegetation stands including species such as bulrush (Scripus acutus) and tamarisk (Tammarix ramosissima). Results demonstrate that full water extent can be determined by near-range backscatter returns which are strong for both open water and flooded vegetation. Far-range backscatter returns over open water were unreliable for flooded extent. Comparing near-range and far-range backscatter results to the soil moisture transect shows correlation, however as soil moisture increases, discriminating between wet sediment and water becomes difficult. In sum, first results suggest near-return backscatter results prove most useful in distinguishing open water from non-water, with a strong correlation between soil moisture and backscatter returns.

  12. Simultaneous Ka-Band Site Characterization: Goldstone, CA, White Sands, NM, and Guam, USA

    Science.gov (United States)

    Acosta, Roberto; Morse, Jacquelynne; Zemba, Michael; Nessel, James; Morabito, David; Caroglanian, Armen

    2011-01-01

    To statistically characterize atmospheric effects on Ka-band links at NASA operational sites, NASA has constructed site test interferometers (STI s) which directly measure the tropospheric phase stability and rain attenuation. These instruments observe an unmodulated beacon signal broadcast from a geostationary satellite (e.g., Anik F2) and measure the phase difference between the signals received by the two antennas and its signal attenuation. Three STI s have been deployed so far: the first one at the NASA Deep Space Network Tracking Complex in Goldstone, California (May 2007); the second at the NASA White Sands Complex, in Las Cruses, New Mexico (February 2009); and the third at the NASA Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam (May 2010). Two station-years of simultaneous atmospheric phase fluctuation data have been collected at Goldstone and White Sands, while one year of data has been collected in Guam. With identical instruments operating simultaneously, we can directly compare the phase stability and rain attenuation at the three sites. Phase stability is analyzed statistically in terms of the root-mean-square (rms) of the tropospheric induced time delay fluctuations over 10 minute blocks. For two years, the time delay fluctuations at the DSN site in Goldstone, CA, have been better than 2.5 picoseconds (ps) for 90% of the time (with reference to zenith), meanwhile at the White Sands, New Mexico site, the time delay fluctuations have been better than 2.2 ps with reference to zenith) for 90% of time. For Guam, the time delay fluctuations have been better than 12 ps (reference to zenith) at 90% of the time, the higher fluctuations are as expected from a high humidity tropical rain zone. This type of data analysis, as well as many other site quality characteristics (e.g., rain attenuation, infrastructure, etc.) will be used to determine the suitability of all the sites for NASA s future communication services at Ka-band.

  13. Improvement of Ka-band satellite link availability for real-time IP-based video contribution

    Directory of Open Access Journals (Sweden)

    G. Berretta

    2017-09-01

    Full Text Available New High Throughput Satellite (HTS systems allow high throughput IP uplinks/contribution at Ka-band frequencies for relatively lower costs when compared to broadcasting satellite uplinks at Ku band. This technology offers an advantage for live video contribution from remote areas, where the terrestrial infrastructure may not be adequate. On the other hand, the Ka-band is more subject to impairments due to rain or bad weather. This paper addresses the target system specification and provides an optimized approach for the transmission of IP-based video flows through HTS commercial services operating at Ka-band frequencies. In particular, the focus of this study is on the service requirements and the propagation analysis that provide a reference architecture to improve the overall link availability. The approach proposed herein leads to the introduction of a new concept of live service contribution using pairs of small satellite antennas and cheap satellite terminals.

  14. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are key to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices. In fact,...

  15. Integrated Production of Ultra-Low Defect GaN Films and Devices for High-Power Amplifiers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High quality GaN epitaxial films are one of the keys to current efforts for development of both high-power/high-speed electronic devices and optoelectronic devices....

  16. A Ka-Band Transmitter for Deep Space Communication%深空通信Ka频段数传发射机的研究

    Institute of Scientific and Technical Information of China (English)

    梁显锋; 张津舟; 谢春坚; 熊蔚明; 安军社; 陈晓敏; 孙辉先

    2012-01-01

    Design of a Ka-band telemetry transmitter is proposed to meet requirements of future deep space missions. Key output characteristics results of the Ka-band transmitter are given. Integrated design and digital technologies are used to develop a light, compact and high efficiency transmitter. Based on CCSDS (Consultative Committee for Space Data Systems) recommendations, a concatenated error-control code in channel coding is used for improved performance and different code rate ranges are separately chosen for PCM/BPSK/PM (Pulse Code Modulation/ Quadrature Phase Shift Keying/Phase Modulation), NRZ (Non-Return to Zero)/BPSK and SRRC (Square Root Raised Cosine)-QPSK (Quadrature Phase Shift Keying) modulation. Equipped with an SSPA (Solid State Power Amplifier), the Ka-band transmitter provides an output power of 2. 0 W 31. 84 GHz center frequency. The supported data rate is up to 2. 0 Mbit/s with QPSK modulation.%针对我国今后深空探测任务的发展需求,提出了应用于深空通信的Ka频段数传发射机技术设计方案,给出了整机关键输出特性结果.采用一体化设计和数字化技术,Ka频段数传发射机实现了轻小型化和高效率.基于CCSDS(空间数据系统咨询委员会)的相关建议标准,信道编码采用级联纠错编码技术和低、中、高速率数传码分段对应选择PCM/BPSK/PM(脉冲编码调制/二相相移键控/调相)、NRZ/BPSK(非归零/二相相移键控)和SRRC-QPSK(平方根升余弦-四相相移键控)的数据调制模式.Ka频段发射机采用KaSSPA(Ka频段固态功率放大器)实现了在31.84 GHz中心频率输出信号功率大于2.0W,QPSK(四相相移键控)调制时支持最大码率2 Mbit/s.

  17. A Ka-Band Backscatter Model Function and an Algorithm for Measurement of the Wind Vector Over the Sea Surface

    NARCIS (Netherlands)

    Nekrasov, A.; Hoogeboom, P.

    2005-01-01

    A Ka-band backscatter model and an algorithm for measurement of the wind speed and direction over the sea surface by a frequency-modulated continous-wave radar demonstrator system operated in scatterometer mode have been developed. To evaluate the proposed algorithm, a simulation of the wind vector

  18. A New Blind Pointing Model Improves Large Reflector Antennas Precision Pointing at Ka-Band (32 GHz)

    Science.gov (United States)

    Rochblatt, David J.

    2009-01-01

    The National Aeronautics and Space Administration (NASA), Jet Propulsion Laboratory (JPL)-Deep Space Network (DSN) subnet of 34-m Beam Waveguide (BWG) Antennas was recently upgraded with Ka-Band (32-GHz) frequency feeds for space research and communication. For normal telemetry tracking a Ka-Band monopulse system is used, which typically yields 1.6-mdeg mean radial error (MRE) pointing accuracy on the 34-m diameter antennas. However, for the monopulse to be able to acquire and lock, for special radio science applications where monopulse cannot be used, or as a back-up for the monopulse, high-precision open-loop blind pointing is required. This paper describes a new 4th order pointing model and calibration technique, which was developed and applied to the DSN 34-m BWG antennas yielding 1.8 to 3.0-mdeg MRE pointing accuracy and amplitude stability of 0.2 dB, at Ka-Band, and successfully used for the CASSINI spacecraft occultation experiment at Saturn and Titan. In addition, the new 4th order pointing model was used during a telemetry experiment at Ka-Band (32 GHz) utilizing the Mars Reconnaissance Orbiter (MRO) spacecraft while at a distance of 0.225 astronomical units (AU) from Earth and communicating with a DSN 34-m BWG antenna at a record high rate of 6-megabits per second (Mb/s).

  19. Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

    Directory of Open Access Journals (Sweden)

    Li-Ming Si

    2014-01-01

    Full Text Available A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2×32 slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2×32 slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB process with dimensions of 230 mm  ×  10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 dB, the 3 dB beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than −18 dB, and the null depths of the difference pattern are less than −25 dB within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR ≤ 2.

  20. Onboard Interferometric SAR Processor for the Ka-Band Radar Interferometer (KaRIn)

    Science.gov (United States)

    Esteban-Fernandez, Daniel; Rodriquez, Ernesto; Peral, Eva; Clark, Duane I.; Wu, Xiaoqing

    2011-01-01

    An interferometric synthetic aperture radar (SAR) onboard processor concept and algorithm has been developed for the Ka-band radar interferometer (KaRIn) instrument on the Surface and Ocean Topography (SWOT) mission. This is a mission- critical subsystem that will perform interferometric SAR processing and multi-look averaging over the oceans to decrease the data rate by three orders of magnitude, and therefore enable the downlink of the radar data to the ground. The onboard processor performs demodulation, range compression, coregistration, and re-sampling, and forms nine azimuth squinted beams. For each of them, an interferogram is generated, including common-band spectral filtering to improve correlation, followed by averaging to the final 1 1-km ground resolution pixel. The onboard processor has been prototyped on a custom FPGA-based cPCI board, which will be part of the radar s digital subsystem. The level of complexity of this technology, dictated by the implementation of interferometric SAR processing at high resolution, the extremely tight level of accuracy required, and its implementation on FPGAs are unprecedented at the time of this reporting for an onboard processor for flight applications.

  1. User RF requirements for a Ka-band data relay satellite link

    Science.gov (United States)

    Copeland, David J.; Aleman, Roberto M.

    1989-01-01

    The user G/T and EIRP requirements were determined for a data relay satellite link consisting of a forward link to 360 Mbps at 23 GHz and a return link to 2 Gbps at 26.5 GHz. Hardware for this data link would be a modular expansion to the NASA Data Link Module. Calculations were based on a data relay satellite model of predetermined characteristics patterned after the NASA Tracking and Data Relay Satellite (TDRS). The desired data rates could be achieved with a G/T of 21.7 dB/deg K (forward link) and an EIRP of 68.2 dBW (return link) for the user satellite. Hardware configurations meeting these requirements are discussed in terms of RF performance, efficiency, reliability, and modular flexibility. A planar array configuration emerges as the logical candidate for most NASA missions. Pertinent Ka-band technology and certain ongoing research efforts are reviewed. Areas of particular interest include new power device families, 0.25-micron low-noise HEMT technology, and fiber optic distribution and control of RF arrays.

  2. AltiKa: a Ka-band Altimetry Payload and System for Operational Altimetry during the GMES Period

    Science.gov (United States)

    Vincent, Patrick; Steunou, Nathalie; Caubet, Eric; Phalippou, Laurent; Rey, Laurent; Thouvenot, Eric; Verron, Jacques

    2006-01-01

    This paper describes the Ka-band altimetry payload and system that has been studied for several years by CNES, ALCATEL SPACE and some science laboratories. Altimetry is one of the major elements of the ocean observing system to be made sustainable through the GEOSS (Global Earth Observation System of Systems) and GMES (Global Monitoring of the Environment and Security) programs. A short review of some mission objectives to be fulfilled in terms of mesoscale oceanography in the frame of the GEOSS and GMES programs is performed. To answer the corresponding requirements, the approach consisting in a constellation of nadir altimeter is discussed. A coupled Ka-band altimeter-radiometer payload is then described; technical items are detailed to explain how this payload shall meet the science and operational requirements, and expected performances are displayed. The current status of the payload development and flight perspectives are given.

  3. Frequency Tracking Performance Using a Hyperbolic Digital-Phase Locked Loop for Ka-Band Communication in Rain Fading Channels

    Science.gov (United States)

    Sithamparanathan, Kandeepan; Piesiewicz, Radoslaw

    In this paper we study and present some results on the performances of frequency tracking for Ka-band satellite communications in rain fading channels. The carrier frequency is tracked using a 2nd order hyperbolic phase detector based digital-phase locked loop (D-PLL). The hyperbolic D-PLL has the capability of extending the tracking range compared to the other D-PLL and hence can be designed such that to achieve low phase jitter performance for improved carrier tracking. We present the design and analysis of the D-PLL and show some simulation results on the frequency tracking performance for Ka-band rain fading channel. The results are compared with the non-fading noise only case and comparative analyses are made.

  4. DVB-RCS return link radio resource management for broadband satellite systems using fade mitigation techniques at ka band

    OpenAIRE

    2008-01-01

    Current Broadband Satellite systems supporting DVB-RCS at Ku band have static physical layer in order not to complicate their implementation. However at Ka band frequencies and above an adaptive physical layer wherein the physical layer parameters are dynamically modified on a per user basis is necessary to counteract atmospheric attenuation. Satellite Radio Resource Management (RRM) at the Medium Access Control (MAC) layer has become an important issue given the emphasis placed on Quality...

  5. 一种小型化高线性 GaN 功放器设计%Design of A Miniaturization GaN Power Amplifier with High Linearity

    Institute of Scientific and Technical Information of China (English)

    李小春

    2016-01-01

    采用ADS软件对一种高线性GaN功率放大器进行匹配电路设计,并制作了一款超小尺寸的高线性放大电路。该电路采用0.254 mm厚的Al2 O3陶瓷作为基板,放大晶体管选用无封装芯片,在5 mm ×6 mm的小尺寸范围内完成电路制作。制作的小尺寸高线性放大电路实现了在输入双音信号频率为4 G Hz和4.002 G Hz、输出总功率为2 W时,三阶互调抑制35 dBc ,功率附加效率35%。%This paper uses ADS software to design a matching circuit for the GaN power amplifier with high linearity ,and makes an ultra-mini amplifying circuit with high linearity .The circuit uses Al2 O3 ceramic of 0 .254 mm thickness as basic board ,and the amplifying transistor selects the chip with no encapsulation ,then the circuit is fabricated in small size of only 5 mm × 6 mm .The fabrica-ted small amplifying circuit with high linearity realizes :third-order intermodulation rejection is 35 dBc and the power additional efficiency is 35% when the input two-tone signal frequencies are 4 GHz and 4 .002 GHz and the total output power is 2 W .

  6. Calibration of the KA Band Tracking of the Bepi-Colombo Spacecraft (more Experiment)

    Science.gov (United States)

    Barriot, J.; Serafini, J.; Sichoix, L.

    2013-12-01

    The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapor Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have

  7. Study of rain attenuation in Ka band for satellite communication in South Korea

    Science.gov (United States)

    Shrestha, Sujan; Choi, Dong-You

    2016-10-01

    The important factor to be considered in the link budget estimation for satellite communication systems, operating at frequencies above 10 GHz is the rain attenuation. Scattering and absorption are the main concern for system designers at these frequency bands. This has resulted in the need for suitable prediction models that can best provide estimates of attenuation due to rain with available information of rain attenuation data. Researchers have developed models that can be used to estimate 1-min rainfall attenuation distribution for earth space link but there is still some confusion with regard to choosing the right model to predict attenuation for the location of interest. In this context, the existing prediction models need to be tested against the measured results. This paper presents studies on rain attenuation at 19.8 GHz, which specifies the performance parameters for Ka-Band under earth space communication system. It presents the experimental result of rain rates and rain-induced attenuation in 19.8 and 20.73 GHz for vertical and circular polarization respectively. The received signal data for rain attenuation and rain rate were collected at 10 s intervals over a three year periods from 2013 to 2015. The data highlights the impact of clear air variation and rain fade loss. Rain rate data was measured through OTT Parsivel. During the observation period, rain rates of about 50 mm/h and attenuation values of 11.6 dB for 0.01% of the time were noted. The experimental link was set up at Korea Radio Promotion Association, Mokdong, Seoul. Out of several models, this paper present discussion and comparison of ITU-R P.618-12, Unified Method, Dissanayake Allnutt and Haidara (DAH), Simple Attenuation (SAM), Crane Global and Ramachandran and Kumar models. The relative error margin of 27.51, 89.84,72.46% and 67.24, 130.84, 166.48% are obtained for 0.1%, 0.01% and 0.001% of the time for 19.8 and 20.73 GHz under vertical and circular polarization respectively from ITU

  8. Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors

    Science.gov (United States)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2016-09-01

    We show that density-dependent velocity saturation in a GaN high electron mobility transistor (HEMT) can be related to the stimulated emission of longitudinal optical (LO) phonons. As the drift velocity of electrons increases, the drift of the Fermi distribution in reciprocal space results in population inversion and gain for the LO phonons. Once this gain reaches a threshold value, the avalanche-like increase in LO phonon emission causes a rapid loss of electron energy and momentum and leads to drift velocity saturation. Our simple model correctly predicts both the general trend of decreasing saturation velocity with increasing electron density, and the measured experimental values of saturation.

  9. A Novel Low-cost, Ka-band, High Altitude, Multi-Baseline Unmanned Aerial Vehicle Sensor for Surface Water Ocean Topography Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal presents the Ka-band SWOT Phenomenology Airborne Radar (KaSPAR) to support the surface water ocean topography (SWOT) mission for science and algorithm...

  10. Analysis and Mitigation of Tropospheric Effects on Ka Band Satellite Signals and Estimation of Ergodic Capacity and Outage Probability for Terrestrial Links

    OpenAIRE

    Enserink, Scott Warren

    2012-01-01

    The first part of this work covers the effect of the troposphere onKa band (20-30 GHz) satellite signals. The second part deals withthe estimation of the capacity and outage probability forterrestrial links when constrained to quadrature amplitudemodulations.The desire for higher data rates and the need for availablebandwidth has pushed satellite communications into the Ka band(20-30 GHz). At these higher carrier frequencies the effects ofscintillation and rain attenuation are increased. In...

  11. A High Efficiency 1kWatt GaN Amplifier for P-Band Pulsed Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  12. A High Efficiency 1kWatt GaN amplifier for P-Band pulsed applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  13. F-band, High-Efficiency GaN Power Amplifier for the Scanning Microwave Limb Sounder and SOFIA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a 4-watt Solid-State Power Amplifier (SSPA) operating at F-band (106-114 GHz) with a power-added efficiency (PAE) of greater...

  14. Design and Performance of Ka-Band Fiber-Optic Delay Lines

    Science.gov (United States)

    2012-12-28

    usually erbium-doped fiber amplifiers ( EDFAs ). Laser RIN is a major concern in analog photonics. Laser noise at the RF carrier frequency as well as...amplification will be required in long FODLs to maintain the signal level. The optical amplifier of choice is the EDFA . A classical work on EDFAs is provided...introduction to EDFA noise and the concept of EDFA noise penalty is applied to FODL design in Section 3. Shown in Fig. 12 is a data set for an EDFA

  15. Coherent summation of Ka-band microwave beams produced by sub-gigawatt superradiance backward wave oscillators

    Science.gov (United States)

    Sharypov, K. A.; El'chaninov, A. A.; Mesyats, G. A.; Pedos, M. S.; Romancheko, I. V.; Rostov, V. V.; Rukin, S. N.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2013-09-01

    Coherent summation of microwave beams has been demonstrated for two superradiance Ka-band backward wave oscillators producing over 700 MW of power. The explosive emission cathodes of the e-beam injectors were powered by stable splitted voltage pulses produced by an all-solid-state modulator. The voltage fronts were shortened to 300 ps in controlled delay shock-excited ferrite lines. The standard deviation of the phase difference between the microwave pulses was less than 2% of the oscillations period. The power flux density of the summarized radiation was the same as that of a single generator producing an output power of ˜3 GW.

  16. Low cost low phase noise PLL controlled push-push VCOs in k- and ka- bands, stabilized by cavity resonator

    OpenAIRE

    Tsvelykh, I. S.; B. A. Kotserzhynskyi

    2016-01-01

    This work demonstrates push-push VCOs in K-band (with second harmonic output at 24 GHz) and in Ka-band (with third harmonic output at 36 GHz), and PLL synthesizers on their basis. Oscillators are stabilized by a rectangular resonant metallic cavity. Output signal power within the frequency tuning range changes in the limits of -11,5 -7,6 dBm and -11,8 -10,9 dBm for 24 GHz and 36 GHz oscillators respectively. Single sideband (SSB) phase noise spectral densities of -91 dBc/Hz for 24 GHz oscilla...

  17. Phase Noise Enhancement of the GaAs High Electron Mobility Transistors Using Micromachined Cavity Resonators at Ka-band

    Science.gov (United States)

    Song, Insang; Kim, Chungwoo; Kwon, Youngwoo; Cheon, Changyul; Song, Cimoo

    1999-06-01

    We introduce a new structure of the micromachined cavity resonator coupled GaAs-based oscillator to enhance the phase noise and the frequency stability. The oscillator and the cavity are designed for Ka-band applications. Compared to the free running oscillator, the cavity resonator coupled oscillator showed the phase noise enhancement of about 20 dB. The phase noises of about -110 and -85 dBc/Hz are obtained at 1 MHz and 100 kHz offset frequency, respectively. The frequency pushing for the gate bias of the cavity coupled oscillator is about two order of magnitude less than that of the free running oscillator.

  18. Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision

    Science.gov (United States)

    Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.

    2017-05-01

    This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.

  19. Solid state Ka-band pulse oscillator with frequency electronic switching

    Directory of Open Access Journals (Sweden)

    Dvornichenko V. P.

    2015-08-01

    Full Text Available Transmitting devices for small radars in the millimeter wavelength range with high resolution on range and noise immunity. The work presents the results of research and development of compact pulse oscillators with digital frequency switching from pulse to pulse. The oscillator consists of a frequency synthesizer and a synchronized amplifier on the IMPATT diode. Reference oscillator of synthesizer is synchronized by crystal oscillator with digital PLL system and contains a frequency multiplier and an amplifier operating in pulse mode. Small-sized frequency synthesizer of 8 mm wave lengths provides an output power of ~1.2 W per pulse with a frequency stability of no worse than 2•10–6. Radiation frequency is controlled by three-digit binary code in OOL levels. Synchronized amplifier made on IMPATT diodes provides microwave power up to 20 W in oscillator output with microwave pulse duration of 100—300 ns in an operating band. The oscillator can be used as a driving source for the synchronization of semiconductor and electro-vacuum devices of pulsed mode, and also as a transmitting device for small-sized radar of millimeter wave range.

  20. A Ku band internally matched high power GaN HEMT amplifier with over 30% of PAE

    Science.gov (United States)

    Qin, Ge; Xiaojuan, Chen; Weijun, Luo; Tingting, Yuan; Yan, Pu; Xinyu, Liu

    2012-01-01

    We report a high power Ku band internally matched power amplifier (IMPA) with high power added efficiency (PAE) using 0.3 μm AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC substrate. The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm. To improve the bandwidth of the amplifier, a T type pre-matching network is used at the input and output circuits, respectively. After optimization by a three-dimensional electromagnetic (3D-EM) simulator, the amplifier demonstrates a maximum output power of 42.5 dBm (17.8 W), PAE of 30% to 36.4% and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10% duty cycle pulse condition when operated at Vds = 30 V and Vgs = -4 V. At such a power level and PAE, the amplifier exhibits a power density of 4.45 W/mm.

  1. A Ku band internally matched high power GaN HEMT amplifier with over 30%of PAE

    Institute of Scientific and Technical Information of China (English)

    Ge Qin; Chen Xiaoiuan; Luo Weijun; Yuan Tingting; Pu Yan; Liu Xinyu

    2012-01-01

    We report a high power Ku band internally matched power amplifier (IMPA) with high power added efficiency (PAE) using 0.3 μm AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC substrate.The internal matching circuit is designed to achieve high power output for the developed devices with a gate width of 4 mm.To improve the bandwidth of the amplifier,a T type pre-matching network is used at the input and output circuits,respectively.After optimization by a three-dimensional electromagnetic (3D-EM) simulator,the amplifier demonstrates a maximum output power of 42.5 dBm (17.8 W),PAE of 30% to 36.4% and linear gain of 7 to 9.3 dB over 13.8-14.3 GHz under a 10% duty cycle pulse condition when operated at Vds =30 V and Vgs =-4 V.At such a power level and PAE,the amplifier exhibits a power density of 4.45 W/mm.

  2. High-Power, High-Efficiency Ka-Band Space Traveling-Wave Tube

    Science.gov (United States)

    Krawczyk, Richard; Wilson, Jeffrey; Simons, Rainee; Williams, Wallace; Bhasin, Kul; Robbins, Neal; Dibb, Daniel; Menninger, William; Zhai, Xiaoling; Benton, Robert; Burdette, James

    2007-01-01

    The L-3 Communications Model 999H traveling-wave tube (TWT) has been demonstrated to generate an output power of 144 W at 60-percent overall efficiency in continuous-wave operation over the frequency band from 31.8 to 32.3 GHz. The best TWT heretofore commercially available for operation in the affected frequency band is characterized by an output power of only 35 W and an efficiency of 50 percent. Moreover, whereas prior TWTs are limited to single output power levels, it has been shown that the output power of the Model 999H can be varied from 54 to 144 W. A TWT is a vacuum electronic device used to amplify microwave signals. TWTs are typically used in free-space communication systems because they are capable of operating at power and efficiency levels significantly higher than those of solid-state devices. In a TWT, an electron beam is generated by an electron gun consisting of a cathode, focusing electrodes, and an anode. The electrons pass through a hole in the anode and are focused into a cylindrical beam by a stack of periodic permanent magnets and travel along the axis of an electrically conductive helix, along which propagates an electromagnetic wave that has been launched by an input signal that is to be amplified. The beam travels within the helix at a velocity close to the phase velocity of the electromagnetic wave. The electromagnetic field decelerates some of the electrons and accelerates others, causing the beam to become formed into electron bunches, which further interact with the electromagnetic wave in such a manner as to surrender kinetic energy to the wave, thereby amplifying the wave. The net result is to amplify the input signal by a factor of about 100,000. After the electrons have passed along the helix, they impinge on electrodes in a collector. The collector decelerates the electrons in such a manner as to recover most of the remaining kinetic energy and thereby significantly increase the power efficiency of the TWT.

  3. Ka-Band Monopulse Antenna Pointing Calibration Using Wideband Radio Sources

    Science.gov (United States)

    Buu, C.; Calvo, J.; Cheng, T.-H.; Vazquez, M.

    2010-08-01

    A new method of performing a system end-to-end monopulse antenna calibration using widely available wideband astronomical radio sources is presented as an alternative to the current method of using a spacecraft signal. Current monopulse calibration requires a spacecraft carrier signal to measure amplitude and phase differences in the monopulse feed and low-noise amplifiers (LNAs). The alternative method presented here will allow the ground station to perform monopulse calibrations during maintenance periods instead of spacecraft track time, and provide an end-to-end system check-out capability without requiring a spacecraft signal. In this article, we give an overview of the current calibration approach, describe a new method for calibrating with radio sources, and present results from field testing of this new method.

  4. Synchronization of radiation in an oversized coaxial Ka-band backward wave oscillator using two-dimensional Bragg structure

    Directory of Open Access Journals (Sweden)

    N. S. Ginzburg

    2015-12-01

    Full Text Available A coaxial Ka-band backward wave oscillator with a two-dimensional Bragg structure located at the output of the interaction space has been studied. This structure has a double-period corrugation and provides azimuthal electromagnetic energy fluxes, which act on the synchronized radiation of an oversized tubular electron beam. Proof-of-principle experiments were conducted based on the Saturn thermionic accelerator (300  keV/200  A/2  μs. In accordance with simulations, narrow-band generation was obtained at a frequency of 30 GHz and a power level of 1.5–2 MW. As a result, the possibility of using a two-dimensional distributed feedback mechanism in oscillators of the Cherenkov type has been demonstrated.

  5. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  6. Fine resolution topographic mapping of the Jovian moons: a Ka-band high resolution topographic mapping interferometric synthetic aperture radar

    Science.gov (United States)

    Madsen, Soren N.; Carsey, Frank D.; Turtle, Elizabeth P.

    2003-01-01

    The topographic data set obtained by MOLA has provided an unprecedented level of information about Mars' geologic features. The proposed flight of JIMO provides an opportunity to accomplish a similar mapping of and comparable scientific discovery for the Jovian moons through us of an interferometric imaging radar analogous to the Shuttle radar that recently generated a new topographic map of Earth. A Ka-band single pass across-track synthetic aperture radar (SAR) interferometer can provide very high resolution surface elevation maps. The concept would use two antennas mounted at the ends of a deployable boom (similar to the Shuttle Radar Topographic Mapper) extended orthogonal to the direction of flight. Assuming an orbit altitude of approximately 100 km and a ground velocity of approximately 1.5 km/sec, horizontal resolutions at the 10 meter level and vertical resolutions at the sub-meter level are possible.

  7. Current status of Dual Ka-band radar field campaign in Japan for GPM/DPR mission

    Science.gov (United States)

    Kaneko, Yuki; Nakagawa, Katsuhiro; Nishikawa, Masanori; Nakamura, Kenji; Fujiyoshi, Yasushi; Hanado, Hiroshi; Minda, Haruya; Yamamoto, Kazuhide; Oki, Riko; Furukawa, Kinji

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is an expanded follow-on mission to TRMM (Tropical Rainfall Measuring Mission) and a GPM core satellite will carry dual frequency precipitation radar (DPR) and a GPM Microwave Imager on board. The DPR, which is being developed by National Institute of Information and Communications Technology (NICT) and Japan Aerospace Exploration Agency (JAXA), consists of two radars; Ku-band precipitation radar (KuPR) and Ka-band radar (KaPR). The DPR is expected to advance precipitation science by expanding the coverage of observations to higher latitudes than those of the TRMM/PR, measuring snow and light rain by the KaPR, and providing drop size distribution information based on the differential attenuation of echoes at two frequencies. In order to secure the quality of precipitation estimates, ground validation (GV) of satellite data and retrieval algorithms is essential. Since end-to-end comparisons between instantaneous precipitation data observed by satellite and ground-based instruments is not enough to improve the algorithms. The error of various physical parameters in the precipitation retrieval algorithms (e.g. attenuation factor, drop size distribution, terminal velocity, density of the snow particles, etc.) will be estimated by the comparison with the ground-based observation data. A dual Ka-band radar system is developed by the JAXA for the GPM/DPR algorithm development. The dual Ka-radar system which consists of two identical Ka-band radars can measure both the specific attenuation and the equivalent radar reflectivity at Ka-band. Those parameters are important particularly for snow measurement. Using the dual Ka-radar system along with other instruments, such as a polarimetric precipitation radar, a wind-profiler radar, ground-based precipitation measurement systems, the uncertainties of the parameters in the DPR algorithm can be reduced. The verification of improvement of rain retrieval with the DPR algorithm is

  8. A comparison of MESFET and HEMT MMIC technologies using a compact Ka-band voltage-controlled oscillator

    Science.gov (United States)

    Swirhun, S.; Geddes, J.; Sokolov, Vladimir; Bosch, D.; Gawronski, M.; Anholt, R.

    1991-07-01

    To compare the capability of MESFET and HEMT technologies for monolithic microwave integrated circuit (MMIC) implementation we have fabricated and tested discrete field-effect transistors (FETs) and a novel Ka-band monolithic voltage controlled oscillator (VCO). We implemented the circuit with three different active devices: moderate- and high-doped ion-implanted MESFETs (metal-semiconductor FETs) and AlGaAs/GaAs HEMTs (high electron mobility transistors). A comparison of the measured oscillator phase-noise and an independent comparison of the temperature dependence of MESFET and HEMT RF equivalent circuits yields two general guidelines: MESFETs are preferred over HEMTs for applications requiring low phase-noise and temperature insensitive operation.

  9. A Ka-band monolithic low phase noise coplanar waveguide oscillator using InAlAs/InGaAs HBT

    Science.gov (United States)

    Cui, Delong; Hsu, Shawn; Pavlidis, Dimitris; Chin, Patrick; Block, Tom

    2002-02-01

    A Ka-band oscillator has been designed, fabricated and tested using InAlAs/InGaAs HBTs. Coplanar waveguide technology has been employed to improve the Q-factor of the circuit. An output power of 2.6 dBm with DC to RF conversion efficiency of 7.8% was measured at 31.7 GHz. Low phase noise of -87 and -112 dBc/Hz were achieved at an offset frequency of 100 kHz and 1 MHz respectively. These low phase noise values can be attributed to the low 1/ f noise of the InAlAs/InGaAs HBT devices and the coplanar design used for the circuit.

  10. Ka-band and X-band observations of the solar corona acquired during the Cassini 2001 superior conjunction

    Science.gov (United States)

    Morabito, D. D.

    2002-01-01

    Simultaneous dual-frequency Ka-band (32 GHz) and X-band (8.4 GHz) carrier signal data have been acquired during the superior conjunction of the Cassini spacecraft June 2001, using the NASA Deep Space Network's facilities located in Goldstone, California. The solar elongation angle of the observations varied from -4.1 degrees (-16 solar radii) to -0.6 degrees (-2.3 solar radii). The observed coronal and solar effects on the signals include spectral broadening, amplitude scintillation, phase scintillation, and increased noise. The measurements were generally consistent with existing solar models, except during solar transient events when the signatures of the measurements were observed to increase significantly above the quiet background levels. This is the second solar conjunction of Cassini for which simultaneous X/Ka data were acquired. Both solar conjunctions, conducted in May 2000 and June 2001, occurred near the peak of the current 11 year solar cycle.

  11. AltiKa: a Ka-band Altimetry Payload and System for Operational Altimetry during the GMES Period

    Directory of Open Access Journals (Sweden)

    Jacques Verron

    2006-03-01

    Full Text Available This paper describes the Ka-band altimetry payload and system that has beenstudied for several years by CNES, ALCATEL SPACE and some science laboratories.Altimetry is one of the major elements of the ocean observing system to be madesustainable through the GEOSS (Global Earth Observation System of Systems and GMES(Global Monitoring of the Environment and Security programs. A short review of somemission objectives to be fulfilled in terms of mesoscale oceanography in the frame of theGEOSS and GMES programs is performed. To answer the corresponding requirements, theapproach consisting in a constellation of nadir altimeter is discussed. A coupled Ka-bandaltimeter-radiometer payload is then described; technical items are detailed to explain howthis payload shall meet the science and operational requirements, and expectedperformances are displayed. The current status of the payload development and flightperspectives are given.

  12. Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud

    Science.gov (United States)

    Vivekanandan, J.; Politovich, Marcia; Rilling, Robert; Ellis, Scott; Pratte, Frank

    2004-12-01

    Remote detection of cloud phase in either liquid, ice or mixed form a key microphysical observation. Evolution of a cloud system and associated radiative properties depend on microphysical characteristics. Polarization radars rely on the shape of the particle to delineate the regions of liquid and ice. For specified transmitter and receiver characteristics, it is easier to detect a high concentrations of larger atmospheric particles than a low concentration of small particles. However, the radar cross-section of a given hydrometeor increases as the transmit frequency of the radar increases. Thus, in spite of a low transmit power, the sensitivity of a millimeter-wave radar might be better than high powered centimeter-wave radars. Also, ground clutter echoes and receiver system noise powers are sensitive functions of radar transmit frequency. For example, ground clutter in centimeter-wave radar sample volumes might mask non-precipitating or lightly precipitating clouds. An optimal clutter filter or signal processing technique can be used to suppress clutter masking its effects and/or enhanced weak cloud echoes that have significantly different Doppler characteristics than stationary ground targets. In practice, it is imperative to investigate the actual performance of S and Ka-band radar systems to detect small-scale, weak cloud reflectivity. This paper describes radar characteristics and the sensitivity of the new system in non-precipitating conditions. Recently, a dual-wavelength S and Ka-band radar system with matched resolution volume and sensitivity was built to remotely detect supercooled liquid droplets. The detection of liquid water content was based on the fact that the shorter of the two wavelengths is more strongly attenuated by liquid water. The radar system was deployed during the Winter Icing Storms Project 2004 (WISP04) near Boulder, Colorado to detect and estimate liquid water content. Observations by dual-wavelength radar were collected in both non

  13. a KA-BAND Chirped-Pulse Fourier Transform Microwave Spectrometer.

    Science.gov (United States)

    Zaleski, Daniel P.; Neill, Justin L.; Muckle, Matthew T.; Pate, Brooks H.; Carroll, P. Brandon; Weaver, Susanna L. Widicus

    2010-06-01

    The design and performance of a new chirped-pulse Fourier transform microwave (CP-FTMW) spectrometer operating from 25-40 GHz will be discussed. A 10.5-3 GHz linear frequency sweep, generated by a 24 GS/s arbitrary waveform generator, is upconverted by a 23.00 GHz phase-locked oscillator, then fed into an active doubler to create a 25-40 GHz chirped pulse. After amplification with a 60-80 W pulsed traveling wave tube amplifier, the pulse is broadcast across a molecular beam chamber where it interacts with a molecular sample. The molecular FID signal is downconverted with the 23 GHz oscillator so that it can be digitized on a 50 GS/s oscilloscope with 16 GHz hardware bandwidth. The sensitivity and phase stability of this spectrometer is comparable to that of the previously reported 6.5-18.5 CP-FTMW spectrometer. On propyne (μ=0.78 D), a single-shot signal to noise ratio of approximately 200:1 is observed on the J=2-1 rotational transition at 34183 MHz when the full bandwidth is swept; optimal excitation is observed for this transition with a 250 MHz bandwidth sweep. The emission has a T_2 lifetime of 4 μs. Early results from this spectrometer, particularly in the study of species of astrochemical interest, will be presented. G.G. Brown et al., Rev. Sci. Instrum. 79 (2008) 053103.

  14. Ka-Band Parabolic Deployable Antenna (KaPDA) Enabling High Speed Data Communication for CubeSats

    Science.gov (United States)

    Sauder, Jonathan F.; Chahat, Nacer; Hodges, Richard; Thomson, Mark W.; Rahmat-Samii, Yahya

    2015-01-01

    CubeSats are at a very exciting point as their mission capabilities and launch opportunities are increasing. But as instruments become more advanced and operational distances between CubeSats and earth increase communication data rate becomes a mission-limiting factor. Improving data rate has become critical enough for NASA to sponsor the Cube Quest Centennial Challenge when: one of the key metrics is transmitting as much data as possible from the moon and beyond Currently, many CubeSats communicate on UHF bands and those that have high data rate abilities use S-band or X-band patch antennas. The CubeSat Aneas, which was launched in September 2012, pushed the envelope with a half-meter S-band dish which could achieve 100x the data rate of patch antennas. A half-meter parabolic antenna operating at Ka-band would increase data rates by over 100x that of the AMOS antenM and 10,000 that of X-band patch antennas.

  15. A low-noise K-Ka band oscillator using AlGaAs/GaAs heterojunction bipolar transistors

    Science.gov (United States)

    Madihian, Mohammad; Takahashi, Hideki

    1991-01-01

    The design considerations, fabrication process, and performance of the first K-Ka-band oscillator implemented using a self-aligned AlGaAs/GaAs heterojunction bipolar transistor (HBT) are described. A large-signal time-domain-based design approach has been used which applies a SPICE-F simulator for optimization of the oscillator circuit parameters for maximum output power. The oscillator employs a 2 x 10 sq mm emitter AlGaAs/GaAs HBT that was fabricated using a pattern inversion technology. The HBT has a base current 1/f noise power density lower than 1 x 10 to the -20th sq A/Hz at 1 kHz and lower than 1 x 10 to the -22nd sq A/Hz at 100 kHz for a collector current of 1 mA. The oscillator, which is composed of only low-Q microstrip transmission lines, has a phase noise of -80 dBc/Hz at 100 kHz off carrier when operated at 26.6 GHz. These results indicate the applicability of the HBTs to low-phase-noise monolithic oscillators at microwave and millimeter-wave frequencies, where both Si bipolar transistors and GaAs FETs are absent.

  16. 一种Ka波段低噪声下变频器组件%Novel Ka-band low-noise down-converter assembly

    Institute of Scientific and Technical Information of China (English)

    李鸣; 李兴国

    2006-01-01

    An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the local oscillator (LO). DR structures guarantee high frequency stability with an acceptable volume. The configurations of low noise amplifier, mixer and oscillator in the assembly are described and fabricated to estimate the chain performance. According to the verification results, the assembly exhibits the noise figure of less than 5 dB over 1 GHz frequency range, and the single-sideband phase noise (200 kHz offset from carrier frequency) of - 70 dBc/Hz. Utilizing the DR structure, the frequency stability of the local oscillator is less than 60 × 10-6/℃.%介绍了一种用于毫米波系统的下变频器,其中混频器采用了肖特基二极管镜频回收混频结构,振荡器采用了DRO(dielectric resonator oscillator)结构以提高系统性能,以保证在合适的体积内实现较高的频率稳定度.描述了系统中低噪声放大器、混频器、振荡器的性能,用于评估系统链路性能,最后合并制作在单个基片上.根据测试结果,该下变频器的噪声系数在35 GHz处1 GHz频率范围内小于5 dB,单边带相位噪声系数在偏离载波200 kHz处达到-70 dBc/Hz.由于采用了介质谐振结构,本振的频率稳定度小于60×10-6/℃.

  17. Design on a Ka-band Up-converter Module%Ka频段上变频模块设计

    Institute of Scientific and Technical Information of China (English)

    陈焕东

    2011-01-01

    A new Ka-band Up-converter module is described in this paper.How to achieve low spurious and low phase noise performance is studied,and then the feasible scheme is designed.The filter is co-simulated by Ansoft Designer and HFSS software and is realized with thin film technique.High spurious suppression is obtained by the filter.A 27 GHz local oscillator with very low phase noise is realized by sampling phase-locked technique.The waveguide to micro-strip transition is simulated.Finally the module is tested,and the design objective is satisfied.%论述一种Ka频段上变频模块设计,对模块的杂散和相位噪声性能做了分析,根据分析结果,设计出合理的变频方案。滤波器采用Ansoft Designer和HFSS软件协同仿真,薄膜工艺制作,获得足够的杂散抑制度从而实现低杂散。应用取样锁相技术合成了相位噪声极低的27 GHz本振。对波导—微带过渡结构进行仿真,并给出仿真结果。从测试结果表明,模块设计实现了低杂散和低相位噪声。

  18. Design of Ka band MMIC VCO%Ka波段单片压控振荡器的设计

    Institute of Scientific and Technical Information of China (English)

    李鹏亮; 马伟

    2014-01-01

    基于0.25μm GaAs pHEMT工艺设计了Ka波段单片压控振荡器,该压控振荡器采用源极正反馈结构,变容管采用源极和漏极接地的pHEMT管。通过优化输出匹配网络和谐振网络以改善输出功率和相位噪声性能,使用蒙特卡洛成品率分析对本设计的成品率进行分析和改进。版图仿真结果显示:芯片输出频率为24.6~26.3 GHz,输出功率为(10±1)dBm,谐波抑制大于19 dB,芯片尺寸为1.5 mm×1 mm。%A Ka-band MMIC VCO was designed with 0.25 μm GaAs pHEMT process. The source electrode positive feed-back structure is adopted for VCO. The pHEMT whose source electrode and drain electrode are connected to the ground is used for the varactor. The resonance network and the matching network are optimized to improve the output power and the phase noise performance. The yield of the VCO is analyzed and improved by the Monte-Carlo method. The simulation data shows the typical output power of VCO is 10±1 dBm,the output frequency of VCO is 24.6~26.3 GHz,the harmonic suppression is better than 19 dB. The chip size of the MMIC VCO is 1.5 mm×1 mm.

  19. An FSS-Backed 20/30 GHz Circularly Polarized Reflectarray for a Shared Aperture L- and Ka-Band Satellite Communication Antenna

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Gothelf, Ulrich; Kim, Oleksiy S.

    2014-01-01

    A shared aperture antenna for simultaneous operation at L- (1525 to 1661 MHz) and Ka-band (19.7 to 20.2 GHz and 29.5 to 30.0 GHz) is demonstrated. This stacked antenna consists of a Ka-band reflectarray antenna with a frequency selective surface (FSS) ground-plane above an L-band patch array...... antenna. The reflectarray is based on the concentric dual split-loop element backed by a concentric dual-loop FSS element. The reflectarray comprises 80 × 80 elements and it is printed on a 40 ×40 cm2 Rogers 5880 substrate, while the L-band antenna is a 2 × 2 patch array. The reflectarray antenna has been...

  20. Feasibility Study on Acquisition, Tracking, and Pointing Using Earth Thermal Images for Deep-Space Ka-Band and Optical Communications

    Science.gov (United States)

    Lee, S.; Ortiz, G. G.; Roberts, W. T.; Alexander, J. W.

    2003-11-01

    The feasibility of using long-wavelength Earth thermal (infrared) images for antenna/ telescope tracking/pointing applications for both deep-space Ka-band (18 to 35 GHz) and free-space optical communications has been investigated and is reported on here. The advantage of this technology rests on using full Earth images in this band that yield more accurate estimates of geometric centroids than those of Earth images in the visible band. Furthermore, these images are nearly independent of Earth phase angle. The results of the study show that, at a Mars range with currently available sensors, a noise equivalent angle of 10 to 150 nrad and a bias error of better than 80 nrad can be obtained. This would enable precise pointing of both the optical and Ka-band communications beams.

  1. Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data

    OpenAIRE

    NOUGUIER, Frederic; Mouche, Alexis; Rascle, Nicolas; Chapron, Bertrand; Vandemark, Douglas

    2016-01-01

    Global colocalized ocean surface measurements using the Global Precipitation Measurement near-nadir dual-frequency Ku- and Ka-band microwave measurements are analyzed and compared. Focusing on the Ka and Ku cross-sections fall-off with incidence angles, the contemporaneous measurements enable to more precisely document differing ocean scattering characteristics for both microwave frequencies. Sensitivity with wind speed and significant wave height is further reported using global comparisons ...

  2. Investigation of Ka-Band CW 250 W TWT%Ka波段250W连续波行波管的研制

    Institute of Scientific and Technical Information of China (English)

    冯晨; 杨明华; 黄拓朴

    2011-01-01

    本文介绍了一种Ka波段连续波250 W螺旋线行波管研制的主要技术方案.介绍了这种行波管的研究现状和研制成果.%This paper presents the main technology scheme of a CW 250 W Ka-band helix TWT. The current situation of this TWT and the research achievements are introduced.

  3. Analysis of Fade Detection and Compensation Experimental Results in a Ka-Band Satellite System. Degree awarded by Akron Univ., May 2000

    Science.gov (United States)

    Johnson, Sandra

    2001-01-01

    The frequency bands being used for new satellite communication systems are constantly increasing to accommodate the requirements for additional capacity. At these higher frequencies, propagation impairments that did not significantly affect the signal at lower frequencies begin to have considerable impact. In Ka-band, the next logical commercial frequency band to be used for satellite communication, attenuation of the signal due to rain is a primary concern. An experimental satellite built by NASA, the Advanced Communication Technology Satellite (ACTS), launched in September 1993, is the first US communication satellite operating in the Ka-band. In addition to higher carrier frequencies, a number of other new technologies, including onboard baseband processing, multiple beam antennas, and rain fade detection and compensation techniques, were designed into the ACTS. Verification experiments have been conducted since the launch to characterize the new technologies. The focus of this thesis is to describe and validate the method used by the ACTS Very Small Aperture Terminal (VSAT) ground stations in detecting the presence of fade in the communication signal and to adaptively compensate for it by the addition of burst rate reduction and forward error correction. Measured data obtained from the ACTS program is used to validate the compensation technique. In this thesis, models in MATLAB are developed to statistically characterize the increased availability achieved by the compensation techniques in terms of the bit error rate time enhancement factor. Several improvements to the ACTS technique are discussed and possible implementations for future Ka-band systems are also presented.

  4. High Power and Efficiency Space Traveling-Wave Tube Amplifiers With Reduced Size and Mass for NASA Missions

    Science.gov (United States)

    Simons, Rainee N.; Wilson, Jeffrey D.; Force, Dale A.

    2008-01-01

    Recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented in this paper. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT has improved by a factor of ten over the previous generation Ka-Band devices.

  5. 一种新研制的W频段固态GaN功率放大器毫米波源%A Newly-developed W-band Solid-state GaN Power Amplifier Millimeter Wave Source

    Institute of Scientific and Technical Information of China (English)

    梁勤金; 石小燕; 潘文武; 黄吉金

    2016-01-01

    This paper introduces a newly-developed W-band solid-state GaN power amplifier millimeter wave(MMW) source,gives its system composition and operational principle,and provides the basic per-formance and experimental results of primary components including W-band solid-state Gunn driving source,W-band guide-microstrip line transposition and main amplifier chip. The MMW source operates at 94 GHz,its continuous wave power output is larger than 300 mW,linear gain is 10 dB,power-added effi-ciency( PAE) is greater than 16%. During the development of W-band solid-state MMW source, the choice of its monolithic microwave integrated circuit( MMIC) power amplifier of semiconductor material has undergone GaN,GaAs and InP,which clearly demonstrates that the output power,gain,efficiency and high temperature performance of W-band GaN MMIC power amplifier is superior to that of other solid-state MMIC power amplifiers. The high power technology of W-band solid-state GaN MMIC is likely to result in new revolutionized technology and application in the MMW field.%介绍了一种新研制的W频段固态GaN功率放大器毫米波源,给出了系统组成与工作原理,提供了其主要部件W频段固态Gunn驱动源、W频段波导-微带转换器、主放大器芯片基本性能及实验测试结果。该固态毫米波源工作频率94 GHz,输出连续波功率大于300 mW,线性增益10 dB,附加效率(PAE)大于16%。在W频段固态毫米波源研制过程中,其单片微波集成电路(MMIC)功率放大器半导体材料选择经历了GaAs、InP到GaN演变,结果清楚表明, W频段毫米波源的GaN MMlC功率放大器输出功率、增益、效率、高温性能要优于其他固态MMIC功率放大器性能。 W频段大功率固态GaN MMlC技术将在毫米波领域带来新的技术革命和应用。

  6. Global Ka Band Broadband Satellite Services Overview (1)%全球Ka波段宽带卫星业务的现状和发展(一)

    Institute of Scientific and Technical Information of China (English)

    陈强; 赵庆锁; 李涛

    2014-01-01

    本文简要回顾了全球卫星通信从C/Ku波段到Ka波段,从话音、广播电视到互联网应用的轨迹;对目前Ka波段HTS卫星网络的架构、地面系统情况以及采用的新技术进行了概述;列出了目前全球Ka波段在轨HTS卫星、建造的HTS卫星的容量、运营公司、使用的地面系统等;介绍了美国Ka波段宽带卫星业务的发展情况。%This article is retrospected the trajectory of global satellite telecommunication industry from C/Ku band to Ka band and from Voice/TV to Internet. The article is listed in HTS satellites which are in orbit and in construction, the capacity , the operators and the ground system. The Ka band broadband satellite business in USA is also introduced.

  7. Global Ka Band Broadband Satellite Services Overview (2)%全球Ka波段宽带卫星业务的现状和发展(二)

    Institute of Scientific and Technical Information of China (English)

    陈强; 赵庆锁; 李涛

    2014-01-01

    本文简要回顾了全球卫星通信从C/Ku波段到Ka波段,从话音、广播电视到互联网应用的轨迹;对目前Ka波段HTS卫星网络的架构、地面系统情况以及采用的新技术进行了概述;并列出了目前全球Ka波段在轨HTS卫星、建造的HTS卫星的容量、运营公司、使用的地面系统等;并介绍了美国Ka波段宽带卫星业务的发展情况。%This article is retrospected the trajectory of global satellite telecommunication industry from C/Ku band to Ka band and from Voice/TV to Internet. The article is listed in HTS satellites which are in orbit and in construction, the capacity , the operators and the ground system. The Ka band broadband satellite business in USA is also introduced.

  8. Thickness and Composition Tailoring of K- and Ka-Band Microwave Absorption of BaCo x Ti x Fe(12-2 x)O19 Ferrites

    Science.gov (United States)

    Narang, Sukhleen Bindra; Pubby, Kunal; Singh, Charanjeet

    2017-02-01

    The goal of this research is to investigate the electromagnetic and microwave absorption properties of M-type barium hexaferrites with chemical formula BaCo x Ti x Fe(12-2 x)O19 ( x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) in K and Ka band. Characterization techniques such as x-ray diffraction analysis and scanning electron microscopy were applied to confirm ferrite formation. The frequency dependence of the complex permittivity and complex permeability was studied for prepared ferrite samples in the frequency range from 18 GHz to 40 GHz. Factors such as the quarter-wavelength condition, impedance matching, high dielectric-magnetic losses, as well as ferromagnetic resonance were investigated to determine their contribution to the absorption characteristics. It was found that the quarter-wavelength ( λ/4) model could be successfully applied to predict and understand the position as well as number of reflection peaks in the microwave absorption spectrum. The origin of the reflection loss peaks is explained and verified based on calculations of input impedance, loss tangent, and ferromagnetic resonance. Reflection loss analysis revealed that all six compositions exhibited reflection loss peaks (absorption >90%) at their matching thicknesses and frequencies. Therefore, these ferrites are potential candidates for use in electromagnetic shielding applications requiring low reflectivity in K and Ka band.

  9. Design and ImpIementation of Ka-Band Up-Converer%Ka频段上变频器的设计与实现

    Institute of Scientific and Technical Information of China (English)

    王启; 陈小忠

    2015-01-01

    阐述了一种Ka频段卫星通信上变频器的实现方案,采用一次变频方案将中频信号上变频至Ka频段射频信号,在实现一定增益的同时能够保证设备的杂散、相位噪声以及幅频特性等指标。该设计方法与调试技巧能够广泛应用于卫星通信地球站的上行链路。%Describes an achievement to design a kind of Ka-band up-converter, which converts S-band IF signal to Ka-band RF signal by once frequency conversion. The some gain can be achieved as well as the output spurious, phase noise and amplitude –frequency characteristics. The design and debug method can be used in up-link of satellite communications.

  10. A High Efficiency, Miniaturized Ka Band Traveling Wave Tube Based on a Novel Finned Ladder RF Circuit Design

    Science.gov (United States)

    Wintucky, E. G.; Wilson, J. D.; Vaden, K. R.; Force, D. A.; Freeman, J. C.; Lesny, G. G.; Kory, C. L.; Chevalier, C. T.; Ebihara, B.; Dayton, J. A.; Williams, W. D. (Technical Monitor)

    2001-01-01

    Space communications architectures are being planned to meet the high rate data distribution requirements of future NASA Enterprise missions. These will require the use of traveling wave tube amplifiers (TWTAs) to provide the high frequency, RF (radio frequency) power and efficiency needed for many of the communications links. A program addressing these requirements is currently underway at NASA Glenn Research Center (GRC) for the development of a high efficiency, 20 watt, 32 GHz TWT of reduced size and weight that is based on a novel high gain n circuit design, termed the 'finned ladder'.

  11. On Solving TM0n Modal Excitation in a Ka-Band Overmoded Circular Waveguide by the Conservation of Complex Power Technique

    Institute of Scientific and Technical Information of China (English)

    Feng Lan; Xi Gao; Zong-Jun Shi

    2009-01-01

    To measure the radiation properties of relativistic diffraction generator (RDG) in Ka-band, a TM0n modal excitation model is established, which consists of an overmoded circular waveguide and a coaxial line feeding probe. Using the transverse E-field mode matching and the conservation of complex power technique (CCPT), we deduce the scattering matrix at coaxial line to coaxial line and coaxial line to circular waveguide junctions. Then using the overall cascaded junction scattering matrix, the numerical results for the reflection coefficient of the coaxial line and the power distribution of TM0n multi-modal are presented. The numerical results are in agreement with HFSS simulation results and experimental results. The analysis shows that by choosing the appropriate position of coaxial line probe, the power proportion of the device operating mode excited in circular waveguide could be the largest.

  12. Hardware-in-the-loop simulation of the dynamic characteristics of rain fading channel for satellite-to-Earth links at Ka-band

    Science.gov (United States)

    Yao, Hongchao; Wang, Huali

    2007-11-01

    Modeling of rain fading channel dynamics is essential to the real-time prediction of link availability for Ka-band satellite communication system under rain attenuation impairment, and can validate fade mitigation techniques (FMT) such as adaptive transmission and diversity. The mechanism of dynamic rain attenuation model based on time-series generator is firstly concerned in this paper. We further provide a scheme and implementation of real-time simulator for dynamic rain fading channels based on Hardware-in-the-loop (HIL) simulation method and general Field Programmable Logic Array (FPGA) device. Finally, the impact of adaptive modulation fade countermeasures (AMFC) in the different state of rain attenuation is evaluated with simulation results.

  13. A portable Ka-band front-end test package for beam-waveguide antenna performance evaluation. Part 1: Design and ground tests

    Science.gov (United States)

    Otoshi, T. Y.; Stewart, S. R.; Franco, M. M.

    1991-01-01

    A unique experimental method was used to test the beam waveguide (BWG) antenna at Deep Space Station (DDS) 13 in the Goldstone Deep Space Communications Complex near Barstow, California. The methodology involved the use of portable test packages to make measurements of operating noise temperatures and antenna efficiencies (as functions of antenna pointing angles) at the Cassegrain focal point and the final focal point located in a subterranean pedestal room. Degradations caused by the BWG mirror systems were determined by making comparisons of the measured parameters at the two focal points of the antenna. Previous articles were concerned with the design, performance characteristics, and test results obtained with an X-band test package operating at 32 GHz. Noise temperature measurement results are presented for the Ka-band test package in an on-the-ground test configuration.

  14. The Electron Gun's Design with High Performance for Ka-Band TWT%Ka波段行波管高性能电子枪设计

    Institute of Scientific and Technical Information of China (English)

    赵国庆; 王文祥; 宫玉彬; 魏彦玉; 黄民智

    2012-01-01

    The initial structure parameters of the electron gun for Ka-band TWT can be obtained by the synthesis iteration proposed by Vaughan, and then, the modifications for electron gun's structure are performed by stimulation and optimization with the TAU. With comparison of the uniformity electron's emission density of the cathode surface, the influence of trajectories for different thermal emission angles of e-lectrons, the trajectory's laminar and the radial current density distribution near the electron beam's waist, the final structure of the electron gun is got. The test result is in agreement with the optimized design for Ka-band TWT electron gun.%利用学者Vaughan等提出的皮尔斯电子枪设计综合迭代法计算得到某Ka波段行波管电子枪的基本结构参数;在此基础上,采用电子光学数值模拟软件Tau进行模拟优化进一步修改电子枪各结构尺寸;在模拟优化过程中,通过量化比较、判断阴极表面电子发射密度的均匀性,比较阴极表面部分热初速电子非垂直发射时对电子注轨迹的影响程度,比较注腰位置附近电子注层流性及径向密度分布均匀性等,最后得到优化的电子枪结构设计.对装配有此优化设计电子枪的行波管进行了实验研究,测试结果达到设计要求.

  15. The research of GaN power amplifier linearization method based on predistortion%基于预失真的GaN功率放大器线性化方法研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The nonlinearity of RF power amplifiers when they amplify signals causes distortion,which makes a negative influence on the performance of the communication systems seriously.To improve the third order intermodulation distortion,a new analog predistortion was introduced.This predistortion used the concept of complete matching IMD3 generator and two times fundamental frequency offsetting,which eliminated the fundamental frequency of IMD3 generator and reduced interference of the fundamental frequency to three harmonics.The circuit used the concept of pushing power and dual-ring structure.It optimized IMD3 of the L frequency range of the GaN amplifier obviously to improve the linearity of amplifier.By using the ADS2009U1 software,in the 950MHz single tone signal testing environment,the experiments show that the PAE of this system reached 52.1%.Furthermore, in the 945 MHz and 955 MHz dual tone signal testing environment,IMD3 gains the improvement of 15 dB.This predistortion realized the optimization of linearity in low efficiency loss.%射频功放在放大信号时的非线性使信号放大后产生失真,严重影响通信系统性能。主要针对射频功率放大器的三阶互调失真优化,提出了一种新型的模拟预失真器。融合了完全匹配的IMD3产生器、二次消基频概念,有效地消除了IMD3产生器的基频,降低了基频对三次谐波的干扰。电路设计引入了功率推动概念和双环结构,大大优化了L频段GaN功放的IMD3分量,提升功放线性度。使用ADS2009U1软件仿真实验证明,在950 MHz单音测试下,系统整体效率可达52.1%。在945 MHz和955 MHz双音测试下,IMD3增加了15 dB。该预失真器实现了在低效率损耗下对线性度的优化。

  16. Ka波段螺旋波纹波导回旋行波管%Linear calculation of Ka-band gyro-TWT with helical waveguide

    Institute of Scientific and Technical Information of China (English)

    薛智浩; 刘濮鲲; 杜朝海

    2012-01-01

    螺旋波纹波导回旋行波管与采用圆波导的回旋行波管相比,有较大的带宽.介绍了它的线性注波互作用理论,并用该理论计算了不同的磁场与波导表面微扰幅度对Ka波段螺旋波纹波导回旋行渡管线性增益的影响.计算结果与已报道的实验结果基本符合,说明该理论可以初步确定螺旋波纹波导回旋行波管的各项参数.%Gyrotron traveling-wave tube (gyro-TWT) with helical waveguide has wider instantaneous frequency bandwidth than that with smooth waveguide. This paper introduces the linear theory of its beam-wave interaction, and calculates the influence on linear gain of Ka-band gyro-TWT caused by changing the applied magnetic field and the amplitude of the groove. The results accord with those reported, indicating that the theory can be used to preliminarily determine the parameters of gyro-TWT assembly.

  17. A Compact Ka-Band PHEMT MMIC Voltage Controlled Oscillator%紧凑型Ka波段PHEMT微波单片集成VCO

    Institute of Scientific and Technical Information of China (English)

    余稳; 孙晓玮; 钱蓉; 张义门

    2005-01-01

    设计并流片制作了基于GaAs PHEMT工艺的Ka波段微波单片集成压控振荡器(MMIC VCO).该VCO具有紧凑、宽电调谐带宽及高输出功率的特点.提出了缩小芯片面积及增大调谐带宽的方法,同时还给出了设计MMIC VCO的基本步骤.该方法设计并流片制做的MMIC VCO的测量结果为:振荡频率为36±1.2GHz,输出功率为10士1dBm,芯片面积为1.3mm×1.0mm.%A compact Ka-band monolithic microwave integrated circuit(MMIC) voltage controlled oscillator (VCO)with wide tuning range and high output power, which is based on GaAs PHEMT process,is presented. A method is introduced to reduce the chip size and to increase the bandwidth of operation. The procedure to design a MMIC VCO is also described here. The measured oscillating frequency of the MMIC VCO is 36±1.2GHz and the output power is 10±1dBm. The fabricated MMIC chip size is 1.3mm× 1.0mm.

  18. Application of Synthetic Storm Technique for Diurnal and Seasonal Variation of Slant Path Ka-Band Rain Attenuation Time Series over a Subtropical Location in South Africa

    Directory of Open Access Journals (Sweden)

    J. S. Ojo

    2015-01-01

    Full Text Available As technology advances and more demands are on satellite services, rain-induced attenuation still creates one of the most damaging effects of the atmosphere on the quality of radio communication signals, especially those operating above 10 GHz. System designers therefore require statistical information on rain-induced attenuation over the coverage area in order to determine the appropriate transmitter and receiver characteristics to be adopted. This paper presents results on the time-varying rain characterization and diurnal variation of slant path rain attenuation in the Ka-band frequency simulated with synthetic storm techniques over a subtropical location in South Africa using 10-year rain rate time-series data. The analysis is based on the CDF of one-minute rain rate; time-series seasonal variation of rain rate observed over four time intervals: 00:00–06:00, 06:00–12:00, 12:00–18:00, and 18:00–24:00; diurnal fades margin; and diurnal variation of rain attenuation. Comparison was also made between the synthesized values and measured attenuation data. The predicted statistics are in good agreement with those obtained from the propagation beacon measurement in the area. The overall results will be needed for an acceptable planning that can effectively reduce the fade margin to a very low value for an optimum data communication over this area.

  19. Volcanic Ash Cloud Observation using Ground-based Ka-band Radar and Near-Infrared Lidar Ceilometer during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    Frank S. Marzano

    2015-03-01

    Full Text Available Active remote sensing techniques can probe volcanic ash plumes, but their sensitivity at a given distance depends upon the sensor transmitted power, wavelength and polarization capability. Building on a previous numerical study at centimeter wavelength, this work aims at i simulating the distal ash particles polarimetric response of millimeter-wave radar and multi-wavelength optical lidar; ii developing and applying a model-based statistical retrieval scheme using a multi-sensor approach. The microphysical electromagnetic forward model of volcanic ash particle distribution, previously set up at microwaves, is extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena for both millimeter and optical bands. Monte Carlo generation of radar and lidar signatures are driven by random variability of volcanic particle main parameters, using constraints from available data and experimental evidences. The considered case study is related to the ground-based observation of the Eyjafjallajökull (Iceland volcanic ash plume on May 15, 2010, carried out by the Atmospheric Research Station at Mace Head (Ireland with a 35-GHz Ka-band Doppler cloud radar and a 1064-nm ceilometer lidar. The detection and estimation of ash layer presence and composition is carried out using a Bayesian approach, which is trained by the Monte Carlo model-based dataset. Retrieval results are corroborated exploiting auxiliary data such as those from a ground-based microwave radiometer also positioned at Mace Head.

  20. Review of the Airborne Ku and Ka-band Satellite Communication System%机载Ku、Ka频段卫星通信系统综述

    Institute of Scientific and Technical Information of China (English)

    艾文光; 赵大勇; 邓军

    2011-01-01

    叙述了Ku频段和Ka频段机载卫星通信系统的国内外发展现状,列举了几个典型的卫星通信系统技术指标,并简述了研制机载卫星通信系统应注意的事项和技术途径,其中包括选择天线系统形式,合理分配系统指标,消除多普勒效应的影响等。%This paper reviews the Ku-band and Ka-band airborne satellite communication system both at home and abroad,cites a few typical satellite communication system specifications,and outlines matters that deserve our attention and some technical approaches in the development of airborne satellite communications systems,including choosing the form of antenna system,reasonably allocating system indicators,and eliminating the impact of the Doppler effect.

  1. A Frequency Transfer and Cleanup System for Ultra-High Stability at Both Long and Short Times for the Cassini Ka-Band Experiment

    Science.gov (United States)

    Calhoun, M. D.; Dick, G. J.; Wang, R. T.

    1999-01-01

    New radio science experiments, including a gravitational wave search and several atmospheric occultation studies, are planned for the Cassini Ka-band experiment. These experiments are made possible by reduced solar-induced phase fluctuations at the high-frequency (32 GHZ) of the radio link between the earth and the spacecraft. In order to match the improved link performance, a significant upgrade is under way to improve the frequency stability capabilities of NASA's Deep Space Network (DSN). Significant improvements are being undertaken in many areas, including antenna vibration and (wet) tropospheric calibration, in addition to frequency generation and distribution. We describe here the design and development of a system to provide a reference signal with the highest possible frequency stability for both long-term, short-term, and phase noise, at an antenna (DSS 25) that is remote from the frequency standards room at SPC-10 at the Goldstone site. The new technologies were developed in order to meet the very tight requirements. They are: 1) a Stabilized Fiber-Optic Distribution Assembly (SFODA) that includes active compensation of thermal variations to transfer long-term stability over 16 km of ordinary fiber-optic cable, and 2) a Compensated Sapphire Oscillator (CSO) that provides short-term performance in a cryocooled sapphire oscillator with ultra-high short-term stability and low phase noise.

  2. A low-phase-noise Ka-band push-push voltage-controlled oscillator using CMOS/glass-integrated passive device technologies.

    Science.gov (United States)

    Wang, Sen

    2014-09-01

    In this paper, a Ka-band CMOS push-push voltage- controlled oscillator (VCO) integrated into a glass-integrated passive device (GIPD) process is presented. The transformer, λ/4 transmission line, and inductors of the VCO are realized in the GIPD process, achieving superior performances, and therefore improve the phase noise of the VCO. Moreover, the transformer-based VCO is a differential Hartley topology to further reduce the phase noise and chip area. Operating at 1.8 V supply voltage, the VCO core consumes merely 3.8 mW of dc power. The measured phase noise is -109.18 dBc/Hz at 1 MHz offset from the 30.84 GHz oscillation frequency. The push-push VCO also demonstrates a 24.5 dB fundamental rejection, and exhibits an 8.4% tuning range. Compared with recently published CMOS-based VCOs, it is observed that the proposed VCO exhibits excellent performance under low power consumption.

  3. Lunar Noise-Temperature Increase Measurements at S-Band, X-Band, and Ka-Band Using a 34-Meter-Diameter Beam-Waveguide Antenna

    Science.gov (United States)

    Morabito, D. D.

    2006-08-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will cause an increase in receiver noise temperature that needs to be accounted for in telemetry, radio science, or ranging link budgets. The Deep Space Network may be required to use its antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature increase as a function of observing frequency, lunar phase, and angular offset of the antenna beam from the center of the lunar disk. This article quantifies such a set of measurements acquired at DSS 13, a 34-m-diameter research and development beam-waveguide antenna located at Goldstone, California, at three different telecommunication frequencies, S-band (2.3 GHz), X-band (8.4 GHz), and Ka-band (32 GHz), over a wide range of lunar phase, for both disk-centered and limb-centered positions of the antenna beam.

  4. Design of a Novel Ka-band Circular Polarization Microstrip Antenna%一种新型Ka频段圆极化微带天线设计

    Institute of Scientific and Technical Information of China (English)

    刘洋; 王昕; 董涛

    2012-01-01

    A novel Ka band circular-polarization microstrip antenna is proposed.The antenna is coupled-fed by L-shaped apertures in the ground plane to realize circular-polarization.The antenna array is analyzed and optimized,then the array is made and measured.Simulated and measured results show the feasibility of the proposed design.Simulated results of the relative impedance bandwidth and axial-ratio bandwidth are 3.9% and 2% respectively,and measured results are 4.2% and 3.5%.With good circular polarization performance,the antenna can be used in satellite communication.%提出了一种Ka频段圆极化微带天线的新设计,采用缝隙耦合馈电方式,通过在接地板开L型缝隙实现天线的圆极化工作。对天线阵列进行了仿真优化和加工实测,仿真和测试结果表明了设计的可行性。天线仿真和实测的相对阻抗带宽分别为3.9%和4.2%,仿真和实测的轴比相对带宽分别为2%和3.5%。天线具有良好的圆极化特性,可应用在卫星通信中。

  5. Ka频段遥感卫星数据接收系统跟踪性能测试新方法%A New Tracking Performance Test Method for Ka-band Remote Sensing Satellite Data Receiving System

    Institute of Scientific and Technical Information of China (English)

    朱维祥; 穆伟; 王万玉; 冯旭祥; 王永华

    2015-01-01

    To solve the problems in the tracking performance test of Ka-band Low Earth Orbit( LEO) re-mote sensing satellite data receiving system,a new method is proposed. Simulation data is generated by u-sing Ka-band LEO satellite,and dynamic target tracking is simulated with the method of tracking Ka-band beacon on the calibration tower by rotating the third axis of antenna. A verification test on tracking per-formance of receiving system is carried out in the developed prototype system. The proposed method pro-vides a reference for acceptance test for Ka-band LEO satellite data receiving system.%针对Ka频段低轨遥感卫星数据接收系统跟踪性能测试中的问题,提出了一种新的测试方法。利用设计的Ka频段低轨卫星动态目标模拟数据,采用转动第三轴跟踪标校塔Ka频段信标的方式模拟动态目标的跟踪,在研制的原型系统中开展了接收系统跟踪性能的测试验证。该测试方法可为Ka频段低轨卫星数据接收系统跟踪性能的测试验收提供参考。

  6. Fan tomography of the tropospheric water vapor for the calibration of the Ka band tracking of the Bepi-Colombo spacecraft (MORE experiment).

    Science.gov (United States)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie

    2012-07-01

    The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapour Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have

  7. High Frequency Performance of GaN Based IMPATT Diodes

    Directory of Open Access Journals (Sweden)

    B. Chakrabarti

    2011-08-01

    Full Text Available IMPATT is a p+n junction diode reversed bias to breakdown and can generate microwave power when properly embedded in a resonant cavity. Till emergence on 1965 day by day it became more powerful solid state source for microwave as well as mm-wave frequency range. To get higher efficiency and power output different structures like SDR, DDR, DAR, lo-high-lo, etc. were proposed and developed by different scientists over the years. Then the IMPATT development started with different semiconductor materials like GaAs, InP, GaN, etc. along with Silicon to achieve higher efficiency, power output and frequency range. In this paper the performance of GaN based SDR IMPATT have thoroughly studied in terms of (i electric field profile[E(x] (iinormalized current density profile [P(x] (iii Susceptance Vs Conductance characteristics (ivRF power output (v negative resistivity profile [R(x] of the diodes through simulation scheme. It is being observed that the efficiency is 17.9% at Ka-band and because of the very high breakdown voltage, power output is as high as1.56W in comparison with other frequency band of operations.

  8. Taevo Gans / Ene Ammer

    Index Scriptorium Estoniae

    Ammer, Ene

    1998-01-01

    Sisearhitekt Taevo Gansist. Tudengipõlvest, selle aja projektidest, sõpruskonnast, tandemist Summatavet & Gans, Venemaa tellimustest, kaastöölistest. Üksinda Hommilkumaal vene tarbekunsti näitusega 1974. a. 1988. a. loodud perefirmast "GaDis" (omanikud Taevo, Helle Gans, Riia Oja), mis nõustab ka "Wermot" mööbli osas. "GaDise" sisekujundusprojektidest, millega Taevo ja Helle Gans tegelevad üheskoos

  9. Taevo Gans / Ene Ammer

    Index Scriptorium Estoniae

    Ammer, Ene

    1998-01-01

    Sisearhitekt Taevo Gansist. Tudengipõlvest, selle aja projektidest, sõpruskonnast, tandemist Summatavet & Gans, Venemaa tellimustest, kaastöölistest. Üksinda Hommilkumaal vene tarbekunsti näitusega 1974. a. 1988. a. loodud perefirmast "GaDis" (omanikud Taevo, Helle Gans, Riia Oja), mis nõustab ka "Wermot" mööbli osas. "GaDise" sisekujundusprojektidest, millega Taevo ja Helle Gans tegelevad üheskoos

  10. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-01

    ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for...originator. ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo...To) October 2015–January 2016 4. TITLE AND SUBTITLE Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09

  11. A Novel Application of Fourier Transform Spectroscopy with HEMT Amplifiers at Microwave Frequencies

    Science.gov (United States)

    Wilkinson, David T.; Page, Lyman

    1995-01-01

    The goal was to develop cryogenic high-electron-mobility transistor (HEMT) based radiometers and use them to measure the anisotropy in the cosmic microwave background (CMB). In particular, a novel Fourier transform spectrometer (FTS) built entirely of waveguide components would be developed. A dual-polarization Ka-band HEMT radiometer and a similar Q-band radiometer were built. In a series of measurements spanning three years made from a ground-based site in Saskatoon, SK, the amplitude, frequency spectrum, and spatial frequency spectrum of the anisotropy were measured. A prototype Ka-band FTS was built and tested, and a simplified version is proposed for the MAP satellite mission. The 1/f characteristics of HEMT amplifiers were quantified using correlation techniques.

  12. 0.15-micron Gallium Nitride (GaN) Microwave Integrated Circuit Designs Submitted to TriQuint Semiconductor for Fabrication

    Science.gov (United States)

    2012-09-01

    arsenide GaN gallium nitride LNA low-noise amplifier MMIC monolithic microwave integrated circuit PA power amplifier HEMT high electron mobility...0.15-µm Gallium Nitride ( GaN ) Microwave Integrated Circuit Designs Submitted to TriQuint Semiconductor for Fabrication by John Penn ARL...MD 20783-1197 ARL-TN-0496 September 2012 0.15-µm Gallium Nitride ( GaN ) Microwave Integrated Circuit Designs Submitted to TriQuint

  13. 338-GHz Semiconductor Amplifier Module

    Science.gov (United States)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  14. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including t...

  15. Ka波段高功率合成放大技术的研究*%Ka-band High Power Amplification Technology

    Institute of Scientific and Technical Information of China (English)

    程光伟; 孔祥丽

    2015-01-01

    This paper introduces a kind of Ka‐band high‐gain solid state power amplifier device based on wavequide .It uses waveguide microstrip line to transite power output ,also design effectively microstrip dielectric substrate and cavity structure ,inhibition of self‐excited resulting from high gain ,and makes it have a compact in the partial circuit and the char‐acteristics of good heat dissipation .The production of ka‐band and high power signal is completed .The input is low power signal and power amplifier preheating pulse modulation of 34 .4GHz ,and the output is high power (20W) emission signal .%论文介绍了一种基于波导的Ka波段高增益固态功率放大器件,它运用波导‐微带线过渡输出功率,有效地进行了微带介质基片和腔体结构的设计,抑制由于高增益所产生的自激,并且使其具有紧凑的偏里电路以及良好的散热特性。完成Ka波段高功率发射信号的产生,输入为34.4GHz已调制低功率发射信号和功放预热脉冲,输出为高功率(20W)发射信号。

  16. Design and study on the dual-band radome with FSS operation at Ku-/Ka-band%Ku/Ka波段双通带频率选择表面雷达罩设计研究

    Institute of Scientific and Technical Information of China (English)

    王秀芝; 高劲松; 徐念喜

    2013-01-01

    In order to meet the multi-band and integration requirements of the communication apparatus, the coupling and resonance mecha-nism can be exploited to design a frequency selective surface (FSS), with two pass-bands at Ku-band and Ka-band, which is composed of three metallic layers and fabricated on a flat substrate equivalent to a solid wall radome or an A-sandwiched radome. According to the physical structure of the FSS, an equivalent circuit model is established to analyze the filtering mechanism, and the transmission characteristics of the radomes with FSS are obtained by using a full-wave analysis software. The first pass-band at Ku-band with miniaturization property can be achieved by coupling the electric and magnetic field of the three surfaces, while the second pass-band at Ka-band can be achieved by the resonance of the square loop slots embedded in the capacitive surfaces. The transmissions of the solid wall radome and A-sandwiched radome with FSS are 89%and 94.7%at Ku-band, and 88.2%and 93.7%at Ka-band, respectively. When the incident angle is varied from normal to 60◦, the frequency response characteristics of the two pass-bands are stable. Finally, the experimental results of the prototype with a solid substrate measured in free-space environment are in good agreement with the simulated values. The proposed radome structure with FSS, which is based on the coupling and resonance mechanism, can achieve two stable pass-bands at Ku-/Ka-band. This may provide some theoretical and experimental assistance for the study of the multi-band and wide band spacing FSS.%为了满足现代通信设备多频带及集成化要求,基于耦合机理和谐振机理,在实心半波壁雷达罩和A夹层雷达罩等效平板基底上设计了一种由容性表面(内嵌谐振单元)-感性表面-容性表面(内嵌谐振单元)-等效基底级联而成的Ku/Ka波段双通带频率选择表面结构.根据FSS的物理结构建立了等效电路模型,分析了滤波机

  17. Ka-BAND MICROSTRIP INTEGRATED LOCAL-OSCILLATOR-MIXER ASSEMBLY USED IN PROJECTILE SENSORS%用于抛掷敏感器的Ka-波段微带集成本振-混频组件

    Institute of Scientific and Technical Information of China (English)

    蒋金水; 李兴国; 吴文; 娄国伟

    2001-01-01

    A compact Ka-band microstrip integrated local-oscillator-mixer assembly used in projectile sensors was introduced. The overall configuration of microstrip circuit of this assembly was given. The functions of each component were described. The environment and reliability tests performed on this assembly were explored in detail, which include vibration, shock and temperature. The Ka-band local-oscillator-mixer assembly exhibits a 3.4~4.2-dB double side band (DSB) noise figure over a 2-GHz RF bandwidth. LO-to-RF isolation is greater than 27dB over the range of operating frequencies. The frequency stability of local oscillator with dielectric resonator used is less than 60ppm/℃.%介绍一种用于抛掷敏感器的结构紧凑的Ka-波段微带集成本振-混频组件,给出了该组件的微带电路结构,叙述了其中每一部件的功能.对该组件仔细做了环境和可靠性实验,其中包括震动,冲击和温度.在2GHz射频带宽内,该组件的双边带噪声系数是3.4~4.2dB,在其工作频带内本振到射频的隔离度大于27dB.由于使用了介质谐振器,本振的频率稳定度小于60ppm/℃.

  18. Airborne Field Campaign Results of Ka-band Precipitation Measuring Radar in China%我国Ka频段降水测量雷达机载校飞试验结果

    Institute of Scientific and Technical Information of China (English)

    商建; 郭杨; 吴琼; 杨虎; 尹红刚

    2011-01-01

    2010年6-10月在天津与江苏地区开展了国内首次Ku/Ka频段星载降水测量雷达机载校飞试验.此次校飞试验获得了宝贵的机载雷达观测数据和地面、海面同步观测数据,目前已开展了外定标、数据对比与衰减订正等工作.该文给出了天津校飞试验中Ka频段降水测量雷达实测结果,对Ka频段降水测量雷达资料与天津地区S波段地基多普勒雷达资料进行了详细的对比分析,有利于更好地了解Ka频段降水测量雷达仪器本身的性能及其探测降水的能力;利用由GPS探空资料、地基多通道微波辐射计观测亮温结合微波辐射传输模式得到的雷达路径积分衰减量,对Ka频段降水测量雷达进行了衰减订正,为继续开展降水反演工作奠定了基础.%Spaceborne precipitation measuring radar can measure precipitation quantitatively, observe the vertical distribution and provide three dimensional precipitation structures. Spaceborne precipitation measuring radar is an important instrument on FY-3 meteorological satellite constellation. As a possible future member of the Global Precipitation Measurement(GPM) , this satellite will carry dual-frequency precipitation radar operating at Ku and Ka bands to provide scientific data for dual-frequency retrieval algorithm. Its two prototype devices, Ku-band and Ka-band radars have already been developed under the support of National Defense Science and Industry Bureau. Field campaign of Ku/Ka-band airborne precipitation measuring radar is carried out by National Satellite Meteorological Center of China Meteorological Administration combining several groups from June to October in 2010 in Tianjin and Jiangsu, called BH-RM 2010 and JS-RM 2010, respectively. This is the first time that China carries out airborne precipitation measuring radar field campaign. The purposes of this field campaign are to validate the correctness of internal and external calibration scheme under airborne

  19. Characterization and Modeling of DHBT in InP/GaAsSb Technology for the Design and Fabrication of a Ka Band MMIC Oscillator

    Directory of Open Access Journals (Sweden)

    S. Laurent

    2012-01-01

    Full Text Available This paper presents the design of an MMIC oscillator operating at a 38 GHz frequency. This circuit was fabricated by the III–V Lab with the new InP/GaAsSb Double Heterojunction Bipolar Transistor (DHBT submicronic technology (We=700 nm. The transistor used in the circuit has a 15 μm long two-finger emitter. This paper describes the complete nonlinear modeling of this DHBT, including the cyclostationary modeling of its low frequency (LF noise sources. The specific interest of the methodology used to design this oscillator resides in being able to choose a nonlinear operating condition of the transistor from an analysis in amplifier mode. The oscillator simulation and measurement results are compared. A 38 GHz oscillation frequency with 8.6 dBm output power and a phase noise of −80 dBc/Hz at 100 KHz offset from carrier have been measured.

  20. GaN HEMTs

    Science.gov (United States)

    Anderson, Jonathan W.; Lee, Kyoung-Keun; Piner, Edwin L.

    2012-03-01

    Gallium nitride (GaN) has enormous potential for applications in high electron mobility transistors (HEMTs) used in RF and power devices. Intrinsic device properties such as high electron mobility, high breakdown voltage, very high current density, electron confinement in a narrow channel, and high electron velocity in the 2-dimensional electron gas of the HEMT structure are due in large part to the wide band gap of this novel semiconductor material system. This presentation discusses the properties of GaN that make it superior to other semiconductor materials, and outlines the research that will be undertaken in a new program at Texas State University to advance GaN HEMT technology. This program's aim is to further innovate the exceptional performance of GaN through improved material growth processes and epitaxial structure design.

  1. AMIE Gan Island Ancillary Disdrometer Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Oue, Mariko [Stony Brook Univ., NY (United States)

    2016-04-01

    As part of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement Climate Research Facility (ARM) Madden-Julian Oscillation (MJO) Investigation Experiment (AMIE), in January 2012 a disdrometer observation took place with the second ARM Mobile Facility (AMF2), the Scanning ARM Cloud Radar (SACR), the Texas A&M SMART-R C-band radar, and the National Center for Atmospheric Research (NCAR) dual wavelength S- and Ka-bands polarimetric (SPolKa) radar on Gan Island, Maldives. In order to measure raindrop size distributions, a disdrometer of Nagoya University, Japan, was set up close to the ARM Two-Dimensional (2D) Video Disdrometer (2DVD). The SMART-R and SPolKa radars performed range-height-indicator scanning in the direction of the disdrometer site. Comparing the disdrometer data with 2DVD data, the raindrop size distribution data will be calibrated. Furthermore, the analysis of the raindrop size distribution and radar data will be expected to clarify the microphysics in tropical convective clouds.

  2. Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions

    Science.gov (United States)

    Simons, Rainee N.; Wintucky, Edwin G.; Wilson, Jeffrey D.; Force, Dale A.

    2009-01-01

    In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher.

  3. GaN C-band HPA for phased-array applications

    NARCIS (Netherlands)

    Wanum, M. van; Hek, A.P. de; Vliet, F.E. van

    2013-01-01

    In the UMS GH25-10 GaN MMIC technology a Cband high power amplifier (HPA) has been realized. The current design is primarily intended for use in a space-based SAR system with a center frequency of 5.4 GHz and a sweep bandwidth of 100 MHz. To enable reuse of the amplifier in other radar systems such

  4. Calculation of attenuation by rain using the DAH model and diameter of antennas for the Ka Band in Mexico; Calculo de atenuacion por lluvia usando el modelo DAH y diametro de antena para Banda Ka en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Landeros-Ayala, S.; Neri-Vela, R; Cruz-Sanchez, H.; Hernandez-Bautista, H. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2002-03-01

    In the last years, the peak in the demand of satellite communication service has caused the saturation in the use of the frequencies corresponding to the band, Cand Ku. Due to this, the engineers have looked for viable alternatives, in order to satisfy the current requisition, as well as the future demand, for which a considerable increment is expected. One of these alternatives is the use of the Ka Band (20Hz/30Hz), that is why the importance of studying the propagation effects that are experienced at these frequencies, especially the attenuation effect by rain, as in this case, where it is significant. The present article has the purpose to describe the use of the Modelo DAH (whose authors are Asoka Dissanayake, Jeremy Allnutt and Fatim Haidara), mixed with the global maps of distribution of rain by Crane, for the calculation of the attenuation by rain in satellite communication systems operated in the Ka Band. Besides, antenna diameters for the systems of communications in Ka Band in different locations of the Mexican Republic, using for it the attenuation margins for rain obtained through the Modelo DAH, and using as references the characteristics of the ANIK F2 satellite and a terrestrial station VSAT, are proposed. [Spanish] En los ultimos anos, el auge en la demanda de servicios de comunicacion por satelite ha provocado la saturacion en los uso de la frecuencia correspondientes a las bandas C y Ku. Debido a esta razon, se han buscado alternativas viables para poder satisfacer la demanda actual, asi como la demanda futura, para la cual se espera un incremento considerable. Una de estas alternativas es el uso de Banda Ka (20Hz/30Hz), de ahi la importancia del estudio sobre los efectos de programacion que se experimentan a esta frecuencia, en especial, el efecto de atencion por lluvias, ya que sen este caso resulta ser significativa. El presente articulo tiene como finalidad describir el uso del Modelo DAH (cuyos autores son Asoka Dissanayake, Jeremy Allnutt y

  5. Design of the GaN power amplifier for high gain and ultra-wideband%高增益宽频带GaN功率放大器设计

    Institute of Scientific and Technical Information of China (English)

    张佳浩

    2016-01-01

    针对新一代半导体材料氮化镓(Gallium Nitride,GaN)带宽大、效率高的优点,利用ADS谐波平衡仿真软件,设计了一个1.5~2.5GHz宽带高效的功率放大器。设计采用Cree公司的GaN 高电子迁移率晶体管CGH40010F,利用晶体管的大信号模型进行电路仿真,结果显示,功放在1.5~2.5GHz频带内,饱和输出功率大于41.7dBm,小信号增益大于18dB,功率附加效率大于70%。%This letter designs a 1.5~2.5GHz broadband highly efficient PA using the ADS harmonic-balanced simulator based on GaN,a new semiconductor materials with wide bandwidth and high efficience.The PA was designed with Cree’s GaN HEMT CGH40010F,and simulated with its large signal model.The result shows that the PA had a saturated power above 41.7dBm,a small signal gain over 18dB and the PAE above 74% in 1.5~2.5GHz frequency band.

  6. Ka频段陶瓷基板微带带通滤波器设计分析%Design of Ka-band Microstrip Bandpass Filter on Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    赵飞; 党元兰; 王璇

    2012-01-01

    为满足微波电路小型化的发展要求,基于陶瓷基板设计了一款Ka频段的微带带通滤波器。分析了滤波器的电路设计原理及工艺设计方案,采用电路优化和三维全波仿真结合的方法对电路进行仿真。在优化后的版图基础上,通过改善膜层附着力、提高加工精度等方式对滤波器的加工进行控制。测试结果满足使用要求,证明了电路及工艺设计方案的正确性。%A Ka-band microstrip bandpass filter using ceramic substrate is designed to meet the requirement of microwave IC miniaturization.The circuit design principle and technology design scheme are analyzed.The circuit is simulated by combining the circuit optimization and 3D full-wave simulation.Based on the optimized layout,the processing of filter is controlled by improving the adhesion of the film and increasing the processing accuracy.The test result proves the validity of the microstrip bandpass filter and its design method.

  7. Ka-Band Phased Array System Characterization

    Science.gov (United States)

    Acosta, R.; Johnson, S.; Sands, O.; Lambert, K.

    2001-01-01

    Phased Array Antennas (PAAs) using patch-radiating elements are projected to transmit data at rates several orders of magnitude higher than currently offered with reflector-based systems. However, there are a number of potential sources of degradation in the Bit Error Rate (BER) performance of the communications link that are unique to PAA-based links. Short spacing of radiating elements can induce mutual coupling between radiating elements, long spacing can induce grating lobes, modulo 2 pi phase errors can add to Inter Symbol Interference (ISI), phase shifters and power divider network introduce losses into the system. This paper describes efforts underway to test and evaluate the effects of the performance degrading features of phased-array antennas when used in a high data rate modulation link. The tests and evaluations described here uncover the interaction between the electrical characteristics of a PAA and the BER performance of a communication link.

  8. Ka波段DMTL移相器用RF MEMS电容式并联开关研制%Development of RF MEMS Capacitive Shunt Switch for Ka-Band DMTL Phase Shifter

    Institute of Scientific and Technical Information of China (English)

    高杨; 贾小慧; 秦燃; 官承秋

    2012-01-01

    A MEMS capacitive shunt switch for Ka-band 5-bit distributed MEMS transmission line (DMTL) phase shifter was presented in this paper.The structural dimensions of MEMS capacitive shunt switch were roughly defined by theoretical calculation and engineering experience.The 3D electromagnetic model of the switch was established,and the structural dimensions were optimized by using HFSS software.Simulation results show that the insertion loss of the switch was lower than 0.15 dB and the isolation loss was higher than 15 dB in Ka-band.The driving voltage of the switch was 2.1 V,which was obtained from the simulation of electromechanical coupling by using CoventorWare software.After several modifications of device layout and fabrication process according to the surface micro-machining process restriction of the foundry,preliminary MEMS capacitive shunt switch process sample was obtained.Dynamic characteristics of a single MEMS switch were tested.The results show that the height pulled down by microbridge was about 2 μm with 36 V driving voltage applied.There was a big difference between the tested driving voltage 36 V and the originally designed value 2.1 V,due to the temporary structural design modification according to the process restriction of the foundry.The modifications mainly involve increasing the microbridge height,and increasing the initial distance between the microbridge (top electrode) and the bottom electrode.%本文设计并制作了一种用于Ka波段分布式MEMS传输线(DMTL)移相器的MEMS电容式并联开关.通过理论计算和工程经验,大致定义了开关的结构尺寸.采用HFSS软件建立了开关的三维电磁场模型并优化了关键结构参数.仿真表明:开关在Ka波段插入损耗小于0.15 dB,回波损耗大于15 dB.采用CoventorWare软件进行了开关的机电耦合仿真,得出其驱动电压为2.1V.为了满足流片单位表面微加工工艺的约束,对开关的设计版图和微加工工艺进行了多轮改进,

  9. 一种Ka频段海上卫星通信抗雨衰编码方案%An anti-rain attenuation encoding solution for sea Ka-band satellite communication

    Institute of Scientific and Technical Information of China (English)

    高化猛; 李智

    2011-01-01

    The mechanism of rain attenuation in satellite communication and it's affection to Ka-band satellite communication are analyzed. CCSDS( 15,1/6)standard convolution code is recommended as channel code to anti-rain attenuation the performance of CCSDS( 15,1/6) standard convolution code is researched. The encoding efficiency is found by simulating encoding system in C translation environment. The decoding performance and encoding gain are found by simulating decoding system in BPSK modulation, ACWN channel, viterbi decoding algorithm. Simulation research demonstrates that the CCSDS (15, 1/6 ) standard convolution code is a good channel encoding solution for anti-rain attenuation in satellite communication on the sea because of high encoding velocity, high decoding performance and high encoding gain.%分析卫星通信雨衰现象的产生机制和对Ka频段卫星通信的影响,提出采用CCSDS标准卷积码作为抗雨衰编码方案.研究CCSDS(15,1/6)卷积码编译码性能:使用C语言编译环境,仿真CCSDS(15,1/6)编码系统,得出编码效率;使用二进制相移键控调制、加性高斯白噪声信道、维特比译码,仿真CCSDS(15,1/6)译码系统,得出译码性能和编码增益.仿真计算表明,CCSDS(15,1/6)具有编码速度快,译码性能好,编码增益高的特点,是一种好的海上卫星通信抗雨衰编码方案.

  10. Design and simulation of a gyroklystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, M. S., E-mail: mschauhan.rs.ece@iitbhu.ac.in; Swati, M. V.; Jain, P. K. [Centre of Research in Microwave Tubes, Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005 (India)

    2015-03-15

    In the present paper, a design methodology of the gyroklystron amplifier has been described and subsequently used for the design of a typically selected 200 kW, Ka-band, four-cavity gyroklystron amplifier. This conceptual device design has been validated through the 3D particle-in-cell (PIC) simulation and nonlinear analysis. Commercially available PIC simulation code “MAGIC” has been used for the electromagnetic study at the different location of the device RF interaction structure for the beam-absent case, i.e., eigenmode study as well as for the electron beam and RF wave interaction behaviour study in the beam present case of the gyroklystron. In addition, a practical problem of misalignment of the RF cavities with drift tubes within the tube has been also investigated and its effect on device performance studied. The analytical and simulation results confirmed the validity of the gyroklystron device design. The PIC simulation results of the present gyroklystron produced a stable RF output power of ∼218 kW for 0% velocity spread at 35 GHz, with ∼45 dB gain, 37% efficiency, and a bandwidth of 0.3% for a 70 kV, 8.2 A gyrating electron beam. The simulated values of RF output power have been found in agreement with the nonlinear analysis results within ∼5%. Further, the PIC simulation has been extended to study a practical problem of misalignment of the cavities axis and drift tube axis of the gyroklystron amplifier and found that the RF output power is more sensitive to misalignments in comparison to the device bandwidth. The present paper, gyroklystron device design, nonlinear analysis, and 3D PIC simulation using commercially available code had been systematically described would be of use to the high-power gyro-amplifier tube designers and research scientists.

  11. Operational amplifiers

    CERN Document Server

    Dostal, Jiri

    1993-01-01

    This book provides the reader with the practical knowledge necessary to select and use operational amplifier devices. It presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits.Provides the reader with practical knowledge necessary to select and use operational amplifier devices. Presents an extensive treatment of applications and a practically oriented, unified theory of operational circuits

  12. Operational Amplifiers.

    Science.gov (United States)

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  13. Q-Band (45 GHz) Microwave Integrated Circuit Power Amplifier Designs Submitted to TriQuint Semiconductor for Fabrication with 0.15-micron High-Electron-Mobility Transistors (HEMT) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    Science.gov (United States)

    2013-09-01

    Electron-Mobility Transistors (HEMT) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E. Penn ARL-TN-0574 September 2013...µm High-Electron-Mobility Transistors (HEMT) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) John E. Penn Sensors and Electron Devices...with 0.15-µm High- Electron-Mobility Transistors (HEMT) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) 5a. CONTRACT NUMBER 5b. GRANT

  14. Time-reversal duality of high-efficiency RF power amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Reveyrand, T; Ramos, I; Popovic, Z

    2012-12-06

    The similarity between RF power amplifiers and rectifiers is discussed. It is shown that the same high-efficiency harmonically-terminated power amplifier can be operated in a dual rectifier mode. Nonlinear simulations with a GaN HEMT transistor model show the time-reversal intrinsic voltage and current waveform relationship between a class-F amplifier and rectifier. Measurements on a class-F-1 amplifier and rectifier at 2.14 GHz demonstrate over 80% efficiency in both cases.

  15. Nonlinear characterization of GaN HEMT

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chi; Hao Yue; Yang Ling; Quan Si; Ma Xiaohua; Zhang Jincheng, E-mail: ccachi@163.com [National Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2010-11-15

    DC I-V output, small signal and an extensive large signal characterization (load-pull measurements) of a GaN HEMT on a SiC substrate with different gate widths of 100 {mu}m and 1 mm have been carried out. From the small signal data, it has been found that the cutoff frequencies increase with gate width varying from 100 {mu}m to 1mm, owing to the reduced contribution of the parasitic effect. The devices investigated with different gate widths are enough to work in the C band and X band. The large signal measurements include the load-pull measurements and power sweep measurements at the C band (5.5 GHz) and X band (8 GHz). When biasing the gate voltage in class AB and selecting the source impedance, the optimum load impedances seen from the device for output power and PAE were localized in the load-pull map. The results of a power sweep at an 8 GHz biased various drain voltage demonstrate that a GaN HEMT on a SiC substrate has good thermal conductivity and a high breakdown voltage, and the CW power density of 10.16 W/mm was obtained. From the results of the power sweep measurement at 5.5 GHz with different gate widths, the actual scaling rules and heat effect on the large periphery device were analyzed, although the effects are not serious. The measurement results and analyses prove that a GaN HEMT on a SiC substrate is an ideal candidate for high-power amplifier design.

  16. Development of High Power Amplifiers for Space and Ground-based Applications

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla

    and the Monolithic Microwave Integrated Circuits. The research work presented here focuses on practical realization and demonstration of these two types of amplifiers. The design and experimental performance assessment of 50W Solid State C-band High Power Amplifier using European Monolithic Microwave Integrated......-based amplifiers. They are efficient and provide very high power levels operating at low duty cycles. But they have a questionable longterm reliability, large footprints and they are not suitable for modern equipment with a decentralized transmitter, like a phase array system. Solid State Power Amplifier......D dissertation lies in the development of nonlinear design methodologies, manufacturing, and efficient testing of Solid State High Power Amplifier modules, with special focus on GaN state of the art technology. It is possible to identify two types of GaN Solid State High Power Amplifiers: the Hybrids...

  17. On Distortion in Digital Microwave Power Amplifiers

    Science.gov (United States)

    Al-Mozani, Dhamia; Wentzel, Andreas; Heinrich, Wolfgang

    2017-01-01

    In this paper, a first study of distortion in digital power amplifiers (PA) is presented. The work is based on a voltage mode class-S PA with a GaN MMIC for the 900 MHz frequency band. The investigation focuses on the quasi-static amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. Different digital modulation schemes are applied and studied versus output power back-off. This includes two pulse-width modulation (PWM) versions as well as band-pass delta-sigma (BPDS) modulation. The results are verified by measurement data.

  18. Improved modeling of GaN HEMTs for predicting thermal and trapping-induced-kink effects

    Science.gov (United States)

    Jarndal, Anwar; Ghannouchi, Fadhel M.

    2016-09-01

    In this paper, an improved modeling approach has been developed and validated for GaN high electron mobility transistors (HEMTs). The proposed analytical model accurately simulates the drain current and its inherent trapping and thermal effects. Genetic-algorithm-based procedure is developed to automatically find the fitting parameters of the model. The developed modeling technique is implemented on a packaged GaN-on-Si HEMT and validated by DC and small-/large-signal RF measurements. The model is also employed for designing and realizing a switch-mode inverse class-F power amplifier. The amplifier simulations showed a very good agreement with RF large-signal measurements.

  19. Anelasticity of GaN Epitaxial Layer in GaN LED

    Science.gov (United States)

    Chung, C. C.; Yang, C. T.; Liu, C. Y.

    2016-10-01

    In this work, the anelasticity of the GaN layer in the GaN light-emitting-diode device was studied. The present results show that the forward-voltage of GaN LED increases with time, as the GaN light-emitting-diode was maintained at a constant temperature of 100 °C. We found that the increase of the forward-voltage with time attributes to the delay-response of the piezoelectric fields (internal electrical fields in GaN LED device). And, the delay-response of the internal electrical fields with time is caused by the anelasticity (time-dependent strain) of the GaN layer. Therefore, using the correlation of strain-piezoelectric-forward voltage, a plot of thermal strain of the GaN layer against time can be obtained by measuring the forward-voltage of the studied GaN LED against time. With the curves of the thermal strain of GaN epi-layers versus time, the anelasticity of the GaN compound can be studied. The key anelasticity parameter, characteristic relaxation time, of the GaN is defined to be 2623.76 min in this work.

  20. Bandgap engineering of GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Bang-Ming; Yan, Hui [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Wang, Ru-Zhi, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Beijing Computational Science Research Center, Beijing, 100094 (China); Yam, Chi-Yung, E-mail: wrz@bjut.edu.cn, E-mail: yamcy@csrc.ac.cn [Beijing Computational Science Research Center, Beijing, 100094 (China); Xu, Li-Chun [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Lau, Woon-Ming [Beijing Computational Science Research Center, Beijing, 100094 (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu, Sichuan, 610207 (China)

    2016-05-15

    Bandgap engineering has been a powerful technique for manipulating the electronic and optical properties of semiconductors. In this work, a systematic investigation of the electronic properties of [0001] GaN nanowires was carried out using the density functional based tight-binding method (DFTB). We studied the effects of geometric structure and uniaxial strain on the electronic properties of GaN nanowires with diameters ranging from 0.8 to 10 nm. Our results show that the band gap of GaN nanowires depends linearly on both the surface to volume ratio (S/V) and tensile strain. The band gap of GaN nanowires increases linearly with S/V, while it decreases linearly with increasing tensile strain. These linear relationships provide an effect way in designing GaN nanowires for their applications in novel nano-devices.

  1. Epitaxial growth of aligned GaN nanowires and nanobridges

    OpenAIRE

    2007-01-01

    Homo-epitaxialy grown aligned GaN nanowires were prepared on crystalline GaN mesas. The GaN nanowires showed preferential growth along the 〈100〉 direction (m-axis direction). By using selectively positioned and crystallographically well defined GaN epitaxial lateral overgrowth (ELO) mesas as substrate, we obtained horizontally aligned GaN nanowires, in comb-like arrays and hexagonal network interconnecting the ELO mesas. Preliminary testing of the nanomechanical behavior of horizontal nanowir...

  2. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed here are Ka-band (38 GHz) group III-nitride power FETs and the dislocation density reducing epitaxial growth methods (LPE) needed for their...

  3. Bulk ammonothermal GaN

    Science.gov (United States)

    Dwiliński, R.; Doradziński, R.; Garczyński, J.; Sierzputowski, L. P.; Puchalski, A.; Kanbara, Y.; Yagi, K.; Minakuchi, H.; Hayashi, H.

    2009-05-01

    In this work, results of structural characterization of high-quality ammonothermal GaN are presented. Besides expected low dislocation density (being of the order of 10 3 cm -2) the most interesting feature seems perfect flatness of the crystal lattice of studied crystals. Regardless the size of crystals, lattice curvature radius exceeds 100 m, whereas better crystals reveal radius of several hundred meters and the best above 1000 m. Excellent crystallinity manifests in very narrow X-ray diffraction peaks of full-width at half-maximum (FWHM) values about 16 arcsec.

  4. Cross-differential amplifier

    Science.gov (United States)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  5. Spatial Power Combining Amplifier for Ground and Flight Applications

    Science.gov (United States)

    Velazco, J. E.; Taylor, M.

    2016-11-01

    -sections than comparable klystrons and traveling-wave tube counterparts and thus avoid RF breakdown and thermal issues common to vacuum tubes. We present a basic description of the SPCA mechanism and initial results of an S-band (2.4 GHz) 100-W, 45-dB gain SPCA prototype. We also discuss future X-band (8.4 GHz), Ka-band (32 GHz), and W-band (94 GHz) SPCA designs for both radar and communications applications.

  6. Portable musical instrument amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Christian, David E. (Danbury, CT)

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  7. 2.45 GHz Class E Power Amplifier for a Transmitter Combining LINC and EER

    Directory of Open Access Journals (Sweden)

    M. Dirix

    2009-01-01

    Full Text Available A 10 W class-E RF power amplifier (PA is designed and fabricated using a Cree GaN HEMT. The proposed PA uses an innovative input circuit to optimize band with. At 2.45 GHz the PA achieves a PAE of 60 % at an outputpower of 40 dBm. The resulting amplifier is simulated and constructed using a transmissionline topology. Two of these amplifiers are fabricated on a single board for outphasing application. Their suitability for outphasing application and supply modulation is investigated. 

  8. GaN three dimensional nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriev, V.; Irvin, K. [Cree Research, Inc., Durham, NC (United States); Zubrilov, A.; Tsvetkov, D.; Nikolaev, V. [Cree Research EED, St. Petersburg (Russian Federation); Jakobson, M.; Nelson, D.; Sitnikova, A. [A.F. Ioffe Inst., St. Petersburg (Russian Federation)

    1996-11-01

    The authors report on the growth and characterization of three dimensional nanoscale structures of GaN. GaN dots were grown by metal organic chemical vapor deposition (MOCVD) on 6H-SiC substrates. The actual size of the dots measured by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) ranged from {approximately}20 nm to more than 2 {micro}m. The average dot density ranged from 10{sup 7} to 10{sup 9} cm{sup {minus}2}. The single crystal structure of the dots was verified by reflectance high energy electron diffraction (HEED) and TEM. Cathodoluminescence (CL) and photoluminescence (PL) of the dots were studied at various temperatures and excitation levels. The PL and CL edge peak for the GaN dots exhibited a blue shift as compared with edge peak position for continuous GaN layers grown on SiC.

  9. Coherent resonant Ka-band photonic microwave receiver

    CERN Document Server

    Ilchenko, Vladimir S; Savchenkov, Anatoliy A; Seidel, David; Matsko, Andrey B; Maleki, Lute

    2008-01-01

    We propose theoretically and demonstrate experimentally a coherent microwave photonic receiver operating at 35 GHz carrier frequency. The device is based on a lithium niobate or lithium tantalate optical whispering gallery mode resonator coupled to a microwave strip line resonator. Microwave local oscillator is fed into the microwave resonator along with the microwave signal. We show that the sensitivity of this receiver significantly exceeds the sensitivity of the incoherent quadratic receiver based on the same technology. The coherent receiver can possess a dynamic range in excess of 100 dB in 5 MHz band if a low noise laser is utilized.

  10. Weather Forecasting for Ka-band Operations: Initial Study Results

    Science.gov (United States)

    Morabito, D.; Wu, L.; Slobin, S.

    2016-08-01

    As lower frequency bands (e.g., 2.3 GHz and 8.4 GHz) have become oversubscribed during the past several decades, NASA has become interested in using higher frequency bands (e.g., 26 GHz and 32 GHz) for telemetry, thus making use of the available wider bandwidth. However, these bands are more susceptible to atmospheric degradation. Currently, flight projects tend to be conservative in preparing their communications links by using worst-case or conservative assumptions. Such assumptions result in nonoptimum data return. We explore the use of weather forecasting for Goldstone and Madrid for different weather condition scenarios to determine more optimal values of atmospheric attenuation and atmospheric noise temperature for use in telecommunication link design. We find that the use of weather forecasting can provide up to 2 dB or more of increased data return when more favorable conditions are forecast. Future plans involve further developing the technique for operational scenarios with interested flight projects.

  11. High-Power Ka-Band Window and Resonant Ring

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  12. Miniature Ka-band Automated Swath Mapper (KASM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal discusses the development and demonstration of a swath-based airborne instrument suite intended as a calibration and validation with relevance to the...

  13. Frequency-Agile Monolithic Ka-Band Filter

    Science.gov (United States)

    2012-10-18

    Watts, (v) low power consumption in the device and control circuit, (vi) fast switching speed, and (vii) temperature stability. The Phase II...nGimat 5. FABRICATION/TESTING nGimat/GT 6. OPTIMIZE FERRITE FILMS nGimat 7. FERRITE FILTERS nGimat/GT 8...Optimize Ferrite Films 60% 7. Ferrite Filters 35% 8. Prototyping 90% 9. Scale-up 80% 10. Customer Relations 70% 11. Report 100%

  14. Technology Issues for Mobile Ka-band Communications

    Science.gov (United States)

    Satorius, E.; Jedrey, T.; Davarian, F.; Divsalar, D.

    1993-01-01

    The key to success of any future telecommunications System is its ability to provide many users with a diversity of services in a cost-effective manner. An important consideration is system capacity which is requred to suport a large pool of users and their varied demands.

  15. Ka-Band Reliability Improvement. Part I. Volume III. Ka-Band SATCOM Set Analysis. Appendix C

    Science.gov (United States)

    1978-09-01

    SECURIT L S1 ICATION OF THIS PAGE flWbon flati Frtir-d NO ADDRESS ( IBFORE COLEING FRORMTTS 2. OW ACIESIOr REA E WO’S CAT MBER IS DISTA RII BITA T Y...wYwI 4 - # .1. z I op W 1 0 . . . ..a, I 𔃾*1 4l I c, . 4g c co n . ......... %%C C CoCs. 4 3’. 1 .I4 ." . . . ., 11 *1 Ir %, I -’ulx - I. . .,Z. 4 1. r

  16. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  17. Synthetic Strategies and Applications of GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Guoquan Suo

    2014-01-01

    Full Text Available GaN is an important III-V semiconductor material with a direct band gap of 3.4 eV at 300 K. The wide direct band gap makes GaN an attractive material for various applications. GaN nanowires have demonstrated significant potential as fundamental building blocks for nanoelectronic and nanophotonic devices and also offer substantial promise for integrated nanosystems. In this paper, we provide a comprehensive review on the general synthetic strategies, characterizations, and applications of GaN nanowires. We first summarize several growth techniques of GaN nanowires. Subsequently, we discuss mechanisms involved to generate GaN nanowires from different synthetic schemes and conditions. Then we review some characterization methods of GaN nanowires. Finally, several kinds of main applications of GaN nanowires are discussed.

  18. GaN Microwave DC-DC Converters

    Science.gov (United States)

    Ramos Franco, Ignacio

    Increasing the operating frequency of switching converters can have a direct impact in the miniaturization and integration of power converters. The size of energy-storage passive components and the difficulty to integrate them with the rest of the circuitry is a major challenge in the development of a fully integrated power supply on a chip. The work presented in this thesis attempts to address some of the difficulties encountered in the design of high-frequency converters by applying concepts and techniques usually used in the design of high-efficiency power amplifiers and high-efficiency rectifiers at microwave frequencies. The main focus is in the analysis, design, and characterization of dc-dc converters operating at microwave frequencies in the low gigahertz range. The concept of PA-rectifier duality, where a high-efficiency power amplifier operates as a high-efficiency rectifier is investigated through non-linear simulations and experimentally validated. Additionally, the concept of a self-synchronous rectifier, where a transistor rectifier operates synchronously without the need of a RF source or driver is demonstrated. A theoretical analysis of a class-E self-synchronous rectifier is presented and validated through non-linear simulations and experiments. Two GaN class-E2 dc-dc converters operating at a switching frequency of 1 and 1.2 GHz are demonstrated. The converters achieve 80 % and 75 % dc-dc efficiency respectively and are among the highest-frequency and highest-efficiency reported in the literature. The application of the concepts established in the analysis of a self-synchronous rectifier to a power amplifier culminated in the development of an oscillating, self-synchronous class-E 2 dc-dc converter. Finally, a proof-of-concept fully integrated GaN MMIC class-E 2 dc-dc converter switching at 4.6 GHz is demonstrated for the first time to the best of our knowledge. The 3.8 mm x 2.6 mm chip contains distributed inductors and does not require any

  19. Wireless Josephson amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  20. Stress distribution of GaN layer grown on micro-pillar patterned GaN templates

    Science.gov (United States)

    Nagarajan, S.; Svensk, O.; Ali, M.; Naresh-Kumar, G.; Trager-Cowan, C.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.

    2013-07-01

    High-resolution Raman mapping of the stress distribution in an etched GaN micro-pillar template and a 5 μm thick GaN layer grown on a micro-pillar patterned GaN template is investigated. Raman mapping of the E2 (high) phonon shows differences in stress between the coalescing boundary, the top surface of the pillar region and around the GaN micro-pillar. Increased compressive stress is observed at the coalescing boundary of two adjacent GaN micro-pillars, when compared to the laterally grown GaN regions. The electron channeling contrast image reveals the reduction of threading dislocation density in the GaN layer grown on the micro-pillar patterned GaN template.

  1. Theoretical study of gallium nitride molecules, GaN2 and GaN4.

    Science.gov (United States)

    Tzeli, Demeter; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D

    2008-09-18

    The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.

  2. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...

  3. Auto-Zero Differential Amplifier

    Science.gov (United States)

    Quilligan, Gerard T. (Inventor); Aslam, Shahid (Inventor)

    2017-01-01

    An autozero amplifier may include a window comparator network to monitor an output offset of a differential amplifier. The autozero amplifier may also include an integrator to receive a signal from a latched window comparator network, and send an adjustment signal back to the differential amplifier to reduce an offset of the differential amplifier.

  4. Optoisolators simplify amplifier design

    Science.gov (United States)

    Ting, Joseph Wee

    2007-09-01

    Simplicity and low parts count are key virtues to this high voltage amplifier. Optoisolators replace complex high voltage transistor biasing schemes. This amplifier employs only 2 optoisolators, 16 high voltage mosfets transistors, 2 low voltage ones, 6 linear IC's and a score of passive components. Yet it can amplify opamp signals to 5 kV peak-to-peak from DC to sine waves up to 20 kHz. Resistor feedback guarantees the fidelity of the signal. It can source and sink 10 mA of output current. This amplifier was conceived to power ion traps for biological whole cell mass measurements. It is a versatile tool for a variety of applications.

  5. Growth and characterisation of GaN

    CERN Document Server

    Li, T

    2002-01-01

    This thesis describes mainly the studies on growth mechanism of GaN in UHV-MOVPE process, and structural and optical properties of As-doped GaN films grown by PA-MBE. In a novel Thomas Swan growth chamber, we have grown GaN films on Si substrates using TEGa, plasma nitrogen and ammonia. Using a combination of in-situ optical reflectivity and mass spectrometry, we have investigated the parameters controlling the growth process of UHV-MOVPE. In particular we have used sup 1 sup 5 N in order to distinguish gas phase species containing N from those associated purely with metal-organics. We found the surface pyrolysis of TEGa is the rate limiting step, which is similar to GaAs grown by CBE. We also identify the parasitic reactions costing the active nitrogen from plasma, which in turn limits the growth rate. Using Philips X' pert MRD, we have investigated the structural properties of As-doped GaN epitaxial films on sapphire grown by PA-MBE including phase, lattice parameters and mosacity. We have also studied the ...

  6. Charge-sensitive amplifier

    Directory of Open Access Journals (Sweden)

    Startsev V. I.

    2008-02-01

    Full Text Available The authors consider design and circuit design techniques of reduction of the influence of the pyroelectric effect on operation of the charge sensitive amplifiers. The presented experimental results confirm the validity of the measures taken to reduce the impact of pyroelectric currents. Pyroelectric currents are caused by the influence of the temperature gradient on the piezoelectric sensor and on the output voltage of charge sensitive amplifiers.

  7. RF Power Amplifier Analysis

    Directory of Open Access Journals (Sweden)

    M. Lokay

    1993-04-01

    Full Text Available The special program is presented for the demonstration of RF power transistor amplifiers for the purposes of the high-school education in courses of radio transmitters. The program is written in Turbo Pascal 6. 0 and enables to study the waveforms in selected points of the amplifier and to draw the trajectories of the working point in a plot of output transistor characteristics.

  8. GaN Micromechanical Resonators with Meshed Metal Bottom Electrode

    Directory of Open Access Journals (Sweden)

    Azadeh Ansari

    2015-03-01

    Full Text Available This work describes a novel architecture to realize high-performance gallium nitride (GaN bulk acoustic wave (BAW resonators. The method is based on the growth of a thick GaN layer on a metal electrode grid. The fabrication process starts with the growth of a thin GaN buffer layer on a Si (111 substrate. The GaN buffer layer is patterned and trenches are made and refilled with sputtered tungsten (W/silicon dioxide (SiO2 forming passivated metal electrode grids. GaN is then regrown, nucleating from the exposed GaN seed layer and coalescing to form a thick GaN device layer. A metal electrode can be deposited and patterned on top of the GaN layer. This method enables vertical piezoelectric actuation of the GaN layer using its largest piezoelectric coefficient (d33 for thickness-mode resonance. Having a bottom electrode also results in a higher coupling coefficient, useful for the implementation of acoustic filters. Growth of GaN on Si enables releasing the device from the frontside using isotropic xenon difluoride (XeF2 etch and therefore eliminating the need for backside lithography and etching.

  9. GaN membrane MSM ultraviolet photodetectors

    Science.gov (United States)

    Muller, A.; Konstantinidis, G.; Kostopoulos, A.; Dragoman, M.; Neculoiu, D.; Androulidaki, M.; Kayambaki, M.; Vasilache, D.; Buiculescu, C.; Petrini, I.

    2006-12-01

    GaN exhibits unique physical properties, which make this material very attractive for wide range of applications and among them ultraviolet detection. For the first time a MSM type UV photodetector structure was manufactured on a 2.2 μm. thick GaN membrane obtained using micromachining techniques. The low unintentionally doped GaN layer structure was grown by MOCVD on high resistivity (ρ>10kΩcm) oriented silicon wafers, 500μm thick. The epitaxially grown layers include a thin AlN layer in order to reduce the stress in the GaN layer and avoid cracking. Conventional contact lithography, e-gun Ni/Au (10nm /200nm) evaporation and lift-off techniques were used to define the interdigitated Schottky metalization on the top of the wafer. Ten digits with a width of 1μm and a length of 100μm were defined for each electrode. The distance between the digits was also 1μm. After the backside lapping of the wafer to a thickness of approximately 150μm, a 400nm thick Al layer was patterned and deposited on the backside, to be used as mask for the selective reactive ion etching of silicon. The backside mask, for the membrane formation, was patterned using double side alignment techniques and silicon was etched down to the 2.2μm thin GaN layer using SF 6 plasma. A very low dark current (30ρA at 3V) was obtained. Optical responsivity measurements were performed at 1.5V. A maximum responsivity of 18mA/W was obtained at a wavelength of 370nm. This value is very good and can be further improved using transparent contacts for the interdigitated structure.

  10. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  11. GaN Nanowire Arrays for High-Output Nanogenerators

    KAUST Repository

    Huang, Chi-Te

    2010-04-07

    Three-fold symmetrically distributed GaN nanowire (NW) arrays have been epitaxially grown on GaN/sapphire substrates. The GaN NW possesses a triangular cross section enclosed by (0001), (2112), and (2112) planes, and the angle between the GaN NW and the substrate surface is ∼62°. The GaN NW arrays produce negative output voltage pulses when scanned by a conductive atomic force microscope in contact mode. The average of piezoelectric output voltage was about -20 mV, while 5-10% of the NWs had piezoelectric output voltages exceeding -(0.15-0.35) V. The GaN NW arrays are highly stable and highly tolerate to moisture in the atmosphere. The GaN NW arrays demonstrate an outstanding potential to be utilized for piezoelectric energy generation with a performance probably better than that of ZnO NWs. © 2010 American Chemical Society.

  12. Gallium Nitride (GaN) High Power Electronics (FY11)

    Science.gov (United States)

    2012-01-01

    for HPE GaN high electron mobility transistors ( HEMTs ) compared to SiC metal-oxide-semiconductor field effect transistors (MOSFETs). Although a few...Figure 16. Asymmetric rocking curve for an HVPE film grown on an HVPE substrate. ............19 Figure 17. Schematic of a GaN /AlGaN HEMT structure grown...frequency (RF) HEMTs . These considerable investments can be leveraged for GaN HPE. Some people are concerned about the relative scarcity of gallium

  13. Temperature Dependence of GaN HEMT Small Signal Parameters

    Science.gov (United States)

    2011-11-01

    original work is properly cited. This study presents the temperature dependence of small signal parameters of GaN /SiC HEMTs across the 0–150◦C range...the performance of GaN /SiC device, two state-of-the-art AlGaN/ GaN HEMT devices were characterized at −25, 25, 75, and 125◦C base plate (on-wafer...number. 1. REPORT DATE NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Temperature Dependence of GaN HEMT

  14. Amphoteric arsenic in GaN

    CERN Document Server

    Wahl, U; Araújo, J P; Rita, E; Soares, JC

    2007-01-01

    We have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive $^{73}$As. We give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As$\\scriptstyle_{Ga}\\,$ " anti-sites ” are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called “ miscibility gap ” in ternary GaAs$\\scriptstyle_{1-x}$N$\\scriptstyle_{x}$ compounds, which cannot be grown with a single phase for values of $x$ in the range 0.1<${x}$< 0.99.

  15. Influence of growth pressure of a GaN buffer layer on the properties of MOCVD GaN

    Institute of Scientific and Technical Information of China (English)

    CHEN; Jun(陈俊); ZHANG; Shuming(张书明); ZHANG; Baoshun(张宝顺); ZHU; Jianjun(朱建军); FENG; Gan(冯淦); DUAN; Lihong(段俐宏); WANG; Yutian(王玉田); YANG; Hui(杨辉); ZHENG; Wenchen(郑文琛)

    2003-01-01

    The influence of growth pressure of GaN buffer layer on the properties of MOCVD GaN on α-Al2O3 has been investigated with the aid of a home-made in situ laser reflectometry measurement system. The results obtained with in situ measurements and scanning electron microscope show that with the increase in deposition pressure of buffer layer, the nuclei increase in size, which roughens the surface, and delays the coalescence of GaN nuclei. The optical and crystalline quality of GaN epilayer was improved when buffer layer was deposited at high pressure.

  16. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  17. Fourier plane image amplifier

    Science.gov (United States)

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  18. Growth of Strain Free GaN Layers on (0001) Oriented Sapphire by Using Quasi-Porous GaN Template

    Institute of Scientific and Technical Information of China (English)

    XIE Xin-Jian; CHEN Jia-Rong; CAO Xian-Cun; ZHONG Fei; QIU Kai; LIU Gui-Feng; YIN Zhi-Jun; WANG Yu-Qi; LI Xin-Hua; JI Chang-Jian; HAN Qi-Fen

    2006-01-01

    We report the reduced-strain gallium-nitride (GaN) epitaxial growth on (0001) oriented sapphire by using quasi-porous GaN template. A GaN film in thickness of about 1μm was initially grown on a (0001) sapphire substrate by molecular beam epitaxy. Then it was dealt by putting, into 45% NaOH solution at 100°C for Wmin. By this process a quasi-porous GaN Rim was formed. An epitaxial GaN layer was grown on the porous GaN layer at 1050°C in the hydride vapour phase epitaxy reactor. The epitaxial layer grown on the porous GaN is found to have no cracks on the surface. That is much improved from many cracks on the surface of the GaN epitaxial layer grown on the sapphire as the same as on GaN buffer directly.

  19. Preparation and Characterization of GaN Nanowires

    Institute of Scientific and Technical Information of China (English)

    薛成山; 杨莺歌; 马洪磊; 庄惠照; 马瑾

    2003-01-01

    GaN Nanowires were prepared by the post-nitridation technique. The morphology and structure of GaN nanowires are investigated by transmission-electron microscopy and scanning electron microscopy. A strong blue photoluminescence is observed for room-temperature measurement, which attributes to electron transition from DX centre to valence band.

  20. RF power amplifier: pushing the boundaries of performance versus cost

    Science.gov (United States)

    De Souza, M. M.; Chevaux, N.; Rasheduzzaman, M.

    2012-10-01

    The Radio Frequency Power Amplifier lies at the heart of all modern day communication systems ranging from the cellular infrastructure market to broadcast, radar, medical, automotive and military to name a few. Transmission systems not only require substantial power at high frequencies, but they are also one of the most demanding of semiconductor applications on account of their requirements for efficiency and linearity, which inherently introduces a tradeoff during design. Three types of device technologies have been in typical use for RF power amplification: the VDMOS (at frequencies upto 1 GHz), the LDMOS (at frequencies upto 3.5 GHz), and more recently the Gallium Nitride HEMT, which extends the frequency range upto 5-7 GHz. As an emerging technology, GaN has huge potential, but its widespread use is still currently limited by the level of experience, absence of reliable device models and prices which are roughly (6-10 times that of silicon). This overview highlights the distinct features of the RF Power devices and touches upon the performance metrics of the above technologies (in silicon and GaN).

  1. Chopper amplifier circuit with CMOS switches and amplifier FETs

    NARCIS (Netherlands)

    Huijsing, J.H.; Bakker, A.

    1997-01-01

    Abstract of NL 1001231 (C2) The input voltage is fed to the inputs of an operational amplifier via a chopping reversal switchThe CMOS operational amplifier has a current source and a current mirror. The operational amplifier output is fed to an output circuit. The possible offset voltage is supp

  2. Amplifying genetic logic gates.

    Science.gov (United States)

    Bonnet, Jerome; Yin, Peter; Ortiz, Monica E; Subsoontorn, Pakpoom; Endy, Drew

    2013-05-03

    Organisms must process information encoded via developmental and environmental signals to survive and reproduce. Researchers have also engineered synthetic genetic logic to realize simpler, independent control of biological processes. We developed a three-terminal device architecture, termed the transcriptor, that uses bacteriophage serine integrases to control the flow of RNA polymerase along DNA. Integrase-mediated inversion or deletion of DNA encoding transcription terminators or a promoter modulates transcription rates. We realized permanent amplifying AND, NAND, OR, XOR, NOR, and XNOR gates actuated across common control signal ranges and sequential logic supporting autonomous cell-cell communication of DNA encoding distinct logic-gate states. The single-layer digital logic architecture developed here enables engineering of amplifying logic gates to control transcription rates within and across diverse organisms.

  3. Optimization of plasma amplifiers

    Science.gov (United States)

    Sadler, James D.; Trines, Raoul M. Â. G. Â. M.; Tabak, Max; Haberberger, Dan; Froula, Dustin H.; Davies, Andrew S.; Bucht, Sara; Silva, Luís O.; Alves, E. Paulo; Fiúza, Frederico; Ceurvorst, Luke; Ratan, Naren; Kasim, Muhammad F.; Bingham, Robert; Norreys, Peter A.

    2017-05-01

    Plasma amplifiers offer a route to side-step limitations on chirped pulse amplification and generate laser pulses at the power frontier. They compress long pulses by transferring energy to a shorter pulse via the Raman or Brillouin instabilities. We present an extensive kinetic numerical study of the three-dimensional parameter space for the Raman case. Further particle-in-cell simulations find the optimal seed pulse parameters for experimentally relevant constraints. The high-efficiency self-similar behavior is observed only for seeds shorter than the linear Raman growth time. A test case similar to an upcoming experiment at the Laboratory for Laser Energetics is found to maintain good transverse coherence and high-energy efficiency. Effective compression of a 10 kJ , nanosecond-long driver pulse is also demonstrated in a 15-cm-long amplifier.

  4. STABILIZED TRANSISTOR AMPLIFIER

    Science.gov (United States)

    Noe, J.B.

    1963-05-01

    A temperature stabilized transistor amplifier having a pair of transistors coupled in cascade relation that are capable of providing amplification through a temperature range of - 100 un. Concent 85% F to 400 un. Concent 85% F described. The stabilization of the amplifier is attained by coupling a feedback signal taken from the emitter of second transistor at a junction between two serially arranged biasing resistances in the circuit of the emitter of the second transistor to the base of the first transistor. Thus, a change in the emitter current of the second transistor is automatically corrected by the feedback adjustment of the base-emitter potential of the first transistor and by a corresponding change in the base-emitter potential of the second transistor. (AEC)

  5. Silicon—a new substrate for GaN growth

    Indian Academy of Sciences (India)

    S Pal; C Jacob

    2004-12-01

    Generally, GaN-based devices are grown on silicon carbide or sapphire substrates. But these substrates are costly and insulating in nature and also are not available in large diameter. Silicon can meet the requirements for a low cost and conducting substrate and will enable integration of optoelectronic or high power electronic devices with Si based electronics. But the main problem that hinders the rapid development of GaN devices based on silicon is the thermal mismatch of GaN and Si, which generates cracks. In 1998, the first MBE grown GaN based LED on Si was made and now the quality of material grown on silicon is comparable to that on sapphire substrate. It is only a question of time before Si based GaN devices appear on the market. This article is a review of the latest developments in GaN based devices on silicon.

  6. Synthesis of GaN films on porous silicon substrates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel and simple method was employed to synthesize GaN films on porous silicon (PS) substrates. GaN films were obtained through the reaction between NH3 and Ga2O3 films deposited on the substrates with magnetron sputtering.Since GaN and PS are all good materials for luminescence, it is expected to obtain some new properties from GaN on PS.The samples were analyzed with X-ray diffraction (XRD) to identify crystalline structure. Fourier transmit infrared (FTIR)spectrum was used to analyze the chemical state of the samples. The films were observed with scanning electron microscopy (SEM) and were found to consist of many big crystal grains. Photoluminescence (PL) spectrum was used to illuminate the optical property of the GaN films.

  7. Inverse class-f power amplifier using slot resonators as a harmonic filter

    Directory of Open Access Journals (Sweden)

    Rassokhina Yu. V.

    2014-06-01

    Full Text Available The authors proposed and experimentally verified the power amplifier circuit of inverse class F (F–1 based on GaN transistor NPTB00004, operating at 1,7 GHz. The novelty of this scheme is the application of a three-layer structure based on slot rectangular shaped resonators in the ground plane of the microstrip transmission line as a filter of higher harmonics. To control the levels of the second and third harmonics in the output signal spectrum and simultaneously to match the 50 ohm load at the operating frequency of the amplifier, a planar periodic structure is used, consisting of two slot resonators of different lengths. Power added efficiency for experimental model of the amplifier is 60% at an output power of 3.9 W and a gain factor of 13 dB.

  8. Principal modes in fiber amplifiers

    CERN Document Server

    Fridman, Moti; Dubinskii, Mark; Friesem, Asher A; Davidson, Nir

    2010-01-01

    The dynamics of the state of polarization in single mode and multimode fiber amplifiers are presented. The experimental results reveal that although the state of polarizations at the output can vary over a large range when changing the temperatures of the fiber amplifiers, the variations are significantly reduced when resorting to the principal states of polarization in single mode fiber amplifiers and principal modes in multimode fiber amplifiers.

  9. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, B. S. [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India); Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Singh, A.; Tyagi, P. K. [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Tanwar, S. [Rajasthan Technical University, Rawatbhata Road, Kota 324010 (India); Kumar, M. Senthil; Kushvaha, S. S., E-mail: kushvahas@nplindia.org [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India)

    2016-04-13

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  10. Multiple pass laser amplifier system

    Science.gov (United States)

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  11. Radio Frequency Solid State Amplifiers

    CERN Document Server

    Jacob, J

    2015-01-01

    Solid state amplifiers are being increasingly used instead of electronic vacuum tubes to feed accelerating cavities with radio frequency power in the 100 kW range. Power is obtained from the combination of hundreds of transistor amplifier modules. This paper summarizes a one hour lecture on solid state amplifiers for accelerator applications.

  12. Polarization effect in parametric amplifier

    Institute of Scientific and Technical Information of China (English)

    Junhe Zhou; Jianping Chen; Xinwan Li; Guiling Wu; Yiping Wang

    2005-01-01

    @@ Polarization effect in parametric amplifiers is studied. Coupled equations are derived from the basic propagation equations and numerical solutions are given for both one-wavelength-pump and two-wavelengthpump systems. Several parametric amplifiers driven by pumps at one wavelength and two wavelengths are analyzed and the polarization independent parametric amplifier is proposed.

  13. Improved-Bandwidth Transimpedance Amplifier

    Science.gov (United States)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  14. Broadband 0.25-um Gallium Nitride (GaN) Power Amplifier Designs

    Science.gov (United States)

    2017-08-14

    Ohm PORT P=1 Z=50 Ohm RP=87.5ohm/mm...CP=-0.31pF/mm For 1.75mm, RP=50ohms, CP=0.54pf CP = 0.31 * size size=1.75 RP = 87.5 / size CAP ID=C1 C=CP1 pF RES ID=R1 R=RP Ohm IND ID=L1 L=LP1 nH CAP...ID=C2 C=Cser2 pF IND ID=L2 L=Lser2 nH IND ID=L3 L=LP1 nH CAP ID=C3 C=CP1 pF PORT P=1 Z=50 Ohm PORT P=2 Z=50 Ohm size=1.75 RP = 87.5 / size CP =

  15. X-Band GaN Power Amplifiers for Long Range Space RF Telecommunications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The future capabilities of sensors and instrumentation deployed in space will continue to increase, resulting in increasing amounts of collected data. To reach these...

  16. GaN: Defect and Device Issues

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  17. Electronic amplifiers for automatic compensators

    CERN Document Server

    Polonnikov, D Ye

    1965-01-01

    Electronic Amplifiers for Automatic Compensators presents the design and operation of electronic amplifiers for use in automatic control and measuring systems. This book is composed of eight chapters that consider the problems of constructing input and output circuits of amplifiers, suppression of interference and ensuring high sensitivity.This work begins with a survey of the operating principles of electronic amplifiers in automatic compensator systems. The succeeding chapters deal with circuit selection and the calculation and determination of the principal characteristics of amplifiers, as

  18. Simplified design of IC amplifiers

    CERN Document Server

    Lenk, John

    1996-01-01

    Simplified Design of IC Amplifiers has something for everyone involved in electronics. No matter what skill level, this book shows how to design and experiment with IC amplifiers. For experimenters, students, and serious hobbyists, this book provides sufficient information to design and build IC amplifier circuits from 'scratch'. For working engineers who design amplifier circuits or select IC amplifiers, the book provides a variety of circuit configurations to make designing easier.Provides basics for all phases of practical design.Covers the most popular forms for amplif

  19. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  20. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  1. REGENERATIVE TRANSISTOR AMPLIFIER

    Science.gov (United States)

    Kabell, L.J.

    1958-11-25

    Electrical circults for use in computers and the like are described. particularly a regenerative bistable transistor amplifler which is iurned on by a clock signal when an information signal permits and is turned off by the clock signal. The amplifier porforms the above function with reduced power requirements for the clock signal and circuit operation. The power requirements are reduced in one way by employing transformer coupling which increases the collector circuit efficiency by eliminating the loss of power in the collector load resistor.

  2. III-nitride grown on freestanding GaN nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongjin; Zhu, Hongbo [Institute of Communication Technology, Nanjing University of Posts and Telecommunications, Nanjing, Jiang-Su 210003 (China); Hu, Fangren; Hane, Kazuhiro [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2012-03-15

    We report here the epitaxial growth of III-nitride on the freestanding GaN nanostructures by molecular beam epitaxy growth. Various GaN nanostructures are defined by electron beam lithography and realized on GaN-on-silicon substrate by fast atom beam etching. Silicon substrate beneath GaN nanostructures is removed from the backside to form the freestanding GaN slab, and the epitaxial growth of III-nitride by MBE is performed on the prepared GaN template. The selective growth takes place with the assistance of GaN nanostructures and generates hexagonal III-nitride pyramids. Thin epitaxial structures, depending on the shape and the size of GaN nanostructure, can produce the promising optical performance. This work opens the way to combine silicon micromachining with the epitaxial growth of III-nitride by MBE on GaN-on-silicon substrate for further integrated optics (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Growth and Microstructure of GaN on (111) Si

    Science.gov (United States)

    Follstaedt, D. M.; Han, J.; Provencio, P.; Fleming, J.

    1998-10-01

    GaN grown on (111) Si by MOCVD was examined by TEM. This structure is of interest for possible integration of short-wavelength optical emission with Si microelectronics. A rotating disc reactor with TMGa, TMAl and ammonia precursors was used to first grow an 30 nm-thick AlN buffer on the Si at 1080^oC, followed by GaN at 1060^oC. The resulting 2 μm layer appeared smooth by in situ reflectance, but developed a high density of cracks when cooled to room temperature due to the difference in thermal expansions of GaN and Si. Between the cracks, cross-section and plan-view TEM identified the orientation as (0001)GaN parallel (111)Si, with [11-20]GaN parallel [1-10]Si. A high density of threading dislocations (4 to 8x10^9/cm^2) was found and determined to be 2/3 pure edge and 1/3 mixed (edge + screw) in character. A low density (10^8/cm^2) of nanotubes was also identified. This defect microstructure is much like that of GaN on sapphire. The thin AlN buffer was continuous and consists of 20 to 40 nm grains, with some exhibiting slight misorientations. A few dislocations threading the GaN layer could be traced to an interface between the AlN grains. The continuous thin layer indicates that the AlN buffer "wets" Si, whereas thin GaN layers are discontinuous on sapphire; 0.4 μm thickness of GaN is needed for a continuous layer.

  4. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  5. Investigation of deep levels in bulk GaN

    OpenAIRE

    2014-01-01

    The first gallium nitride (GaN) crystal was grown by hydride vapor phase epitaxy in 1969 by Maruska and Tietjen and since then, there has been an intensive development of the field, especially after the ground breaking discoveries concerning growth and p-type doping of GaN done by the 2014 year Nobel Laureates in Physics, Isamu Akasaki, Hiroshi Amano and Shuji Nakamura. GaN and its alloys with In and Al belong to a semiconductor group which is referred as the III-nitrides. It has outstanding ...

  6. Synthesis of Single Crystal GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Lining Fang

    2016-05-01

    Full Text Available The straight and curved gallium nitride (GaN nanowires were successfully synthesized by controlling the gallium/ nitrogen reactant ratio via a chemical vapour deposition method. The structure and morphology of nanowires were characterized by X-ray diffraction (XRD, transmission electronic microscopy (TEM, field emission scanning electron microscopy (FESEM, selected area electron diffraction (SAED and high resolution transmission electron microscopy (HRTEM. The straight and curved GaN nanowires are composed of wurtzite and a zinc blende structure, respectively. Photoluminescence (PL spectra of zinc blende GaN nanowires showed a strong UV emission band at 400 nm, indicating potential application in optoe‐ lectronic devices.

  7. GaN transistors for efficient power conversion

    CERN Document Server

    Lidow, Alex; de Rooij, Michael; Reusch, David

    2014-01-01

    The first edition of GaN Transistors for Efficient Power Conversion was self-published by EPC in 2012, and is currently the only other book to discuss GaN transistor technology and specific applications for the technology. More than 1,200 copies of the first edition have been sold through Amazon or distributed to selected university professors, students and potential customers, and a simplified Chinese translation is also available. The second edition has expanded emphasis on applications for GaN transistors and design considerations. This textbook provides technical and application-focused i

  8. Nanoscale electromechanical parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  9. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  10. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  11. Annealing of ion-implanted GaN

    CERN Document Server

    Burchard, A; Stötzler, A; Weissenborn, R; Deicher, M

    1999-01-01

    $^{111m}$Cd and $^{112}$Cd ions have been implanted into GaN. With photoluminescence spectroscopy and perturbed $\\gamma-\\gamma$-angular correlation spectroscopy (PAC) the reduction of implantation damage and the optical activation of the implants have been observed as a function of annealing temperature using different annealing methods. The use of N$_{2}$ or NH$_{3}$ atmosphere during annealing allows temperatures up to 1323k and 1373 K, respectively, but above 1200 K a strong loss of Cd from the GaN has been observed. Annealing GaN together with elementary Al forms a protective layer on the GaN surface allowing annealing temperatures up to 1570 K for 10 min. (11 refs).

  12. Application of Generative Adversarial Networks (GANs) to jet images

    CERN Document Server

    CERN. Geneva

    2017-01-01

    https://arxiv.org/abs/1701.05927 We provide a bridge between generative modeling in the Machine Learning community and simulated physical processes in High Energy Particle Physics by applying a novel Generative Adversarial Network (GAN) architecture to the production of jet images -- 2D representations of energy depositions from particles interacting with a calorimeter. We propose a simple architecture, the Location-Aware Generative Adversarial Network, that learns to produce realistic radiation patterns from simulated high energy particle collisions. The pixel intensities of GAN-generated images faithfully span over many orders of magnitude and exhibit the desired low-dimensional physical properties (i.e., jet mass, n-subjettiness, etc.). We shed light on limitations, and provide a novel empirical validation of image quality and validity of GAN-produced simulations of the natural world. This work provides a base for further explorations of GANs for use in faster simulation in High Energy Particle Physics.

  13. Thickness measurement of GaN epilayer using high resolution X-ray diffraction technique

    Institute of Scientific and Technical Information of China (English)

    冯淦; 朱建军; 沈晓明; 张宝顺; 赵德刚; 王玉田; 杨辉; 梁骏吾

    2003-01-01

    In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 μm. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.

  14. GaN nanorods coated with pure BN

    Science.gov (United States)

    Han, Wei-Qiang; Zettl, A.

    2002-12-01

    We report a method to efficiently synthesize gallium nitride (GaN) nanorods coated with insulating boron nitride (BN) layers. The GaN core is crystalline (with either a cubic zincblende or hexagonal wurtzite structure) and has diameters ranging from 10 to 85 nm and lengths up to 60 μm. The outer encapsulating BN shells with typical thicknesses less than 5 nm extend fully over, and adhere well to, the entire nanorod surface.

  15. Effect of photocatalytic oxidation technology on GaN CMP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie, E-mail: jie-wang11@mails.tsinghua.edu.cn; Wang, Tongqing, E-mail: wtq@mail.tsinghua.edu.cn; Pan, Guoshun, E-mail: pangs@mail.tsinghua.edu.cn; Lu, Xinchun, E-mail: xclu@mail.tsinghua.edu.cn

    2016-01-15

    Graphical abstract: - Highlights: • Photocatalytic oxidation technology was introduced to GaN CMP for the first time and proves to be more efficient than before. • XPS analysis reveals the planarization process by different N-type semiconductor particles. • Analyzing the effect of pH on photocatalytic oxidation in GaN CMP. • Proposing the photocatalytic oxidation model to reveal the removal mechanism. - Abstract: GaN is so hard and so chemically inert that it is difficult to obtain a high material removal rate (MRR) in the chemical mechanical polishing (CMP) process. This paper discusses the application of photocatalytic oxidation technology in GaN planarization. Three N-type semiconductor particles (TiO{sub 2}, SnO{sub 2}, and Fe{sub 2}O{sub 3}) are used as catalysts and added to the H{sub 2}O{sub 2}–SiO{sub 2}-based slurry. By optical excitation, highly reactive photoinduced holes are produced on the surface of the particles, which can oxidize OH{sup −} and H{sub 2}O absorbed on the surface of the catalysts; therefore, more OH* will be generated. As a result, GaN MRRs in an H{sub 2}O{sub 2}–SiO{sub 2}-based polishing system combined with catalysts are improved significantly, especially when using TiO{sub 2}, the MRR of which is 122 nm/h. The X-ray photoelectron spectroscopy (XPS) analysis shows the variation trend of chemical composition on the GaN surface after polishing, revealing the planarization process. Besides, the effect of pH on photocatalytic oxidation combined with TiO{sub 2} is analyzed deeply. Furthermore, the physical model of GaN CMP combined with photocatalytic oxidation technology is proposed to describe the removal mechanism of GaN.

  16. Terahertz response of GaN thin films.

    Science.gov (United States)

    Tsai, Tsong-Ru; Chen, Shi-Jie; Chang, Chih-Fu; Hsu, Sheng-Hsien; Lin, Tai-Yuan; Chi, Cheng-Chung

    2006-05-29

    The indices of refraction, extinction constants and complex conductivities of the GaN film for frequencies ranging from 0.2 to 2.5 THz are obtained using THz time-domain spectroscopy. The results correspond well with the Kohlrausch stretched exponential model. Using the Kohlrausch model fit not only provides the mobility of the free carriers in the GaN film, but also estimates the relaxation time distribution function and average relaxation time.

  17. ARM MJO Investigation Experiment on Gan Island (AMIE-Gan) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Long, CL; Del Genio, A; Deng, M; Fu, X; Gustafson, W; Houze, R; Jakob, C; Jensen, M; Johnson, R; Liu, X; Luke, E; May, P; McFarlane, S; Minnis, P; Schumacher, C; Vogelmann, A; Wang, Y; Webster, P; Xie, S; Zhang, C

    2011-04-11

    The overarching campaign, which includes the ARM Mobile Facility 2 (AMF2) deployment in conjunction with the Dynamics of the Madden-Julian Oscillation (DYNAMO) and the Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011) campaigns, is designed to test several current hypotheses regarding the mechanisms responsible for Madden-Julian Oscillation (MJO) initiation and propagation in the Indian Ocean area. The synergy between the proposed AMF2 deployment with DYNAMO/CINDY2011, and the corresponding funded experiment on Manus, combine for an overarching ARM MJO Investigation Experiment (AMIE) with two components: AMF2 on Gan Island in the Indian Ocean (AMIE-Gan), where the MJO initiates and starts its eastward propagation; and the ARM Manus site (AMIE-Manus), which is in the general area where the MJO usually starts to weaken in climate models. AMIE-Gan will provide measurements of particular interest to Atmospheric System Research (ASR) researchers relevant to improving the representation of MJO initiation in climate models. The framework of DYNAMO/CINDY2011 includes two proposed island-based sites and two ship-based locations forming a square pattern with sonde profiles and scanning precipitation and cloud radars at both island and ship sites. These data will be used to produce a Variational Analysis data set coinciding with the one produced for AMIE-Manus. The synergy between AMIE-Manus and AMIE-Gan will allow studies of the initiation, propagation, and evolution of the convective cloud population within the framework of the MJO. As with AMIE-Manus, AMIE-Gan/DYNAMO also includes a significant modeling component geared toward improving the representation of MJO initiation and propagation in climate and forecast models. This campaign involves the deployment of the second, marine-capable, AMF; all of the included measurement systems; and especially the scanning and vertically pointing radars. The campaign will include sonde

  18. Study of GaN adsorption on the Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: tolwwt@163.com [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); Chen Junfang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); Wang Teng [School of Computer, South China Normal University, 510006 Guangzhou (China)

    2009-10-15

    The adsorption energy, the band structures and DOS (density of states) of GaN on surface of Si(1 0 0) and Si(1 1 1) are calculated by the first-principle using plane-wave pseudo-potentials method based on the density functional theory in order to know the adsorption between the surface of Si and GaN. The calculation results show that GaN is easier adsorbed on the surface of Si(1 0 0) than the surface of Si(1 1 1) under the same experimental condition. There are strong charge distributions between N and Si atom. The bandgap of GaN on surface of Si(1 0 0) becomes a little narrower than that of pure GaN. On the other hand, GaN film is deposited on the surface of Si(1 0 0) by ECR-MOPECVD (electron cyclotron resonance-plasma enhanced chemical vapor deposition) at low temperature. For substrate of Si(1 1 1), no film is obtained under the same experimental condition.

  19. Void shape control in GaN re-grown on hexagonally patterned mask-less GaN

    Science.gov (United States)

    Ali, M.; Romanov, A. E.; Suihkonen, S.; Svensk, O.; Törmä, P. T.; Sopanen, M.; Lipsanen, H.; Odnoblyudov, M. A.; Bougrov, V. E.

    2011-01-01

    We present the results of GaN re-growth on hexagonally patterned GaN templates. Sapphire was used as the original substrate and the samples were grown by metalorganic vapor phase epitaxy (MOVPE). The re-growth on the patterned templates results in the formation of voids at the GaN/sapphire interface. Our extensive scanning electron microscopy (SEM)-based experimental investigations show that the void shape can be controlled from nearly vertical to fully inclined configurations. It was found that the initial hexagon hole diameter plays a key role in determining the final profile of the void sidewalls. X-ray diffraction analysis of the GaN layers indicates that the layers with inclined sidewall voids have an improved crystalline quality. Knowledge of the void configurations in the GaN layers and a possibility to control their shape can help in enhancing light extraction from the light emitting structures.

  20. Chaotic behaviors of operational amplifiers.

    Science.gov (United States)

    Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min

    2004-04-01

    We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.

  1. DLTS study of n-type GaN grown by MOCVD on GaN substrates

    Science.gov (United States)

    Tokuda, Y.; Matsuoka, Y.; Ueda, H.; Ishiguro, O.; Soejima, N.; Kachi, T.

    2006-10-01

    Electron traps in n-type GaN layers grown homoepitaxially by MOCVD on free-standing GaN substrates have been characterized using DLTS for vertical Schottky diodes. Two free-standing HVPE GaN substrates (A and B), obtained from two different sources, are used. The Si-doped GaN layers with the thickness of 5 μm are grown on an area of 0.9×0.9 cm 2 of substrate A and on an area of 1×1 cm 2 of substrate B. Two traps labeled B1 (Ec-0.23 eV) and B2 (Ec-0.58 eV) are observed with trap B2 dominant in GaN on both substrates. There exist no dislocation-related traps which have been previously observed in MOCVD GaN on sapphire. This might be correlated to the reduction in dislocation density due to the homoepitaxial growth. However, it is found that there is a large variation, more than an order of magnitude, in trap B2 concentration and that the B2 spatial distributions are different between the two substrates used.

  2. Critical Analysis Aspect of GaN HEMT Parasitic Elements and Its Effects on Power Performance of a SMPA

    Directory of Open Access Journals (Sweden)

    Nshu. Victor

    2014-09-01

    Full Text Available The study was conducted on the analysis of how the nonlinear behavior of the transistor affecting the drain efficiency could be minimized by integrating it in the output matching network of the power amplifier. In wireless communication, higher switching ability power amplifiers are a good choice for future advanced transmitters design. Minimizing all parasitic components is particularly very critical during the design of high-efficiency Switch-Mode Power Amplifiers (SMPA. To use the transistor in switching mode more efficiently, we analyzed some of the dominant parasitic components for better power performance of the transistor. Based on the proposed transistor model, a SMPA based on simplified class F architecture at 5.8 GHz using a Gallium Nitride High Electron Mobility Transistor (GaN HEMT with the maximum output power of 47 dBm and high performance values of the PAE of 53.9% at peak with the power gain of 12 dB was designed. Load pull technique is used to find out the best load impedance of the amplifier.

  3. GaN Bulk Growth and Epitaxy from Ca-Ga-N Solutions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal addresses the liquid phase epitaxy (LPE) of gallium nitride (GaN) films using nitrogen-enriched metal solutions. Growth of GaN from solutions...

  4. Demonstration of an RF front-end based on GaN HEMT technology

    Science.gov (United States)

    Ture, Erdin; Musser, Markus; Hülsmann, Axel; Quay, Rüdiger; Ambacher, Oliver

    2017-05-01

    The effectiveness of the developed front-end on blocking the communication link of a commercial drone vehicle has been demonstrated in this work. A jamming approach has been taken in a broadband fashion by using GaN HEMT technology. Equipped with a modulated-signal generator, a broadband power amplifier, and an omni-directional antenna, the proposed system is capable of producing jamming signals in a very wide frequency range between 0.1 - 3 GHz. The maximum RF output power of the amplifier module has been software-limited to 27 dBm (500 mW), complying to the legal spectral regulations of the 2.4 GHz ISM band. In order to test the proof of concept, a real-world scenario has been prepared in which a commercially-available quadcopter UAV is flown in a controlled environment while the jammer system has been placed in a distance of about 10 m from the drone. It has been proven that the drone of interest can be neutralized as soon as it falls within the range of coverage (˜3 m) which endorses the promising potential of the broadband jamming approach.

  5. Capacities of quantum amplifier channels

    Science.gov (United States)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  6. Small signal microwave amplifier design

    CERN Document Server

    Grosch, Theodore

    2000-01-01

    This book explains techniques and examples for designing stable amplifiers for high-frequency applications in which the signal is small and the amplifier circuit is linear. An in-depth discussion of linear network theory provides the foundation needed to develop actual designs. Examples throughout the book will show you how to apply the knowledge gained in each chapter leading to the complex design of low noise amplifiers. Many exercises at the end of each chapter will help students to practice their skills. The solutions to these design problems are available in an accompanying solutions book

  7. Thick Homoepitaxial GaN with Low Carrier Concentration for High Blocking Voltage

    Science.gov (United States)

    2010-01-01

    demonstrated that GaN Schottky diodes fabricated on freestanding GaN substrates with simple metal overlap edge termination show reverse recovery time...Prior to ramping up to the growth temperature for MOCVD deposition of GaN, the flows of palladium -diffused high purity hydrogen and ammonia were

  8. International Standardization Activities for Optical Amplifiers

    Institute of Scientific and Technical Information of China (English)

    Haruo Okamura

    2003-01-01

    International standardization activities for Optical Amplifiers at IECTC86 and ITU-T SG15 are reviewed. Current discussions include Optical Amplifier safety guideline, Reliability standard, Rest methods of Noise and PMD, Definitions of Raman amplifier parameters and OA classification.

  9. Tailoring GaN semiconductor surfaces with biomolecules.

    Science.gov (United States)

    Estephan, Elias; Larroque, Christian; Cuisinier, Frédéric J G; Bálint, Zoltán; Gergely, Csilla

    2008-07-24

    Functionalization of semiconductors constitutes a crucial step in using these materials for various electronic, photonic, biomedical, and sensing applications. Within the various possible approaches, selection of material-binding biomolecules from a random biological library, based on the natural recognition of proteins or peptides toward specific material, offers many advantages, most notably biocompatibility. Here we report on the selective functionalization of GaN, an important semiconductor that has found broad uses in the past decade due to its efficient electroluminescence and pronounced chemical stability. A 12-mer peptide ("GaN_probe") with specific recognition for GaN has evolved. The subtle interplay of mostly nonpolar hydrophobic and some polar amino acidic residues defines the high affinity adhesion properties of the peptide. The interaction forces between the peptide and GaN are quantified, and the hydrophobic domain of the GaN_probe is identified as primordial for the binding specificity. These nanosized binding blocks are further used for controlled placement of biotin-streptavidin complexes on the GaN surface. Thus, the controlled grow of a new, patterned inorganic-organic hybrid material is achieved. Tailoring of GaN by biological molecules can lead to a new class of nanostructured semiconductor-based devices.

  10. Macro-pyramid in GaN Film

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jing; YANG Zhi-Jian; XU Shi-Fa; ZHU Xing; ZHANG Guo-Yi

    2001-01-01

    A thin film of GaN with the thickness of 1.0μm was grown on α-Al2Oa substrate by metal organic chemical vapour disposition and then a thick GaN film with thickness of 12μm was grown in the halide vapour phase epitaxy system. Some macro-pyramids appeared on the surface of the sample. The macro-pyramids made the surfaceof the GaN film rough, which was harmful to the devices made by GaN materials. These defects changed the distribution of carrier concentration and affected the optical properties of GaN. The step height of the pyramids was about 30-40 nm measured by atomic force microscopy. A simple model was proposed to explain the macro- pyramid phenomenon compared with the growth spiral The growth of the macro-pyramid was relative to the physical conditions in the reaction zone. Both increasing growth temperature and low pressure may reduce the pyramid size.

  11. Operational amplifiers theory and design

    CERN Document Server

    Huijsing, Johan

    2017-01-01

    This proven textbook guides readers to a thorough understanding of the theory and design of operational amplifiers (OpAmps). The core of the book presents systematically the design of operational amplifiers, classifying them into a periodic system of nine main overall configurations, ranging from one gain stage up to four or more stages. This division enables circuit designers to recognize quickly, understand, and choose optimal configurations. Characterization of operational amplifiers is given by macro models and error matrices, together with measurement techniques for their parameters. Definitions are given for four types of operational amplifiers depending on the grounding of their input and output ports. Many famous designs are evaluated in depth, using a carefully structured approach enhanced by numerous figures. In order to reinforce the concepts introduced and facilitate self-evaluation of design skills, the author includes problems with detailed solutions, as well as simulation exercises. Provides te...

  12. Characterization of SLUG microwave amplifiers

    Science.gov (United States)

    Hoi, I.-C.; Zhu, S.; Thorbeck, T.; McDermott, R.; Mutus, J.; Jeffrey, E.; Barends, R.; Chen, Y.; Roushan, P.; Fowler, A.; Sank, D.; White, T.; Campbell, B.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Kelly, J.; Megrant, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Martinis, J. M.

    2015-03-01

    With the rapid growth of superconducting circuits quantum technology, a near quantum-limited amplifier at GHz frequency is needed to enable high fidelity measurements. We describe such an amplifier, the SQUID based, superconducting low inductance undulatory galvanometer (SLUG) amplifier. We measure the full scattering matrix of the SLUG. In particular, we measure both forward and reverse gain, as well as reflection. We see 15dB forward gain with added noise from one quanta to several quanta. The -1 dB compression point is around -95 dBm, about two orders of magnitude higher than that of typical Josephson parametric amplifiers. With these properties, SLUG is well suited for the high fidelity, simultaneous multiplexed readout of superconducting qubits.

  13. New Packaging for Amplifier Slabs

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thorsness, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Suratwala, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steele, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rogowski, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  14. A Transformer Class E Amplifier

    Directory of Open Access Journals (Sweden)

    Mikolajewski Miroslaw

    2014-12-01

    Full Text Available In a high-efficiency Class E ZVS resonant amplifier a matching and isolation transformer can replace some or even all inductive components of the amplifier thus simplifying the circuit and reducing its cost. In the paper a theoretical analysis, a design example and its experimental verification for a transformer Class E amplifier are presented. In the experimental amplifier with a transformer as the only inductive component in the circuit high efficiency ηMAX = 0.95 was achieved for supply voltage VI = 36 V, maximum output power POMAX = 100 W and the switching frequency f = 300 kHz. Measured parameters and waveforms showed a good agreement with theoretical predictions. Moreover, the relative bandwidth of the switching frequency was only 19% to obtain output power control from 4.8 W to POMAX with efficiency not less than 0.9 in the regulation range.

  15. PID Controller with Operational Amplifier

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents a PID controller made with LM741 operational amplifier that implement the PID controllers laws and allow for a widerange of applications of in the field of automatic control of technicalprocesses and systems.

  16. TARC: Carlo Rubbia's Energy Amplifier

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    Transmutation by Adiabatic Resonance Crossing (TARC) is Carlo Rubbia's energy amplifier. This CERN experiment demonstrated that long-lived fission fragments, such as 99-TC, can be efficiently destroyed.

  17. A KIND OF NEW AMPLIFIER

    Institute of Scientific and Technical Information of China (English)

    YIN XUN-HE; FENG RU-PENG; REN YONG

    2000-01-01

    Chaotic characteristics in the iteration of logistic map (one-dimensional discrete dynamic system) are simulatedand analyzed. The circuit implementation of a kind of chaotic amplifier model is based on the chaotic characteristicsthat chaos is sensitively dependent on its initial conditions, and the circuit simulation result is given using simulationprogram with integrated circuit emphasis for personal computer (PSPICE), and is compared with linear amplifier.Advantages and disadvantages of such a model are indicated.

  18. GaN on sapphire mesa technology

    Energy Technology Data Exchange (ETDEWEB)

    Herfurth, Patrick; Men, Yakiv; Kohn, Erhard [Institute of Electron Devices and Circuits, Ulm University, Albert-Einstein Allee 45, 89081 Ulm (Germany); Roesch, Rudolph [Institute of Optoelectronics, Albert-Einstein Allee 45, 89081 Ulm (Germany); Carlin, Jean-Francois; Grandjean, Nicolas [Laboratory of Advanced Semiconductors for Photonics and Electronics, Ecole Polytechnique Federal de Lausanne, 1015 Lausanne (Switzerland)

    2012-03-15

    This contribution reports on a GaN on sapphire mesa technology for lattice matched InAlN/GaN HEMTs similar to a silicon on insulator technology. Ultrathin buffer layers between 500 nm and 100 nm have been deep mesa etched down to the substrate to avoid cross talk between devices through the buffer and provide full transparency outside the active device area (of special interest to biochemical sensor applications).The heterostructure characteristics were: N{sub S}> 1.6 x 10{sup 13} cm{sup -2}, R{sub sh}< 600 {omega}/{open_square}. 0.25 {mu}m gate length HEMT device characteristics are moderate, but essentially similar down to 200 nm buffer thickness. Devices on 100 nm buffer layer are still difficult to reproduce. I{sub on}/I{sub off} was up to 10{sup 9} and sub-threshold slopes down to 90 mV/dec (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  20. Synthesis and Characterization of Glomerate GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Xue Chengshan

    2009-01-01

    Full Text Available Abstract Glomerate GaN nanowires were synthesized on Si(111 substrates by annealing sputtered Ga2O3/Co films under flowing ammonia at temperature of 950 °C. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and Fourier transformed infrared spectra were used to characterize the morphology, crystallinity and microstructure of the as-synthesized samples. Our results show that the samples are of hexagonal wurtzite structure. For the majority of GaN nanowires, the length is up to tens of microns and the diameter is in the range of 50–200 nm. The growth process of the GaN nanowires is dominated by Co–Ga–N alloy mechanism.

  1. Gallium incorporation kinetics during GSMBE of GaN

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.R.; Kaspi, R. [Wright State Univ. Research Center, Dayton, OH (United States); Lei, T.; Evans, K.R. [Wright Lab., Wright-Patterson AFB, OH (United States). Solid State Electronics Directorate

    1996-11-01

    The kinetics of Ga incorporation during gas-source molecular beam epitaxy of GaN are investigated for varying substrate temperature and incident ammonia flux. Incident Ga atoms eventually either: (1) react with NH{sub 3} to form GaN; (2) accumulate on the film surface, or (3) desorb. Low substrate temperatures lead to significant Ga surface accumulation due to the temperature-dependent reactivity of NH{sub 3} towards Ga. High substrate temperatures give rise to significant Ga desorption. Increasing NH{sub 3} flux retards both Ga surface accumulation and Ga desorption. The GaN formation rate variation with substrate temperature peaks near 750 C and increases with NH{sub 3} flux. The observation of two distinct and very low activation energies for Ga desorption suggests a relatively complex surface chemistry and a strong likelihood that hydrogen is playing an important role.

  2. High-Sensitivity GaN Microchemical Sensors

    Science.gov (United States)

    Son, Kyung-ah; Yang, Baohua; Liao, Anna; Moon, Jeongsun; Prokopuk, Nicholas

    2009-01-01

    Systematic studies have been performed on the sensitivity of GaN HEMT (high electron mobility transistor) sensors using various gate electrode designs and operational parameters. The results here show that a higher sensitivity can be achieved with a larger W/L ratio (W = gate width, L = gate length) at a given D (D = source-drain distance), and multi-finger gate electrodes offer a higher sensitivity than a one-finger gate electrode. In terms of operating conditions, sensor sensitivity is strongly dependent on transconductance of the sensor. The highest sensitivity can be achieved at the gate voltage where the slope of the transconductance curve is the largest. This work provides critical information about how the gate electrode of a GaN HEMT, which has been identified as the most sensitive among GaN microsensors, needs to be designed, and what operation parameters should be used for high sensitivity detection.

  3. Stability of Carbon Incorpoated Semipolar GaN(1101) Surface

    Science.gov (United States)

    Akiyama, Toru; Nakamura, Kohji; Ito, Tomonori

    2011-08-01

    The structural stability of carbon incorporated GaN(1101) surfaces is theoretically investigated by performing first-principles pseudopotential calculations. The calculated surface formation energies taking account of the metal organic vapor phase epitaxy conditions demonstrate that several carbon incorporated surfaces are stabilized depending on the growth conditions. Using surface phase diagrams, which are obtained by comparing the calculated adsorption energy with vapor-phase chemical potentials, we find that the semipolar surface forms NH2 and CH2 below ˜1660 K while the polar GaN(0001) surface with CH3 is stabilized below ˜1550 K. This difference could be one of possible explanations for p-type doping on the semipolar GaN(1101) surface.

  4. Ablation of GaN Using a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    刘伟民; 朱荣毅; 钱土雄; 袁述; 张国义

    2002-01-01

    We study the pulsed laser ablation of wurtzite gallium nitride (GaN) films grown on sapphire, using the fem tosecond laser beam at a central wavelength of 800nm as the source for the high-speed ablation of GaN films. By measuring the backscattered Raman spectrum of ablated samples, the dependence of the ablation depth on laser fluence with one pulse was obtained. The threshold laser fluence for the ablation of GaN films was determined to be about 0.25J/cm2. Laser ablation depth increases with the increasing laser fluence until the amount of removed material is not further increased. The ablated surface was investigated by an optical surface interference profile meter.

  5. Studies on electronic structure of GaN(0001) surface

    CERN Document Server

    Xie Chang Kun; Xu Fa Qiang; Deng Rui; Liu Feng; Yibulaxin, K

    2002-01-01

    An electronic structure investigation on GaN(0001) is reported. The authors employ a full-potential linearized augmented plane-wave (FPLAPW) approach to calculate the partial density of state, which is in agreement with previous experimental results. The effects of the Ga3d semi-core levels on the electronic structure of GaN are discussed. The valence-electronic structure of the wurtzite GaN(0001) surface is investigated using synchrotron radiation excited angle-resolved photoemission spectroscopy. The bulk bands dispersion along GAMMA A direction in the Brillouin zones is measured using normal-emission spectra by changing photon-energy. The band structure derived from authors' experimental data is compared well with the results of authors' FPLAPW calculation. Furthermore, off-normal emission spectra are also measured along the GAMMA K and GAMMA M directions. Two surface states are identified, and their dispersions are characterized

  6. Application of GaN for photoelectrolysis of water

    Science.gov (United States)

    Puzyk, M. V.; Usikov, A. S.; Kurin, S. Yu; Puzyk, A. M.; Fomichev, A. D.; Ermakov, I. A.; Kovalev, D. S.; Papchenko, B. P.; Helava, H.; Makarov, Yu N.

    2015-11-01

    GaN layers of n-type and p-type conductivity grown by HVPE on sapphire substrates were used as working electrodes for water electrolysis, photoelectrolysis and hydrogen gas generation. Specifically the water splitting process is discussed. Corrosion of the GaN materials is also considered. The hydrogen production rate under 365-nm UV LED irradiation of the GaN and external bias was 0.3 ml/(cm2*h) for an n-GaN photoanode (n∼8×1016 cm-3) in 1M Na2SO4 electrolyte and 1.2 ml/(cm2*h) for an n-GaN photoanode (n∼1×1017 cm-3) in 1M KOH electrolyte.

  7. Magnesium doped GaN grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Guarneros, C., E-mail: cesyga@yahoo.com.mx [Ingenieria Electrica, Seccion Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. I.P.N. 2508, San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico); Sanchez, V. [Ingenieria Electrica, Seccion Electronica del Estado Solido, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Av. I.P.N. 2508, San Pedro Zacatenco, 07360 Mexico, D.F. (Mexico)

    2010-10-25

    We have studied the optical and electrical characteristics of undoped and doped GaN layers. The n- and p-type layers have been prepared by low pressure MOCVD technique. Photoluminescence (PL) studies were carried at low temperature. In the PL spectra of undoped GaN layer, a low intensity band edge emission and a broad yellow emission band were observed. The donor-acceptor pair (DAP) emission and its phonon replicas were observed in Mg lightly doped GaN layer. The dominance of the blue and the yellow emissions increased in the PL spectra as the Mg concentration was increased. The X-ray diffraction was employed to study the structure of the layers. Both the undoped and the doped layers exhibited hexagonal structure. The samples were annealed and significant changes were not observed in Hall Effect and in the PL measurements, so we suggest that there is no need of a thermal annealing for magnesium acceptor activation.

  8. Conductivity based on selective etch for GaN devices and applications thereof

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  9. Critical issues for homoepitaxial GaN growth by molecular beam epitaxy on hydride vapor-phase epitaxy-grown GaN substrates

    Science.gov (United States)

    Storm, D. F.; Hardy, M. T.; Katzer, D. S.; Nepal, N.; Downey, B. P.; Meyer, D. J.; McConkie, Thomas O.; Zhou, Lin; Smith, David J.

    2016-12-01

    While the heteroepitaxial growth of gallium nitride-based materials and devices on substrates such as SiC, sapphire, and Si has been well-documented, the lack of a cost-effective source of bulk GaN crystals has hindered similar progress on homoepitaxy. Nevertheless, freestanding GaN wafers are becoming more widely available, and there is great interest in growing GaN films and devices on bulk GaN substrates, in order to take advantage of the greatly reduced density of threading dislocations, particularly for vertical devices. However, homoepitaxial GaN growth is far from a trivial task due to the reactivity and different chemical sensitivities of N-polar (000_1) and Ga-polar (0001) GaN surfaces, which can affect the microstructure and concentrations of impurities in homoepitaxial GaN layers. In order to achieve high quality, high purity homoepitaxial GaN, it is necessary to investigate the effect of the ex situ wet chemical clean, the use of in situ cleaning procedures, the sensitivity of the GaN surface to thermal decomposition, and the effect of growth temperature. We review the current understanding of these issues with a focus on homoepitaxial growth of GaN by molecular beam epitaxy (MBE) on c-plane surfaces of freestanding GaN substrates grown by hydride vapor phase epitaxy (HVPE), as HVPE-grown substrates are most widely available. We demonstrate methods for obtaining homoepitaxial GaN layers by plasma-assisted MBE in which no additional threading dislocations are generated from the regrowth interface and impurity concentrations are greatly reduced.

  10. Highly transparent ammonothermal bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, WK; Ehrentraut, D; Downey, BC; Kamber, DS; Pakalapati, RT; Do Yoo, H; D' Evelyn, MP

    2014-10-01

    A novel apparatus has been employed to grow ammonothermal (0001) gallium nitride (GaN) with diameters up to 2 in The crystals have been characterized by x-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), and optical spectroscopy. High crystallinity GaN with FWHM values about 20-50 arcsec and dislocation densities below 1 x 10(5) cm(-2) have been obtained. High optical transmission was achieved with an optical absorption coefficient below 1 cm(-1) at a wavelength of 450 nm. (C) 2014 Elsevier B.V. All rights reserved.

  11. Ferromagnetism in undoped One-dimensional GaN Nanowires

    Directory of Open Access Journals (Sweden)

    K. Jeganathan

    2014-05-01

    Full Text Available We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10−8 mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.

  12. Chemical mechanical polishing of freestanding GaN substrates

    Institute of Scientific and Technical Information of China (English)

    颜怀跃; 修向前; 刘战辉; 张荣; 华雪梅; 谢自力; 韩平; 施毅; 郑有炓

    2009-01-01

    Chemical mechanical polishing (CMP) has been used to produce smooth and scratch-free surfaces for GaN. In the aqueous solution of KOH, GaN is subjected to etching. At the same time, all surface irregularities, including etch pyramids, roughness after mechanical polishing and so on will be removed by a polishing pad. The experiments had been performed under the condition of different abrasive particle sizes of the polishing pad. Also the polishing results for different polishing times are analyzed, and chemical mechanical polishing resulted in an average root mean square (RMS) surface roughness of 0.565 nm, as measured by atomic force microscopy.

  13. Photoemission of graded-doping GaN photocathode

    Institute of Scientific and Technical Information of China (English)

    Fu Xiao-Qian; Chang Ben-Kang; Wang Xiao-Hui; Li Biao; Du Yu-Jie; Zhang Jun-Ju

    2011-01-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×1017 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile.

  14. EMI-resilient amplifier circuits

    CERN Document Server

    van der Horst, Marcel J; Linnenbank, André C

    2014-01-01

    This book enables circuit designers to reduce the errors introduced by the fundamental limitations and electromagnetic interference (EMI) in negative-feedback amplifiers.  The authors describe a systematic design approach for application specific negative-feedback amplifiers, with specified signal-to-error ratio (SER).  This approach enables designers to calculate noise, bandwidth, EMI, and the required bias parameters of the transistors used in  application specific amplifiers in order to meet the SER requirements.   ·         Describes design methods that incorporate electromagnetic interference (EMI) in the design of application specific negative-feedback amplifiers; ·         Provides designers with a structured methodology to avoid the use of trial and error in meeting signal-to-error ratio (SER) requirements; ·         Equips designers to increase EMI immunity of the amplifier itself, thus avoiding filtering at the input, reducing the number of components and avoiding detr...

  15. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors

    Science.gov (United States)

    Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco

    2017-07-01

    In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.

  16. Limit circuit prevents overdriving of operational amplifier

    Science.gov (United States)

    Openshaw, F. L.

    1967-01-01

    Cutoff-type high gain amplifier coupled by a diode prevents overdriving of operational amplifier. An amplified feedback signal offsets the excess input signal that tends to cause the amplifier to exceed its preset limit. The output is, therfore, held to the set clamp level.

  17. Enhancement of 1.5 μm emission under 980 nm resonant excitation in Er and Yb co-doped GaN epilayers

    Science.gov (United States)

    Wang, Q. W.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2016-10-01

    The Erbium (Er) doped GaN is a promising gain medium for optical amplifiers and solid-state high energy lasers due to its high thermal conductivity, wide bandgap, mechanical hardness, and ability to emit in the highly useful 1.5 μm window. Finding the mechanisms to enhance the optical absorption efficiency at a resonant pump wavelength and emission efficiency at 1.5 μm is highly desirable. We report here the in-situ synthesis of the Er and Yb co-doped GaN epilayers (Er + Yb:GaN) by metal-organic chemical vapor deposition (MOCVD). It was observed that the 1.5 μm emission intensity of the Er doped GaN (Er:GaN) under 980 nm resonant pump can be boosted by a factor of 7 by co-doping the sample with Yb. The temperature dependent PL emission at 1.5 μm in the Er + Yb:GaN epilayers under an above bandgap excitation revealed a small thermal quenching of 12% from 10 to 300 K. From these results, it can be inferred that the process of energy transfer from Yb3+ to Er3+ ions is highly efficient, and non-radiative recombination channels are limited in the Er + Yb:GaN epilayers synthesized in-situ by MOCVD. Our results point to an effective way to improve the emission efficiency of the Er doped GaN for optical amplification and lasing applications.

  18. Amplified graph C*-algebras

    CERN Document Server

    Eilers, Søren; Sørensen, Adam P W

    2011-01-01

    We provide a complete invariant for graph C*-algebras which are amplified in the sense that whenever there is an edge between two vertices, there are infinitely many. The invariant used is the standard primitive ideal space adorned with a map into {-1,0,1,2,...}, and we prove that the classification result is strong in the sense that isomorphisms at the level of the invariant always lift. We extend the classification result to cover more graphs, and give a range result for the invariant (in the vein of Effros-Handelman-Shen) which is further used to prove that extensions of graph C*-algebras associated to amplified graphs are again graph C*-algebras of amplified graphs.

  19. Capacitively-coupled chopper amplifiers

    CERN Document Server

    Fan, Qinwen; Huijsing, Johan H

    2017-01-01

    This book describes the concept and design of the capacitively-coupled chopper technique, which can be used in precision analog amplifiers. Readers will learn to design power-efficient amplifiers employing this technique, which can be powered by regular low supply voltage such as 2V and possibly having a +\\-100V input common-mode voltage input. The authors provide both basic design concepts and detailed design examples, which cover the area of both operational and instrumentation amplifiers for multiple applications, particularly in power management and biomedical circuit designs. Discusses basic working principles and details of implementation for proven designs; Includes a diverse set of applications, along with measurement results to demonstrate the effectiveness of the technique; Explains advantages and drawbacks of the technique, given particular circumstances.

  20. Coherent amplified optical coherence tomography

    Science.gov (United States)

    Zhang, Jun; Rao, Bin; Chen, Zhongping

    2007-07-01

    A technique to improve the signal-to-noise ratio (SNR) of a high speed 1300 nm swept source optical coherence tomography (SSOCT) system was demonstrated. A semiconductor optical amplifier (SOA) was employed in the sample arm to coherently amplify the weak light back-scattered from sample tissue without increasing laser power illuminated on the sample. The image quality improvement was visualized and quantified by imaging the anterior segment of a rabbit eye at imaging speed of 20,000 A-lines per second. The theory analysis of SNR gain is given followed by the discussion on the technologies that can further improve the SNR gain.

  1. Television-optical operational amplifier.

    Science.gov (United States)

    Goetz, J; Häusler, G; Sesselmann, R

    1979-08-15

    The advantages of negative feedback are well known in electronics and extensively used in the operational amplifier. The properties of such a system are nearly independent of the parameters in the forward branch of the system; they are only determined by external elements in the backward branch. An optical analog of such an operational amplifier is reported. The essential operations, amplifications, and inversion of the circulating signals are carried out using a TV system. The capability of the system to compensate for spatial inhomogeneities and for nonlinearities is demonstrated. In addition, the system is able to create the inverse of a transfer function located in the feedback branch.

  2. Growth of ZnO and GaN Films

    Science.gov (United States)

    Chang, J.; Hong, S.-K.; Matsumoto, K.; Tokunaga, H.; Tachibana, A.; Lee, S. W.; Cho, M.-W.

    . Zinc oxide (ZnO) and gallium nitride (GaN) are wide bandgap semi conductors applicable to light emitting diodes (LEDs) and laser diodes (LDs) with wavelengths ranging from ultraviolet to blue light. Now ZnO and GaN are key ma terials for optoelectronic device applications and their applications are being rapidly expanded to lots of other technology including electronics, biotechnology, nanotech-nology, and fusion technology among all these. As a fundamental starting point for the development of this new technique, epitaxy of ZnO and GaN films is one of the most important key technology. Hence, development of the growth technique for high quality epitaxial films is highly necessary. Among the various kinds of epi taxy technique for semiconductor films developed so far, physical vapor deposition (PVD)-based epitaxy technique has been revealed to be the appropriate way for the high quality ZnO film and related alloy growths, while chemical vapor deposition (CVD)-based epitaxy technique has been proved to be the best method for the high quality GaN film and related alloy growths.

  3. Photoluminescence of Zn-implanted GaN

    Science.gov (United States)

    Pankove, J. I.; Hutchby, J. A.

    1974-01-01

    The photoluminescence spectrum of Zn-implanted GaN peaks at 2.87 eV at room temperature. The emission efficiency decreases linearly with the logarithm of the Zn concentration in the range from 1 x 10 to the 18th to 20 x 10 to the 18th Zn/cu cm.

  4. Basic ammonothermal GaN growth in molybdenum capsules

    Science.gov (United States)

    Pimputkar, S.; Speck, J. S.; Nakamura, S.

    2016-12-01

    Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).

  5. Simulation of growing GaN in vertical HVPE reactor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The paper reports the setting up of a model of fluid dynamic for GaN HVPE system and the simulation. It is found that when the direction of gravity is opposite to the direction of GaCl flow inlet,there exits a distance at which the uniformity of the deposition is optimal. Here the good uniformity of the deposition is obtained when the distance between the substrate and GaCl inlet is 5 cm. The parameters of gas flow used in growing GaN are also optimized. In addition, the influence of gravity and buoyancy on the deposition of GaN is discussed, too. It is found that the angle between the direction of gravity and the direction of GaCl flow inlet has a major effect on the deposition rate and the uniformity of the growth. Compared with the situation when the direction of gravity is the same with the direction of GaCl flow inlet, although the deposition rate of GaN has decreased obviously, the uniformity of the deposition has improved largely when the direction of gravity is opposite to the direction of GaCl flow inlet.

  6. Taevo Gans : särama pandud postmodernism / Kadi Viljak

    Index Scriptorium Estoniae

    Viljak, Kadi

    2004-01-01

    Viking Window ASi büroo ja ekspositsioonisaal 1979. a. Jüri Okase projekteeritud endises Paide KEKi remontmehaanikatöökoja hoones Mäos. Sisearhitekt Taevo Gans, kelle projekteeritud on ka ettevõtte juhi töölaud. T. Gansi kommentaarid. Ill.: 6 värv. sisevaadet

  7. Radiation effects in GaN devices and materials (Conference Presentation)

    Science.gov (United States)

    Sun, Ke-Xun; Nelson, Ron; Yeamans, Charles

    2016-10-01

    Gallium Nitride (GaN) is a wide-bandgap semiconductor having excellent radiation properties. GaN crystal is ionic-covalent with significant iconicity resulting in stronger molecular bond strength, which in in turn leads to excellent radiation hardness. Further, GaN has ultrafast carrier relaxation time. GaN transistors are promising for high-frequency applications due to their large bandgap (3.9eV) and higher breakdown field (NIF) high foot, high yield shots. In 2013 LANSCE run cycle, we tested GaN UV LED devices at 3.1E11 neutrons/cm^2. In 2015-2016 LANSCE run cycles, we have been operating three neutron beam lines with fluence level 1.2E11, 1.5E13, and 1E15 neutrons/cm^2. The irradiated samples include GaN UV LEDs, GaN HEMTs, and GaN substrates. In the experiments up to 2015 run cycle, we have characterized electrical and optical performances of GaN device before and after neutron irradiation, including the device IV curve measurements monitored at over the three months neutron irradiation time, and device IV curve measurements before and after NIF high yield shot irradiation. We observed no substantial degradation. These experiments firmly established GaN devices as the radiation hard platform of the next generation fusion plasma diagnostic instruments.

  8. Thermal recovery of NIF amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Marshall, C.; Petty, C.; Smith, L.; van Wonterghem, B.; Mills, S.

    1997-02-01

    The issue of thermal recovery of the NIF amplifiers has taken on increased emphasis as program goals move toward increasing the shot rate to once every four hours. This paper addresses the technical issues associated with achieving thermal recovery in the NIF amplifiers. We identify two temperature related thermal recovery quantities: (1) the difference between the average slab temperature and the temperature of other surfaces in the amplifier cavity, and (2) the temperature difference in the slab over the aperture. The first quantity relates to optical disturbances in the gas column in the system, while the second quantity is associated with optical aberrations in the laser media itself. Calculations and experiments are used to quantify recovery criteria, and develop cooling approaches. The cooling approaches discussed are (1) active cooling of the flashlamps with ambient gas and chilled gas, and (2) active cooling of the slab edge cladding. Calculations indicate that the NIF baseline cooling approach of 20 cfm per lamp ambient temperature gas flow in both the central and side flashlamp cassettes is capable of meeting thermal recovery requirements for an 8 hour shot period, while to achieve a 4 hour shot period requires use of chilled gas and edge cladding cooling. In addition, the effect of changing the amplifier cavity and beamtube fill gas from nitrogen to helium is addressed, showing that a factor of 8 reduction in the sensitivity to thermal disturbances is possible. 6 refs., 9 figs., 1 tab.

  9. Dielectric waveguide amplifiers and lasers

    NARCIS (Netherlands)

    Pollnau, Markus

    The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length

  10. GaN as a radiation hard particle detector

    Science.gov (United States)

    Grant, J.; Bates, R.; Cunningham, W.; Blue, A.; Melone, J.; McEwan, F.; Vaitkus, J.; Gaubas, E.; O'Shea, V.

    2007-06-01

    Semiconductor tracking detectors at experiments such as ATLAS and LHCb at the CERN Large Hadron Collider (LHC) will be subjected to intense levels of radiation. The proposed machine upgrade, the Super-LHC (SLHC), to 10 times the initial luminosity of the LHC will require detectors that are ultra-radiation hard. Much of the current research into finding a detector that will meet the requirements of the SLHC has focused on using silicon substrates with enhanced levels of oxygen, for example Czochralski silicon and diffusion oxygenated float zone silicon, and into novel detector structures such as 3D devices. Another avenue currently being investigated is the use of wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN). Both SiC and GaN should be intrinsically more radiation hard than silicon. Pad and guard ring structures were fabricated on three epitaxial GaN wafers. The epitaxial GaN thickness was either 2.5 or 12 μm and the fabricated detectors were irradiated to various fluences with 24 GeV/c protons and 1 MeV neutrons. Detectors were characterised pre- and post-irradiation by performing current-voltage ( I- V) and charge collection efficiency (CCE) measurements. Devices fabricated on 12 μm epitaxial GaN irradiated to fluences of 1016 protons cm-2 and 1016 neutrons cm-2 show maximum CCE values of 26% and 20%, respectively, compared to a maximum CCE of 53% of the unirradiated device.

  11. A CMOS current-mode operational amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1993-01-01

    A fully differential-input, differential-output, current-mode operational amplifier (COA) is described. The amplifier utilizes three second-generation current conveyors (CCIIs) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...... current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain-bandwidth product of 3 MHz, an offset current of 0.8 μA (signal range ±700 μA), and a (theoretically) unlimited slew rate. The amplifier is realized in a standard CMOS 2...

  12. CMOS Current-mode Operational Amplifier

    DEFF Research Database (Denmark)

    Kaulberg, Thomas

    1992-01-01

    A fully differential-input differential-output current-mode operational amplifier (COA) is described. The amplifier utilizes three second generation current-conveyors (CCII) as the basic building blocks. It can be configured to provide either a constant gain-bandwidth product in a fully balanced...... current-mode feedback amplifier or a constant bandwidth in a transimpedance feedback amplifier. The amplifier is found to have a gain bandwidth product of 8 MHz, an offset current of 0.8 ¿A (signal-range ±700¿A) and a (theoretically) unlimited slew-rate. The amplifier is realized in a standard CMOS 2...

  13. Growth of GaN micro/nanolaser arrays by chemical vapor deposition

    Science.gov (United States)

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-01

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ˜1 μm and a length of ˜15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm-2. The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  14. Structures, nanomechanics, and disintegration of single-walled GaN nanotubes: atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-09-15

    We have investigated the structural, mechanical, and thermal properties of single-walled GaN nanotubes by using atomistic simulations and a Tersoff-type potential. The Tersoff potential for GaN effectively describes the properties of GaN nanotubes. The nanomechanics of GaN nanotubes under tensile and compressive loadings have also been investigated, and Young's modulus has been calculated. The caloric curves of single-walled GaN nanotubes can be divided into three regions corresponding to nanotubes, the disintegrating range, and vapor. Since the stability or the stiffness of a tube decreases with increasing curving sheet-to-tube strain energy, the disintegration temperatures of GaN nanotubes are closely related to the curving sheet-to-tube strain energy.

  15. Study of radiation detection properties of GaN pn diode

    Science.gov (United States)

    Sugiura, Mutsuhito; Kushimoto, Maki; Mitsunari, Tadashi; Yamashita, Kohei; Honda, Yoshio; Amano, Hiroshi; Inoue, Yoku; Mimura, Hidenori; Aoki, Toru; Nakano, Takayuki

    2016-05-01

    Recently, GaN, which has remarkable properties as a material for optical devices and high-power electron devices, has also attracted attention as a material for radiation detectors. We previously suggested the use of BGaN as a neutron detector material. However, the radiation detection characteristics of GaN itself are not yet adequately understood. For realizing a BGaN neutron detector, the understanding of the radiation detection characteristics of GaN, which is a base material of the neutron detector, is important. In this study, we evaluated the radiation detection characteristics of GaN. We performed I-V and energy spectrum measurements under alpha ray, gamma ray, and thermal neutron irradiations to characterize the radiation detection characteristics of a GaN diode. The obtained results indicate that GaN is an effective material for our proposed new BGaN-based neutron detector.

  16. Gadolinium-Based GaN for Neutron Detection with Gamma Discrimination

    Science.gov (United States)

    2016-06-01

    from evaluating these detectors are summarized as, 1) semi-insulating GaN [1] does not show radiation response due to the high density carrier...Praneeth Kandlakunta, 2012 2) “ Evaluation of GaN as a Radiation Detection Material “, Jinghui Wang, 2012 Journal Articles: 1) P. Kandlakunta... Evaluation of GaN as a Radiation Detection Material. Thesis,The Ohio State University, 2012. 8. Kandlakunta, P., Gamma Rays Rejection in a Gadolinium based

  17. Fully Coupled Thermoelectromechanical Analysis of GaN High Electron Mobility Transistor Degradation

    Science.gov (United States)

    2012-04-05

    multi-dimensional continuum model of the thermoelectromechanics of GaN HEMTs is presented and discussed. The governing equations are those of linear...understanding the mechanisms of both electrical and mechanical degradation in GaN HEMTs . Various possible contributors to degradation are discussed...layers in conventional GaN HEMTs , there is another limit, observed following sustained operation at high current/voltage levels, wherein highly

  18. Preparation and properties of GaN films on Si(111) substrates

    Institute of Scientific and Technical Information of China (English)

    杨莺歌; 马洪磊; 郝晓涛; 马瑾; 薛成山; 庄惠照

    2003-01-01

    High-quality gallium nitride (GaN) films were prepared on Si(111) substrates by sputtering post-annealing-reaction technique. XRD, XPS, and SEM measurement results indicate that polycrystalline GaN with hexagonal structure was successfully prepared. Intense room- temperature photoluminescence that peaked at 354 nm of the films is observed. The bandgap of these films has a blueshift with respect to bulk GaN.

  19. Thermal Annealing induced relaxation of compressive strain in porous GaN structures

    KAUST Repository

    Ben Slimane, Ahmed

    2012-01-01

    The effect of annealing on strain relaxation in porous GaN fabricated using electroless chemical etching is presented. The Raman shift of 1 cm-1 in phonon frequency of annealed porous GaN with respect to as-grown GaN corresponds to a relaxation of compressive strain by 0.41 ± 0.04 GPa. The strain relief promises a marked reduction in threading dislocation for subsequent epitaxial growth.

  20. Single conversion stage amplifier - SICAM

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.

    2005-12-15

    This Ph.D. thesis presents a thorough analysis of the so called SICAM - SIngle Converter stage AMplifier approach to building direct energy conversion audio power amplifiers. The mainstream approach for building isolated audio power amplifiers today consists of isolated DC power supply and Class D amplifier, which essentially represents a two stage solution, where each of the components can be viewed as separate and independent part. The proposed SICAM solution strives for direct energy conversion from the mains to the audio output, by dedicating the operation of the components one to another and integrating their functions, so that the final audio power amplifier represents a single-stage topology with higher efficiency, lower volume, less board space, lower component count and subsequently lower cost. The SICAM approach is both applicable to non-isolated and isolated audio power amplifiers, but the problems encountered in these two cases are different. Non-isolated SICAM solutions are intended for both AC mains-connected and battery-powered devices. In non-isolated mains-connected SICAMs the main idea is to simplify the power supply or even provide integrated power factor correction (PFC) functions, while still maintaining low component stress and good audio performance by generally decreasing the input voltage level to the Class D audio power amplifier. On the other hand, non-isolated battery-powered SICAMs have to cope with the ever changing battery voltage and provide output voltage levels which are both lower and higher than the battery voltage, while still being simple and single-stage energy conversion solutions. In isolated SICAMs the isolation transformer adjusts the voltage level on the secondary side to the desired level, so the main challenges here are decreasing the size of the magnetic core and reducing the number and size of bulky reactive components as much as possible. The main focus of this thesis is directed towards the isolated SICAMs and

  1. Linearisation of RF Power Amplifiers

    DEFF Research Database (Denmark)

    Nielsen, Per Asbeck

    2001-01-01

    This thesis deals with linearisation techniques of RF power amplifiers (PA), PA design techniques and integration of the necessary building blocks in a CMOS technology. The opening chapters introduces the theory of transmitter architectures, RF-signal representation and the principles of digital...... modulation. Furthermore different types of power amplifiers, models and measures of non-linearities are presented. A chapter is also devoted to different types of linearisation systems. The work carried out and described in this thesis can be divided into a more theoretical and system oriented treatment...... the polar loop architecture and it’s suitability to modern digital transmitters is discussed. A proposal of an architecture that is suitable for digital transmitters, which means that it has an interface to the digital back-end, defined by low-pass signals in polar form, is presented. Simulation guidelines...

  2. High power regenerative laser amplifier

    Science.gov (United States)

    Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.

    1994-02-08

    A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.

  3. Small and lightweight power amplifiers

    Science.gov (United States)

    Shams, Qamar A.; Barnes, Kevin N.; Fox, Robert L.; Moses, Robert W.; Bryant, Robert G.; Robinson, Paul C.; Shirvani, Mir

    2002-07-01

    The control of u wanted structural vibration is implicit in most of NASA's programs. Currently several approaches to control vibrations in large, lightweight, deployable structures and twin tail aircraft at high angles of attack are being evaluated. The Air Force has been examining a vertical tail buffet load alleviation system that can be integrated onboard an F/A-18 and flown. Previous wind tunnel and full-scale ground tests using distributed actuators have shown that the concept works; however, there is insufficient rom available onboard an F/A-18 to store current state-of- the-art system components such as amplifiers, DC-to-DC converter and a computer for performing vibration suppression. Sensor processing, power electronics, DC-to-DC converters, and control electronics that may be collocated with distributed actuators, are particularly desirable. Such electronic system would obviate the need for complex, centralized, control processing and power distribution components that will eliminate the weight associated with lengthy wiring and cabling networks. Several small and lightweight power amplifiers ranging from 300V pp to 650V pp have been designed using off the shelf components for different applications. In this paper, the design and testing of these amplifiers will be presented under various electrical loads.

  4. SPS RF System Amplifier plant

    CERN Multimedia

    1977-01-01

    The picture shows a 2 MW, 200 MHz amplifier plant with feeder lines. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X.

  5. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  6. Higher order mode optical fiber Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Friis, Søren Michael Mørk; Usuga Castaneda, Mario A.

    2016-01-01

    We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations.......We review higher order mode Raman amplifiers and discuss recent theoretical as well as experimental results including system demonstrations....

  7. Formation of Amine Groups on the Surface of GaN: A Method for Direct Biofunctionalization

    Science.gov (United States)

    2010-01-01

    the formation of surface sensitive GaN /AlGaN two- dimensional electron gas HEMT devices [5–14]. Furthermore, GaN is robust in aqueous solutions [15...variations are particularly detrimental to GaN HEMT sensors, as they are highly sensitive to the separation between the target and the device surface. Because...locate /apsuscFormation of amine groups on the surface of GaN : A method for direct biofunctionalization R. Stine, B.S. Simpkins, S.P. Mulvaney, L.J

  8. High surface hole concentration p-type GaN using Mg implantation

    CERN Document Server

    Long Tao; Zhang Guo Yi

    2001-01-01

    Mg ions were implanted on Mg-doped GaN grown by metalorganic chemical vapor deposition (MOCVD). The p-type GaN was achieved with high hole concentration (8.28 x 10 sup 1 sup 7 cm sup - sup 3) conformed by Van derpauw Hall measurement after annealing at 800 degree C for 1 h. this is the first experimental report of Mg implantation on Mg-doped GaN and achieving p-type GaN with high surface hole concentration

  9. Demonstration of flexible thin film transistors with GaN channels

    Science.gov (United States)

    Bolat, S.; Sisman, Z.; Okyay, A. K.

    2016-12-01

    We report on the thin film transistors (TFTs) with Gallium Nitride (GaN) channels directly fabricated on flexible substrates. GaN thin films are grown by hollow cathode plasma assisted atomic layer deposition (HCPA-ALD) at 200 °C. TFTs exhibit 103 on-to-off current ratios and are shown to exhibit proper transistor saturation behavior in their output characteristics. Gate bias stress tests reveal that flexible GaN TFTs have extremely stable electrical characteristics. Overall fabrication thermal budget is below 200 °C, the lowest reported for the GaN based transistors so far.

  10. Spontaneous nucleation and growth of GaN nanowires: the fundamental role of crystal polarity.

    Science.gov (United States)

    Fernández-Garrido, Sergio; Kong, Xiang; Gotschke, Tobias; Calarco, Raffaella; Geelhaar, Lutz; Trampert, Achim; Brandt, Oliver

    2012-12-12

    We experimentally investigate whether crystal polarity affects the growth of GaN nanowires in plasma-assisted molecular beam epitaxy and whether their formation has to be induced by defects. For this purpose, we prepare smooth and coherently strained AlN layers on 6H-SiC(0001) and SiC(0001̅) substrates to ensure a well-defined polarity and an absence of structural and morphological defects. On N-polar AlN, a homogeneous and dense N-polar GaN nanowire array forms, evidencing that GaN nanowires form spontaneously in the absence of defects. On Al-polar AlN, we do not observe the formation of Ga-polar GaN NWs. Instead, sparse N-polar GaN nanowires grow embedded in a Ga-polar GaN layer. These N-polar GaN nanowires are shown to be accidental in that the necessary polarity inversion is induced by the formation of Si(x)N. The present findings thus demonstrate that spontaneously formed GaN nanowires are irrevocably N-polar. Due to the strong impact of the polarity on the properties of GaN-based devices, these results are not only essential to understand the spontaneous formation of GaN nanowires but also of high technological relevance.

  11. Improved charge amplifier using hybrid hysteresis compensation

    Science.gov (United States)

    Amin-Shahidi, Darya; Trumper, David L.

    2013-08-01

    We present a novel charge amplifier, with a robust feedback circuit and a method for compensating piezoelectric actuator's hysteresis at low frequencies. The amplifier uses a modified feedback circuit which improves robustness to the addition of series load impedance such as in cabling. We also describe a hybrid hysteresis compensation method for enabling the charge amplifier to reduce hysteresis at low frequencies. Experimental results demonstrate the utility of the new amplifier design.

  12. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  13. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk;

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  14. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.

    2010-01-01

    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  15. Challenges in higher order mode Raman amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Nielsen, Kristian; Friis, Søren Michael Mørk

    2015-01-01

    A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed......A higher order Raman amplifier model that take random mode coupling into account ispresented. Mode dependent gain and signal power fluctuations at the output of the higher order modeRaman amplifier are discussed...

  16. A High-performance Small Signal Amplifier

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance.

  17. low pump power photonic crystal fibre amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Broeng, Jes; Bjarklev, Anders Overgaard

    2003-01-01

    Designs of low pump power optical amplifiers, based on photonic crystal fibres are presented. The potential of these fibre amplifiers is investigated, and it is demonstrated that such amplifiers may deliver gains of more than 15 dB at 1550 nm with less than 1 mW of optical pump power....

  18. Remote Acquisition Amplifier For 50-Ohm Cable

    Science.gov (United States)

    Amador, Jose J.

    1995-01-01

    Buffer-amplifier unit designed to drive 50-Ohm cables up to 100 ft. (30 m) long, compensating for attenuation in cables and enabling remote operation of oscilloscopes. Variable resistor provides for adjustment of gain of amplifier, such that overall gain from input terminals of amplifier to output end of cable set to unity.

  19. Bio-isolated DC operational amplifier

    Science.gov (United States)

    Lee, R. D.

    1974-01-01

    Possibility of shocks from leakage currents can be reduced by use of isolated preamplifiers. Amplifier consists of battery-powered operational amplifier coupled by means of light-emitting diodes to another amplifier which may be grounded and operated from ac power mains or separate battery supply.

  20. Fabrication of Syringe-Shaped GaN Nanorods

    Institute of Scientific and Technical Information of China (English)

    XUE Cheng-Shan; CAO Yu-Ping; WU Yu-Xin; ZHUANG Hui-Zhao; TIAN De-Heng; LIU Yi-An; HE Jian-Ting; AI Yu-Jie; SUN Li-Li; WANG Fu-Xue

    2006-01-01

    @@ Syringe-shaped GaN nanorods are synthesized on Si(111) substrates by annealing sputtered Ga2O3/BN films under flowing ammonia at temperature of 950° C. Most of the nanorods consist of a main rod and a top needle, looking like a syringe. X-ray diffraction and selected-area electron diffraction confirm that the syringe-shaped nanorods are hexagonal wurtzite GaN. Scanning electron microscopy and high-resolution transmission electron microscopy reveal that these nanorods are as long as several micrometres, with diameters ranging from 100 to 300 nm. In addition to the BN intermediate layer, the proper annealing temperature has been demonstrated to be a crucial factor for the growth of syringe-shaped nanorods by this method.

  1. ITON Schottky contacts for GaN based UV photodetectors

    Science.gov (United States)

    Vanhove, N.; John, J.; Lorenz, A.; Cheng, K.; Borghs, G.; Haverkort, J. E. M.

    2006-12-01

    Lateral Schottky ultraviolet detectors were fabricated in GaN using indium-tin-oxynitride (ITON) as a contact metal. The GaN semiconductor material was grown on 2 in. sapphire substrate by metal-organic chemical vapor deposition (MOCVD). The Schottky contact has been realized using ITON that has been deposited using sputter techniques. I- V characteristics have been measured with and without UV illumination. The device shows photo-to-dark current ratios of 10 3 at -1 V bias. The spectral responsivity of the UV detectors has been determined. The high spectral responsivity of more than 30 A/W at 240 nm is explained by a high internal gain caused by generation-recombination centers at the ITON/GaN interface. Persistent photocurrent effect has been observed in UV light (on-off) switching operation, time constant and electron capture coefficient of the transition has been determined.

  2. Indirect interband transition in hexagonal GaN

    Energy Technology Data Exchange (ETDEWEB)

    Lancry, O; Pichonat, E [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Universite des Sciences et Technologies de Lille, bat C5, 59655 Villeneuve d' Ascq cedex (France); Farvacque, J-L [Unite Materiaux et Transformations (UMET), UMR CNRS 8207, Universite des Sciences et Technologies de Lille, bat C6, 59655 Villeneuve d' Ascq cedex (France); Gaquiere, C, E-mail: emmanuelle.pichonat@univ-lille1.fr [Institut d' Electronique de Microelectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq cedex (France)

    2011-02-23

    In this paper, we report on optical investigations with Raman experiment to underline a new ultraviolet (UV) luminescence band in hexagonal gallium nitride (GaN) at 4.56 eV. GaN is a direct band gap semiconductor, the photoluminescence peak corresponding to the energy gap at 3.43 eV dominates the spectrum. Nevertheless, other electronic interband transitions can appear on the spectrum: the electronic indirect interband transitions. We attribute one of them to the observed new photoluminescence band at 4.56 eV. This interpretation is supported by photoluminescence spectra obtained on three different samples at room temperature and at -50 deg. C with UV excitation source: mbd-266 nm solid laser (4.66 eV) and by the study of three criteria: the partly opposite parities of initial and final wave function, the implication of acoustic phonons and temperature control.

  3. Step bunching on the vicinal GaN(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Ramana Murty, M. V.; Fini, P.; Stephenson, G. B.; Thompson, Carol; Eastman, J. A.; Munkholm, A.; Auciello, O.; Jothilingam, R.; DenBaars, S. P.; Speck, J. S.

    2000-10-15

    Nominally 2{sup o} vicinal GaN(0001) surfaces exhibit monolayer-height steps at 990{sup o}C in the metal-organic chemical vapor deposition environment. Real-time x-ray scattering observations at 715--990{sup o}C indicate that there is a tendency for step bunching during growth. Below 850{sup o}C, step bunches nucleated during growth remain and coarsen after growth, while above 850{sup o}C, the surface reverts to monolayer-height steps after growth. Surfaces vicinal toward the {l_brace}1{bar 1}00{r_brace} and the {l_brace}11{bar 2}0{r_brace} planes exhibit similar behavior. We suggest a simple equilibrium surface orientational phase diagram for vicinal GaN(0001) that is consistent with these observations.

  4. Study of Charge Carrier Transport in GaN Sensors

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2016-04-01

    Full Text Available Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE GaN material have been estimated as μe = 1000 ± 200 cm2/Vs for electrons, and μh = 400 ± 80 cm2/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.

  5. Study of Charge Carrier Transport in GaN Sensors.

    Science.gov (United States)

    Gaubas, Eugenijus; Ceponis, Tomas; Kuokstis, Edmundas; Meskauskaite, Dovile; Pavlov, Jevgenij; Reklaitis, Ignas

    2016-04-18

    Capacitor and Schottky diode sensors were fabricated on GaN material grown by hydride vapor phase epitaxy and metal-organic chemical vapor deposition techniques using plasma etching and metal deposition. The operational characteristics of these devices have been investigated by profiling current transients and by comparing the experimental regimes of the perpendicular and parallel injection of excess carrier domains. Profiling of the carrier injection location allows for the separation of the bipolar and the monopolar charge drift components. Carrier mobility values attributed to the hydride vapor phase epitaxy (HVPE) GaN material have been estimated as μe = 1000 ± 200 cm²/Vs for electrons, and μh = 400 ± 80 cm²/Vs for holes, respectively. Current transients under injection of the localized and bulk packets of excess carriers have been examined in order to determine the surface charge formation and polarization effects.

  6. Optical properties of Yb ions in GaN epilayer

    Science.gov (United States)

    Jadwisienczak, W. M.; Lozykowski, H. J.

    2003-07-01

    In recent years, an important effort in semiconductor materials research has been devoted to III-nitrides semiconductors doped with rare earth ions due to the high potential of these materials in light-emitting device applications. Ytterbium (Yb 3+) is one of a few lanthanide ions which have not been investigated as an optically active center in these materials yet. In this paper we report the observation of luminescence from GaN films grown on sapphire (0 0 0 1) substrate by metal organic chemical vapor deposition and doped by implantation with Yb 3+ ions. The high resolution photo- and cathodoluminescence spectra of GaN:Yb 3+ were studied at different excitation conditions in temperatures ranging from 8 to 330 K and revealed weak thermal quenching. The luminescence emission lines are assigned to transitions between the spin-orbit levels 2F 5/2 → 2F 7/2 of Yb 3+ (4f 13). The analysis of the Yb luminescence spectra allowed us to suggest the energy level diagram of the crystal-field-split 4f 13 levels for the Yb ion center. The most probable lattice location of Yb in GaN is the substitutional Ga site. Furthermore, the luminescence kinetics of internal transitions of Yb 3+ incorporated in GaN was investigated by means of decay and time-resolved luminescence measurements. It was found that the ytterbium decay is non-exponential with dominant exponential term of ˜100 μs with little dependence on the ambient temperature. The results indicate that Yb-doped GaN epilayer may be suitable as a material for near infrared optoelectronic devices.

  7. Temperature Dependence of GaN HEMT Small Signal Parameters

    Directory of Open Access Journals (Sweden)

    Ali M. Darwish

    2011-01-01

    Full Text Available This study presents the temperature dependence of small signal parameters of GaN/SiC HEMTs across the 0–150°C range. The changes with temperature for transconductance (m, output impedance (ds and ds, feedback capacitance (dg, input capacitance (gs, and gate resistance (g are measured. The variations with temperature are established for m, ds, ds, dg, gs, and g in the GaN technology. This information is useful for MMIC designs.

  8. Photoluminescence of ion-implanted GaN

    Science.gov (United States)

    Pankove, J. I.; Hutchby, J. A.

    1976-01-01

    Thirty-five elements were implanted in GaN. Their photoluminescence spectra were measured and compared to those of an unimplanted control sample. Most impurities emit a peak at about 2.15 eV. Mg, Zn, Cd, Ca, As, Hg, and Ag have more characteristic emissions. Zn provides the most efficient recombination center. A set of midgap states is generated during the damage-annealing treatment.

  9. Room Temperature Ultralow Threshold GaN Nanowire Polariton Laser

    KAUST Repository

    Das, Ayan

    2011-08-01

    We report ultralow threshold polariton lasing from a single GaN nanowire strongly coupled to a large-area dielectric microcavity. The threshold carrier density is 3 orders of magnitude lower than that of photon lasing observed in the same device, and 2 orders of magnitude lower than any existing room-temperature polariton devices. Spectral, polarization, and coherence properties of the emission were measured to confirm polariton lasing. © 2011 American Physical Society.

  10. Model for radiation damage buildup in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Titov, A.I. [State Polytechnic University, St. Petersburg 195251 (Russian Federation); Karaseov, P.A., E-mail: platon.karaseov@rphf.spbstu.ru [State Polytechnic University, St. Petersburg 195251 (Russian Federation); Kataev, A.Yu. [State Polytechnic University, St. Petersburg 195251 (Russian Federation); Azarov, A.Yu. [Department of Physics, University of Oslo, P.O. Box 1048, Blindern, Oslo NO-0316 (Norway); Kucheyev, S.O. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2012-04-15

    We propose a model that explains both saturation and a shift of the maximum of bulk disorder profiles in ion-implanted GaN. Our model is based on two main assumptions that (i) the advancing amorphous/crystalline interface acts as a perfect sink for mobile point defects generated in the crystal bulk and (ii) the diffusion length of mobile defects increases with increasing ion fluence due to saturation of defect sinks in the bulk.

  11. Voltage controlled terahertz transmission through GaN quantum wells

    OpenAIRE

    Laurent, T.; Sharma, R.; Torres, J.; Nouvel, P; Blin, S.; Varani, L.; Cordier, Y.; Chmielowska, M.; Chenot, S.; Faurie, JP; Beaumont, B.; P. Shiktorov; Starikov, E.; Gruzinskis, V.; Korotyevyev, V.

    2011-01-01

    We report measurements of radiation transmission in the 0.220--0.325 THz frequency domain through GaN quantum wells grown on sapphire substrates at room and low temperatures. A significant enhancement of the transmitted beam intensity with the applied voltage on the devices under test is found. For a deeper understanding of the physical phenomena involved, these results are compared with a phenomenological theory of light transmission under electric bias relating the transmission enhancement ...

  12. Metal contacts on ZnSe and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Duxstad, K J [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  13. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  14. Annealing of GaN under high pressure of nitrogen

    CERN Document Server

    Porowski, S; Kolesnikov, D; Lojkowski, W; Jager, V; Jäger, W; Bogdanov, V; Suski, T; Krukowski, S

    2002-01-01

    Gallium nitride, aluminum nitride and indium nitride are basic materials for blue optoelectronic devices. The essential part of the technology of these devices is annealing at high temperatures. Thermodynamic properties of the Ga-N system and their consequences to application of high nitrogen pressure for the annealing of GaN based materials are summarized. The diffusion of Zn, Mg and Au in high dislocation density heteroepitaxial GaN/Al sub 2 O sub 3 layers will be compared with the diffusion in dislocation-free GaN single crystals and homoepitaxial layers. It will be shown that high dislocation density can drastically change the diffusion rates, which strongly affects the performance of nitride devices. Inter-diffusion of Al, Ga and In in AlGaN/GaN and InGaN/GaN quantum well (QW) structures will be also considered. It will be shown that in contrast to stability of metal contacts, which is strongly influenced by dislocations, the inter-diffusion of group III atoms in QW structures is not affected strongly by...

  15. Study of neutron irradiated structures of ammonothermal GaN

    Science.gov (United States)

    Gaubas, E.; Ceponis, T.; Deveikis, L.; Meskauskaite, D.; Miasojedovas, S.; Mickevicius, J.; Pavlov, J.; Pukas, K.; Vaitkus, J.; Velicka, M.; Zajac, M.; Kucharski, R.

    2017-04-01

    Study of the radiation damage in GaN-based materials becomes an important aspect for possible application of the GaN detectors in the harsh radiation environment at the Large Hadron Collider and at other particle acceleration facilities. Intentionally doped and semi-insulating bulk ammonothermal GaN materials were studied to reveal the dominant defects introduced by reactor neutron irradiations. These radiation defects have been identified by combining electron spin resonance and transmission spectroscopy techniques. Characteristics of carrier lifetime dependence on neutron irradiation fluence were examined. Variations of the response of the capacitor-type sensors with neutron irradiation fluence have been correlated with the carrier lifetime changes. The measurements of the photoconductivity and photoluminescence transients have been used to study the variation of the parameters of radiative and non-radiative recombination. The examined characteristics indicate that AT GaN as a particle sensing material is radiation hard up to high hadron fluences  ⩾1016 cm‑2.

  16. Abnormal selective area growth of irregularly-shaped GaN structures on the apex of GaN pyramids and its application for wide spectral emission

    Science.gov (United States)

    Yu, Yeon Su; Lee, Jun Hyeong; Ahn, Hyung Soo; Yang, Min

    2014-12-01

    We report on the growth and the characterization of three-dimensional randomly-shaped InGaN/GaN structures selectively grown on the apex of GaN pyramids for the purpose of enlarging the emission spectral range. We found that the variations in the shape and the size of the three-dimensional GaN structures depend on the growth temperature and the surface area for selective growth under intentional turbulence in the gas stream. The selectively grown GaN structures grown at 1020 °C have irregular shape, while the samples grown at 1100 °C have rather uniform hexagonal pyramidal shapes. Irregularly shaped GaN structures were also obtained on the apex of GaN pyramids when the SiO2 mask was removed to 1/10 of the total height of the underlying GaN pyramid. When only 1/5 of the SiO2 mask was removed, however, the selectively grown GaN structures had similar hexagonal pyramidal shapes resembling those of the underlying GaN pyramids. The CL (Cathodoluminescence) spectra of the InGaN layers grown on the randomly shaped GaN structures showed a wide emission spectral range from 388 to 433 nm due to the non-uniform thickness and spatially inhomogeneous indium composition of the InGaN layers. This new selective growth method might have great potential for applications of non-phosphor white light emitting diodes (LEDs) with optimized growth conditions for InGaN active layers of high indium composition and with optimum process for fabrication of electrodes for electrical injection.

  17. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    Science.gov (United States)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are

  18. An Implantable CMOS Amplifier for Nerve Signals

    DEFF Research Database (Denmark)

    Nielsen, Jannik Hammel; Lehmann, Torsten

    2003-01-01

    In this paper, a low noise high gain CMOS amplifier for minute nerve signals is presented. The amplifier is constructed in a fully differential topology to maximize noise rejection. By using a mixture of weak- and strong inversion transistors, optimal noise suppression in the amplifier is achieved....... A continuous-time current-steering offset-compensation technique is utilized in order to minimize the noise contribution and to minimize dynamic impact on the amplifier input nodes. The method for signal recovery from noisy nerve signals is presented. A prototype amplifier is realized in a standard digital 0...

  19. Log amplifier with pole-zero compensation

    Science.gov (United States)

    Brookshier, William

    1987-01-01

    A logarithmic amplifier circuit provides pole-zero compensation for improved stability and response time over 6-8 decades of input signal frequency. The amplifier circuit includes a first operational amplifier with a first feedback loop which includes a second, inverting operational amplifier in a second feedback loop. The compensated output signal is provided by the second operational amplifier with the log elements, i.e., resistors, and the compensating capacitors in each of the feedback loops having equal values so that each break point or pole is offset by a compensating break point or zero.

  20. Ka-Band PAA for Satellite Telemetry System for RLVs & Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development and implementation of passive phased array antennas (PAAs) offers significant performance benefits over the current active arrays. The keys to...

  1. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    Science.gov (United States)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.; Rukin, S. N.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-09-01

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ˜1.5 GW/cm2 required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due to time delay in the development of the breakdown phenomena.

  2. SWIFT-HPX - High Data Rate Ka-band Commications for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging TUI's SWIFT software defined radio (SDR) architecture, we propose to develop a 100 Mbps downlink and intersatellite crosslink capability with ranging and...

  3. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    Science.gov (United States)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-06-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  4. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    Science.gov (United States)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-01-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  5. Design, Analysis, and Verification of Ka-Band Pattern Reconfigurable Patch Antenna Using RF MEMS Switches

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2016-08-01

    Full Text Available This paper proposes a radiating pattern reconfigurable antenna by employing RF Micro-electromechanical Systems (RF MEMS switches. The antenna has a low profile and small size of 4 mm × 5 mm × 0.4 mm, and mainly consists of one main patch, two assistant patches, and two RF MEMS switches. By changing the RF MEMS switches operating modes, the proposed antenna can switch among three radiating patterns (with main lobe directions of approximately −17.0°, 0° and +17.0° at 35 GHz. The far-field vector addition model is applied to analyse the pattern. Comparing the measured results with analytical and simulated results, good agreements are obtained.

  6. Fabrication of GaN structures with embedded network of voids using pillar patterned GaN templates

    Science.gov (United States)

    Svensk, O.; Ali, M.; Riuttanen, L.; Törmä, P. T.; Sintonen, S.; Suihkonen, S.; Sopanen, M.; Lipsanen, H.

    2013-05-01

    In this paper we report on the MOCVD growth and characterization of GaN structures and InGaN single quantum wells grown on pillar patterned GaN/sapphire templates. During the regrowth a network of voids was intentionally formed at the interface of sapphire substrate and GaN epitaxial layer. The regrowth process was found to decrease the threading dislocation density of the overgrown layer. The quantum well sample grown on patterned template showed significantly higher optical output in photoluminescence measurements compared to the reference sample with identical internal quantum efficiency characteristics. We attribute the increase to enhanced light extraction efficiency caused by strong scattering and redirection of light from the scattering elements.

  7. High temperature charge amplifier for geothermal applications

    Science.gov (United States)

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  8. Audio power amplifier design handbook

    CERN Document Server

    Self, Douglas

    2013-01-01

    This book is essential for audio power amplifier designers and engineers for one simple reason...it enables you as a professional to develop reliable, high-performance circuits. The Author Douglas Self covers the major issues of distortion and linearity, power supplies, overload, DC-protection and reactive loading. He also tackles unusual forms of compensation and distortion produced by capacitors and fuses. This completely updated fifth edition includes four NEW chapters including one on The XD Principle, invented by the author, and used by Cambridge Audio. Cro

  9. Multi-wavelength emitting InGan/GaN quantum well grown on V-shaped gan(1101) microfacet.

    Science.gov (United States)

    Kang, Eun-Sil; Ju, Jin-Woo; Kim, Jin Soo; Ahn, Haeng-Keun; Lee, June Key; Kim, Jin Hyeok; Shin, Dong-Chan; Lee, In-Hwan

    2007-11-01

    InGaN/GaN multiple quantum wells (MQWs) were successfully grown on the inclined GaN(1101) microfacets. Conventional photolithography and subsequent growth of GaN were employed to generate the V-shaped microfacets along (1120) direction. The well-developed microfacets observed by scanning electron microscopy and the clear transmission electron microscope interfacial images indicated that the MQW was successfully grown on the GaN microfacets. Interestingly, cathodoluminescence (CL) spectra measured on the microfacets showed a continuous change in the luminescence peak positions. The CL peaks were shifted to a longer wavelength from 420 nm to 440 nm as the probing points were changed along upward direction. This could be attributed to the nonuniform distribution of the In composition and/or the wavefunction overlapping between adjacent wells. Present works thus propose a novel route to fabricate a monolithic white light emitting diode without phosphors by growing the InGaN/GaN MQWs on (1101) facet.

  10. F-band, High-Efficiency GaN Power Amplifier for the Scanning Microwave Limb Sounder and SOFIA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — QuinStar Technology proposes to develop a high-efficiency, 4-W SSPA operating at F-band frequencies (106-114 GHz). This will be achieved by employing two major...

  11. Theoretical study of Structural and analytical potential energy functions of GaN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using Density Function Theory,the present work has optimized the equilibrium geometry of GaN. Murrell-Sorbie analytical potential energy functions of GaN have been derived by using ab initio data and the least-square fitting method,and harmonic frequency,force constant and spectroscopic data also have been calculated.

  12. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, S.F., E-mail: sookfongcheah@yahoo.com [Nano-Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Lee, S.C. [Nano-Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z. [Nano-Optoelectronic Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-03-15

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer.

  13. Transmission measurement of the photonic band gap of GaN photonic crystal slabs

    NARCIS (Netherlands)

    Caro, J.; Roeling, E.M.; Rong, B.; Nguyen, H.M.; Van der Drift, E.W.J.M.; Rogge, S.; Karouta, F.; Van der Heijden, R.W.; Salemink, H.W.M.

    2008-01-01

    A high-contrast-ratio (30 dB) photonic band gap in the near-infrared transmission of hole-type GaN two-dimensional photonic crystals (PhCs) is reported. These crystals are deeply etched in a 650 nm thick GaN layer grown on sapphire. A comparison of the measured spectrum with finite difference time d

  14. Conduction, reverse conduction and switching characteristics of GaN E-HEMT

    DEFF Research Database (Denmark)

    Sørensen, Charlie; Lindblad Fogsgaard, Martin; Christiansen, Michael Noe;

    2015-01-01

    In this paper switching and conduction characterization of the GS66508P-E03 650V enhancement mode gallium nitride (GaN) transistor is described. GaN transistors are leading edge technology and as so, their characteristics are less than well documented. The switching characteristics are found using...

  15. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    Directory of Open Access Journals (Sweden)

    Tudor Braniste

    2016-09-01

    Full Text Available Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  16. High-pressure X-ray diffraction study of bulk- and nanocrystalline GaN

    DEFF Research Database (Denmark)

    Jorgensen, J.E.; Jakobsen, J.M.; Jiang, Jianzhong

    2003-01-01

    Bulk- and nanocrystalline GaN have been studied by high-pressure energy-dispersive X-ray diffraction. Pressure-induced structural phase transitions from the wurtzite to the NaCl phase were observed in both materials. The transition pressure was found to be 40 GPa for the bulk-crystalline GaN, while...

  17. Terahertz study of m-plane GaN thin fims

    Science.gov (United States)

    Quadir, Shaham; Jang, Der-Jun; Lin, Ching-Liang; Lo, Ikai

    2014-03-01

    We investigate the optical properties of m-plane GaN thin films using the terahertz time domain spectroscopy. The m-plane GaN thin films were grown on γ-LiAlO2 substrates with buffer layers of low temperature grown GaN. The thin films were illuminated with terahertz radiation generated by a LT-GaAs antenna and the transmitted signal was detected by a ZnTe crystal. The polarization of the terahertz wave was chosen to be either parallel or perpendicular to the GaN [0001] direction. We compared the transmitted signals of the m-plane GaN thin films to that of the LAO substrate. The samples as well as the LAO substrate exhibited polarization dependence of absorption in terahertz spectrum. The carrier densities and the mobilities were derived from the transmittance of the THz wave using extended Drude model. We found, in all samples, both the carrier densities and mobilities along the GaN [0001] direction were smaller than those along the GaN [1120] direction due to the stripe formation along the GaN [1120].

  18. High power RF solid state power amplifier system

    Science.gov (United States)

    Sims, III, William Herbert (Inventor); Chavers, Donald Gregory (Inventor); Richeson, James J. (Inventor)

    2011-01-01

    A high power, high frequency, solid state power amplifier system includes a plurality of input multiple port splitters for receiving a high-frequency input and for dividing the input into a plurality of outputs and a plurality of solid state amplifier units. Each amplifier unit includes a plurality of amplifiers, and each amplifier is individually connected to one of the outputs of multiport splitters and produces a corresponding amplified output. A plurality of multiport combiners combine the amplified outputs of the amplifiers of each of the amplifier units to a combined output. Automatic level control protection circuitry protects the amplifiers and maintains a substantial constant amplifier power output.

  19. Vertical nonpolar growth templates for light emitting diodes formed with GaN nanosheets

    Science.gov (United States)

    Yeh, Ting-Wei; Lin, Yen-Ting; Ahn, Byungmin; Stewart, Lawrence S.; Daniel Dapkus, P.; Nutt, Steven R.

    2012-01-01

    We demonstrate that nonpolar m-plane surfaces can be generated on uniform GaN nanosheet arrays grown vertically from the (0001)-GaN bulk material. InGaN/GaN multiple quantum wells (MQWs) grown on the facets of these nanosheets are demonstrated by cross-sectional transmission electron microscopy. Owing to the high aspect ratio of the GaN nanosheet structure, the MQWs predominantly grow on nonpolar GaN planes. The results suggest that GaN nanosheets provide a conduction path for device fabrication and also a growth template to reduce the piezoelectric field inside the active region of InGaN-based light emitting diodes.

  20. Evaluation of subsurface damage in GaN substrate induced by mechanical polishing with diamond abrasives

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Hideo, E-mail: h-aida@namiki.net [NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 3-8-22 Shinden, Adachi, Tokyo 123-8511 (Japan); KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Takeda, Hidetoshi; Kim, Seong-Woo; Aota, Natsuko; Koyama, Koji [NJC Institute of Technology, Namiki Precision Jewel Co., Ltd., 3-8-22 Shinden, Adachi, Tokyo 123-8511 (Japan); Yamazaki, Tsutomu; Doi, Toshiro [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2014-02-15

    The relationship between the depth of the subsurface damage (SSD) and the size of the diamond abrasive used for mechanical polishing (MP) of GaN substrates was investigated in detail. GaN is categorized as a hard, brittle material, and material removal in MP proceeds principally to the fracture of GaN crystals. Atomic force microscopy and cathodoluminescence imaging revealed that the mechanical processing generated surface scratches and SSD. The SSD depth reduced as the diamond abrasive size reduced. A comparison of the relationship between the SSD depth and the diamond abrasive size used in the MP of GaN with the same relationship for typical brittle materials such as glass substrates suggests that the MP of GaN substrates proceeds via the same mechanism as glass.

  1. Frequency response and design consideration of GaN SAM avalanche photodiodes

    Science.gov (United States)

    Xie, Feng; Yang, Guofeng; Zhou, Dong; Lu, Hai; Wang, Guosheng

    2016-11-01

    In this work, a method is developed for estimating the frequency response characteristics of GaN avalanche photodiodes (APDs) with separated absorption and multiplication regions (SAM). The method calculates the total diode current with varying frequency by solving transport equations analytically and uses a commercial device simulator as a supplement for determining the exact electrical field profile within the device. Due to the high carrier saturation velocity of GaN, a high-gain-bandwidth product over THz is found achievable for GaN SAM-APDs. The potential performances of GaN SAM-APDs with different structural designs are further compared through numerical studies. It is found that a close-to-reach-through design is attractive for simultaneously achieving both relatively low operation voltage and high working frequency. In addition, transit-time limit and RC-delay limit for the frequency response of GaN SAM-APDs are also discussed.

  2. Surface decomposition and annealing behavior of GaN implanted with Eu

    CERN Document Server

    Liu Hua Ming; Chen Chang Chun; Wang Sen; Zhu De Zhang; Xu Hong Jie

    2002-01-01

    Investigations on surface decomposition of GaN implanted with low energy (80 keV) Eu ion to a low dose (1 x 10 sup 1 sup 4 cm sup - sup 2), and its annealing behavior under high temperature (1050 degree C) in N sub 2 are performed. The as-grown, as-implanted and annealed GaN films are characterized by proton elastic scattering (PES), Rutherford backscattering spectrometry (RBS), photoluminescence (PL) and atomic force microscopy (AFM). The results show that Eu ion implantation induces radiation defects and decomposition of GaN. The GaN surface decomposition is more serious during high temperature annealing. The atomic ratio of N in as-grown, as-implanted and annealed GaN film is 47 at.%, 44 at.% and 40 at.%, respectively. As a result, a rough Ga-rich layer is formed at the surface, though the lattice defects are partly removed after high temperature annealing

  3. Lattice-Symmetry-Driven Epitaxy of Hierarchical GaN Nanotripods

    KAUST Repository

    Wang, Ping

    2017-01-18

    Lattice-symmetry-driven epitaxy of hierarchical GaN nanotripods is demonstrated. The nanotripods emerge on the top of hexagonal GaN nanowires, which are selectively grown on pillar-patterned GaN templates using molecular beam epitaxy. High-resolution transmission electron microscopy confirms that two kinds of lattice-symmetry, wurtzite (wz) and zinc-blende (zb), coexist in the GaN nanotripods. Periodical transformation between wz and zb drives the epitaxy of the hierarchical nanotripods with N-polarity. The zb-GaN is formed by the poor diffusion of adatoms, and it can be suppressed by improving the ability of the Ga adatoms to migrate as the growth temperature increased. This controllable epitaxy of hierarchical GaN nanotripods allows quantum dots to be located at the phase junctions of the nanotripods and nanowires, suggesting a new recipe for multichannel quantum devices.

  4. Synchrotron X-ray diffraction analysis of epitaxial GaN layer laterally overgrown

    CERN Document Server

    Feng Gan; Wang Yu Tian; Yang Hui; Liang Jun Wu; Zheng Wen Li; Jia Quan Jie

    2002-01-01

    The GaN layer grown by epitaxial lateral overgrowth on sapphire (0001) has been investigated by synchrotron X-ray diffraction. The results show that ELO GaN stripes bend towards the SiN sub x mask in directions perpendicular to the stripe direction. This lead to the GaN (0001) crystal planes in the 'wings' (overgrown GaN) exhibit crystallographic tilts away from those in the 'window' (seed) regions. The GaN (0002) diffraction was used to determine the grain sizes in the wing region and window region, respectively. It is found that the grain size in the wing region increases about three times comparing to those in window region

  5. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga......N devices. Simple replacement of Si or SiC devices with GaN devices in the converter will not give an expected increase in efficiency or any improvement in the performance of the converter. The use of GaN devices has defined another dimension in the design of power converters, which mainly deals...

  6. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  7. GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids

    Science.gov (United States)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2016-02-01

    Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.

  8. Quantum Noise in Amplifiers and Hawking/Dumb-Hole Radiation as Amplifier Noise

    CERN Document Server

    Unruh, W G

    2011-01-01

    The quantum noise in a linear amplifier is shown to be thermal noise. The theory of linear amplifiers is applied first to the simplest, single or double oscillator model of an amplifier, and then to linear model of an amplifier with continuous fields and input and outputs. Finally it is shown that the thermal noise emitted by black holes first demonstrated by Hawking, and of dumb holes (sonic and other analogs to black holes), arises from the same analysis as for linear amplifiers. The amplifier noise of black holes acting as amplifiers on the quantum fields living in the spacetime surrounding the black hole is the radiation discovered by Hawking. For any amplifier, that quantum noise is completely characterized by the attributes of the system regarded as a classical amplifier, and arises out of those classical amplification factors and the commutation relations of quantum mechanics.

  9. YANG-MILLS FIELD AMPLIFIER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-09-01

    Full Text Available The article presents a project of the Yang-Mills amplifier. Amplifier model is a multilayer spherical shell with increasing density towards the center. In the center of the amplifier is the core of high-density material. It is shown that in such a system, the amplitude of the Yang-Mills waves rises from the periphery to the center of several orders of magnitude. The role of the Yang-Mills field in the processes occurring in the nuclei of galaxies, stars and planets is discussed. The data modeling to strengthen the Yang-Mills field in the bowels of the planet, with an atomic explosion, and in some special devices such as the voltaic pile. To describe the mechanism of amplification chromodynamics field used as accurate results in Yang-Mills theory and numerical models developed based on an average and the exact equations as well. Among the exact solutions of the special role played by the centralsymmetric metric describing the contribution of the Yang-Mills field in the speed of recession of galaxies. Among the approximate numerical models can be noted the eight-scalar model we have developed for the simulation of non-linear color oscillations and chaos in the Yang-Mills theory. Earlier models were investigated spatio-temporal oscillations of the YangMills theory in the case of three and eight colors. The results of numerical simulation show that the nonlinear interaction does not lead to a spatial mixing of colors as it might be in the case of turbulent diffusion. Depending on the system parameters there is a suppression of the amplitude of the oscillations the first three by five colors or vice versa. The kinetic energy fluctuations or shared equally between the color components, or dominated by the kinetic energy of repressed groups of colors. In the present study, we found that amplification chromodynamic field leads to a sharp increase in the amplitude of the suppressed color, which can lead to an increase in entropy, excitation of nuclear

  10. Preparation of Porous GaN Buffer and Its Influence on the Residual Stress of GaN Epilayers Grown by Hydride Vapor Phase Epitaxy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The preparation of porous structure on the molecular beam epitaxy (MBE)-grown mixed-polarity GaN epilayers was reported by using the wet chemical etching method. The effect of this porous structure on the residual stress of subsequent-growth GaN epilayers was studied by Raman and photoluminescence (PL) spectrum.Substantial decrease in the biaxial stresse can be achieved by employing the porous buffers in the hydride vapour phase epitaxy (HVPE) epilayer growth.

  11. Locoregional MYCN-amplified neuroblastoma.

    Science.gov (United States)

    Morales La Madrid, Andres; Volchenboum, Samuel; Gastier-Foster, Julie M; Pyatt, Robert; Liu, Don; Pytel, Peter; Lavarino, Cinzia; Rodriguez, Eva; Cohn, Susan L

    2012-10-01

    MYCN-amplification is strongly associated with other high-risk prognostic factors and poor outcome in neuroblastoma. Infrequently, amplification of MYCN has been identified in localized tumors with favorable biologic features. Outcome for these children is difficult to predict and optimal treatment strategies remain unclear. We report a 5-month-old who presented with an MYCN-amplified INSS stage 3, pelvic neuroblastoma. The tumor had favorable histology, hyperdiploidy, and lacked 1p36 and 11q23 aberrations. Although the patient met the criteria for high-risk neuroblastoma, because of the discordant prognostic markers we elected to treat her according to an intermediate-risk protocol. She remains event-free more than 18 months.

  12. Transverse pumped laser amplifier architecture

    Science.gov (United States)

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  13. Ab initio investigations of the strontium gallium nitride ternaries Sr 3GaN3 and Sr6GaN5: Promising materials for optoelectronic

    KAUST Repository

    Goumri-Said, Souraya

    2013-05-31

    Sr3GaN3 and Sr6GaN5 could be promising potential materials for applications in the microelectronics, optoelectronics and coating materials areas of research. We studied in detail their structural, elastic, electronic, optical as well as the vibrational properties, by means of density functional theory framework. Both of these ternaries are semiconductors, where Sr3GaN3 exhibits a small indirect gap whereas Sr6GaN5 has a large direct gap. Indeed, their optical properties are reported for radiation up to 40 eV. Charge densities contours, Hirshfeld and Mulliken populations, are reported to investigate the role of each element in the bonding. From the mechanical properties calculation, it is found that Sr6GaN5 is harder than Sr3GaN3, and the latter is more anisotropic than the former. The phonon dispersion relation, density of phonon states and the vibrational stability are reported from the density functional perturbation theory calculations. © 2013 IOP Publishing Ltd.

  14. Dynamics of Soliton Cascades in Fiber Amplifiers

    CERN Document Server

    Arteaga-Sierra, F R; Agrawal, Govind P

    2016-01-01

    We study numerically the formation of cascading solitons when femtosecond optical pulses are launched into a fiber amplifier with less energy than required to form a soliton of equal duration. As the pulse is amplified, cascaded fundamental solitons are created at different distances, without soliton fission, as each fundamental soliton moves outside the gain bandwidth through the Raman-induced spectral shifts. As a result, each input pulse creates multiple, temporally separated, ultrashort pulses of different wavelengths at the amplifier output. The number of pulses depends not only on the total gain of the amplifier but also on the width of input pulses.

  15. Enhanced Gain in Photonic Crystal Amplifiers

    DEFF Research Database (Denmark)

    Ek, Sara; Semenova, Elizaveta; Hansen, Per Lunnemann;

    2012-01-01

    study of a 1 QW photonic crystal amplifier. Net gain is achieved which enables laser oscillation in photonic crystal micro cavities. The ability to freely tailor the dispersion in a semiconductor optical amplifier makes it possible to raise the optical gain considerably over a certain bandwidth......We experimentally demonstrate enhanced gain in the slow-light regime of quantum well photonic crystal amplifiers. A strong gain enhancement is observed with the increase of the group refractive index, due to light slow-down. The slow light enhancement is shown in a amplified spontaneous emission...

  16. Reflection amplifiers in self-regulated learning

    NARCIS (Netherlands)

    Verpoorten, Dominique

    2012-01-01

    Verpoorten, D. (2012). Reflection amplifiers in self-regulated learning. Doctoral thesis. November, 9, 2012, Heerlen, The Netherlands: Open Universiteit (CELSTEC). Datawyse / Universitaire Pers Maastricht.

  17. Design of an 1800nm Raman amplifier

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    We present the experimental results for a Raman amplifier that operates at 1810 nm and is pumped by a Raman fiber laser at 1680 nm. Both the pump laser and the Raman amplifier is polarization maintaining. A challenge when scaling Raman amplifiers to longer wavelengths is the increase...... in transmission loss, but also the reduction in the Raman gain coefficient as the amplifier wavelength is increased. Both polarization components of the Raman gain is characterized, initially for linearly co-polarized signal and pump, subsequently linearly polarized orthogonal signal and pump. The noise...

  18. Current steering effect of GaN nanoporous structure

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chia-Feng, E-mail: cflin@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Wang, Jing-Hao; Cheng, Po-Fu; Tseng, Wang-Po; Fan, Feng-Hsu; Wu, Kaun-Chun; Lee, Wen-Che [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Han, Jung [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States)

    2014-11-03

    Current steering effect of InGaN light emitting diode (LED) structure was demonstrated by forming a high resistivity GaN nanoporous structure. Disk-array patterns with current-injection bridge structures were fabricated on InGaN LED devices through a focused ion beam (FIB) system. GaN nanoporous structure was formed around the FIB-drilled holes through a electrochemical (EC) wet-etching process on a n-type GaN:Si layer under the InGaN active layer. High emission intensity and small peak wavelength blueshift phenomenon of the electroluminescence spectra were observed in the EC-treated region compared with the non-treated region. The branch-like nanoporous structure was formed along the lateral etched direction to steer the injection current in 5 μm-width bridge structures. In the FIB-drilled hole structure, high light emission intensity of the central-disk region was observed by enlarging the bridge width to 10 μm, with a 5 μm EC-treated width, that reduced the current steering effect and increased the light scattering effect on the nanoporous structure. The EC-treated GaN:Si nanoporous structure acted as a high light scattering structure and a current steering structure that has potential on the current confinement for vertical cavity surface emitting laser applications. - Highlights: • High resistivity nanoporous-GaN formed in InGaN LED through electrochemical process. • Branch-like nanoporous in 5 μm-width bridge structure can steer the injection current. • Nanoporous GaN acted as s light scattering and current steering structures in InGaN LED.

  19. Devices for medical diagnosis with GaN lasers

    Science.gov (United States)

    Kwasny, Miroslaw; Mierczyk, Zygmunt

    2003-10-01

    This paper presents laser-induced fluroescence method (LIF) employing endogenous ("autofluroescence") and exogenous fluorophores. LIF is applied for clinical diagnosis in dermatology, gynaecology, urology, lung tumors as well as for early dentin caries. We describe the analysers with He-Ne, He-Cd, and SHG Nd:YAG lasers and new generation systems based on blue semiconductor GaN lasers that have been implemented into clinical practice till now. The LIF method, fundamental one for many medical applications, with excitation radiation of wavelength 400 nm could be appl,ied only using tunable dye lasers or titanium lasers adequte for laboratory investigations. Development of GaN laser shows possibility to design portable, compact diagnostic devices as multi-channel analysers of fluorescence spectra and surface imaging devoted to clinical application. The designed systems used for spectra measurement and registration of fluorescence images include lasers of power 5-30 mW and generate wavelengths of 405-407 nm. They are widely used in PDT method for investigation of superficial distribution of accumulation kinetics of all known photosensitizers, their elimination, and degradation as well as for treatment of superficial lesions of mucosa and skin. Excitation of exogenous porphrins in Soret band makes possible to estimate their concentration and a period of healthy skin photosensitivity that occurs after photosensitiser injections. Due to high sensitivity of spectrum analysers, properties of photosensitisers can be investigated in vitro (e.g. their aggregation, purity, chromatographic distributions) when their concentrations are 2-3 times lower in comparison to concentrations investigated with typical spectrofluorescence methods. Dentistry diagnosis is a new field in which GaN laser devices can be applied. After induction with blue light, decreased autofluorescence intensity can be observed when dentin caries occur and strong characteristic bands of endogenous porphyrines

  20. GaN Nanowire Devices: Fabrication and Characterization

    Science.gov (United States)

    Scott, Reum

    The development of microelectronics in the last 25 years has been characterized by an exponential increase of the bit density in integrated circuits (ICs) with time. Scaling solid-state devices improves cost, performance, and power; as such, it is of particular interest for companies, who gain a market advantage with the latest technology. As a result, the microelectronics industry has driven transistor feature size scaling from 10 μm to ~30 nm during the past 40 years. This trend has persisted for 40 years due to optimization, new processing techniques, device structures, and materials. But when noting processor speeds from the 1970's to 2009 and then again in 2010, the implication would be that the trend has ceased. To address the challenge of shrinking the integrated circuit (IC), current research is centered on identifying new materials and devices that can supplement and/or potentially supplant it. Bottom-up methods tailor nanoscale building blocks---atoms, molecules, quantum dots, and nanowires (NWs)---to be used to overcome these limitations. The Group IIIA nitrides (InN, AlN, and GaN) possess appealing properties such as a direct band gap spanning the whole solar spectrum, high saturation velocity, and high breakdown electric field. As a result nanostructures and nanodevices made from GaN and related nitrides are suitable candidates for efficient nanoscale UV/ visible light emitters, detectors, and gas sensors. To produce devices with such small structures new fabrication methods must be implemented. Devices composed of GaN nanowires were fabricated using photolithography and electron beam lithography. The IV characteristics of these devices were noted under different illuminations and the current tripled from 4.8*10-7 A to 1.59*10 -6 A under UV light which persisted for at least 5hrs.

  1. Visible fiber lasers excited by GaN laser diodes

    Science.gov (United States)

    Fujimoto, Yasushi; Nakanishi, Jun; Yamada, Tsuyoshi; Ishii, Osamu; Yamazaki, Masaaki

    2013-07-01

    This paper describes and discusses visible fiber lasers that are excited by GaN laser diodes. One of the attractive points of visible light is that the human eye is sensitive to it between 400 and 700 nm, and therefore we can see applications in display technology. Of course, many other applications exist. First, we briefly review previously developed visible lasers in the gas, liquid, and solid-state phases and describe the history of primary solid-state visible laser research by focusing on rare-earth doped fluoride media, including glasses and crystals, to clarify the differences and the merits of primary solid-state visible lasers. We also demonstrate over 1 W operation of a Pr:WPFG fiber laser due to high-power GaN laser diodes and low-loss optical fibers (0.1 dB/m) made by waterproof fluoride glasses. This new optical fiber glass is based on an AlF3 system fluoride glass, and its waterproof property is much better than the well known fluoride glass of ZBLAN. The configuration of primary visible fiber lasers promises highly efficient, cost-effective, and simple laser systems and will realize visible lasers with photon beam quality and quantity, such as high-power CW or tunable laser systems, compact ultraviolet lasers, and low-cost ultra-short pulse laser systems. We believe that primary visible fiber lasers, especially those excited by GaN laser diodes, will be effective tools for creating the next generation of research and light sources.

  2. Characterization of GaN Nanorods Fabricated Using Ni Nanomasking and Reactive Ion Etching: A Top-Down Approach

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2013-05-01

    Full Text Available Large thermal mismatch between GaN surface and sapphire results in compressive stress in Gallium Nitride (GaN layer which degrades the device performance. Nanostructuring the GaN can reduce this stress leading to reduction in Quantum Confined Stark Effect. Aligned GaN nanorods based nanodevices have potential applications in electronics and optoelectronics. This paper describes the fabrication of GaN nanorods using Ni nanomasking and reactive ion etching. The morphology of GaN nanorods was studied by field emission scanning electron microscopy. The optical properties of GaN nanorods were studied by Cathodoluminescence (CL spectroscopy. CL results revealed the existence of characteristic band-edge luminescence and yellow band luminescence.

  3. MOCVD growth of GaN on Si through novel substrate modification techniques

    Science.gov (United States)

    Gagnon, Jarod C.

    GaN is a semiconductor material with great potential for use in high power electronics and optoelectronics due to the high electron mobility, high breakdown voltage, high thermal stability, and large direct bandgap of GaN. Si is a desirable substrate material for GaN heteroepitaxy due to the low cost of production, large wafer sizes available, and current widespread use in the electronics industry. The growth of GaN/Si devices suffers from the lattice and CTE mismatches between GaN and Si and therefore multiple methods of strain reduction have been employed to counter these effects. In this work we presented two novel methods of substrate modification to promote the growth of device quality GaN on Si. Initial work focused on the implantation of AlN/Si(111) substrates with N+ ions below the AlN/Si(111) interface. A reduction in the initial compressive stress in GaN films as well as the degree of tensile stress generation during growth was observed on implanted samples. Optical microscopy of the GaN surfaces showed reduced channeling crack density on implanted substrates. Transmission electron microscopy (TEM) studies showed a disordered layer in the Si substrate at the implantation depth which consisted of a mixture of polycrystalline and amorphous Si. Evidence was provided to suggest that the disordered layer at the implantation depth was acting as a compliant layer which decoupled the GaN film from the bulk Si substrate and partially accommodated the tensile stress formed during growth and cooling. A reduction in threading dislocation (TD) density on ion implanted substrates was also observed. Additional studies showed that by increasing the lateral size of AlN islands, the tensile growth stress and TD density in GaN films on ion implanted substrates could be further reduced. XRD studies showed an expansion of the AlN lattice on implanted substrates with larger lateral island sizes. The final tensile growth stress of films on implanted substrates was further

  4. Field emission from quantum size GaN structures

    Science.gov (United States)

    Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu. M.; Hubbard, S.; Tiginyanu, I. M.; Mutamba, K.; Hartnagel, H. L.; Litovchenko, V. G.; Evtukh, A.

    2003-12-01

    Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2×10 17 or 3×10 18 cm -3) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/μm and the appearance of quantum-size effect in the I- V curves.

  5. Field emission from quantum size GaN structures

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazoglu, O.; Pavlidis, D.; Litvin, Yu.M.; Hubbard, S.; Tiginyanu, I.M.; Mutamba, K.; Hartnagel, H.L.; Litovchenko, V.G.; Evtukh, A

    2003-12-30

    Whisker structures and quantum dots fabricated by photoelectrochemical (PEC) etching of undoped and doped metalorganic chemical vapor deposition (MOCVD)-grown GaN (2x10{sup 17} or 3x10{sup 18} cm{sup -3}) are investigated in relation with their field-emission characteristics. Different surface morphologies, corresponding to different etching time and photocurrent, results in different field-emission characteristics with low turn-on voltage down to 4 V/{mu}m and the appearance of quantum-size effect in the I-V curves.

  6. Photoluminescence study on Eu-implanted GaN

    Institute of Scientific and Technical Information of China (English)

    Zhang Chun-Guang; Bian Liu-Fang; Chen Wei-De

    2005-01-01

    The photoluminescence (PL) properties of Eu-implanted GaN thin films are studied. The experimental results show that the PL intensity is seriously affected by ion implantation conditions. The PL efficiency increases exponentially with annealing temperature increasing up to a maximum temperature of 1050℃. Moreover, the PL intensity for the sample implanted along the channelling direction is nearly twice more than that observed from the sample implanted along the random direction. The thermal quenching of PL intensity from 10K to 300K for sample annealed at 1050℃ is only 42.%.

  7. Acceptor and donor impurities in GaN nanocrystals

    OpenAIRE

    Echeverría-Arrondo, C.; Pérez-Conde, J.; Bhattacharjee, A. K.

    2010-01-01

    We investigate acceptor and donor states in GaN nanocrystals doped with a single substitutional impurity. Quantum dots (QD's) of zinc-blende structure and spherical shape are considered with the radius ranging from 4.5 to 67.7 A. The size-dependent energy spectra are calculated within the sp3d5s* tight-binding model, which yields a good agreement with the confinement-induced blue shifts observed in undoped QD's. The computed binding energy is strongly enhanced with respect to the experimental...

  8. Stress related aspects of GaN technology physics

    Science.gov (United States)

    Suhir, Ephraim

    2015-03-01

    Simple, easy-to-use and physically meaningful analytical models have been developed for the assessment of the combined effect of the lattice and thermal mismatch on the induced stresses in an elongated bi-material assembly, as well as on the thermal mismatch on the thermal stresses in a tri-material assembly, in which the lattice mismatched stresses are eliminated in one way or another. This could be done, e.g., by using a polished or an etched substrate. The analysis is carried out in application to Gallium Nitride (GaN)-Silicon Carbide (SiC) and GaN-diamond (C) filmsubstrate assemblies. The calculated data are obtained, assuming that no annealing or other stress reduction means is applied. The data agree reasonably well with the reported (available) in-situ measurements. The most important conclusion from the computed data is that even if a reasonably good lattice match takes place (as, e.g., in the case of a GaN film fabricated on a SiC substrate, when the mismatch strain is only about 3%) and, in addition, the temperature change (from the fabrication/growth temperature to the operation temperature) is significant (as high as 1000 °C), the thermal stresses are still considerably lower than the lattice-mismatch stresses. Although there are structural and technological means for further reduction of the lattice-mismatch stresses (e.g., by high temperature annealing or by providing one or more buffering layers, or by using patterned or porous substrates), there is still a strong incentive to eliminate completely the lattice mismatch stresses. This seems to be indeed possible, if polished or otherwise flattened (e.g., chemically etched) substrates and sputter deposited GaN film is employed. In such a case only thermal stresses remain, but even these could be reduced, if necessary, by using compliant buffering layers, including layers of variable compliance, or by introducing variable compliance into the properly engineered substrate. In any event, it is expected

  9. Pressure-induced phase transition in GaN nanocrystals

    CERN Document Server

    Cui, Q; Zhang, W; Wang, X; Zhang, J; Cui, T; Xie, Y; Liu, J; Zou, G

    2002-01-01

    High-pressure in situ energy-dispersive x-ray diffraction experiments on GaN nanocrystals with 50 nm diameter have been carried out using a synchrotron x-ray source and a diamond-anvil cell up to about 79 GPa at room temperature. A pressure-induced first-order structural phase transition from the wurtzite-type structure to the rock-salt-type structure starts at about 48.8 GPa. The rock-salt-type phase persists to the highest pressure in our experimental range.

  10. Modelling of GaN quantum dot terahertz cascade laser

    Science.gov (United States)

    Asgari, A.; Khorrami, A. A.

    2013-03-01

    In this paper GaN based spherical quantum dot cascade lasers has been modelled, where the generation of the terahertz waves are obtained. The Schrödinger, Poisson, and the laser rate equations have been solved self-consistently including all dominant physical effects such as piezoelectric and spontaneous polarization in nitride-based QDs and the effects of the temperature. The exact value of the energy levels, the wavefunctions, the lifetimes of electron levels, and the lasing frequency are calculated. Also the laser parameters such as the optical gain, the output power and the threshold current density have been calculated at different temperatures and applied electric fields.

  11. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  12. Ping-pong auto-zero amplifier with glitch reduction

    Science.gov (United States)

    Larson, Mark R [Maple Grove, MN

    2008-01-22

    A ping-pong amplifier with reduced glitching is described. The ping-pong amplifier includes a nulling amplifier coupled to a switching network. The switching network is used to auto-zero a ping amplifier within a ping-pong amplifier. The nulling amplifier drives the output of a ping amplifier to a proper output voltage level during auto-zeroing of the ping amplifier. By being at a proper output voltage level, glitches associated with transitioning between a ping amplifier and a pong amplifier are reduced or eliminated.

  13. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Khurgin, Jacob B. [Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-01-19

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.

  14. Distributed feedback laser amplifiers combining the functions of amplifiers and channel filters

    DEFF Research Database (Denmark)

    Wang, Z.; Durhuus, T.; Mikkelsen, Benny;

    1994-01-01

    A dynamic model for distributed feedback amplifiers, including the mode coupled equations and the carrier rate equation, is established. The presented mode coupled equations have taken into account the interaction between fast changing optical signal and the waveguide with corrugations. By showin...... the possibility of amplifying 100 ps pulses without pulse broadening, we anticipate that a distributed feedback amplifier can be used as a combined amplifier and channel filter in high bit rate transmission systems....

  15. Amplified spontaneous emission and its restraint in a terawatt Ti:sapphire amplifier

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Amplified spontaneous emission (ASE) and its restraint in a femtosecond Ti: sapphire chirped_pulse amplifier were investigated. The noises arising from ASE were effectively filtered out in the spatial, temporal and spectral domain. Pulses as short as 38 fs were amplified to peak power of 1.4 TW. The power ratio between the amplified femtosecond pulse and the ASE was higher than 106:1.

  16. Effect of reactor pressure on the growth rate and structural properties of GaN films

    Institute of Scientific and Technical Information of China (English)

    NI JinYu; HAO Yue; ZHANG JinCheng; YANG LinAn

    2009-01-01

    The effect of reactor pressure on the growth rate,surface morphology and crystalline quality of GaN films grown on sapphire by metalorganic chemical vapor deposition is studied.The results show that as the reactor pressure increases from 2500 to 20000 Pa,the GaN surface becomes rough and the growth rate of GaN films decreases.The rough surface morphology is associated with the initial high temperature GaN islands,which are large with low density due to low adatom surface diffusion under high reactor pressure.These islands prolong the occurrence of 2D growth mode and decrease the growth rate of GaN film.Meanwhile,the large GaN islands with low density lead to the reduction of threading dislocation density during subsequent island growth and coalescence,and consequently decrease the full width at half maximum of X-ray rocking curve of the GaN film.

  17. Nanoscratch Characterization of GaN Epilayers on c- and a-Axis Sapphire Substrates

    Directory of Open Access Journals (Sweden)

    Wen Hua-Chiang

    2010-01-01

    Full Text Available Abstract In this study, we used metal organic chemical vapor deposition to form gallium nitride (GaN epilayers on c- and a-axis sapphire substrates and then used the nanoscratch technique and atomic force microscopy (AFM to determine the nanotribological behavior and deformation characteristics of the GaN epilayers, respectively. The AFM morphological studies revealed that pile-up phenomena occurred on both sides of the scratches formed on the GaN epilayers. It is suggested that cracking dominates in the case of GaN epilayers while ploughing during the process of scratching; the appearances of the scratched surfaces were significantly different for the GaN epilayers on the c- and a-axis sapphire substrates. In addition, compared to the c-axis substrate, we obtained higher values of the coefficient of friction (μ and deeper penetration of the scratches on the GaN a-axis sapphire sample when we set the ramped force at 4,000 μN. This discrepancy suggests that GaN epilayers grown on c-axis sapphire have higher shear resistances than those formed on a-axis sapphire. The occurrence of pile-up events indicates that the generation and motion of individual dislocation, which we measured under the sites of critical brittle transitions of the scratch track, resulted in ductile and/or brittle properties as a result of the deformed and strain-hardened lattice structure.

  18. GaN quantum dot polarity determination by X-ray photoelectron diffraction

    Science.gov (United States)

    Romanyuk, O.; Bartoš, I.; Brault, J.; Mierry, P. De; Paskova, T.; Jiříček, P.

    2016-12-01

    Growth of GaN quantum dots (QDs) on polar and semipolar GaN substrates is a promising technology for efficient nitride-based light emitting diodes (LED). The QDs crystal orientation typically repeats the polarity of the substrate. In case of non-polar or semipolar substrates, the polarity of QDs is not obvious. In this article, the polarity of GaN QDs and of underlying layers was investigated nondestructively by X-ray photoelectron diffraction (XPD). Polar and semipolar GaN/Al0.5Ga0.5N heterostructures were grown on the sapphire substrates with (0001) and (1 1 bar 00) orientations by molecular beam epitaxy (MBE). Polar angle dependence of N 1s core-level photoelectron intensities were measured from GaN QDs and compared with the corresponding experimental curves from free-standing GaN crystals. It is confirmed experimentally, that the crystalline orientation of polar (0001) GaN QDs follows the orientation of the (0001) sapphire substrate. In case of semipolar GaN QDs grown on (1 1 bar 00) sapphire substrate, the (11 2 bar 2) polarity of QDs was determined.

  19. Influence of surface scattering on the thermal properties of spatially confined GaN nanofilm

    Science.gov (United States)

    Hou, Yang; Zhu, Lin-Li

    2016-08-01

    Gallium nitride (GaN), the notable representative of third generation semiconductors, has been widely applied to optoelectronic and microelectronic devices due to its excellent physical and chemical properties. In this paper, we investigate the surface scattering effect on the thermal properties of GaN nanofilms. The contribution of surface scattering to phonon transport is involved in solving a Boltzmann transport equation (BTE). The confined phonon properties of GaN nanofilms are calculated based on the elastic model. The theoretical results show that the surface scattering effect can modify the cross-plane phonon thermal conductivity of GaN nanostructures completely, resulting in the significant change of size effect on the conductivity in GaN nanofilm. Compared with the quantum confinement effect, the surface scattering leads to the order-of-magnitude reduction of the cross-plane thermal conductivity in GaN nanofilm. This work could be helpful for controlling the thermal properties of GaN nanostructures in nanoelectronic devices through surface engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 11302189 and 11321202) and the Doctoral Fund of Ministry of Education of China (Grant No. 20130101120175).

  20. Growth of GaN nanowall network on Si (111) substrate by molecular beam epitaxy.

    Science.gov (United States)

    Zhong, Aihua; Hane, Kazuhiro

    2012-12-27

    GaN nanowall network was epitaxially grown on Si (111) substrate by molecular beam epitaxy. GaN nanowalls overlap and interlace with one another, together with large numbers of holes, forming a continuous porous GaN nanowall network. The width of the GaN nanowall can be controlled, ranging from 30 to 200 nm by adjusting the N/Ga ratio. Characterization results of a transmission electron microscope and X-ray diffraction show that the GaN nanowall is well oriented along the C axis. Strong band edge emission centered at 363 nm is observed in the spectrum of room temperature photoluminescence, indicating that the GaN nanowall network is of high quality. The sheet resistance of the Si-doped GaN nanowall network along the lateral direction was 58 Ω/. The conductive porous nanowall network can be useful for integrated gas sensors due to the large surface area-to-volume ratio and electrical conductivity along the lateral direction by combining with Si micromachining.

  1. One-step graphene coating of heteroepitaxial GaN films.

    Science.gov (United States)

    Choi, Jae-Kyung; Huh, Jae-Hoon; Kim, Sung-Dae; Moon, Daeyoung; Yoon, Duhee; Joo, Kisu; Kwak, Jinsung; Chu, Jae Hwan; Kim, Sung Youb; Park, Kibog; Kim, Young-Woon; Yoon, Euijoon; Cheong, Hyeonsik; Kwon, Soon-Yong

    2012-11-02

    Today, state-of-the-art III-Ns technology has been focused on the growth of c-plane nitrides by metal-organic chemical vapor deposition (MOCVD) using a conventional two-step growth process. Here we show that the use of graphene as a coating layer allows the one-step growth of heteroepitaxial GaN films on sapphire in a MOCVD reactor, simplifying the GaN growth process. It is found that the graphene coating improves the wetting between GaN and sapphire, and, with as little as ~0.6 nm of graphene coating, the overgrown GaN layer on sapphire becomes continuous and flat. With increasing thickness of the graphene coating, the structural and optical properties of one-step grown GaN films gradually transition towards those of GaN films grown by a conventional two-step growth method. The InGaN/GaN multiple quantum well structure grown on a GaN/graphene/sapphire heterosystem shows a high internal quantum efficiency, allowing the use of one-step grown GaN films as 'pseudo-substrates' in optoelectronic devices. The introduction of graphene as a coating layer provides an atomic playground for metal adatoms and simplifies the III-Ns growth process, making it potentially very useful as a means to grow other heteroepitaxial films on arbitrary substrates with lattice and thermal mismatch.

  2. The influence of Fe doping on the surface topography of GaN epitaxial material

    Science.gov (United States)

    Lei, Cui; Haibo, Yin; Lijuan, Jiang; Quan, Wang; Chun, Feng; Hongling, Xiao; Cuimei, Wang; Jiamin, Gong; Bo, Zhang; Baiquan, Li; Xiaoliang, Wang; Zhanguo, Wang

    2015-10-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 1019 cm-3. High resistivity GaN epitaxial material which is 1 × 109 Ω·cm is achieved. Project supported by the Knowledge Innovation Engineering of the Chinese Academy of Sciences (No. YYY-0701-02), the National Natural Science Foundation of China (Nos. 61204017, 61334002), the State Key Development Program for Basic Research of China, and the National Science and Technology Major Project.

  3. Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light

    Science.gov (United States)

    Cao, Dezhong; Xiao, Hongdi; Fang, Jiacheng; Liu, Jianqiang; Gao, Qingxue; Liu, Xiangdong; Ma, Jin

    2017-01-01

    Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm‑2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.

  4. Design, fabrication and characterising of 100 W GaN HEMT for Ku-band application

    Science.gov (United States)

    Chunjiang, Ren; Shichang, Zhong; Yuchao, Li; Zhonghui, Li; Yuechan, Kong; Tangsheng, Chen

    2016-08-01

    Ku-band GaN power transistor with output power over 100 W under the pulsed operation mode is presented. A high temperature A1N nucleation together with an Fe doped GaN buffer was introduced for the developed GaN HEMT. The AlGaN/GaN hetero-structure deposited on 3 inch SiC substrate exhibited a 2DEG hall mobility and density of ˜2100 cm2/(V·s) and 1.0 × 1013 cm-2, respectively, at room temperature. Dual field plates were introduced to the designed 0.25 μm GaN HEMT and the source connected field plate was optimized for minimizing the peak field plate near the drain side of the gate, while maintaining excellent power gain performance for Ku-band application. The load-pull measurement at 14 GHz showed a power density of 5.2 W/mm for the fabricated 400 μm gate periphery GaN HEMT operated at a drain bias of 28 V. A Ku-band internally matched GaN power transistor was developed with two 10.8 mm gate periphery GaN HEMT chips combined. The GaN power transistor exhibited an output power of 102 W at 13.3 GHz and 32 V operating voltage under pulsed operation mode with a pulse width of 100 μs and duty cycle of 10%. The associated power gain and power added efficiency were 9.2 dB and 48%, respectively. To the best of the authors' knowledge, the PAE is the highest for Ku-band GaN power transistor with over 100 W output power.

  5. High Average Power Optical FEL Amplifiers

    CERN Document Server

    Ben-Zvi, I; Litvinenko, V

    2005-01-01

    Historically, the first demonstration of the FEL was in an amplifier configuration at Stanford University. There were other notable instances of amplifying a seed laser, such as the LLNL amplifier and the BNL ATF High-Gain Harmonic Generation FEL. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance a 100 kW average power FEL. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting energy recovery linacs combine well with the high-gain FEL amplifier to produce unprecedented average power FELs with some advantages. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Li...

  6. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  7. BROADBAND TRAVELLING WAVE SEMICONDUCTOR OPTICAL AMPLIFIER

    DEFF Research Database (Denmark)

    2010-01-01

    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...

  8. Ultrafast disk lasers and amplifiers

    Science.gov (United States)

    Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha

    2012-03-01

    Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.

  9. Research on quantum efficiency of GaN wire photocathode

    Science.gov (United States)

    Xia, Sihao; Liu, Lei; Diao, Yu; Kong, Yike

    2017-02-01

    On the basis of three-dimensional continuity equation in semiconductors and finite difference method, the carrier concentration and the quantum efficiency of GaN wire photocathode as a function of incident photon energy are achieved. Results show that the quantum efficiency of the wire photocathode is largely enhanced compared with the conventional planar photocathode. The superiority of the wire photocathode is reflected in its structure with surrounding surfaces. The quantum efficiency of the wire photocathode largely depends on the wire width, surface reflectivity, surface escape probability and incident angle of light. The back interface recombination rate, however, has little influences on the quantum efficiency of the wire photocathode. The simulation results suggest that the optimal width for photoemission is 150-200 nm. Besides, the quantum efficiency increases and decreases linearly with increasing surface escape probability and surface reflectivity, respectively. With increasing ratio of wire spacing to wire height, the optimal incident angle of light is reduced. These simulations are expected to guide the preparation of a better performing GaN wire photocathode.

  10. Radiotracer Spectroscopy on Group II Acceptors in GaN

    CERN Multimedia

    2002-01-01

    The semiconductor GaN is already used for the production of high power light emitting diodes in the blue and UV spectral range. But the $\\rho$-type doping, which is usually obtained by Mg doping, is still inefficient due to compensation and passivation effects caused by defects present in the material. It is theoretically predicted, that Be is a more promising candidate for $\\rho$-doping with a lower ionization energy of 60meV. It is our goal to investigate the electrical and optical properties of Be- and Mg-related defects in GaN to clarify the problem of compensation and passivation. The used methods are standard spectroscopic methods in semiconductor physics which are improved by using radioactive isotopes. The radioactive decay of $^{7}$Be and $^{28}$Mg is used to clearly correlate different signals with Be or Mg related defects. We intend to use the spectroscopic techniques Deep Level Transient Spectroscopy (DLTS), Thermal Admittance Spectroscopy (TAS), photoluminescence (PL) and additionally Hall-effect...

  11. A GaN photonic crystal membrane laser.

    Science.gov (United States)

    Lin, Cheng-Hung; Wang, Jyh-Yang; Chen, Cheng-Yen; Shen, Kun-Ching; Yeh, Dong-Ming; Kiang, Yean-Woei; Yang, C C

    2011-01-14

    The implementation of a series of optically pumped GaN photonic crystal (PhC) membrane lasers is demonstrated at room temperature. The photonic crystal is composed of a scalene-triangular arrangement of circular holes in GaN. Three defect structures are fabricated for comparing their lasing characteristics with those of perfect PhC. It is observed that all the lasing defect modes have lasing wavelengths very close to the band-edge modes in the perfect PhC structure. Although those lasing modes, including band-edge and defect modes, have different optical pump thresholds, different lasing spectral widths, different quality factors (Q factors), and different polarization ratios, all their polarization distributions show maxima in the directions around one of the hole arrangement axes. The similar lasing characteristics between the band-edge and defect modes are attributed to the existence of extremely narrow partial band gaps for forming the defect modes. Also, the oriented polarization properties are due to the scalene-triangle PhC structure. In one of the defect lasing modes, the lasing threshold is as low as 0.82 mJ cm(-2), the cavity Q factor is as large as 1743, and the polarization ratio is as large as 25.4. Such output parameters represent generally superior lasing behaviors when compared with previously reported implementations of similar laser structures.

  12. Orthodox etching of HVPE-grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  13. Gas source molecular beam epitaxial growth of GaN

    Science.gov (United States)

    Brown, Duncan W.

    1992-11-01

    Aluminum gallium nitride (AlGaN) has long been recognized as a promising radiation hard optoelectronic material. AlGaN has a wide direct band gap and therefore has potential applications in the fabrication of short wave-length devices, e.g., detectors and light-emitting diodes in the visible to ultraviolet region. Additionally, its piezoelectric properties and high acoustic velocities make it attractive for acoustic devices. The technical objective in Phase 1 was to determine if low temperature sources based on covalently bonded Group 3-nitrogen compounds could be used to prepare AlGaN films by gas source molecular beam epitaxy. The program required to investigate low temperature AlGaN source materials was separated into two parts: (1) the synthesis, purification, and pyrolysis of gallium-nitrogen adducts and aluminum-nitrogen adducts; and (2) the growth of GaN by chemical beam epitaxy. We clearly demonstrated under CBE conditions GaN(x)C(y) films could be grown using compounds with pre-existing Ga-N bonds whereas no films were formed using trimethylgallium. Dimethylgallium amide was shown to produce dramatically lower carbon content films in the presence of ammonia than did trimethylgallium in the presence of ammonia.

  14. High Quality, Low Cost Ammonothermal Bulk GaN Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ehrentraut, D; Pakalapati, RT; Kamber, DS; Jiang, WK; Pocius, DW; Downey, BC; McLaurin, M; D' Evelyn, MP

    2013-12-18

    Ammonothermal GaN growth using a novel apparatus has been performed on c-plane, m-plane, and semipolar seed crystals with diameters between 5 mm and 2 in. to thicknesses of 0.5-3 mm. The highest growth rates are greater than 40 mu m/h and rates in the 10-30 mu m/h range are routinely observed for all orientations. These values are 5-100x larger than those achieved by conventional ammonothermal GaN growth. The crystals have been characterized by X-ray diffraction rocking-curve (XRC) analysis, optical and scanning electron microscopy (SEM), cathodoluminescence (CL), optical spectroscopy, and capacitance-voltage measurements. The crystallinity of the grown crystals is similar to or better than that of the seed crystals, with FWHM values of about 20-100 arcsec and dislocation densities of 1 x 10(5)-5 x 10(6) cm(-2). Dislocation densities below 10(4) cm(-2) are observed in laterally-grown crystals. Epitaxial InGaN quantum well structures have been successfully grown on ammonothermal wafers. (C) 2013 The Japan Society of Applied Physics

  15. X-ray detection with GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Markus; Schmid, Martin; Thalhammer, Stefan [Helmholtz Zentrum Muenchen, Institute for Radiation Protection, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Howgate, John; Stutzmann, Martin [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany)

    2013-07-01

    In recent years precise miniature-dosimeters for real-time detection of X-rays in medicine have been developed with two aspects to monitor radiation in the region of interest and to improve therapeutic methods. Sensors include Germanium or Silicon photoconductive detectors, MOSFETs, and PIN-diodes. While miniaturization of these systems for spatial resolved detection is possible, they suffer from disadvantages. Sensor properties like material degradation, poor measurement stability and a limited detection range circumvent routine clinical applications. Here we show the development and evaluation of radiation detectors based on gallium nitride (GaN) thin films. While previous publications revealed relative low energy absorption of GaN, it is possible to achieve very high signal amplification factors inside the material due to an appropriate sensor configuration, which, in turn, compensates the low energy absorption. Our devices, which have detection volumes smaller than 10{sup (}-6) cm{sup 3}, show a high sensitivity to X-ray intensity and can record the air kerma rate (free-in-air) range of 1 microgray/s to 10 mGy/s with a signal stability of 1% and a linear total dose response over time. The presented results show the potential of GaN-based thin films for dosimetry and imaging applications.

  16. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  17. Design and performance of the beamlet amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Erlandson, A.C.; Rotter, M.D.; Frank, M.D.; McCracken, R.W.

    1996-06-01

    In future laser systems, such as the National Ignition Facility (NIF), multi-segment amplifiers (MSAs) will be used to amplify the laser beam to the required levels. As a prototype of such a laser architecture, the authors have designed, built, and tested flash-lamp-pumped, Nd:Glass, Brewster-angle slab MSAs for the Beamlet project. In this article, they review the fundamentals of Nd:Glass amplifiers, describe the MSA geometry, discuss parameters that are important in amplifier design, and present our results on the characterization of the Beamlet MSAs. In particular, gain and beam steering measurements show that the Beamlet amplifiers meet all optical performance specifications and perform close to model predictions.

  18. Amplified OTDR systems for multipoint corrosion monitoring.

    Science.gov (United States)

    Nascimento, Jehan F; Silva, Marcionilo J; Coêlho, Isnaldo J S; Cipriano, Eliel; Martins-Filho, Joaquim F

    2012-01-01

    We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR) technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  19. Amplified OTDR Systems for Multipoint Corrosion Monitoring

    Directory of Open Access Journals (Sweden)

    Joaquim F. Martins-Filho

    2012-03-01

    Full Text Available We present two configurations of an amplified fiber-optic-based corrosion sensor using the optical time domain reflectometry (OTDR technique as the interrogation method. The sensor system is multipoint, self-referenced, has no moving parts and can measure the corrosion rate several kilometers away from the OTDR equipment. The first OTDR monitoring system employs a remotely pumped in-line EDFA and it is used to evaluate the increase in system reach compared to a non-amplified configuration. The other amplified monitoring system uses an EDFA in booster configuration and we perform corrosion measurements and evaluations of system sensitivity to amplifier gain variations. Our experimental results obtained under controlled laboratory conditions show the advantages of the amplified system in terms of longer system reach with better spatial resolution, and also that the corrosion measurements obtained from our system are not sensitive to 3 dB gain variations.

  20. Detection of Non-Amplified Genomic DNA

    CERN Document Server

    Corradini, Roberto

    2012-01-01

    This book offers a state-of-the-art overview on non amplified DNA detection methods and provides chemists, biochemists, biotechnologists and material scientists with an introduction to these methods. In fact all these fields have dedicated resources to the problem of nucleic acid detection, each contributing with their own specific methods and concepts. This book will explain the basic principles of the different non amplified DNA detection methods available, highlighting their respective advantages and limitations. The importance of non-amplified DNA sequencing technologies will be also discussed. Non-amplified DNA detection can be achieved by adopting different techniques. Such techniques have allowed the commercialization of innovative platforms for DNA detection that are expected to break into the DNA diagnostics market. The enhanced sensitivity required for the detection of non amplified genomic DNA has prompted new strategies that can achieve ultrasensitivity by combining specific materials with specifi...