WorldWideScience

Sample records for k8 main-sequence star

  1. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L' Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally

  2. Main sequences defined by Hyades and field stars

    International Nuclear Information System (INIS)

    Upgren, A.R.

    1978-01-01

    The author reviews the main sequences defined by members of the Hyades cluster and by the field stars in the solar neighborhood. For this purpose, the discussion is limited primarily to the stars of the lower portions of the main sequence, especially those of spectral classes K and early M. There are two reasons for emphasis on the faint red dwarf stars. First, the value of a parallax depends on its size or, more accurately, on the error in parallax divided by the parallax itself. Large parallaxes of high precision occur in large numbers only for stars inhabiting the lower main sequence. Furthermore, brighter stars of earlier spectral classes are more likely to be influenced by evolutionary effects which may differ between the Hyades and field stars, and which are difficult to calibrate. (Auth.)

  3. Common Warm Dust Temperatures Around Main Sequence Stars

    Science.gov (United States)

    Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate

    2011-01-01

    We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.

  4. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    International Nuclear Information System (INIS)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas; Von Braun, Kaspar; Van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm; Ridgway, Stephen

    2013-01-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C ), Kron (R K I K ), Sloan (griz), and WISE (W 3 W 4 ) photometric systems. These relations have an average standard deviation of ∼3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ∼2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  5. STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; Jones, Jeremy; White, Russel; McAlister, Harold A.; Gies, Douglas [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Farrington, Chris; Schaefer, Gail; Ten Brummelaar, Theo A.; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm [CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States)

    2013-07-01

    Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR{sub J} I{sub J} JHK), Cousins (R{sub C} I{sub C}), Kron (R{sub K} I{sub K}), Sloan (griz), and WISE (W{sub 3} W{sub 4}) photometric systems. These relations have an average standard deviation of {approx}3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T{sub eff} > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only {approx}2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.

  6. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  7. INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pecaut, Mark J.; Mamajek, Eric E. [University of Rochester, Department of Physics and Astronomy, Rochester, NY 14627-0171 (United States)

    2013-09-01

    We present an analysis of the intrinsic colors and temperatures of 5-30 Myr old pre-main-sequence (pre-MS) stars using the F0- through M9-type members of nearby, negligibly reddened groups: the η Cha cluster, the TW Hydra Association, the β Pic Moving Group, and the Tucana-Horologium Association. To check the consistency of spectral types from the literature, we estimate new spectral types for 52 nearby pre-MS stars with spectral types F3 through M4 using optical spectra taken with the SMARTS 1.5 m telescope. Combining these new types with published spectral types and photometry from the literature (Johnson-Cousins BVI{sub C} , 2MASS JHK{sub S} and WISE W1, W2, W3, and W4), we derive a new empirical spectral type-color sequence for 5-30 Myr old pre-MS stars. Colors for pre-MS stars match dwarf colors for some spectral types and colors, but for other spectral types and colors, deviations can exceed 0.3 mag. We estimate effective temperatures (T {sub eff}) and bolometric corrections (BCs) for our pre-MS star sample through comparing their photometry to synthetic photometry generated using the BT-Settl grid of model atmosphere spectra. We derive a new T {sub eff} and BC scale for pre-MS stars, which should be a more appropriate match for T Tauri stars than often-adopted dwarf star scales. While our new T {sub eff} scale for pre-MS stars is within ≅100 K of dwarfs at a given spectral type for stars K6, the pre-MS stars are ∼250 K cooler than their MS counterparts. Lastly, we present (1) a modern T {sub eff}, optical/IR color, and BC sequence for O9V-M9V MS stars based on an extensive literature survey, (2) a revised Q-method relation for dereddening UBV photometry of OB-type stars, and (3) introduce two candidate spectral standard stars as representatives of spectral types K8V and K9V.

  8. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  9. The Lower Main Sequence of Stars in the Solar Neighborhood: Model Predictions Versus Observation

    Directory of Open Access Journals (Sweden)

    Bartašiūtė S.

    2012-09-01

    Full Text Available We have used the Simbad database and VizieR catalogue access tools to construct the observational color-absolute magnitude diagrams of nearby K-M dwarfs with precise Hipparcos parallaxes (σπ/π ≤ 0:05. Particular attention has been paid to removing unresolved double/multiple stars and variables. In addition to archival data, we have made use of nearly 2000 new radial-velocity measurements of K-M dwarfs to identify spectroscopic binary candidates. The main sequences, cleaned from unresolved binaries, variable stars, and old population stars which can also widen the sequence due to their presumably lower metallicity, were compared to available solar-metallicity models. Significant offsets of most of the model main-sequence lines are seen with respect to observational data, especially for the lower-mass stars. Only the location and slope of the Victoria-Regina and, partly, BaSTI isochrones match the data quite well.

  10. Lithium depletion and rotation in main-sequence stars

    International Nuclear Information System (INIS)

    Balachandran, S.

    1990-01-01

    Lithium abundances were measured in nearly 200 old disk-population F stars to examine the effects of rotational braking on the depletion of Li. The sample was selected to be slightly evolved off the main sequence so that the stars have completed all the Li depletion they will undergo on the main sequence. A large scatter in Li abundances in the late F stars is found, indicating that the Li depletion is not related to age and spectral type alone. Conventional depletion mechanisms like convective overshoot and microscopic diffusion are unable to explain Li depletion in F stars with thin convective envelopes and are doubly taxed to explain such a scatter. No correlation is found between Li abundance and the present projected rotational velocity and some of the most rapid rotators are undepleted, ruling out meridional circulation as the cause of Li depletion. There is a somewhat larger spread in Li abundances in the spun-down late F stars compared to the early F stars which should remain rotationally unaltered on the main sequence. 85 refs

  11. ABSOLUTE PROPERTIES OF THE PRE-MAIN-SEQUENCE ECLIPSING BINARY STAR NP PERSEI

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Claud H. Sandberg [Physics Department, University of Arkansas, Fayetteville, AR 72701 (United States); Fekel, Francis C.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Pavlovski, Krešimir [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Torres, Guillermo, E-mail: clacy@uark.edu, E-mail: fekel@evans.tsuniv.edu, E-mail: pavlovski@phy.hr, E-mail: gtorres@cfa.harvard.edu, E-mail: matthew1@coe.tsuniv.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-07-01

    NP Per is a well-detached, 2.2 day eclipsing binary whose components are both pre-main-sequence stars that are still contracting toward the main-sequence phase of evolution. We report extensive photometric and spectroscopic observations with which we have determined their properties accurately. Their surface temperatures are quite different: 6420 ± 90 K for the larger F5 primary star and 4540 ± 160 K for the smaller K5e star. Their masses and radii are 1.3207 ± 0.0087 solar masses and 1.372 ± 0.013 solar radii for the primary, and 1.0456 ± 0.0046 solar masses and 1.229 ± 0.013 solar radii for the secondary. The orbital period is variable over long periods of time. A comparison of the observations with current stellar evolution models from MESA indicates that the stars cannot be fit at a single age: the secondary appears significantly younger than the primary. If the stars are assumed to be coeval and to have the age of the primary (17 Myr), then the secondary is larger and cooler than predicted by current models. The H α spectral line of the secondary component is completely filled by, presumably, chromospheric emission due to a magnetic activity cycle.

  12. Infrared photometry of upper main sequence stars in M39

    International Nuclear Information System (INIS)

    Manteiga, M.; Martinez-Roger, C.; Morales, C.; Sabau, L.

    1991-01-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10 8 years

  13. Infrared photometry of upper main sequence stars in M39

    Energy Technology Data Exchange (ETDEWEB)

    Manteiga, M.; Martinez-Roger, C. (Instituto de Astrofisica de Canarias, Tenerife, (ES)); Morales, C.; Sabau, L. (Instituto de Tecnica Aeroespacial, Madrid, (ES))

    1991-03-01

    Infrared photometry of 19 Main sequence stars in the open cluster M39 is presented. Infrared-infrared and optical-infrared colour-colour and colour-magnitude diagrams are presented and compared with mean intrinsic colours for Population I stars. An interstellar reddening of E(B - V) = 0.01 is obtained by analysis of the colour-colour diagrams. Comparison with a set of theoretical isochrones leads to an age estimate for the cluster between 2.4 and 4.8 x 10{sup 8} years.

  14. Metallicity and ultraviolet excesses of late main sequence stars

    International Nuclear Information System (INIS)

    Suchkov, A.A.; Marsakov, V.A.; Shevelev, Yu.G.

    1987-01-01

    The comparison of the characteristics of ultraviolet (UV) excesses δ(U-B) and metallicity [Fe/H] distributions of F, G, and K dwarfs reveals a number of discrepancies. It is shown that they can be eliminated if we assume that UV excesses of K and late G dwarfs, and [Fe/H] values from detailed analysis for F dwarfs are underestimated. Such an assumption enables to account for low values of for F, K and late G dwarfs, and for the difference of the free terms in the metallicity - UV-excess relation for these stars as compared to early G dwarfs. In this case the F5-F9 dwarfs turn out to be more metal-rich (by 0.1 in [Fe/H]) than G and K dwarfs, and the metallicity of the Hyades cluster turns out to be larger than the solar one, [Fe/H] Hyades =+0.1. The ''conditional'' metallicity - UV-excess calibrations are obtained for four groups of main-sequence stars: F5-F9, G0-G4, G5-G9, K0-K5

  15. Binary pulsar PSR 1718-19 contains a stripped main-sequence turn-off star

    International Nuclear Information System (INIS)

    Zwitter, T.

    1993-05-01

    Lyne et al. (1993) have recently announced the discovery of a 1-second globular cluster pulsar, 1718-19, in a 6.2-hour binary system which is embedded in a cloud of material originating from the companion star. However the incident flux of the pulsar's radiation on the companion is too low to ablate it and a main sequence companion is too small to fill its Roche lobe. Here I argue that the companion is a stripped turn-off star of 0.2-0.4 solar masses (M sun ) and with approx. 0.1M sun helium core. It has approx. 1.8-times larger radius than a main sequence star of equal mass. Its position in the Hertzsprung-Russell diagram overlaps that of a ∼ 0.65M sun main-sequence star. The evolutionary state of the companion and the highly magnetized slowly rotating neutron star place the system on the verge of the low mass X-ray binary phase. (author). 19 refs, 2 figs

  16. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    International Nuclear Information System (INIS)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    2016-01-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  17. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa [Carl Sagan Institute, Cornell University, Ithaca, NY (United States)

    2016-05-20

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.

  18. Effects of mass loss on the evolution of massive stars. I. Main-sequence evolution

    International Nuclear Information System (INIS)

    Dearborn, D.S.P.; Blake, J.B.; Hainebach, K.L.; Schramm, D.N.

    1978-01-01

    The effect of mass loss on the evolution and surface composition of massive stars during main-sequence evolution are examined. While some details of the evolutionary track depend on the formula used for the mass loss, the results appear most sensitive to the total mass removed during the main-sequence lifetime. It was found that low mass-loss rates have very little effect on the evolution of a star; the track is slightly subluminous, but the lifetime is almost unaffected. High rates of mass loss lead to a hot, high-luminosity stellar model with a helium core surrounded by a hydrogen-deficient (Xapprox.0.1) envelope. The main-sequence lifetime is extended by a factor of 2--3. These models may be identified with Wolf-Rayet stars. Between these mass-loss extremes are intermediate models which appear as OBN stars on the main sequence. The mass-loss rates required for significant observable effects range from 8 x 10 -7 to 10 -5 M/sub sun/ yr -1 , depending on the initial stellar mass. It is found that observationally consistent mass-loss rates for stars with M> or =30 M/sub sun/ may be sufficiently high that these stars lose mass on a time scale more rapidly than their main-sequence core evolution time. This result implies that the helium cores resulting from the main-sequence evolution of these massive stars may all be very similar to that of a star of Mapprox.30 M/sub sun/ regardless of the zero-age mass

  19. Solar-Type Activity in Main-Sequence Stars

    CERN Document Server

    Gershberg, Roald E

    2005-01-01

    Solar-type activity over the whole range of the electromagnetic spectrum is a phenomenon inherent in the majority of low- and moderate-mass main sequence stars. In this monograph observational results are summarized in a systematic and comprehensive fashion. The analysis of the various manifestations of such stellar activity leads to the identification of these phenomena with macroscopic non-linear processes in a magnetized plasma. Comparative study of flare stars and the Sun has become increasingly fruitful and is presently an active field of research involving stellar and solar physicists, experts in plasma physics and high-energy astrophysicists. This book will provide them with both an introduction and overview of observational results from the first optical photometry and spectroscopy, from the satellite telescopes International Ultraviolet Explorer to Hubble Space Telescope, XMM-Newton and Chandra, as well as with the present physical interpretation of solar-type activity in main sequence stars. Gershbe...

  20. Discovery of three x-ray luminous pre-main-sequence stars

    International Nuclear Information System (INIS)

    Feigelson, E.D.; Kriss, G.A.

    1981-01-01

    Three X-ray sources found serendipitously in Einstein images of the Taurus-Auriga cloud complex were observed at the McGraw-Hill Observatory and are found to be associated with approx.12 mag stars with weak Hα emission. The stars lie on the edges of dark clouds and are spectroscopically similar to the least active emission-line pre-main-sequence stars. Although they lie well above the ZAMS in the H-R diagram, they do not exhibit ultraviolet excess, strong optical variability, or evidence for mass outflow/inflow characteristics of the more active T Tauri stars. Their only unusual property is high X-ray luminosity (approx.10 30 ergs s1). It is suggested that the X-ray emission from pre-main-sequence stars is not closely linked to the conditions giving rise to their unusual spectroscopic properties. The emission may instead represent an enhanced form of the coronal activity producing X-rays observed in late-type main-sequence stars

  1. A near-infrared survey for pre-main sequence stars in Taurus

    Science.gov (United States)

    Gomez, Mercedes; Kenyon, Scott J.; Hartmann, Lee

    1994-01-01

    We present a near-infrared survey of approximately 2 sq deg covering parts of L1537, L1538, and Heiles cloud 2 in the Taurus-Auriga molecular cloud. Although this study is more sensitive than previous attempts to identify pre-main sequence stars in Taurus-Auriga, our survey regions contain only one new optically visible, young star. We did find several candidate embedded protostars; additional 10 micrometer photometry is necessary to verify the pre-main sequence nature of these sources. Our results--combined with those of previous surveys--show that the L1537/L1538 clouds contain no pre-main sequence stars. These two clouds are less dense than the active star formation sites in Taurus-Auriga, which suggests a cloud must achieve a threshold density to form stars.

  2. The Star-forming Main Sequence of Dwarf Low Surface Brightness Galaxies

    Science.gov (United States)

    McGaugh, Stacy S.; Schombert, James M.; Lelli, Federico

    2017-12-01

    We explore the star-forming properties of late-type, low surface brightness (LSB) galaxies. The star-forming main sequence ({SFR}-{M}* ) of LSB dwarfs has a steep slope, indistinguishable from unity (1.04 ± 0.06). They form a distinct sequence from more massive spirals, which exhibit a shallower slope. The break occurs around {M}* ≈ {10}10 {M}⊙ , and can also be seen in the gas mass—stellar mass plane. The global Kennicutt-Schmidt law ({SFR}-{M}g) has a slope of 1.47 ± 0.11 without the break seen in the main sequence. There is an ample supply of gas in LSB galaxies, which have gas depletion times well in excess of a Hubble time, and often tens of Hubble times. Only ˜ 3 % of this cold gas needs be in the form of molecular gas to sustain the observed star formation. In analogy with the faint, long-lived stars of the lower stellar main sequence, it may be appropriate to consider the main sequence of star-forming galaxies to be defined by thriving dwarfs (with {M}* {10}10 {M}⊙ ) are weary giants that constitute more of a turn-off population.

  3. The evolution of coronal activity in main sequence cool stars

    International Nuclear Information System (INIS)

    Stern, R.A.

    1984-01-01

    Stars spend most of their lifetime and show the least amount of nuclear evolution on the main sequence. However, the x-ray luminosities of cool star coronas change by orders of magnitude as a function of main sequence age. Such coronal evolution is discussed in relation to our knowledge of the solar corona, solar and stellar flares, stellar rotation and binarity. The relevance of X-ray observations to current speculations on stellar dynamos is also considered

  4. Reconciling mass functions with the star-forming main sequence via mergers

    Science.gov (United States)

    Steinhardt, Charles L.; Yurk, Dominic; Capak, Peter

    2017-06-01

    We combine star formation along the 'main sequence', quiescence and clustering and merging to produce an empirical model for the evolution of individual galaxies. Main-sequence star formation alone would significantly steepen the stellar mass function towards low redshift, in sharp conflict with observation. However, a combination of star formation and merging produces a consistent result for correct choice of the merger rate function. As a result, we are motivated to propose a model in which hierarchical merging is disconnected from environmentally independent star formation. This model can be tested via correlation functions and would produce new constraints on clustering and merging.

  5. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Science.gov (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  6. Rotation in moderate-mass pre-main-sequence radiative track G stars

    International Nuclear Information System (INIS)

    Mcnamara, B.

    1990-01-01

    Recent studies suggest that the observed high-mass radiative track velocity histograms for pre-main-sequence stars differ significantly. In the Vogel and Kuhi (1981) study, these stars were found to possess a rather broad distribution of rotational velocities with a moderate peak at low velocities. In contrast, Smith et al. (1983), found a very sharply peaked distribution located at low values of v sin i. The difference in these velocity distributions is shown to be due to inadequate allowance for field stars in the Smith, et al., work. Once these stars are removed, the high-mass velocity distributions of the two regions are remarkably similar. This result suggests that a unique velocity distribution might be used in modeling very young stars. Assuming that the Orion Ic proto-F stars continue to contract in a homologous fashion, their average current rotational velocity is in agreement with that expected for zero-age main sequence F stars. 27 refs

  7. Tracing early stellar evolution with asteroseismology: pre-main sequence stars in NGC 2264

    Directory of Open Access Journals (Sweden)

    Zwintz Konstanze

    2015-01-01

    Full Text Available Asteroseismology has been proven to be a successful tool to unravel details of the internal structure for different types of stars in various stages of their main sequence and post-main sequence evolution. Recently, we found a relation between the detected pulsation properties in a sample of 34 pre-main sequence (pre-MS δ Scuti stars and the relative phase in their pre-MS evolution. With this we are able to demonstrate that asteroseismology is similarly powerful if applied to stars in the earliest stages of evolution before the onset of hydrogen core burning.

  8. X-ray sources in regions of star formation. II. The pre-main-sequence G star HDE 283572

    International Nuclear Information System (INIS)

    Walter, F.M.; Brown, A.; Linsky, J.L.; Rydgren, A.E.; Vrba, F.; Joint Institute for Laboratory Astrophysics, Boulder, CO; Computer Sciences Corp., El Segundo, CA; Naval Observatory, Flagstaff, AZ)

    1987-01-01

    This paper reports the detection of HDE 283572, a ninth-magnitude G star 8 arcmin south of RY Tau, as a bright X-ray source. The observations reveal this object to be a fairly massive (about 2 solar masses) pre-main-sequence star associated with the Taurus-Auriga star formation complex. It exhibits few of the characteristics of the classical T Tauri stars and is a good example of a naked T Tauri star. The star is a mid-G subgiant, of about three solar radii and rotates with a period of 1.5 d. The coronal and chromospheric surface fluxes are similar to those of the most active late type stars (excluding T Tauri stars). The X-ray and UV lines most likely arise in different atmospheric structures. Radiative losses are some 1000 times the quiet solar value and compare favorably with those of T Tauri stars. 49 references

  9. Radio emission from pre-main-sequence stars in Corona Australis

    International Nuclear Information System (INIS)

    Brown, A.

    1987-01-01

    The central region of the Corona Australis molecular cloud surrounding the stars R and TY CrA has been studied using the VLA at 6 cm. Eleven radio sources are detected including five associated with pre-main-sequence objects. The most striking is associated with the near-IR source IRS 7 and shows a complex structure comprising two strong pointlike sources positioned either side of the deeply embedded IR source and two extended lobes of radio emission. The IRS 7 radio source appears to be similar to that associated with Lynds 1551 IRS 5 but has a considerably larger angular size. The other detected sources include the massive pre-main-sequence star TY CrA, the near-IR sources IRS 1 and IRS 5, and the Herbig-Haro object HH 101. The stars R and T CrA were not detected. 35 references

  10. 13-colour photometry of pre-main sequence stars: preliminary report and results

    Energy Technology Data Exchange (ETDEWEB)

    Chavarria-K, C; de Lara, E [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Broad (UBVRI) and intermediate (13-colour) band photometry of 160 stars selected mainly from the Herbig Rao catalogue are being carried on currently, mainly to complement the published data of these stars in the optical window (for example shortward of the Balmer and longward of the Paschen discontinuities). The 13-colour photometric system and its applications to pre-main sequences stars are briefly discussed. First results are presented.

  11. Impacts of WIMP dark matter upon stellar evolution: main-sequence stars

    CERN Document Server

    Scott, Pat; Edsjo, Joakim

    2008-01-01

    The presence of large amounts of WIMP dark matter in stellar cores has been shown to have significant effects upon models of stellar evolution. We present a series of detailed grids of WIMP-influenced stellar models for main sequence stars, computed using the DarkStars code. We describe the changes in stellar structure and main sequence evolution which occur for masses ranging from 0.3 to 2.0 solar masses and metallicities from Z = 0.0003-0.02, as a function of the rate of energy injection by WIMPs. We then go on to show what rates of energy injection can be obtained using realistic orbital parameters for stars near supermassive black holes, including detailed considerations of dark matter halo velocity and density profiles. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits, causing WIMP annihilation to provide up to 100 times the energy of hydrogen fusion in stars at the Galactic centre.

  12. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Science.gov (United States)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  13. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    DEFF Research Database (Denmark)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto

    2017-01-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (T......-eff = 7600 K, log g = 4.2, xi = 3.1 kms(-1) and [Fe/H] = -0.71 dex), the radial and rotation velocities, and elemental abundances were obtained by analysing line strengths and fitting line profiles, which were calculated with a 1D LTE model atmosphere. The main properties of KIC 11145123 are: (1) a low [Fe...

  14. Magnetic inhibition of convection and the fundamental properties of low-mass stars. II. Fully convective main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Chaboyer, Brian, E-mail: gregory.a.feiden@gmail.com, E-mail: brian.chaboyer@dartmouth.edu [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States)

    2014-07-01

    We examine the hypothesis that magnetic fields are inflating the radii of fully convective main-sequence stars in detached eclipsing binaries (DEBs). The magnetic Dartmouth stellar evolution code is used to analyze two systems in particular: Kepler-16 and CM Draconis. Magneto-convection is treated assuming stabilization of convection and also by assuming reductions in convective efficiency due to a turbulent dynamo. We find that magnetic stellar models are unable to reproduce the properties of inflated fully convective main-sequence stars, unless strong interior magnetic fields in excess of 10 MG are present. Validation of the magnetic field hypothesis given the current generation of magnetic stellar evolution models therefore depends critically on whether the generation and maintenance of strong interior magnetic fields is physically possible. An examination of this requirement is provided. Additionally, an analysis of previous studies invoking the influence of star spots is presented to assess the suggestion that star spots are inflating stars and biasing light curve analyses toward larger radii. From our analysis, we find that there is not yet sufficient evidence to definitively support the hypothesis that magnetic fields are responsible for the observed inflation among fully convective main-sequence stars in DEBs.

  15. Characterizing Intermediate-Mass, Pre-Main-Sequence Stars via X-Ray Emision

    Science.gov (United States)

    Haze Nunez, Evan; Povich, Matthew Samuel; Binder, Breanna Arlene; Broos, Patrick; Townsley, Leisa K.

    2018-01-01

    The X-ray emission from intermediate-mass, pre-main-sequence stars (IMPS) can provide useful constraints on the ages of very young (${getting power from the gravitational contraction of the star. Main-sequence late-B and A-type stars are not expected to be strong X-ray emitters, because they lack the both strong winds of more massive stars and the magneto-coronal activity of lower-mass stars. There is, however, mounting evidence that IMPS are powerful intrinsic x-ray emitters during their convection-dominated early evolution, before the development and rapid growth of a radiation zone. We present our prime candidates for intrinsic, coronal X-ray emission from IMPS identified in the Chandra Carina Complex Project. The Carina massive star-forming complex is of special interest due to the wide variation of star formation stages within the region. Candidate IMPS were identified using infrared spectral energy distribution (SED) models. X-ray properties, including thermal plasma temperatures and absorption-corrected fluxes, were derived from XSPEC fits performed using absorption ($N_{H}$) constrained by the extinction values returned by the infrared SED fits. We find that IMPS have systematically higher X-ray luminosities compared to their lower-mass cousins, the TTauri stars.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  16. On the mass-spectrum relation for the main sequence stars

    International Nuclear Information System (INIS)

    Svechnikov, M.A.; Tajdakova, T.A.

    1984-01-01

    From 240 main-sequence stars with well-determined masses, a new mass-spectrum relation is obtained, which differs appreciably in certain intervals of spectral types from the mass-spectrum relations of Allen and Trimble. The accuracy of mass determination for the components of eclipsing binary systems of different types from their spectra given in the General Catalogue of Variable Stars (3rd edition) and in its supplements is evaluated

  17. Ca II H and K emission from late-type stars

    International Nuclear Information System (INIS)

    Middlekoop, F.

    1982-01-01

    This thesis is based on a study of the Ca II H and K emission features of late main-sequence stars. In Chapter II it is shown that rotation periods can be determined from a modulation in the Ca II H and K signal for many stars in a broad range of spectral types. In Chapter III it is shown that a clear correlation exists between Ca II H and K emission and rotational velocity in active main-sequence stars. There is an indication for a (probably colour-dependent) critical velocity at which the Ca II H and K emission suddenly drops. Chapter IV discusses the dependence of Ca II H and K emission on the rotation rate for evolved stars. (Auth./C.F.)

  18. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F.; SchottelKotte, James; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M ⊕ and 5 M ⊕ . Assuming H 2 O-(inner HZ) and CO 2 -(outer HZ) dominated atmospheres, and scaling the background N 2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H 2 O column depth. For larger planets, the H 2 O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs

  19. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  20. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  1. Asteroseismic measurement of surface-to-core rotation in a main-sequence star*

    Directory of Open Access Journals (Sweden)

    Kurtz Donald W.

    2015-01-01

    Full Text Available We have discovered rotationally split core g-mode triplets and surface p-mode triplets and quintuplets in a terminal age main-sequence A star, KIC 11145123, that shows both δ Sct p-mode pulsations and γ Dor g-mode pulsations. This gives the first robust determination of the rotation of the deep core and surface of a main-sequence star, essentially model-independently. We find its rotation to be nearly uniform with a period near 100 d, but we show with high confidence that the surface rotates slightly faster than the core. A strong angular momentum transfer mechanism must be operating to produce the nearly rigid rotation, and a mechanism other than viscosity must be operating to produce a more rapidly rotating surface than core. Our asteroseismic result, along with previous asteroseismic constraints on internal rotation in some B stars, and measurements of internal rotation in some subgiant, giant and white dwarf stars, has made angular momentum transport in stars throughout their lifetimes an observational science.

  2. Did A Planet Survive A Post-Main Sequence Evolutionary Event?

    Science.gov (United States)

    Sorber, Rebecca; Jang-Condell, Hannah; Zimmerman, Mara

    2018-06-01

    The GL86 is star system approximately 10 pc away with a main sequence K- type ~ 0.77 M⊙ star (GL 86A) with a white dwarf ~0.49 M⊙ companion (GL86 B). The system has a ~ 18.4 AU semi-major axis, an orbital period of ~353 yrs, and an eccentricity of ~ 0.39. A 4.5 MJ planet orbits the main sequence star with a semi-major axis of 0.113 AU, an orbital period of 15.76 days, in a near circular orbit with an eccentricity of 0.046. If we assume that this planet was formed during the time when the white dwarf was a main sequence star, it would be difficult for the planet to have remained in a stable orbit during the post-main sequence evolution of GL86 B. The post-main sequence evolution with planet survival will be examined by modeling using the program Mercury (Chambers 1999). Using the model, we examine the origins of the planet: whether it formed before or after the post-main sequence evolution of GL86B. The modeling will give us insight into the dynamical evolution of, not only, the binary star system, but also the planet’s life cycle.

  3. Photometric monitoring of pre-main sequence stars - 2

    International Nuclear Information System (INIS)

    Evans, A.; Davies, J.K.; Kilkenny, D.; Bode, M.F.

    1989-01-01

    A discussion is presented of the infrared and optical photometric variability of the pre-main sequence stars BF Ori and UX Ori. In the former case, the reddening that occurs during decline, at both optical and infrared wavelengths, is consistent with variable extinction by circumstellar grains having an interstellar-like reddening law. While in the case of UX Ori, the data suggest variability due to starspots. In both cases, a study of the polarimetric variability would be valuable to confirm these conclusions. (author)

  4. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars a...

  5. Main sequence mass loss

    International Nuclear Information System (INIS)

    Brunish, W.M.; Guzik, J.A.; Willson, L.A.; Bowen, G.

    1987-01-01

    It has been hypothesized that variable stars may experience mass loss, driven, at least in part, by oscillations. The class of stars we are discussing here are the δ Scuti variables. These are variable stars with masses between about 1.2 and 2.25 M/sub θ/, lying on or very near the main sequence. According to this theory, high rotation rates enhance the rate of mass loss, so main sequence stars born in this mass range would have a range of mass loss rates, depending on their initial rotation velocity and the amplitude of the oscillations. The stars would evolve rapidly down the main sequence until (at about 1.25 M/sub θ/) a surface convection zone began to form. The presence of this convective region would slow the rotation, perhaps allowing magnetic braking to occur, and thus sharply reduce the mass loss rate. 7 refs

  6. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    Science.gov (United States)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto; Murphy, Simon J.; Takata, Masao; Saio, Hideyuki; Sekii, Takashi

    2017-10-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (Teff = 7600 K, log g = 4.2, ξ = 3.1 km s-1 and [Fe/H] = -0.71 dex), the radial and rotation velocities, and elemental abundances were obtained by analysing line strengths and fitting line profiles, which were calculated with a 1D LTE model atmosphere. The main properties of KIC 11145123 are: (1) a low [Fe/H] = -0.71 ± 0.11 dex and a high radial velocity of -135.4 ± 0.2 km s-1. These are remarkable among late-A stars. Our best asteroseismic models with this low [Fe/H] have slightly high helium abundance and low masses of 1.4 M⊙. All of these results strongly suggest that KIC 11145123 is a Population II blue straggler; (2) the projected rotation velocity confirms the asteroseismically predicted slow rotation of the star; (3) comparisons of abundance patterns between KIC 11145123 and Am, Ap, and blue stragglers show that KIC 11145123 is neither an Am star nor an Ap star, but has abundances consistent with a blue straggler. We conclude that the remarkably long 100-d rotation period of this star is a consequence of it being a blue straggler, but both pathways for the formation of blue stragglers - merger and mass loss in a binary system - pose difficulties for our understanding of the exceedingly slow rotation. In particular, we show that there is no evidence of any secondary companion star, and we put stringent limits on the possible mass of any such purported companion through the phase modulation technique.

  7. The V Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, F.; Fu, Y. N.

    2010-01-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determination of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass-luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙. Recently, many relevant data have been accumulated for main sequence stars with larger mass, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weight to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. Compared with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in studies of statistical nature, but also in studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  8. The V-band Empirical Mass-luminosity Relation for Main Sequence Stars

    Science.gov (United States)

    Xia, Fang; Fu, Yan-Ning

    2010-07-01

    Stellar mass is an indispensable parameter in the studies of stellar physics and stellar dynamics. On the one hand, the most reliable way to determine the stellar dynamical mass is via orbital determinations of binaries. On the other hand, however, most stellar masses have to be estimated by using the mass luminosity relation (MLR). Therefore, it is important to obtain the empirical MLR through fitting the data of stellar dynamical mass and luminosity. The effect of metallicity can make this relation disperse in the V-band, but studies show that this is mainly limited to the case when the stellar mass is less than 0.6M⊙ Recently, many relevant data have been accumulated for main sequence stars with larger masses, which make it possible to significantly improve the corresponding MLR. Using a fitting method which can reasonably assign weights to the observational data including two quantities with different dimensions, we obtain a V-band MLR based on the dynamical masses and luminosities of 203 main sequence stars. In comparison with the previous work, the improved MLR is statistically significant, and the relative error of mass estimation reaches about 5%. Therefore, our MLR is useful not only in the studies of statistical nature, but also in the studies of concrete stellar systems, such as the long-term dynamical study and the short-term positioning study of a specific multiple star system.

  9. Be ABUNDANCES IN COOL MAIN-SEQUENCE STARS WITH EXOPLANETS

    International Nuclear Information System (INIS)

    Delgado Mena, E.; Israelian, G.; González Hernández, J. I.; Rebolo, R.; Santos, N. C.

    2012-01-01

    We present new Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of a sample of 15 cool unevolved stars with and without detected planetary companions. Together with previous determinations, we study Be depletion and possible differences in Be abundances between the two groups of stars. We obtain a final sample of 89 and 40 stars with and without planets, respectively, which covers a wide range of effective temperatures, from 4700 K to 6400 K, and includes several cool dwarf stars for the first time. We determine Be abundances for these stars and find that for most of them (the coolest ones) the Be II resonance lines are often undetectable, implying significant Be depletion. While for hot stars Be abundances are approximately constant, with a slight fall as T eff decreases and the Li-Be gap around 6300 K, we find a steep drop of Be content as T eff decreases for T eff < 5500 K, confirming the results of previous papers. Therefore, for these stars there is an unknown mechanism destroying Be that is not reflected in current models of Be depletion. Moreover, this strong Be depletion in cool objects takes place for all the stars regardless of the presence of planets; thus, the effect of extra Li depletion in solar-type stars with planets when compared with stars without detected planets does not seem to be present for Be, although the number of stars at those temperatures is still small to reach a final conclusion.

  10. Be ABUNDANCES IN COOL MAIN-SEQUENCE STARS WITH EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Mena, E.; Israelian, G.; Gonzalez Hernandez, J. I.; Rebolo, R. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Santos, N. C., E-mail: edm@iac.es [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-02-10

    We present new Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of a sample of 15 cool unevolved stars with and without detected planetary companions. Together with previous determinations, we study Be depletion and possible differences in Be abundances between the two groups of stars. We obtain a final sample of 89 and 40 stars with and without planets, respectively, which covers a wide range of effective temperatures, from 4700 K to 6400 K, and includes several cool dwarf stars for the first time. We determine Be abundances for these stars and find that for most of them (the coolest ones) the Be II resonance lines are often undetectable, implying significant Be depletion. While for hot stars Be abundances are approximately constant, with a slight fall as T{sub eff} decreases and the Li-Be gap around 6300 K, we find a steep drop of Be content as T{sub eff} decreases for T{sub eff} < 5500 K, confirming the results of previous papers. Therefore, for these stars there is an unknown mechanism destroying Be that is not reflected in current models of Be depletion. Moreover, this strong Be depletion in cool objects takes place for all the stars regardless of the presence of planets; thus, the effect of extra Li depletion in solar-type stars with planets when compared with stars without detected planets does not seem to be present for Be, although the number of stars at those temperatures is still small to reach a final conclusion.

  11. Lithium evolution in metal-poor stars: from Pre-Main Sequence to the Spite plateau

    OpenAIRE

    Fu, Xiaoting; Bressan, Alessandro; Molaro, Paolo; Marigo, Paola

    2015-01-01

    Lithium abundance derived in metal-poor main sequence stars is about three times lower than the value of primordial Li predicted by the standard Big Bang nucleosynthesis when the baryon density is taken from the CMB or the deuterium measurements. This disagreement is generally referred as the lithium problem. We here reconsider the stellar Li evolution from the pre-main sequence to the end of the main sequence phase by introducing the effects of convective overshooting and residual mass accre...

  12. Magnetic fields in O-, B- and A-type stars on the main sequence

    Directory of Open Access Journals (Sweden)

    Briquet Maryline

    2015-01-01

    Full Text Available In this review, the latest observational results on magnetic fields in main-sequence stars with radiative envelopes are summarised together with the theoretical works aimed at explaining them.

  13. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    Science.gov (United States)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  14. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    International Nuclear Information System (INIS)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.; Jeffery, C. Simon

    2017-01-01

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find that some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.

  15. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfei; Bi, Shaolan [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China); Hall, Philip D.; Jeffery, C. Simon, E-mail: zxf@bnu.edu.cn [Armagh Observatory, College Hill, Armagh BT61 9DG (United Kingdom)

    2017-02-01

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find that some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.

  16. Pre-main-sequence depletion of Li-6 and Li-7

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Michaud, G.

    1989-01-01

    Depletion of Li-6 and Li-7 during premain-sequence contraction has been calculated for several evolutionary sequences. Slightly greater Li-7 depletion was found than by other recent workers. On the premain sequence, Li-6 is depleted by a factor of at least 10 in the present models for stars with T(eff) lower than 6800 K on the main sequence. Because of the shorter destruction time scale for Li-6 as compared to Li-7, the determination of the abundances of these two isotopes would place strict constraints on the structure of premain-sequence stars. 39 refs

  17. Globules, dark clouds, and low mass pre-main sequence stars

    International Nuclear Information System (INIS)

    Hyland, A.R.

    1981-01-01

    The current observational and theoretical literature on Bok globules and their relationship to star formation is reviewed. Recent observations of globules at optical, infrared, and far infrared wavelengths are shown to provide important constraints on their structure and evolutionary status, and the suggestion that many globules are gravitationally unstable is seriously questioned. Dark clouds associated with T associations are well-known sites of recent and continuing star formation. In recent years molecular observations and far infrared surveys have provided maps of such regions from which possible sites of star formation may be identified. Optical (Hα) and near infrared surveys have enabled a clear identification of pre-main sequence (PMS) objects within the clouds. Methods of distinguishing these from background objects and the nature of their infrared excesses are examined in the light of recent observations in the near and far infrared. The perennial question as to the existence of anomalous reddening within dark clouds is also investigated. (Auth.)

  18. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yang; Zhou Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Chu Youhua [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  19. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    Energy Technology Data Exchange (ETDEWEB)

    Cuntz, M. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Guinan, E. F., E-mail: cuntz@uta.edu, E-mail: edward.guinan@villanova.edu [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States)

    2016-08-10

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.

  20. ABOUT EXOBIOLOGY: THE CASE FOR DWARF K STARS

    International Nuclear Information System (INIS)

    Cuntz, M.; Guinan, E. F.

    2016-01-01

    One of the most fundamental topics of exobiology concerns the identification of stars with environments consistent with life. Although it is believed that most types of main-sequence stars might be able to support life, particularly extremophiles, special requirements appear to be necessary for the development and sustainability of advanced life forms. From our study, orange main-sequence stars, ranging from spectral type late-G to mid-K (with a maximum at early K), are most promising. Our analysis considers a variety of aspects, including (1) the frequency of the various types of stars, (2) the speed of stellar evolution in their lifetimes, (3) the size of the stellar climatological habitable zones (CLI-HZs), (4) the strengths and persistence of their magnetic-dynamo-generated X-ray–UV emissions, and (5) the frequency and severity of flares, including superflares; both (4) and (5) greatly reduce the suitability of red dwarfs to host life-bearing planets. The various phenomena show pronounced dependencies on the stellar key parameters such as effective temperature and mass, permitting the assessment of the astrobiological significance of various types of stars. Thus, we developed a “Habitable-Planetary-Real-Estate Parameter” (HabPREP) that provides a measure for stars that are most suitable for planets with life. Early K stars are found to have the highest HabPREP values, indicating that they may be “Goldilocks” stars for life-hosting planets. Red dwarfs are numerous, with long lifetimes, but their narrow CLI-HZs and hazards from magnetic activity make them less suitable for hosting exolife. Moreover, we provide X-ray–far-UV irradiances for G0 V–M5 V stars over a wide range of ages.

  1. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    Science.gov (United States)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  2. New radio detections of early-type pre-main-sequence stars

    Science.gov (United States)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  3. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun

    2011-01-01

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  4. Turbulence and the Li abundance in main sequence and giant stars

    International Nuclear Information System (INIS)

    Charbonneau, P.; Michaud, G.

    1990-01-01

    Calculations of Li burning via turbulent transport are conducted to determine the extent to which observed Li abundances in first ascent giants constrain the various turbulence parameterizations used to model the main-sequence surface Li abundance evolution. A full time-dependent solution to the transport equation is performed, including nuclear reaction terms and evolutionary effects. It is found that turbulence can lead to the extreme Li underabundances observed in giants of M67 and NGC 752. Consideration is given to the possibility of using observations of Li abundances to discriminate between turbulent particle transport and meridional circulation transport. Numerical solutions of the turbulent diffusion coefficient of Vauclair (1988) is used to model the Hyades Li abundance gap. The astrophysical implications of the results for main-sequence and giant stars are discussed. 36 refs

  5. New radio detections of early-type pre-main-sequence stars

    International Nuclear Information System (INIS)

    Skinner, S.L.; Brown, A.; Linsky, J.L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out. 32 refs

  6. Carbon, nitrogen, and oxygen abundances in main-sequence stars. II. 20 F and G stars

    International Nuclear Information System (INIS)

    Clegg, R.E.S.; Lambert, D.L.; Tomkin, J.

    1981-01-01

    High-resolution Reticon spectra of red and near-infrared C I, N I, and O I lines have been analyzed to determine C, N, and O abundances in a sample of 20 F and G main-sequence stars. Their iron abundances, which have been determined from analysis of additional Reticon spectra of red Fe I lines, cover the range -0.9< or =[Fe/H]< or =+0.4. Sulfur abundances have also been obtained

  7. Hubble Tarantula Treasury Project - VI. Identification of Pre-Main-Sequence Stars using Machine Learning techniques

    Science.gov (United States)

    Ksoll, Victor F.; Gouliermis, Dimitrios A.; Klessen, Ralf S.; Grebel, Eva K.; Sabbi, Elena; Anderson, Jay; Lennon, Daniel J.; Cignoni, Michele; de Marchi, Guido; Smith, Linda J.; Tosi, Monica; van der Marel, Roeland P.

    2018-05-01

    The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric coverage of the entire star-burst region of 30 Doradus down to the half Solar mass limit. We use the deep stellar catalogue of HTTP to identify all the pre-main-sequence (PMS) stars of the region, i.e., stars that have not started their lives on the main-sequence yet. The photometric distinction of these stars from the more evolved populations is not a trivial task due to several factors that alter their colour-magnitude diagram positions. The identification of PMS stars requires, thus, sophisticated statistical methods. We employ Machine Learning Classification techniques on the HTTP survey of more than 800,000 sources to identify the PMS stellar content of the observed field. Our methodology consists of 1) carefully selecting the most probable low-mass PMS stellar population of the star-forming cluster NGC2070, 2) using this sample to train classification algorithms to build a predictive model for PMS stars, and 3) applying this model in order to identify the most probable PMS content across the entire Tarantula Nebula. We employ Decision Tree, Random Forest and Support Vector Machine classifiers to categorise the stars as PMS and Non-PMS. The Random Forest and Support Vector Machine provided the most accurate models, predicting about 20,000 sources with a candidateship probability higher than 50 percent, and almost 10,000 PMS candidates with a probability higher than 95 percent. This is the richest and most accurate photometric catalogue of extragalactic PMS candidates across the extent of a whole star-forming complex.

  8. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Eymet, Vincent [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France); Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest

  9. Elevation or Suppression? The Resolved Star Formation Main Sequence of Galaxies with Two Different Assembly Modes

    Science.gov (United States)

    Liu, Qing; Wang, Enci; Lin, Zesen; Gao, Yulong; Liu, Haiyang; Berhane Teklu, Berzaf; Kong, Xu

    2018-04-01

    We investigate the spatially resolved star formation main sequence in star-forming galaxies using Integral Field Spectroscopic observations from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We demonstrate that the correlation between the stellar mass surface density (Σ*) and star formation rate surface density (ΣSFR) holds down to the sub-galactic scale, leading to the sub-galactic main sequence (SGMS). By dividing galaxies into two populations based on their recent mass assembly modes, we find the resolved main sequence in galaxies with the “outside-in” mode is steeper than that in galaxies with the “inside-out” mode. This is also confirmed on a galaxy-by-galaxy level, where we find the distributions of SGMS slopes for individual galaxies are clearly separated for the two populations. When normalizing and stacking the SGMS of individual galaxies on one panel for the two populations, we find that the inner regions of galaxies with the “inside-out” mode statistically exhibit a suppression in star formation, with a less significant trend in the outer regions of galaxies with the “outside-in” mode. In contrast, the inner regions of galaxies with “outside-in” mode and the outer regions of galaxies with “inside-out” mode follow a slightly sublinear scaling relation with a slope ∼0.9, which is in good agreement with previous findings, suggesting that they are experiencing a universal regulation without influences of additional physical processes.

  10. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  11. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  12. Verifying reddening and extinction for Gaia DR1 TGAS main sequence stars

    Science.gov (United States)

    Gontcharov, George A.; Mosenkov, Aleksandr V.

    2017-12-01

    We compare eight sources of reddening and extinction estimates for approximately 60 000 Gaia DR1 Tycho-Gaia Astrometric Solution (TGAS) main sequence stars younger than 3 Gyr with a relative error of the Gaia parallax less than 0.1. For the majority of the stars, the best 2D dust emission-based reddening maps show considerable differences between the reddening to infinity and the one calculated to the stellar distance using the barometric law of the dust distribution. This proves that the majority of the TGAS stars are embedded in the Galactic dust layer and a proper 3D treatment of the reddening/extinction is required to calculate their dereddened colours and absolute magnitudes reliably. Sources with 3D estimates of reddening are tested in their ability to put the stars among the PARSEC and MIST theoretical isochrones in the Hertzsprung-Russell diagram based on the precise Gaia, Tycho-2, 2MASS and WISE photometry. Only the reddening/extinction estimates by Arenou et al. and Gontcharov, being appropriate for nearby stars within 280 pc, provide both the minimal number of outliers bluer than any reasonable isochrone and the correct number of stars younger than 3 Gyr in agreement with the Besançon Galaxy model.

  13. ULTRAVIOLET-SELECTED FIELD AND PRE-MAIN-SEQUENCE STARS TOWARD TAURUS AND UPPER SCORPIUS

    International Nuclear Information System (INIS)

    Findeisen, K.; Hillenbrand, L.

    2010-01-01

    We have carried out a Galaxy Evolution Explorer (GALEX) Cycle 1 guest investigator program covering 56 deg 2 near the Taurus T association and 12 deg 2 along the northern edge of the Upper Scorpius OB association. We combined photometry in the GALEX far-ultraviolet and near-ultraviolet bands with data from the Two Micron All Sky Survey to identify candidate young (∼<100 Myr old) stars as those with an ultraviolet excess relative to older main-sequence stars. Follow-up spectroscopy of a partial sample of these candidates suggests five new members of Taurus, with 8-20 expected from additional observations, and five new members of Upper Scorpius, with three to six expected from additional observations. These candidate new members appear to represent a distributed, non-clustered population in either region, although our sample statistics are as of yet too poor to constrain the nature or extent of this population. Rather, our study demonstrates the ability of GALEX observations to identify young stellar populations distributed over a wide area of the sky. We also highlight the necessity of a better understanding of the Galactic ultraviolet source population to support similar investigations. In particular, we report a large population of stars with an ultraviolet excess but no optical indicators of stellar activity or accretion, and briefly argue against several interpretations of these sources.

  14. Stochastically excited oscillations on the upper main sequence

    DEFF Research Database (Denmark)

    Antoci, Victoria

    2013-01-01

    Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough to stochastic......Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough...... Pulsating B and Be stars, all in the context of solar-like oscillations....

  15. Main-sequence photometry in NGC 2808

    International Nuclear Information System (INIS)

    Buonanno, R.; Corsi, C.E.; Fusi Pecci, F.; Harris, W.E.

    1984-01-01

    We have obtained a color-magnitude diagram for the southern globular cluster NGC 2808, to V/sub lim/approx. =21 (about 2 mag below the main-sequence turnoff). The internal photographic errors are sigma/sub V/approx. =0.02, sigma/sub B/-Vapprox. =0.03, small enough to permit a precise definition of the turnoff region and an estimate of the ''cosmic scatter'' along the main sequence. Fitting of the CMD to VandenBerg's [Astrophys. J. Suppl. 51, 29 (1983)] isochrones shows that an excellent match to the observations is achieved for model parameters of Yapprox. =0.2, Zapprox. =0.003 ([Fe/H]approx. =-0.8), and an age of (16 +- 2) billion years. All these characteristics are within the expected range from other observational constraints; no new clues from the main-sequence data alone have arisen to help explain the presence of the anomalous blue horizontal-branch stars

  16. Effects of main-sequence mass loss on stellar and galactic chemical evolution

    International Nuclear Information System (INIS)

    Guzik, J.A.

    1988-01-01

    L.A. Willson, G.H. Bowen and C. Struck-Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10 -9 M mass of sun/yr, diminishing over several times 10 8 years. The author attempts to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M 0 , and mass-loss rates decreasing exponentially over 2-3 x 10 8 years. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 M mass of sun and mass loss timescales 0.2 to 2.0 Gry. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M mass of sun and a metallicity-dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus-remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present

  17. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    Science.gov (United States)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main

  18. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  19. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Renzini, Alvio [INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Peng, Ying-jie, E-mail: alvio.renzini@oapd.inaf.it, E-mail: y.peng@mrao.cam.ac.uk [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-03-10

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies.

  20. AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Renzini, Alvio; Peng, Ying-jie

    2015-01-01

    The main sequence (MS) of star-forming (SF) galaxies plays a fundamental role in driving galaxy evolution and our efforts to understand it. However, different studies find significant differences in the normalization, slope, and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate SF galaxies, which may include or exclude galaxies with a specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of SF galaxies. Constructing the 3D SFR–mass–number plot, the MS is then defined as the ridge line of the SF peak, as illustrated with various figures. The advantages of such a definition are manifold. If generally adopted, it will facilitate the inter-comparison of results from different groups using the same SFR and stellar mass diagnostics, or it will highlight the relative systematics of different diagnostics. All of this could help to understand MS galaxies as systems in a quasi-steady state equilibrium and would also provide a more objective criterion for identifying quenching galaxies

  1. Grain temperature, radiation pressure and electric potential in the vicinity of main sequence and white dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Leiknes, J.; Havnes, O. (University of Tromso, Auroral Observatory (Norway))

    1984-08-01

    We present results of calculations of the grain physical parameters temperature, lifetime against evaporation, radiation pressure and electric potential for spherical grains near main sequence stars, hydrogen type (DA) white dwarfs and helium type (DB) white dwarfs. These parameters are essential in determining the behaviour of grains near such stars. The grain temperature as a function of stellar distance is calculated for grains of sizes 0.1 and 1 ..mu.. (micron) for grain materials of silicate (obsidian), iron and graphite. The lifetime due to thermal evaporation as a function of grain temperature of these materials is also given. The radiation pressure is given for grain sizes from 0.01 to 10 ..mu.. for the same three grain materials. Grain potentials have been calculated as functions of stellar distance for one photoelectron high yield material (silicate) and one low yield material (graphite) for grains of radius 0.1 ..mu.. embedded in a thermal plasma of temperature T = 10/sup 4/ K.

  2. Relative stellar occurrence of exoplanets in habitable zones of the main sequence F, G, K stars

    Czech Academy of Sciences Publication Activity Database

    Pintr, Pavel; Peřinová, V.; Lukš, A.; Pathak, A.

    2014-01-01

    Roč. 99, sept2014 (2014), s. 1-6 ISSN 0032-0633 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : Exoplanets * Methods: statistical * Stars: planetary systems Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.875, year: 2014 http://www.sciencedirect.com/science/article/pii/S003206331400172X#

  3. Radio-emission of pre-main sequence stars of the Rho Ophiuchi cloud: observations and interpretation

    International Nuclear Information System (INIS)

    Andre, P.

    1987-11-01

    Observations of the radio continuum emission of a young star population have been made at VLA on the whole molecular cloud Rho Ophiuchi, one of the closest site of star formation. A dozen of stellar sources have been detected. Radio emission of some identified objects seems to have a magnetic nature and be produced by gyrosynchrotron mechanism. In particular, one of the sources shows a radio radiation circularly polarized; two other stars have a radiation strongly variable probably due to magnetic eruptions more important than those detected in X radiation. More generally, radio observations select probably a specific population of young stars characterized by magnetic field presence extended on several stellar radii and by absence of dense circumstellar environment. Spatial distribution of these objects suggest, they are younger than most of the pre-main sequence stars [fr

  4. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    Science.gov (United States)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), I.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant zFrontier Fields, on the basis of rest-frame UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}⊙ ˜ 7.5 at z≲ 4 and {log} M/{M}⊙ ˜ 8 at higher redshifts, a factor of ˜10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  5. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    International Nuclear Information System (INIS)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F.; Eymet, Vincent; Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria; Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit

    2013-01-01

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO 2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H 2 O and CO 2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff ∼ ⊕ , so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

  6. RADIO AND MID-INFRARED PROPERTIES OF COMPACT STARBURSTS: DISTANCING THEMSELVES FROM THE MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E. J. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Stierwalt, S.; Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Condon, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Evans, A. S., E-mail: emurphy@obs.carnegiescience.edu [Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States)

    2013-05-01

    We investigate the relationship between 8.44 GHz brightness temperatures and 1.4 to 8.44 GHz radio spectral indices with 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) emission and 9.7 {mu}m silicate absorption features for a sample of 36 local luminous and ultraluminous infrared galaxies. We find that galaxies having small 6.2 {mu}m PAH equivalent widths (EQWs), which signal the presence of weak PAH emission and/or an excess of very hot dust, also have flat spectral indices. The three active galactic nuclei (AGN) identified through their excessively large 8.44 GHz brightness temperatures are also identified as AGN via their small 6.2 {mu}m PAH EQWs. We also find that the flattening of the radio spectrum increases with increasing silicate optical depth, 8.44 GHz brightness temperature, and decreasing size of the radio source even after removing potential AGN, supporting the idea that compact starbursts show spectral flattening as the result of increased free-free absorption. These correlations additionally suggest that the dust obscuration in these galaxies must largely be coming from the vicinity of the compact starburst itself, and is not distributed throughout the (foreground) disk of the galaxy. Finally, we investigate the location of these infrared-bright systems relative to the main sequence (star formation rate versus stellar mass) of star-forming galaxies in the local universe. We find that the radio spectral indices of galaxies flatten with increasing distance above the main sequence, or in other words, with increasing specific star formation rate. This indicates that galaxies located above the main sequence, having high specific star formation rates, are typically compact starbursts hosting deeply embedded star formation that becomes more optically thick in the radio and infrared with increased distance above the main sequence.

  7. Systematic main sequence photometry of globular cluster stars for age determination

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1984-01-01

    The individual photometric study of the coeval stars in globular clusters presents one of the best observational tests of the stellar evolution theory. Our own globular cluster system provides fundamental clues to the dynamical and chemical evolutionary history of the galaxy, and the study of their ages give a lower limit to the age of the galaxy as well as to that of the universe. The authors have undertaken a systematic research program, and discuss the ages deduced by fitting main sequence photometry to theoretical isochrones of six galactic globular clusters: M4, M22, M30, NGC 288, NGC 3201 and NGC 6397. (Auth.)

  8. Additional measurements of pre-main-sequence stellar rotation

    International Nuclear Information System (INIS)

    Hartmann, L.; Stauffer, J.R.

    1989-01-01

    New rotational-velocity measurements for pre-main-sequence stars in the Taurus-Auriga molecular cloud are reported. Rotational velocities or upper limits of 10 km/s are now available for 90 percent of the T Tauri stars with V less than 14.7 in the catalog of Cohen and Kuhi. Measurements of 'continuum emission' stars, thought to be accreting high-angular-momentum material from a circumstellar disk, show that these objects are not especially rapid rotators. The results confirm earlier findings that angular-momentum loss proceeds very efficiently in the earliest stages of star formation, and suggest that stars older than about one million yr contract to the main sequence at nearly constant angular momentum. The slow rotation of T Tauri stars probably requires substantial angular-momentum loss via a magnetically coupled wind. 35 references

  9. An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars

    Science.gov (United States)

    Manara, C. F.; Frasca, A.; Alcalá, J. M.; Natta, A.; Stelzer, B.; Testi, L.

    2017-09-01

    Context. Studies of the formation and evolution of young stars and their disks rely on knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity for studying disk evolution. Aims: Here we derive stellar properties of low-mass (M⋆≲ 2 M⊙) pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra are reduced, flux-calibrated, and corrected for telluric absorption, and are made available to the community. Methods: We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction (AVpresented in our previous publication. We perform synthetic photometry on the spectra to derive the typical colors of young stars in different filters. We measure the luminosity of the emission lines present in the spectra and estimate the noise due to chromospheric emission in the measurements of accretion luminosity in accreting stars. Results: We provide a calibration of the photospheric colors of young pre-main sequence stars as a function of their spectral type in a set of standard broad-band optical and near-infrared filters. The logarithm of the noise on the accretion luminosity normalized to the stellar luminosity is roughly constant and equal to -2.3 for targets with masses larger than 1 solar

  10. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, S.; Deheuvels, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brandao, I. M.; Cunha, M. S.; Sousa, S. G. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Dogan, G. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Metcalfe, T. S. [Space Science Institute, Boulder, CO 80301 (United States); Serenelli, A. M.; Garcia, R. A. [Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106 (United States); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); Weiss, A. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching bei Muenchen (Germany); Appourchaux, T. [Institut d' Astrophysique Spatiale, Universite Paris Sud-CNRS (UMR8617) Batiment 121, F-91405 Orsay Cedex (France); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Cassisi, S. [INAF-Astronomical Observatory of Teramo, Via M. Maggini sn, I-64100 Teramo (Italy); Creevey, O. L. [Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, CNRS, I-06300 Nice, France. (France); Lebreton, Y. [Observatoire de Paris, GEPI, CNRS UMR 8111, F-92195 Meudon (France); Noels, A. [Institute of Astrophysics and Geophysics, University of Liege, B-4000 Liege (Belgium); and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  11. Chromospheric Ca II H and K and H-alpha emission in single and binary stars of spectral types F6-M2

    International Nuclear Information System (INIS)

    Strassmeier, K.G.; Fekel, F.C.; Bopp, B.W.; Dempsey, R.C.; Henry, G.W.

    1990-01-01

    New observations of the Ca II H and K and H-epsilon region and/or the Balmer H-alpha line are presented for 100 mostly very active stars but also for weak or inactive stars with suspected activity. Correlations between chromospheric activity at Ca II H and K and H-alpha and effective surface temperature and rotation are identified, and several new stars with chromospheric Ca II H and K emission are discovered. No single activity-rotation relation can be derived for all luminosity classes, and there is clear evidence that evolved stars are generally more active than main-sequence stars of the same rotation period. Binary within the evolved stars appears to play no role, while main-sequence binary stars show generally higher levels of activity than their single counterparts. Chromospheric emission in the Ca II H and K lines depends on surface temperature in that flux declines with cooler temperature. 63 refs

  12. Circumstellar Material on and off the Main Sequence

    Science.gov (United States)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.

  13. THE ORIGIN OF HVS17, AN UNBOUND MAIN SEQUENCE B STAR AT 50 kpc

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-09-20

    We analyze Keck Echellette Spectrograph and Imager spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km s{sup –1} in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T{sub eff} and log g with stellar evolution tracks implies that HVS17 is a 3.91 ± 0.09 M{sub ☉}, 153 ± 9 Myr old star at a Galactocentric distance of r = 48.5 ± 4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

  14. THE ORIGIN OF HVS17, AN UNBOUND MAIN SEQUENCE B STAR AT 50 kpc

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2013-01-01

    We analyze Keck Echellette Spectrograph and Imager spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km s –1 in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T eff and log g with stellar evolution tracks implies that HVS17 is a 3.91 ± 0.09 M ☉ , 153 ± 9 Myr old star at a Galactocentric distance of r = 48.5 ± 4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo

  15. Effects of magnetic fields on main sequence stars

    International Nuclear Information System (INIS)

    Hubbard, E.N.

    1981-01-01

    A number of effects of low to medium strength ( 2 /8π) magnetic field pressure term so that the only effect of such a field may come from its inhibiting convection in the core. Isochrones of both convective and radiative core models of 2-5 M are presented. In the deep envelope, mixing of partially nuclear processed material driven by rising and falling magnetic flux tubes may be seen. The effects of this mixing will be brought to the surface during the deep convection phase of the star's tenure as a red giant. This model is used to predict a signature for magnetic mixing based on the CNO isotope and abundance ratios. In the outer envelope the gas pressure is low enough that one might expect to see a perturbation of the stellar structure due to the magnetic field pressure itself. This perturbation is calculated under several physical models for intermediate and high mass stars and it is determined that sufficient magnetic field energy may be available in the outer envelope to expand a star by about 20% over its unperturbed radius. Finally the evidence for the existence of non-magnetic neutron stars is considered, concluding that while no non-magnetic neutron stars have ever been positively identified, there is no evidence that prevents the existence of at least as many non-magnetic as magnetic neutron stars

  16. Lithium abundances and metallicities in stars near the main-sequence turnoff and a giant in M67

    International Nuclear Information System (INIS)

    Garcia Lopez, R.J.; Rebolo, R.; Beckman, J.E.

    1988-01-01

    The iron abundance of seven stars near the main-sequence (MS) turnoff and a giant in M67 are spectroscopically derived, and the results are discussed. The resulting mean iron abundance of the turnoff stars is (Fe/H) = 0.04 + or - 0.04. Taken together with previous determinations for younger clusters, this shows that there has been relatively little change of the iron abundance in the solar neighborhood during the last 5 Gyr. Lithium was detected in one unevolved star and marginally in the giant, while in the other MS stars only upper limits were found. The considerable differences in Li abundances for stars with similar surface temperature imply that there is at least one parameter affecting Li depletion apart from stellar mass and metallicity. Nonsimultaneous star formation in the cluster cloud explain the scatter in lithium abundances. 50 references

  17. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  18. Are sdAs helium core stars?

    Directory of Open Access Journals (Sweden)

    Pelisoli Ingrid

    2017-12-01

    Full Text Available Evolved stars with a helium core can be formed by non-conservative mass exchange interaction with a companion or by strong mass loss. Their masses are smaller than 0.5 M⊙. In the database of the Sloan Digital Sky Survey (SDSS, there are several thousand stars which were classified by the pipeline as dwarf O, B and A stars. Considering the lifetimes of these classes on the main sequence, and their distance modulus at the SDSS bright saturation, if these were common main sequence stars, there would be a considerable population of young stars very far from the galactic disk. Their spectra are dominated by Balmer lines which suggest effective temperatures around 8 000-10 000 K. Several thousand have significant proper motions, indicative of distances smaller than 1 kpc. Many show surface gravity in intermediate values between main sequence and white dwarf, 4.75 < log g < 6.5, hence they have been called sdA stars. Their physical nature and evolutionary history remains a puzzle. We propose they are not H-core main sequence stars, but helium core stars and the outcomes of binary evolution. We report the discovery of two new extremely-low mass white dwarfs among the sdAs to support this statement.

  19. ON THE MULTIPLICITY OF THE ZERO-AGE MAIN-SEQUENCE O STAR HERSCHEL 36

    International Nuclear Information System (INIS)

    Arias, Julia I.; Barba, Rodolfo H.; Gamen, Roberto C.; Morrell, Nidia I.; Apellaniz, Jesus MaIz; Alfaro, Emilio J.; Sota, Alfredo; Walborn, Nolan R.; Bidin, Christian Moni

    2010-01-01

    We present the analysis of high-resolution optical spectroscopic observations of the zero-age main-sequence O star Herschel 36 spanning six years. This star is definitely a multiple system, with at least three components detected in its spectrum. Based on our radial-velocity (RV) study, we propose a picture of a close massive binary and a more distant companion, most probably in wide orbit about each other. The orbital solution for the binary, whose components we identify as O9 V and B0.5 V, is characterized by a period of 1.5415 ± 0.0006 days. With a spectral type O7.5 V, the third body is the most luminous component of the system and also presents RV variations with a period close to 498 days. Some possible hypotheses to explain the variability are briefly addressed and further observations are suggested.

  20. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  1. A Constraint on the Formation Timescale of the Young Open Cluster NGC 2264: Lithium Abundance of Pre-main Sequence Stars

    Science.gov (United States)

    Lim, Beomdu; Sung, Hwankyung; Kim, Jinyoung S.; Bessell, Michael S.; Hwang, Narae; Park, Byeong-Gon

    2016-11-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500\\lt {T}{eff}[{{K}}]≤slant 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A({Li})=3.2+/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

  2. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  3. EXTENDED MAGNETOSPHERES IN PRE-MAIN-SEQUENCE EVOLUTION: FROM T TAURI STARS TO THE BROWN DWARF LIMIT

    Energy Technology Data Exchange (ETDEWEB)

    Gomez de Castro, Ana I.; Marcos-Arenal, Pablo [Grupo de Investigacion Complutense AEGORA, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2012-04-20

    Low-mass pre-main-sequence stars, i.e., T Tauri stars (TTSs), strongly radiate at high energies, from X-rays to the ultraviolet (UV). This excess radiation with respect to main-sequence cool stars (MSCSs) is associated with the accretion process, i.e., it is produced in the extended magnetospheres, in the accretion shocks on the stellar surface, and in the outflows. Although evidence of accretion shocks and outflow contribution to the high-energy excess have been recently addressed, there is not an updated revision of the magnetospheric contribution. This article addresses this issue. The UV observations of the TTSs in the well-known Taurus region have been analyzed together with the XMM-Newton observations compiled in the XEST survey. For the first time the high sensitivity of the Hubble Space Telescope UV instrumentation has allowed measurement of the UV line fluxes of TTSs to M8 type. UV- and X-ray-normalized fluxes have been determined to study the extent and properties of the TTS magnetospheres as a class. They have been compared with the atmospheres of the MSCSs. The main results from this analysis are (1) the normalized fluxes of all the tracers are correlated; this correlation is independent of the broad mass range and the hardness of the X-ray radiation field; (2) the TTS correlations are different than the MSCS correlations; (3) there is a very significant excess emission in O I in the TTSs compared with MSCSs that seems to be caused by recombination radiation from the disk atmosphere after photoionization by extreme UV radiation; the Fe II/Mg II recombination continuum has also been detected in several TTSs and most prominently in AA Tau; and (4) the normalized flux of the UV tracers anticorrelates with the strength of the X-ray flux, i.e., the stronger the X-ray surface flux is, the weaker the observed UV flux. This last behavior is counterintuitive within the framework of stellar dynamo theory and suggests that UV emission can be produced in the

  4. A Population Study of Wide-Separation Brown Dwarf Companions to Main Sequence Stars

    Science.gov (United States)

    Smith, Jeffrey J.

    2005-01-01

    Increased interest in infrared astronomy has opened the frontier to study cooler objects that shed significant light on the formation of planetary systems. Brown dwarf research provides a wealth of information useful for sorting through a myriad of proposed formation theories. Our study combines observational data from 2MASS with rigorous computer simulations to estimate the true population of long-range (greater than 1000 AU) brown dwarf companions in the solar neighborhood (less than 25 pc from Earth). Expanding on Gizis et al. (2001), we have found the margin of error in previous estimates to be significantly underestimated after we included orbit eccentricity, longitude of pericenter, angle of inclination, field star density, and primary and secondary luminosities as parameters influencing the companion systems in observational studies. We apply our simulation results to current L- and T-dwarf catalogs to provide updated estimates on the frequency of wide-separation brown dwarf companions to main sequence stars.

  5. A search for pre-main sequence stars in the high-latitude molecular clouds. II - A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris

    1990-01-01

    The preliminary results are reported of a survey of every EINSTEIN image which overlaps any high-latitude molecular cloud in a search for X-ray emitting pre-main sequence stars. This survey, together with complementary KPNO and IRAS data, will allow the determination of how prevalent low mass star formation is in these clouds in general and, particularly, in the translucent molecular clouds.

  6. Pre-main sequence masses and the age spread in the Orion cluster

    International Nuclear Information System (INIS)

    McNamara, B.J.

    1975-01-01

    The spread in formation times for stars earlier than GO in the Orion cluster is investigated. The range of stellar ages in this cluster is found to extend from at least 10 6 years to about 10 7 years. On the basis of this evidence and the similarity of the color--magnitude diagrams of other young clusters to the Orion cluster, it is suggested that the current method of dating these clusters (from the point at which the most massive stars just reach the zero-age main sequence) might not be valid. The masses of forty-one pre-main sequence stars within the ranges 4.05 less than or equal to log(Te) less than or equal to 3.77 and 0.6 less than or equal to log (L/L/sub sun/) less than or equal to 2.1 are determined from observed effective temperatures, luminosities, and gravities. These masses were then compared with those expected from Iben's (1965) pre-main sequence evolutionary calculations. In most cases, the agreement between these values was found to be within the observational errors. Finally, the pre-main sequence stars possessing infrared excesses are found to be apparently among the most massive and youngest stars still contracting toward the zero-age main sequence

  7. MASS LOSS IN PRE-MAIN-SEQUENCE STARS VIA CORONAL MASS EJECTIONS AND IMPLICATIONS FOR ANGULAR MOMENTUM LOSS

    Energy Technology Data Exchange (ETDEWEB)

    Aarnio, Alicia N. [Astronomy Department, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Matt, Sean P. [Laboratoire AIM Paris-Saclay, CEA/Irfu Universite Paris-Diderot CNRS/INSU, F-91191 Gif-sur-Yvette (France); Stassun, Keivan G., E-mail: aarnio@umich.edu [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States)

    2012-11-20

    We develop an empirical model to estimate mass-loss rates via coronal mass ejections (CMEs) for solar-type pre-main-sequence (PMS) stars. Our method estimates the CME mass-loss rate from the observed energies of PMS X-ray flares, using our empirically determined relationship between solar X-ray flare energy and CME mass: log (M {sub CME}[g]) = 0.63 Multiplication-Sign log (E {sub flare}[erg]) - 2.57. Using masses determined for the largest flaring magnetic structures observed on PMS stars, we suggest that this solar-calibrated relationship may hold over 10 orders of magnitude in flare energy and 7 orders of magnitude in CME mass. The total CME mass-loss rate we calculate for typical solar-type PMS stars is in the range 10{sup -12}-10{sup -9} M {sub Sun} yr{sup -1}. We then use these CME mass-loss rate estimates to infer the attendant angular momentum loss leading up to the main sequence. Assuming that the CME outflow rate for a typical {approx}1 M {sub Sun} T Tauri star is <10{sup -10} M {sub Sun} yr{sup -1}, the resulting spin-down torque is too small during the first {approx}1 Myr to counteract the stellar spin-up due to contraction and accretion. However, if the CME mass-loss rate is {approx}> 10{sup -10} M {sub Sun} yr{sup -1}, as permitted by our calculations, then the CME spin-down torque may influence the stellar spin evolution after an age of a few Myr.

  8. POPULATION PARAMETERS OF INTERMEDIATE-AGE STAR CLUSTERS IN THE LARGE MAGELLANIC CLOUD. II. NEW INSIGHTS FROM EXTENDED MAIN-SEQUENCE TURNOFFS IN SEVEN STAR CLUSTERS

    International Nuclear Information System (INIS)

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Puzia, Thomas H.; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of seven intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main-sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we cannot formally rule out the latter for the three lowest-mass clusters in our sample (which have masses lower than ∼3 x 10 4 M sun ). This conclusion differs from that of some previous works which suggested that the age distribution in massive clusters in our sample is bimodal. This suggests that any secondary star formation occurred in an extended fashion rather than through short bursts. We discuss these results in the context of the nature of multiple stellar populations in star clusters.

  9. A catalog of pre-main-sequence emission-line stars with IRAS source associations

    International Nuclear Information System (INIS)

    Weintraub, D.A.

    1990-01-01

    To aid in finding premain-sequence (PMS) emission-line stars that might have dusty circumstellar environments, 361 PMS stars that are associated with 304 separate IRAS sources were identified. These stars include 200 classical T Tauri stars, 25 weak-lined (naked) T Tauri stars, 56 Herbig Ae/Be stars, six FU Orionis stars, and two SU Aurigae stars. All six of the FU Orionis stars surveyed by IRAS were detected. Of the PMS-IRAS Point Source Catalog (PSC) associations, 90 are new and are not noted in the PSC. The other 271 entries include 104 that are correctly identified in the PSC but have not yet appeared in the literature, 56 more that can be found in both the PSC and in the published and unpublished iterature, and 111 that are in the literature but not in the PSC. Spectral slope diagrams constructed from the 12-, 25-, and 60-micron flux densities reveal unique distributions for the different PMS subclasses; these diagrams may help identify the best candidate PMS stars for observations of circumstellar dust. 30 refs

  10. Relation of chromospheric activity to convection, rotation, and pre-main-sequence evolution

    International Nuclear Information System (INIS)

    Gilliland, R.L.

    1986-01-01

    Pre-main-sequence, or T Tauri, stars are characterized by much larger fluxes of nonradiative origin than their main-sequence counterparts. As a class, the T Tauri stars have only moderate rotation rates, making an explanation of their chromospheric properties based on rapid rotation problematic. The recent success of correlating nonradiative fluxes to the Rossby number, Ro = P/sub rot//tau/sub conv/, a central parameter of simple dynamo theories of magnetic field generation, has led to the suggestion that the same relation might be of use in explaining the pre-main-sequence (PMS) stars if tau/sub conv/ is very large. We show that tau/sub conv/ does depend strongly on evolutionary effects above the main sequence (MS), but that this dependence alone cannot account for the high observed nonradiative fluxes. The acoustic flux is also strongly dependent on PMS evolutionary state, and when coupled to the parameterization of magnetic activity based on Ro, these two mechanisms seem capable of explaining the high observed level of chromospheric activity in T Tauri stars. The moment of inertia decreases by two to three order of magnitude during PMS evolution. Since young MS stars do not rotate two to three orders of magnitude faster than PMS stars, rapid loss or redistribution of angular momentum must occur

  11. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (∼60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of ∼2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last ∼5 Myr. The central cluster NGC 602 was formed first

  12. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Förster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A.; Neri, R.; Cox, P.; Combes, F.; Bolatto, A.; Cooper, M. C.; Bournaud, F.; Burkert, A.; Comerford, J.; Davis, M.; Newman, S.; García-Burillo, S.; Naab, T.; Omont, A.

    2013-01-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ∼ 1.2 and 2.2, with log(M * (M ☉ )) ≥ 10.4 and log(SFR(M ☉ /yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M * -SFR plane, and adopting a ''Galactic'' value for the CO-H 2 conversion factor, we infer average gas fractions of ∼0.33 at z ∼ 1.2 and ∼0.47 at z ∼ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ∼ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ∼0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ∼ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M * , gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ∼ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  13. Post-main-sequence planetary system evolution

    Science.gov (United States)

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  14. Lithium abundances for 185 main-sequence stars: Galactic evolution and stellar depletion of lithium

    Science.gov (United States)

    Chen, Y. Q.; Nissen, P. E.; Benoni, T.; Zhao, G.

    2001-06-01

    We present a survey of lithium abundances in 185 main-sequence field stars with 5600 interesting result from this study is the presence of a large gap in the log varepsilon (Li) - Teff plane, which distinguishes ``Li-dip'' stars like those first identified in the Hyades cluster by Boesgaard & Tripicco (\\cite{Boesgaard86}) from other stars with a much higher Li abundance. The Li-dip stars concentrate on a certain mass, which decreases with metallicity from about 1.4 Msun at solar metallicity to 1.1 Msun at [Fe/H] =~ -1.0. Excluding the Li-dip stars and a small group of lower mass stars with Teff rate of angular momentum loss. It cannot be excluded, however, that a cosmic scatter of the Li abundance in the Galaxy at a given metallicity contributes to the dispersion in Li abundance. These problems make it difficult to determine the Galactic evolution of Li from the data, but a comparison of the upper envelope of the distribution of stars in the log varepsilon (Li) - [Fe/H] plane with recent Galactic evolutionary models by Romano et al. (\\cite{Romano99}) suggests that novae are a major source for the Li production in the Galactic disk; their occurrence seems to be the explanation for the steep increase of Li abundance at [Fe/H] =~ -0.4. Based on observations carried out at Beijing Astronomical Observatory (Xinglong, PR China) and European Southern Observatory, La Silla, Chile. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/371/943 and at http://www.edpsciences.org

  15. Lithium abundances, K line emission and ages of nearby solar type stars

    International Nuclear Information System (INIS)

    Duncan, D.K.

    1981-01-01

    Li abundances and chromospheric emission fluxes measured in the core of the Ca II K line have been determined in over 100 field F5--G5 dwarfs and subgiants. Although both quantities are known statistically to decrease in older stars, the correlation between them is not good. In particular, there are a number of anomalous solar type stars which show high Li abundances and very little chromospheric flux; the converse is rare. This might be understood if the intensity of chromospheric emission undergoes a sudden decrease when stars reach an age of 1 to 2 x 10 9 years, before much Li depletion occurs. Some of the anomalous stars appear to be older than this, however. Such stars must have preserved their Li from main sequence destruction

  16. Ultraviolet radiation from F and K stars and implications for planetary habitability

    Science.gov (United States)

    Kasting, J. F.; Whittet, D. C.; Sheldon, W. R.

    1997-01-01

    Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda < 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.

  17. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads

    Energy Technology Data Exchange (ETDEWEB)

    Goudfrooij, Paul; Correnti, Matteo [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Girardi, Léo, E-mail: goudfroo@stsci.edu [Osservatorio Astronomico di Padova—INAF, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy)

    2017-09-01

    Extended main-sequence turn-off (eMSTO) regions are a common feature in color–magnitude diagrams of young- and intermediate-age star clusters in the Magellanic Clouds. The nature of eMSTOs remains debated in the literature. The currently most popular scenarios are extended star formation activity and ranges of stellar rotation rates. Here we study details of differences in main-sequence turn-off (MSTO) morphology expected from spreads in age versus spreads in rotation rates, using Monte Carlo simulations with the Geneva syclist isochrone models that include the effects of stellar rotation. We confirm a recent finding of Niederhofer et al. that a distribution of stellar rotation velocities yields an MSTO extent that is proportional to the cluster age, as observed. However, we find that stellar rotation yields MSTO crosscut widths that are generally smaller than observed ones at a given age. We compare the simulations with high-quality Hubble Space Telescope data of NGC 1987 and NGC 2249, which are the two only relatively massive star clusters with an age of ∼1 Gyr for which such data is available. We find that the distribution of stars across the eMSTOs of these clusters cannot be explained solely by a distribution of stellar rotation velocities, unless the orientations of rapidly rotating stars are heavily biased toward an equator-on configuration. Under the assumption of random viewing angles, stellar rotation can account for ∼60% and ∼40% of the observed FWHM widths of the eMSTOs of NGC 1987 and NGC 2249, respectively. In contrast, a combination of distributions of stellar rotation velocities and stellar ages fits the observed eMSTO morphologies very well.

  18. THE MULTIPLE PRE-MAIN-SEQUENCE SYSTEM HBC 515 IN L1622

    International Nuclear Information System (INIS)

    Reipurth, Bo; Aspin, Colin; Herbig, George

    2010-01-01

    The bright pre-main-sequence star HBC 515 (HD 288313) located in the L1622 cometary cloud in Orion has been studied extensively with optical/infrared imaging and ultraviolet/optical/infrared spectroscopy. The spectra indicate that HBC 515 is a weakline T Tauri star (TTS) of spectral type K2V. Adaptive optics imaging in the K band reveals that HBC 515 is a binary with two equally bright components separated by 0.''5. A very faint third component is found 5'' to the northwest. Spitzer IRAC and MIPS observations show that at mid-infrared wavelengths this third source dominates the system, suggesting that it is a protostar still embedded in the nascent cloud of HBC 515. The close association of a weakline TTS with a newborn protostar in a multiple system is noteworthy. Two nearby TTSs are likely associated with the HBC 515 multiple system, and the dynamical evolution of the complex that would lead to such a configuration is considered.

  19. Dust discs around low-mass main-sequence stars

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Walker, H.J.

    1988-01-01

    Current understanding of the formation of circumstellar discs as a natural accompaniment to the process of low-mass star formation is briefly reviewed. Models of the thermal emission from the dust discs around the prototype stars α Lyr, α PsA, β Pic and ε Eri are discussed, which indicate that the central regions of three of these discs are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest dust lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud that sweeps up grains crossing its orbit. The colour, diameter and thickness of the optical image of β Pic, obtained by coronagraphic techniques, have provided further information on the size, radial distribution of number density and orbital inclination of the grains. The difference in surface brightness on the two sides of the disc is puzzling, but might be explained if the grains are elongated and aligned by the combined effects of a stellar wind and a magnetic field of spiral configuration. Finally, we discuss the orbital evolution and lifetimes of particles in these discs, which are governed primarily by radiation pressure, Poynting-Robertson drag and grain-grain collisions. (author)

  20. Chromospheric and Transition Region Emission Properties of G, K, and M dwarf Exoplanet Host Stars

    Science.gov (United States)

    France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, A. F.; Linsky, Jeffrey L.; Redfield, Seth; Loyd, Robert; Schneider, Christian

    2018-01-01

    Exoplanet magnetic fields have proven notoriously hard to detect, despite theoretical predictions of substantial magnetic field strengths on close-in extrasolar giant planets. It has been suggested that stellar and planetary magnetic field interactions can manifest as enhanced stellar activity relative to nominal age-rotation-activity relationships for main sequence stars or enhanced activity on stars hosting short-period massive planets. In a recent study of M and K dwarf exoplanet host stars, we demonstrated a significant correlation between the relative luminosity in high-temperature stellar emission lines (L(ion)/L_Bol) and the “star-planet interaction strength”, M_plan/a_plan. Here, we expand on that work with a survey of G, K, and M dwarf exoplanet host stars obtained in two recent far-ultraviolet spectroscopic programs with the Hubble Space Telescope. We have measured the relative luminosities of stellar lines C II, Si III, Si IV, and N V (formation temperatures from 30,000 – 150,000 K) in a sample of ~60 exoplanet host stars and an additional ~40 dwarf stars without known planets. We present results on star-planet interaction signals as a function of spectral type and line formation temperature, as well as a statistical comparison of stars with and without planets.

  1. The environmental impacts on the star formation main sequence: An Hα study of the newly discovered rich cluster at z = 1.52

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Yusei; Kodama, Tadayuki; Tadaki, Ken-ichi; Hayashi, Masao [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tanaka, Ichi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Shimakawa, Rhythm, E-mail: koyama.yusei@nao.ac.jp [Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588 (Japan)

    2014-07-01

    We report the discovery of a strong over-density of galaxies in the field of a radio galaxy at z = 1.52 (4C 65.22) based on our broadband and narrow-band (Hα) photometry with the Subaru Telescope. We find that Hα emitters are located in the outskirts of the density peak (cluster core) dominated by passive red-sequence galaxies. This resembles the situation in lower-redshift clusters, suggesting that the newly discovered structure is a well-evolved rich galaxy cluster at z = 1.5. Our data suggest that the color-density and stellar mass-density relations are already in place at z ∼ 1.5, mostly driven by the passive red massive galaxies residing within r{sub c} ≲ 200 kpc from the cluster core. These environmental trends almost disappear when we consider only star-forming (SF) galaxies. We do not find SFR-density or SSFR-density relations amongst SF galaxies, and the location of the SF main sequence does not significantly change with environment. Nevertheless, we find a tentative hint that star-bursting galaxies (up-scattered objects from the main sequence) are preferentially located in a small group at ∼1 Mpc away from the main body of the cluster. We also argue that the scatter of the SF main sequence could be dependent on the distance to the nearest neighboring galaxy.

  2. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  3. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ˜ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ˜ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5contract NAS5-26555.

  4. Evolution models of helium white dwarf--main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    OpenAIRE

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2017-01-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with ...

  5. Light-curve Modulation of Low-mass Stars in K2. I. Identification of 481 Fast Rotators in the Solar Neighborhood

    Science.gov (United States)

    Saylor, Dicy; Lepine, Sebastien; Crossfield, Ian; Petigura, Erik A.

    2018-01-01

    The K2 mission is targeting large numbers of nearby (d 40 mas yr‑1, V < 20). Additionally, the mission is targeting low-mass, high proper motion stars associated with the local (d < 500 pc) Galactic halo population also selected from SUPERBLINK. K2 campaigns 0 through 8 monitored a total of 26,518 of these cool main-sequence stars. We used the auto-correlation function to search for fast rotators by identifying short-period photometric modulations in the K2 light curves. We identified 481 candidate fast rotators with rotation periods <4 days that show light-curve modulations consistent with starspots. Their kinematics show low average transverse velocities, suggesting that they are part of the young disk population. A subset (13) of the fast rotators is found among those targets with colors and kinematics consistent with the local Galactic halo population and may represent stars spun up by tidal interactions in close binary systems. We further demonstrate that the M dwarf fast rotators selected from the K2 light curves are significantly more likely to have UV excess and discuss the potential of the K2 mission to identify new nearby young GKM dwarfs on the basis of their fast rotation rates. Finally, we discuss the possible use of local halo stars as fiducial, non-variable sources in the Kepler fields.

  6. Signed star (k,k-domatic number of a graph

    Directory of Open Access Journals (Sweden)

    S. M. Sheikholeslami

    2014-01-01

    Full Text Available Let \\(G\\ be a simple graph without isolated vertices with vertex set \\(V(G\\ and edge set \\(E(G\\ and let \\(k\\ be a positive integer. A function \\(f:E(G\\longrightarrow \\{-1, 1\\}\\ is said to be a signed star \\(k\\-dominating function on \\(G\\ if \\(\\sum_{e\\in E(v}f(e\\ge k\\ for every vertex \\(v\\ of \\(G\\, where \\(E(v=\\{uv\\in E(G\\mid u\\in N(v\\}\\. A set \\(\\{f_1,f_2,\\ldots,f_d\\}\\ of signed star \\(k\\-dominating functions on \\(G\\ with the property that \\(\\sum_{i=1}^df_i(e\\le k\\ for each \\(e\\in E(G\\, is called a signed star \\((k,k\\-dominating family (of functions on \\(G\\. The maximum number of functions in a signed star \\((k,k\\-dominating family on \\(G\\ is the signed star \\((k,k\\-domatic number of \\(G\\, denoted by \\(d^{(k,k}_{SS}(G\\. In this paper we study properties of the signed star \\((k,k\\-domatic number \\(d_{SS}^{(k,k}(G\\. In particular, we present bounds on \\(d_{SS}^{(k,k}(G\\, and we determine the signed \\((k,k\\-domatic number of some regular graphs. Some of our results extend these given by Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010, 213-218] for the signed star domatic number.

  7. HD 89345: a bright oscillating star hosting a transiting warm Saturn-sized planet observed by K2

    Science.gov (United States)

    Van Eylen, V.; Dai, F.; Mathur, S.; Gandolfi, D.; Albrecht, S.; Fridlund, M.; García, R. A.; Guenther, E.; Hjorth, M.; Justesen, A. B.; Livingston, J.; Lund, M. N.; Pérez Hernández, F.; Prieto-Arranz, J.; Regulo, C.; Bugnet, L.; Everett, M. E.; Hirano, T.; Nespral, D.; Nowak, G.; Palle, E.; Silva Aguirre, V.; Trifonov, T.; Winn, J. N.; Barragán, O.; Beck, P. G.; Chaplin, W. J.; Cochran, W. D.; Csizmadia, S.; Deeg, H.; Endl, M.; Heeren, P.; Grziwa, S.; Hatzes, A. P.; Hidalgo, D.; Korth, J.; Mathis, S.; Montañes Rodriguez, P.; Narita, N.; Patzold, M.; Persson, C. M.; Rodler, F.; Smith, A. M. S.

    2018-05-01

    We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star (V = 9.3 mag) observed by the K2 mission with one-minute time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding the mass and radius to be 1.12^{+0.04}_{-0.01} M_⊙ and 1.657^{+0.020}_{-0.004} R_⊙, respectively. The star appears to have recently left the main sequence, based on the inferred age, 9.4^{+0.4}_{-1.3} Gyr, and the non-detection of mixed modes. The star hosts a "warm Saturn" (P = 11.8 days, Rp = 6.86 ± 0.14 R⊕). Radial-velocity follow-up observations performed with the FIES, HARPS, and HARPS-N spectrographs show that the planet has a mass of 35.7 ± 3.3 M⊕. The data also show that the planet's orbit is eccentric (e ≈ 0.2). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to conform to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.

  8. Life of a star

    International Nuclear Information System (INIS)

    Henbest, Nigel.

    1988-01-01

    The paper concerns the theory of stellar evolution. A description is given of:- how a star is born, main sequence stars, red giants, white dwarfs, supernovae, neutron stars and black holes. A brief explanation is given of how the death of a star as a supernova can trigger off the birth of a new generation of stars. Classification of stars and the fate of our sun, are also described. (U.K.)

  9. X-ray sources in regions of star formation. I. The naked T Tauri stars

    International Nuclear Information System (INIS)

    Walter, F.M.

    1986-01-01

    Einstein X-ray observations of regions of active star formation in Taurus, Ophiuchus, and Corona Australis show a greatly enhanced surface density of stellar X-ray sources over that seen in other parts of the sky. Many of the X-ray sources are identified with low-mass, pre-main-sequence stars which are not classical T Tauri stars. The X-ray, photometric, and spectroscopic data for these stars are discussed. Seven early K stars in Oph and CrA are likely to be 1-solar-mass post-T Tauri stars with ages of 10-million yr. The late K stars in Taurus are not post-T Tauri, but naked T Tauri stars, which are coeval with the T Tauri stars, differing mainly in the lack of a circumstellar envelope. 72 references

  10. Kinematics and M(sub v) calibration of K and M dwarf stars using Hipparcos data

    Science.gov (United States)

    Upgren, A. R.; Ratnatunga, K. U.; Casertano, S.; Weis, E.

    1997-01-01

    The luminosities and kinematics of lower main sequence stars in a spectroscopically selected sample covering spectral types K 3 to M 5 are determined using Hipparcos parallaxes and proper motions. The stars separate into two kinematically distinct components, called young disk and old disk components. The young component has velocity dispersion (30, 17, 12) km/s in the U, V and W directions, respectively, and features an asymmetric drift of 8 km/s, a vertex deviation of 10 +/- 3 deg and an absolute magnitude of 10.48 mag at color (R - I)(sub Kron) = 1.0 mag. The respective features of the old component are: (56, 34, 31) km/s, 28 km/s and 0.6 mag at the same color. The slope and intrinsic width of the magnitude calibration of each component are determined. The analysis is used to investigate the possible presence of residual systematic discrepancies of the model with Hipparcos data. There are indications of a possible underestimation of the parallax errors.

  11. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    Science.gov (United States)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  12. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    International Nuclear Information System (INIS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-01-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems

  13. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, Baja California, 22800 México (Mexico); Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599 (United States); Miroshnichenko, A. S., E-mail: gag@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: zhar@astro.unam.mx [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States)

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  14. On precise ZAMSs, the solar color, and pre-main-sequence lithium depletion

    International Nuclear Information System (INIS)

    Vandenberg, D.A.; Poll, H.E.

    1989-01-01

    This paper describes a semiempirical main-sequence-fitting method for the determination of distances to stellar systems, which uses a ZAMS locus carefully normalized to the sun, and whose shape is defined by a quartic over the color range for (B-V)0 values between 0.2 and 1.0 such that the morphology of the Pleiades C-M diagram is accurately reproduced. Using this technique, distances were derived for a number of star clusters. It was found that the observed depletion of lithium among cool main-sequence stars in the Hyades and Pleiades can be matched quite well by the present models. Calculations also show that the depletion of Li at a fixed T(eff) along the main sequence is a sensitive function of Fe/H. 98 refs

  15. Effects of main-sequence mass loss on the turnoff ages of globular clusters

    International Nuclear Information System (INIS)

    Guzik, J.A.

    1989-01-01

    Willson, Bowen, and Struck-Marcell have proposed that globular cluster main-sequence turnoff ages can be reconciled with the lower ages of the Galaxy and universe deduced from other methods by incorporating an epoch of early main-sequence mass-loss by stars of spectral types A through early-F. The proposed mass loss is pulsation-driven, and facilitated by rapid rotation. This paper presents stellar evolution calculations of Pop. II (Z = 0.001) mass-losing stars of initial mass 0.8 to 1.6 M circle dot , with exponentially-decreasing mass loss rates of e-folding times 0.5 to 2.0 Gyr, evolving to a final mass of 0.7 M circle dot . The calculations indicate that a globular cluster with apparent turnoff age 18 Gyr could have an actual age as low as ∼12 Gyr. Observational implications that may help to verify the hypothesis, e.g. low C/N abundance ratios among red giants following first dredge-up, blue stragglers, red giant deficiencies, and signatures in cluster mass/luminosity functions, are also discussed.25 refs., 4 figs., 3 tabs

  16. Variations of the ISM conditions accross the Main Sequence of star forming galaxies: observations and simulations.

    Science.gov (United States)

    Martinez Galarza, Juan R.; Smith, Howard Alan; Lanz, Lauranne; Hayward, Christopher C.; Zezas, Andreas; Hung, Chao-Ling; Rosenthal, Lee; Weiner, Aaron

    2015-01-01

    A significant amount of evidence has been gathered that leads to the existence of a main sequence (MS) of star formation in galaxies. This MS is expressed in terms of a correlation between the SFR and the stellar mass of the form SFR ∝ M* and spans a few orders of magnitude in both quantities. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift, but no consensus has been reached regarding its true nature, and whether the membership or not of particular galaxies to this MS underlies the existence of two different modes of star formation. In order to advance in the understanding of the MS, here we use a statistically robust Bayesian SED analysis method (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers, both local and at intermediate redshift. We find a remarkable, very tight correlation between the specific star formation rate (sSFR) of galaxies, and the typical ISM conditions near their inernal star-forming regions, parametrized via a novel quantity: the compactness parameter (C). The evolution of mergers along this correlation explains the spread of the MS, and implies that the physical conditions of the ISM smoothly evolve between on-MS (secular) conditions and off-MS (coalescence/starburst) conditions. Furthermore, we show that the slope of the correlation can be interpreted in terms of the efficiency in the conversion of gas into stars, and that this efficiency remains unchanged along and across the MS. Finally, we discuss differences in the normalization of the correlation as a function of merger mass and redshift, and conclude that these differences imply the existence of two different modes of star formation, unrelated to the smooth evolution across the MS: a disk-like, low pressure mode and a compact nuclear-starburst mode.

  17. Solar Luminosity on the Main Sequence, Standard Model and Variations

    Science.gov (United States)

    Ayukov, S. V.; Baturin, V. A.; Gorshkov, A. B.; Oreshina, A. V.

    2017-05-01

    Our Sun became Main Sequence star 4.6 Gyr ago according Standard Solar Model. At that time solar luminosity was 30% lower than current value. This conclusion is based on assumption that Sun is fueled by thermonuclear reactions. If Earth's albedo and emissivity in infrared are unchanged during Earth history, 2.3 Gyr ago oceans had to be frozen. This contradicts to geological data: there was liquid water 3.6-3.8 Gyr ago on Earth. This problem is known as Faint Young Sun Paradox. We analyze luminosity change in standard solar evolution theory. Increase of mean molecular weight in the central part of the Sun due to conversion of hydrogen to helium leads to gradual increase of luminosity with time on the Main Sequence. We also consider several exotic models: fully mixed Sun; drastic change of pp reaction rate; Sun consisting of hydrogen and helium only. Solar neutrino observations however exclude most non-standard solar models.

  18. Cyanogen strengths of globular cluster post-main-sequence stars

    International Nuclear Information System (INIS)

    Hesser, J.E.; Hartwick, F.D.A.; McClure, R.D.

    1976-01-01

    CN strengths in the peculiar clusters ω Cen and M22 and the metal-rich clusters 47 Tuc, M71, and NGC 6352 are found to vary markedly from star to star. The strong variations in CN strength found earlier for ω Cen by Norris and Bessell and by Dickens and Bell are shown to extend to fainter stars, although expected correlations of CN strength with position in the color-magnitude (C-M) diagram are less evident in our sample. Several CN and metal-strong stars were also observed in M22. We conclude that CN, once it appears in globular clusters, can vary much more than it does in equivalent Population I samples, a result we briefly examine in light of current understanding regarding physical processes in the stars themselves and of models of galactic chemical evolution

  19. Three aspects of stellar evolution near the main sequence

    International Nuclear Information System (INIS)

    Morgan, J.C.

    1979-05-01

    Three problems of stellar evolution are considered: the gap in the HR diagram of M67, the evolutionary status of RS CVn binaries and the solar neutrino problem. The physical basis of the Eggleton stellar evolution computer program is described. The program was used to calculate a grid of evolutionary tracks for models with masses between 0.7 and 1.29 solar masses. The more massive stars considered here have expanding convective cores during their main sequence evolution. The isochrone of the old galactic cluster M67 has a gap at the top of its main sequence because of the rapid evolution of stars at hydrogen exhaustion. RS CVn binaries present a complex collection of observational phenomena although they appear to be detached binaries. Their evolutionary status has remained controversial because of their high space density. Here it is shown that a post main sequence interpretation is satisfactory. Models of the Sun with metal poor interiors have been proposed in an attempt to resolve the solar neutrino problem. Here the evolution of two such models is calculated in detail, including a gradual contamination of the surface convection zone to produce the observed metal abundance, giving fully consistent models of the Sun as it is observed. (author)

  20. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    International Nuclear Information System (INIS)

    Joner, Michael D.; Hintz, Eric G.

    2015-01-01

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hα index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature

  1. STANDARD STARS AND EMPIRICAL CALIBRATIONS FOR Hα AND Hβ PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Joner, Michael D.; Hintz, Eric G., E-mail: joner@byu.edu, E-mail: hintz@byu.edu [Department of Physics and Astronomy, Brigham Young University, N283 ESC, Provo, UT 84602 (United States)

    2015-12-15

    We define an Hα photometric system that is designed as a companion to the well established Hβ index. The new system is built on spectrophotometric observations of field stars as well as stars in benchmark open clusters. We present data for 75 field stars, 12 stars from the Coma star cluster, 24 stars from the Hyades, 17 stars from the Pleiades, and 8 stars from NGC 752 to be used as primary standard stars in the new systems. We show that the system transformations are relatively insensitive to the shape of the filter functions. We make comparisons of the Hα index to the Hβ index and illustrate the relationship between the two systems. In addition, we present relations that relate both hydrogen indices to equivalent width and effective temperature. We derive equations to calibrate both systems for Main Sequence stars with spectral types in the range O9 to K2 for equivalent width and A2 to K2 for effective temperature.

  2. THE DUSTIEST POST-MAIN SEQUENCE STARS IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Olivia C.; Meixner, Margaret; Roman-Duval, Julia [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sargent, Benjamin A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sewiło, Marta [The Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hony, Sacha [Institut für Theoretische Astrophysik, Zentrum für Astronomie, Universitt Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2015-10-01

    Using observations from the Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds (MC), we have found 35 evolved stars and stellar end products that are bright in the far-infrared. These 28 (LMC) and 7 (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found 13 low- to intermediate-mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae, and a symbiotic star. We also identify 10 high mass stars, including 4 of the 15 known B[e] stars in the MC, 3 extreme red supergiants that are highly enshrouded by dust, a Luminous Blue Variable, a Wolf–Rayet star, and two supernova remnants. Further, we report the detection of 9 probable evolved objects which were previously undescribed in the literature. These sources are likely to be among the dustiest evolved objects in the MC. The Herschel emission may either be due to dust produced by the evolved star or it may arise from swept-up interstellar medium material.

  3. Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra

    Science.gov (United States)

    El-Badry, Kareem; Ting, Yuan-Sen; Rix, Hans-Walter; Quataert, Eliot; Weisz, Daniel R.; Cargile, Phillip; Conroy, Charlie; Hogg, David W.; Bergemann, Maria; Liu, Chao

    2018-05-01

    We develop a data-driven spectral model for identifying and characterizing spatially unresolved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars. Binaries and triples are identified as targets whose spectra can be significantly better fit by a superposition of two or three model spectra, drawn from the same isochrone, than any single-star model. From an initial sample of ˜20 000 main-sequence targets, we identify ˜2500 binaries in which both the primary and secondary stars contribute detectably to the spectrum, simultaneously fitting for the velocities and stellar parameters of both components. We additionally identify and fit ˜200 triple systems, as well as ˜700 velocity-variable systems in which the secondary does not contribute detectably to the spectrum. Our model simplifies the process of simultaneously fitting single- or multi-epoch spectra with composite models and does not depend on a velocity offset between the two components of a binary, making it sensitive to traditionally undetectable systems with periods of hundreds or thousands of years. In agreement with conventional expectations, almost all the spectrally identified binaries with measured parallaxes fall above the main sequence in the colour-magnitude diagram. We find excellent agreement between spectrally and dynamically inferred mass ratios for the ˜600 binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities. We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchical triples. We make available catalogues of stellar parameters, abundances, mass ratios, and orbital parameters.

  4. On the Roche constants for main-sequence binaries

    International Nuclear Information System (INIS)

    Giannuzzi, M.A.

    1979-01-01

    The ratios C 1 /C 2 of the constants defining the equipotential surfaces which describe the external forms of the components of a close binary system have been calculated on the basis of evolutionary models. Theoretical systems have been considered allowing for a wide range of input parameters (masses and separation) and taking into account the evolutionary effects on the radii of the stars during their Main-Sequence lifetime. The systems have not undergone any transfer of matter and are representative of detached binaries with Main-sequence components. The ratios of the constants are confined in limited intervals and, for the highest values of the mass-ratios, they are clustered around the unit. (Auth.)

  5. Stellar model chromospheres. IX - Chromospheric activity in dwarf stars

    Science.gov (United States)

    Kelch, W. L.; Worden, S. P.; Linsky, J. L.

    1979-01-01

    High-resolution Ca II K line profiles are used to model the upper photospheres and lower chromospheres of eight main-sequence stars ranging in spectral type from F0 to M0 and exhibiting different degrees of chromospheric activity. The model chromospheres are studied as a function of spectral type and activity for stars of similar spectral type in order to obtain evidence of enhanced nonradiative heating in the upper-photospheric models and in the ratio of minimum temperature at the base of the chromosphere to effective temperature, a correlation between activity and temperature in the lower chromospheres, and a correlation of the width at the base of the K-line emission core and at the K2 features with activity. Chromospheric radiative losses are estimated for the modelled stars and other previously analyzed main-sequence stars. The results obtained strengthen the argument that dMe flare stars exhibit fundamentally solar-type activity but on an increased scale.

  6. Transit detections of extrasolar planets around main-sequence stars. I. Sky maps for hot Jupiters

    Science.gov (United States)

    Heller, R.; Mislis, D.; Antoniadis, J.

    2009-12-01

    Context: The findings of more than 350 extrasolar planets, most of them nontransiting Hot Jupiters, have revealed correlations between the metallicity of the main-sequence (MS) host stars and planetary incidence. This connection can be used to calculate the planet formation probability around other stars, not yet known to have planetary companions. Numerous wide-field surveys have recently been initiated, aiming at the transit detection of extrasolar planets in front of their host stars. Depending on instrumental properties and the planetary distribution probability, the promising transit locations on the celestial plane will differ among these surveys. Aims: We want to locate the promising spots for transit surveys on the celestial plane and strive for absolute values of the expected number of transits in general. Our study will also clarify the impact of instrumental properties such as pixel size, field of view (FOV), and magnitude range on the detection probability. Methods: We used data of the Tycho catalog for ≈1 million objects to locate all the stars with 0^m~≲~m_V~≲~11.5m on the celestial plane. We took several empirical relations between the parameters listed in the Tycho catalog, such as distance to Earth, m_V, and (B-V), and those parameters needed to account for the probability of a star to host an observable, transiting exoplanet. The empirical relations between stellar metallicity and planet occurrence combined with geometrical considerations were used to yield transit probabilities for the MS stars in the Tycho catalog. Magnitude variations in the FOV were simulated to test whether this fluctuations would be detected by BEST, XO, SuperWASP and HATNet. Results: We present a sky map of the expected number of Hot Jupiter transit events on the basis of the Tycho catalog. Conditioned by the accumulation of stars towards the galactic plane, the zone of the highest number of transits follows the same trace, interrupted by spots of very low and high

  7. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    International Nuclear Information System (INIS)

    Xiang, Mao-Sheng; Liu, Xiao-Wei; Huang, Yang; Wang, Chun; Ren, Juan-Juan; Chen, Bing-Qiu; Sun, Ning-Chen; Zhang, Hua-Wei; Yuan, Hai-Bo; Rebassa-Mansergas, Alberto; Huo, Zhi-Ying

    2015-01-01

    Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to determine the radial and vertical gradients of stellar metallicity, Δ[Fe/H]/ΔR and Δ[Fe/H]/Δ|Z| of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages (≳ 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages (≳ 11 Gyr) are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum (steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are

  8. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Uri; Perets, Hagai B., E-mail: uri.mal@tx.technion.ac.il, E-mail: hperets@physics.technion.ac.il [Department of Physics, Technion (Israel)

    2017-06-10

    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  9. Pre-main-sequence evolution of the sun

    International Nuclear Information System (INIS)

    Gough, D.

    1980-01-01

    The phase of solar evolution after the dynamical collapse is considered. The physics of the Kelvin-Helmholtz phase of gravitational collapse is described, attention being given to the early stages of the star when it was completely convective. It is noted that subsequently, a radiative core developed and evolution was controlled by the rate at which heat can diffuse through it by radiative transfer. Since the study of the Kelvin-Helmholtz contraction alone does not give enough information regarding the state of the sun when it first settled down to approximate hydrostatic equilibrium, other stars are studied, and information on the sun is obtained by analogy. Many young solar-type stars, such as the T Tauri stars, are not in the completely convective Hayashi (1961) phase hence it is proposed that the sun was completely mixed soon after its formation, which has some bearing on the sun's chemical structure. It is suggested that the surface of the sun was very nonuniform compared with the photosphere of today. The simple solar evolution model presented gives a good guide to the general way in which the sun contracted to the main sequence

  10. Paradoxical gap in the relative ages of T Tauri stars

    International Nuclear Information System (INIS)

    Weaer, W.B.

    1984-01-01

    The frequency distribution of T Tauri stars of different Youth (relative age) shows a pronounced gap at 5% of their time to the zero-age main sequence. This gap, which occurs in all of the four major T Tauri associations, is too large to be filled by unclassifiable veiled stars. It is nearly vertical on the Hertzsprung-Russell diagram, is centered near spectral class K5, and lies close to the transition between the convective and radiative tracks of the pre-main-sequence stars

  11. Main-sequence turnoff of the Draco dwarf galaxy

    International Nuclear Information System (INIS)

    Stetson, P.B.; Mcclure, R.D.; Vandenberg, D.A.; Victoria Univ., Canada)

    1985-01-01

    Deep photometry on the B,V system for 182 stars in the dwarf spheroidal galaxy in Draco was obtained with a CCD camera at the Cassegrain focus of the Canada-France-Hawaii 3.6-m telescope. Draco's main-sequence turnoff if found near V(to) = 23.5, which is about 3.4 magnitudes below the galaxy's horizontal branch. This leads to the interpretation that Draco is not measurably younger than the clusters or Ursa Minor: the age of Draco is about 18 Gyr according to current star-revolution chronologies. No blue stragglers are definitely detected in Draco, and it is concluded that any young population in Draco probably represents less than 10 percent of the total. 30 references

  12. The origin of the Crab Nebula and the electron capture supernova in 8-10 M solar mass stars

    Science.gov (United States)

    Nomoto, K.

    1981-01-01

    The chemical composition of the Crab Nebula is compared with several presupernova models. The small carbon and oxygen abundances in the helium-rich nebula are consistent with only the presupernova model of the star whose main sequence mass was MMS approximately 8-9.5 M. More massive stars contain too much carbon in the helium layer and smaller mass stars do not leave neutron stars. The progenitor star of the Crab Nebula lost appreciable part of the hydrogen-rich envelope before the hydrogen-rich and helium layers were mixed by convection. Finally it exploded as the electron capture supernova; the O+Ne+Mg core collapsed to form a neutron star and only the extended helium-rich envelope was ejected by the weak shock wave.

  13. Pleiades rapid rotators - evidence for an evolutionary sequence

    International Nuclear Information System (INIS)

    Butler, R.P.; Marcy, G.W.; Cohen, R.D.; Duncan, D.K.; California Univ., La Jolla; Space Telescope Science Institute, Baltimore, MD)

    1987-01-01

    Four rapidly rotating early-K dwarfs in the Pleiades are shown to contain an order of magnitude more Li than four slow rotators of the same spectral type, as would be expected if they were systematically younger. This supports the idea that late-type stars first arrive on the main sequence with V(rot) greater than about 100 km/s, that they spin down to V(rot) less than about 10 km/s in 10 to the 7th to 10 to the 8th yr, and that the Pleiades lower main sequence shows such an age spread. 14 references

  14. A Survey of Ca II H and K Chromospheric Emission in Southern Solar-Type Stars

    Science.gov (United States)

    Henry, Todd J.; Soderblom, David R.; Donahue, Robert A.; Baliunas, Sallie L.

    1996-01-01

    More than 800 southern stars within 50 pc have been observed for chromospheric emission in the cores of the Ca II H and K lines. Most of the sample targets were chosen to be G dwarfs on the basis of colors and spectral types. The bimodal distribution in stellar activity first noted in a sample of northern stars by Vaughan and Preston in 1980 is confirmed, and the percentage of active stars, about 30%, is remarkably consistent between the northern and southern surveys. This is especially compelling given that we have used an entirely different instrumental setup and stellar sample than used in the previous study. Comparisons to the Sun, a relatively inactive star, show that most nearby solar-type stars have a similar activity level, and presumably a similar age. We identify two additional subsamples of stars -- a very active group, and a very inactive group. The very active group may be made up of young stars near the Sun, accounting for only a few percent of the sample, and appears to be less than ~0.1 Gyr old. Included in this high-activity tail of the distribution, however, is a subset of very close binaries of the RS CVn or W UMa types. The remaining members of this population may be undetected close binaries or very young single stars. The very inactive group of stars, contributting ~5%--10% to the total sample, may be those caught in a Maunder Minimum type phase. If the observations of the survey stars are considered to be a sequence of snapshots of the Sun during its life, we might expect that the Sun will spend about 10% of the remainder of its main sequence life in a Maunder Minimum phase.

  15. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    Science.gov (United States)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; hide

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  16. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    Directory of Open Access Journals (Sweden)

    Ketzer Laura

    2017-01-01

    Full Text Available We present a preliminary analysis of the newly–discovered pulsating subdwarf B (sdB star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two–gyro mission of the Kepler space telescope. A time–series analysis of the data revealed 22 independent pulsation frequencies in the g–mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours. The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low–amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  17. Photometric search for variable stars in the young open cluster Berkeley 59

    Science.gov (United States)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period dispersal of the discs of relatively massive stars.

  18. OLD MAIN-SEQUENCE TURNOFF PHOTOMETRY IN THE SMALL MAGELLANIC CLOUD. II. STAR FORMATION HISTORY AND ITS SPATIAL GRADIENTS

    International Nuclear Information System (INIS)

    Noel, Noelia E. D.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio; Costa, Edgardo; Mendez, Rene A.

    2009-01-01

    We present a quantitative analysis of the star formation history (SFH) of 12 fields in the Small Magellanic Cloud (SMC) based on unprecedented deep [(B - R), R] color-magnitude diagrams (CMDs). Our fields reach down to the oldest main-sequence turnoff with a high photometric accuracy, which is vital for obtaining accurate SFHs, particularly at intermediate and old ages. We use the IAC-pop code to obtain the SFH, using synthetic CMDs generated with IAC-star. We obtain the SFH as a function ψ(t, z) of age and metallicity. We also consider several auxiliary functions: the initial mass function (IMF), φ(m), and a function accounting for the frequency and relative mass distribution of binary stars, β(f, q). We find that there are several main periods of enhancement of star formation: a young one peaked at ∼0.2-0.5 Gyr old, only present in the eastern and in the central-most fields; two at intermediate ages present in all fields: a conspicuous one peaked at ∼4-5 Gyr, and a less significant one peaked at ∼1.5-2.5; and an old one, peaked at ∼10 Gyr in all fields but the western ones. In the western fields, this old enhancement splits into two, one peaked at ∼8 Gyr old and another at ∼12 Gyr old. This 'two-enhancement' zone is unaffected by our choice of stellar evolutionary library but more data covering other fields of the SMC are necessary in order to ascertain its significancy. Correlation between star formation rate enhancements and SMC-Milky Way encounters is not clear. Some correlation could exist with encounters taken from the orbit determination of Kallivayalil et al. But our results would also fit in a first pericenter passage scenario like the one claimed by Besla et al. For SMC-Large Magellanic Cloud encounters, we find a correlation only for the most recent encounter ∼0.2 Gyr ago. This coincides with the youngest ψ(t) enhancement peaked at these ages in our eastern fields. The population younger than 1 Gyr represents ∼7%-12% of the total

  19. The SFR-M∗ main sequence archetypal star-formation history and analytical models

    Science.gov (United States)

    Ciesla, L.; Elbaz, D.; Fensch, J.

    2017-12-01

    The star-formation history (SFH) of galaxies is a key assumption to derive their physical properties and can lead to strong biases. In this work, we derive the SFH of main sequence (MS) galaxies and show how the peak SFH of a galaxy depends on its seed mass at, for example, z = 5. This seed mass reflects the galaxy's underlying dark matter (DM) halo environment. We show that, following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could result in less efficient gas inflows on the galaxies and thus could be the origin of limited stellar mass growth. As a result, we show that galaxies, still on the MS, can enter the passive region of the UVJ diagram while still forming stars. The best fit to the MS SFH is provided by a right skew peak function for which we provide parameters depending on the seed mass of the galaxy. The ability of the classical analytical SFHs to retrieve the star-formation rate (SFR) of galaxies from spectral energy distribution (SED) fitting is studied. Due to mathematical limitations, the exponentially declining and delayed SFH struggle to model high SFR, which starts to be problematic at z > 2. The exponentially rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but they are not able to model low values such as those expected at low redshift for massive galaxies. By simulating galaxies SED from the MS SFH, we show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS, with an error ranging from 5 to 40% depending on the SFH assumption and redshift; but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial

  20. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  1. Orbital motion in pre-main sequence binaries

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Simon, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Patience, J., E-mail: schaefer@chara-array.org [Astrophysics Group, School of Physics, University of Exeter, Exeter, EX4 4QL (United Kingdom)

    2014-06-01

    We present results from our ongoing program to map the visual orbits of pre-main sequence (PMS) binaries in the Taurus star forming region using adaptive optics imaging at the Keck Observatory. We combine our results with measurements reported in the literature to analyze the orbital motion for each binary. We present preliminary orbits for DF Tau, T Tau S, ZZ Tau, and the Pleiades binary HBC 351. Seven additional binaries show curvature in their relative motion. Currently, we can place lower limits on the orbital periods for these systems; full solutions will be possible with more orbital coverage. Five other binaries show motion that is indistinguishable from linear motion. We suspect that these systems are bound and might show curvature with additional measurements in the future. The observations reported herein lay critical groundwork toward the goal of measuring precise masses for low-mass PMS stars.

  2. ON THE RELIABILITY OF STELLAR AGES AND AGE SPREADS INFERRED FROM PRE-MAIN-SEQUENCE EVOLUTIONARY MODELS

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Offner, Stella S. R.; Krumholz, Mark R.

    2011-01-01

    We revisit the problem of low-mass pre-main-sequence stellar evolution and its observational consequences for where stars fall on the Hertzsprung-Russell diagram (HRD). In contrast to most previous work, our models follow stars as they grow from small masses via accretion, and we perform a systematic study of how the stars' HRD evolution is influenced by their initial radius, by the radiative properties of the accretion flow, and by the accretion history, using both simple idealized accretion histories and histories taken from numerical simulations of star cluster formation. We compare our numerical results to both non-accreting isochrones and to the positions of observed stars in the HRD, with a goal of determining whether both the absolute ages and the age dispersions inferred from non-accreting isochrones are reliable. We show that non-accreting isochrones can sometimes overestimate stellar ages for more massive stars (those with effective temperatures above ∼3500 K), thereby explaining why non-accreting isochrones often suggest a systematic age difference between more and less massive stars in the same cluster. However, we also find the only way to produce a similar overestimate for the ages of cooler stars is if these stars grow from ∼0.01 M sun seed protostars that are an order of magnitude smaller than predicted by current theoretical models, and if the size of the seed protostar correlates systematically with the final stellar mass at the end of accretion. We therefore conclude that, unless both of these conditions are met, inferred ages and age spreads for cool stars are reliable, at least to the extent that the observed bolometric luminosities and temperatures are accurate. Finally, we note that the time dependence of the mass accretion rate has remarkably little effect on low-mass stars' evolution on the HRD, and that such time dependence may be neglected for all stars except those with effective temperatures above ∼4000 K.

  3. The K2 M67 Study: A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster

    Science.gov (United States)

    Sandquist, Eric L.; Mathieu, Robert D.; Quinn, Samuel N.; Pollack, Maxwell L.; Latham, David W.; Brown, Timothy M.; Esselstein, Rebecca; Aigrain, Suzanne; Parviainen, Hannu; Vanderburg, Andrew; Stello, Dennis; Somers, Garrett; Pinsonneault, Marc H.; Tayar, Jamie; Orosz, Jerome A.; Bedin, Luigi R.; Libralato, Mattia; Malavolta, Luca; Nardiello, Domenico

    2018-04-01

    We present an analysis of a slightly eccentric (e = 0.05), partially eclipsing, long-period (P = 69.73 days) main-sequence binary system (WOCS 12009, Sanders 1247) in the benchmark old open cluster M67. Using Kepler K2 and ground-based photometry, along with a large set of new and reanalyzed spectra, we derived highly precise masses (1.111 ± 0.015 and 0.748 ± 0.005 M ⊙) and radii (1.071 ± 0.008 ± 0.003 and 0.713 ± 0.019 ± 0.026 R ⊙, with statistical and systematic error estimates) for the stars. The radius of the secondary star is in agreement with theory. The primary, however, is approximately 15% smaller than reasonable isochrones for the cluster predict. Our best explanation is that the primary star was produced from the merger of two stars, as this can also account for the nondetection of photospheric lithium and its higher temperature relative to other cluster main-sequence stars at the same V magnitude. To understand the dynamical characteristics (low measured rotational line broadening of the primary star and low eccentricity of the current binary orbit), we believe that the most probable (but not the only) explanation is the tidal evolution of a close binary within a primordial triple system (possibly after a period of Kozai–Lidov oscillations), leading to merger approximately 1 Gyr ago. This star appears to be a future blue straggler that is being revealed as the cluster ages and the most massive main-sequence stars die out. Based on observations made at Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation; with the Tillinghast Reflector Echelle Spectrograph (TRES) on the 1.5 m Tillinghast telescope, located at the Smithsonian Astrophysical Observatory’s Fred L. Whipple Observatory on Mt. Hopkins in Arizona; the HARPS-N spectrograph on the Italian Telescopio Nazionale

  4. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  5. The impact of Einstein observations on our understanding of low mass star formation

    International Nuclear Information System (INIS)

    Walter, F.M.

    1990-01-01

    Prior to 1980, the world of pre-main sequence stars, if not well understood, was at least well defined. The Herbig and Rao (1972) catalog listed 69 pre-main sequence stars in Tau-Aur, with the vast majority clearly being T Tauri stars. The characteristics of the classical T Tauri stars include strong Hα emission, with W λ (Hα)>5-10A; forbidden line emission; continuum ultraviolet and IR excesses; veiling of the absorption line spectrum; significant stellar variability; Li I λ6707A absorption; and association with dark clouds and/or emission nebulosities. Star forming regions were observed extensively with the Einstein Observatory, and showed the abundance of stellar X-ray sources in the Orion Nebula. About 1/3 of the known T Tauri stars were detected as X-ray sources, yet the vast majority of the X-ray sources detected were coincident with anonymous stars not suspected to be pre-main sequence stars. In the grand tradition of X-ray astronomy, X-ray astronomers trooped to telescopes to identify the optical counterparts. It was shown that 5 of the counterparts were K7-M0 stars, above the main sequence, with strong Li I absorption and that these stars were kinematic members of the Tau-Aur star formation complex. Since then, additional members of this class of naked T Tauri Stars (NTTS) have been studied, and charts provided for X-ray selected pre-main sequence star candidates in the general vicinity of Tau-Aur. Thirty five X-ray sources have been selected and optically confirmed as NTTS in Tau-Aur

  6. New Insights into the Formation of the Blue Main Sequence in NGC 1850

    Science.gov (United States)

    Yang, Yujiao; Li, Chengyuan; Deng, Licai; de Grijs, Richard; Milone, Antonino P.

    2018-06-01

    Recent discoveries of bimodal main sequences (MSs) associated with young clusters (with ages ≲1 Gyr) in the Magellanic Clouds have drawn a lot of attention. One of the prevailing formation scenarios attributes these split MSs to a bimodal distribution in stellar rotation rates, with most stars belonging to a rapidly rotating population. In this scenario, only a small fraction of stars populating a secondary blue sequence are slowly or non-rotating stars. Here, we focus on the blue MS in the young cluster NGC 1850. We compare the cumulative number fraction of the observed blue-MS stars to that of the high-mass-ratio binary systems at different radii. The cumulative distributions of both populations exhibit a clear anti-correlation, characterized by a highly significant Pearson coefficient of ‑0.97. Our observations are consistent with the possibility that blue-MS stars are low-mass-ratio binaries, and therefore their dynamical disruption is still ongoing. High-mass-ratio binaries, on the other hand, are more centrally concentrated.

  7. Stellar Rotation with Kepler and Gaia: Evidence for a Bimodal Star Formation History

    Science.gov (United States)

    Davenport, James

    2018-01-01

    Kepler stars with rotation periods measured via starspot modulations in their light curves have been matched against the astrometric data from Gaia Data Release 1. A total of 1,299 bright rotating stars were recovered, most with temperatures hotter than 5000 K. From these, 894 were selected as being near the main sequence. These main sequence stars show a bimodality in their rotation period distribution, centered around a ~600 Myr rotation-isochrone. This feature matches the bimodal period distribution found in cooler stars with Kepler, but was previously undetected for solar-type stars due to sample contamination by subgiant and binary stars. A tenuous connection between the rotation period and total proper motion is found, suggesting the period bimodality is due to the age distribution of stars within 300pc of the Sun, rather than a phase of rapid angular momentum loss. I will discuss how the combination of Kepler/K2/TESS with Gaia will enable us to map the star formation history of our galactic neighborhood.

  8. AK Sco: a tidally induced atmospheric dynamo in a pre-main sequence binary?

    Science.gov (United States)

    Gómez de Castro, A. I.

    2009-02-01

    AK Sco is a unique source: a 10-30 Myrs old pre-main sequence spectroscopic binary composed by two nearly equal F5 stars that at periastron are separated by barely eleven stellar radii so, the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes of AK Sco, the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during pre-main sequence evolution. Evidence of this effect is reported in this contribution.

  9. Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.

    1979-01-01

    The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)

  10. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Miller, Neal, E-mail: klsmith@astro.umd.edu [Department of Mathematics and Physics, Stevenson University, Stevenson, MD 21117 (United States)

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  11. Relations between broad-band linear polarization and Ca II H and K emission in late-type dwarf stars

    Science.gov (United States)

    Huovelin, Juhani; Saar, Steven H.; Tuominen, Ilkka

    1988-01-01

    Broadband UBV linear polarization data acquired for a sample of late-type dwarfs are compared with contemporaneous measurements of Ca II H and K line core emission. A weighted average of the largest values of the polarization degree is shown to be the best parameter for chromospheric activity diagnosis. The average maximum polarization in the UV is found to increase from late-F to late-G stars. It is noted that polarization in the U band is considerably more sensitive to activity variations than that in the B or V bands. The results indicate that stellar magnetic fields and the resulting saturation in the Zeeman-sensitive absorption lines are the most probably source of linear polarization in late-type main-sequence stars.

  12. PRE-MAIN-SEQUENCE TURN-ON AS A CHRONOMETER FOR YOUNG CLUSTERS: NGC 346 AS A BENCHMARK

    International Nuclear Information System (INIS)

    Cignoni, M.; Tosi, M.; Sabbi, E.; Nota, A.; Degl'Innocenti, S.; Moroni, P. G. Prada; Gallagher, J. S.

    2010-01-01

    We present a novel approach to deriving the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity function (LF) of the cluster, the TOn is identified as a peak followed by a dip. We propose that by combining the CMD analysis with the monitoring of the spatial distribution of MS stars it is possible to reliably identify the TOn in extragalactic star-forming regions. Compared to alternative methods, this technique is complementary to the turnoff dating and avoids the systematic biases affecting the PMS phase. We describe the method and its uncertainties and apply it to the star-forming region NGC 346, which has been extensively imaged with the Hubble Space Telescope (HST). This study extends the LF approach in crowded extragalactic regions and opens the way for future studies with HST/WFC3, the James Webb Space Telescope and from the ground with adaptive optics.

  13. 8-13 μm spectra of very late type Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Aitken, D.K.; Barlow, M.J.; Roche, P.F.; Spenser, P.M.

    1980-01-01

    8 to 13 μm spectra are presented of the late Wolf-Rayet stars, Ve 2-45 (WC9), CRL 2104 (WC8), He 2-113 (WC10) and CPD-56 0 8032 (WC10). Both WC10 stars show the unidentified feature at 11.25 μm and one of them that at 8.6 μm; their spectra resemble those of some planetary nebulae. These features are absent in the WC8/9 stars, whose spectra, together with their infrared photometric data, can be understood in terms of approximately 900 K blackbody spectra subject to some interstellar silicate absorption and with a small excess beyond 10 μm, perhaps due to SiC grains. The WC10 objects are characterized by much lower dust temperatures and their evolutionary status appears to be very different from that of the WC8/9 stars. (author)

  14. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  15. IRAS IDENTIFICATION OF PRE-MAIN-SEQUENCE STARS IN THE CHAMELEON-II ASSOCIATION

    NARCIS (Netherlands)

    PRUSTI, T; WHITTET, DCB; ASSENDORP, R; WESSELIUS, PR

    We report the results of a search for new pre-main sequence candidates in the Chamaeleon II dark cloud based on three IRAS catalogues (the Point Source Catalog, the Serendipitous Survey Catalog and the Faint Source Survey). A total of 30 sources were selected. Twelve of these display IRAS colours

  16. FUNDAMENTAL PROPERTIES OF STARS USING ASTEROSEISMOLOGY FROM KEPLER AND CoRoT AND INTERFEROMETRY FROM THE CHARA ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Ireland, M. J.; Bedding, T. R.; Maestro, V.; White, T. R. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Brandao, I. M.; Sousa, S. G.; Cunha, M. S. [Centro de Astrofo Latin-Small-Letter-Dotless-I sica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, P-4150-762 Porto (Portugal); Piau, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48823-2320 (United States); Bruntt, H.; Aguirre, V. Silva; Christensen-Dalsgaard, J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Molenda-Zakowicz, J. [Astronomical Institute of the University of Wroclaw, ul. Kopernika 11, 51-622 Wroclaw (Poland); Barclay, T. [Bay Area Environmental Research Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Burke, C. J. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); De Ridder, J. [Instituut voor Sterrenkunde, K. U. Leuven, B-3001 Leuven (Belgium); Farrington, C. D. [Center for High Angular Resolution Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302 (United States); Frasca, A., E-mail: daniel.huber@nasa.gov [INAF Osservatorio Astrofisico di Catania, I-95123 Catania (Italy); and others

    2012-11-20

    We present results of a long-baseline interferometry campaign using the PAVO beam combiner at the CHARA Array to measure the angular sizes of five main-sequence stars, one subgiant and four red giant stars for which solar-like oscillations have been detected by either Kepler or CoRoT. By combining interferometric angular diameters, Hipparcos parallaxes, asteroseismic densities, bolometric fluxes, and high-resolution spectroscopy, we derive a full set of near-model-independent fundamental properties for the sample. We first use these properties to test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}) and the large frequency separation ({Delta}{nu}). We find excellent agreement within the observational uncertainties, and empirically show that simple estimates of asteroseismic radii for main-sequence stars are accurate to {approx}< 4%. We furthermore find good agreement of our measured effective temperatures with spectroscopic and photometric estimates with mean deviations for stars between T {sub eff} = 4600-6200 K of -22 {+-} 32 K (with a scatter of 97 K) and -58 {+-} 31 K (with a scatter of 93 K), respectively. Finally, we present a first comparison with evolutionary models, and find differences between observed and theoretical properties for the metal-rich main-sequence star HD 173701. We conclude that the constraints presented in this study will have strong potential for testing stellar model physics, in particular when combined with detailed modeling of individual oscillation frequencies.

  17. BVRI main-sequence photometry of the globular cluster M4

    International Nuclear Information System (INIS)

    Alcaino, G.; Liller, W.

    1984-01-01

    We present BV and RI photographic photometry of 1421 and 189 stars, respectively, in the intermediate metallicity globular cluster M4 (NGC 6121). This investigation includes the first results of RI main-sequence photometry of a globular cluster. The use of longer wavelengths and longer color baselines provides the potential of improved isochrone fittings and underscores the urgent need for calculations of RI synthetic isochrones to be compared with observations. The Pickering-Racine wedge was used with the ESO 3.6 m telescope, the Las Campanas 2.5 m du Pont telescope, and the CTIO 1 m Yale telescope to extend the photoelectric limit from Vroughly-equal16.1 to Vroughly-equal19.1. We have determined the position of the main-sequence turnoff to lie at V = 16.6 +- 0.2 (m.e.) and B-V = 0.80 +- 0.03 (m.e.). A comparison of our BV observations with the CCD data of Richer and Fahlman shows excellent agreement: the two fifucial main sequences agree at all points to within 0.025 mag and, on average, to 0.013 mag. For the cluster we derive a distance modulus (m-M)/sub V/ = 12.52 +- 0.2 and reddening E(B-V) = 0.44 +- 0.03, results which confirm that at a distance of 2 kpc, M4 is the closest globular clusters to the Sun. Using the isochrones of VandenBerg, we deduce an age 13 +- 2 Gyr. As noted in several other investigations, there is a striking deficiency of stars in certain parts of the color-magnitude diagram; in M4 we find a pronounced gap over approx.0.6 mag at the base of the subgiant branch

  18. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  19. Giant CP stars

    International Nuclear Information System (INIS)

    Loden, L.O.; Sundman, A.

    1989-01-01

    This study is part of an investigation of the possibility of using chemically peculiar (CP) stars to map local galactic structure. Correct luminosities of these stars are therefore crucial. CP stars are generally regarded as main-sequence or near-main-sequence objects. However, some CP stars have been classified as giants. A selection of stars, classified in literature as CP giants, are compared to normal stars in the same effective temperature interval and to ordinary 'non giant' CP stars. There is no clear confirmation of a higher luminosity for 'CP giants', than for CP stars in general. In addition, CP characteristics seem to be individual properties not repeated in a component star or other cluster members. (author). 50 refs., 5 tabs., 3 figs

  20. The exoplanet population revealed by K2

    Science.gov (United States)

    Barentsen, Geert; Dotson, Jessie; Colon, Knicole; Hedges, Christina; Team K2

    2018-01-01

    NASA's K2 survey has expanded the legacy of the Kepler mission by using the repurposed spacecraft to probe short-period planets around a more diverse population of stars: probing nearby dwarfs through distant giants; young pre-main sequence stars through evolved white dwarfs; halo stars through bulge members. I will review the star and planet population sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  1. StAR Protein Stability in Y1 and Kin-8 Mouse Adrenocortical Cells.

    Science.gov (United States)

    Clark, Barbara J; Hudson, Elizabeth A

    2015-03-04

    The steroidogenic acute regulatory protein (STAR) protein expression is required for cholesterol transport into mitochondria to initiate steroidogenesis in the adrenal and gonads. STAR is synthesized as a 37 kDa precursor protein which is targeted to the mitochondria and imported and processed to an intra-mitochondrial 30 kDa protein. Tropic hormone stimulation of the cAMP-dependent protein kinase A (PKA) signaling pathway is the major contributor to the transcriptional and post-transcriptional regulation of STAR synthesis. Many studies have focused on the mechanisms of cAMP-PKA mediated control of STAR synthesis while there are few reports on STAR degradation pathways. The objective of this study was to determine the effect of cAMP-PKA-dependent signaling on STAR protein stability. We have used the cAMP-PKA responsive Y1 mouse adrenocortical cells and the PKA-deficient Kin-8 cells to measure STAR phosphorylation and protein half-life. Western blot analysis and standard radiolabeled pulse-chase experiments were used to determine STAR phosphorylation status and protein half-life, respectively. Our data demonstrate that PKA-dependent STAR phosphorylation does not contribute to 30 kDa STAR protein stability in the mitochondria. We further show that inhibition of the 26S proteasome does not block precursor STAR phosphorylation or steroid production in Y1 cells. These data suggest STAR can maintain function and promote steroidogenesis under conditions of proteasome inhibition.

  2. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  3. Dark stars: a new study of the first stars in the Universe

    International Nuclear Information System (INIS)

    Freese, Katherine; Bodenheimer, Peter; Gondolo, Paolo; Spolyar, Douglas

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the Universe may be dark stars (DSs), powered by dark matter (DM) heating rather than by nuclear fusion. Weakly interacting massive particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a DS, powered by DM annihilation as long as there is DM fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∼10 6 L o-dot ) and cool (T surf surf > 50 000 K); hence DS should be observationally distinct from standard Pop III stars. Once the DM fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.

  4. DK UMa: A Star on the Ascent

    Science.gov (United States)

    Simon, Theodore

    1999-01-01

    DK UMa (= 24 UMa = HD 82210) is a G4 IV-III star. According to its M(sub v) and B - V color, it is located at the base of the red giant branch, having recently exited from the Hertzsprung Gap. Now poised to start its first ascent along the giant branch, DK UMa is at a significant juncture in its post-main-sequence evolution, offering an important evolutionary comparison for magnetic activity with stars like 31 Comae, which is just entering the Hertzsprung Gap, and older stars like the Hyades giants or P Ceti, which have passed the tip of the giant branch and lie in the so-called 'clump'. As part of a major survey of the ultraviolet and X ray properties of a well-defined sample of evolved giant stars, DK UMa was observed with the Extreme Ultraviolet Explorer (EUVE) spacecraft in March 1997, for a total exposure time of 230 kiloseconds. A plot of the extracted short-wavelength (SW) spectrum of this star is shown, where it is compared with similar EUVE exposures for other yellow and red giant stars in the activity survey. In terms of the spectral lines of different ionization stages present in these spectra, the transition region and coronal temperature of DK UMa appears to be intermediate between those of 31 Com and P Ceti. Combining the relative strengths of the EUVE lines with Hubble Space Telescope (HST) data at near UV wavelengths and with ROSAT X-ray fluxes, the differential emission measure (DEM) distributions of these stars form a sequence in coronal temperature, which peaks at 10(exp 7.2) K for 31 Com, at 10(exp 6.8) K for B Ceti, and at intermediate temperatures for DK UMa - consistent with the evolutionary stages represented by the three stars. The integrated fluxes of the strongest emission lines found in the EUVE spectrum of DK UMa are listed, again compared with similar measurements for other giant stars that were observed in the course of other EUVE Guest Observer programs.

  5. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  6. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  7. An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    NARCIS (Netherlands)

    Matthews, B.C.; Greaves, J.S.; Holland, W.S.; Wyatt, M.C.; Barlow, M.J.; Bastien, P.; Beichman, C.A.; Biggs, A.; Butner, H.M.; Dent, W.R.F.; Francesco, J. Di; Dominik, C.; Fissel, L.; Friberg, P.; Gibb, A.G.; Halpern, M.; Ivison, R.J.; Jayawardhana, R.; Jenness, T.; Johnstone, D.; Kavelaars, J.J.; Marshall, J.L.; Phillips, N.; Schieven, G.; Snellen, I.A.G.; Walker, H.J.; Ward-Thompson, D.; Weferling, B.; White, G.J.; Yates, J.; Zhu, M.; Craigon, A.

    2007-01-01

    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main-sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral

  8. On the Statistical Properties of the Lower Main Sequence

    International Nuclear Information System (INIS)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia; Basu, Sarbani

    2017-01-01

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observable quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.

  9. On the Statistical Properties of the Lower Main Sequence

    Energy Technology Data Exchange (ETDEWEB)

    Angelou, George C.; Bellinger, Earl P.; Hekker, Saskia [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Basu, Sarbani [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)

    2017-04-20

    Astronomy is in an era where all-sky surveys are mapping the Galaxy. The plethora of photometric, spectroscopic, asteroseismic, and astrometric data allows us to characterize the comprising stars in detail. Here we quantify to what extent precise stellar observations reveal information about the properties of a star, including properties that are unobserved, or even unobservable. We analyze the diagnostic potential of classical and asteroseismic observations for inferring stellar parameters such as age, mass, and radius from evolutionary tracks of solar-like oscillators on the lower main sequence. We perform rank correlation tests in order to determine the capacity of each observable quantity to probe structural components of stars and infer their evolutionary histories. We also analyze the principal components of classic and asteroseismic observables to highlight the degree of redundancy present in the measured quantities and demonstrate the extent to which information of the model parameters can be extracted. We perform multiple regression using combinations of observable quantities in a grid of evolutionary simulations and appraise the predictive utility of each combination in determining the properties of stars. We identify the combinations that are useful and provide limits to where each type of observable quantity can reveal information about a star. We investigate the accuracy with which targets in the upcoming TESS and PLATO missions can be characterized. We demonstrate that the combination of observations from GAIA and PLATO will allow us to tightly constrain stellar masses, ages, and radii with machine learning for the purposes of Galactic and planetary studies.

  10. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-04-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ˜1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ˜1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A-F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  11. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Gianninas, A.

    2017-01-01

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M ⊙ main sequence stars with ≃0.8 M ⊙ companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  12. The Physical Nature of Subdwarf A Stars: White Dwarf Impostors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK, 73019 (United States)

    2017-04-10

    We address the physical nature of subdwarf A-type (sdA) stars and their possible link to extremely low mass (ELM) white dwarfs (WDs). The two classes of objects are confused in low-resolution spectroscopy. However, colors and proper motions indicate that sdA stars are cooler and more luminous, and thus larger in radius, than published ELM WDs. We demonstrate that surface gravities derived from pure hydrogen models suffer a systematic ∼1 dex error for sdA stars, likely explained by metal line blanketing below 9000 K. A detailed study of five eclipsing binaries with radial velocity orbital solutions and infrared excess establishes that these sdA stars are metal-poor ≃1.2 M {sub ⊙} main sequence stars with ≃0.8 M {sub ⊙} companions. While WDs must exist at sdA temperatures, only ∼1% of a magnitude-limited sdA sample should be ELM WDs. We conclude that the majority of sdA stars are metal-poor A–F type stars in the halo, and that recently discovered pulsating ELM WD-like stars with no obvious radial velocity variations may be SX Phe variables, not pulsating WDs.

  13. Formation of a contact binary star system

    International Nuclear Information System (INIS)

    Mullen, E.F.F.

    1974-01-01

    The process of forming a contact binary star system is investigated in the light of current knowledge of the W Ursae Majoris type eclipsing binaries and the current rotational braking theories for contracting stars. A preliminary stage of mass transfer is proposed and studied through the use of a computer program which calculates evolutionary model sequences. The detailed development of both stars is followed in these calculations, and findings regarding the internal structure of the star which is receiving the mass are presented. Relaxation of the mass-gaining star is also studied; for these stars of low mass and essentially zero age, the star eventually settles to a state very similar to a zero-age main sequence star of the new mass. A contact system was formed through these calculations; it exhibits the general properties of a W Ursae Majoris system. The initial masses selected for the calculation were 1.29 M/sub solar mass/ and 0.56 M/sub solar mass/. An initial mass transfer rate of about 10 -10 solar masses per year gradually increased to about 10 -8 solar masses per year. After about 2.5 x 10 7 years, the less massive star filled its Roche lobe and an initial contact system was obtained. The final masses were 1.01359 M/sub solar mass/ and 0.83641 M/sub solar mass/. The internal structure of the secondary component is considerably different from that of a main sequence star of the same mass

  14. Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

    NARCIS (Netherlands)

    Tramper, F.; Straal, S.M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J.S.; de Mink, S.E.; Kaper, L.

    2015-01-01

    Context. Oxygen sequence Wolf-Rayet (WO) stars are a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the

  15. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  16. NuSTAR spectral analysis of two bright Seyfert 1 galaxies: MCG +8-11-11 and NGC 6814

    Science.gov (United States)

    Tortosa, A.; Bianchi, S.; Marinucci, A.; Matt, G.; Middei, R.; Piconcelli, E.; Brenneman, L. W.; Cappi, M.; Dadina, M.; De Rosa, A.; Petrucci, P. O.; Ursini, F.; Walton, D. J.

    2018-01-01

    We report on the NuSTAR observations of two bright Seyfert 1 galaxies, namely MCG +8-11-11 (100 ks) and NGC 6814 (150 ks). The main goal of these observations was to investigate the Comptonization mechanisms acting in the innermost regions of an active galactic nucleus (AGN) which are believed to be responsible for the UV/X-ray emission. The spectroscopic analysis of the NuSTAR spectra of these two sources revealed that although they had different properties overall (black hole masses, luminosity and Eddington ratios), they had very similar coronal properties. Both presented a power-law spectrum with a high-energy cut-off at ∼150-200 keV, a relativistically broadened Fe K α line and the associated disc reflection component, plus a narrow iron line likely emitted in Compton thin and distant matter. The intrinsic continuum was well described by Comptonization models that show for MCG +8-11-11 a temperature of the coronal plasma of kTe ∼ 60 keV and an extrapolated optical depth τ = 1.8; for NGC 6814, the coronal temperature was kTe ∼ 45 keV with an extrapolated optical depth of τ = 2.5. We compare and discuss these values to some most common Comptonization models that aim at explaining the energy production and stability of coronae in AGNs.

  17. New light on faint stars

    International Nuclear Information System (INIS)

    Reid, N.; Gilmore, G.

    1982-01-01

    This paper presents the first purely photometric derivation of the stellar main-sequence luminosity function to absolute magnitude Msub(V) = + 19, which is comparable to the minimum mass for thermonuclear burning. The observations consist of COSMOS measures of UK Schmidt telescope plates in the V, R and I bands. They provide a complete sample of every star in 18.24 square degrees towards the South Galactic Pole, brighter than I = 17.0. Absolute magnitudes and distances are derived by photometric parallax from the Msub(V)/V-I and Msub(V)/I-K relations, which have been carefully calibrated on our photometric system. For +9<=Msub(V)<=+19, the photometrically defined luminosity function is in agreement with that derived from samples of nearby stars, and by proper motion techniques. There is no evidence for any excess of intrinsically faint stars, even though this survey reaches some 5 mag deeper into the luminosity function than previous photometric surveys. Re-analysis of subsamples of other photometric studies of the local stellar density removes any evidence for a significant excess of M dwarfs relative to the kinematically derived luminosity function. The missing mass in the solar neighbourhood, if any, does not reside in main-sequence stars brighter than Msub(V) approx. = + 17 mag. (author)

  18. Realistic limitations of detecting planets around young active stars

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available Current planet hunting methods using the radial velocity method are limited to observing middle-aged main-sequence stars where the signatures of stellar activity are much less than on young stars that have just arrived on the main-sequence. In this work we apply our knowledge from the surface imaging of these young stars to place realistic limitations on the possibility of detecting orbiting planets. In general we find that the magnitude of the stellar jitter is directly proportional to the stellar vsini. For G and K dwarfs, we find that it is possible, for models with high stellar activity and low stellar vsini, to be able to detect a 1 MJupiter mass planet within 50 epochs of observations and for the M dwarfs it is possible to detect a habitable zone Earth-like planet in 10s of observational epochs.

  19. A search for strong, ordered magnetic fields in Herbig Ae/Be stars

    Science.gov (United States)

    Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.

    2007-04-01

    The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAe

  20. Symbiotic star UV emission and theoretical models

    International Nuclear Information System (INIS)

    Kafatos, M.

    1982-01-01

    Observations of symbiotic stars in the far UV have provided important information on the nature of these objects. The canonical spectrum of a symbiotic star, e.g. RW Hya, Z And, AG Peg, is dominated by strong allowed and semiforbidden lines of a variety of at least twice ionized elements. Weaker emission from neutral and singly ionized species is also present. A continuum may or may not be present in the 1200 - 2000 A range but is generally present in the range 2000 - 3200 A range. The suspected hot subdwarf continuum is seen in some cases in the range 1200 - 2000 A (RW Hya, AG Peg, SY Mus). The presence of an accretion disk is difficult to demonstrate and to this date the best candidate for accretion to a main sequence star remains CI Cyg. A number of equations have been derived by the author that can yield the accretion parameters from the observable quantities. Boundary layer temperatures approximately 10 5 K and accretion rates approximately > 10 -5 solar masses/yr are required for accreting main sequence companions. To this date, though, most of the symbiotics may only require the presence of a approximately 10 5 K hot subdwarf. (Auth.)

  1. The Exoplant Migration Timescale from K2 Young Clusters

    Science.gov (United States)

    Rizzuto, Aaron C.; Mann, Andrew; Kraus, Adam L.; Ireland, Michael

    2017-01-01

    Planetary Migration models for close-in exoplanets(a operate on timescales of ~100’s of Myr to ~1Gyr, a lengthier process than disk migration. It is unclear which of these is the dominating mechanism.The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key pre-main-sequence ages: Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the ˜120 Myr Pleiades, the ˜600-800 Myr Hyades and Praesepe moving groups, to the original Kepler Field. The frequency, orbital and compositional properties of the exoplanet population in these samples of different age, with careful treatment of detection completeness, will be sufficient to address the question of exoplanet migration as their host stars are settling onto the main sequence.We will present the initial results of a program to directly address the question of planet migration with a uniform injection-recovery tests on a new K2 detrending pipeline that is optimized for the particular case of young, rotationally variable stars in K2 to robustly measure the detectability of planets of differing size and orbit. Initial results point towards a migration timescale of 200-700 Myr, which is consistent with the slower planet-planet scattering or Kozai migration models.

  2. MAGNETIC ACTIVITY ANALYSIS FOR A SAMPLE OF G-TYPE MAIN SEQUENCE KEPLER TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabi, Ahmad [Department of Physics, Bu Ali Sina University, 65178, 016016, Hamedan (Iran, Islamic Republic of); He, Han [National Astronomical Observatories, Chinese Academy of Sciences, Beijing (China); Khosroshahi, Habib, E-mail: mehrabi@basu.ac.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-01-10

    The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in our sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.

  3. Evidence of the evolved nature of the B[e] star MWC 137

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, M. F.; Arias, M. L.; Cidale, L. [Departamento de Espectroscopía Estelar, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, and Instituto de Astrofísica de La Plata, CCT La Plata, CONICET-UNLP, Paseo del Bosque S/N, B1900FWA, La Plata (Argentina); Kraus, M.; Oksala, M. E. [Astronomický ústav, Akademie věd České Republiky, Fričova 298, 251 65 Ondřejov (Czech Republic); Fernandes, M. Borges [Observatório Nacional, Rua General José Cristino 77, 20921-400 São Cristovão, Rio de Janeiro (Brazil); Liermann, A., E-mail: fmuratore@carina.fcaglp.unlp.edu.ar [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-01-01

    The evolutionary phase of B[e] stars is difficult to establish due to the uncertainties in their fundamental parameters. For instance, possible classifications for the Galactic B[e] star MWC 137 include pre-main-sequence and post-main-sequence phases, with a large range in luminosity. Our goal is to clarify the evolutionary stage of this peculiar object, and to study the CO molecular component of its circumstellar medium. To this purpose, we modeled the CO molecular bands using high-resolution K-band spectra. We find that MWC 137 is surrounded by a detached cool (T=1900±100 K) and dense (N=(3±1)×10{sup 21} cm{sup −2}) ring of CO gas orbiting the star with a rotational velocity, projected to the line of sight, of 84 ± 2 km s{sup −1}. We also find that the molecular gas is enriched in the isotope {sup 13}C, excluding the classification of the star as a Herbig Be. The observed isotopic abundance ratio ({sup 12}C/{sup 13}C = 25 ± 2) derived from our modeling is compatible with a proto-planetary nebula, main-sequence, or supergiant evolutionary phase. However, based on some observable characteristics of MWC 137, we propose that the supergiant scenario seems to be the most plausible. Hence, we suggest that MWC 137 could be in an extremely short-lived phase, evolving from a B[e] supergiant to a blue supergiant with a bipolar ring nebula.

  4. Magnetic cycles and rotation periods of late-type stars from photometric time series

    Science.gov (United States)

    Suárez Mascareño, A.; Rebolo, R.; González Hernández, J. I.

    2016-10-01

    Aims: We investigate the photometric modulation induced by magnetic activity cycles and study the relationship between rotation period and activity cycle(s) in late-type (FGKM) stars. Methods: We analysed light curves, spanning up to nine years, of 125 nearby stars provided by the All Sky Automated Survey (ASAS). The sample is mainly composed of low-activity, main-sequence late-A to mid-M-type stars. We performed a search for short (days) and long-term (years) periodic variations in the photometry. We modelled the light curves with combinations of sinusoids to measure the properties of these periodic signals. To provide a better statistical interpretation of our results, we complement our new results with results from previous similar works. Results: We have been able to measure long-term photometric cycles of 47 stars, out of which 39 have been derived with false alarm probabilities (FAP) of less than 0.1 per cent. Rotational modulation was also detected and rotational periods were measured in 36 stars. For 28 stars we have simultaneous measurements of activity cycles and rotational periods, 17 of which are M-type stars. We measured both photometric amplitudes and periods from sinusoidal fits. The measured cycle periods range from 2 to 14 yr with photometric amplitudes in the range of 5-20 mmag. We found that the distribution of cycle lengths for the different spectral types is similar, as the mean cycle is 9.5 yr for F-type stars, 6.7 yr for G-type stars, 8.5 yr for K-type stars, 6.0 yr for early M-type stars, and 7.1 yr for mid-M-type stars. On the other hand, the distribution of rotation periods is completely different, trending to longer periods for later type stars, from a mean rotation of 8.6 days for F-type stars to 85.4 days in mid-M-type stars. The amplitudes induced by magnetic cycles and rotation show a clear correlation. A trend of photometric amplitudes with rotation period is also outlined in the data. The amplitudes of the photometric variability

  5. RECONCILING THE OBSERVED STAR-FORMING SEQUENCE WITH THE OBSERVED STELLAR MASS FUNCTION

    International Nuclear Information System (INIS)

    Leja, Joel; Van Dokkum, Pieter G.; Franx, Marijn; Whitaker, Katherine E.

    2015-01-01

    We examine the connection between the observed star-forming sequence (SFR ∝ M α ) and the observed evolution of the stellar mass function in the range 0.2 < z < 2.5. We find that the star-forming sequence cannot have a slope α ≲ 0.9 at all masses and redshifts because this would result in a much higher number density at 10 < log (M/M ☉ ) < 11 by z = 1 than is observed. We show that a transition in the slope of the star-forming sequence, such that α = 1 at log (M/M ☉ ) < 10.5 and α = 0.7-0.13z (Whitaker et al.) at log (M/M ☉ ) > 10.5, greatly improves agreement with the evolution of the stellar mass function. We then derive a star-forming sequence that reproduces the evolution of the mass function by design. This star-forming sequence is also well described by a broken power law, with a shallow slope at high masses and a steep slope at low masses. At z = 2, it is offset by ∼0.3 dex from the observed star-forming sequence, consistent with the mild disagreement between the cosmic star formation rate (SFR) and recent observations of the growth of the stellar mass density. It is unclear whether this problem stems from errors in stellar mass estimates, errors in SFRs, or other effects. We show that a mass-dependent slope is also seen in other self-consistent models of galaxy evolution, including semianalytical, hydrodynamical, and abundance-matching models. As part of the analysis, we demonstrate that neither mergers nor hidden low-mass quiescent galaxies are likely to reconcile the evolution of the mass function and the star-forming sequence. These results are supported by observations from Whitaker et al

  6. Spots and the Activity of Stars in the Hyades Cluster from Observations with the Kepler Space Telescope (K2)

    Science.gov (United States)

    Savanov, I. S.; Dmitrienko, E. S.

    2018-03-01

    Observations of the K2 mission (continuing the program of the Kepler Space Telescope) are used to estimate the spot coverage S (the fractional area of spots on the surface of an active star) for stars of the Hyades cluster. The analysis is based on data on the photometric variations of 47 confirmed single cluster members, together with their atmospheric parameters, masses, and rotation periods. The resulting values of S for these Hyades objects are lower than those stars of the Pleiades cluster (on average, by Δ S 0.05-0.06). A comparison of the results of studies of cool, low-mass dwarfs in the Hyades and Pleiades clusters, as well as the results of a study of 1570 M stars from the main field observed in the Kepler SpaceMission, indicates that the Hyades stars are more evolved than the Pleiades stars, and demonstrate lower activity. The activity of seven solar-type Hyades stars ( S = 0.013 ± 0.006) almost approaches the activity level of the present-day Sun, and is lower than the activity of solar-mass stars in the Pleiades ( S = 0.031 ± 0.003). Solar-type stars in the Hyades rotate faster than the Sun ( = 8.6 d ), but slower than similar Pleiades stars.

  7. 2D and 3D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    Science.gov (United States)

    Guzik, Joyce Ann; Morgan, Taylor H.; Nelson, Nicholas J.; Lovekin, Catherine; Kitiashvili, Irina N.; Mansour, Nagi N.; Kosovichev, Alexander

    2015-08-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the sun, using three separate approaches: 1) Applying the spherical 3D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Dor/delta Sct variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive g modes; 2) Using the 3D planar ‘StellarBox’ radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 3) Applying the ROTORC 2D stellar evolution and dynamics code to calculate evolution with a variety of initial rotation rates and extents of core convective overshooting. The nonradial adiabatic pulsation frequencies of these nonspherical models will be calculated using the 2D pulsation code NRO of Clement. We will present new insights into gamma Dor and delta Sct pulsations gained by multidimensional modeling compared to 1D model expectations.

  8. Star clusters and K2

    Science.gov (United States)

    Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie

    2018-01-01

    The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  9. Studying RR Lyrae Stars in M4 with K2

    Science.gov (United States)

    Kuehn, Charles A.; Drury, Jason; Moskalik, Pawel

    2017-01-01

    Observations by Kepler/K2 have revolutionized the study of RR Lyrae stars by allowing the detection of new phenomena, such as low amplitude additional modes and period doubling, which had not previously been seen from the ground. During its campaign 2, K2 observed the globular cluster M4, providing the first opportunity to study a sizeable group of RR Lyrae stars that belong to a single population; the other RR Lyrae stars that have been observed from space are field stars in the galactic halo and thus belong to an assortment of populations. We present the results of our study of the RR Lyrae variables in M4 from K2 photometry. We have identified additional, low amplitude pulsation modes in the two observed RRc stars. In three RRab stars we have found the Blazhko effect with periods of 16.6 days, 22.4 days, and 44.5 days.

  10. THE IMPACT OF EVOLVING INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF GALAXIES ON STAR FORMATION RATE ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Nordon, R.; Lutz, D.; Genzel, R.; Berta, S.; Wuyts, S.; Magnelli, B.; Foerster Schreiber, N. M.; Poglitsch, A.; Popesso, P. [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany); Altieri, B. [Herschel Science Centre, European Space Astronomy Centre, ESA, Villanueva de al Canada, 28691 Madrid (Spain); Andreani, P. [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Aussel, H.; Daddi, E. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, Bat.709, CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Bongiovanni, A.; Cepa, J.; Perez Garcia, A. M. [Instituto de Astrofisica de Canarias, 38200 La Laguna, Tenerife (Spain); Cimatti, A. [Dipartimento di Astronomia, Universita di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Fadda, D. [IPAC, California Institute of Technology, Pasadena, CA 91125 (United States); Lagache, G. [Institut d' Astrophysique Spatiale (IAS), Bat 121, Universite de Paris XI, 91450 Orsay Cedex (France); Maiolino, R., E-mail: nordon@mpe.mpg.de [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, 00040 Monte Porzio Catone (Italy); and others

    2012-02-01

    We combine Herschel-Photodetector Array Camera and Spectrometer (PACS) data from the PACS Evolutionary Probe (PEP) program with Spitzer 24 {mu}m and 16 {mu}m photometry and ultra deep Infrared Spectrograph (IRS) mid-infrared spectra to measure the mid- to far-infrared spectral energy distribution (SED) of 0.7 < z < 2.5 normal star-forming galaxies (SFGs) around the main sequence (the redshift-dependent relation of star formation rate (SFR) and stellar mass). Our very deep data confirm from individual far-infrared detections that z {approx} 2 SFRs are overestimated if based on 24 {mu}m fluxes and SED templates that are calibrated via local trends with luminosity. Galaxies with similar ratios of rest-frame {nu}L{sub {nu}}(8) to 8-1000 {mu}m infrared luminosity (LIR) tend to lie along lines of constant offset from the main sequence. We explore the relation between SED shape and offset in specific star formation rate (SSFR) from the redshift-dependent main sequence. Main-sequence galaxies tend to have a similar {nu}L{sub {nu}}(8)/LIR regardless of LIR and redshift, up to z {approx} 2.5, and {nu}L{sub {nu}}(8)/LIR decreases with increasing offset above the main sequence in a consistent way at the studied redshifts. We provide a redshift-independent calibration of SED templates in the range of 8-60 {mu}m as a function of {Delta}log(SSFR) offset from the main sequence. Redshift dependency enters only through the evolution of the main sequence with time. Ultra deep IRS spectra match these SED trends well and verify that they are mostly due to a change in ratio of polycyclic aromatic hydrocarbon (PAH) to LIR rather than continua of hidden active galactic nuclei (AGNs). Alternatively, we discuss the dependence of {nu}L{sub {nu}}(8)/LIR on LIR. The same {nu}L{sub {nu}}(8)/LIR is reached at increasingly higher LIR at higher redshift, with shifts relative to local by 0.5 and 0.8 dex in log(LIR) at redshifts z {approx} 1 and z {approx} 2. Corresponding SED template calibrations

  11. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    International Nuclear Information System (INIS)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R ⨁ ) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R ⨁ ) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M ⨁ in F stars to 5 M ⨁ in G and K stars to 7 M ⨁ in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets

  12. AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel, E-mail: mulders@lpl.arizona.edu [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)

    2015-12-01

    Trends in the planet population with host star mass provide an avenue to constrain planet formation theories. We derive the planet radius distribution function for Kepler stars of different spectral types, sampling a range in host star masses. We find that M dwarf stars have 3.5 times more small planets (1.0–2.8 R{sub ⨁}) than main-sequence FGK stars, but two times fewer Neptune-sized and larger (>2.8 R{sub ⨁}) planets. We find no systematic trend in the planet size distribution between spectral types F, G, and K to explain the increasing occurrence rates. Taking into account the mass–radius relationship and heavy-element mass of observed exoplanets, and assuming those are independent of spectral type, we derive the inventory of the heavy-element mass locked up in exoplanets at short orbits. The overall higher planet occurrence rates around M stars are not consistent with the redistribution of the same mass into more, smaller planets. At the orbital periods and planet radii where Kepler observations are complete for all spectral types, the average heavy-element mass locked up in exoplanets increases roughly inversely with stellar mass from 4 M{sub ⨁} in F stars to 5 M{sub ⨁} in G and K stars to 7 M{sub ⨁} in M stars. This trend stands in stark contrast with observed protoplanetary disk masses that decrease toward lower mass stars, and provides a challenge for current planet formation models. Neither models of in situ formation nor migration of fully formed planets are consistent with these results. Instead, these results are indicative of large-scale inward migration of planetary building blocks—either through type-I migration or radial drift of dust grains—that is more efficient for lower mass stars, but does not result in significantly larger or smaller planets.

  13. Detection of [O III] at z ∼ 3: A Galaxy Above the Main Sequence, Rapidly Assembling Its Stellar Mass

    Science.gov (United States)

    Vishwas, Amit; Ferkinhoff, Carl; Nikola, Thomas; Parshley, Stephen C.; Schoenwald, Justin P.; Stacey, Gordon J.; Higdon, Sarah J. U.; Higdon, James L.; Weiss, Axel; Güsten, Rolf; Menten, Karl M.

    2018-04-01

    We detect bright emission in the far-infrared (far-IR) fine structure [O III] 88 μm line from a strong lensing candidate galaxy, H-ATLAS J113526.3-014605, hereafter G12v2.43, at z = 3.127, using the second-generation Redshift (z) and Early Universe Spectrometer (ZEUS-2) at the Atacama Pathfinder Experiment Telescope (APEX). This is only the fifth detection of this far-IR line from a submillimeter galaxy at the epoch of galaxy assembly. The observed [O III] luminosity of 7.1 × 109 ≤ft(\\tfrac{10}{μ }\\right) L ⊙ likely arises from H II regions around massive stars, and the amount of Lyman continuum photons required to support the ionization indicate the presence of (1.2–5.2) × 106 ≤ft(\\tfrac{10}{μ }\\right) equivalent O5.5 or higher stars, where μ would be the lensing magnification factor. The observed line luminosity also requires a minimum mass of ∼2 × 108 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ in ionized gas, that is 0.33% of the estimated total molecular gas mass of 6 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We compile multi-band photometry tracing rest-frame ultraviolet to millimeter continuum emission to further constrain the properties of this dusty high-redshift, star-forming galaxy. Via SED modeling we find G12v2.43 is forming stars at a rate of 916 ≤ft(\\tfrac{10}{μ }\\right) M ⊙ yr‑1 and already has a stellar mass of 8 × 1010 ≤ft(\\tfrac{10}{μ }\\right) M ⊙. We also constrain the age of the current starburst to be ≤slant 5 Myr, making G12v2.43 a gas-rich galaxy lying above the star-forming main sequence at z ∼ 3, undergoing a growth spurt, and it could be on the main sequence within the derived gas depletion timescale of ∼66 Myr.

  14. Star Formation in the Orion Nebula Cluster

    Science.gov (United States)

    Palla, Francesco; Stahler, Steven W.

    1999-11-01

    We study the record of star formation activity within the dense cluster associated with the Orion Nebula. The bolometric luminosity function of 900 visible members is well matched by a simplified theoretical model for cluster formation. This model assumes that stars are produced at a constant rate and distributed according to the field-star initial mass function. Our best-fit age for the system, within this framework, is 2×106 yr. To undertake a more detailed analysis, we present a new set of theoretical pre-main-sequence tracks. These cover all masses from 0.1 to 6.0 Msolar, and start from a realistic stellar birthline. The tracks end along a zero-age main-sequence that is in excellent agreement with the empirical one. As a further aid to cluster studies, we offer an heuristic procedure for the correction of pre-main-sequence luminosities and ages to account for the effects of unresolved binary companions. The Orion Nebula stars fall neatly between our birthline and zero-age main-sequence in the H-R diagram. All those more massive than about 8 Msolar lie close to the main sequence, as also predicted by theory. After accounting for the finite sensitivity of the underlying observations, we confirm that the population between 0.4 and 6.0 Msolar roughly follows a standard initial mass function. We see no evidence for a turnover at lower masses. We next use our tracks to compile stellar ages, also between 0.4 and 6.0 Msolar. Our age histogram reveals that star formation began at a low level some 107 yr ago and has gradually accelerated to the present epoch. The period of most active formation is indeed confined to a few×106 yr, and has recently ended with gas dispersal from the Trapezium. We argue that the acceleration in stellar births, which extends over a wide range in mass, reflects the gravitational contraction of the parent cloud spawning this cluster.

  15. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    Energy Technology Data Exchange (ETDEWEB)

    Falconer, David A; Moore, Ronald L; Adams, Mitzi [Space Science Office, VP62, Marshall Space Flight Center, Huntsville, AL 35812 (United States); Gary, G. Allen [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)], E-mail: David.falconer@msfc.nasa.gov

    2009-08-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R {sub Sun}. The two quantities are {sup L}WL{sub SG}, a gauge of the total free energy in an active region's magnetic field, and {sup L}{phi}, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log {sup L}WL{sub SG}, log {sup L}{phi}) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  16. THE 'MAIN SEQUENCE' OF EXPLOSIVE SOLAR ACTIVE REGIONS: DISCOVERY AND INTERPRETATION

    International Nuclear Information System (INIS)

    Falconer, David A.; Moore, Ronald L.; Adams, Mitzi; Gary, G. Allen

    2009-01-01

    We examine the location and distribution of the production of coronal mass ejections (CMEs) and major flares by sunspot active regions in the phase space of two whole-active-region magnetic quantities measured from 1897 SOHO/MDI magnetograms. These magnetograms track the evolution of 44 active regions across the central disk of radius 0.5 R Sun . The two quantities are L WL SG , a gauge of the total free energy in an active region's magnetic field, and L Φ, a measure of the active region's total magnetic flux. From these data and each active region's history of production of CMEs, X flares, and M flares, we find (1) that CME/flare-productive active regions are concentrated in a straight-line 'main sequence' in (log L WL SG , log L Φ) space, (2) that main-sequence active regions have nearly their maximum attainable free magnetic energy, and (3) evidence that this arrangement plausibly results from equilibrium between input of free energy to an explosive active region's magnetic field in the chromosphere and corona by contortion of the field via convection in and below the photosphere and loss of free energy via CMEs, flares, and coronal heating, an equilibrium between energy gain and loss that is analogous to that of the main sequence of hydrogen-burning stars in (mass, luminosity) space.

  17. Stellar Variability at the Main-sequence Turnoff of the Intermediate-age LMC Cluster NGC 1846

    Science.gov (United States)

    Salinas, R.; Pajkos, M. A.; Vivas, A. K.; Strader, J.; Contreras Ramos, R.

    2018-04-01

    Intermediate-age (IA) star clusters in the Large Magellanic Cloud (LMC) present extended main-sequence turn-offs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequences can also be produced by ill-characterized stellar variability. Here we present Gemini-S/Gemini Multi-Object Spectrometer (GMOS) time series observations of the IA cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects, we estimate the number of δ Sct belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single δ Sct within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher-resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of δ Sct makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results present a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its δ Sct population. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  18. A hot Saturn on an eccentric orbit around the giant star K2-132

    Science.gov (United States)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http

  19. Three Small Planets Transiting the Bright Young Field Star K2-233

    Science.gov (United States)

    David, Trevor J.; Crossfield, Ian J. M.; Benneke, Björn; Petigura, Erik A.; Gonzales, Erica J.; Schlieder, Joshua E.; Yu, Liang; Isaacson, Howard T.; Howard, Andrew W.; Ciardi, David R.; Mamajek, Eric E.; Hillenbrand, Lynne A.; Cody, Ann Marie; Riedel, Adric; Schwengeler, Hans Martin; Tanner, Christopher; Ende, Martin

    2018-05-01

    We report the detection of three small transiting planets around the young K3 dwarf K2-233 (2MASS J15215519‑2013539) from observations during Campaign 15 of the K2 mission. The star is relatively nearby (d = 69 pc) and bright (V = 10.7 mag, K s = 8.4 mag), making the planetary system an attractive target for radial velocity follow-up and atmospheric characterization with the James Webb Space Telescope. The inner two planets are hot super-Earths (R b = 1.40 ± 0.06 {R}\\oplus , R c = 1.34 ± 0.08 {R}\\oplus ), while the outer planet is a warm sub-Neptune (R d = 2.6 ± 0.1 {R}\\oplus ). We estimate the stellar age to be {360}-140+490 Myr based on rotation, activity, and kinematic indicators. The K2-233 system is particularly interesting given recent evidence for inflated radii in planets around similarly aged stars, a trend potentially related to photo-evaporation, core cooling, or both mechanisms.

  20. Variable K-type stars in the Pleiades

    International Nuclear Information System (INIS)

    Leeuwen, F. van; Alphenaar, P.

    1983-01-01

    Photometric observations in the VBLUW system (Lub, 1979) have been performed during 1980 and 1981 of 19 late G and early K-type members of the Pleiades Cluster, in order to study their variability. All stars showed variations with amplitudes of 0.02 to 0.20 magn. in V. For 12 stars light curves were obtained which show periods that range from 0.24 to 1.22 days. The light curves are semi-regular and resemble those of BY Dra stars, although the periods are shorter. (Auth.)

  1. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  2. Stellar Companions of Exoplanet Host Stars in K2

    Science.gov (United States)

    Matson, Rachel; Howell, Steve; Horch, Elliott; Everett, Mark

    2018-01-01

    Stellar multiplicity has significant implications for the detection and characterization of exoplanets. A stellar companion can mimic the signal of a transiting planet or distort the true planetary radii, leading to improper density estimates and over-predicting the occurrence rates of Earth-sized planets. Determining the fraction of exoplanet host stars that are also binaries allows us to better determine planetary characteristics as well as establish the relationship between binarity and planet formation. Using high-resolution speckle imaging to obtain diffraction limited images of K2 planet candidate host stars we detect stellar companions within one arcsec and up to six magnitudes fainter than the host star. By comparing our observed companion fraction to TRILEGAL star count simulations, and using the known detection limits of speckle imaging, we find the binary fraction of K2 planet host stars to be similar to that of Kepler host stars and solar-type field stars. Accounting for stellar companions in exoplanet studies is therefore essential for deriving true stellar and planetary properties as well as maximizing the returns for TESS and future exoplanet missions.

  3. Stars of type MS with evidence of white dwarf companions. [IUE, Main Sequence (MS)

    Science.gov (United States)

    Peery, Benjamin F., Jr.

    1986-01-01

    A search for white dwarf companions of MS-type stars was conducted, using IUE. The overendowments of these stars in typical S-process nuclides suggest that they, like the Ba II stars, may owe their peculiar compositions to earlier mass transfer. Short-wavelength IUE spectra show striking emission line variability in HD35155, HD61913, and 4 Ori; HD35155 and 4 Ori show evidence of white dwarf companions.

  4. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    International Nuclear Information System (INIS)

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders; Gandolfi, Davide; Barragán, Oscar; Persson, Carina M.; Fridlund, Malcolm; Donati, Paolo; Cusano, Felice; Korth, Judith; Grziwa, Sascha; Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J.; Saario, Joonas; Cochran, William D.; Endl, Michael; Guenther, Eike W.

    2017-01-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R Jup and a mass of 0.426 ± 0.037 M Jup and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R Jup and a mass of 0.84 ± 0.08 M Jup and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  5. K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Philipp; Csizmadia, Szilard; Smith, Alexis M. S.; Cabrera, Juan; Erikson, Anders [Institute of Planetary Research, German Aerospace Center, Rutherfordstrasse 2, D-12489 Berlin (Germany); Gandolfi, Davide; Barragán, Oscar [Dipartimento di Fisica, Universitá di Torino, via P. Giuria 1, I-10125 Torino (Italy); Persson, Carina M.; Fridlund, Malcolm [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Donati, Paolo; Cusano, Felice [INAF—Osservatorio Astronomico di Bologna, Via Ranzani, 1, I-40127, Bologna (Italy); Korth, Judith; Grziwa, Sascha [Rheinisches Institut für Umweltforschung an der Universität zu Köln, Aachener Strasse 209, D-50931 Köln (Germany); Prieto-Arranz, Jorge; Nespral, David; Deeg, Hans J. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Saario, Joonas [Nordic Optical Telescope, Apartado 474, E-38700, Santa Cruz de La Palma (Spain); Cochran, William D.; Endl, Michael [Department of Astronomy and McDonald Observatory, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Guenther, Eike W. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenberg (Germany); and others

    2017-03-01

    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES@NOT and HARPS-N@TNG spectroscopic observations. K2-60b has a radius of 0.683 ± 0.037 R {sub Jup} and a mass of 0.426 ± 0.037 M {sub Jup} and orbits a G4 V star with an orbital period of 3.00267 ± 0.00006 days. K2-107b has a radius of 1.44 ± 0.15 R {sub Jup} and a mass of 0.84 ± 0.08 M {sub Jup} and orbits an F9 IV star every 3.31392 ± 0.00002 days. K2-60b is among the few planets at the edge of the so-called “desert” of short-period sub-Jovian planets. K2-107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence.

  6. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    International Nuclear Information System (INIS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Sloan, G. C.; Hedman, Matthew M.

    2015-01-01

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online

  7. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Paul N.; Tuthill, Peter G. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Nicholson, Philip D. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Sloan, G. C. [Cornell Center for Astrophyics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Hedman, Matthew M., E-mail: p.stewart@physics.usyd.edu.au [Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.

  8. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-01-01

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  9. A HIGHLY CONSISTENT FRAMEWORK FOR THE EVOLUTION OF THE STAR-FORMING ''MAIN SEQUENCE'' FROM z ∼ 0-6

    Energy Technology Data Exchange (ETDEWEB)

    Speagle, J. S. [Harvard University Department of Astronomy, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Steinhardt, C. L.; Silverman, J. D. [Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8583 (Japan); Capak, P. L., E-mail: jspeagle@cfa.harvard.edu [California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States)

    2014-10-01

    Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) main sequence (MS) in stellar mass and star formation rate (SFR) out to z ∼ 6. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations (∼0.1 dex 1σ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we deconvolve the observed scatter about the MS within each observed redshift bin. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is ∼0.2 dex and remains constant over cosmic time. Our best fits indicate the slope of the MS is likely time-dependent, with our best-fit log SFR(M {sub *}, t) = (0.84 ± 0.02 – 0.026 ± 0.003 × t)log M {sub *} – (6.51 ± 0.24 – 0.11 ± 0.03 × t), where t is the age of the universe in Gyr. We use our fits to create empirical evolutionary tracks in order to constrain MS galaxy star formation histories (SFHs), finding that (1) the most accurate representations of MS SFHs are given by delayed-τ models, (2) the decline in fractional stellar mass growth for a ''typical'' MS galaxy today is approximately linear for most of its lifetime, and (3) scatter about the MS can be generated by galaxies evolving along identical evolutionary tracks assuming an initial 1σ spread in formation times of ∼1.4 Gyr.

  10. Extended Aperture Photometry of K2 RR Lyrae stars

    Science.gov (United States)

    Plachy, Emese; Klagyivik, Péter; Molnár, László; Sódor, Ádám; Szabó, Róbert

    2017-10-01

    We present the method of the Extended Aperture Photometry (EAP) that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC) pipeline applied on the automated Single Aperture Photometry (SAP) and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP) data.

  11. Rotational studies of late-type stars. II. Ages of solar-type stars and the rotational history of the sun

    International Nuclear Information System (INIS)

    Soderblom, D.R.

    1983-01-01

    In the first part of this investigation, age indicators for solar-type stars are discussed. A Li abundance-age calibration is derived; it indicates that 1 M/sub sun/ stars have lost as much as 80% of their initial Li before reaching the main sequence. The e-folding time for Li depletion on the main sequence is 1 1/4 Gyr. The distribution of Li abundances for 1 M/sub sun/ stars is consistent with a uniform initial Li abundance for all stars

  12. Lithium abundances in high- and low-alpha halo stars

    DEFF Research Database (Denmark)

    Nissen, P. E.; Schuster, W. J.

    2012-01-01

    A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 < [Fe/H] < -0.7. The kinematics of the stars and models of galaxy formation suggest that the ......A previous study of F and G main-sequence stars in the solar neighborhood has revealed the existence of two distinct halo populations with a clear separation in [alpha /Fe] for the metallicity range -1.4 ... that the ``high-alpha '' stars were formed in situ in the inner parts of the Galaxy, whereas the ``low-alpha '' ones have been accreted from satellite galaxies. In order to see if there is any systematic difference in the lithium abundances of high- and low-alpha stars, equivalent widths of the iLi 6707.8 Å line...... have been measured from VLT/UVES and NOT/FIES spectra and used to derive Li abundances. Furthermore, stellar masses are determined from evolutionary tracks in the log T_eff - log g diagram. For stars with masses 0.7 lithium abundance...

  13. IN-SYNC. II. VIRIAL STARS FROM SUBVIRIAL CORES—THE VELOCITY DISPERSION OF EMBEDDED PRE-MAIN-SEQUENCE STARS IN NGC 1333

    International Nuclear Information System (INIS)

    Foster, Jonathan B.; Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Arce, Héctor G.; Nidever, David L.; Stassun, Keivan G.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Majewski, Steven R.; Skrutskie, Michael; Wilson, John C.; Flaherty, Kevin M.; Rebull, Luisa; Frinchaboy, Peter M.; Zasowski, Gail

    2015-01-01

    The initial velocity dispersion of newborn stars is a major unconstrained aspect of star formation theory. Using near-infrared spectra obtained with the APOGEE spectrograph, we show that the velocity dispersion of young (1-2 Myr) stars in NGC 1333 is 0.92 ± 0.12 km s –1 after correcting for measurement uncertainties and the effect of binaries. This velocity dispersion is consistent with the virial velocity of the region and the diffuse gas velocity dispersion, but significantly larger than the velocity dispersion of the dense, star-forming cores, which have a subvirial velocity dispersion of 0.5 km s –1 . Since the NGC 1333 cluster is dynamically young and deeply embedded, this measurement provides a strong constraint on the initial velocity dispersion of newly formed stars. We propose that the difference in velocity dispersion between stars and dense cores may be due to the influence of a 70 μG magnetic field acting on the dense cores or be the signature of a cluster with initial substructure undergoing global collapse

  14. Multiband Lightcurve of Tabby’s Star: Observations and Modeling

    Science.gov (United States)

    Yin, Yao; Wilcox, Alejandro; Boyajian, Tabetha S.

    2018-06-01

    Since March 2017, The Thacher Observatory in California has been monitoring changes in brightness of KIC 8462852 (Tabby's Star), an F-type main sequence star whose irregular dimming behavior was first discovered by Tabetha Boyajian by examining Kepler data. We obtained over 20k observations over 135 nights in 2017 in 4 photometric bands, and detected 4 dip events greater than 1%. The relative magnitude of each dip compared across our 4 different photometric bands provides critical information regarding the nature of the obscuring material, and we present a preliminary analysis of these events. The Thacher Observatory is continuing its monitoring of Tabby’s Star in 2018.

  15. Stellar and Planetary Parameters for K2 's Late-type Dwarf Systems from C1 to C5

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Arturo O. [Department of Astronomy, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 (United States); Crossfield, Ian J. M.; Peacock, Sarah [Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd, Tucson, AZ 85721 (United States); Schlieder, Joshua E. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Dressing, Courtney D. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Obermeier, Christian [Max Planck Institut für Astronomie, Heidelberg (Germany); Livingston, John; Petigura, Erik A. [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033 (Japan); Ciceri, Simona [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Beichman, Charles A. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lépine, Sébastien [Department of Physics and Astronomy, Georgia State University, 25 Park Pl NE #605, Atlanta, GA 30303 (United States); Aller, Kimberly M. [Institute for Astronomy, University of Hawai’i at Mānoa, 2680 Woodlawn Dr., Honolulu, HI 96822 (United States); Chance, Quadry A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85719 (United States); Howard, Andrew W. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Werner, Michael W. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2017-03-01

    The NASA K2 mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI spectrograph on the European Southern Observatory’s New Technology Telescope, we obtained R ≈ 1000 J -, H -, and K -band (0.95–2.52 μ m) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4–M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 R {sub ⊙} (16.09%) and 160 K (4.33%), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet’s radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2 . We find a median planet radius and an equilibrium temperature of approximately 3 R {sub ⊕} and 500 K, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.

  16. White dwarfs: connection with masses of the parent stars

    International Nuclear Information System (INIS)

    Amnuel', P.R.; Guseinov, O.Kh.; Novruzova, Kh.I.; Rustamov, Yu.S.

    1988-01-01

    A relationship between the mass of a white dwarf and the mass of the parent star on the main sequence is established. The white dwarf birth-rate matches the birth-rate (death-rate) of main sequence stars

  17. Extended Aperture Photometry of K2 RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Plachy Emese

    2017-01-01

    Full Text Available We present the method of the Extended Aperture Photometry (EAP that we applied on K2 RR Lyrae stars. Our aim is to minimize the instrumental variations of attitude control maneuvers by using apertures that cover the positional changes in the field of view thus contain the stars during the whole observation. We present example light curves that we compared to the light curves from the K2 Systematics Correction (K2SC pipeline applied on the automated Single Aperture Photometry (SAP and on the Pre-search Data Conditioning Simple Aperture Photometry (PDCSAP data.

  18. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    Science.gov (United States)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  19. Rotational velocities of low-mass stars

    International Nuclear Information System (INIS)

    Stauffer, J.B.; Hartmann, L.W.; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA)

    1986-01-01

    The rotational velocities of stars provide important clues to how stars form and evolve. Yet until recently, studies of stellar rotation were limited to stars more massive than the sun. This is beginning to change, and an observational outline of the rotational velocity evolution of stars less massive than the sun can now be provided. Low-mass stars rotate slowly during the early stages of premain-sequence evolution, and spin up as they contract to the main sequence. This spin-up culminates in a brief period of very rapid rotation at an age of order 50 million years. Physical interpretation of this increase in rotation and the subsequent main-sequence spin-down are complicated by the possibility of differential internal rotation. The observed rapidity of spin-down among G dwarfs suggests that initially only the outer convective envelopes of these stars are slowed. The data suggest an intrinsic spread in angular momentum among young stars of the same mass and age, a spread which is apparently minimized by the angular-momentum loss mechanism in old low-mass stars. 83 references

  20. PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS: THE SUN AMONG STARS-A FIRST LOOK

    International Nuclear Information System (INIS)

    Basri, Gibor; Walkowicz, Lucianne M.; Batalha, Natalie; Jenkins, Jon; Borucki, William J.; Koch, David; Caldwell, Doug; Gilliland, Ronald L.; Dupree, Andrea K.; Latham, David W.; Meibom, Soeren; Howell, Steve; Brown, Tim

    2010-01-01

    The Kepler mission provides an exciting opportunity to study the light curves of stars with unprecedented precision and continuity of coverage. This is the first look at a large sample of stars with photometric data of a quality that has heretofore been only available for our Sun. It provides the first opportunity to compare the irradiance variations of our Sun to a large cohort of stars ranging from very similar to rather different stellar properties, at a wide variety of ages. Although Kepler data are in an early phase of maturity, and we only analyze the first month of coverage, it is sufficient to garner the first meaningful measurements of our Sun's variability in the context of a large cohort of main-sequence stars in the solar neighborhood. We find that nearly half of the full sample is more active than the active Sun, although most of them are not more than twice as active. The active fraction is closer to a third for the stars most similar to the Sun, and rises to well more than half for stars cooler than mid-K spectral types.

  1. MAGNETIC FIELDS OF STARS

    OpenAIRE

    Bychkov, V. D.; Bychkova, L. V.; Madej, J.

    2008-01-01

    Now it is known about 1212 stars of the main sequence and giants (from them 610 stars - it is chemically peculiarity (CP) stars) for which direct measurements of magnetic fields were spent (Bychkov et al.,2008). Let's consider, what representations were generated about magnetic fields (MT) of stars on the basis of available observations data.

  2. Convection and magnetism of solar-type stars (G and K)

    International Nuclear Information System (INIS)

    Do-Cao, Olivier Long

    2013-01-01

    This thesis aims at understanding the internal dynamics of solar-type stars and the origin of their magnetism. We will explore the complex nonlinear interactions between convection, rotation and magnetism conducting both 2D (STELEM code) and 3D (ASH code) numerical simulations. This dual approach will unveil the mechanisms and key parameters behind those physical processes. While the Sun has played a central role in previous studies, this work extends our knowledge to G and K stars. This manuscript is divided into 4 parts. The first one introduces the concepts behind internal stellar dynamics, and emphasizes the dynamo effect. Accurate observations of the Sun will be compared to stellar data, allowing us to determine what is specific to the Sun and what is generic for all stars. The second part reports the results obtained with the 2D STELEM code. This code allows us to study the generation and evolution of the large scale magnetic fields on a timescale comparable to the solar cycle period (11 years), giving us insight into the underlying dynamo processes at work. We show that the current solar models cannot reproduce the observations, when applied to rapidly rotating stars, unless we consider a turbulent pumping mechanism under specific conditions. Then, we have improved these kinematic models by taking into account the large scale magnetic field feedback on the longitudinal velocity component, called the Malkus Proctor effect. The models are now able to reproduce the solar torsional oscillations and can predict how their properties evolve with rotation rate. The third part focuses on 3D numerical simulations running on massively parallel supercomputers, using the ASH code. In contrast with the previously described code, ASH explicitly resolves the full MHD equations. We have studied (hydrodynamically) how the convective properties of G and K stars change as function of mass and rotation rate, first by considering the convective envelope alone, then by taking into

  3. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    Energy Technology Data Exchange (ETDEWEB)

    Danchi, William C. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Lopez, Bruno, E-mail: william.c.danchi@nasa.gov, E-mail: bruno.lopez@oca.eu [Observatoire de la Cote d' Azur, Laboratoire Lagrange UMR 7293, BP 4229, F-06034 Nice Cedex 4 (France)

    2013-05-20

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M{sub Sun} for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M{sub Sun} star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and {approx}4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  4. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    International Nuclear Information System (INIS)

    Danchi, William C.; Lopez, Bruno

    2013-01-01

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M ☉ for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M ☉ star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and ∼4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  5. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Walborn, Nolan R.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-01-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L X /L bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  6. AB Dor Moving Group Stars Resolved with the CHARA Array

    Science.gov (United States)

    Schaefer, G. H.; White, R. J.; Baines, E. K.; Boyajian, T. S.; ten Brummelaar, T. A.; Farrington, C. D.; Sturmann, J.; Sturmann, L.; Turner, N. H.

    2018-05-01

    We present interferometric measurements obtained with the CHARA Array of 13 adolescent-age stars in nearby moving groups. The motivation was to spatially resolve the largest stars and to search for binary companions. Nine stars have diameters smaller than the resolution limit and no evidence for companions within 0.5–50 mas and ΔH group, and former member HD 89744 (0.556 ± 0.032 mas). Combining the angular diameters with their distances and bolometric fluxes, we measured radii and effective temperatures. The temperatures of GJ 159 (6286 ± 123 K) and GJ 393 (3515 ± 68 K) are consistent with spectroscopic measurements. Comparisons with evolutionary models show that HD 89744 has evolved off the main sequence. GJ 159 and GJ 393 lie within 1.5σ of the zero-age main sequence, complicating their age estimates because it is unclear whether the stars are contracting or expanding. GJ 159 has a mass of 1.2 ± 0.1 {M}ȯ with an age spanning 0.021–3.0 Gyr. Its debris disk and lithium abundance favor a young age. GJ 393 has a mass of 0.42 ± 0.03 {M}ȯ and a lower limit on its age 0.06 Gyr. This overlaps with the age of the moving group; however, an older age would be more consistent with its slow rotation, low activity, and luminosity, suggesting that GJ 393 is a kinematic interloper.

  7. Understanding the star formation modes in the distant universe

    International Nuclear Information System (INIS)

    Salmi, Fadia

    2012-01-01

    The goal of my PhD study consists at attempt to understand what are the main processes at the origin of the star formation in the galaxies over the last 10 billion years. While it was proposed in the past that merging of galaxies has a dominant role to explain the triggering of the star formation in the distant galaxies having high star formation rates, in the opposite, more recent studies revealed scaling laws linking the star formation rate in the galaxies to their stellar mass or their gas mass. The small dispersion of these laws seems to be in contradiction with the idea of powerful stochastic events due to interactions, but rather in agreement with the new vision of galaxy history where the latter are continuously fed by intergalactic gas. We were especially interested in one of this scaling law, the relation between the star formation (SFR) and the stellar mass (M*) of galaxies, commonly called the main sequence of star forming galaxies. We studied this main sequence, SFR-M"*, in function of the morphology and other physical parameters like the radius, the colour, the clumpiness. The goal was to understand the origin of the sequence's dispersion related to the physical processes underlying this sequence in order to identify the main mode of star formation controlling this sequence. This work needed a multi-wavelength approach as well as the use of galaxies profile simulation to distinguish between the different galaxy morphological types implied in the main sequence. (author) [fr

  8. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chengyuan [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); De Grijs, Richard [Kavli Institute for Astronomy and Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing 100871 (China); Deng, Licai [Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Milone, Antonino P. [Research School of Astronomy and Astrophysics, Australian National University, Mt. Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia)

    2017-08-01

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.

  9. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  10. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    Energy Technology Data Exchange (ETDEWEB)

    Aleo, Patrick D.; Sobotka, Alexander C. [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1402, Austin, TX 78712-1205 (United States); Ramírez, Ivan [Tacoma Community College, 6501 South 19th Street, Tacoma, WA 98466-7400 (United States)

    2017-09-01

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe i, ii) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe ii–Fe i increases for stars of the same cluster with decreasing T {sub eff}, reaching an astonishing 1.0 dex at T {sub eff} ∼ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary star is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T {sub eff} ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T {sub eff} ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe ii lines, namely λ = (4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å). When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ∼0.6 dex in the field binaries and ∼0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca ii H+K emission and Li absorption, but these results appear to be small to negligible.

  11. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    International Nuclear Information System (INIS)

    Aleo, Patrick D.; Sobotka, Alexander C.; Ramírez, Ivan

    2017-01-01

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe i, ii) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe ii–Fe i increases for stars of the same cluster with decreasing T eff , reaching an astonishing 1.0 dex at T eff ∼ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary star is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T eff ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T eff ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe ii lines, namely λ = (4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å). When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ∼0.6 dex in the field binaries and ∼0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca ii H+K emission and Li absorption, but these results appear to be small to negligible.

  12. On the Iron Abundance Anomaly in K-dwarf and Hyades Stars

    Science.gov (United States)

    Aleo, Patrick D.; Sobotka, Alexander C.; Ramírez, Ivan

    2017-09-01

    Using standard 1D-LTE model atmosphere analysis, we provide an in-depth investigation of iron abundance as derived from neutral and singly ionization iron lines (Fe I, II) in nearby star clusters. Specifically, we replicate the discrepancy regarding Δ[Fe/H], wherein the difference of Fe II-Fe I increases for stars of the same cluster with decreasing T eff, reaching an astonishing 1.0 dex at T eff ˜ 4000 K. Previous studies have investigated this anomaly in the Pleiades and Hyades clusters with no concrete solution. In this analysis, we probe two samples: 63 wide binary field stars where the primary star is of Sun-like temperatures and the secondary is a K-dwarf, ranging from 4231 K ≤ T eff ≤ 6453 K, and 33 Hyades stars of temperatures 4268 K ≤ T eff ≤ 6072 K. Previous studies have found discrepancies on the order of 1.0 dex. However, we find that these studies have neglected line-blending effects of certain Fe II lines, namely λ = {4508.29 Å, 4993.34 Å, 5197.58 Å, 5325.55 Å, 5425.26 Å, 6456.38 Å}. When these lines are removed from the line-list, we find Δ[Fe/H] decreases to ˜0.6 dex in the field binaries and ˜0.3 dex in the Hyades. The reason for this remaining trend is investigated by probing NLTE effects, as well as age and activity considerations using Ca II H+K emission and Li absorption, but these results appear to be small to negligible.

  13. Rotation-induced YORP break-up of small bodies to produce post-main-sequence debris

    Science.gov (United States)

    Veras, D.; Jacobson, S. A.; Gänsicke, B. T.

    2017-09-01

    We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to the debris orbiting and ultimately polluting white dwarfs. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  14. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    Science.gov (United States)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  15. Kinematic and spatial distributions of barium stars - are the barium stars and Am stars related?

    International Nuclear Information System (INIS)

    Hakkila, J.

    1989-01-01

    The possibility of an evolutionary link between Am stars and barium stars is considered, and an examination of previous data suggests that barium star precursors are main-sequence stars of intermediate mass, are most likely A and/or F dwarfs, and are intermediate-mass binaries with close to intermediate orbital separations. The possible role of mass transfer in the later development of Am systems is explored. Mass transfer and loss from systems with a range of masses and orbital separations may explain such statistical peculiarities of barium stars as the large dispersion in absolute magnitude, the large range of elemental abundances from star to star, and the small number of stars with large peculiar velocities. 93 refs

  16. Rotation of Low-mass Stars in Upper Scorpius and ρ Ophiuchus with K2

    Science.gov (United States)

    Rebull, L. M.; Stauffer, J. R.; Cody, A. M.; Hillenbrand, L. A.; David, T. J.; Pinsonneault, M.

    2018-05-01

    We present an analysis of K2 light curves (LCs) for candidate members of the young Upper Sco (USco) association (∼8 Myr) and the neighboring ρ Oph embedded cluster (∼1 Myr). We establish ∼1300 stars as probable members, ∼80% of which are periodic. The phased LCs have a variety of shapes which can be attributed to physical causes ranging from stellar pulsation and stellar rotation to disk-related phenomena. We identify and discuss a number of observed behaviors. The periods are ∼0.2–30 days with a peak near 2 days and the rapid period end nearing breakup velocity. M stars in the young USco region rotate systematically faster than GK stars, a pattern also present in K2 data for the older Pleiades and Praesepe systems. At higher masses (types FGK), the well-defined period–color relationship for slowly rotating stars seen in the Pleiades and Praesepe systems is not yet present in USco. Circumstellar disks are present predominantly among the more slowly rotating M stars in USco, with few disks in the subday rotators. However, M dwarfs with disks rotate faster on average than FGK systems with disks. For four of these disked M dwarfs, we provide direct evidence for disk locking based on the K2 LC morphologies. Our preliminary analysis shows a relatively mass-independent spin-up by a factor of ∼3.5 between USco and the Pleiades, then mass-dependent spin-down between Pleiades and Praesepe.

  17. Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis.

    Science.gov (United States)

    Long, Kyle A; Nossa, Carlos W; Sewell, Mary A; Putnam, Nicholas H; Ryan, Joseph F

    2016-01-01

    There are five major extant groups of Echinodermata: Crinoidea (feather stars and sea lillies), Ophiuroidea (brittle stars and basket stars), Asteroidea (sea stars), Echinoidea (sea urchins, sea biscuits, and sand dollars), and Holothuroidea (sea cucumbers). These animals are known for their pentaradial symmetry as adults, unique water vascular system, mutable collagenous tissues, and endoskeletons of high magnesium calcite. To our knowledge, the only echinoderm species with a genome sequence available to date is Strongylocentrotus pupuratus (Echinoidea). The availability of additional echinoderm genome sequences is crucial for understanding the biology of these animals. Here we present assembled draft genomes of the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis from Illumina sequence data with coverages of 12.5x, 22.5x, and 21.4x, respectively. These data provide a resource for mining gene superfamilies, identifying non-coding RNAs, confirming gene losses, and designing experimental constructs. They will be important comparative resources for future genomic studies in echinoderms.

  18. Evolutionary status of stars with M> or approx. =50 M/sub sun/

    International Nuclear Information System (INIS)

    Tutukov, A.V.; Yungel'son, L.R.

    1980-01-01

    The observed masses and space velocities of main-sequence stars with M> or approx. =50 M/sub sun/ and of some of the brightest Wolf--Rayet stars (type WN 7/WN 8) are attributed to mass exchange and supernova explosions in close binary systems. Similar arguments suggest that blue supergiants intensively shedding mass may have an envelope in common with a compact, relativistic object

  19. Some aspects of cool main sequence star ages derived from stellar rotation (gyrochronology)

    Science.gov (United States)

    Barnes, S. A.; Spada, F.; Weingrill, J.

    2016-09-01

    Rotation periods for cool stars can be measured with good precision by monitoring starspot light modulation. Observations have shown that the rotation periods of dwarf stars of roughly solar metallicity have such systematic dependencies on stellar age and mass that they can be used to derive reliable ages, a procedure called gyrochronology. We review the method and show illustrative cases, including recent ground- and space-based data. The age uncertainties approach 10 % in the best cases, making them a valuable complement to, and constraint on, asteroseismic or other ages. Edited, updated, and refereed version of a presentation at the WE-Heraeus-Seminar in Bad Honnef, Germany: Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models

  20. Neutron star/red giant encounters in globular clusters

    International Nuclear Information System (INIS)

    Bailyn, C.D.

    1988-01-01

    The author presents a simple expression for the amount by which xsub(crit) is diminished as a star evolves xsub(crit) Rsub(crit)/R*, where Rsub(crit) is the maximum distance of closest approach between two stars for which the tidal energy is sufficient to bind the system, and R* is the radius of the star on which tides are being raised. Also it is concluded that tidal capture of giants by neutron stars resulting in binary systems is unlikely in globular clusters. However, collisions between neutron stars and red giants, or an alternative process involving tidal capture of a main-sequence star into an initially detached binary system, may result either in rapidly rotating neutron stars or in white dwarf/neutron star binaries. (author)

  1. A deep x-ray survey of the Pleiades cluster and the B6-A3 main sequence stars in Orion

    Science.gov (United States)

    Caillault, Jean-Pierre

    1993-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT PSPC images, 171 of which we associate with certain probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, and M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of the Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub x)/L(sub bol) versus spectroscopic rotational velocity show tightly correlated 'saturation' type relations for stars with (B - V)(sub O) greater than 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until v sin i approximately equals 15 km/s, and then remain essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/s. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(subx) at a given mass. Only about 35 percent of the B.A. and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal, with only a few exceptions. We either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades dwarfs. The X-ray spectra for the early-type Pleiades stars

  2. Halo Star Lithium Depletion

    International Nuclear Information System (INIS)

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-01-01

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  3. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

    Science.gov (United States)

    Souto, Diogo; Cunha, Katia; Smith, Verne V.; Allende Prieto, C.; García-Hernández, D. A.; Pinsonneault, Marc; Holzer, Parker; Frinchaboy, Peter; Holtzman, Jon; Johnson, J. A.; Jönsson, Henrik; Majewski, Steven R.; Shetrone, Matthew; Sobeck, Jennifer; Stringfellow, Guy; Teske, Johanna; Zamora, Olga; Zasowski, Gail; Carrera, Ricardo; Stassun, Keivan; Fernandez-Trincado, J. G.; Villanova, Sandro; Minniti, Dante; Santana, Felipe

    2018-04-01

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

  4. EPIC 201585823, a rare triple-mode RR Lyrae star discovered in K2 mission data

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Bowman, Dominic M.; Ebo, Simon J.

    2016-01-01

    We have discovered a new, rare triple-mode RR Lyr star, EPIC 201585823, in the Kepler K2 mission Campaign 1 data. This star pulsates primarily in the fundamental and first-overtone radial modes, and, in addition, a third non-radial mode. The ratio of the period of the non-radial mode...... pixels with significant signal for the star, but without correction for pointing changes, is best for frequency analysis of this star, and, by implication, other RR Lyr stars observed by the K2 mission. We compare several pipeline reductions of the K2 mission data for this star....

  5. Genome sequence of Prevotella intermedia SUNY aB G8-9K-3, a biofilm forming strain with drug-resistance.

    Science.gov (United States)

    Moon, Ji-Hoi; Kim, Minjung; Lee, Jae-Hyung

    Prevotella intermedia has long been known to be as the principal etiologic agent of periodontal diseases and associated with various systemic diseases. Previous studies showed that the intra-species difference exists in capacity of biofilm formation, antibiotic resistance, and serological reaction among P. intermedia strains. Here we report the genome sequence of P. intermedia SUNY aB G8-9K-3 (designated ATCC49046) that displays a relatively high antimicrobial resistant and biofilm-forming capacity. Genome sequencing information provides important clues in understanding the genetic bases of phenotypic differences among P. intermedia strains. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  6. Multiple star formation : chemistry, physics and coevality

    NARCIS (Netherlands)

    Murillo, Mejias N.M.

    2017-01-01

    Multiple stars, that is two or more stars composing a gravitationally bound system, are common in the universe.They are the cause of many interesting phenomena, from supernovae and planetary nebulae, to binary black hole mergers. Observations of main sequence stars, young stars and forming

  7. Nuclear processing during star formation

    International Nuclear Information System (INIS)

    Newman, M.J.

    1978-01-01

    A preliminary survey was conducted of the thermonuclear energy release expected during star formation. The destruction of primordial deuterium provides substantial amounts of energy at surprisingly low temperatures, and must be considered in any meaningful treatment of star formation carried to stages in which the internal temperature exceeds a few hundred thousand degrees. Significant energy generation from consumption of initial lithium requires higher temperatures, of the order of a few million degrees. Depletion of primordial beryllium and boron may never provide an important energy source. The approach to equilibrium of the carbon--nitrogen cycle is dominant at temperatures approaching those characteristic of the central regions of main sequence stars. The present calculation should serve as a useful guide in choosing those nuclear processes to be included in a more detailed study. 8 figures, 2 tables

  8. Stellar evolution IV: evolution of a star of 1.5 M(S) from the main-sequence to the red-giant branch with and without overshooting from convective core

    International Nuclear Information System (INIS)

    Maeder, A.

    1975-01-01

    For a star of 1.5 M(S) with an initial composition given by X=0.70 and Z=0.03, three sets of evolutionary models are computed with different assumptions on the non-local effects characterizing the turbulent motions in the convective core. Some overshooting from the convective core may occur during Main-sequence evolution. The changes in the stellar structure, lifetimes and evolutionary tracks brought about by this process are studied. Some characteristics of the evolutionary tracks in the theoretical HR diagram have a very high sensitivity to the exact extent of the convective core, and this may provide powerful tests of events occurring in the deep stellar interior. (orig./BJ) [de

  9. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    International Nuclear Information System (INIS)

    Rujopakarn, W.; Silverman, J. D.; Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J.; Rieke, G. H.; Cibinel, A.; Nyland, K.; Jagannathan, P.; Bhatnagar, S.; Alexander, D. M.; Biggs, A. D.; Ballantyne, D. R.; Dickinson, M.; Elbaz, D.; Geach, J. E.; Hayward, C. C.; Kirkpatrick, A.

    2016-01-01

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M ⊙ yr −1 kpc −2 , sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M ⊙ yr −1 ) above which a significant population of more compact SFGs appears to emerge.

  10. A PHOTOMETRIC VARIABILITY SURVEY OF FIELD K AND M DWARF STARS WITH HATNet

    International Nuclear Information System (INIS)

    Hartman, J. D.; Bakos, G. A.; Noyes, R. W.; Sipocz, B.; Pal, A.; Kovacs, G.; Mazeh, T.; Shporer, A.

    2011-01-01

    Using light curves from the HATNet survey for transiting extrasolar planets we investigate the optical broadband photometric variability of a sample of 27, 560 field K and M dwarfs selected by color and proper motion (V - K ∼> 3.0, μ > 30 mas yr -1 , plus additional cuts in J - H versus H - K S and on the reduced proper motion). We search the light curves for periodic variations and for large-amplitude, long-duration flare events. A total of 2120 stars exhibit potential variability, including 95 stars with eclipses and 60 stars with flares. Based on a visual inspection of these light curves and an automated blending classification, we select 1568 stars, including 78 eclipsing binaries (EBs), as secure variable star detections that are not obvious blends. We estimate that a further ∼26% of these stars may be blends with fainter variables, though most of these blends are likely to be among the hotter stars in our sample. We find that only 38 of the 1568 stars, including five of the EBs, have previously been identified as variables or are blended with previously identified variables. One of the newly identified EBs is 1RXS J154727.5+450803, a known P = 3.55 day, late M-dwarf SB2 system, for which we derive preliminary estimates for the component masses and radii of M 1 = M 2 = 0.258 ± 0.008 M sun and R 1 = R 2 = 0.289 ± 0.007 R sun . The radii of the component stars are larger than theoretical expectations if the system is older than ∼200 Myr. The majority of the variables are heavily spotted BY Dra-type stars for which we determine rotation periods. Using this sample, we investigate the relations between period, color, age, and activity measures, including optical flaring, for K and M dwarfs, finding that many of the well-established relations for F, G, and K dwarfs continue into the M dwarf regime. We find that the fraction of stars that is variable with peak-to-peak amplitudes greater than 0.01 mag increases exponentially with the V - K S color such that

  11. Black Hole Growth Is Mainly Linked to Host-galaxy Stellar Mass Rather Than Star Formation Rate

    Science.gov (United States)

    Yang, G.; Chen, C.-T. J.; Vito, F.; Brandt, W. N.; Alexander, D. M.; Luo, B.; Sun, M. Y.; Xue, Y. Q.; Bauer, F. E.; Koekemoer, A. M.; Lehmer, B. D.; Liu, T.; Schneider, D. P.; Shemmer, O.; Trump, J. R.; Vignali, C.; Wang, J.-X.

    2017-06-01

    We investigate the dependence of black hole accretion rate (BHAR) on host-galaxy star formation rate (SFR) and stellar mass (M *) in the CANDELS/GOODS-South field in the redshift range of 0.5≤slant zteam through spectral energy distribution fitting. The average BHAR is correlated positively with both SFR and M *, and the BHAR-SFR and BHAR-M * relations can both be described acceptably by linear models with a slope of unity. However, BHAR appears to be correlated more strongly with M * than SFR. This result indicates that M * is the primary host-galaxy property related to supermassive black hole (SMBH) growth, and the apparent BHAR-SFR relation is largely a secondary effect due to the star-forming main sequence. Among our sources, massive galaxies ({M}* ≳ {10}10{M}⊙ ) have significantly higher BHAR/SFR ratios than less massive galaxies, indicating that the former have higher SMBH fueling efficiency and/or higher SMBH occupation fraction than the latter. Our results can naturally explain the observed proportionality between {M}{BH} and M * for local giant ellipticals and suggest that their {M}{BH}/{M}* is higher than that of local star-forming galaxies. Among local star-forming galaxies, massive systems might have higher {M}{BH}/{M}* compared to dwarfs.

  12. DIRECTLY DETERMINED LINEAR RADII AND EFFECTIVE TEMPERATURES OF EXOPLANET HOST STARS

    International Nuclear Information System (INIS)

    Van Belle, Gerard T.; Von Braun, Kaspar

    2009-01-01

    We present interferometric angular sizes for 12 stars with known planetary companions, for comparison with 28 additional main-sequence stars not known to host planets. For all objects we estimate bolometric fluxes and reddenings through spectral-energy distribution (SED) fits, and in conjunction with the angular sizes, measurements of effective temperature. The angular sizes of these stars are sufficiently small that the fundamental resolution limits of our primary instrument, the Palomar Testbed Interferometer, are investigated at the sub-milliarcsecond level and empirically established based upon known performance limits. We demonstrate that the effective temperature scale as a function of dereddened (V - K) 0 color is statistically identical for stars with and without planets. A useful byproduct of this investigation is a direct calibration of the T EFF scale for solarlike stars, as a function of both spectral type and (V - K) 0 color. Additionally, in an Appendix we provide SED fits for the 166 stars with known planets which have sufficient photometry available in the literature for such fits; this derived 'XO-Rad' database includes homogeneous estimates of bolometric flux, reddening, and angular size.

  13. Observations of Hα-emission stars in the young cluster NGC 2264

    International Nuclear Information System (INIS)

    Rydgren, A.E.

    1979-01-01

    UBVRI photometry is given for a sample of 25 late-type Hα-emission stars in the young cluster NGC 2264. The stars are in the magnitude range 12< or =V<16. Some but not all appear to be T Tauri stars. The color--color diagrams support the view that the deviations from normal photospheric colors (due to ''spectral veiling'' and line emission) decrease with increasing wavelength between the U and I filters. In the (V, V-R) diagram, the Hα-emission stars lie in a well-defined pre-main-sequence band. Within this sample, there is a trend toward stronger line emission and spectral veiling with later spectral type. All of the likely legitimate T Tauri stars have inferred spectral types later than about K3. The question of cluster membership for stars in the cluster field with very small proper motions is considered

  14. Acne at The Bottom Of The Main Sequence

    Science.gov (United States)

    Barnes, John; Haswell, C.; Jenkins, J.; Jeffers, S.; Jones, H. R. A.; Lohr, M.; Pavlenko, Y.

    2016-08-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is not well known. Time series spectra of fully convective M dwarfs taken in the red-optical with UVES reveal numerous line profile distortions which are interpreted as starspots. We derive Doppler images for four M4.5V - M9V stars and find that contrast ratios corresponding to photosphere-spot temperature differences of only 200-300 K are sufficient to model the timeseries spectra. Although more starspot structure is found at high latitudes, spots are reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent. The occurrence of low-contrast spots at predominantly high latitudes is in general likely to be responsible for the low amplitude photometric variability seen in late-M dwarfs. The recovered starspot patterns are used to assess their effect on precision radial velocity surveys aimed at detecting planets around this population of stars.

  15. Physics of star formation in galaxies

    CERN Document Server

    Palla, F

    2002-01-01

    Begining with a historical introduction, ""Star Formation: The Early History"", this text then presents two long articles on ""Pre-Main-Sequence Evolution of Stars and Young Clusters"" and ""Observations of Young Stellar Objects"".

  16. The Polytopic-k-Step Fibonacci Sequences in Finite Groups

    Directory of Open Access Journals (Sweden)

    Ömür Deveci

    2011-01-01

    Full Text Available We study the polytopic-k-step Fibonacci sequences, the polytopic-k-step Fibonacci sequences modulo m, and the polytopic-k-step Fibonacci sequences in finite groups. Also, we examine the periods of the polytopic-k-step Fibonacci sequences in semidihedral group SD2m.

  17. The K Dwarf Advantage for Biosignatures

    Science.gov (United States)

    Arney, Giada; Domagal-Goldman, Shawn David; Meadows, Victoria

    2018-01-01

    Biosignature detection is typically studied in the context of an atmosphere in chemical disequilibrium. Oxygen (O2) and methane (CH4) are generally considered the “canonical” biosignature disequilibrium pair. However, the modern CH4 concentration poses a major detection challenge to future direct imaging telescopes, and it has been difficult for Earth to accumulate spectrally detectable quantities of O2 and CH4 over its history (Olson et al 2016, Reinhard et al 2017). Even the lower atmospheric levels of O2 typical of the Earth’s Proterozoic eon (0.01-1% of the modern O2 amount) may have resulted in a reduced photochemical lifetime of CH4 due to decreased UV shielding of CH4 (Claire et al 2006, Goldblatt et al 2006). However, while the above is true for an Earthlike planet orbiting a sunlike star, the situation changes for other stars. For instance, Segura et al (2005) found longer photochemical lifetimes for CH4 in the atmospheres of Earthlike planets orbiting M dwarfs. M dwarfs, however, present several barriers to planetary habitability including desiccation during the stellar super-luminous pre-main sequence phase (Lugar and Barnes 2015) and tidal locking. K dwarfs, which comprise about 12% of all main sequence stars, avoid these M dwarf hazards, and will be important targets for future exoplanet direct imaging missions. Using a photochemical model, we find CH4 and O2 are simultaneously detectable in the atmospheres of K dwarf planets with various O2 concentrations ranging between Proterozoic levels and modern O2 amounts. For instance, for a planet with an Earth-like CH4 surface flux (1 x 1011 molecules/cm2/s) and a Proterozoic-like O2 level (1% of modern), the planet generates a CH4 surface mixing ratio of 1x10-5 for a planet orbiting the sun, and 1.5x10-4 – an order of magnitude more CH4 – for a planet orbiting a K6V star. This is enough to produce detectable CH4 and O2 for the planet orbiting the K6V star. We discuss the implications of this “K

  18. The incidence of stellar mergers and mass gainers among massive stars

    International Nuclear Information System (INIS)

    De Mink, S. E.; Sana, H.; Langer, N.; Izzard, R. G.; Schneider, F. R. N.

    2014-01-01

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8 −4 +9 % of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30 −15 +10 % of massive main-sequence stars are the products of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.

  19. ROSAT X-ray luminosity functions of the Hyades dK and dM stars

    Science.gov (United States)

    Pye, John P.; Hodgkin, Simon T.; Stern, Robert A.; Stauffer, John R.

    1994-02-01

    Long-duration ROSAT PSPC pointed observations of the Hyades open star cluster are performed. The Hyades dK and XLFs from the present observations are compared with published Einstein dK/dM XLFs. The Hyades dK binaries have significantly higher L(X) than the Hyades dK stars. However, all these binaries have relatively long periods (greater than about 1 yr), and hence the L(X) levels cannot be attributed to the enhanced activity expected in short-period, 'BY Dra-type' systems. It is also shown that the effect cannot be due simply to the summed luminosities of the component stars.

  20. Luminosity and Intrinsic Color Calibration of Main-Sequence Stars With 2Mass Photometry: All Sky Local Extinction

    Directory of Open Access Journals (Sweden)

    Knude Jens

    2003-12-01

    Full Text Available We present a new color index vs. absolute magnitude calibration of 2MASS JHK photometry. For the A0 to ~G5 and M segments of the main sequence information on the amount of interstellar extinction and its location in space may be obtained.

  1. Origin of faint blue stars

    International Nuclear Information System (INIS)

    Tutukov, A.; Iungelson, L.

    1987-01-01

    The origin of field faint blue stars that are placed in the HR diagram to the left of the main sequence is discussed. These include degenerate dwarfs and O and B subdwarfs. Degenerate dwarfs belong to two main populations with helium and carbon-oxygen cores. The majority of the hot subdwarfs most possibly are helium nondegenerate stars that are produced by mass exchange close binaries of moderate mass cores (3-15 solar masses). The theoretical estimates of the numbers of faint blue stars of different types brighter than certain stellar magnitudes agree with star counts based on the Palomar Green Survey. 28 references

  2. Chromosphere of K giant stars. Geometrical extent and spatial structure detection

    Science.gov (United States)

    Berio, P.; Merle, T.; Thévenin, F.; Bonneau, D.; Mourard, D.; Chesneau, O.; Delaa, O.; Ligi, R.; Nardetto, N.; Perraut, K.; Pichon, B.; Stee, P.; Tallon-Bosc, I.; Clausse, J. M.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2011-11-01

    Context. Interferometers provide accurate diameter measurements of stars by analyzing both the continuum and the lines formed in photospheres and chromospheres. Tests of the geometrical extent of the chromospheres are therefore possible by comparing the estimated radius in the continuum of the photosphere and the estimated radii in chromospheric lines. Aims: We aim to constrain the geometrical extent of the chromosphere of non-binary K giant stars and detect any spatial structures in the chromosphere. Methods: We performed observations with the CHARA interferometer and the VEGA beam combiner at optical wavelengths. We observed seven non-binary K giant stars (β and η Cet, δ Crt, ρ Boo, β Oph, 109 Her, and ι Cep). We measured the ratio of the radii of the photosphere to the chromosphere using the interferometric measurements in the Hα and the Ca II infrared triplet line cores. For β Cet, spectro-interferometric observations are compared to a non-local thermal equilibrium (NLTE) semi-empirical model atmosphere including a chromosphere. The NLTE computations provide line intensities and contribution functions that indicate the relative locations where the line cores are formed and can constrain the size of the limb-darkened disk of the stars with chromospheres. We measured the angular diameter of seven K giant stars and deduced their fundamental parameters: effective temperatures, radii, luminosities, and masses. We determined the geometrical extent of the chromosphere for four giant stars (β and η Cet, δ Crt and ρ Boo). Results: The chromosphere extents obtained range between 16% to 47% of the stellar radius. The NLTE computations confirm that the Ca II/849 nm line core is deeper in the chromosphere of β Cet than either of the Ca II/854 nm and Ca II/866 nm line cores. We present a modified version of a semi-empirical model atmosphere derived by fitting the Ca II triplet line cores of this star. In four of our targets, we also detect the signature of a

  3. THE FMOS-COSMOS SURVEY OF STAR-FORMING GALAXIES AT z ∼ 1.6. I. Hα-BASED STAR FORMATION RATES AND DUST EXTINCTION

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, D.; Sugiyama, N. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, The University of Tokyo, Kashiwanoha, Kashiwa 277-8583 (Japan); Rodighiero, G. [Dipartimento di Astronomia, Università di Padova, vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Renzini, A. [INAF Osservatorio Astronomico di Padova, vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); Daddi, E. [CEA-Saclay, Service d' Astrophysique, F-91191 Gif-sur-Yvette (France); Lilly, S. J.; Carollo, C. M. [Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-strasse 27, 8093 Zürich (Switzerland); Sanders, D. B.; Zahid, H. J.; Chu, J.; Hasinger, G.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Nagao, T. [The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302 (Japan); Capak, P. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Ilbert, O. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Kajisawa, M. [Research Center for Space and Cosmic Evolution, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Koekemoer, A. M., E-mail: daichi@nagoya-u.jp [HST and JWST Instruments/Science Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-11-01

    We present the first results from a near-IR spectroscopic survey of the COSMOS field, using the Fiber Multi-Object Spectrograph on the Subaru telescope, designed to characterize the star-forming galaxy population at 1.4 < z < 1.7. The high-resolution mode is implemented to detect Hα in emission between 1.6-1.8 μm with f {sub Hα} ∼> 4 × 10{sup –17} erg cm{sup –2} s{sup –1}. Here, we specifically focus on 271 sBzK-selected galaxies that yield a Hα detection thus providing a redshift and emission line luminosity to establish the relation between star formation rate and stellar mass. With further J-band spectroscopy for 89 of these, the level of dust extinction is assessed by measuring the Balmer decrement using co-added spectra. We find that the extinction (0.6 ∼< A {sub Hα} ∼< 2.5) rises with stellar mass and is elevated at high masses compared to low-redshift galaxies. Using this subset of the spectroscopic sample, we further find that the differential extinction between stellar and nebular emission E {sub star}(B – V)/E {sub neb}(B – V) is 0.7-0.8, dissimilar to that typically seen at low redshift. After correcting for extinction, we derive an Hα-based main sequence with a slope (0.81 ± 0.04) and normalization similar to previous studies at these redshifts.

  4. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  5. Neutrino-heated stars and broad-line emission from active galactic nuclei

    Science.gov (United States)

    Macdonald, James; Stanev, Todor; Biermann, Peter L.

    1991-01-01

    Nonthermal radiation from active galactic nuclei indicates the presence of highly relativistic particles. The interaction of these high-energy particles with matter and photons gives rise to a flux of high-energy neutrinos. In this paper, the influence of the expected high neutrino fluxes on the structure and evolution of single, main-sequence stars is investigated. Sequences of models of neutrino-heated stars in thermal equilibrium are presented for masses 0.25, 0.5, 0.8, and 1.0 solar mass. In addition, a set of evolutionary sequences for mass 0.5 solar mass have been computed for different assumed values for the incident neutrino energy flux. It is found that winds driven by the heating due to high-energy particles and hard electromagnetic radiation of the outer layers of neutrino-bloated stars may satisfy the requirements of the model of Kazanas (1989) for the broad-line emission clouds in active galactic nuclei.

  6. Some properties of spectral binary stars

    International Nuclear Information System (INIS)

    Krajcheva, Z.T.; Popova, E.I.; Tutukov, A.V.; Yungel'son, L.R.; AN SSSR, Moscow. Astronomicheskij Sovet)

    1978-01-01

    Statistical investigations of spectra binary stars are carried out. Binary systems consisting of main sequence stars are considered. For 826 binary stars masses of components, ratios of component masses, semiaxes of orbits and orbital angular momenta are calculated. The distributions of these parameters and their correlations are analyzed. The dependences of statistical properties of spectral binary stars on their origin and evolution are discussed

  7. Which of Kepler's Stars Flare?

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    function of Rossby number, which traces stellar rotation. Higher rotation rates correspond to lower Rossby numbers, so these data indicate that more rapidly rotating stars are more likely to exhibit flares. [Van Doorsselaere et al. 2017]Roughly 3.5% of Kepler stars in this sample are flaring stars.24 new A stars are found to show flaring activity. This is interesting because A stars arent thought to have an outer convective zone, which should prevent a magnetic dynamo from operating. Yet these flaring-star detections add to the body of evidence that at least some A stars do show magnetic activity.Most flaring stars in the sample are main-sequence stars, but 653 giants were found to have flaring activity. As with A stars, its unexpected that giant stars would have strong magnetic fields their increase in size and gradual spin-down over time should result in weakening of the surface fields. Nevertheless, it seems that the flare incidence of giant stars is similar to that of F or G main-sequence stars.All stellar types appear to have a small fraction of flare stars stars with an especially high rate of flare occurrence.Rapidly rotating stars are more likely to flare, tend to flare more often, and tend to have stronger flares than slowly rotating stars.As a next step, the authors plan to apply their flare detection algorithm to the larger sample of all Kepler data. In the meantime, this study has both deepened a few mysteries and moved us a step closer in our understanding of which stars flare and why.CitationTom Van Doorsselaere et al 2017 ApJS 232 26. doi:10.3847/1538-4365/aa8f9a

  8. THE BINARITY OF MILKY WAY F,G,K STARS AS A FUNCTION OF EFFECTIVE TEMPERATURE AND METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang; Liu, Chao; Zhang, Xiaobin; Justham, Stephen; Deng, Licai; Yang, Ming [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2014-06-20

    We estimate the fraction of F,G,K stars with close binary companions by analysing multi-epoch stellar spectra from the Sloan Digital Sky Survey (SDSS) and LAMOST for radial velocity variations. We employ a Bayesian method to infer the maximum likelihood of the fraction of binary stars with orbital periods of 1000 days or shorter, assuming a simple model distribution for a binary population with circular orbits. The overall inferred fraction of stars with such a close binary companion is 43.0% ± 2.0% for a sample of F,G,K stars from SDSS SEGUE, and 30% ± 8.0% in a similar sample from LAMOST. The apparent close binary fraction decreases with the stellar effective temperature. We divide the SEGUE and LEGUE data into three subsamples with different metallicity ([Fe/H] < –1.1; –1.1 < [Fe/H] < –0.6; –0.6 < [Fe/H]), for which the inferred close binary fractions are 56 ± 5.0%, 56.0 ± 3%, and 30 ± 5.7%. The metal-rich stars from our sample are therefore substantially less likely to possess a close binary companion than otherwise similar stars drawn from metal-poor populations. The different ages and formation environments of the Milky Way's thin disk, thick disk, and halo may contribute to explaining these observations. Alternatively, metallicity may have a significant effect on the formation and/or evolution of binary stars.

  9. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  10. Important consequences of atomic diffusion inside main-sequence stars: opacities, extra-mixing, oscillations

    Directory of Open Access Journals (Sweden)

    Deal M.

    2017-01-01

    Full Text Available Atomic diffusion, including the effects of radiative accelerations on individual elements, leads to important variations of the chemical composition inside stars. The accumulation of important elements in specific layers leads to a local increase of the average opacity and to hydrodynamic instabilities that modify the internal stellar structure. This can also have important consequences for asteroseismology.

  11. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    OpenAIRE

    Rebassa-Mansergas, A.; Anguiano, B.; García-Berro, E.; Freeman, K. C.; Cojocaru, R.; Manser, C. J.; Pala, A. F.; Gänsicke, B. T.; Liu, X. -W.

    2016-01-01

    The age–metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white-dwarf–main-sequence (WD...

  12. The character and behaviour of circumstellar shells at T Tauri stars

    International Nuclear Information System (INIS)

    Goetz, W.

    1988-01-01

    T Tauri stars are extremely young low-mass stars in the pre-main sequence stage. A brief review of investigations made at the Sonneberg observatory concerning the character and the behaviour of circumstellar shells at T Tauri stars is given. They lead to the construction of a shell model on the basis of observational facts. The idea rests upon the causal connection between the gas and dust shell phenomenon and the cosmogonic mass loss of the stars, which is the connecting link between the stars and their shells and which appears in the early phase of the pre-main sequence stage and decreases, like the accompanying shell phenomena, during the evolution of the stars. (author)

  13. Linear series of stellar models. Pt. 4. Helium-carbon stars of 3.5Msub(o) and 1Msub(o)

    International Nuclear Information System (INIS)

    Kozlowski, M.; Paczynski, B.; Popova, K.

    1973-01-01

    One linear series of models for a star of 3.5Msub(o) and two linear series of models for a star of 1Msub(o) are constructed. Models consist of helium rich envelopes (Y = 0.97, Z = 0.03) and pure carbon cores, and they have a rectangular helium profile, Y(Msub(r)). The linear series for a star of 3.5Msub(o) begins on the normal branch of the helium main sequence and terminates on the normal branch of the carbon main sequence. This series has eight turning points at which the core mass attains a local extremum. One of the two linear series for a star of 1Msub(o) begins on the normal branch of the helium main sequence, terminates on the high density branch of the helium main sequence, and has one turning point. The second linear series for a star of 1Msub(o) begins on the normal branch of the carbon main sequence, terminates on the high density branch of the carbon main sequence, and has three turning points. Two such linear series may have a common bifurcation point for a star of about 1.26Msub(o). (author)

  14. A CENSUS OF ROTATION AND VARIABILITY IN L1495: A UNIFORM ANALYSIS OF TRANS-ATLANTIC EXOPLANET SURVEY LIGHT CURVES FOR PRE-MAIN-SEQUENCE STARS IN TAURUS

    International Nuclear Information System (INIS)

    Xiao Hongyu; Covey, Kevin R.; Lloyd, James P.; Rebull, Luisa; Charbonneau, David; Mandushev, Georgi; O'Donovan, Francis; Slesnick, Catherine

    2012-01-01

    We analyze light curves obtained by the Trans-atlantic Exoplanet Survey (TrES) for a field centered on the L1495 dark cloud in Taurus. The Spitzer Taurus Legacy Survey catalog identifies 179 bona fide Taurus members within the TrES field; 48 of the known Taurus members are detected by TrES, as well as 26 candidate members identified by the Spitzer Legacy team. We quantify the variability of each star in our sample using the ratio of the standard deviation of the original light curve (σ orig. ) to the standard deviation of a light curve that has been smoothed by 9 or 1001 epochs (σ 9 and σ 1001 , respectively). Known Taurus members typically demonstrate (σ orig. /σ 9 ) orig. /σ 1001 ) orig. /σ 9 ) ∼ 3.0 and (σ orig. /σ 1001 ) ∼ 10, as expected for light curves dominated by unstructured white noise. Of the 74 Taurus members/candidates with TrES light curves, we detect significant variability in 49 sources. Adapting a quantitative metric originally developed to assess the reliability of transit detections, we measure the amount of red and white noise in each light curve and identify 18 known or candidate Taurus members with highly significant period measurements. These appear to be the first periods measured for four of these sources (HD 282276, CX Tau, FP Tau, TrES J042423+265008), and in two other cases, the first non-aliased periods (LkCa 21 and DK Tau AB). For the remainder, the TrES measurements typically agree very well (δP < 1%) with previously reported values. Including periods measured at lower confidence for 15 additional sources, we report periods for 11 objects where no previous periods were found, including 8 confirmed Taurus members. We also identify 10 of the 26 candidate Taurus members that demonstrate variability levels consistent with being bona fide T Tauri stars. A Kolomgorov-Smirnov (K-S) test confirms that these new periods confirm the distinction between the rotation period distributions of stars with and without circumstellar

  15. UBV-photometry of flare stars in pleiades

    International Nuclear Information System (INIS)

    Chavushyan, O.S.; Garibdzhanyan, A.T.

    1975-01-01

    The results are presented of UBV-photometry of 283 flare stars at the minimum of brightness in the Pleiad region. A new method has been developed and used of taking into account the background in photographic UBV-photometry with an iris microphotometer. The data obtained indicate that the flare Pleiad stars are located on both sides of the main sequence in the light-luminosity (V,B-V) diagram, while in the (U-B,B-V) diagram they are largely located above the main sequence

  16. K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.

    Science.gov (United States)

    Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue

    2018-05-15

    Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.

  17. A Herschel view of IC 1396 A: Unveiling the different sequences of star formation

    NARCIS (Netherlands)

    Sicilia-Aguilar, Aurora; Roccatagliata, Veronica; Getman, Konstantin; Henning, Thomas; Merín, Bruno; Eiroa, Carlos; Rivière-Marichalar, Pablo; Currie, Thayne

    Context. The IC 1396 A globule, located to the west of the young cluster Tr 37, is known to host many very young stars and protostars, and is also assumed to be a site of triggered star formation. Aims: Our aim is to test the triggering mechanisms and sequences leading to star formation in Tr 37 and

  18. VLA AND ALMA IMAGING OF INTENSE GALAXY-WIDE STAR FORMATION IN z ∼ 2 GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Rujopakarn, W.; Silverman, J. D. [Kavli Institute for the Physics and Mathematics of the universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Dunlop, J. S.; Ivison, R. J.; McLure, R. J.; Michałowski, M. J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Rieke, G. H. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Cibinel, A. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Nyland, K. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Jagannathan, P.; Bhatnagar, S. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Alexander, D. M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild-Straße 2, Garching (Germany); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Elbaz, D. [CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Geach, J. E. [Center for Astrophysics Research, Science and Technology Research Institute, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Hayward, C. C. [Center for Computational Astrophysics, 160 Fifth Avenue, New York, NY 10010 (United States); Kirkpatrick, A., E-mail: wiphu.rujopakarn@ipmu.jp [Yale Center for Astronomy and Astrophysics, Physics Department, P.O. Box 208120, New Haven, CT 06520 (United States); and others

    2016-12-10

    We present ≃0.″4 resolution extinction-independent distributions of star formation and dust in 11 star-forming galaxies (SFGs) at z  = 1.3–3.0. These galaxies are selected from sensitive blank-field surveys of the 2′ × 2′ Hubble Ultra-Deep Field at λ  = 5 cm and 1.3 mm using the Karl G. Jansky Very Large Array and Atacama Large Millimeter/submillimeter Array. They have star formation rates (SFRs), stellar masses, and dust properties representative of massive main-sequence SFGs at z  ∼ 2. Morphological classification performed on spatially resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray active galactic nuclei (AGNs), thereby representing a diversity of z  ∼ 2 SFGs undergoing vigorous mass assembly. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median diameter of 4.2 ± 1.8 kpc. This provides direct evidence of galaxy-wide star formation in distant blank-field-selected main-sequence SFGs. The typical galactic-average SFR surface density is 2.5 M {sub ⊙} yr{sup −1} kpc{sup −2}, sufficiently high to drive outflows. In X-ray-selected AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGNs, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is two times larger than those of bright submillimeter galaxies, whose SFRs are 3–8 times larger, providing a constraint on the characteristic SFR (∼300 M {sub ⊙} yr{sup −1}) above which a significant population of more compact SFGs appears to emerge.

  19. Evolution of low-mass stars in the alpha persei cluster

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Burnham, J.N.; Jones, B.F.

    1985-01-01

    We present a photometric and spectroscopic study of low-mass members of the α Persei cluster. Now relative proper motions have been obtained for 4000 stars in a 1X2 x 1X2 region of the α Persei open cluster. The survey extends to Vroughly-equal16.5 mag, much fainter than the previous proper motion surveys. Optical photometry and high-dispersion spectroscopy of the possible cluster members from our survey, as well as a set of 10th to 12th magnitude stars from previous surveys, have also been obtained. The new photometry shows an apparent pre-main sequence (PMS), but we cannot yet accurately determine the PMS turn-on point. The faint stars in the cluster have positions in a V versus V-I diagram that are roughly in accord with the 5 x 10 7 yr isochrone derived by VandenBerg et al. In agreement with previous results for the Pleiades cluster, some of the late-type α Persei members are photometric variables, with periods of 1 day or less. Light curves and estimated periods are presented for six of the G and K dwarf members of the cluster. We attribute the periodic light variations to spots on the surfaces of these stars, which are carried around the visible hemisphere by rapid rotation. The photometric periods are consistent with rotational broadening measurements when available. Projected rotational velocities derived from the echelle spectra indicate that nearly 50% of the stars observed that are later than G2 have 25 km s -1 -1 . The large rotational velocities among low-mass stars in young clusters are ascribed to spin-up during contraction to the main sequence

  20. DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302

    International Nuclear Information System (INIS)

    Szyszka, C.; Walsh, J. R.; Zijlstra, Albert A.; Tsamis, Y. G.

    2009-01-01

    NGC 6302 is one of the highest ionization planetary nebulae (PNe) known and shows emission from species with ionization potential > 300 eV. The temperature of the central star must be > 200,000 K to photoionize the nebula, and has been suggested to be up to ∼400,000 K. On account of the dense dust and molecular disk, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrowband filters by Wide Field Camera 3 on the Hubble Space Telescope as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula center on the foreground side of the tilted equatorial disk. The magnitudes of the central star have been reliably measured in two filters (F469N and F673N). Assuming a hot blackbody, the reddening has been measured from the (4688-6766 A) color and a value of c = 3.1, A v = 6.6 mag determined. A G-K main-sequence binary companion can be excluded. The position of the star on the H-R diagram suggests a fairly massive PN central star of about 0.64 M sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T, L, t) = (200,000 K, 2000 L sun , 2200 yr), where t is the nebular age, is obtained; however, the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1% per year. Future observations could test this prediction.

  1. HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES

    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia; Riddle, Reed L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Stauffer, John; Rebull, L. M. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie [NASA Ames Research Center, Mountain View, CA 94035 (United States); Conroy, Kyle; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Pope, Benjamin; Aigrain, Suzanne; Gillen, Ed [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom); Barrado, David [Centro de Astrobiología, INTA-CSIC, Dpto. Astrofísica, ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Isaacson, Howard; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Ziegler, Carl; Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3255 (United States); Baranec, Christoph, E-mail: tjd@astro.caltech.edu [Institute for Astronomy, University of Hawai‘i at Mānoa, Hilo, HI 96720-2700 (United States)

    2015-11-20

    The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likely to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.

  2. SEQUENTIAL STAR FORMATION IN RCW 34: A SPECTROSCOPIC CENSUS OF THE STELLAR CONTENT OF HIGH-MASS STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Bik, A.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Puga, E.; Waters, L.B.F.M.; Waelkens, Ch.; Horrobin, M.; Kaper, L.; De Koter, A.; Van den Ancker, M.; Comeron, F.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; Thi, W. F.

    2010-01-01

    In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun ) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H 2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is

  3. Characterizing K2 Candidate Planetary Systems Orbiting Low-Mass Stars. I. Classifying Low-Mass Host Stars Observed During Campaigns 1-7

    Science.gov (United States)

    Dressing, Courtney D.; Newton, Elisabeth R.; Schlieder, Joshua E.; Charbomeau, David; Krutson, Heather A.; Vanderburg, Andrew; Sinukoff, Evan

    2017-01-01

    We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1-7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3-M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 solar radius (39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies.

  4. On the evolution of stars

    International Nuclear Information System (INIS)

    Kippenhahn, R.

    1989-01-01

    A popular survey is given of the present knowledge on evolution and ageing of stars. Main sequence stars, white dwarf stars, and red giant stars are classified in the Hertzsprung-Russell (HR)-diagram by measurable quantities: surface temperature and luminosity. From the HR-diagram it can be concluded to star mass and age. Star-forming processes in interstellar clouds as well as stellar burning processes are illustrated. The changes occurring in a star due to the depletion of the nuclear energy reserve are described. In this frame the phenomena of planetary nebulae, supernovae, pulsars, neutron stars as well as of black holes are explained

  5. Constraining the low-mass Slope of the star formation sequence at 0.5 < z < 2.5

    International Nuclear Information System (INIS)

    Whitaker, Katherine E.; Henry, Alaina; Rigby, Jane R.; Franx, Marijn; Fumagalli, Mattia; Labbé, Ivo; Leja, Joel; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Nelson, Erica J.; Skelton, Rosalind E.; Brammer, Gabriel B.

    2014-01-01

    We constrain the slope of the star formation rate (SFR; log Ψ) to stellar mass (log M * ) relation down to log (M * /M ☉ ) = 8.4 (log (M * /M ☉ ) = 9.2) at z = 0.5 (z = 2.5) with a mass-complete sample of 39,106 star-forming galaxies selected from the 3D-HST photometric catalogs, using deep photometry in the CANDELS fields. For the first time, we find that the slope is dependent on stellar mass, such that it is steeper at low masses (log Ψ∝log M * ) than at high masses (log Ψ∝(0.3-0.6)log M * ). These steeper low-mass slopes are found for three different star formation indicators: the combination of the ultraviolet (UV) and infrared (IR), calibrated from a stacking analysis of Spitzer/MIPS 24 μm imaging; β-corrected UV SFRs; and Hα SFRs. The normalization of the sequence evolves differently in distinct mass regimes as well: for galaxies less massive than log (M * /M ☉ ) < 10 the specific SFR (Ψ/M * ) is observed to be roughly self-similar with Ψ/M * ∝(1 + z) 1.9 , whereas more massive galaxies show a stronger evolution with Ψ/M * ∝(1 + z) 2.2-3.5 for log (M * /M ☉ ) = 10.2-11.2. The fact that we find a steep slope of the star formation sequence for the lower mass galaxies will help reconcile theoretical galaxy formation models with the observations.

  6. A Search for Giant Planet Companions to T Tauri Stars

    Science.gov (United States)

    2012-12-20

    detection – stars: pre-main sequence – techniques: radial velocities Online-only material: color figures 1. INTRODUCTION The discovery of over 760...exoplanets8 in the past twenty years has revealed that planetary systems are common and diverse. Pulsar planets (Wolszczan 1994), hot Jupiters (Mayor... discoveries , the processes underlying planet formation remain unclear. Lacking direct observational inputs, theorists must deduce formation mechanisms from

  7. End of the Line for a Star like Ours

    Science.gov (United States)

    Riddle, Bob

    2010-01-01

    Stars of different masses have varying life spans, with the more massive stars "burning out" more quickly than stars of lower masses. How or what they do when they burn out also varies, depending on the mass of the star. All stars are called "main sequence stars" as they continue fusing hydrogen and staying in a state of equilibrium--a balance…

  8. Photometric light curves for seven rapidly-rotating K dwarfs in the Pleiades and Alpha Persei clusters

    Science.gov (United States)

    Stauffer, John R.; Schild, Rudolph A.; Baliunas, Sallie L.; Africano, John L.

    1987-01-01

    Light curves and period estimates were obtained for several Pleiades and Alpha Persei cluster K dwarfs which were identified as rapid rotators in earlier spectroscopic studies. A few of the stars have previously-published light curves, making it possible to study the long-term variability of the light-curve shapes. The general cause of the photometric variability observed for these stars is an asymmetric distribution of photospheric inhomogeneities (starspots). The presence of these inhomogeneities combined with the rotation of the star lead to the light curves observed. The photometric periods derived are thus identified with the rotation period of the star, making it possible to estimate equatorial rotational velocities for these K dwarfs. These data are of particular importance because the clusters are sufficiently young that stars of this mass should have just arrived on the main sequence. These data could be used to estimate the temperatures and sizes of the spot groups necessary to produce the observed light curves for these stars.

  9. Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects?

    Science.gov (United States)

    Tamburini, Fabrizio; Licata, Ignazio

    2017-09-01

    The search for dark matter (DM) is one of the most active and challenging areas of current research. Possible DM candidates are ultralight fields such as axions and weak interacting massive particles (WIMPs). Axions piled up in the center of stars are supposed to generate matter/DM configurations with oscillating geometries at a very rapid frequency, which is a multiple of the axion mass m B (Brito et al (2015); Brito et al (2016)). Borra and Trottier (2016) recently found peculiar ultrafast periodic spectral modulations in 236 main sequence stars in the sample of 2.5 million spectra of galactic halo stars of the Sloan Digital Sky Survey (˜1% of main sequence stars in the F-K spectral range) that were interpreted as optical signals from extraterrestrial civilizations, suggesting them as possible candidates for the search for extraterrestrial intelligence (SETI) program. We argue, instead, that this could be the first indirect evidence of bosonic axion-like DM fields inside main sequence stars, with a stable radiative nucleus, where a stable DM core can be hosted. These oscillations were not observed in earlier stellar spectral classes probably because of the impossibility of starting a stable oscillatory regime due to the presence of chaotic motions in their convective nuclei. The axion mass values, (50< {m}B< 2.4× {10}3) μ {eV}, obtained from the frequency range observed by Borra and Trottier, (0.6070< f< 0.6077) THz, agree with the recent theoretical results from high-temperature lattice quantum chromodynamics (Borsanyi et al (2016); Borsanyi et al (2016b)).

  10. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  11. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  12. THE EXTENDED MAIN-SEQUENCE TURNOFF CLUSTERS OF THE LARGE MAGELLANIC CLOUD-MISSING LINKS IN GLOBULAR CLUSTER EVOLUTION

    International Nuclear Information System (INIS)

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2011-01-01

    Recent observations of intermediate-age (1-3 Gyr) massive star clusters in the Large Magellanic Cloud have revealed that the majority possess bifurcated or extended main-sequence turnoff (EMSTO) morphologies. This effect can be understood to arise from subsequent star formation among the stellar population with age differences between constituent stars amounting to 50-300 Myr. Age spreads of this order are similarly invoked to explain the light-element abundance variations witnessed in ancient globular clusters (GCs). In this paper, we explore the proposition that the clusters exhibiting the EMSTO phenomenon are a general phase in the evolution of massive clusters, one that naturally leads to the particular chemical properties of the ancient GC population. We show that the isolation of EMSTO clusters to intermediate ages is the consequence of observational selection effects. In our proposed scenario, the EMSTO phenomenon is identical to that which establishes the light-element abundance variations that are ubiquitous in the ancient GC population. Our scenario makes a strong prediction: EMSTO clusters will exhibit abundance variations in the light-elements characteristic of the ancient GC population.

  13. From clouds to stars

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1982-01-01

    At the present time, the theory of star formation must be limited to what we know about the lowest density gas, or about the pre-main sequence stars themselves. We would like to understand two basic processes: 1) how star-forming clouds are created from the ambient interstellar gas in the first place, and 2) how small parts of these clouds condense to form individual stars. We are interested also in knowing what pre-main sequence stars are like, and how they can interact with their environment. These topics are reviewed in what follows. In this series of lectures, what we know about the formation of stars is tentatively described. The lectures begin with a description of the interstellar medium, and then they proceed along the same direction that a young star would follow during its creation, namely from clouds through the collapse phase and onto the proto-stellar phase. The evolution of viscous disks and two models for the formation of the solar system are described in the last lectures. The longest lectures, and the topics that are covered in most detail, are not necessarily the ones for which we have the most information. Physically intuitive explanations for the various processes are emphasized, rather then mathematical explanations. In some cases, the mathematical aspects are developed as well, but only when the equations can be used to give important numerical values for comparison with the observations

  14. Sequence context effects on 8-methoxypsoralen photobinding to defined DNA fragments

    International Nuclear Information System (INIS)

    Sage, E.; Moustacchi, E.

    1987-01-01

    The photoreaction of 8-methoxypsoralen (8-MOP) with DNA fragments of defined sequence was studied. The authors took advantage of the blockage by bulky adducts of the 3'-5'-exonuclease activity associated with the T4 DNA polymerase. The action of the exonuclease is stopped by biadducts as well as by monoadducts. The termination products were analyzed on sequencing gels. A strong sequence specificity was observed in the DNA photobinding of 8-MOP. The exonuclease terminates its digestion near thymine residues, mainly at potentially cross-linkable sites. There is an increasing reactivity of thymine residues in the order T < TT << TTT in a GC environment. For thymine residues in cross-linkable sites, the reactivity follows the order AT << TA ∼ TAT << ATA < ATAT < ATATAA. Repeated A-T sequences are hot spots for the photochemical reaction of 8-MOP with DNA. Both monoadducts and interstrand cross-links are formed preferentially in 5'-TpA sites. The results highlight the role of the sequence and consequently of the conformation around a potential site in the photobinding of 8-MOP to DNA

  15. Predicting neutron star spins from twin kHz QPOs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the proposed relations between the frequencies of twin kilohertz quasi-periodic oscillations(kHz QPOs) and the spin frequencies in neutron star low-mass X-ray binaries(NSLMXBs).To test the validity of the proposed models,we estimate the spin frequencies under these theoretical relations and compare them with the measured ones.It seems that magnetohydrodynamic(MHD) oscillations are more promising to account for the kHz QPOs.

  16. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  17. The K2-138 System: A Near-resonant Chain of Five Sub-Neptune Planets Discovered by Citizen Scientists

    DEFF Research Database (Denmark)

    Christiansen, Jessie L.; Crossfield, Ian J. M.; Barentsen, Geert

    2018-01-01

    K2-138 is a moderately bright (V = 12.2, K = 10.3) main-sequence K star observed in Campaign 12 of the NASA K2 mission. It hosts five small (1.6-3.3 R⊕) transiting planets in a compact architecture. The periods of the five planets are 2.35, 3.56, 5.40, 8.26, and 12.76 days, forming an unbroken...... chain of near 3:2 resonances. Although we do not detect the predicted 2-5 minute transit timing variations (TTVs) with the K2 timing precision, they may be observable by higher-cadence observations with, for example, Spitzer or CHEOPS. The planets are amenable to mass measurement by precision radial...... velocity measurements, and therefore K2-138 could represent a new benchmark system for comparing radial velocity and TTV masses. K2-138 is the first exoplanet discovery by citizen scientists participating in the Exoplanet Explorers project on the Zooniverse platform....

  18. MAGNETIC FIELD MEASUREMENTS OF T TAURI STARS IN THE ORION NEBULA CLUSTER

    International Nuclear Information System (INIS)

    Hao Yang; Johns-Krull, Christopher M.

    2011-01-01

    We present an analysis of high-resolution (R ∼ 50, 000) infrared K-band echelle spectra of 14 T Tauri stars (TTSs) in the Orion Nebula Cluster. We model Zeeman broadening in three magnetically sensitive Ti I lines near 2.2 μm and consistently detect kilogauss-level magnetic fields in the stellar photospheres. The data are consistent in each case with the entire stellar surface being covered with magnetic fields, suggesting that magnetic pressure likely dominates over gas pressure in the photospheres of these stars. These very strong magnetic fields might themselves be responsible for the underproduction of X-ray emission of TTSs relative to what is expected based on main-sequence star calibrations. We combine these results with previous measurements of 14 stars in Taurus and 5 stars in the TW Hydrae association to study the potential variation of magnetic field properties during the first 10 million years of stellar evolution, finding a steady decline in total magnetic flux with age.

  19. Tracking the Obscured Star Formation Along the Complete Evolutionary Merger Sequence of LIRGs

    Science.gov (United States)

    Diaz-Santos, Tanio

    2014-10-01

    We propose to obtain WFC3 narrow-band Pa-beta imaging of a sample of 24 nearby luminous infrared (IR) galaxies (LIRGs) from the Great Observatories All-sky LIRG survey (GOALS) selected to be in advanced stages of interaction. LIRGs account for half of the obscured star formation of the Universe at z ~ 1-2, and they represent a key population in galaxy formation and evolution. We will use the Pa-beta images to trace the ionized gas in LIRGs and study its spatial distribution from scales of ~ 100 pc to up to several kpc, probing the youngest, massive stars formed in the most buried environments of LIRGs due to the interaction process. This will allow us to measure how the gas in the center of mergers is converted into stars, which eventually leads to the build-up of a nuclear stellar cusp and the "inside-out" growth of bulges. We will also create spatially-resolved Pa-beta equivalent width maps to search for age gradients across the galaxies and correlate the distribution of Pa-beta emission with that of un-obscured star clusters detected in the UV and optical with HST on the same spatial scales. Finally, we will combine our data with previous studies mainly focused on isolated and early-stage interacting LIRG systems to analyze the size and compactness of the starburst along the complete merger sequence of LIRGs. The requested data represent a critical missing piece of information that will allow us to understand both the physics of merger-induced star formation and the applicability of local LIRGs as templates for high-z interacting starburst galaxies.

  20. What Happens in the Atmospheres of Hot Horizontal Branch Stars Near 20, 000K?

    Science.gov (United States)

    Brown, Thomas

    2016-10-01

    In the color-magnitude diagrams (CMDs) of many globular clusters, the horizontal branch (HB) exhibits a long blue tail extending to high effective temperatures. In such clusters, two discontinuities appear within the HB locus. The first discontinuity occurs at 12,000K, and was discovered by Grundahl et al. (1998). It is associated with the radiative levitation of metals and the gravitational settling of helium in the atmospheres of HB stars hotter than 12,000K. The hot subdwarf stars of the Galactic field population exhibit the same phenomenon. The second discontinuity occurs at 20,000K, and was discovered by Momany et al. (2002). Its origin is unknown, but it appears at the same effective temperature in all globular clusters hosting HB stars near 20,000K, regardless of cluster properties (age, chemical composition, mass, etc.). We propose STIS long-slit spectroscopy of 6 HB stars that straddle this feature in the HB distribution of omega Cen, the nearest globular cluster where the feature is well populated. With this approach, we can efficiently obtain high-quality UV and blue spectra that span the full wavelength range of the photometric bands where this CMD feature is most prominent - a range this is only accessible by HST. The resulting spectra will unambiguously reveal the nature of this phenomenon - one that is universal in the atmospheres of hot evolved stars - and will yield new insight into the role of diffusion and radiative levitation in these stars.

  1. Spots and activity of Pleiades stars from observations with the Kepler Space Telescope (K2)

    Science.gov (United States)

    Savanov, I. S.; Dmitrienko, E. S.

    2017-11-01

    Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity ( S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V -Ks)0 color index remains approximately the same over the entire ( V- K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1 M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.

  2. The Solar Neighborhood. XLI. A Study of the Wide Main Sequence for M Dwarfs—Long-term Photometric Variability

    Energy Technology Data Exchange (ETDEWEB)

    Clements, Tiffany D.; Jao, Wei-Chun; Silverstein, Michele L. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Henry, Todd J.; Hosey, Altonio D. [RECONS Institute, Chambersburg, PA 17201 (United States); Winters, Jennifer G. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Dieterich, Sergio B. [Carnegie Institution for Science, Washington, DC 20015 (United States); Riedel, Adric R., E-mail: pewett@astro.gsu.edu, E-mail: jao@astro.gsu.edu, E-mail: silverstein@astro.gsu.edu, E-mail: toddhenry28@gmail.com, E-mail: altoniohosey@gmail.com, E-mail: jennifer.winters@cfa.harvard.edu, E-mail: sdieterich@carnegiescience.edu, E-mail: adric.riedel@gmail.com [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2017-09-01

    We report findings from a long-term photometric variability study of M dwarfs carried out at the SMARTS 0.9 m telescope at the Cerro Tololo Inter-American Observatory. As part of a multi-faceted effort to investigate the range of luminosities of M dwarfs of a given color on the Hertzsprung–Russell Diagram, 76 M dwarfs have been observed for 3–17 years in the Johnson–Kron–Cousins V band. We find that stars elevated above the center of the main sequence distribution tend to have higher levels of variability, likely caused by magnetic activity, than their fainter counterparts below the center. This study provides insight into how the long-term magnetic activity of these stars may be affecting their sizes, luminosities, and thus positions on the H-R Diagram.

  3. Magnetic fields in beta Cep, SPB, and Be stars

    OpenAIRE

    Schoeller, M.; Hubrig, S.; Briquet, M.; Ilyin, I.

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic fi...

  4. Optical photometric variable stars towards the Galactic H II region NGC 2282

    Science.gov (United States)

    Dutta, Somnath; Mondal, Soumen; Joshi, Santosh; Jose, Jessy; Das, Ramkrishna; Ghosh, Supriyo

    2018-05-01

    We report here CCD I-band time series photometry of a young (2-5 Myr) cluster NGC 2282, in order to identify and understand the variability of pre-main-sequence (PMS) stars. The I-band photometry, down to ˜20.5 mag, enables us to probe the variability towards the lower mass end (˜0.1 M⊙) of PMS stars. From the light curves of 1627 stars, we identified 62 new photometric variable candidates. Their association with the region was established from H α emission and infrared (IR) excess. Among 62 variables, 30 young variables exhibit H α emission, near-IR (NIR)/mid-IR (MIR) excess or both and are candidate members of the cluster. Out of 62 variables, 41 are periodic variables, with a rotation rate ranging from 0.2-7 d. The period distribution exhibits a median period at ˜1 d, as in many young clusters (e.g. NGC 2264, ONC, etc.), but it follows a unimodal distribution, unlike others that have bimodality, with slow rotators peaking at ˜6-8 d. To investigate the rotation-disc and variability-disc connection, we derived the NIR excess from Δ(I - K) and the MIR excess from Spitzer [3.6]-[4.5] μm data. No conclusive evidence of slow rotation with the presence of discs around stars and fast rotation for discless stars is obtained from our periodic variables. A clear increasing trend of the variability amplitude with IR excess is found for all variables.

  5. IPHAS A-TYPE STARS WITH MID-INFRARED EXCESSES IN SPITZER SURVEYS

    International Nuclear Information System (INIS)

    Hales, Antonio S.; Barlow, Michael J.; Drew, Janet E.; Unruh, Yvonne C.; Greimel, Robert; Irwin, Michael J.; Gonzalez-Solares, Eduardo

    2009-01-01

    We have identified 17 A-type stars in the Galactic Plane that have mid-infrared (mid-IR) excesses at 8 μm. From observed colors in the (r' - Hα) - (r' - i') plane, we first identified 23,050 early A-type main-sequence (MS) star candidates in the Isaac Newton Photometric H-Alpha Survey (IPHAS) point source database that are located in Spitzer Galactic Legacy Mid-Plane Survey Extraordinaire Galactic plane fields. Imposing the requirement that they be detected in all seven Two Micron All Sky Survey and Infrared Astronomical Satellite bands led to a sample of 2692 candidate A-type stars with fully sampled 0.6 to 8 μm spectral energy distributions (SEDs). Optical classification spectra of 18 of the IPHAS candidate A-type MS stars showed that all but one could be well fitted using MS A-type templates, with the other being an A-type supergiant. Out of the 2692 A-type candidates 17 (0.6%) were found to have 8 μm excesses above the expected photospheric values. Taking into account non-A-Type contamination estimates, the 8 μm excess fraction is adjusted to ∼0.7%. The distances to these sources range from 0.7 to 2.5 kpc. Only 10 out of the 17 excess stars had been covered by Spitzer MIPSGAL survey fields, of which five had detectable excesses at 24 μm. For sources with excesses detected in at least two mid-IR wavelength bands, blackbody fits to the excess SEDs yielded temperatures ranging from 270 to 650 K, and bolometric luminosity ratios L IR /L * from 2.2 x 10 -3 - 1.9 x 10 -2 , with a mean value of 7.9 x 10 -3 (these bolometric luminosities are lower limits as cold dust is not detectable by this survey). Both the presence of mid-IR excesses and the derived bolometric luminosity ratios are consistent with many of these systems being in the planet-building transition phase between the early protoplanetary disk phase and the later debris disk phase.

  6. The effective temperatures and colours of G and K stars

    International Nuclear Information System (INIS)

    Bell, R.A.; Gustafsson, B.

    1989-01-01

    Temperature scales are found for G and K dwarf and giant stars, using new tables of synthetic infrared colours as well as the infrared flux ratio method. The temperatures of 95 individual stars are given. The colours are presented for grids of flux constant, line blanketed models. One grid has been published previously, as have some colours for the visible region of the spectrum. The models of this grid are in the range 4000 K eff < 6000 K, 0.75 < log g < 3.00, - 3.0 < [A/H] < 0.0. A grid of dwarf models, with the same temperature and abundance range but with 3.75 < log g < 4.5 is also used. The colours are computed from two series of overlapping synthetic spectra, which have been calculated with a resolution of 0.1 A between 3000 and 12 000 A and 1.0 A between 0.9 and 6.0 μm. (author)

  7. Evolution of massive close binaries and formation of neutron stars and black holes

    International Nuclear Information System (INIS)

    Massevitch, A.G.; Tutukov, A.V.; Yungelson, L.R.

    1976-01-01

    Main results of computations of evolution for massive close binaries (10 M(Sun)+9.4 M(Sun), 16 M(Sun)+15 M(Sun), 32 M(Sun)+30 M(Sun), 64 M(Sun)+60 M(Sun)) up to oxygen exhaustion in the core are described. Mass exchange starting in core hydrogen, shell hydrogen and core helium burning stages was studied. Computations were performed assuming both the Ledoux and Schwarzschild stability criteria for semiconvection. The influence of UFI-neutrino emission on evolution of close binaries was investigated. The results obtained allow to outline the following evolutionary chain: two detached Main-Sequence stars - mass exchange - Wolf-Rayet star or blue supergiant plus main sequence star - explosion of the initially more massive star appearing as a supernova event - collapsed or neutron star plus Main-Sequence star, that may be observed as a 'runaway star' - mass exchange leading to X-rays emission - collapsed or neutron star plus WR-star or blue supergiant - second explosion of supernova that preferentially disrupts the system and gives birth to two single high spatial velocity pulsars. Numerical estimates concerning the number and properties of WR-stars, pulsars and X-ray sources are presented. The results are in favour of the existence of UFI-neutrino and of the Ledoux criterion for describing semiconvection. Properties of several well-known X-ray sources and the binary pulsar are discussed on base of evolutionary chain of close binaries. (Auth.)

  8. The Star-Spangled Banner Project: Save Our History[TM]. Teacher's Manual, Grades K-8.

    Science.gov (United States)

    O'Connell, Libby, Ed.

    The Star-Spangled Banner is the original flag that flew over Fort McHenry in Baltimore (Maryland) during its attack by the British during the War of 1812. It inspired Francis Scott Key, a lawyer being held on board a British ship in Baltimore Harbor, to write a poem that later became the words to the national anthem. Since 1907, the Star-Spangled…

  9. The double main sequence of Omega Centauri

    Science.gov (United States)

    Bedin, L. R.; Piotto, G.; Anderson, J.; King, I. R.; Cassisi, S.; Momany, Y.

    Recent, high precision photometry of Omega Centauri, the biggest Galactic globular cluster, has been obtained with Hubble Space Telescope (HST). The color magnitude diagram reveals an unexpected bifurcation of colors in the main sequence (MS). The newly found double MS, the multiple turnoffs and subgiant branches, and other sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. Among the possible explanations for the blue main sequence an anomalous overabundance of helium is suggested. The hypothesis will be tested with a set of FLAMES@VLT data we have recently obtained (ESO DDT program), and with forthcoming ACS@HST images. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  10. New BVI C photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    International Nuclear Information System (INIS)

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-01-01

    We present new BVI C photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  11. A search for lithium-rich giant stars

    International Nuclear Information System (INIS)

    Brown, J.A.; Sneden, C.; Lambert, D.L.; Dutchover, E. Jr.

    1989-01-01

    Lithium abundances or upper limits have been determined for 644 bright G-K giant stars selected from the DDO photometric catalog. Two of these giants possess surface lithium abundances approaching the cosmic value of the interstellar medium and young main-sequence stars, and eight more giants have Li contents far in excess of standard predictions. At least some of these Li-rich giants are shown to be evolved to the stage of having convectively mixed envelopes, either from the direct evidence of low surface carbon isotope ratios, or from the indirect evidence of their H-R diagram positions. Suggestions are given for the unique conditions that might have allowed these stars to produce or accrete new lithium for their surface layers, or simply to preserve from destruction their initial lithium contents. The lithium abundance of the remaining stars demonstrates that giants only very rarely meet the expectations of standard first dredge-up theories; the average extra Li destruction required is about 1.5 dex. The evolutionary states of these giants and their average masses are discussed briefly, and the Li distribution of the giants is compared to predictions of Galactic chemical evolution. 110 refs

  12. On the 3He anomaly in hot subdwarf B stars

    Science.gov (United States)

    Schneider, David; Irrgang, Andreas; Heber, Ulrich; Nieva, Maria F.; Przybilla, Norbert

    2017-12-01

    Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB) stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE) approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ˜ 26000 K and ˜ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.

  13. On the 3He anomaly in hot subdwarf B stars

    Directory of Open Access Journals (Sweden)

    Schneider David

    2017-12-01

    Full Text Available Decades ago, 3He isotope enrichment in helium-weak B-type main-sequence, in blue horizontal branch and in hot subdwarf B (sdB stars, i.e., helium-core burning stars of the extreme horizontal branch, were discovered. Diffusion processes in the atmosphere of these stars lead to the observed abundance anomalies. Quantitative spectral analyses of high-resolution spectra to derive photospheric isotopic helium abundance ratios for known 3He sdBs have not been performed yet. We present preliminary results of high-resolution and high S/N spectra to determine the 3He and 4He abundances of nine known 3He sdBs. We used a hybrid local/non-local thermodynamic equilibrium (LTE/NLTE approach for B-type stars investigating multiple He i lines, including λ4922 Å and λ6678 Å, which show the strongest isotopic shifts in the optical spectral range.We also report the discovery of four new 3He sdBs from the ESO Supernova Progenitor survey. Most of the 3He sdBs cluster in a narrow temperature strip between ∼ 26000 K and ∼ 30000 K and have almost no atmospheric 4He at all. Interestingly, three 3He sdBs show evidence for vertical helium stratification.

  14. IN-SYNC I: Homogeneous stellar parameters from high-resolution apogee spectra for thousands of pre-main sequence stars

    International Nuclear Information System (INIS)

    Cottaar, Michiel; Meyer, Michael R.; Covey, Kevin R.; Nidever, David L.; Stassun, Keivan G.; Foster, Jonathan B.; Tan, Jonathan C.; Da Rio, Nicola; Chojnowski, S. Drew; Skrutskie, Michael; Majewski, Steven R.; Wilson, John C.; Zasowski, Gail; Flaherty, Kevin M.; Frinchaboy, Peter M.

    2014-01-01

    Over two years, 8859 high-resolution H-band spectra of 3493 young (1-10 Myr) stars were gathered by the multi-object spectrograph of the APOGEE project as part of the IN-SYNC ancillary program of the SDSS-III survey. Here we present the forward modeling approach used to derive effective temperatures, surface gravities, radial velocities, rotational velocities, and H-band veiling from these near-infrared spectra. We discuss in detail the statistical and systematic uncertainties in these stellar parameters. In addition, we present accurate extinctions by measuring the E(J – H) of these young stars with respect to the single-star photometric locus in the Pleiades. Finally, we identify an intrinsic stellar radius spread of about 25% for late-type stars in IC 348 using three (nearly) independent measures of stellar radius, namely, the extinction-corrected J-band magnitude, the surface gravity, and the Rsin i from the rotational velocities and literature rotation periods. We exclude that this spread is caused by uncertainties in the stellar parameters by showing that the three estimators of stellar radius are correlated, so that brighter stars tend to have lower surface gravities and larger Rsin i than fainter stars at the same effective temperature. Tables providing the spectral and photometric parameters for the Pleiades and IC 348 have been provided online.

  15. A fitting LEGACY – modelling Kepler's best stars

    Directory of Open Access Journals (Sweden)

    Aarslev Magnus J.

    2017-01-01

    Full Text Available The LEGACY sample represents the best solar-like stars observed in the Kepler mission[5, 8]. The 66 stars in the sample are all on the main sequence or only slightly more evolved. They each have more than one year's observation data in short cadence, allowing for precise extraction of individual frequencies. Here we present model fits using a modified ASTFIT procedure employing two different near-surface-effect corrections, one by Christensen-Dalsgaard[4] and a newer correction proposed by Ball & Gizon[1]. We then compare the results obtained using the different corrections. We find that using the latter correction yields lower masses and significantly lower χ2 values for a large part of the sample.

  16. Infrared spectroscopy of four carbon stars with 9.8 micron emission from silicate grains

    International Nuclear Information System (INIS)

    Lambert, D.L.; Smith, V.V.; Hinkle, K.H.

    1990-01-01

    High-resolution K band and low resolution 4 micron spectra were obtained for four carbon stars showing IR emission by silicate grains. The results of the analysis of the K band spectra show that they are J-type stars. These results, together with published spectral classifications, show that all known carbon stars with a silicate emission feature are J-type stars. The 4 micron spectra are very similar to the spectra of classical J-type carbon stars, and do not show SiO bands that might come from a M giant companion. A binary model with a luminous M giant companion as a source of the silicate grain is rejected. It is proposed that the silicate grains formed from gas ejecta at or before the He-core flash, and that the flash initiates severe mixing, leading to the star's conversion to a J-type carbon star. The ejecta are stored in an accretion disk around a low mass unevolved companion. If it can be shown that the hypothesized accretion disk is stable and may be heated adequately, this binary model appears to account for these peculiar carbon stars. 41 refs

  17. NuSTAR J033202-2746.8: Direct constraints on the Compton reflection in a heavily obscured quasar at z ≈ 2

    Energy Technology Data Exchange (ETDEWEB)

    Del Moro, A.; Mullaney, J. R.; Alexander, D. M.; Aird, J. A.; Gandhi, P. [Department of Physics, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Comastri, A.; Vignali, C.; Gilli, R. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Treister, E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Civano, F. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Ranalli, P. [National Observatory of Athens, Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, Metaxa and Pavlou St., 15236 Penteli (Greece); Ballantyne, D. R. [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Baloković, M. [Cahill Center for Astrophysics, 1216 East California Boulevard, California Institute of Technology, Pasadena, CA 91125 (United States); Boggs, S. E. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Craig, W. W. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hailey, C. J., E-mail: agnese.del-moro@durham.ac.uk [Columbia Astrophysics Laboratory, 550 W 120th Street, Columbia University, NY 10027 (United States); and others

    2014-05-01

    We report Nuclear Spectroscopic Telescope Array (NuSTAR) observations of NuSTAR J033202-2746.8, a heavily obscured, radio-loud quasar detected in the Extended Chandra Deep Field-South, the deepest layer of the NuSTAR extragalactic survey (∼400 ks, at its deepest). NuSTAR J033202-2746.8 is reliably detected by NuSTAR only at E > 8 keV and has a very flat spectral slope in the NuSTAR energy band (Γ=0.55{sub −0.64}{sup +0.62}; 3-30 keV). Combining the NuSTAR data with extremely deep observations by Chandra and XMM-Newton (4 Ms and 3 Ms, respectively), we constrain the broad-band X-ray spectrum of NuSTAR J033202-2746.8, indicating that this source is a heavily obscured quasar (N{sub H}=5.6{sub −0.8}{sup +0.9}×10{sup 23} cm{sup –2}) with luminosity L {sub 10-40} {sub keV} ≈ 6.4 × 10{sup 44} erg s{sup –1}. Although existing optical and near-infrared (near-IR) data, as well as follow-up spectroscopy with the Keck and VLT telescopes, failed to provide a secure redshift identification for NuSTAR J033202-2746.8, we reliably constrain the redshift z = 2.00 ± 0.04 from the X-ray spectral features (primarily from the iron K edge). The NuSTAR spectrum shows a significant reflection component (R=0.55{sub −0.37}{sup +0.44}), which was not constrained by previous analyses of Chandra and XMM-Newton data alone. The measured reflection fraction is higher than the R ∼ 0 typically observed in bright radio-loud quasars such as NuSTAR J033202-2746.8, which has L {sub 1.4} {sub GHz} ≈ 10{sup 27} W Hz{sup –1}. Constraining the spectral shape of active galactic nuclei (AGNs), including bright quasars, is very important for understanding the AGN population, and can have a strong impact on the modeling of the X-ray background. Our results show the importance of NuSTAR in investigating the broad-band spectral properties of quasars out to high redshift.

  18. PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Andrew W.; Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Bryson, Stephen T.; Rowe, Jason F.; Borucki, William J.; Koch, David G.; Lissauer, Jack J. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Jenkins, Jon M.; Van Cleve, Jeffrey; Caldwell, Douglas A. [SETI Institute/NASA Ames Research Center, Moffett Field, CA 94035 (United States); Batalha, Natalie M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Dunham, Edward W. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Gautier, Thomas N. [Jet Propulsion Laboratory/Caltech, Pasadena, CA 91109 (United States); Cochran, William D. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Latham, David W.; Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, Timothy M. [Las Cumbres Observatory Global Telescope, Goleta, CA 93117 (United States); Gilliland, Ronald L. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Buchhave, Lars A. [Niels Bohr Institute, Copenhagen University (Denmark); Christensen-Dalsgaard, Jorgen, E-mail: howard@astro.berkeley.edu [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); and others

    2012-08-01

    We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally 'planet candidates') from the Kepler mission that include a nearly complete set of detected planets as small as 2 R{sub Circled-Plus }. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R{sub p}, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R{sub *}/a. We consider first Kepler target stars within the 'solar subset' having T{sub eff} = 4100-6100 K, log g 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R{sub Circled-Plus }. We count planets in small domains of R{sub p} and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R{sub Circled-Plus }) and out to the longest orbital period (50 days, {approx}0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = k{sub R}R{sup {alpha}} with k{sub R} = 2.9{sup +0.5}{sub -0.4}, {alpha} = -1.92 {+-} 0.11, and R {identical_to} R{sub p}/R{sub Circled-Plus }. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R{sub p} > 2 R{sub Circled-Plus} we measure an

  19. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets Around Main Sequence M Stars

    Science.gov (United States)

    Nava-Sedeno, J. Manik; Ortiz-Cervantes, Adrian; Segura, Antigona; Domagal-Goldman, Shawn D.

    2016-01-01

    Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the stars chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal- Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawaet al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin.

  20. Domino effect in chemical accidents: main features and accident sequences.

    Science.gov (United States)

    Darbra, R M; Palacios, Adriana; Casal, Joaquim

    2010-11-15

    The main features of domino accidents in process/storage plants and in the transportation of hazardous materials were studied through an analysis of 225 accidents involving this effect. Data on these accidents, which occurred after 1961, were taken from several sources. Aspects analyzed included the accident scenario, the type of accident, the materials involved, the causes and consequences and the most common accident sequences. The analysis showed that the most frequent causes are external events (31%) and mechanical failure (29%). Storage areas (35%) and process plants (28%) are by far the most common settings for domino accidents. Eighty-nine per cent of the accidents involved flammable materials, the most frequent of which was LPG. The domino effect sequences were analyzed using relative probability event trees. The most frequent sequences were explosion→fire (27.6%), fire→explosion (27.5%) and fire→fire (17.8%). Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Theoretical pulsation of metallic-line stars

    International Nuclear Information System (INIS)

    Cox, A.N.; King, D.S.; Hodson, S.W.

    1979-01-01

    The linear-theory radial-pulsation stability of low-helium delta Scuti variable models (1.0--2.5 Msun) has been investigated to see if metallicism and pulsation can occur simultaneously. Metallicism, which occurs in slowly rotating stars after the gravitational settling of He and the loss of the He II convection zone and its deep mixing for Y< or approx. =0.1, can then be established rapidly compared with the evolution time scale. Pulsation can still occur with driving due to the residual helium and the enhanced hydrogen. With the reduced helium giving no connection zone, the pulsation instability strip, whose blue and edges are estimated in this paoer, is about half as wide as with a normal helium abundance. Zero helium in the surface driving regions, however, produces blue edges so red that probably no instability strip exists at all. The red edge, predicted theoretically on the basis of the importance of convection in the outer zone, agrees well with the observational one. Cool, low-helium and metallic-line stars are then predicted to pulsate in a 200--500 K wide strip that is widest between the main-sequence luminosity of 5 Lsun and 15 Lsun. This strip reasonably includes the observed pulsating delta Del and mild Am stars, but there may be conflicts. Since blue edges for varying ionization-zone helium content occur across the entire instability strip, bluer first and higher overtone pulsations are also predicted everywhere from less than 7000 K to over 8000 K, the redder ones probably showing metallicism

  2. K2-111 b - a short period super-Earth transiting a metal poor, evolved old star

    Science.gov (United States)

    Fridlund, Malcolm; Gaidos, Eric; Barragán, Oscar; Persson, Carina M.; Gandolfi, Davide; Cabrera, Juan; Hirano, Teruyuki; Kuzuhara, Masayuki; Csizmadia, Sz.; Nowak, Grzegorz; Endl, Michael; Grziwa, Sascha; Korth, Judith; Pfaff, Jeremias; Bitsch, Bertram; Johansen, Anders; Mustill, Alexander J.; Davies, Melvyn B.; Deeg, Hans J.; Palle, Enric; Cochran, William D.; Eigmüller, Philipp; Erikson, Anders; Guenther, Eike; Hatzes, Artie P.; Kiilerich, Amanda; Kudo, Tomoyuki; MacQueen, Phillip; Narita, Norio; Nespral, David; Pätzold, Martin; Prieto-Arranz, Jorge; Rauer, Heike; Van Eylen, Vincent

    2017-07-01

    Context. From a light curve acquired through the K2 space mission, the star K2-111(EPIC 210894022) has been identified as possibly orbited by a transiting planet. Aims: Our aim is to confirm the planetary nature of the object and derive its fundamental parameters. Methods: We analyse the light curve variations during the planetary transit using packages developed specifically for exoplanetary transits. Reconnaissance spectroscopy and radial velocity observations have been obtained using three separate telescope and spectrograph combinations. The spectroscopic synthesis package SME has been used to derive the stellar photospheric parameters that were used as input to various stellar evolutionary tracks in order to derive the parameters of the system. The planetary transit was also validated to occur on the assumed host star through adaptive imaging and statistical analysis. Results: The star is found to be located in the background of the Hyades cluster at a distance at least 4 times further away from Earth than the cluster itself. The spectrum and the space velocities of K2-111 strongly suggest it to be a member of the thick disk population. The co-added high-resolution spectra show that that it is a metal poor ([Fe/H] = - 0.53 ± 0.05 dex) and α-rich somewhat evolved solar-like star of spectral type G3. We find Teff = 5730 ± 50 K, log g⋆ = 4.15 ± 0.1 cgs, and derive a radius of R⋆ = 1.3 ± 0.1 R⊙ and a mass of M⋆ = 0.88 ± 0.02 M⊙. The currently available radial velocity data confirms a super-Earth class planet with a mass of 8.6 ± 3.9 M⊕ and a radius of 1.9 ± 0.2 R⊕. A second more massive object with a period longer than about 120 days is indicated by a long-term radial velocity drift. Conclusions: The radial velocity detection together with the imaging confirms with a high level of significance that the transit signature is caused by a planet orbiting the star K2-111. This planet is also confirmed in the radial velocity data. A second more

  3. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  4. Comparisons between observational color-magnitude diagrams and synthetic cluster diagrams for young star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Recker, S.A.; Brunish, W.M.; Mathews, G.J.

    1984-01-01

    Young star clusters ( 8 yr) in the Magellanic Clouds (MC) can be used to test the current status of the theory of stellar evolution as applied to intermediate and massive stars. The color-magnitude diagram of many young clusters in the MC shows large numbers of stars in both the main sequence and post main sequence evolutionary phases. Using a grid of stellar evolution models, synthetic cluster H-R diagrams are constructed and compared to observed color-magnitude diagrams to determine the age, age spread, and composition for any given cluster. In addition, for those cases where the data is of high quality, detailed comparisons between theory and observation can provide a diagnostic of the accuracy of the stellar evolution models. Initial indications of these comparisons suggest that the theoretical models should be altered to include: a larger value for the mixing length parameter, a larger rate of mass loss during the asymptotic giant branch phase, and possibly convective overshoot during the core burning phases. (Auth.)

  5. T Tauri stars - Wild as dust

    International Nuclear Information System (INIS)

    Bertout, C.

    1989-01-01

    T Tauri stars (TTSs), their surroundings, and their common evolution toward the main sequence are discussed. The photospheric properties of TTSs and their solar-type outer atmospheres, recent evidence for circumstellar disks around classical TTSs (CTTSs), and CTTS mass outflows are examined. TTSs are depicted as complex systems whose properties depend mostly on the initial conditions of star formation and on their rotation rates, which appear to control the magnetodynamic activity in the stars. The most exotic traits of CTTSs are primarily due to the disk and its interaction with the star, and the properties of weak-line TTSs (WTTSs) are mainly manifestations of the enhanced solar-type magnetic activity expected from their rotation rates. CTTSs are expected to become WTTSs when their disks dissipate. 217 refs

  6. THE MASS LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD: EMPIRICAL RELATIONS FOR EXCESS EMISSION AT 8 AND 24 μm

    International Nuclear Information System (INIS)

    Srinivasan, Sundar; Meixner, Margaret; Leitherer, Claus; Vijh, Uma; Gordon, Karl D.; Sewilo, Marta; Volk, Kevin; Blum, Robert D.; Harris, Jason; Babler, Brian L.; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles W.; For, Bi-Qing; Misselt, Karl A.; Cohen, Martin; Hora, Joseph L.; Indebetouw, Remy; Markwick-Kemper, Francisca

    2009-01-01

    We present empirical relations describing excess emission from evolved stars in the Large Magellanic Cloud (LMC) using data from the Spitzer Space Telescope Surveying the Agents of a Galaxy's Evolution (SAGE) survey which includes the Infrared Array Camera (IRAC) 3.6, 4.5, 5.8, and 8.0 μm and Multiband Imaging Photometer (MIPS) 24, 70, and 160 μm bands. We combine the SAGE data with the Two Micron All Sky Survey (2MASS; J, H, and K s ) and the optical Magellanic Cloud Photometric Survey (MCPS; U, B, V, and I) point source catalogs in order to create complete spectral energy distributions (SEDs) of the asymptotic giant branch (AGB) star candidates in the LMC. AGB star outflows are among the main producers of dust in a galaxy, and this mass loss results in an excess in the fluxes observed in the 8 and 24 μm bands. The aim of this work is to investigate the mass loss return by AGB stars to the interstellar medium of the LMC by studying the dependence of the infrared excess flux on the total luminosity. We identify oxygen-rich, carbon-rich, and extreme AGB star populations in our sample based on their 2MASS and IRAC colors. The SEDs of oxygen- and carbon-rich AGB stars are compared with appropriate stellar photosphere models to obtain the excess flux in all the IRAC bands and the MIPS 24 μm band. Extreme AGB stars are dominated by circumstellar emission at 8 and 24 μm; thus we approximate their excesses with the flux observed in these bands. We find about 16,000 O-rich, 6300 C-rich, and 1000 extreme sources with reliable 8 μm excesses, and about 4500 O-rich, 5300 C-rich, and 960 extreme sources with reliable 24 μm excesses. The excesses are in the range 0.1 mJy to 5 Jy. The 8 and 24 μm excesses for all three types of AGB candidates show a general increasing trend with luminosity. The color temperature of the circumstellar dust derived from the ratio of the 8 and 24 μm excesses decreases with an increase in excess, while the 24 μm optical depth increases with

  7. A consistency test of white dwarf and main sequence ages: NGC 6791

    Directory of Open Access Journals (Sweden)

    Córsico A.H.

    2013-03-01

    Full Text Available NGC 6791 is an open cluster that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (∼8 Gyr and the age derived from the cut-off of the white dwarf luminosity function (∼6 Gyr were found to be significantly different. Here we demonstrate that the origin of this age discrepancy lies in an incorrect evaluation of the white dwarf cooling ages, and we show that when the relevant physical separation processes are included in the calculation of white dwarf sequences both ages are coincident.

  8. THE DISCOVERY OF SOLAR-LIKE ACTIVITY CYCLES BEYOND THE END OF THE MAIN SEQUENCE?

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew, E-mail: mroute@purdue.edu [Research Computing, Information Technology at Purdue, Purdue University, 155 S. Grant Street, West Lafayette, IN 47907 (United States)

    2016-10-20

    The long-term magnetic behavior of objects near the cooler end of the stellar main sequence is poorly understood. Most theoretical work on the generation of magnetism in these ultracool dwarfs (spectral type ≥M7 stars and brown dwarfs) suggests that their magnetic fields should not change in strength and direction. Using polarized radio emission measurements of their magnetic field orientations, I demonstrate that these cool, low-mass, fully convective objects appear to undergo magnetic polarity reversals analogous to those that occur on the Sun. This powerful new technique potentially indicates that the patterns of magnetic activity displayed by the Sun continue to exist, despite the fully convective interiors of these objects, in contravention of several leading theories of the generation of magnetic fields by internal dynamos.

  9. ELEVEN NEW HEAVILY REDDENED FIELD WOLF–RAYET STARS

    International Nuclear Information System (INIS)

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-01-01

    We report the results of a medium-narrowband 2 μm line survey covering 5.8 deg 2 near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A V ∼ 40 and as distant as 9 kpc down to modest magnitude limits of K s ∼ 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A K s = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude K s ∼ 12.5 was found to be 1.9 deg –2 . We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  10. Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Science.gov (United States)

    Hernán-Obispo, M.; Gálvez-Ortiz, M. C.; Anglada-Escudé, G.; Kane, S. R.; Barnes, J. R.; de Castro, E.; Cornide, M.

    2010-03-01

    Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims: We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods: We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results: Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). Based on observations made with the Italian Telescopio Nazionale Galileo

  11. Classification of O Stars in the Yellow-Green: The Exciting Star VES 735

    Science.gov (United States)

    Kerton, C. R.; Ballantyne, D. R.; Martin, P. G.

    1999-05-01

    Acquiring data for spectral classification of heavily reddened stars using traditional criteria in the blue-violet region of the spectrum can be prohibitively time consuming using small to medium sized telescopes. One such star is the Vatican Observatory emission-line star VES 735, which we have found excites the H II region KR 140. In order to classify VES 735, we have constructed an atlas of stellar spectra of O stars in the yellow-green (4800-5420 Å). We calibrate spectral type versus the line ratio He I lambda4922:He II lambda5411, showing that this ratio should be useful for the classification of heavily reddened O stars associated with H II regions. Application to VES 735 shows that the spectral type is O8.5. The absolute magnitude suggests luminosity class V. Comparison of the rate of emission of ionizing photons and the bolometric luminosity of VES 735, inferred from radio and infrared measurements of the KR 140 region, to recent stellar models gives consistent evidence for a main-sequence star of mass 25 M_solar and age less than a few million years with a covering factor 0.4-0.5 by the nebular material. Spectra taken in the red (6500-6700 Å) show that the stellar Hα emission is double-peaked about the systemic velocity and slightly variable. Hβ is in absorption, so that the emission-line classification is ``(e)''. However, unlike the case of the more well-known O(e) star zeta Oph, the emission from VES 735 appears to be long-lived rather than episodic.

  12. QUANTIFYING NON-STAR-FORMATION-ASSOCIATED 8 μm DUST EMISSION IN NGC 628

    International Nuclear Information System (INIS)

    Crocker, Alison F.; Calzetti, Daniela; Thilker, David A.; Aniano, Gonzalo; Draine, Bruce T.; Hunt, Leslie K.; Kennicutt, Robert C.; Sandstrom, Karin; Smith, J. D. T.

    2013-01-01

    Combining Hα and IRAC images of the nearby spiral galaxy NGC 628, we find that between 30% and 43% of its 8 μm dust emission is not related to recent star formation. Contributions from dust heated by young stars are separated by identifying H II regions in the Hα map and using these areas as a mask to determine the 8 μm dust emission that must be due to heating by older stars. Corrections are made for sub-detection-threshold H II regions, photons escaping from H II regions, and for young stars not directly associated with H II regions (i.e., 10-100 Myr old stars). A simple model confirms that this amount of 8 μm emission can be expected given dust and PAH absorption cross sections, a realistic star formation history, and the observed optical extinction values. A Fourier power spectrum analysis indicates that the 8 μm dust emission is more diffuse than the Hα emission (and similar to observed H I), supporting our analysis that much of the 8 μm-emitting dust is heated by older stars. The 8 μm dust-to-Hα emission ratio declines with galactocentric radius both within and outside of H II regions, probably due to a radial increase in disk transparency. In the course of this work, we have also found that intrinsic diffuse Hα fractions may be lower than previously thought in galaxies, if the differential extinction between H II regions and diffuse regions is taken into account.

  13. Spectral fingerprints of Earth-like planets around FGK stars.

    Science.gov (United States)

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  14. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  15. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  16. The episodic star formation history of the Carina dwarf spheroidal galaxy

    Science.gov (United States)

    de Boer, T. J. L.; Tolstoy, E.; Lemasle, B.; Saha, A.; Olszewski, E. W.; Mateo, M.; Irwin, M. J.; Battaglia, G.

    2014-12-01

    We present deep photometry of the Carina dwarf spheroidal galaxy in the B and V filters from CTIO/MOSAIC out to and beyond the tidal radius of rell ≈ 0.48 degrees. The accurately calibrated photometry is combined with spectroscopic metallicity distributions of red giant branch (RGB) stars to determine the detailed star formation and chemical evolution history of Carina. The star formation history (SFH) confirms the episodic formation history of Carina and quantifies the duration and strength of each episode in great detail as a function of radius from the centre. Two main episodes of star formation occurred at old (>8 Gyr) and intermediate (2-8 Gyr) ages, both enriching stars starting from low metallicities ([Fe/H] < - 2 dex). By dividing the SFH into two components, we determine that 60 ± 9 percent of the total number of stars formed within the intermediate-age episode. Furthermore, within the tidal radius (0.48 degrees or 888 pc) a total mass in stars of 1.07 ± 0.08 × 106 M⊙ was formed, giving Carina a stellar mass-to-light ratio of 1.8 ± 0.8. By combining the detailed SFH with spectroscopic observations of RGB stars, we determined the detailed age-metallicity relation of each episode and the timescale of α-element evolution of Carina from individual stars. The oldest episode displays a tight age-metallicity relation during ≈6 Gyr with steadily declining α-element abundances and a possible α-element "knee" visible at [Fe/H] ≈ - 2.5 dex. The intermediate-age sequence displays a more complex age-metallicity relation starting from low metallicity and a sequence in α-element abundances with a slope much steeper than observed in the old episode, starting from [Fe/H] = -1.8 dex and [Mg/Fe] ≈ 0.4 dex and declining to Mg-poor values ([Mg/Fe] ≤ - 0.5 dex). This clearly indicates that the two episodes of star formation formed from gas with different abundance patterns, which is inconsistent with simple evolution in an isolated system. Tables 1-3 are

  17. DARK STARS: A NEW LOOK AT THE FIRST STARS IN THE UNIVERSE

    International Nuclear Information System (INIS)

    Spolyar, Douglas; Bodenheimer, Peter; Freese, Katherine; Gondolo, Paolo

    2009-01-01

    We have proposed that the first phase of stellar evolution in the history of the universe may be dark (matter powered) stars (DSs), luminous objects powered by dark matter (DM) heating rather than by nuclear fusion, and in this paper we examine the history of these DSs. The power source is annihilation of weakly interacting massive particles (WIMPs) which are their own antiparticles. These WIMPs are the best motivated DM candidates and may be discovered by ongoing direct or indirect detection searches (e.g., Fermi/GLAST) or at the Large Hadron Collider at CERN. A new stellar phase results, powered by DM annihilation as long as there is a DM fuel, from millions to billions of years. We build up the DSs from the time DM heating becomes the dominant power source, accreting more and more matter onto them. We have included many new effects in the current study, including a variety of particle masses and accretion rates, nuclear burning, feedback mechanisms, and possible repopulation of DM density due to capture. Remarkably, we find that in all these cases, we obtain the same result: the first stars are very large, 500-1000 times as massive as the Sun; as well as puffy (radii 1-10 AU), bright (10 6 -10 7 L sun ), and cool (T surf sun and the temperatures are much hotter (T surf > 50,000 K). Hence DSs should be observationally distinct from standard Pop III stars. In addition, DSs avoid the (unobserved) element enrichment produced by the standard first stars. Once the DM fuel is exhausted, the DS becomes a heavy main-sequence star; these stars eventually collapse to form massive black holes that may provide seeds for the supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate-mass black holes.

  18. A-type central stars of planetary nebulae. 2. The central stars of NGC 2346, He 2-36 and NGC 3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1978-12-01

    Spectrograms, scanner, uvby and ANS ultraviolet measurements of the central stars of NGC 2346, He 2-36 and NGC 3132 are analysed. The observations suggest that the first one is a foreground horizontal-branch star, and the second is above the horizontal branch, presumably in a rapid evolutionary phase. Both objects are probably variable. The central star of NGC 3132 is a slightly evolved main-sequence star with a hot visual companion. The evolutionary status of this system is briefly discussed.

  19. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.

    Science.gov (United States)

    Osipiuk, J; Joachimiak, A

    1997-09-12

    We propose that the dnaK operon of Thermus thermophilus HB8 is composed of three functionally linked genes: dnaK, grpE, and dnaJ. The dnaK and dnaJ gene products are most closely related to their cyanobacterial homologs. The DnaK protein sequence places T. thermophilus in the plastid Hsp70 subfamily. In contrast, the grpE translated sequence is most similar to GrpE from Clostridium acetobutylicum, a Gram-positive anaerobic bacterium. A single promoter region, with homology to the Escherichia coli consensus promoter sequences recognized by the sigma70 and sigma32 transcription factors, precedes the postulated operon. This promoter is heat-shock inducible. The dnaK mRNA level increased more than 30 times upon 10 min of heat shock (from 70 degrees C to 85 degrees C). A strong transcription terminating sequence was found between the dnaK and grpE genes. The individual genes were cloned into pET expression vectors and the thermophilic proteins were overproduced at high levels in E. coli and purified to homogeneity. The recombinant T. thermophilus DnaK protein was shown to have a weak ATP-hydrolytic activity, with an optimum at 90 degrees C. The ATPase was stimulated by the presence of GrpE and DnaJ. Another open reading frame, coding for ClpB heat-shock protein, was found downstream of the dnaK operon.

  20. Effects of back warming in cocoon stars

    International Nuclear Information System (INIS)

    Donnison, J.R.; Williams, I.P.

    1976-01-01

    It is stated that dust shells frequently surround young stars, and attempts have been made to determine some of the properties of these shells. It is probable that the dust absorbs the outgoing radiation from the star and re-emits it in the infrared. If the dust shell does absorb radiation both its inner and outer surfaces will re-emit a certain proportion and some radiation will return to the central star, causing what amounts to 'warming of its own back'. It is interesting to consider how such a star evolves, compared with evolution of a normal pre-main-sequence star. A model for a contracting star that is receiving radiation from an external source has been developed by the authors in connection with the evolution of Jupiter within the radiation field of the Sun (Astrophys. Space Sci., 29:387 (1974)), and this model is here applied to the situation just described. It is emphasised that the discussion is concerned only with the evolution of the central star, the dust being regarded merely as a means of redirecting radiation back on to the surface of this star. Amongst conclusions reached is that a thin shell will cause no significant change in the structure and evolution of the central star, whilst the presence of a thick shell has a substantial effect on the star, slowing down is evolution. Whilst a dust shell is present the star cannot be seen, but only the dust shell emitting in the infrared, but once the dust shell clears the star is seen in a position and with an age that differs considerably from what it would have had if it had evolved without 'back warming' from the dust shell. (U.K.)

  1. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    International Nuclear Information System (INIS)

    Torres, Guillermo; Latham, David W.; Ruíz-Rodríguez, Dary; Prato, L.; Wasserman, Lawrence H.; Badenas, Mariona; Schaefer, G. H.; Mathieu, Robert D.

    2013-01-01

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (∼0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of α ML = 1.0 strongly favor the Dartmouth models

  2. The K2 Ecliptic Plane Input Catalog (EPIC) and Stellar Classifications of 138,600 Targets in Campaigns 1-8

    Science.gov (United States)

    Huber, Daniel; Bryson, Stephen T.; Haas, Michael R.; Barclay, Thomas; Barentsen, Geert; Howell, Steve B.; Sharma, Sanjib; Stello, Dennis; Thompson, Susan E.

    2016-05-01

    The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ≈80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to ≈0.1 mag for the Kepler field, and the EPIC is typically complete to Kp ≈ 17 (Kp ≈ 19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138,600 targets in Campaigns 1-8 (≈88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of ≈3% in {T}{{eff}}, ≈0.3 dex in {log} g, ≈40% in radius, ≈10% in mass, and ≈40% in distance. Our results show that stars targeted by K2 are dominated by K-M dwarfs (≈41% of all selected targets), F-G dwarfs (≈36%), and K giants (≈21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars. The EPIC is hosted at the Mikulski Archive for Space Telescopes (MAST): http://archive.stsci.edu/k2/epic/search.php.

  3. A radio survey of weak T Tauri stars in Taurus-Auriga

    International Nuclear Information System (INIS)

    O'neal, D.; Feigelson, E.D.; Mathieu, R.D.; Myers, P.C.

    1990-01-01

    A multi-epoch 5 GHz survey of candidate or confirmed weak T Tauri stars in the Taurus-Auriga molecular cloud complex was conducted with the Very Large Array. The stars were chosen from those having detectable X-ray or chromospheric emission, and weak-emission-line pre-main-sequence stars found by other means. Snapshots of 99 VLA fields containing 119 candidate stars were obtained with a sensitivity of 0.7 mJy; most fields were observed on two or three dates. Nine radio sources coincident with cataloged stars were found. One may be an RS CVn binary system; the other eight are pre-main-sequence stars. Three of the detected stars - HD 283447, V410 Tau, and FK X-ray 1 - were previously known radio sources. Five new detections are Herbig's Anon 1, Hubble 4, HDE 283572, Elias 12, and HK Tau/c. At least five of the sources are variable, and no linear or circular polarization was found. Several lines of evidence suggest that the radio-detected weak T Tauri stars are quite young, perhaps younger on average than nondetected stars. 54 refs

  4. First results from the LIFE project: discovery of two magnetic hot evolved stars

    Science.gov (United States)

    Martin, A. J.; Neiner, C.; Oksala, M. E.; Wade, G. A.; Keszthelyi, Z.; Fossati, L.; Marcolino, W.; Mathis, S.; Georgy, C.

    2018-04-01

    We present the initial results of the Large Impact of magnetic Fields on the Evolution of hot stars (LIFE) project. The focus of this project is the search for magnetic fields in evolved OBA giants and supergiants with visual magnitudes between 4 and 8, with the aim to investigate how the magnetic fields observed in upper main-sequence (MS) stars evolve from the MS until the late post-MS stages. In this paper, we present spectropolarimetric observations of 15 stars observed using the ESPaDOnS instrument of the Canada-France-Hawaii Telescope. For each star, we have determined the fundamental parameters and have used stellar evolution models to calculate their mass, age, and radius. Using the least-squared deconvolution technique, we have produced averaged line profiles for each star. From these profiles, we have measured the longitudinal magnetic field strength and have calculated the detection probability. We report the detection of magnetic fields in two stars of our sample: a weak field of Bl = 1.0 ± 0.2 G is detected in the post-MS A5 star 19 Aur and a stronger field of Bl = -230 ± 10 G is detected in the MS/post-MS B8/9 star HR 3042.

  5. Systematic study of K+ and K- charge exchange at 8.36 and 12.8 GeV/c

    International Nuclear Information System (INIS)

    Gilchriese, M.G.D.

    1977-08-01

    The results of a wire chamber spectrometer experiment at the Stanford Linear Accelerator Center to study kaon charge exchange reactions are reported. The salient experimental features include good relative normalization between the K + and K - charge exchange reactions and a large increase, with respect to previous experiments, in the number of events obtained for K + n charge exchange at the higher energy. Approximately 1500 events at 12.8 GeV/c and 250 events at 8.36 GeV/c were obtained for each of the reactions K + n → K 0 p, K - p → anti K 0 n, K + p → K 0 Δ 2+ and K - n → anti K 0 Δ - . The results of the experiment show that the K + charge exchange cross sections are larger than the K - cross sections at both energies. In particular it is found that sigma/sub tot/ (K + n → K 0 p)/sigma/sub tot/ (K - p → anti K 0 n) is 1.37 +- 0.22 at 8.36 GeV/c and 1.38 +- 0.09 at 12.8 GeV/c. The ratio of these two reactions is also consistent with no momentum transfer dependence at either beam energy. Similarly it was determined that sigma/sub tot/ (K + p → K 0 Δ 2+ )/sigma/sub tot/ (K - n → anti K 0 Δ - ) is 1.05 +- 0.16 at 8.36 GeV/c and 1.56 +- 0.08 at 12.8 GeV/c. The ratio of these two reactions is also consistent with momentum transfer independence for both beam energies. These results are in clear conflict with the predictions of exchange degenerate Regge pole models

  6. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  7. Fotometría infrarroja del Reloj de Arena en M8

    Science.gov (United States)

    Arias, J.; Barbá, R.; Morrell, N.; Rubio, M.

    We present sub-arcsecond resolution JHKs imaging of the Hourglass Nebula in Messier 8, obtained with the 2.5-m du Pont telescope at Las Campanas Observatory (LCO), Chile. Near-infrared colors have been measured for numerous infrared sources around the O-type star Herschel 36 (O7 V), the brightest source in the field and main responsible for the nebula ionization. Several of those IR sources are identified as Hα emission stars from narrow-band Hubble Space Telescope images, and some of them display a knotty shape, characteristic of proplyd-like objects. Based on the NIR color-color and color-magnitude diagrams, we also identified dozens of NIR excess sources which %we selected as are prime candidates to be intermediate and low-mass pre-main-sequence stars. Additionally, we present preliminary results of the spectroscopic confirmation of some T Tauri stars among these objects, based on spectra recently obtained with the 6.5-m Magellan telescope at LCO.

  8. Spectrophotometry of peculiar B and A stars. II. Eleven mercury-manganese stars

    International Nuclear Information System (INIS)

    Adelman, S.J.; Pyper, D.M.

    1979-01-01

    Spectrophotometry of eleven HgMn stars is presented for the optical region. As found in Paper I, the HgMn stars have systematically larger Δiota* and Δa values than the normal main sequence stars due to differences with respect to the mean continuum particularly of the lambda4464 values and the lambda5200 region, respectively. The HgMn stars exhibit a continuous range in the behavior of both the lambda4200 and lambda5200 regions between those stars that have index values larger than the appropriate criterion of presence and present definite evidence for the features to those stars with only a slight possibility of such features. The strengths of the lambda4200 and lambda5200 features appear not to be correlated. In the HgMn stars, both features may be due to differential line blocking. In the energy distribution of all eleven stars, the Balmer jump regions best fit the predictions of slightly hotter solar composition, log g=4.0, fully line blanketed model atmospheres than do the corresponding Paschen continua

  9. The onset of chromospheric activity among the A and F stars

    Science.gov (United States)

    Simon, Theodore; Landsman, Wayne

    1991-01-01

    Results are reported from a search for an upper boundary for the onset of main-sequence star activity based on a quest for high-temperature UV line emission in a large collection of IUE spectra. It is shown that strong chromospheric emission is common among early F dwarf and subgiant stars. At its brightest, the emission is equal to that of the most active solar-type stars and is exceeded only by that of the spotted RS CVn and BY Dra variables. It is suggested that the emission from the main-sequence stars reaches a peak near B-V = 0.28, in the vicinity of spectral type F0 V, before it declines to lower flux levels among the late A stars. Emission is seen in some dwarf stars as early as B-V = 0.25. It is demonstrated that the C II emission of stars earlier than the spectral type F5 is uncorrelated with rotation. Previous findings that the coronal X-ray:chromospheric UV flux ratio is lower for stars earlier than spectral type F5 than for those later than F5 are confirmed.

  10. The K giant stars from the LAMOST survey data. I. Identification, metallicity, and distance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chao; Deng, Li-Cai; Li, Jing; Gao, Shuang; Yang, Fan; Xu, Yan; Zhang, Yue-Yang; Xin, Yu; Wu, Yue [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road 20A, Beijing 100012 (China); Carlin, Jeffrey L.; Newberg, Heidi Jo [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Smith, Martin C. [Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Xue, Xiang-Xiang [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg D-69117 (Germany); Jin, Ge, E-mail: liuchao@nao.cas.cn [University of Science and Technology of China, Hefei 230026 (China)

    2014-08-01

    We present a support vector machine classifier to identify the K giant stars from the LAMOST survey directly using their spectral line features. The completeness of the identification is about 75% for tests based on LAMOST stellar parameters. The contamination in the identified K giant sample is lower than 2.5%. Applying the classification method to about two million LAMOST spectra observed during the pilot survey and the first year survey, we select 298,036 K giant candidates. The metallicities of the sample are also estimated with an uncertainty of 0.13 ∼ 0.29 dex based on the equivalent widths of Mg{sub b} and iron lines. A Bayesian method is then developed to estimate the posterior probability of the distance for the K giant stars, based on the estimated metallicity and 2MASS photometry. The synthetic isochrone-based distance estimates have been calibrated using 7 globular clusters with a wide range of metallicities. The uncertainty of the estimated distance modulus at K = 11 mag, which is the median brightness of the K giant sample, is about 0.6 mag, corresponding to ∼30% in distance. As a scientific verification case, the trailing arm of the Sagittarius stream is clearly identified with the selected K giant sample. Moreover, at about 80 kpc from the Sun, we use our K giant stars to confirm a detection of stream members near the apo-center of the trailing tail. These rediscoveries of the features of the Sagittarius stream illustrate the potential of the LAMOST survey for detecting substructures in the halo of the Milky Way.

  11. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    Energy Technology Data Exchange (ETDEWEB)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43201 (United States)

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  12. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    International Nuclear Information System (INIS)

    Somers, Garrett; Pinsonneault, Marc H.

    2014-01-01

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T eff is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  13. K2-139 b: a low-mass warm Jupiter on a 29-d orbit transiting an active K0 V star

    Science.gov (United States)

    Barragán, O.; Gandolfi, D.; Smith, A. M. S.; Deeg, H. J.; Fridlund, M. C. V.; Persson, C. M.; Donati, P.; Endl, M.; Csizmadia, Sz; Grziwa, S.; Nespral, D.; Hatzes, A. P.; Cochran, W. D.; Fossati, L.; Brems, S. S.; Cabrera, J.; Cusano, F.; Eigmüller, Ph; Eiroa, C.; Erikson, A.; Guenther, E.; Korth, J.; Lorenzo-Oliveira, D.; Mancini, L.; Pätzold, M.; Prieto-Arranz, J.; Rauer, H.; Rebollido, I.; Saario, J.; Zakhozhay, O. V.

    2018-04-01

    We announce the discovery of K2-139 b (EPIC 218916923 b), a transiting warm-Jupiter (Teq = 547 ± 25 K) on a 29-d orbit around an active (log R^' _HK = -4.46 ± 0.06) K0 V star in K2 Campaign 7. We derive the system's parameters by combining the K2 photometry with ground-based follow-up observations. With a mass of 0.387 _{ - 0.075 } ^ {+ 0.083 }MJ and radius of 0.808 _{ - 0.033 } ^ {+ 0.034 }RJ, K2-139 b is one of the transiting warm Jupiters with the lowest mass known to date. The planetary mean density of 0.91 _{ - 0.20} ^ { + 0.24 } g cm-3can be explained with a core of ˜50 M⊕. Given the brightness of the host star (V = 11.653 mag), the relatively short transit duration (˜5 h), and the expected amplitude of the Rossiter-McLaughlin effect (˜25m s-1), K2-139 is an ideal target to measure the spin-orbit angle of a planetary system hosting a warm Jupiter.

  14. A main sequence for quasars

    Science.gov (United States)

    Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.

    2018-03-01

    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  15. A Main Sequence for Quasars

    Directory of Open Access Journals (Sweden)

    Paola Marziani

    2018-03-01

    Full Text Available The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  16. The late-M dwarfs

    International Nuclear Information System (INIS)

    Bessell, M.S.

    1991-01-01

    Far-red spectra and VRIJHK photometry have been obtained for a sample of late-M dwarfs selected on the basis of large reduced red magnitudes from the LHS Catalog. Half of the stars in the three faintest 1 mag bins are late-M stars, the other red stars are metallic-hydride subdwarfs. Relations between various colors for the late-M dwarfs are investigated. Of all the colors I - K most reliably correlates with spectral type. FeH bands near 9900 A are clearly seen in the spectra of all dwarf stars later than M5. Two stars cooler than VB10, and similar in temperature to LHS2924 have been identified; both have H-alpha in emission and appear variable in magnitude and R - I color; one is a flare star. The other stars are of earlier spectral type and resemble W359 and VB8. The observed MI, I - K main sequence is in good agreement with the IG theoretical main sequence of Stringfellow, and the faintest stars could be about 0.09 solar mass red dwarfs or lower mass brown dwarfs. 65 refs

  17. UV observations of blue stragglers and population 2 K dwarfs. Final Technical report, 1 July 1984-30 June 1986

    International Nuclear Information System (INIS)

    Carney, B.W.; Bond, H.E.

    1986-01-01

    Blue stragglers are stars, found usually in either open or globular clusters, that appear to lie on the main sequence, but are brighter and bluer than the cluster turn-off. Currently, two rival models are invoked to explain this apparently pathological behavior: internal mixing (so that fresh fuel is brought into the stellar core); and mass transfer (by which a normal main sequence star acquires mass from an evolving nearby companion and so moves up the main sequence). The latter model predicts that in the absence of complete mass transfer (i.e., coalescence), blue stragglers should be binary systems with the fainter star in a post-main sequence evolutionary state. It is important to ascertain the cause of this phenomenon since stellar evolution models of main sequence stars play such a vital role in astronomy. If mass transfer is involved, one may easily exclude binaries from age determinations of clusters, but if mixing is the cause, our age determinations will be much less accurate unless we can determine whether all stars or only some mix, and what causes the mixing to occur at all

  18. DISCOVERY OF A LOW-MASS COMPANION TO A METAL-RICH F STAR WITH THE MARVELS PILOT PROJECT

    International Nuclear Information System (INIS)

    Fleming, Scott W.; Ge Jian; Mahadevan, Suvrath; Lee, Brian; Cuong Nguyen, Duy; Morehead, Robert C.; Wan Xiaoke; Zhao Bo; Liu Jian; Guo Pengcheng; Kane, Stephen R.; Eastman, Jason D.; Siverd, Robert J.; Scott Gaudi, B.; Niedzielski, Andrzej; Sivarani, Thirupathi; Stassun, Keivan G.; Gary, Bruce; Wolszczan, Alex; Barnes, Rory

    2010-01-01

    We report the discovery of a low-mass companion orbiting the metal-rich, main sequence F star TYC 2949-00557-1 during the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) pilot project. The host star has an effective temperature T eff = 6135 ± 40 K, logg = 4.4 ± 0.1, and [Fe/H] = 0.32 ± 0.01, indicating a mass of M = 1.25 ± 0.09 M sun and R = 1.15 ± 0.15 R sun . The companion has an orbital period of 5.69449 ± 0.00023 days and straddles the hydrogen burning limit with a minimum mass of 64 M J , and thus may be an example of the rare class of brown dwarfs orbiting at distances comparable to those of 'Hot Jupiters'. We present relative photometry that demonstrates that the host star is photometrically stable at the few millimagnitude level on time scales of hours to years, and rules out transits for a companion of radius ∼>0.8 R J at the 95% confidence level. Tidal analysis of the system suggests that the star and companion are likely in a double synchronous state where both rotational and orbital synchronization have been achieved. This is the first low-mass companion detected with a multi-object, dispersed, fixed-delay interferometer.

  19. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  20. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    Science.gov (United States)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  1. EXPLANATION OF A SPECIAL COLOR–MAGNITUDE DIAGRAM OF STAR CLUSTER NGC 1651 FROM DIFFERENT MODELS

    International Nuclear Information System (INIS)

    Li, Zhongmu; Mao, Caiyan; Chen, Li

    2015-01-01

    The color–magnitude diagram (CMD) of globular cluster NGC 1651 has special structures including a broad main sequence, an extended main sequence turn-off, and an extended red giant clump. The reason for such a special CMD remains unclear. In order to test the difference among the results from various stellar population assumptions, we study a high-quality CMD of NGC 1651 from the Hubble Space Telescope archive using eight kinds of models. Distance modulus, extinction, age ranges, star formation mode, fraction of binaries, and fraction of rotational stars are determined and then compared. The results show that stellar populations both with and without age spread can reproduce the special structure of the observed CMD. A composite population with extended star formation from 1.8 Gyrs ago to 1.4 Gyrs ago, which contains 50% binaries and 70% rotational stars, fits the observed CMD best. Meanwhile, a 1.5 Gyr-old simple population that consists of rotational stars can also fit the observed CMD well. The results of CMD fitting are shown to depend strongly on stellar population type (simple or composite), and fraction of rotators. If the member stars of NGC 1651 formed in a single star burst, the effect of stellar rotation should be very important for explaining the observed CMDs. Otherwise, the effect may be small. It is also possible that the special observed CMD is a result of the combined effects of stellar binarity, rotation, and age spread. Therefore, further work on stellar population type and fraction of rotational stars of intermediate-age clusters are necessary to understand their observed CMDs

  2. THE TIDAL DISRUPTION OF GIANT STARS AND THEIR CONTRIBUTION TO THE FLARING SUPERMASSIVE BLACK HOLE POPULATION

    International Nuclear Information System (INIS)

    MacLeod, Morgan; Guillochon, James; Ramirez-Ruiz, Enrico

    2012-01-01

    Sun-like stars are thought to be regularly disrupted by supermassive black holes (SMBHs) within galactic nuclei. Yet, as stars evolve off the main sequence their vulnerability to tidal disruption increases drastically as they develop a bifurcated structure consisting of a dense core and a tenuous envelope. Here we present the first hydrodynamic simulations of the tidal disruption of giant stars and show that the core has a substantial influence on the star's ability to survive the encounter. Stars with more massive cores retain large fractions of their envelope mass, even in deep encounters. Accretion flares resulting from the disruption of giant stars should last for tens to hundreds of years. Their characteristic signature in transient searches would not be the t –5/3 decay typically associated with tidal disruption events, but a correlated rise over many orders of magnitude in brightness on timescales of months to years. We calculate the relative disruption rates of stars of varying evolutionary stages in typical galactic centers, then use our results to produce Monte Carlo realizations of the expected flaring event populations. We find that the demographics of tidal disruption flares are strongly dependent on both stellar and black hole mass, especially near the limiting SMBH mass scale of ∼10 8 M ☉ . At this black hole mass, we predict a sharp transition in the SMBH flaring diet beyond which all observable disruptions arise from evolved stars, accompanied by a dramatic cutoff in the overall tidal disruption flaring rate. Black holes less massive than this limiting mass scale will show observable flares from both main-sequence and evolved stars, with giants contributing up to 10% of the event rate. The relative fractions of stars disrupted at different evolutionary states can constrain the properties and distributions of stars in galactic nuclei other than our own.

  3. From strange stars to strange dwarfs

    International Nuclear Information System (INIS)

    Glendenning, N.K.; Kettner, C.; Weber, F.

    1995-01-01

    We determine all possible equilibrium sequences of compact strange-matter stars with nuclear crusts, which range from massive strange stars to strange white dwarf endash like objects (strange dwarfs). The properties of such stars are compared with those of their nonstrange counterparts emdash neutron stars and ordinary white dwarfs. The main emphasis of this paper is on strange dwarfs, which we divide into two distinct categories. The first one consists of a core of strange matter enveloped within ordinary white dwarf matter. Such stars are hydrostatically stable with or without the strange core and are therefore referred to as open-quote open-quote trivial close-quote close-quote strange dwarfs. This is different for the second category which forms an entirely new class of dwarf stars that contain nuclear material up to 4x10 4 times denser than in ordinary white dwarfs of average mass, M∼0.6 M circle-dot , and still about 400 times denser than in the densest white dwarfs. The entire family of such dwarfs, denoted dense strange dwarfs, owes its hydrostatic stability to the strange core. A striking features of strange dwarfs is that the entire sequence from the maximum-mass strange star to the maximum-mass strange dwarf is stable to radial oscillations. The minimum-mass star is only conditionally stable, and the sequences on both sides are stable. Such a stable, continuous connection does not exist between ordinary white dwarfs and neutron stars, which are known to be separated by a broad range of unstable stars. We find an expansive range of very low mass (planetary-like) strange-matter stars (masses even below 10 -4 M circle-dot are possible) that arise as natural dark-matter candidates, which if abundant enough in our Galaxy, should be seen in the gravitational microlensing searches that are presently being performed. copyright 1995 The American Astronomical Society

  4. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    Science.gov (United States)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  5. Enhanced regulatory sequence prediction using gapped k-mer features.

    Science.gov (United States)

    Ghandi, Mahmoud; Lee, Dongwon; Mohammad-Noori, Morteza; Beer, Michael A

    2014-07-01

    Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.

  6. Enhanced regulatory sequence prediction using gapped k-mer features.

    Directory of Open Access Journals (Sweden)

    Mahmoud Ghandi

    2014-07-01

    Full Text Available Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem.

  7. THE GALACTIC POTENTIAL AND THE ASYMMETRIC DISTRIBUTION OF HYPERVELOCITY STARS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Alexander, Tal; Wu Xufen; Zhao Hongsheng; Famaey, Benoit; Gentile, Gianfranco

    2009-01-01

    In recent years several hypervelocity stars (HVSs) have been observed in the halo of our Galaxy. Such HVSs have possibly been ejected from the Galactic center and then propagated in the Galactic potential up to their current position. The recent survey for candidate HVSs show an asymmetry in the kinematics of candidate HVSs (position and velocity vectors), where more outgoing stars than ingoing stars (i.e., positive Galactocentric velocities versus negative ones) are observed. We show that such kinematic asymmetry, which is likely due to the finite lifetime of the stars and Galactic potential structure, could be used in a novel method to probe and constrain the Galactic potential, identify the stellar type of the stars in the survey and estimate the number of HVSs. Kinematics-independent identification of the stellar types of the stars in such surveys (e.g., spectroscopic identification) could further improve these results. We find that the observed asymmetry between ingoing and outgoing stars favors specific Galactic potential models. It also implies a lower limit of ∼54 ± 8 main-sequence HVSs in the survey sample (∼>648 ± 96 in the Galaxy), assuming that all of the MS stars in the survey originate from the GC. The other stars in the survey are likely to be hot blue horizontal branch stars born in the halo rather than stars ejected from the GC.

  8. The onset of chromospheric activity among the A- and F- type stars

    Science.gov (United States)

    Simon, Theodore; Landsman, Wayne

    1987-01-01

    IUE observations of C II lambda1335 and C IV lambda1549 and ground-based observations of He I lambda5876 have previously discovered intense levels of chromospheric activity among early F type stars. Virtually all F dwarfs show stronger chromospheric and transition region emission than do the cooler and more deeply convective dwarf stars like the Sun. The IUE spectra and those of He lambda5876 place the onset of stellar activity along the main sequence near a color B - V = 0.28, which corresponds approximately to spectral type FO and an effective temperature of 7300 K. However, existing X-ray observations of A and F stars suggest that coronal activity may reach a peak blueward of this high temperature boundary at B - V = 0.28 before vanishing among the early and mid A-type stars. Discussed are preliminary results of a new effort to refine the location of the high temperature boundary to chromospheric activity among A- and F- type stars, making use of low dispersion short-wavelength spectra from the IUE archives from which the strengths of C IV, C II, and Lyman alpha emission have been measured.

  9. WHITE-DWARF-MAIN-SEQUENCE BINARIES IDENTIFIED FROM THE LAMOST PILOT SURVEY

    International Nuclear Information System (INIS)

    Ren Juanjuan; Luo Ali; Li Yinbi; Wei Peng; Zhao Jingkun; Zhao Yongheng; Song Yihan; Zhao Gang

    2013-01-01

    We present a set of white-dwarf-main-sequence (WDMS) binaries identified spectroscopically from the Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST, also called the Guo Shou Jing Telescope) pilot survey. We develop a color selection criteria based on what is so far the largest and most complete Sloan Digital Sky Survey (SDSS) DR7 WDMS binary catalog and identify 28 WDMS binaries within the LAMOST pilot survey. The primaries in our binary sample are mostly DA white dwarfs except for one DB white dwarf. We derive the stellar atmospheric parameters, masses, and radii for the two components of 10 of our binaries. We also provide cooling ages for the white dwarf primaries as well as the spectral types for the companion stars of these 10 WDMS binaries. These binaries tend to contain hot white dwarfs and early-type companions. Through cross-identification, we note that nine binaries in our sample have been published in the SDSS DR7 WDMS binary catalog. Nineteen spectroscopic WDMS binaries identified by the LAMOST pilot survey are new. Using the 3σ radial velocity variation as a criterion, we find two post-common-envelope binary candidates from our WDMS binary sample

  10. AK SCO, FIRST DETECTION OF A HIGHLY DISTURBED ATMOSPHERE IN A PRE-MAIN-SEQUENCE CLOSE BINARY

    International Nuclear Information System (INIS)

    Gomez de Castro, Ana I.

    2009-01-01

    AK Sco is a unique source: a ∼10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ ≅ 100 km s -1 ) and very dense atmosphere (n e = 1.6 x 10 10 cm -3 ) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  11. AK Sco, First Detection of a Highly Disturbed Atmosphere in a Pre-Main-Sequence Close Binary

    Science.gov (United States)

    Gómez de Castro, Ana I.

    2009-06-01

    AK Sco is a unique source: a ~10 Myr old pre-main-sequence (PMS) spectroscopic binary composed of two nearly equal F5 stars that at periastron are separated by barely 11 stellar radii, so the stellar magnetospheres fill the Roche lobe at periastron. The orbit is not yet circularized (e = 0.47) and very strong tides are expected. This makes AK Sco the ideal laboratory to study the effect of gravitational tides in the stellar magnetic field building up during PMS evolution. In this Letter, the detection of a highly disturbed (σ sime 100 km s-1) and very dense atmosphere (n e = 1.6 × 1010 cm-3) is reported. Significant line broadening blurs any signs of ion belts or bow shocks in the spectrum of the atmospheric plasma. The radiative losses cannot be accounted for solely by the dissipation of energy from the tidal wave propagating in the stellar atmosphere or by the accreting material. The release of internal energy from the star seems to be the most likely source of the plasma heating. This is the first clear indication of a highly disturbed atmosphere surrounding a PMS close binary.

  12. STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history (SFH) and chemical evolution of the Sextans dSph galaxy as a function of a galactocentric distance. We derive these from the VI photometry of stars in the 42' x 28' field using the SMART model developed by Yuk and Lee and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that >84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (∼ 65% of the stars formed 13-15 Gyr ago, while ∼ 25% formed 11-13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the SFH is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11-13 Gyr ago. Whether blue straggler stars are interpreted as intermediate-age main-sequence stars affects conclusions regarding the SFH for times 4-8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H] = -1.6 in the central region and to [Fe/H] = -1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high-resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the SFH, which self-consistently drives the chemical enrichment history.

  13. Pre-main sequence sun: a dynamic approach

    International Nuclear Information System (INIS)

    Newman, M.J.; Winkler, K.H.A.

    1979-01-01

    The classical pre-main sequence evolutionary behavior found by Hayashi and his coworkers for the Sun depends crucially on the choice of initial conditions. The Hayashi picture results from beginning the calculation with an already centrally condensed, highly Jeans unstable object not terribly far removed from the stellar state initially. The present calculation follows the work of Larson in investigating the hydrodynamic collapse and self-gravitational accretion of an initially uniform, just Jeans unstable interstellar gas-dust cloud. The resulting picture for the early history of the Sun is quite different from that found by Hayashi. A rather small (R approx. = 2 R/sub sun/), low-luminosity (L greater than or equal to L/sub sun/) protostellar core develops. A fully convective stellar core, characteristic of Hayashi's work, is not found during the accretion process, and can only develop, if at all, in the subsequent pre-main sequence Kelvin-Helmholtz contraction of the core. 3 figures, 1 table

  14. Einstein Observatory magnitude-limited X-ray survey of late-type giant and supergiant stars

    Science.gov (United States)

    Maggio, A.; Vaiana, G. S.; Haisch, B. M.; Stern, R. A.; Bookbinder, J.

    1990-01-01

    Results are presented of an extensive X-ray survey of 380 giant and supergiant stars of spectral types from F to M, carried out with the Einstein Observatory. It was found that the observed F giants or subgiants (slightly evolved stars with a mass M less than about 2 solar masses) are X-ray emitters at the same level of main-sequence stars of similar spectral type. The G giants show a range of emissions more than 3 orders of magnitude wide; some single G giants exist with X-ray luminosities comparable to RS CVn systems, while some nearby large G giants have upper limits on the X-ray emission below typical solar values. The K giants have an observed X-ray emission level significantly lower than F and F giants. None of the 29 M giants were detected, except for one spectroscopic binary.

  15. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  16. Using the phase shift to asymptotically characterize the dipolar mixed modes in post-main-sequence stars

    DEFF Research Database (Denmark)

    Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.

    2018-01-01

    from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly...

  17. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    Science.gov (United States)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  18. SPB stars in the open SMC cluster NGC 371

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2008-05-01

    Pulsation in β Cep and slowly pulsating B (SPB) stars are driven by the κ mechanism which depends critically on the metallicity. It has therefore been suggested that β Cep and SPB stars should be rare in the Magellanic Clouds which have lower metallicities than the solar neighbourhood. To test this prediction we have observed the open Small Magellanic Cloud (SMC) cluster NGC 371 for 12 nights in order to search for β Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in the upper part of the main sequence, many of which are probably SPB stars. This result indicates that pulsation is still driven by the κ mechanism even in low-metallicity environments. All the identified variables have periods longer than the fundamental radial period which means that they cannot be β Cep stars. Within an amplitude detection limit of 5 mmag no stars in the top of the Hertzsprung-Russell diagram show variability with periods shorter than the fundamental radial period. So if β Cep stars are present in the cluster they oscillate with amplitudes below 5 mmag, which is significantly lower than the mean amplitude of β Cep stars in the Galaxy. We see evidence that multimode pulsation is more common in the upper part of the main sequence than in the lower. We have also identified five eclipsing binaries and three periodic pulsating Be stars in the cluster field.

  19. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation

    Science.gov (United States)

    Alecian, E.; Wade, G. A.; Catala, C.; Grunhut, J. H.; Landstreet, J. D.; Böhm, T.; Folsom, C. P.; Marsden, S.

    2013-02-01

    We report the analysis of the rotational properties of our sample of Herbig Ae/Be (HAeBe) and related stars for which we have obtained high-resolution spectropolarimetric observations. Using the projected rotational velocities measured at the surface of the stars, we have calculated the angular momentum of the sample and plotted it as a function of age. We have then compared the angular momentum and the v sin i distributions of the magnetic to the non-magnetic HAeBe stars. Finally, we have predicted v sin i of the non-magnetic, non-binary (`normal') stars in our sample when they reach the zero-age main sequence (ZAMS), and compared them to various catalogues of v sin i of main-sequence stars. First, we observe that magnetic HAeBe stars are much slower rotators than normal stars, indicating that they have been more efficiently braked than the normal stars. In fact, the magnetic stars have already lost most of their angular momentum, despite their young ages (lower than 1 Myr for some of them). Secondly, our analysis suggests that the low-mass (1.5 5 M⊙) are losing angular momentum. We propose that winds, which are expected to be stronger in massive stars, are at the origin of this phenomenon.

  20. Characterization of the magnetic field of the Herbig Be star HD200775

    Science.gov (United States)

    Alecian, E.; Catala, C.; Wade, G. A.; Donati, J.-F.; Petit, P.; Landstreet, J. D.; Böhm, T.; Bouret, J.-C.; Bagnulo, S.; Folsom, C.; Grunhut, J.; Silvester, J.

    2008-03-01

    The origin of the magnetic fields observed in some intermediate-mass and high-mass main-sequence stars is still a matter of vigorous debate. The favoured hypothesis is a fossil field origin, in which the observed fields are the condensed remnants of magnetic fields present in the original molecular cloud from which the stars formed. According to this theory a few per cent of the pre-main-sequence (PMS) Herbig Ae/Be star should be magnetic with a magnetic topology similar to that of main-sequence intermediate-mass stars. After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD200775, to determine if its magnetic topology is similar to that of the main-sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than 2yr, using the new spectropolarimeters ESPaDOnS at Canada-France-Hawaii Telescope (CFHT), and Narval at Bernard Lyot Telescope (TBL). By analysing the intensity spectrum we find that HD200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We have carefully compared the observed spectrum to a synthetic one, and we found no evidence of abundance anomalies in its spectrum. We infer the luminosity ratio of the components from the Stokes I profiles. Then, using the temperature and luminosity of HD200775 found in the literature, we estimate the age, the mass and the radius of both components from their HR diagram positions. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. A Stokes V Zeeman signature is clearly visible in most of the least-squares deconvolution profiles and varies on a time-scale on the order of 1d. We have fitted the 30 profiles simultaneously, using a χ2 minimization method, with a centred and a decentred-dipole model. The best-fitting model is obtained with a reduced χ2 = 1.0 and provides a rotation period of 4

  1. The origin of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Doom, C.

    1987-01-01

    The paper reviews the origin of Wolf-Rayet (WR) stars, with emphasis on the so-called Population I WR stars which are associated with the young and luminous stellar population. A description is given of the observational characteristics i.e. classification, luminosities composition, etc. of WR stars. The origin and evolution of WR stars is described, including the single, binary, subtypes and ratio WR/O. The interaction of the WR stars with their environment is discussed with respect to the energy deposition and composition anomalies. A brief account of the discovery of WR stars in other galaxies is given. Finally, some of the main issues in the research into the structure and evolution of WR stars are outlined. (U.K.)

  2. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  3. Electronographic photometry of star clusters in the Magellanic Clouds

    International Nuclear Information System (INIS)

    Walker, M.F.

    1979-01-01

    Electronographic magnitudes and colours of 78 stars in the cluster Hodge 11 in the Large Magellanic Cloud have been measured to V = 21.5 on electrographs taken with a Spectracon image-converter attached to the focus of the 1.5-m (60-inch) Cerro Tololo reflector. The zero point of the electronographic photometry was provided by photoelectric observations of four stars in the cluster field using the same telescope. The colour-magnitude diagram of the cluster consists of an evolved main sequence, whose termination point corresponds to an age of about 6 x 10 8 yr, but with a giant branch which is displaced blueward by about Δ(B-V) 0 = 0.4 from the positions of the giant branches of open clusters of similar age in our Galaxy. (author)

  4. Main-belt Asteroids in the K2 Uranus Field

    Science.gov (United States)

    Molnár, L.; Pál, A.; Sárneczky, K.; Szabó, R.; Vinkó, J.; Szabó, Gy. M.; Kiss, Cs.; Hanyecz, O.; Marton, G.; Kiss, L. L.

    2018-02-01

    We present the K2 light curves of a large sample of untargeted main-belt asteroids (MBAs) detected with the Kepler Space Telescope. The asteroids were observed within the Uranus superstamp, a relatively large, continuous field with a low stellar background designed to cover the planet Uranus and its moons during Campaign 8 of the K2 mission. The superstamp offered the possibility of obtaining precise, uninterrupted light curves of a large number of MBAs and thus determining unambiguous rotation rates for them. We obtained photometry for 608 MBAs, and were able to determine or estimate rotation rates for 90 targets, of which 86 had no known values before. In an additional 16 targets we detected incomplete cycles and/or eclipse-like events. We found the median rotation rate to be significantly longer than that of the ground-based observations, indicating that the latter are biased toward shorter rotation rates. Our study highlights the need and benefits of further continuous photometry of asteroids.

  5. K2-141 b A 5-M-circle plus super-Earth transiting a K7V star every 6.7 h

    DEFF Research Database (Denmark)

    Barragan, O.; Gandolfi, D.; Dai, F.

    2018-01-01

    We report on the discovery of K2-141 b (EPIC 246393474 b), an ultra-short-period super-Earth on a 6.7 h orbit transiting an active K7V star based on data from K2 campaign 12. We confirmed the planet's existence and measured its mass with a series of follow-up observations: seeing-limited MuSCAT i...

  6. INTRINSIC SHAPE OF STAR-FORMING BzK GALAXIES AT z ∼ 2 IN GOODS-N

    International Nuclear Information System (INIS)

    Yuma, Suraphong; Ohta, Kouji; Yabe, Kiyoto; Kajisawa, Masaru; Ichikawa, Takashi

    2011-01-01

    We study the structure of star-forming galaxies at z ∼ 2 in a Great Observatories Origins Deep Survey North field selected as star-forming BzK (sBzK) galaxies down to K AB B > C, we find that the mean B/A ratio is 0.61 +0.05 -0.08 and disk thickness C/A is 0.28 +0.03 -0.04 . This indicates that the single-component sBzK galaxies at z ∼ 2 have a bar-like or oval shape rather than a round disk shape. The shape seems to resemble a bar/oval structure that forms through bar instability; if this is the case, the intrinsic shape may give us a clue to understand dynamical evolution of baryonic matter in a dark matter halo.

  7. The Mw=8.8 Maule earthquake aftershock sequence, event catalog and locations

    Science.gov (United States)

    Meltzer, A.; Benz, H.; Brown, L.; Russo, R. M.; Beck, S. L.; Roecker, S. W.

    2011-12-01

    The aftershock sequence of the Mw=8.8 Maule earthquake off the coast of Chile in February 2010 is one of the most well-recorded aftershock sequences from a great megathrust earthquake. Immediately following the Maule earthquake, teams of geophysicists from Chile, France, Germany, Great Britain and the United States coordinated resources to capture aftershocks and other seismic signals associated with this significant earthquake. In total, 91 broadband, 48 short period, and 25 accelerometers stations were deployed above the rupture zone of the main shock from 33-38.5°S and from the coast to the Andean range front. In order to integrate these data into a unified catalog, the USGS National Earthquake Information Center develop procedures to use their real-time seismic monitoring system (Bulletin Hydra) to detect, associate, location and compute earthquake source parameters from these stations. As a first step in the process, the USGS has built a seismic catalog of all M3.5 or larger earthquakes for the time period of the main aftershock deployment from March 2010-October 2010. The catalog includes earthquake locations, magnitudes (Ml, Mb, Mb_BB, Ms, Ms_BB, Ms_VX, Mc), associated phase readings and regional moment tensor solutions for most of the M4 or larger events. Also included in the catalog are teleseismic phases and amplitude measures and body-wave MT and CMT solutions for the larger events, typically M5.5 and larger. Tuning of automated detection and association parameters should allow a complete catalog of events to approximately M2.5 or larger for that dataset of more than 164 stations. We characterize the aftershock sequence in terms of magnitude, frequency, and location over time. Using the catalog locations and travel times as a starting point we use double difference techniques to investigate relative locations and earthquake clustering. In addition, phase data from candidate ground truth events and modeling of surface waves can be used to calibrate the

  8. Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal

    Directory of Open Access Journals (Sweden)

    C.K. Madhusudana

    2016-09-01

    Full Text Available This paper deals with the fault diagnosis of the face milling tool based on machine learning approach using histogram features and K-star algorithm technique. Vibration signals of the milling tool under healthy and different fault conditions are acquired during machining of steel alloy 42CrMo4. Histogram features are extracted from the acquired signals. The decision tree is used to select the salient features out of all the extracted features and these selected features are used as an input to the classifier. K-star algorithm is used as a classifier and the output of the model is utilised to study and classify the different conditions of the face milling tool. Based on the experimental results, K-star algorithm is provided a better classification accuracy in the range from 94% to 96% with histogram features and is acceptable for fault diagnosis.

  9. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  10. Making Sense of Atmospheric Models and Fundamental Stellar Properties at the Bottom of the Main Sequence

    Science.gov (United States)

    Dieterich, Sergio; Henry, Todd; Jao, W.-C.; Washington, Robert; Silverstein, Michele; Winters, J.; RECONS

    2018-01-01

    We present a detailed comparison of atmospheric model predictions and photometric observations for late M and L dwarfs. We discuss which wavelength regions are best for determining the fundamental properties of these cool stellar and substellar atmospheres and use this analysis to refine the HR diagram for the hydrogen burning limit first presented in 2014. We also add several new objects to the HR diagram and find little qualitative difference in the HR diagram's overall morphology when compared to our 2014 results. The L2 dwarf 2MASS 0523-1403 remains the smallest hydrogen burning star for which we calculated a radius, thus likely indicating the end of the stellar main sequence. This work is supported by the NSF Astronomy and Astrophysics Postdoctoral Fellowship program through grant AST-1400680.

  11. Multiple stellar generations in the Large Magellanic Cloud Star Cluster NGC 1846

    Science.gov (United States)

    Milone, Antonino

    2010-09-01

    The recent discovery of multiple stellar populations in massive Galactic globular clusters poses a serious challenge for models of star cluster formation and evolution. The finding of multiple main sequences in the massive clusters NGC 2808 and omega Centauri, and multiple sub-giant-branch in NGC 1851 and many other globulars have demonstrated that star clusters are not as simple as we have imagined for decades. Surprisingly the only way to explain the main sequence splitting appears to be Helium enrichment, up to an astonishingly high Y 0.40.An unique angle on this problem can be provided by intermediate-age clusters in the Magellanic Clouds with peculiar main-sequence turn-off morphologies. Recent discoveries, based on ACS data of unparalleled photometric accuracy, have demonstrated that the CMDs of a large fraction of these clusters { 70 %} are not consistent with the simple, single stellar population hypothesis. Explanations for what conditions could give rise to multiple populations in Galactic Globular Clusters remain controversial; this is even more the case for LMC clustersTo properly constraint the multipopulation phenomenon in Magellanic Cloud star clusters, we propose deep UV/IR imaging of NGC 1846, a star cluster where multiple populations have already been identified. The proposed observation will allow us to accurately measure the age difference between the stellar populations providing fundamental clues on the formation mechanism. Our simulations of WFC3 performance suggest that we will be able to detect even the main sequence splitting caused by small He differences {Delta Y 0.02}.

  12. Properties of general relativistic irrotational binary neutron stars at the innermost orbit

    International Nuclear Information System (INIS)

    Uryu, K.; Shibata, M.

    2001-01-01

    We investigate properties of binary neutron stars around innermost orbits, assuming that the binary is equal mass and in quasiequilibrium. The quasiequilibrium configurations are numerically computed assuming the existence of a helicoidal Killing vector, conformal flatness for spatial components of the metric, and irrotational velocity field for the neutron stars. The computation is performed for the polytropic equation of state with a wide range of the polytropic index n (= 0.5, 0.66667, 0.8, 1, 1.25), and compactness of neutron stars (M/R) ∞ (= 0.03-0.3). Quasiequilibrium sequences of constant rest mass are appropriate models for the final evolution phase of binary neutron stars. It is found that these sequences are always terminated at the innermost orbit where a cusp (inner Lagrange point) appears at the inner edges of the stellar surface. We apply a turning point method to determine the stability of the innermost orbits and found that the innermost stable circular orbit (ISCO) exists for stiff equations of state (n = 0.5 with any (M/R) ∞ and n = 0.66667 with (M/R) ∞ > or ∼ 0.17). The ISCO for n = 0.5 is carefully analyzed. It is clarified that the ISCO are mainly determined by a hydrodynamic instability for realistic compactness of the neutron stars as 0.14 ∞ < or ∼ 0.2. These configurations at the innermost orbits can be used as initial conditions for fully general relativistic simulation for the binary neutron star merger. (author)

  13. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    International Nuclear Information System (INIS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-01-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ∼6 to 25 solar masses and a range in effective temperature from ∼8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ∼0.05–0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  14. Burn out or fade away? On the X-ray and magnetic death of intermediate mass stars

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Jeremy J.; Kashyap, Vinay; Günther, H. Moritz; Wright, Nicholas J. [Smithsonian Astrophysical Observatory, MS-3, 60 Garden Street, Cambridge, MA 02138 (United States); Braithwaite, Jonathan, E-mail: jdrake@cfa.harvard.edu [Argelander Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn (Germany)

    2014-05-10

    The nature of the mechanisms apparently driving X-rays from intermediate mass stars lacking strong convection zones or massive winds remains poorly understood, and the possible role of hidden, lower mass close companions is still unclear. A 20 ks Chandra HRC-I observation of HR 4796A, an 8 Myr old main sequence A0 star devoid of close stellar companions, has been used to search for a signature or remnant of magnetic activity from the Herbig Ae phase. X-rays were not detected and the X-ray luminosity upper limit was L{sub X} ≤ 1.3 × 10{sup 27} erg s{sup –1}. The result is discussed in the context of various scenarios for generating magnetic activity, including rotational shear and subsurface convection. A dynamo driven by natal differential rotation is unlikely to produce observable X rays, chiefly because of the difficulty in getting the dissipated energy up to the surface of the star. A subsurface convection layer produced by the ionization of helium could host a dynamo that should be effective throughout the main sequence but can only produce X-ray luminosities of the order 10{sup 25} erg s{sup –1}. This luminosity lies only moderately below the current detection limit for Vega. Our study supports the idea that X-ray production in Herbig Ae/Be stars is linked largely to the accretion process rather than the properties of the underlying star, and that early A stars generally decline in X-ray luminosity at least 100,000 fold in only a few million years.

  15. Wolf-Rayet stars

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J

    1981-12-01

    Aspects of the problems of the Wolf-Rayet stars related to their chemical composition, their evolutionary status, and their apparent dichotomy in two spectral sequences are discussed. Dogmas concerning WR stars are critically discussed, including the belief that WR stars lack hydrogen, that they are helium stars evolved from massive close binaries, and the existence of a second WR stage in which the star is a short-period single-lined binary. The relationship of WR stars with planetary nebulae is addressed, as is the membership of these stars in clusters and associations. The division of WR stars into WN and WC sequences is considered, questioning the reasonability of accounting for WR line formation in terms of abundance differences.

  16. The STAR cluster-finder ASIC

    Energy Technology Data Exchange (ETDEWEB)

    Botlo, M.; LeVine, M.J.; Scheetz, R.A.; Schulz, M.W. [Brookhaven National Lab., Upton, NY (United States); Short, P.; Woods, J. [InnovASIC, Inc., Albuquerque, NM (United States); Crosetto, D. [Rice Univ., Houston, TX (United States). Bonner Nuclear Lab.

    1997-12-01

    STAR is a large TPC-based experiment at RHIC, the relativistic heavy ion collider at Brookhaven National Laboratory. The STAR experiment reads out a TPC and an SVT (silicon vertex tracker), both of which require in-line pedestal subtraction, compression of ADC values from 10-bit to 8-bit, and location of time sequences representing responses to charged-particle tracks. The STAR cluster finder ASIC responds to all of these needs. Pedestal subtraction and compression are performed using lookup tables in attached RAM. The authors describe its design and implementation, as well as testing methodology and results of tests performed on foundry prototypes.

  17. Einstein Observatory coronal temperatures of late-type stars

    Science.gov (United States)

    Schmitt, J. H. M. M.; Collura, A.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.

    1990-01-01

    The results are presented of a survey of the coronal temperatures of late-type stars using the Einstein Observatory IPC. The spectral analysis shows that the frequently found one- and two-temperature descriptions are mainly influenced by the SNR of the data and that models using continuous emission measure distributions can provide equally adequate and physically more meaningful and more plausible descriptions. Intrinsic differences in differential emission measure distributions are found for four groups of stars. M dwarfs generally show evidence for high-temperature gas in conjunction with lower-temperature material, while main-sequence stars of types F and G have the high-temperature component either absent or very weak. Very hot coronae without the lower-temperature component appearing in dwarf stars are evident in most of the giant stars studied. RS CVn systems show evidence for extremely hot coronae, sometimes with no accompanying lower-temperature material.

  18. A search for magnetic fields in Lambda Bootis stars

    International Nuclear Information System (INIS)

    Bohlender, D.A.; Landstreet, J.D.

    1990-01-01

    We have searched a sample of λ Boo stars for magnetic fields similar to those observed in the magnetic Ap and Bp stars, using a Balmer-line Zeeman analyser. Apart from one dubious measurement, no fields are detected in our sample. It appears that magnetic fields of the λ Boo stars, if they exist, are significantly smaller than those found in magnetic upper main-sequence stars of similar spectral type; this conclusion is supported at about the 90 or 95 per cent confidence level by the present data. (author)

  19. Sequence analysis of Maturase K (matK): A chloroplast-encoding ...

    African Journals Online (AJOL)

    The application and utilization of sequence data has been found very informative in the characterization and phylogenetic relationship of different crops species. This study aimed to use bioinformatics tools to characterize the matK gene in some selected legumes with special reference to pigeon pea [cajanus cajan ...

  20. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. VI. LUMINOSITIES AND MASS-LOSS RATES ON POPULATION SCALES

    International Nuclear Information System (INIS)

    Riebel, D.; Meixner, M.; Srinivasan, S.; Sargent, B.

    2012-01-01

    We present results from the first application of the Grid of Red Supergiant and Asymptotic Giant Branch ModelS (GRAMS) model grid to the entire evolved stellar population of the Large Magellanic Cloud (LMC). GRAMS is a pre-computed grid of 80,843 radiative transfer models of evolved stars and circumstellar dust shells composed of either silicate or carbonaceous dust. We fit GRAMS models to ∼30,000 asymptotic giant branch (AGB) and red supergiant (RSG) stars in the LMC, using 12 bands of photometry from the optical to the mid-infrared. Our published data set consists of thousands of evolved stars with individually determined evolutionary parameters such as luminosity and mass-loss rate. The GRAMS grid has a greater than 80% accuracy rate discriminating between oxygen- and carbon-rich chemistry. The global dust injection rate to the interstellar medium (ISM) of the LMC from RSGs and AGB stars is on the order of 2.1 × 10 –5 M ☉ yr –1 , equivalent to a total mass injection rate (including the gas) into the ISM of ∼6 × 10 –3 M ☉ yr –1 . Carbon stars inject two and a half times as much dust into the ISM as do O-rich AGB stars, but the same amount of mass. We determine a bolometric correction factor for C-rich AGB stars in the K s band as a function of J – K s color, BC K s = -0.40(J-K s ) 2 + 1.83(J-K s ) + 1.29. We determine several IR color proxies for the dust mass-loss rate (M-dot d ) from C-rich AGB stars, such as log M-dot d = (-18.90/((K s -[8.0])+3.37) - 5.93. We find that a larger fraction of AGB stars exhibiting the 'long-secondary period' phenomenon are more O-rich than stars dominated by radial pulsations, and AGB stars without detectable mass loss do not appear on either the first-overtone or fundamental-mode pulsation sequences.

  1. Discovery of a New Nearby Star

    Science.gov (United States)

    Teegarden, B. J.; Pravdo, S. H.; Covey, K.; Frazier, O.; Hawley, S. L.; Hicks, M.; Lawrence, K.; McGlynn, T.; Reid, I. N.; Shaklan, S. B.

    2003-01-01

    We report the discovery of a nearby star with a very large proper motion of 5.06 +/- 0.03 arcsec/yr. The star is called SO025300.5+165258 and referred to herein as HPMS (high proper motion star). The discovery came as a result of a search of the SkyMorph database, a sensitive and persistent survey that is well suited for finding stars with high proper motions. There are currently only 7 known stars with proper motions greater than 5 arcsec/yr. We have determined a preliminary value for the parallax of pi = 0.43 +/- 0.13 arcsec. If this value holds our new star ranks behind only the Alpha Centauri system (including Proxima Centauri) and Barnard's star in the list of our nearest stellar neighbours. The spectrum and measured tangential velocity indicate that HPMS is a main-sequence star with spectral type M6.5. However, if our distance measurement is correct, the HPMS is underluminous by 1.2 +/- 0.7 mag.

  2. Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Wood, P.; Bessell, M.S.; Fox, M.W.

    1983-01-01

    Infrared JHK magnitudes and low-dispersion red spectra have been obtained for 90 long-period variables (LPVs) in the Small and Large Magellanic Clouds. The LPVs fall into two distinct groups, core helium (or carbon) burning supergiants and stars on the asymptotic giant branch (AGB). The supergiants have small pulsation amplitudes in K ( or approx. =5 M/sub sun/ produce supernovae while less massive stars produce planetary nebulae with nebula masses from approx.0.1--2.1 M/sub sun/. The coreburning red supergiants appear highly overluminous for their pulsation mass, indicating that they have lost up to half their mass since the main-sequence phase

  3. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1990-01-01

    In this paper the authors give a general review of the pulsating δ Scuti variables, including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Then we discuss three models of these stars, and use them to study the nonlinear hydrodynamic behavior of these stars, after which the authors outline the hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions. The authors also present the problems of allowing for time-dependent convection and its great sensitivity to temperature and density. Tentative results to data do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. Finally, the authors find that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. The δ Scuti variables are the most common type of variable star in our galaxy except for the white dwarfs. This is because stars in the mass range from just over one M circle-dot up to at least several M circle-dot pass through the yellow giant instability strip in the Hertzsprung-Russell diagram as they evolve off the main sequence to the red. Actually, stars up to the maximum main sequence mass also evolve through this region at higher luminosities, but there are so few of them, and they evolve so rapidly to the red, that they are almost unknown. At the higher luminosity, they probably would be called first-instability strip-crossing Cepheids anyway. Such cepheids are difficult to separate from those that are on the second blueward instability strip crossing that is much slower. Really, the δ Scuti variables are just low-luminosity Cepheids

  4. PHIBSS: MOLECULAR GAS, EXTINCTION, STAR FORMATION, AND KINEMATICS IN THE z = 1.5 STAR-FORMING GALAXY EGS13011166

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Kurk, J.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Combes, F.; Freundlich, J. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Neri, R. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Nordon, R. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Cox, P. [Department of Physics, Le Conte Hall, University of California, 94720 Berkeley, CA (United States); Davis, M. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, E-28014 Madrid (Spain); Naab, T. [Max-Planck Institut fuer Astrophysik, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); Lutz, D., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de; and others

    2013-08-10

    We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the H{alpha} line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the ''Plateau de Bure high-z, blue-sequence survey'' (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a ''mixed'' extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlog{Sigma}{sub starform}/dlog{Sigma}{sub molgas}, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 {+-} 0.1.

  5. The HOSTS Survey—Exozodiacal Dust Measurements for 30 Stars

    Science.gov (United States)

    Ertel, S.; Defrère, D.; Hinz, P.; Mennesson, B.; Kennedy, G. M.; Danchi, W. C.; Gelino, C.; Hill, J. M.; Hoffmann, W. F.; Rieke, G.; Shannon, A.; Spalding, E.; Stone, J. M.; Vaz, A.; Weinberger, A. J.; Willems, P.; Absil, O.; Arbo, P.; Bailey, V. P.; Beichman, C.; Bryden, G.; Downey, E. C.; Durney, O.; Esposito, S.; Gaspar, A.; Grenz, P.; Haniff, C. A.; Leisenring, J. M.; Marion, L.; McMahon, T. J.; Millan-Gabet, R.; Montoya, M.; Morzinski, K. M.; Pinna, E.; Power, J.; Puglisi, A.; Roberge, A.; Serabyn, E.; Skemer, A. J.; Stapelfeldt, K.; Su, K. Y. L.; Vaitheeswaran, V.; Wyatt, M. C.

    2018-05-01

    The Hunt for Observable Signatures of Terrestrial Systems survey searches for dust near the habitable zones (HZs) around nearby, bright main-sequence stars. We use nulling interferometry in the N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early-type and Sun-like stars, but decrease from {60}-21+16% for stars with previously detected cold dust to {8}-3+10% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focusing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable Large Binocular Telescope Interferometer (LBTI) excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are limited so far, and extending the survey is critical to informing the design of future exo-Earth imaging surveys.

  6. THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY

    International Nuclear Information System (INIS)

    Wright, N. J.; Drake, J. J.; Drew, J. E.; Vink, J. S.

    2010-01-01

    Cygnus OB2 is the nearest example of a massive star-forming region (SFR), containing over 50 O-type stars and hundreds of B-type stars. We have analyzed the properties of young stars in two fields in Cyg OB2 using the recently published deep catalog of Chandra X-ray point sources with complementary optical and near-IR photometry. Our sample is complete to ∼1 M sun (excluding A- and B-type stars that do not emit X-rays), making this the deepest study of the stellar properties and star formation history in Cyg OB2 to date. From Siess et al. isochrone fits to the near-IR color-magnitude diagram, we derive ages of 3.5 +0.75 -1.0 and 5.25 +1.5 -1.0 Myr for sources in the two fields, both with considerable spreads around the pre-main-sequence isochrones. The presence of a stellar population somewhat older than the present-day O-type stars, also fits in with the low fraction of sources with inner circumstellar disks (as traced by the K-band excess) that we find to be very low, but appropriate for a population of age ∼5 Myr. We also find that the region lacks a population of highly embedded sources that is often observed in young SFRs, suggesting star formation in the vicinity has declined. We measure the stellar mass functions (MFs) in this limit and find a power-law slope of Γ = -1.09 ± 0.13, in good agreement with the global mean value estimated by Kroupa. A steepening of the slope at higher masses is observed and suggested as due to the presence of the previous generation of stars that have lost their most massive members. Finally, combining our MF and an estimate of the radial density profile of the association suggests a total mass of Cyg OB2 of ∼3 x 10 4 M sun , similar to that of many of our Galaxy's most massive SFRs.

  7. Probing the ejecta of evolved massive stars in transition A VLT/SINFONI K-band survey

    Czech Academy of Sciences Publication Activity Database

    Oksala, Mary E.; Kraus, Michaela; Cidale, L.S.; Muratore, M.F.; Borges Fernandes, M.

    2013-01-01

    Roč. 558, October (2013), A17/1-A17/20 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1198; GA MŠk 7AMB12AR021 Institutional support: RVO:67985815 Keywords : infrared stars * spectroscopic techniques * massive stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  8. A PILOT DEEP SURVEY FOR X-RAY EMISSION FROM fuvAGB STARS

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, MS 183-900, California Institute of Technology, Pasadena, CA 91109 (United States); Sanz-Forcada, J.; Sánchez Contreras, C. [Astrobiology Center (CSIC-INTA), ESAC campus, E-28691 Villanueva de la Canada, Madrid (Spain); Stute, M. [Institute for Astronomy and Astrophysics, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen (Germany)

    2015-09-01

    We report the results of a pilot survey for X-ray emission from a newly discovered class of AGB stars with far-ultraviolet excesses (fuvAGB stars) using XMM-Newton and Chandra. We detected X-ray emission in three of six fuvAGB stars observed—the X-ray fluxes are found to vary in a stochastic or quasi-periodic manner on roughly hour-long timescales, and simultaneous UV observations using the Optical Monitor on XMM for these sources show similar variations in the UV flux. These data, together with previous studies, show that X-ray emission is found only in fuvAGB stars. From modeling the spectra, we find that the observed X-ray luminosities are ∼(0.002–0.2) L{sub ⊙} and the X-ray-emitting plasma temperatures are ∼(35–160) × 10{sup 6} K. The high X-ray temperatures argue against the emission arising in stellar coronae, or directly in an accretion shock, unless it occurs on a WD companion. However, none of the detected objects is a known WD-symbiotic star, suggesting that if WD companions are present, they are relatively cool (<20,000 K). In addition, the high X-ray luminosities specifically argue against emission originating in the coronae of main-sequence companions. We discuss several models for the X-ray emission and its variability and find that the most likely scenario for the origin of the X-ray (and FUV) emission involves accretion activity around a companion star, with confinement by strong magnetic fields associated with the companion and/or an accretion disk around it.

  9. Multiple Stars Across the H-R Diagram

    CERN Document Server

    Hubrig, Swetlana; Tokovinin, Andrei; Proceedings of the ESO Workshop held in Garching, Germany, 12-15 July 2005

    2008-01-01

    Stars show a marked tendency to be in systems of different multiplicity, ranging from simple binaries and triples to globular clusters with several 10,000's of stars. The formation and evolution of multiple systems remains a challenging part of astrophysics, and the contributions in this book report on the significant progress that had been made in this research field in the last years. The reader will find a variety of research topics addressed, such as the dynamical evolution in multiple stars, the effects of the environment on multiple system parameters, stellar evolution within multiple stars, multiplicity of massive stars, pre-main sequence and intermediate mass stars, multiplicity of low-mass stars from embedded protostars to open clusters, and brown dwarfs and extrasolar planets in multiples. This book presents the proceedings of the ESO Workshop on Multiple Stars across the H-R Diagram held in the summer of 2005.

  10. CHANDRA X-RAY DETECTION OF THE ENIGMATIC FIELD STAR BP Psc

    International Nuclear Information System (INIS)

    Kastner, Joel H.; Montez, Rodolfo; Rodriguez, David; Zuckerman, B.; Perrin, Marshall D.; Grosso, Nicolas; Forveille, Thierry; Graham, James R.

    2010-01-01

    BP Psc is a remarkable emission-line field star that is orbited by a dusty disk and drives a parsec-scale system of jets. We report the detection by the Chandra X-ray Observatory of a weak X-ray point source coincident with the centroids of optical/IR and submillimeter continuum emission at BP Psc. As the star's photosphere is obscured throughout the visible and near-infrared, the Chandra X-ray source likely represents the first detection of BP Psc itself. The X-rays most likely originate with magnetic activity at BP Psc and hence can be attributed either to a stellar corona or to star-disk interactions. The log of the ratio of X-ray to bolometric luminosity, log(L X /L bol ), lies in the range -5.8 to -4.2. This is smaller than log(L X /L bol ) ratios typical of low-mass, pre-main sequence stars, but is well within the log(L X /L bol ) range observed for rapidly rotating (FK Com-type) G giant stars. Hence, the Chandra results favor an exotic model wherein the disk/jet system of BP Psc is the result of its very recently engulfing a companion star or a giant planet, as the primary star ascended the giant branch.

  11. Star formations rates in the Galaxy

    International Nuclear Information System (INIS)

    Smith, L.F.; Mezger, P.G.; Biermann, P.

    1978-01-01

    Data relevant to giant HII regions in the Galaxy are collected. The production rate for Lyman continuum photons by O stars in giant HII regions is 4.7 10 52 s -1 in the whole Galaxy. The corresponding present rate of star formation is M (sun)/yr, of which 74% occurs in main spiral arms, 13% in the interarm region and 13% in the galactic center. The star formation rates, the observed heavy element and deuterium abundances in the solar neighbourhood are compared to model predictions based on star formation proportional to a power (k) of the gas surface density. The mass function is terminated at Msub(u)=100 M (sun) above and M 1 below. Msub(u)=50 M (sun) is also considered. Comparing with data derived from observations a) the star formation rate, b) metal abundances, c) deuterium abundances, and d) colors of the stellar population, we find that models of k=1/2 to 1, and M 1 1 M (sun) are formed together with O and B stars, but under rather special conditions of the interstellar gas, while lower mass stars form wherever dense molecular clouds exist. The high rate of star formation in the galactic center may represent a burst. (orig.) [de

  12. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation

    International Nuclear Information System (INIS)

    Paumard, T; Genzel, R; Martins, F; Nayakshin, S; Beloborodov, A M; Levin, Y; Trippe, S; Eisenhauer, F; Ott, T; Gillessen, S; Abuter, R; Cuadra, J; Alexander, T; Sternberg, A

    2006-01-01

    We report the definite spectroscopic identification of ≅ 40 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral Held spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ≅80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick ((|/R) ≅ 0.14) rotating disks. These stellar disks have fairly sharp inner edges (R ≅ 1'') and surface density profiles that scale as R -2 . We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the 'counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluster (ρ core ∼> 3 x 10 8 M o-dot pc -3 ), which has formed in the counter-clockwise disk. The stellar contents of both systems are remarkably similar, indicating a common age of ≅ 6±2 Myr. The K-band luminosity function of the massive stars suggests a top-heavy mass function and limits the total stellar mass contained in both disks to ≅ 1.5 x 10 4 M o-dot . Our data strongly favor in situ star formation from dense gas accretion disks for the two stellar disks. This conclusion is very clear for the clockwise disk and highly plausible for the counter-clockwise system

  13. K2-232 b: a transiting warm Saturn on an eccentric P = 11.2 d orbit around a V = 9.9 star

    Science.gov (United States)

    Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Sarkis, P.; Díaz, M. R.; Rabus, M.; Drass, H.; Lachaume, R.; Soto, M. G.; Jenkins, J. S.; Jones, M. I.; Henning, Th; Pantoja, B.; Vučković, M.

    2018-06-01

    We report the discovery of K2-232 b using photometric data of the Kepler K2 satellite coupled with ground-based spectroscopic observations. K2-232 b has a mass of MP = 0.397 ± 0.037 MJ, a radius of RP = 1.00 ± 0.020 RJ, and a moderately low equilibrium temperature of Teq = 1030 ± 15 K due to its relatively large star-planet separation of a = 0.1036 au. K2-232 b orbits its bright (V = 9.9) late F-type host star in an eccentric orbit (e = 0.258 ± 0.025) every 11.2 d, and is one of only four well-characterized warm Jupiters having host stars brighter than V = 10. We estimate a heavy element content of 20 ± 7 M⊕ for K2-232 b, which is consistent with standard models of giant planet formation. The bright host star of K2-232 b makes this system a well-suited target for detailed follow-up observations that will aid in the study of the atmospheres and orbital evolution of giant planets at moderate separations from their host stars.

  14. Chemically Dissected Rotation Curves of the Galactic Bulge from Main-sequence Proper Motions

    Science.gov (United States)

    Clarkson, William I.; Calamida, Annalisa; Sahu, Kailash C.; Brown, Thomas M.; Gennaro, Mario; Avila, Roberto J.; Valenti, Jeff; Debattista, Victor P.; Rich, R. Michael; Minniti, Dante; Zoccali, Manuela; Aufdemberge, Emily R.

    2018-05-01

    We report results from an exploratory study implementing a new probe of Galactic evolution using archival Hubble Space Telescope imaging observations. Precise proper motions are combined with photometric relative metallicity and temperature indices, to produce the proper-motion rotation curves of the Galactic bulge separately for metal-poor and metal-rich main-sequence samples. This provides a “pencil-beam” complement to large-scale wide-field surveys, which to date have focused on the more traditional bright giant branch tracers. We find strong evidence that the Galactic bulge rotation curves drawn from “metal-rich” and “metal-poor” samples are indeed discrepant. The “metal-rich” sample shows greater rotation amplitude and a steeper gradient against line-of-sight distance, as well as possibly a stronger central concentration along the line of sight. This may represent a new detection of differing orbital anisotropy between metal-rich and metal-poor bulge objects. We also investigate selection effects that would be implied for the longitudinal proper-motion cut often used to isolate a “pure-bulge” sample. Extensive investigation of synthetic stellar populations suggests that instrumental and observational artifacts are unlikely to account for the observed rotation curve differences. Thus, proper-motion-based rotation curves can be used to probe chemodynamical correlations for main-sequence tracer stars, which are orders of magnitude more numerous in the Galactic bulge than the bright giant branch tracers. We discuss briefly the prospect of using this new tool to constrain detailed models of Galactic formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope and obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  15. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-07-20

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 {+-} 0.11 M{sub Sun} main-sequence B star at a distance of 50 {+-} 5 kpc. The difference between its age and its flight time from the Galactic center is 105 {+-} 18 (stat) {+-}30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10{sup 8} yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10{sup 7} yr. For comparison, we derive arrival times of 10{sup 7} yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10{sup 7} yr of its lifetime is ruled out at the 3{sigma} level. Together with the 10{sup 8} yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars {approx_equal}200 Myr ago, and the progenitors of the HVSs took {approx_equal}100 Myr to enter the black hole's loss cone.

  16. THE NATURE OF HYPERVELOCITY STARS AND THE TIME BETWEEN THEIR FORMATION AND EJECTION

    International Nuclear Information System (INIS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.; Cohen, Judith G.

    2012-01-01

    We obtain Keck HIRES spectroscopy of HVS5, one of the fastest unbound stars in the Milky Way halo. We show that HVS5 is a 3.62 ± 0.11 M ☉ main-sequence B star at a distance of 50 ± 5 kpc. The difference between its age and its flight time from the Galactic center is 105 ± 18 (stat) ±30 (sys) Myr; flight times from locations elsewhere in the Galactic disk are similar. This 10 8 yr 'arrival time' between formation and ejection is difficult to reconcile with any ejection scenario involving massive stars that live for only 10 7 yr. For comparison, we derive arrival times of 10 7 yr for two unbound runaway B stars, consistent with their disk origin where ejection results from a supernova in a binary system or dynamical interactions between massive stars in a dense star cluster. For HVS5, ejection during the first 10 7 yr of its lifetime is ruled out at the 3σ level. Together with the 10 8 yr arrival times inferred for three other well-studied hypervelocity stars (HVSs), these results are consistent with a Galactic center origin for the HVSs. If the HVSs were indeed ejected by the central black hole, then the Galactic center was forming stars ≅200 Myr ago, and the progenitors of the HVSs took ≅100 Myr to enter the black hole's loss cone.

  17. MASCARA-1 b. A hot Jupiter transiting a bright mV = 8.3 A-star in a misaligned orbit

    Science.gov (United States)

    Talens, G. J. J.; Albrecht, S.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Van Eylen, V.; Van Winckel, H.; Pollacco, D.; McCormac, J.; Grundahl, F.; Fredslund Andersen, M.; Antoci, V.; Snellen, I. A. G.

    2017-10-01

    We report the discovery of MASCARA-1 b, which is the first exoplanet discovered with the Multi-site All-Sky CAmeRA (MASCARA). This exoplanet is a hot Jupiter orbiting a bright mV = 8.3, rapidly rotating (vsini⋆ > 100 km s-1) A8 star with a period of 2.148780 ± 8 × 10-6 days. The planet has a mass and radius of 3.7 ± 0.9 MJup and 1.5 ± 0.3 RJup, respectively. As with most hot Jupiters transiting early-type stars, we find a misalignment between the planet orbital axis and the stellar spin axis, which may be a signature of the formation and migration histories of this family of planets. MASCARA-1 b has a mean density of 1.5 ± 0.9 g cm-3 and an equilibrium temperature of 2570+50-30K, that is one of the highest temperatures known for a hot Jupiter to date. The system is reminiscent of WASP-33, but the host star lacks apparent delta-scuti variations, making the planet an ideal target for atmospheric characterization. We expect this to be the first of a series of hot Jupiters transiting bright early-type stars that will be discovered by MASCARA. Tables of the photometry and the reduced spectra as FITS files are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A73

  18. Amplification of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 lytic origin of DNA replication is dependent upon a cis-acting AT-rich region and an ORF50 response element and the trans-acting factors ORF50 (K-Rta) and K8 (K-bZIP)

    International Nuclear Information System (INIS)

    AuCoin, David P.; Colletti, Kelly S.; Cei, Sylvia A.; Papouskova, Iva; Tarrant, Margaret; Pari, Gregory S.

    2004-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), has significant sequence homology to Epstein-Barr virus (EBV). In cell culture, HHV8 is primarily latent, and viral genes associated with lytic replication are not expressed. Two lytic origins of DNA replication (oriLyt) are present within the HHV8 genome and are composed of an AT-rich region adjacent to GC-rich DNA sequences. We have now identified essential cis- and trans-acting elements required for oriLyt-dependent DNA replication. The transient replication assay was used to show that two AT-rich elements, three consensus AP1 transcription factor-binding sites, an ORF50 response element (RE), and a consensus TATA box motif are essential for efficient origin-dependent DNA replication. Transient transfection of luciferase reporter constructs indicated that the downstream region of the HHV8 oriLyt responds to ORF50 and suggests that part of the oriLyt may be an enhancer/promoter. In addition, a transient cotransfection-replication assay elucidated the set of trans-acting factors required for lytic DNA replication. These factors consist of homologues to the core replication proteins: ORF6 (ssDNA binding protein), ORF9 (DNA polymerase), ORF40-41 (primase-associated factor), ORF44 (helicase), ORF56 (primase), and ORF59 (polymerase processivity factor) common to all herpesviruses along with ORF50 (K-Rta) and K8 (K-bZIP)

  19. A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host.

    Science.gov (United States)

    Gaudi, B Scott; Stassun, Keivan G; Collins, Karen A; Beatty, Thomas G; Zhou, George; Latham, David W; Bieryla, Allyson; Eastman, Jason D; Siverd, Robert J; Crepp, Justin R; Gonzales, Erica J; Stevens, Daniel J; Buchhave, Lars A; Pepper, Joshua; Johnson, Marshall C; Colon, Knicole D; Jensen, Eric L N; Rodriguez, Joseph E; Bozza, Valerio; Novati, Sebastiano Calchi; D'Ago, Giuseppe; Dumont, Mary T; Ellis, Tyler; Gaillard, Clement; Jang-Condell, Hannah; Kasper, David H; Fukui, Akihiko; Gregorio, Joao; Ito, Ayaka; Kielkopf, John F; Manner, Mark; Matt, Kyle; Narita, Norio; Oberst, Thomas E; Reed, Phillip A; Scarpetta, Gaetano; Stephens, Denice C; Yeigh, Rex R; Zambelli, Roberto; Fulton, B J; Howard, Andrew W; James, David J; Penny, Matthew; Bayliss, Daniel; Curtis, Ivan A; DePoy, D L; Esquerdo, Gilbert A; Gould, Andrew; Joner, Michael D; Kuhn, Rudolf B; Labadie-Bartz, Jonathan; Lund, Michael B; Marshall, Jennifer L; McLeod, Kim K; Pogge, Richard W; Relles, Howard; Stockdale, Christopher; Tan, T G; Trueblood, Mark; Trueblood, Patricia

    2017-06-22

    The amount of ultraviolet irradiation and ablation experienced by a planet depends strongly on the temperature of its host star. Of the thousands of extrasolar planets now known, only six have been found that transit hot, A-type stars (with temperatures of 7,300-10,000 kelvin), and no planets are known to transit the even hotter B-type stars. For example, WASP-33 is an A-type star with a temperature of about 7,430 kelvin, which hosts the hottest known transiting planet, WASP-33b (ref. 1); the planet is itself as hot as a red dwarf star of type M (ref. 2). WASP-33b displays a large heat differential between its dayside and nightside, and is highly inflated-traits that have been linked to high insolation. However, even at the temperature of its dayside, its atmosphere probably resembles the molecule-dominated atmospheres of other planets and, given the level of ultraviolet irradiation it experiences, its atmosphere is unlikely to be substantially ablated over the lifetime of its star. Here we report observations of the bright star HD 195689 (also known as KELT-9), which reveal a close-in (orbital period of about 1.48 days) transiting giant planet, KELT-9b. At approximately 10,170 kelvin, the host star is at the dividing line between stars of type A and B, and we measure the dayside temperature of KELT-9b to be about 4,600 kelvin. This is as hot as stars of stellar type K4 (ref. 5). The molecules in K stars are entirely dissociated, and so the primary sources of opacity in the dayside atmosphere of KELT-9b are probably atomic metals. Furthermore, KELT-9b receives 700 times more extreme-ultraviolet radiation (that is, with wavelengths shorter than 91.2 nanometres) than WASP-33b, leading to a predicted range of mass-loss rates that could leave the planet largely stripped of its envelope during the main-sequence lifetime of the host star.

  20. Kmerind: A Flexible Parallel Library for K-mer Indexing of Biological Sequences on Distributed Memory Systems.

    Science.gov (United States)

    Pan, Tony; Flick, Patrick; Jain, Chirag; Liu, Yongchao; Aluru, Srinivas

    2017-10-09

    Counting and indexing fixed length substrings, or k-mers, in biological sequences is a key step in many bioinformatics tasks including genome alignment and mapping, genome assembly, and error correction. While advances in next generation sequencing technologies have dramatically reduced the cost and improved latency and throughput, few bioinformatics tools can efficiently process the datasets at the current generation rate of 1.8 terabases every 3 days. We present Kmerind, a high performance parallel k-mer indexing library for distributed memory environments. The Kmerind library provides a set of simple and consistent APIs with sequential semantics and parallel implementations that are designed to be flexible and extensible. Kmerind's k-mer counter performs similarly or better than the best existing k-mer counting tools even on shared memory systems. In a distributed memory environment, Kmerind counts k-mers in a 120 GB sequence read dataset in less than 13 seconds on 1024 Xeon CPU cores, and fully indexes their positions in approximately 17 seconds. Querying for 1% of the k-mers in these indices can be completed in 0.23 seconds and 28 seconds, respectively. Kmerind is the first k-mer indexing library for distributed memory environments, and the first extensible library for general k-mer indexing and counting. Kmerind is available at https://github.com/ParBLiSS/kmerind.

  1. On the temperatures, colours, and ages of metal-poor stars predicted by stellar models

    International Nuclear Information System (INIS)

    Van den Berg, D A

    2008-01-01

    Most (but not all) of the investigations that have derived the effective temperatures of metal-poor, solar-neighbourhood field stars, from analyses of their spectra or from the infrared flux method, favour a T eff scale that is ∼100-120 K cooler than that given by stellar evolutionary models. This seems to be at odds with photometric results, given that the application of current colour-T eff relations to the observed subdwarf colours suggests a preference for hotter temperatures. Moreover, the predicted temperatures for main-sequence stars at the lowest metallicities ([Fe/H] eff for them unless some fundamental modification is made to the adopted physics. No such problems are found if the temperatures of metal-poor field stars are ∼100-120 K warmer than most determinations. In this case, stellar models would appear to provide consistent interpretations of both field and globular cluster (GC) stars of low metallicity. However, this would imply, e.g. that M 92 has an [Fe/H] value of approximately - 2.2, which is obtained from analyses of Fe I lines, instead of approximately equal to - 2.4, as derived from Fe II lines (and favoured by studies of three-dimensional model atmospheres). Finally, the age of the local, Population II subgiant HD 140283 (and GCs having similar metal abundances) is estimated to be ∼13 Gyr, if diffusive processes are taken into account.

  2. HUBBLE TARANTULA TREASURY PROJECT. V. THE STAR CLUSTER HODGE 301: THE OLD FACE OF 30 DORADUS

    Energy Technology Data Exchange (ETDEWEB)

    Cignoni, M. [Department of Physics—University of Pisa, Largo Pontecorvo, 3 Pisa, I-56127 (Italy); Sabbi, E.; Marel, R. P. van der; Aloisi, A.; Panagia, N. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); Lennon, D. J. [European Space Astronomy Centre, Apdo. de Correo 78, E-28691 Villanueva de la Canada, Madrid (Spain); Tosi, M. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Gallagher, J. S. III [Department of Astronomy, University of Wisconsin-Madison, WI 53706 (United States); Marchi, G. de [European Space Research and Technology Centre, Keplerlaan 1, NL-2200 AG Noordwijk (Netherlands); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Larsen, S. [Department of Astrophysics, Radboud University, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Smith, L. J., E-mail: michele.cignoni@unipi.it [European Space Agency and Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    Based on color–magnitude diagrams (CMDs) from the Hubble Space Telescope  Hubble Tarantula Treasury Project (HTTP) survey, we present the star formation history of Hodge 301, the oldest star cluster in the Tarantula Nebula. The HTTP photometry extends faint enough to reach, for the first time, the cluster pre-main sequence (PMS) turn-on, where the PMS joins the main sequence. Using the location of this feature, along with synthetic CMDs generated with the latest PARSEC models, we find that Hodge 301 is older than previously thought, with an age between 26.5 and 31.5 Myr. From this age, we also estimate that between 38 and 61 Type II supernovae exploded in the region. The same age is derived from the main sequence turn-off, whereas the age derived from the post-main sequence stars is younger and between 20 and 25 Myr. Other relevant parameters are a total stellar mass of ≈8800 ± 800  M {sub ⊙} and average reddening E ( B − V ) ≈ 0.22–0.24 mag, with a differential reddening δE ( B − V ) ≈ 0.04 mag.

  3. A K-band spectral mini-survey of Galactic B[e] stars

    Czech Academy of Sciences Publication Activity Database

    Liermann, A.; Schnurr, O.; Kraus, Michaela; Kreplin, A.; Arias, M.L.; Cidale, L.S.

    2014-01-01

    Roč. 443, č. 2 (2014), s. 947-956 ISSN 0035-8711 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk(CZ) 7AMB14AR017 Institutional support: RVO:67985815 Keywords : circumstellar matter * stars: emission lines * supergiants Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics Impact factor: 5.107, year: 2014

  4. IUE observations of new A star candidate proto-planetary systems

    Science.gov (United States)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  5. Carbon-enhanced Metal-poor Stars in SDSS/SEGUE. I. Carbon Abundance Estimation and Frequency of CEMP Stars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Sun [NMSU, Las Cruces; Beers, Timothy C. [Michigan State U., JINA; Masseron, Thomas [Brussels U.; Plez, Bertrand [U. Montpellier 2, LUPM; Rockosi, Constance M. [Lick Observ.; Sobeck, Jennifer [Chicago U.; Yanny, Brian [Fermilab; Lucatello, Sara [Padua Observ.; Sivarani, Thirupathi [Bangalore, Indian Inst. Astrophys.; Placco, Vinicius M. [Sao Paulo U., IAG; Carollo, Daniela [Macquarie U.

    2013-10-17

    We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the SDSS and SEGUE. By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N > 15 to a precision better than 0.35 dex. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] > +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] ~ -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] ~ -2.4 to [Fe/H] ~ -3.7. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] < -2.5, 31% for [Fe/H] < -3.0, and 33% for [Fe/H] < -3.5. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] < -2.5. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] < -2.5 to about 75% for [Fe/H] < -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (|Z| < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather, decreases, due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] < -3.0. [abridged

  6. SPITZER OBSERVATIONS OF PASSIVE AND STAR-FORMING EARLY-TYPE GALAXIES: AN INFRARED COLOR-COLOR SEQUENCE

    International Nuclear Information System (INIS)

    Temi, Pasquale; Brighenti, Fabrizio; Mathews, William G.

    2009-01-01

    We describe the infrared properties of a large sample of early-type galaxies, comparing data from the Spitzer archive with Ks-band emission from the Two Micron All Sky Survey. While most representations of this data result in correlations with large scatter, we find a remarkably tight relation among colors formed by ratios of luminosities in Spitzer-Multiband Imaging Photometer bands (24, 70, and 160 μm) and the Ks band. Remarkably, this correlation among E and S0 galaxies follows that of nearby normal galaxies of all morphological types. In particular, the tight infrared color-color correlation for S0 galaxies alone follows that of the entire Hubble sequence of normal galaxies, roughly in order of galaxy type from ellipticals to spirals to irregulars. The specific star formation rate (SFR) of S0 galaxies estimated from the 24 μm luminosity increases with decreasing K-band luminosity (or stellar mass) from essentially zero, as with most massive ellipticals, to rates typical of irregular galaxies. Moreover, the luminosities of the many infrared-luminous S0 galaxies can significantly exceed those of the most luminous (presumably post-merger) E galaxies. SFRs in the most infrared-luminous S0 galaxies approach 1-10 solar masses per year. Consistently, with this picture we find that while most early-type galaxies populate an infrared red sequence, about 24% of the objects (mostly S0s) are in an infrared blue cloud together with late-type galaxies. For those early-type galaxies also observed at radio frequencies, we find that the far-infrared luminosities correlate with the mass of neutral and molecular hydrogen, but the scatter is large. This scatter suggests that the star formation may be intermittent or that similar S0 galaxies with cold gaseous disks of nearly equal mass can have varying radial column density distributions that alter the local and global SFRs.

  7. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  8. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  9. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  10. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eikenberry, Stephen S.; Garner, Alan [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611 (United States); Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael [Department of Astronomy, University of Virginia, 530 McCormick Rd, Charlottesville, VA 22904 (United States); Wisniewski, John [Department of Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States); Shetrone, Matthew [University of Texas, McDonald Observatory, 3640 Dark Sky Drive, Fort Davis, TX (United States); Bizyaev, Dmitry; Ebelke, Garrett [Apache Point Observatory, 2001 Apache Point Rd, Sunspot, NM 88349 (United States); Davenport, James R. A. [Department of Astronomy, University of Washington, Box 351580, U.W., Seattle, WA 98195-1580 (United States); Feuillet, Diane; Holtzman, Jon [Department of Astronomy, New Mexico State University, 1780 E University Ave, Las Cruces, NM 88003 (United States); Frinchaboy, Peter M. [Department of Physics and Astronomy, Texas Christian University, Box 298840, Fort Worth, TX 76129 (United States); Mészáros, Sz. [Instituto de Astrofísica de Canarias (IAC), E-38200 La Laguna, Tenerife (Spain); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); and others

    2014-04-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution.

  11. DISCOVERY OF TWO RARE RIGIDLY ROTATING MAGNETOSPHERE STARS IN THE APOGEE SURVEY

    International Nuclear Information System (INIS)

    Eikenberry, Stephen S.; Garner, Alan; Chojnowski, S. Drew; Majewski, Steven R.; Whelan, David G.; Borish, H. Jacob; Hearty, Fred; Li, Zhi-Yun; Nidever, David L.; Skrutskie, Michael; Wisniewski, John; Shetrone, Matthew; Bizyaev, Dmitry; Ebelke, Garrett; Davenport, James R. A.; Feuillet, Diane; Holtzman, Jon; Frinchaboy, Peter M.; Mészáros, Sz.; Schneider, Donald P.

    2014-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE)—one of the Sloan Digital Sky Survey III programs—is using near-infrared (NIR) spectra of ∼100,000 red giant branch star candidates to study the structure of the Milky Way. In the course of the survey, APOGEE also acquires spectra of hot field stars to serve as telluric calibrators for the primary science targets. We report the serendipitous discovery of two rare, fast-rotating B-stars of the σ Ori E type among those blue field stars observed during the first year of APOGEE operations. Both of the discovered stars display the spectroscopic signatures of rigidly rotating magnetospheres (RRM) common to this class of highly magnetized (B ∼ 10 kGauss) stars, increasing the number of known RRM stars by ∼10%. One (HD 345439) is a main-sequence B-star with unusually strong He absorption (similar to σ Ori E), while the other (HD 23478) fits a ''He-normal'' B3IV classification. We combine the APOGEE discovery spectra with other optical and NIR spectra of these two stars, and of σ Ori E itself, to show how NIR spectroscopy can be a uniquely powerful tool for discovering more of these rare objects, which may show little/no RRM signatures in their optical spectra. We discuss the potential for further discovery of σ Ori E type stars, as well as the implications of our discoveries for the population of these objects and insights into their origin and evolution

  12. Star Masses and Star-Planet Distances for Earth-like Habitability.

    Science.gov (United States)

    Waltham, David

    2017-01-01

    This paper presents statistical estimates for the location and duration of habitable zones (HZs) around stars of different mass. The approach is based upon the assumption that Earth's location, and the Sun's mass, should not be highly atypical of inhabited planets. The results support climate-model-based estimates for the location of the Sun's HZ except models giving a present-day outer-edge beyond 1.64 AU. The statistical approach also demonstrates that there is a habitability issue for stars smaller than 0.65 solar masses since, otherwise, Earth would be an extremely atypical inhabited world. It is difficult to remove this anomaly using the assumption that poor habitability of planets orbiting low-mass stars results from unfavorable radiation regimes either before, or after, their stars enter the main sequence. However, the anomaly is well explained if poor habitability results from tidal locking of planets in the HZs of small stars. The expected host-star mass for planets with intelligent life then has a 95% confidence range of 0.78 M ⊙ planets with at least simple life is 0.57 M ⊙  < M < 1.64 M ⊙ . Key Words: Habitability-Habitable zone-Anthropic-Red dwarfs-Initial mass function. Astrobiology 17, 61-77.

  13. Constraining the magnitude of the largest event in a foreshock-main shock-aftershock sequence

    Science.gov (United States)

    Shcherbakov, Robert; Zhuang, Jiancang; Ogata, Yosihiko

    2018-01-01

    Extreme value statistics and Bayesian methods are used to constrain the magnitudes of the largest expected earthquakes in a sequence governed by the parametric time-dependent occurrence rate and frequency-magnitude statistics. The Bayesian predictive distribution for the magnitude of the largest event in a sequence is derived. Two types of sequences are considered, that is, the classical aftershock sequences generated by large main shocks and the aftershocks generated by large foreshocks preceding a main shock. For the former sequences, the early aftershocks during a training time interval are used to constrain the magnitude of the future extreme event during the forecasting time interval. For the latter sequences, the earthquakes preceding the main shock are used to constrain the magnitudes of the subsequent extreme events including the main shock. The analysis is applied retrospectively to past prominent earthquake sequences.

  14. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Simon H Tausch

    Full Text Available The assembly of viral or endosymbiont genomes from Next Generation Sequencing (NGS data is often hampered by the predominant abundance of reads originating from the host organism. These reads increase the memory and CPU time usage of the assembler and can lead to misassemblies.We developed RAMBO-K (Read Assignment Method Based On K-mers, a tool which allows rapid and sensitive removal of unwanted host sequences from NGS datasets. Reaching a speed of 10 Megabases/s on 4 CPU cores and a standard hard drive, RAMBO-K is faster than any tool we tested, while showing a consistently high sensitivity and specificity across different datasets.RAMBO-K rapidly and reliably separates reads from different species without data preprocessing. It is suitable as a straightforward standard solution for workflows dealing with mixed datasets. Binaries and source code (java and python are available from http://sourceforge.net/projects/rambok/.

  15. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  16. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star.

    Science.gov (United States)

    Nugent, Peter E; Sullivan, Mark; Cenko, S Bradley; Thomas, Rollin C; Kasen, Daniel; Howell, D Andrew; Bersier, David; Bloom, Joshua S; Kulkarni, S R; Kandrashoff, Michael T; Filippenko, Alexei V; Silverman, Jeffrey M; Marcy, Geoffrey W; Howard, Andrew W; Isaacson, Howard T; Maguire, Kate; Suzuki, Nao; Tarlton, James E; Pan, Yen-Chen; Bildsten, Lars; Fulton, Benjamin J; Parrent, Jerod T; Sand, David; Podsiadlowski, Philipp; Bianco, Federica B; Dilday, Benjamin; Graham, Melissa L; Lyman, Joe; James, Phil; Kasliwal, Mansi M; Law, Nicholas M; Quimby, Robert M; Hook, Isobel M; Walker, Emma S; Mazzali, Paolo; Pian, Elena; Ofek, Eran O; Gal-Yam, Avishay; Poznanski, Dovi

    2011-12-14

    Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

  17. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with Ca II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-01-01

    Radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren 'HVR', (1986) are reported. Most of the velocities are determined to better than 2 km/s precision. The kinematic properties of the Ca II emission stars with strong Li are found to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. It is suggested following Jones and Herbig (1979), that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  18. Rotation and kinematics of the premain-sequence stars in Taurus-Auriga with CA II emission

    Science.gov (United States)

    Hartmann, Lee W.; Soderblom, David R.; Stauffer, John R.

    1987-04-01

    The authors report radial velocities and v sin i values for the stars in the Taurus-Auriga region that were found to have strong Ca II H and K emission by Herbig, Vrba, and Rydgren (HVR). Most of the velocities are determined to better than 2 km s-1 precision. The authors find the kinematic properties of the Ca II emission stars with strong Li to be indistinguishable from conventional T Tauris in Taurus-Auriga, contrary to HVR. These Li-rich stars also rotate like T Tauris. Most of the stars that lack Li are probable or possible members of the Hyades, in the foreground, and are among the brightest and most active stars in that cluster for their spectral types. The authors suggest, following Jones and Herbig, that the apparent absence of low-mass stars older than 10 Myr in Taurus-Auriga is real, and is due to the finite lifetime of the cloud.

  19. A particle dark matter footprint on the first generation of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, F-75014 Paris (France)

    2014-05-01

    Dark matter particles with properties identical to those of dark matter candidates hinted at by several international collaborations dedicated to the experimental detection of dark matter (DAMA, COGENT, CRESST, and CDMS-II, although not, most notably, by LUX), which also have a dark matter asymmetry that is identical to the observed baryon asymmetry (Planck and Wilkinson Microwave Anisotropy Probe), may produce a significant impact on the evolution of the first generation of low-metallicity stars. The lifetimes of these stars in different phases of stellar evolution are significantly extended, namely, in the pre-main sequence, main sequence, and red giant phases. In particular, intermediate-mass stars in the red giant phase experience significant changes in their luminosity and chemical composition. The annihilations of dark matter particles affect the interior of the star in such a way that the 3α reaction becomes less efficient in the production of carbon and oxygen. This dark matter effect contradicts the excess of carbon and other metals observed today in stars of low mass and low metallicity. Hence, we can impose an upper limit on the dark matter halo density, and therefore on the redshift, at which the first generation of low-metallicity stars formed.

  20. Magnetic Modeling of Inflated Low-mass Stars Using Interior Fields No Larger than ˜10 kG

    Science.gov (United States)

    MacDonald, James; Mullan, D. J.

    2017-11-01

    We have previously reported on models of low-mass stars in which the presence of inflated radii is ascribed to magnetic fields that impede the onset of convection. Some of our magneto-convection models have been criticized because, when they were first reported by Mullan & MacDonald, the deep interior fields were found to be very large (50-100 MG). Such large fields are now known to be untenable. For example, Browning et al. used stability arguments to suggest that interior fields in low-mass stars cannot be larger than ˜1 MG. Moreover, 3D models of turbulent stellar dynamos suggest that fields generated in low-mass interiors may be not much stronger than 10-20 kG. In the present paper, we present magneto-convective models of inflated low-mass stars in which the interior fields are not permitted to be stronger than 10 kG. These models are used to fit empirical data for 15 low-mass stars for which precise masses and radii have been measured. We show that our 10 kG magneto-convective models can replicate the empirical radii and effective temperatures for 14 of the stars. In the case of the remaining star (in the Praesepe cluster), two different solutions have been reported in the literature. We find that one of these solutions can be fitted well with our model using the nominal age of Praesepe (800 Myr). However, the second solution cannot be fitted unless the star’s age is assumed to be much younger (˜150 Myr).

  1. Star-formation functions and the genetics of pulsar origin

    International Nuclear Information System (INIS)

    Guseinov, O.K.; Kasumov, F.K.; Yusifov, I.M.

    1982-01-01

    The star-formation function and the genetics of pulsar origin are discussed. It is shown that the progenitors of pulsars are main-sequence stars with masses of >5M/sub sun/ for almost all the kinds of initial mass functions discussed in the literature. Pulsars are genetically connected with supernova outbursts (mainly of type II). The probability of pulsar formation as a result of ''quiet collapse'' is extremely low. Thus, the hypothesis that pulsars are formed from objects of the extreme planar component of the Galaxy is confirmed on more complete and statistically uniform material

  2. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... spotted magnetic variable that shows a complex rotational light variation with a period of Prot= 5.684 59 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period, that is, a subharmonic frequency...

  3. A mini atlas of K-band spectra of southern symbiotic stars

    Czech Academy of Sciences Publication Activity Database

    Marchiano, P.E.; Cidale, L.S.; Arias, M.L.; Borges Fernandes, M.; Kraus, Michaela

    2015-01-01

    Roč. 57, č. 1 (2015), s. 87-89 E-ISSN 1669-9521 R&D Projects: GA ČR(CZ) GA14-21373S; GA MŠk(CZ) 7AMB14AR017 Institutional support: RVO:67985815 Keywords : binaries * symbiotic * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b57/2015BAAA...57...87M.pdf

  4. K2-141 b. A 5-M⊕ super-Earth transiting a K7 V star every 6.7 h

    Science.gov (United States)

    Barragán, O.; Gandolfi, D.; Dai, F.; Livingston, J.; Persson, C. M.; Hirano, T.; Narita, N.; Csizmadia, Sz.; Winn, J. N.; Nespral, D.; Prieto-Arranz, J.; Smith, A. M. S.; Nowak, G.; Albrecht, S.; Antoniciello, G.; Bo Justesen, A.; Cabrera, J.; Cochran, W. D.; Deeg, H.; Eigmuller, Ph.; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E.; Hatzes, A. P.; Hidalgo, D.; Johnson, M. C.; Korth, J.; Palle, E.; Patzold, M.; Rauer, H.; Tanaka, Y.; Van Eylen, V.

    2018-05-01

    We report on the discovery of K2-141 b (EPIC 246393474 b), an ultra-short-period super-Earth on a 6.7 h orbit transiting an active K7 V star based on data from K2 campaign 12. We confirmed the planet's existence and measured its mass with a series of follow-up observations: seeing-limited MuSCAT imaging, NESSI high-resolution speckle observations, and FIES and HARPS high-precision radial-velocity monitoring. K2-141 b has a mass of 5.31 ± 0.46 M⊕ and radius of 1.54-0.09+0.10 R⊕, yielding a mean density of 8.00-1.45+1.83 g cm-3 and suggesting a rocky-iron composition. Models indicate that iron cannot exceed 70% of the total mass. With an orbital period of only 6.7 h, K2-141 b is the shortest-period planet known to date with a precisely determined mass. Based on observations obtained with (a) the Nordic Optical Telescope (NOT), operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos (ORM) of the Instituto de Astrofisica de Canarias (IAC); (b) the 3.6m ESO telescope at La Silla Observatory under program ID 099.C-0491; (c) the Kepler space telescope in its extended mission K2.Tables of the light curve data and the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A95

  5. H-EtICT-K8 (Health Education through ICT for K-8): Computers and Your Health

    Science.gov (United States)

    Coklar, A. Naci; Sendag, Serkan; Eristi, S. Duygu

    2007-01-01

    This paper concentrates on a software prepared as a series of Health Education for K8 students in Turkey. Bearing in mind that healthy mind rests in a healthy body, the researchers prepared a series of software on different aspects of health. This specific software tries to donate the K8 students with healthy use of computers in everyday life.…

  6. STAR FORMATION IN 30 DORADUS

    International Nuclear Information System (INIS)

    De Marchi, Guido; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Paresce, Francesco; Panagia, Nino; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard; Beccari, Giacomo; Balick, Bruce; Dopita, Michael A.; Frogel, Jay A.; Calzetti, Daniela; Marcella Carollo, C.; Disney, Michael J.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.

    2011-01-01

    Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ∼4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to ∼30 Myr, with a median age of ∼12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.

  7. Discovery of new dipper stars with K2: a window into the inner disc region of T Tauri stars

    Science.gov (United States)

    Hedges, Christina; Hodgkin, Simon; Kennedy, Grant

    2018-05-01

    In recent years, a new class of young stellar object (YSO) has been defined, referred to as dippers, where large transient drops in flux are observed. These dips are too large to be attributed to stellar variability, last from hours to days and can reduce the flux of a star by 10-50 per cent. This variability has been attributed to occultations by warps or accretion columns near the inner edge of circumstellar discs. Here, we present 95 dippers in the Upper Scorpius association and ρ Ophiuchus cloud complex found in K2 Campaign 2 data using supervised machine learning with a random forest classifier. We also present 30 YSOs that exhibit brightening events on the order of days, known as bursters. Not all dippers and bursters are known members, but all exhibit infrared excesses and are consistent with belonging to either of the two young star-forming regions. We find 21.0 ± 5.5 per cent of stars with discs are dippers for both regions combined. Our entire dipper sample consists only of late-type (KM) stars, but we show that biases limit dipper discovery for earlier spectral types. Using the dipper properties as a proxy, we find that the temperature at the inner disc edge is consistent with interferometric results for similar and earlier type stars.

  8. Tables and intercomparisons of evolutionary sequences of models for massive stars

    International Nuclear Information System (INIS)

    Chin, Chaowen; Stothers, R.B.

    1990-01-01

    Tables of evolutionary sequences of models for massive stars have been prepared for a variety of physical input parameters that are normally treated as free. These parameters include the interior convective mixing scheme, the mixing length in the outer convective envelope, the rate of stellar-wind mass loss, the initial stellar mass, and the initial chemical composition. Ranges of specified initial mass and initial chemical composition are M = 10-120 solar masses, Xe = 0.602-0.739, and Ze = 0.021-0.044. The tables cover evolution of the star from the ZAMS to either the end of core H burning or the end of core He burning. Differences among the evolutionary tracks are illustrated primarily in terms of the interior mixing scheme, since the amount and timing of stellar wind mass loss are still very uncertain for initial masses above about 30 solar masses. 52 refs

  9. BANYAN. IV. Fundamental parameters of low-mass star candidates in nearby young stellar kinematic groups—isochronal age determination using magnetic evolutionary models

    Energy Technology Data Exchange (ETDEWEB)

    Malo, Lison; Doyon, René; Albert, Loïc; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan [Département de physique and Observatoire du Mont-Mégantic, Université de Montréal, Montréal, QC H3C 3J7 (Canada); Feiden, Gregory A. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Riedel, Adric, E-mail: malo@cfht.hawaii.edu, E-mail: doyon@astro.umontreal.ca [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States)

    2014-09-01

    Based on high-resolution optical spectra obtained with ESPaDOnS at Canada-France-Hawaii Telescope, we determine fundamental parameters (T {sub eff}, R, L {sub bol}, log g, and metallicity) for 59 candidate members of nearby young kinematic groups. The candidates were identified through the BANYAN Bayesian inference method of Malo et al., which takes into account the position, proper motion, magnitude, color, radial velocity, and parallax (when available) to establish a membership probability. The derived parameters are compared to Dartmouth magnetic evolutionary models and field stars with the goal of constraining the age of our candidates. We find that, in general, low-mass stars in our sample are more luminous and have inflated radii compared to older stars, a trend expected for pre-main-sequence stars. The Dartmouth magnetic evolutionary models show a good fit to observations of field K and M stars, assuming a magnetic field strength of a few kG, as typically observed for cool stars. Using the low-mass members of the β Pictoris moving group, we have re-examined the age inconsistency problem between lithium depletion age and isochronal age (Hertzspring-Russell diagram). We find that the inclusion of the magnetic field in evolutionary models increases the isochronal age estimates for the K5V-M5V stars. Using these models and field strengths, we derive an average isochronal age between 15 and 28 Myr and we confirm a clear lithium depletion boundary from which an age of 26 ± 3 Myr is derived, consistent with previous age estimates based on this method.

  10. White Dwarfs in Star Clusters: The Initial-Final Mass Relation for Stars from 0.85 to 8 M$_\\odot$

    Science.gov (United States)

    Cummings, Jeffrey; Kalirai, Jason; Tremblay, P.-E.; Ramírez-Ruiz, Enrico

    2018-01-01

    The spectroscopic study of white dwarfs provides both their mass, cooling age, and intrinsic photometric properties. For white dwarfs in the field of well-studied star clusters, this intrinsic photometry can be used to determine if they are members of that star cluster. Comparison of a member white dwarf's cooling age to its total cluster's age provides the evolutionary timescale of its progenitor star, and hence the mass. This is the initial-final mass relation (IFMR) for stars, which gives critical information on how a progenitor star evolves and loses mass throughout its lifetime, and how this changes with progenitor mass. Our work, for the first time, presents a uniform analysis of 85 white dwarf cluster members spanning from progenitor masses of 0.85 to 8 M$_\\odot$. Comparison of our work to theoretical IFMRs shows remarkable consistency in their shape but differences remain. We will discuss possible explanations for these differences, including the effects of stellar rotation.

  11. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  12. Magnetic massive stars as progenitors of `heavy' stellar-mass black holes

    Science.gov (United States)

    Petit, V.; Keszthelyi, Z.; MacInnis, R.; Cohen, D. H.; Townsend, R. H. D.; Wade, G. A.; Thomas, S. L.; Owocki, S. P.; Puls, J.; ud-Doula, A.

    2017-04-01

    The groundbreaking detection of gravitational waves produced by the inspiralling and coalescence of the black hole (BH) binary GW150914 confirms the existence of 'heavy' stellar-mass BHs with masses >25 M⊙. Initial characterization of the system by Abbott et al. supposes that the formation of BHs with such large masses from the evolution of single massive stars is only feasible if the wind mass-loss rates of the progenitors were greatly reduced relative to the mass-loss rates of massive stars in the Galaxy, concluding that heavy BHs must form in low-metallicity (Z ≲ 0.25-0.5 Z⊙) environments. However, strong surface magnetic fields also provide a powerful mechanism for modifying mass-loss and rotation of massive stars, independent of environmental metallicity. In this paper, we explore the hypothesis that some heavy BHs, with masses >25 M⊙ such as those inferred to compose GW150914, could be the natural end-point of evolution of magnetic massive stars in a solar-metallicity environment. Using the MESA code, we developed a new grid of single, non-rotating, solar-metallicity evolutionary models for initial zero-age main sequence masses from 40 to 80 M⊙ that include, for the first time, the quenching of the mass-loss due to a realistic dipolar surface magnetic field. The new models predict terminal-age main-sequence (TAMS) masses that are significantly greater than those from equivalent non-magnetic models, reducing the total mass lost by a strongly magnetized 80 M⊙ star during its main-sequence evolution by 20 M⊙. This corresponds approximately to the mass-loss reduction expected from an environment with metallicity Z = 1/30 Z⊙.

  13. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  14. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  15. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  16. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    International Nuclear Information System (INIS)

    Henderson, Calen B.; Stassun, Keivan G.

    2012-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ∼50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days X /L bol ≈ –3.3). However, we find a significant positive correlation between L X /L bol and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  17. Ultraviolet spectrophotometry from Gemini 11 of stars in Orion

    International Nuclear Information System (INIS)

    Morgan, T.H.; Spear, G.G.; Kondo, Y.; Henize, K.G.

    1975-01-01

    Ultraviolet spectrophotometry in the wavelength region 2600--3600 A is reported for the bright early-type stars β, eta, γ, delta, iota, epsilon, sigma, xi, and kappa Ori. The results are in good agreement with other observations, and with the possible exception of the supergiants, are in good agreement with recent line-blanketed model atmospheres. There is evidence that the supergiants possess a small ultraviolet deficiency shortward of 3000 A relative to main-sequence stars of similar spectral type. The most extreme example of this phenomenon is the star kappa Ori

  18. Polarimetry of the T Tau and Ae/Be Herbig stars

    Energy Technology Data Exchange (ETDEWEB)

    Bergner, Yu K; Miroshnichenko, A S; Yudin, R V; Yutanov, N Yu; Dzhakuseva, K G; Mukanov, D B

    1987-03-01

    The results of polarimetric observations of stars suspected to be at the Pre-Main-Sequence stage are given. Simple phenomenological models of circumstellar shells are proposed for interpretation of the observed polarization variations.

  19. Central limit theorems for sequences with m(n)-dependent main part

    NARCIS (Netherlands)

    Nieuwenhuis, G.

    1992-01-01

    Let (Xi(n); n ϵ N, 1⩽i⩽h(n)) be a double sequence of random variables with h(n)→∞ as n→∞. Suppose that the sequence can be split into two parts: an m(n)-dependent sequence (Xi,m(n); n ϵ N, 1⩽i⩽h(n)) of main terms and a sequence (Xi,m(n); n ϵ N, 1⩽i⩽h(n)) of residual terms. Here (m(n)) may be

  20. Delayed star formation in isolated dwarf galaxies: Hubble space telescope star formation history of the Aquarius dwarf irregular

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart, Tasmania, 7001 Australia (Australia); Weisz, Daniel R. [Department of Astronomy, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Dolphin, Andrew E. [Raytheon, 1151 East Hermans Road, Tucson, AZ 85706 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55441 (United States); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, Dominion Astrophysical Observatory, Victoria, BC, V9E 2E7 Canada (Canada); Brooks, Alyson M. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Leaman, Ryan, E-mail: andrew.cole@utas.edu.au, E-mail: drw@ucsc.edu, E-mail: adolphin@raytheon.com, E-mail: skillman@astro.umn.edu, E-mail: alan.mcconnachie@nrc-cnrc.gc.ca, E-mail: abrooks@physics.rutgers.edu, E-mail: rleaman@iac.es [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)

    2014-11-01

    We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M {sub H} {sub I}/M {sub *}, dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

  1. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  2. Constraining the Final Fates of Massive Stars by Oxygen and Iron Enrichment History in the Galaxy

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2018-01-01

    Recent observational studies of core-collapse supernovae suggest that only stars with zero-age main-sequence masses smaller than 16–18 {M}ȯ explode when they are red supergiants, producing Type IIP supernovae. This may imply that more massive stars produce other types of supernovae or they simply collapse to black holes without giving rise to bright supernovae. This failed supernova hypothesis can lead to significantly inefficient oxygen production because oxygen abundantly produced in inner layers of massive stars with zero-age main-sequence masses around 20–30 {M}ȯ might not be ejected into the surrounding interstellar space. We first assume an unspecified population of oxygen injection events related to massive stars and obtain a model-independent constraint on how much oxygen should be released in a single event and how frequently such events should happen. We further carry out one-box galactic chemical enrichment calculations with different mass ranges of massive stars exploding as core-collapse supernovae. Our results suggest that the model assuming that all massive stars with 9–100 {M}ȯ explode as core-collapse supernovae is still most appropriate in explaining the solar abundances of oxygen and iron and their enrichment history in the Galaxy. The oxygen mass in the Galaxy is not explained when assuming that only massive stars with zero-age main-sequence masses in the range of 9–17 {M}ȯ contribute to the galactic oxygen enrichment. This finding implies that a good fraction of stars more massive than 17 {M}ȯ should eject their oxygen layers in either supernova explosions or some other mass-loss processes.

  3. THE STAR FORMATION HISTORIES OF RED-SEQUENCE GALAXIES, MASS-TO-LIGHT RATIOS AND THE FUNDAMENTAL PLANE

    International Nuclear Information System (INIS)

    Allanson, Steven P.; Hudson, Michael J.; Smith, Russell J.; Lucey, John R.

    2009-01-01

    This paper addresses the challenge of understanding the typical star formation histories of red-sequence galaxies, using linestrength indices and mass-to-light ratios as complementary constraints on their stellar age distribution. We first construct simple parametric models of the star formation history that bracket a range of scenarios, and fit these models to the linestrength indices of low-redshift cluster red-sequence galaxies. For giant galaxies, we confirm the downsizing trend, i.e., the stellar populations are younger, on average, for lower σ galaxies. We find, however, that this trend flattens or reverses at σ ∼ -1 . We then compare predicted stellar mass-to-light ratios with dynamical mass-to-light ratios derived from the fundamental plane (FP), or by the SAURON group. For galaxies with σ ∼ 70 km s -1 , models with a late 'frosting' of young stars and models with exponential star formation histories have stellar mass-to-light ratios that are larger than observed dynamical mass-to-light ratios by factors of 1.7 and 1.4, respectively, and so are rejected. The single stellar population (SSP) model is consistent with the FP, and requires a modest amount of dark matter (between 20% and 30%) to account for the difference between stellar and dynamical mass-to-light ratios. A model in which star formation was 'quenched' at intermediate ages is also consistent with the observations, although in this case less dark matter is required for low mass galaxies. We also find that the contribution of stellar populations to the 'tilt' of the fundamental plane is highly dependent on the assumed star formation history: for the SSP model, the tilt of the FP is driven primarily by stellar-population effects. For a quenched model, two-thirds of the tilt is due to stellar populations and only one-third is due to dark matter or non-homology.

  4. LSPM J1314+1320: An Oversized Magnetic Star with Constraints on the Radio Emission Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, James; Mullan, D. J. [Dept. Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2017-07-10

    LSPM J1314+1320 (=NLTT 33370) is a binary star system consisting of two nearly identical pre-main-sequence stars of spectral type M7. The system is remarkable among ultracool dwarfs for being the most luminous radio emitter over the widest frequency range. Masses and luminosities are at first sight consistent with the system being coeval at age ∼80 Myr according to standard (nonmagnetic) evolutionary models. However, these models predict an average effective temperature of ∼2950 K, which is 180 K hotter than the empirical value. Thus, the empirical radii are oversized relative to the standard models by ≈13%. We demonstrate that magnetic stellar models can quantitatively account for the oversizing. As a check on our models, we note that the radio emission limits the surface magnetic field strengths: the limits depend on identifying the radio emission mechanism. We find that the field strengths required by our magnetic models are too strong to be consistent with gyrosynchrotron emission but are consistent with electron cyclotron maser emission.

  5. VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)

    Science.gov (United States)

    Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.

    2016-02-01

    In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass

  6. HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD

    International Nuclear Information System (INIS)

    Bakos, G. A.; Torres, G.; Pal, A.; Hartman, J.; Noyes, R. W.; Latham, D. W.; Sasselov, D. D.; Sipocz, B.; Esquerdo, G. A.; Kovacs, Gabor; Fernandez, J.; Kovacs, Geza; Moor, A.; Fischer, D. A.; Isaacson, H.; Johnson, J. A.; Marcy, G. W.; Howard, A.; Butler, R. P.; Vogt, S.

    2010-01-01

    We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V = 9.587) and metal rich ([Fe/H] = +0.31 ± 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 ± 0.0000071 days and produces a transit signal with depth of 4.2 mmag, the shallowest found by transit searches that is due to a confirmed planet. We present a global analysis of the available photometric and radial velocity (RV) data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17 M + , 3.8 R + ) both in mass M p = 0.081 ± 0.009 M J (25.8 ± 2.9 M + ) and radius R p = 0.422 ± 0.014 R J (4.73 ± 0.16 R + ). HAT-P-11b orbits in an eccentric orbit with e = 0.198 ± 0.046 and ω = 355. 0 2 ± 17. 0 3, causing a reflex motion of its parent star with amplitude 11.6 ± 1.2 m s -1 , a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is T c = 2454605.89132 ± 0.00032 (BJD), with duration 0.0957 ± 0.0012 days, and secondary eclipse epoch of 2454608.96 ± 0.15 days (BJD). The basic stellar parameters of the host star are M * = 0.809 +0.020 -0.027 M sun , R * = 0.752 ± 0.021 R sun , and T eff* = 4780 ± 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission; this should make possible fruitful investigations of the detailed physical characteristic of both the planet and its parent star at unprecedented precision. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. This will be particularly useful for eccentric TEPs with low-amplitude RV variations in Kepler's field. We also present a blend analysis, that for the first time treats the case of a

  7. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the

  8. K-band spectroscopic metallicities and temperatures of M-dwarf stars

    Directory of Open Access Journals (Sweden)

    Rojas-Ayala Bárbara

    2013-04-01

    Full Text Available I present the metallicity and effective temperature techniques developed for M dwarf stars by Rojas-Ayala et al. (2010, 2012. These techniques are based on absorption features present in the modest resolution K-band spectra (R∼2700 of M dwarfs and have been calibrated using FGK+M dwarf pairs and synthetic atmosphere models. The H2O-K2 index seems to overestimate the effective temperatures of M dwarfs when compared to interferometric measurements. The metallicity distribution of the M dwarf host candidates by the Kepler Mission hints that jovian-size planets form preferentially around solar and super-solar metallicity environments, while small rocky planet host exhibit a wide range of metallicities, just like in their solar-type counterparts.

  9. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  10. A PC based 8K multichannel analyzer [Paper No.: I2

    International Nuclear Information System (INIS)

    Bahere, A.R.; Vaidya, P.P.; Tabib, J.D.; Jha, Kuldip

    1993-01-01

    This paper describes a PC add on MCA card for nuclear spectroscopy applications. It consists of a 8K nuclear ADC, control logic and 8K * 24 bit dual ported histogram memory. The integral card assembly plugs into a single I/O expansion slot of the IBM-PC XT/AT or any compatible PC. This together with the data acquisition and processing software package, developed in Turbo C transforms the PC into a powerful Multichannel Analyzer. In the design of the MCA card, the PC interface, sequencers and control logic is implemented using programmable logic devices in order to achieve compact, efficient and reliable design. The dual ported 8K * 24 bit histogram memory is implemented using conventional static memory with external arbitration logic. Built-in ADC is designed around commercially available monolithic successive approximation type ADC chip. The low differential nonlinearity is achieved using an innovative interpolation technique along with Gatti sliding technique. The data acquisition and processing package developed in Turbo C, includes interrupt driven spectrum display driver and a pull down menu based user interface. Data processing features include spectrum smoothing, auto peak search and energy calibration. Separate memory buffers are used for data acquisition and data processing. Thus it is possible to acquire data in the background while analyzing an earlier acquired data. (author). 2 refs., 4 figs

  11. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  12. The ionisation parameter of star-forming galaxies evolves with the specific star formation rate

    Science.gov (United States)

    Kaasinen, Melanie; Kewley, Lisa; Bian, Fuyan; Groves, Brent; Kashino, Daichi; Silverman, John; Kartaltepe, Jeyhan

    2018-04-01

    We investigate the evolution of the ionisation parameter of star-forming galaxies using a high-redshift (z ˜ 1.5) sample from the FMOS-COSMOS survey and matched low-redshift samples from the Sloan Digital Sky Survey. By constructing samples of low-redshift galaxies for which the stellar mass (M*), star formation rate (SFR) and specific star formation rate (sSFR) are matched to the high-redshift sample we remove the effects of an evolution in these properties. We also account for the effect of metallicity by jointly constraining the metallicity and ionisation parameter of each sample. We find an evolution in the ionisation parameter for main-sequence, star-forming galaxies and show that this evolution is driven by the evolution of sSFR. By analysing the matched samples as well as a larger sample of z physically consistent with the definition of the ionisation parameter, a measure of the hydrogen ionising photon flux relative to the number density of hydrogen atoms.

  13. Revolution evolution: tracing angular momentum during star and planetary system formation

    Science.gov (United States)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the

  14. Empirical tests of pre-main-sequence stellar evolution models with eclipsing binaries

    Science.gov (United States)

    Stassun, Keivan G.; Feiden, Gregory A.; Torres, Guillermo

    2014-06-01

    We examine the performance of standard pre-main-sequence (PMS) stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 eclipsing binary (EB) systems having masses 0.04-4.0 M⊙ and nominal ages ≈1-20 Myr. We provide a definitive compilation of all fundamental properties for the EBs, with a careful and consistent reassessment of observational uncertainties. We also provide a definitive compilation of the various PMS model sets, including physical ingredients and limits of applicability. No set of model isochrones is able to successfully reproduce all of the measured properties of all of the EBs. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% at ≳1 M⊙, but below 1 M⊙ they are discrepant by 50-100%. Adjusting the observed radii and temperatures using empirical relations for the effects of magnetic activity helps to resolve the discrepancies in a few cases, but fails as a general solution. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ∼10% in the H-R diagram, down to 0.5 M⊙, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The

  15. Abundances of the elements in sharp-lined early-type stars from IUE high-dispersion spectrograms; 2, the nitrogen deficiency in mercury- manganese stars

    CERN Document Server

    Roby, S W; Adelman, S J

    1999-01-01

    For pt.I see ibid., vol.419, no.1, p.276-85 (1993). The authors determine nitrogen abundances from co-added IUE high-dispersion SWP spectrograms of four HgMn stars and five normal or superficially normal main-sequence B and A stars. They find N deficiencies in the HgMn stars greater than previously reported (depletion factors of 135-400 relative to the Sun). N abundance discrepancies from UV and IR studies of normal stars are discussed in light of possible non-LTE effects. Their data set for their sample of HgMn stars (observed with a consistent strategy to maximize the benefits of co-additions) is an improvement over the single or few images previously used to derive N abundances for most of these stars. (37 refs).

  16. SOFT LAGS IN NEUTRON STAR kHz QUASI-PERIODIC OSCILLATIONS: EVIDENCE FOR REVERBERATION?

    Energy Technology Data Exchange (ETDEWEB)

    Barret, Didier, E-mail: didier.barret@irap.omp.eu [Universite de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); CNRS, Institut de Recherche en Astrophysique et Planetologie, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France)

    2013-06-10

    High frequency soft reverberation lags have now been detected from stellar mass and supermassive black holes. Their interpretation involves reflection of a hard source of photons onto an accretion disk, producing a delayed reflected emission, with a time lag consistent with the light travel time between the irradiating source and the disk. Independently of the location of the clock, the kHz quasi-periodic oscillation (QPO) emission is thought to arise from the neutron star boundary layer. Here, we search for the signature of reverberation of the kHz QPO emission, by measuring the soft lags and the lag energy spectrum of the lower kHz QPOs from 4U1608-522. Soft lags, ranging from {approx}15 to {approx}40 {mu}s, between the 3-8 keV and 8-30 keV modulated emissions are detected between 565 and 890 Hz. The soft lags are not constant with frequency and show a smooth decrease between 680 Hz and 890 Hz. The broad band X-ray spectrum is modeled as the sum of a disk and a thermal Comptonized component, plus a broad iron line, expected from reflection. The spectral parameters follow a smooth relationship with the QPO frequency, in particular the fitted inner disk radius decreases steadily with frequency. Both the bump around the iron line in the lag energy spectrum and the consistency between the lag changes and the inferred changes of the inner disk radius, from either spectral fitting or the QPO frequency, suggest that the soft lags may indeed involve reverberation of the hard pulsating QPO source on the disk.

  17. Stability of extended scalar diquark stars vis-à-vis soliton stars

    Indian Academy of Sciences (India)

    Motivated by relatively large values of the maximum mass ( M = 8 : 92 M ⊙ ) and radius ( = 50.7 km) obtained for an extended scalar diquark star within the framework of an effective 4-theory (S K Karn et al [1]) some interesting observations are made with regard to the stability of stellar objects describable in general in ...

  18. Study of the interactions of 13.8 GeV/c protons with the heavy nuclei of the emulsions exposed in magnetic fuel of 170 kgauss; Estudio de las interacciones de protones de 13,8 geV/c con los nucleos pesados de emusiones

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Aleixandre, J L

    1967-07-01

    145 stars with N{sub h}>8 produced by the interactions of 13.8 GeV/c protons with Ag and Br nuclei have been analysed. The emulsion stack was irradiated in a 170 K gauss magnetic field. Statistical results concerning the main characteristics of the different particles emitted are given and the energy balance is evaluated. The main features of both 24 GeV/c protons and 17 GeV/c {pi}- interactions are compared with those we have found for 13.8 GeV/c protons interactions. (Author) 27 refs.

  19. The pre- versus post-main sequence evolutionary phase of B[e] stars. Constraints from 13CO band emission

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela

    2009-01-01

    Roč. 494, č. 1 (2009), s. 253-262 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : star s * winds * circumstellar matter Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  20. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    International Nuclear Information System (INIS)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian; Macintosh, Bruce; Melis, Carl

    2012-01-01

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L IR /L * ∼ 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M ☉ late-M secondary has a projected separation of ∼360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.