WorldWideScience

Sample records for k8 main-sequence star

  1. Nitrogen chronology of massive main sequence stars

    CERN Document Server

    Köhler, K; Brott, I; Langer, N; de Koter, A

    2012-01-01

    Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity, effective temperature, projected rotational velocity and surface nitrogen abundance. This method relies on stellar evolution models for different metallicities, masses and rotation rates. We use the population synthesis code STARMAKER to show the range of applicability of our method. We apply this method to 79 early B-type main sequence stars near the LMC clusters NGC 2004 and N 11 and the SMC clusters NGC 330 and NGC 346. From all stars within the sample, 17 were found to be suitable for an age analysis. For ten of them, which are rapidly rotating stars without a strong nitrogen enhancement, it has been previously concluded that they did not evolve as rotationally mixed single stars. This is confirmed by our analysis, which fla...

  2. Lithium Depletion in Fully Convective Pre-Main Sequence Stars

    CERN Document Server

    Bildsten, L; Matzner, C D; Ushomirsky, G; Bildsten, Lars; Brown, Edward F.; Matzner, Christopher D.; Ushomirsky, Greg

    1996-01-01

    We present an analytic calculation of the thermonuclear depletion of lithium in contracting, fully convective, pre-main sequence stars of mass M 0.08 M_sun) and for constraining the masses of lithium depleted stars.

  3. Thermohaline convection in main sequence stars

    Science.gov (United States)

    Vauclair, S.

    2009-07-01

    Thermohaline convection is a well-known process in oceanography, which has long been put aside in stellar physics. In the ocean, it occurs when warm salted layers sit on top of cool and less salted ones. Then the salted water rapidly diffuses downwards even in the presence of stabilizing temperature gradients, due to double diffusion between the falling blobs and their surroundings. A similar process may occur in stars in case of inverse μ-gradients in a thermally stabilized medium. This process has important consequences in stellar physics.

  4. THE HABITABLE ZONES OF PRE-MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Ramses M.; Kaltenegger, Lisa [Institute for Pale Blue Dots, Cornell University, Ithaca, NY (United States)

    2014-12-20

    We calculate the pre-main-sequence habitable zone (HZ) for stars of spectral classes F-M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important for understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet-star separation for cool stars than is the case for the traditional main-sequence (MS) HZ. We use one-dimensional radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1-M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M stars) receive stellar fluxes that exceed the runaway greenhouse threshold, and thus may lose substantial amounts of water initially delivered to them. We predict that M-star planets need to initially accrete more water than Earth did, or, alternatively, have additional water delivered later during the long pre-MS phase to remain habitable. Our findings are also consistent with recent claims that Venus lost its water during accretion.

  5. The Habitable Zones of Pre-Main-Sequence Stars

    CERN Document Server

    Ramirez, Ramses M

    2014-01-01

    We calculate the pre-main-sequence HZ for stars of spectral classes F to M. The spatial distribution of liquid water and its change during the pre-main-sequence phase of protoplanetary systems is important in understanding how planets become habitable. Such worlds are interesting targets for future missions because the coolest stars could provide habitable conditions for up to 2.5 billion years post-accretion. Moreover, for a given star type, planetary systems are more easily resolved because of higher pre-main-sequence stellar luminosities, resulting in larger planet to star separation for cool stars than is the case for the traditional main-sequence (MS) habitable zone (HZ). We use 1D radiative-convective climate and stellar evolutionary models to calculate pre-main-sequence HZ distances for F1 to M8 stellar types. We also show that accreting planets that are later located in the traditional MS HZ orbiting stars cooler than a K5 (including the full range of M-stars) receive stellar fluxes that exceed the ru...

  6. The Star-Forming Main Sequence at Low Galaxy Mass

    Science.gov (United States)

    Stierwalt, Sabrina; Johnson, Kelsey E.; Patton, David R.; Besla, Gurtina; Kallivayalil, Nitya; Liss, Sandra; Pearson, Sarah; Privon, George C.; Putman, Mary E.

    2017-01-01

    We present an investigation of the star-forming main sequence at the low mass end. The relation between galaxy stellar mass and star formation rate has been well-studied in the recent literature for a range of redshifts and galaxy type, but almost all of these studies are limited to galaxies with stellar masses above the dwarf galaxy range ( 109 Msun ). Our work, based on the panchromatic TiNy Titans survey of interacting dwarf galaxies, shows that dwarf galaxies extend the well-established main sequence at z=0 down to lower masses. Furthermore, like their more massive counterparts, dwarf mergers appear on an elevated main sequence with higher star formation rates for a given stellar mass. Finally we show that star formation is enhanced to a greater extent in low mass galaxy mergers than for higher mass systems.

  7. Structure and Evolution of Pre-Main Sequence Stars

    CERN Document Server

    Schulz, Norbert S; Bautz, Mark W; Canizares, Claude C; Davis, John; Dewey, Dan; Huenemoerder, David P; Heilmann, Ralf; Houck, John; Marshall, Herman L; Nowak, Mike; Schattenburg, Mark; Audard, Marc; Drake, Jeremy; Gagne, Marc; Kastner, Joel; Kallman, Tim; Lautenegger, Maurice; Lee, Julia; Miller, Jon; Montmerle, Thierry; Mukai, Koji; Osten, Rachel; Parerels, Frits; Pollock, Andy; Preibisch, Thomas; Raymond, John; Reale, Fabio; Smith, Randall; Testa, Paola; Weintraub, David

    2009-01-01

    Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they ...

  8. Binary interactions with high accretion rates onto main sequence stars

    Science.gov (United States)

    Shiber, Sagiv; Schreier, Ron; Soker, Noam

    2016-07-01

    Energetic outflows from main sequence stars accreting mass at very high rates might account for the powering of some eruptive objects, such as merging main sequence stars, major eruptions of luminous blue variables, e.g., the Great Eruption of Eta Carinae, and other intermediate luminosity optical transients (ILOTs; red novae; red transients). These powerful outflows could potentially also supply the extra energy required in the common envelope process and in the grazing envelope evolution of binary systems. We propose that a massive outflow/jets mediated by magnetic fields might remove energy and angular momentum from the accretion disk to allow such high accretion rate flows. By examining the possible activity of the magnetic fields of accretion disks, we conclude that indeed main sequence stars might accrete mass at very high rates, up to ≈ 10-2 M ⊙ yr-1 for solar type stars, and up to ≈ 1 M ⊙ yr-1 for very massive stars. We speculate that magnetic fields amplified in such extreme conditions might lead to the formation of massive bipolar outflows that can remove most of the disk's energy and angular momentum. It is this energy and angular momentum removal that allows the very high mass accretion rate onto main sequence stars.

  9. Are pre-main-sequence stars older than we thought?

    CERN Document Server

    Naylor, Tim

    2009-01-01

    We fit the colour-magnitude diagrams of stars between the zero-age main-sequence and terminal-age main sequence in young clusters and associations. The ages we derive are a factor 1.5 to 2 longer than the commonly used ages for these regions, which are derived from the positions of pre-main-sequence stars in colour-magnitude diagrams. From an examination of the uncertainties in the main-sequence and pre-main-sequence models, we conclude that the longer age scale is probably the correct one, which implies we must revise upwards the commonly used ages for young clusters and associations. Such a revision would explain the discrepancy between the observational lifetimes of proto-planetary discs and theoretical calculations of the time to form planets. It would also explain the absence of clusters with ages between 5 and 30Myr. We use the $\\tau^2$ statistic to fit the main-sequence data, but find that we must make significant modifications if we are to fit sequences which have vertical segments in the colour-magni...

  10. The coronal evolution of pre-main-sequence stars

    CERN Document Server

    Gregory, Scott G; Davies, Claire L

    2016-01-01

    The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $\\log(L_X/L_\\ast)$, on average, than stars on Hayashi tracks. This effect is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).

  11. Blue supergiants as descendants of magnetic main sequence stars

    Science.gov (United States)

    Petermann, I.; Langer, N.; Castro, N.; Fossati, L.

    2015-12-01

    About 10% of the massive main sequence stars have recently been found to host a strong, large scale magnetic field. Both, the origin and the evolutionary consequences of these fields are largely unknown. We argue that these fields may be sufficiently strong in the deep interior of the stars to suppress convection near the outer edge of their convective core. We performed parametrised stellar evolution calculations and assumed a reduced size of the convective core for stars in the mass range 16M⊙ to 28M⊙ from the zero age main sequence until core carbon depletion. We find that such models avoid the coolest part of the main sequence band, which is usually filled by evolutionary models that include convective core overshooting. Furthermore, our "magnetic" models populate the blue supergiant region during core helium burning, i.e., the post-main sequence gap left by ordinary single star models, and some of them end their life in a position near that of the progenitor of Supernova 1987A in the Hertzsprung-Russell diagram. Further effects include a strongly reduced luminosity during the red supergiant stage, and downward shift of the limiting initial mass for white dwarf and neutron star formation.

  12. Magnetic fields and internal mixing of main sequence B stars

    CERN Document Server

    Wade, G A; Grunhut, J; Landstreet, J D; Petit, V

    2014-01-01

    We have obtained high-quality magnetic field measurements of 19 sharp-lined B-type stars with precisely-measured N/C abundance ratios. Our primary goal is to test the idea that a magnetic field may explain extra drag (through the wind) on the surface rotation, thus producing more internal shear and mixing, and thus could provide an explanation for the appearance of slowly rotating N-rich main sequence B stars.

  13. Spectroscopic evolution of massive stars on the main sequence

    Science.gov (United States)

    Martins, F.; Palacios, A.

    2017-02-01

    Context. The evolution of massive stars depends on several parameters, and the relation between different morphological types is not fully constrained. Aims: We aim to provide an observational view of evolutionary models in the Hertzsprung-Russell diagram, on the main sequence. This view should help compare observations and model predictions. Methods: We first computed evolutionary models with the code STAREVOL for initial masses between 15 and 100 M⊙. We subsequently calculated atmosphere models at specific points along the evolutionary tracks, using the code CMFGEN. Synthetic spectra obtained in this way were classified as if they were observational data: we assigned them a spectral type and a luminosity class. We tested our spectral classification by comparison to observed spectra of various stars with different spectral types. We also compared our results with empirical data of a large number of OB stars. Results: We obtain spectroscopic sequences along evolutionary tracks. In our computations, the earliest O stars (O2-3.5) appear only above 50 M⊙. For later spectral types, a similar mass limit exists, but is lower. A luminosity class V does not correspond to the entire main sequence. This only holds for the 15 M⊙ track. As mass increases, a larger portion of the main sequence is spent in luminosity class III. Above 50 M⊙, supergiants appear before the end of core-hydrogen burning. Dwarf stars (luminosity class V) do not occur on the zero-age main sequence above 80 M⊙. Consequently, the distribution of luminosity class V in the HR diagram is not a diagnostic of the length of the main sequence (above 15 M⊙) and cannot be used to constrain the size of the convective core. The distribution of dwarfs and giants in the HR diagram that results from our calculations agrees well with the location of stars analyzed by means of quantitative spectroscopy. For supergiants, there is a slight discrepancy in the sense that luminosity class I is observed slightly

  14. Magnetic field studies of massive main sequence stars

    CERN Document Server

    Schoeller, M; Ilyin, I; Kharchenko, N V; Briquet, M; Langer, N; Oskinova, L M

    2011-01-01

    We report on the status of our spectropolarimetric observations of massive stars. During the last years, we have discovered magnetic fields in many objects of the upper main sequence, including Be stars, beta Cephei and Slowly Pulsating B stars, and a dozen O stars. Since the effects of those magnetic fields have been found to be substantial by recent models, we are looking into their impact on stellar rotation, pulsation, stellar winds, and chemical abundances. Accurate studies of the age, environment, and kinematic characteristics of the magnetic stars are also promising to give us new insight into the origin of the magnetic fields. Furthermore, longer time series of magnetic field measurements allow us to observe the temporal variability of the magnetic field and to deduce the stellar rotation period and the magnetic field geometry. Studies of the magnetic field in massive stars are indispensable to understand the conditions controlling the presence of those fields and their implications on the stellar phy...

  15. Ultraviolet emission from main-sequence companions of AGB stars

    CERN Document Server

    Ortiz, Roberto

    2016-01-01

    Although the majority of known binary Asymptotic Giant Branch (AGB) stars are symbiotic systems (i.e. with a WD as a secondary star), main-sequence companions of AGB stars can be more numerous, even though they are more difficult to find because the primary high luminosity hampers the detection of the companion at visual wavelengths. However, in the ultraviolet the flux emitted by a secondary with T eff > 5500 ~ 6000 K may prevail over that of the primary, and then it can be used to search for candidates to binary AGB stars. In this work, theoretical atmosphere models are used to calculate the UV excess in the GALEX near- and far-UV bands due to a main-sequence companion. After analysing a sample of confirmed binary AGB stars, we propose as a criterium for binarity: (1) the detection of the AGB star in the GALEX far-UV band and/or (2) a GALEX near-UV observed-to-predicted flux ratio > 20. These criteria have been applied to a volume-limited sample of AGB stars within 500 pc of the Sun; 34 out of the sample of...

  16. Massive pre-main-sequence stars in M17

    Science.gov (United States)

    Ramírez-Tannus, M. C.; Kaper, L.; de Koter, A.; Tramper, F.; Bik, A.; Ellerbroek, L. E.; Ochsendorf, B. B.; Ramírez-Agudelo, O. H.; Sana, H.

    2017-08-01

    The formation process of massive stars is still poorly understood. Massive young stellar objects (mYSOs) are deeply embedded in their parental clouds; these objects are rare, and thus typically distant, and their reddened spectra usually preclude the determination of their photospheric parameters. M17 is one of the best-studied H ii regions in the sky, is relatively nearby, and hosts a young stellar population. We have obtained optical to near-infrared spectra of previously identified candidate mYSOs and a few OB stars in this region with X-shooter on the ESO Very Large Telescope. The large wavelength coverage enables a detailed spectroscopic analysis of the photospheres and circumstellar disks of these candidate mYSOs. We confirm the pre-main-sequence (PMS) nature of six of the stars and characterise the O stars. The PMS stars have radii that are consistent with being contracting towards the main sequence and are surrounded by a remnant accretion disk. The observed infrared excess and the double-peaked emission lines provide an opportunity to measure structured velocity profiles in the disks. We compare the observed properties of this unique sample of young massive stars with evolutionary tracks of massive protostars and propose that these mYSOs near the western edge of the H ii region are on their way to become main-sequence stars ( 6-20 M⊙) after having undergone high mass accretion rates (Ṁacc 10-4-10-3M⊙yr-1). Their spin distribution upon arrival at the zero age main-sequence is consistent with that observed for young B stars, assuming conservation of angular momentum and homologous contraction. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO programmes 60.A-9404(A), 085.D-0741, 089.C-0874(A), and 091.C-0934(B)).The full normalised X-shooter spectra are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A78

  17. Massive main sequence stars evolving at the Eddington limit

    CERN Document Server

    Sanyal, Debashis; Langer, Norbert; Bestenlehner, Joachim M

    2015-01-01

    The evolution of massive stars even on the main sequence is not yet well understood. Due to the steep mass-luminosity relation, massive main sequence stars become very luminous. This brings their envelopes very close to the Eddington limit. We are analysing stellar evolutionary models in which the Eddington limit is reached and exceeded, and explore the rich diversity of physical phenomena which take place in their envelopes, and investigate their observational consequences. We use the grids of detailed stellar models by Brott et al. (2011) and Koehler et al. (2015), to investigate the envelope properties of core hydrogen burning massive stars. We find that at the stellar surface, the Eddington limit is almost never reached, even for stars up to 500 Msun. When an appropriate Eddington limit is defined locally in the stellar envelope, most stars more massive than 40 Msun actually exceed this limit, in particular in the partial ionization zones of iron, helium or hydrogen. While most models adjust their structu...

  18. ON THE DIFFERENTIAL ROTATION OF MASSIVE MAIN-SEQUENCE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [Department of Mathematics and Statistics, Newcastle University (United Kingdom); Planetary Science Institute, Tucson, AZ 85721 (United States)

    2015-12-20

    To date, asteroseismology has provided core-to-surface differential rotation measurements in eight main-sequence stars. These stars, ranging in mass from ∼1.5–9 M{sub ⊙}, show rotation profiles ranging from uniform to counter-rotation. Although they have a variety of masses, these stars all have convective cores and overlying radiative regions, conducive to angular momentum transport by internal gravity waves (IGWs). Using two-dimensional numerical simulations, we show that angular momentum transport by IGWs can explain all of these rotation profiles. We further predict that, should high mass, faster rotating stars be observed, the core-to-envelope differential rotation will be positive, but less than one.

  19. Spatially Resolved Star Formation Main Sequence of Galaxies

    Science.gov (United States)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.; Ascaribar, Y.; Bland-Hawthorn, J.; Ziegler, B.; González-Delgado, R. M.; Walcher, C. J.; García-Benito, R.; Mast, D.; Mendoza-Pérez, M. A.; Falcón-Barroso, J.; Galbany, L.; Husemann, B.; Kehring, C.; Marino, R. A.; Sánchez-Blázquez, P.; López-Cobá, C.; López-Sánchez, A. R.; Vilchez, J. M.

    2016-06-01

    The relation known as Star Formation Main Sequence (SFMS) of galaxies is defined in terms of stellar mass and star formation rate. This approximately linear relation has been proven to be tight and holds for several star formation indicators at local and at high redshifts. In this talk I will show recent results about our first attempts to study the Spatially Resolved SFMS, using integral field spectroscopic data, coming primarily from the CALIFA survey. I will present as a main result that a local SFMS is found with a slope and zero point of 0.72 +/ 0.04, and -7.95 +/ 0.29 respectively. I will also discuss the influence of characteristics such as environment and morphology in the relation. Finally I will present some extensions of these results for data com in from the MaNGA survey.

  20. MAIN-SEQUENCE STAR POPULATIONS IN THE VIRGO OVERDENSITY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Jerjen, H.; Da Costa, G. S.; Tisserand, P. [Research School of Astronomy and Astrophysics, Australian National University, Mt Stromlo Observatory, via Cotter Road, Weston, ACT 2611 (Australia); Willman, B. [Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford, PA 19041 (United States); Arimoto, N. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Okamoto, S. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Saviane, I. [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Walsh, S. [Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670 (Australia); Geha, M. [Astronomy Department, Yale University, New Haven, CT 06520 (United States); Jordan, A.; Zoccali, M. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, 7820436 Macul, Santiago (Chile); Olszewski, E. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Walker, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kroupa, P. [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2013-05-20

    We present deep color-magnitude diagrams (CMDs) for two Subaru Suprime-Cam fields in the Virgo Stellar Stream (VSS)/Virgo Overdensity (VOD) and compare them to a field centered on the highest concentration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation. A prominent population of main-sequence stars is detected in all three fields and can be traced as faint as g Almost-Equal-To 24 mag. Using theoretical isochrone fitting, we derive an age of 9.1{sup +1.0}{sub -1.1} Gyr, a median abundance of [Fe/H] = -0.70{sup +0.15}{sub -0.20} dex, and a heliocentric distance of 30.9 {+-} 3.0 kpc for the main sequence of the Sgr Stream Branch A. The dominant main-sequence populations in the two VSS/VOD fields ({Lambda}{sub Sun} Almost-Equal-To 265 Degree-Sign , B{sub Sun} Almost-Equal-To 13 Degree-Sign ) are located at a mean distance of 23.3 {+-} 1.6 kpc and have an age of {approx}8.2 Gyr, and an abundance of [Fe/H] = -0.67{sup +0.16}{sub -0.12} dex, similar to the Sgr Stream stars. These statistically robust parameters, derived from the photometry of 260 main-sequence stars, are also in good agreement with the age of the main population in the Sgr dwarf galaxy (8.0 {+-} 1.5 Gyr). They also agree with the peak in the metallicity distribution of 2-3 Gyr old M giants, [Fe/H] Almost-Equal-To -0.6 dex, in the Sgr north leading arm. We then compare the results from the VSS/VOD fields with the Sgr Tidal Stream model by Law and Majewski based on a triaxial Galactic halo shape that is empirically calibrated with Sloan Digital Sky Survey Sgr A-branch and Two Micron All Sky Survey M-giant stars. We find that the most prominent feature in the CMDs, the main-sequence population at 23 kpc, is not explained by the model. Instead the model predicts in these directions a low-density filamentary structure of Sgr debris stars at {approx}9 kpc and a slightly higher concentration of Sgr stars spread over a heliocentric distance range of 42-53 kpc. At best

  1. Massive main-sequence stars evolving at the Eddington limit

    Science.gov (United States)

    Sanyal, D.; Grassitelli, L.; Langer, N.; Bestenlehner, J. M.

    2015-08-01

    Context. Massive stars play a vital role in the Universe, however, their evolution even on the main-sequence is not yet well understood. Aims: Because of the steep mass-luminosity relation, massive main-sequence stars become extremely luminous. This brings their envelopes very close to the Eddington limit. We analyse stellar evolutionary models in which the Eddington limit is reached and exceeded, explore the rich diversity of physical phenomena that take place in their envelopes, and investigate their observational consequences. Methods: We use published grids of detailed stellar models, computed with a state-of-the-art, one-dimensional hydrodynamic stellar evolution code using LMC composition, to investigate the envelope properties of core hydrogen burning massive stars. Results: We find that the Eddington limit is almost never reached at the stellar surface, even for stars up to 500 M⊙. When we define an appropriate Eddington limit locally in the stellar envelope, we can show that most stars more massive than ~40 M⊙ actually exceed this limit, in particular, in the partial ionisation zones of iron, helium, or hydrogen. While most models adjust their structure such that the local Eddington limit is exceeded at most by a few per cent, our most extreme models do so by a factor of more than seven. We find that the local violation of the Eddington limit has severe consequences for the envelope structure, as it leads to envelope inflation, convection, density inversions, and, possibly to, pulsations. We find that all models with luminosities higher than 4 × 105L⊙, i.e. stars above ~40 M⊙ show inflation, with a radius increase of up to a factor of about 40. We find that the hot edge of the S Dor variability region coincides with a line beyond which our models are inflated by more than a factor of two, indicating a possible connection between S Dor variability and inflation. Furthermore, our coolest models show highly inflated envelopes with masses of up to

  2. The Effect of Pre-Main Sequence Stars on Star Cluster Dynamics

    CERN Document Server

    Wiersma, R; Zwart, S P

    2006-01-01

    We investigate the effects of the addition of pre-main sequence evolution to star cluster simulations. We allowed stars to follow pre-main sequence tracks that begin at the deuterium burning birthline and end at the zero age main sequence. We compared our simulations to ones in which the stars began their lives at the zero age main sequence, and also investigated the effects of particular choices for initial binary orbital parameters. We find that the inclusion of the pre-main sequence phase results in a slightly higher core concentration, lower binary fraction, and fewer hard binary systems. In general, the global properties of star clusters remain almost unchanged, but the properties of the binary star population in the cluster can be dramatically modified by the correct treatment of the pre-main sequence stage.

  3. Stellar Diameters and Temperatures II. Main Sequence K & M Stars

    CERN Document Server

    Boyajian, Tabetha S; van Belle, Gerard; McAlister, Harold A; Brummelaar, Theo A ten; Kane, Stephen R; Muirhead, Phil; Jones, Jeremy; White, Russel; Schaefer, Gail; Ciardi, David; Henry, Todd; López-Morales, Mercedes; Ridgway, Stephen; Gies, Douglas; Jao, Wei-Chun; Rojas-Ayala, Bárbara; Parks, J Robert; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H; Farrington, Chris; Goldfinger, P J; Berger, David H

    2012-01-01

    We present interferometric diameter measurements of 21 K- and M- dwarfs made with the CHARA Array. This sample is enhanced by literature radii measurements to form a data set of 33 K-M dwarfs with diameters measured to better than 5%. For all 33 stars, we compute absolute luminosities, linear radii, and effective temperatures (Teff). We develop empirical relations for \\simK0 to M4 main- sequence stars between the stellar Teff, radius, and luminosity to broad-band color indices and metallicity. These relations are valid for metallicities between [Fe/H] = -0.5 and +0.1 dex, and are accurate to \\sim2%, \\sim5%, and \\sim4% for Teff, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity dependent transformations to convert colors into stellar Teff's, radii, and luminosities. We find no sensitivity to metallicity on relations between global stellar properties, e.g., TEFF-radius and TEFF-luminosity. Robust examinations of single star TEFF's and radii compared to evolutionary m...

  4. Habitable Zones of Post-Main Sequence Stars

    CERN Document Server

    Ramirez, Ramses

    2016-01-01

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3,700K to 10,000K (~M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons to super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imagi...

  5. Habitable zone lifetimes of exoplanets around main sequence stars.

    Science.gov (United States)

    Rushby, Andrew J; Claire, Mark W; Osborn, Hugh; Watson, Andrew J

    2013-09-01

    The potential habitability of newly discovered exoplanets is initially assessed by determining whether their orbits fall within the circumstellar habitable zone of their star. However, the habitable zone (HZ) is not static in time or space, and its boundaries migrate outward at a rate proportional to the increase in luminosity of a star undergoing stellar evolution, possibly including or excluding planets over the course of the star's main sequence lifetime. We describe the time that a planet spends within the HZ as its "habitable zone lifetime." The HZ lifetime of a planet has strong astrobiological implications and is especially important when considering the evolution of complex life, which is likely to require a longer residence time within the HZ. Here, we present results from a simple model built to investigate the evolution of the "classic" HZ over time, while also providing estimates for the evolution of stellar luminosity over time in order to develop a "hybrid" HZ model. These models return estimates for the HZ lifetimes of Earth and 7 confirmed HZ exoplanets and 27 unconfirmed Kepler candidates. The HZ lifetime for Earth ranges between 6.29 and 7.79×10⁹ years (Gyr). The 7 exoplanets fall in a range between ∼1 and 54.72 Gyr, while the 27 Kepler candidate planets' HZ lifetimes range between 0.43 and 18.8 Gyr. Our results show that exoplanet HD 85512b is no longer within the HZ, assuming it has an Earth analog atmosphere. The HZ lifetime should be considered in future models of planetary habitability as setting an upper limit on the lifetime of any potential exoplanetary biosphere, and also for identifying planets of high astrobiological potential for continued observational or modeling campaigns.

  6. Chemical analysis of 24 dusty (pre-)main-sequence stars

    CERN Document Server

    Acke, B; Acke, Bram; Waelkens, Christoffel

    2004-01-01

    We have analysed the chemical photospheric composition of 24 Herbig Ae/Be and Vega-type stars in search for the lambda Bootis phenomenon. We present the results of the elemental abundances of the sample stars. Some of the stars were never before studied spectroscopically at optical wavelengths. We have determined the projected rotational velocities of our sample stars. Furthermore, we discuss stars that depict a (selective) depletion pattern in detail. HD 4881 and HD 139614 seem to display an overall deficiency. AB Aur and possibly HD 126367 have subsolar values for the iron abundance, but are almost solar in silicon. HD 100546 is the only clear lambda Bootis star in our sample.

  7. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Eymet, Vincent [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France); Robinson, Tyler D.; Domagal-Goldman, Shawn; Meadows, Victoria [NASA Astrobiology Institute' s Virtual Planetary Laboratory (United States); Mahadevan, Suvrath; Terrien, Ryan C.; Deshpande, Rohit [Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802 (United States)

    2013-03-10

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO{sub 2} atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H{sub 2}O and CO{sub 2} absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T{sub eff} {approx}< 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star's spectral type. We suggest

  8. Fundamental properties of lower main-sequence stars

    CERN Document Server

    Torres, Guillermo

    2012-01-01

    The field of exoplanet research has revitalized interest in M dwarfs, which have become favorite targets of Doppler and transit surveys. Accurate measurements of their basic properties such as masses, radii, and effective temperatures have revealed significant disagreements with predictions from stellar evolution theory in the sense that stars are larger and cooler than expected. These anomalies are believed to be due to high levels of activity in these stars. The evidence for the radius discrepancies has grown over the years as more and more determinations have become available; however, fewer of these studies include accurate determinations of the temperatures. The ubiquitous mass-radius diagrams featured in many new discovery papers are becoming more confusing due to increased scatter, which may be due in part to larger than realized systematic errors affecting many of the published measurements. A discussion of these and other issues is given here from an observer's perspective, along with a summary of th...

  9. Habitable Zones Around Main-Sequence Stars: New Estimates

    CERN Document Server

    Kopparapu, Ravi kumar; Kasting, James F; Eymet, Vincent; Robinson, Tyler D; Mahadevan, Suvrath; Terrien, Ryan C; Domagal-Goldman, Shawn; Meadows, Victoria; Deshpande, Rohit

    2013-01-01

    Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on 1-D, cloud-free, climate model calculations by Kasting et al.(1993). The inner edge of the HZ in Kasting et al.(1993) model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our Solar system is 0.95-1.67 AU. Here, an updated 1-D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water loss (inner HZ) and maximum greenhouse (outer HZ) limits for our Solar Syste...

  10. Kinematic Distances of Pre-main Sequence Stars in the Lupus Star-Forming Region

    Science.gov (United States)

    Galli, P. A. B.; Teixeira, R.; Ducourant, C.; Bertout, C.

    2014-06-01

    The problem of the determination of distances has always played a central role in astronomy. However, little recent progress has been made in the distance determination of faint young stellar objects such as pre-main sequence (PMS) stars. Many of the PMS stars were neither observed by the Hipparcos satellite due to their magnitude nor have any trigonometric parallax measured from the ground due to their distance. Here we investigate the kinematic properties of the Lupus moving group with the primary objective of deriving individual parallaxes for each group member of this star-forming region.

  11. Magnetic fields in O-, B- and A-type stars on the main sequence

    Directory of Open Access Journals (Sweden)

    Briquet Maryline

    2015-01-01

    Full Text Available In this review, the latest observational results on magnetic fields in main-sequence stars with radiative envelopes are summarised together with the theoretical works aimed at explaining them.

  12. Incidence and survival of remnant disks around main-sequence stars

    CERN Document Server

    Habing, H J; De Muizon, M J; Laureijs, R J; Kessler, M F; Leech, K J; Metcalfe, L; Salama, A; Siebenmorgen, R; Trams, N R; Bouchet, P

    2000-01-01

    We present photometric ISO 60 and 170um measurements, complemented by some IRAS data at 60um, of a sample of 84 nearby main-sequence stars of spectral class A, F, G and K in order to determine the incidence of dust disks around such main-sequence stars. Of the stars younger than 400 Myr one in two has a disk; for the older stars this is true for only one in ten. We conclude that most stars arrive on the main sequence surrounded by a disk; this disk then decays in about 400 Myr. Because (i) the dust particles disappear and must be replenished on a much shorter time scale and (ii) the collision of planetesimals is a good source of new dust, we suggest that the rapid decay of the disks is caused by the destruction and escape of planetesimals. We suggest that the dissipation of the disk is related to the heavy bombardment phase in our Solar System. Whether all stars arrive on the main sequence surrounded by a disk cannot be established: some very young stars do not have a disk. And not all stars destroy their dis...

  13. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars a...

  14. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.

    2012-01-01

    Solar-like oscillations have been observed by {{\\it Kepler}} and CoRoT in several solar-type stars. We study the variations of stellar p-mode linewidth as a function of effective temperature. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars...

  15. Evidence of magnetic field decay in massive main-sequence stars

    CERN Document Server

    Fossati, L; Castro, N; Langer, N; Simon-Diaz, S; Mueller, A; de Koter, A; Morel, T; Petit, V; Sana, H; Wade, G A

    2016-01-01

    A significant fraction of massive main-sequence stars show strong, large-scale magnetic fields. The origin of these fields, their lifetimes, and their role in shaping the characteristics and evolution of massive stars are currently not well understood. We compile a catalogue of 389 massive main-sequence stars, 61 of which are magnetic, and derive their fundamental parameters and ages. The two samples contain stars brighter than magnitude 9 in the V band and range in mass between 5 and 100 Msun. We find that the fractional main-sequence age distribution of all considered stars follows what is expected for a magnitude limited sample, while that of magnetic stars shows a clear decrease towards the end of the main sequence. This dearth of old magnetic stars is independent of the choice of adopted stellar evolution tracks, and appears to become more prominent when considering only the most massive stars. We show that the decreasing trend in the distribution is significantly stronger than expected from magnetic flu...

  16. Pulsation of Pre-Main Sequence Stars in Young Open Clusters

    Science.gov (United States)

    Zwintz, Konstanze; Weiss, Werner W.

    2001-08-01

    The aim of this proposal is to determine observationally the parameter space of the pre-main sequence instability strip. For that purpose we intend to obtain photometric timeseries with high time resolution and low noise level of the stars in young open clusters (IC 4996, NGC 6910 and NGC 6383) and to identify pre-main sequence pulsators. Several cluster members have the spectral types of interest (A-F) and lie between the birthline and the zero-age main sequence. Up to now the number of pre-main sequence pulsators is absolutely inadequate to determine reliably the hot and cool border of the according instability region. Its definition is indispensable for a better understanding of the internal structure and evolution of such stars.

  17. MAIN-SEQUENCE STARS MASQUERADING AS YOUNG STELLAR OBJECTS IN THE CENTRAL MOLECULAR ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P.; Morales, Esteban F. E.; Johnston, Katharine G., E-mail: koepferl@mpia.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-01-20

    In contrast to most other galaxies, star formation rates in the Milky Way can be estimated directly from young stellar objects (YSOs). In the central molecular zone the star formation rate calculated from the number of YSOs with 24 μm emission is up to an order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 μm. However, we show that in some cases the main-sequence models can be marginally resolved at 24 μm, whereas the YSO models are always unresolved. Based on the fraction of resolved MIPS 24 μm sources in the sample of YSOs previously used to compute the star formation rate, we estimate the fraction of misclassified ''YSOs'' to be at least 63%, which suggests that the star formation rate previously determined from YSOs is likely to be at least a factor of three too high.

  18. Fundamental properties of pre-main sequence stars in young, southern star forming regions: metallicities

    CERN Document Server

    James, D J; Santos, N C; Bouvier, J; James, David J.; Melo, Claudio; Santos, Nuno C.; Bouvier, Jerome

    2005-01-01

    Aims: The primary motivation for this project is to search for metal-rich star forming regions, in which, stars of super-solar metallicity will be created, as hopefully, will be extra-solar planets orbiting them ! Results: We find (pre-main sequence) model-dependent isochronal ages of the Lupus, Chamaeleon and CrA targets to be $9.1 \\pm 2.1$ Myr, $4.5 \\pm 1.6$ Myr and $9.0 \\pm 3.9$ Myr respectively. The majority of the stars have Li I 6707.8A equivalent widths similar to, or above those of, their similar mass Pleiades counterparts, confirming their youthfulness. Most stars are kinematic members, either single or binary, of their regions. We find a mean radial velocity for objects in the Lupus cloud to be ${\\bar {RV}}=+2.6 \\pm 1.8$ km s$^{-1}$, for the Chamaeleon I & II clouds, ${\\bar {RV}}=+12.8 \\pm 3.6$ km s$^{-1}$ whereas for the CrA cloud, we find ${\\bar {RV}}=-1.1 \\pm 0.5$ km s$^{-1}$. All stars are coronally and chromospherically active, exhibiting X-ray and H$\\alpha$ emission levels marginally less,...

  19. Uncertainties in the Determination of the Upper Mass Limit for Zero-Age Main Sequence Stars

    Science.gov (United States)

    Klapp, J.; Langer, N.; Fricke, K. J.

    1987-05-01

    In a recent investigation Klapp et al. 1987 obtained a critical nass of 440 M@ for the overstability of very massive extreme population I stars at the main sequence. In this work we investigate the dependence of Klapp et al. 1987 results upon the program input physics. We find that stars in the 100 - 500 Me range are marginally stable (or unstable) and that this mass range should be considered as a transition region from stability to overstability of very massive stars.

  20. Population Synthesis for the Symbiotic Stars with Main-sequence Accretors

    Institute of Scientific and Technical Information of China (English)

    Guo-Liang Lü; Chun-Hua Zhu; Bin Wu; Zhan-Wen Han

    2006-01-01

    Using a population synthesis code, we have investigated the formation of symbiotic systems in which the hot component is a main-sequence star that is accreting matter from the cool component via Roche lobe overflow (RLOF). The RLOF can be divided into two cases:dynamically unstable and stable. In the first case, the birthrate of symbiotic stars is 0.056 yr-1or 0.045 yr-1 depending on different assumptions; in the stable RLOF case, it is 0.002 yr-1or 0.005 yr-1. The number of symbiotic stars with main-sequence accretors and unstable RLOF in our galaxy is about 5, that with stable RLOF is about 60 to 280. Comparison between our results with those of Yungelson et al. shows that symbiotic stars with MS accretors make only a small contribution ((<)8%) to the whole population of symbiotic stars in the Galaxy.

  1. The potential of space observations for pulsating pre-main sequence stars

    CERN Document Server

    Zwintz, Konstanze

    2016-01-01

    The first asteroseismic studies of pre-main sequence (pre-MS) pulsators have been conducted based on data from the space telescopes MOST and CoRoT with typical time bases of less than 40 days. With these data, a relation between the pulsational properties of pre-MS delta Scuti stars and their relative evolutionary phase on their way from the birthline to the zero-age main sequence was revealed. But it is evident from comparison with the more evolved pulsators in their main sequence or post-main sequence stages observed by the main Kepler mission, that many more questions could be addressed with significantly longer time bases and ultra-high precision. Here, I will discuss the observational status of pre-MS asteroseismology and the potential of future space observations for this research field.

  2. Main-sequence stars masquerading as Young Stellar Objects in the central molecular zone

    CERN Document Server

    Koepferl, Christine M; Morales, Esteban F E; Johnston, Katharine G

    2014-01-01

    In contrast to most other galaxies, star-formation rates in the Milky Way can be estimated directly from Young Stellar Objects (YSOs). In the Central Molecular Zone (CMZ) the star-formation rate calculated from the number of YSOs with 24 microns emission is up to order of magnitude higher than the value estimated from methods based on diffuse emission (such as free-free emission). Whether this effect is real or whether it indicates problems with either or both star formation rate measures is not currently known. In this paper, we investigate whether estimates based on YSOs could be heavily contaminated by more evolved objects such as main-sequence stars. We present radiative transfer models of YSOs and of main-sequence stars in a constant ambient medium which show that the main-sequence objects can indeed mimic YSOs at 24 microns. However, we show that in some cases the main-sequence models can be marginally resolved at 24 microns, whereas the YSO models are always unresolved. Based on the fraction of resolve...

  3. EXPORT optical photometry and polarimetry of Vega-type and pre-main sequence stars

    CERN Document Server

    Oudmaijer, R D; Eiroa, C

    2001-01-01

    This paper presents optical UBVRI broadband photo-polarimetry of the EXPORT sample obtained at the 2.5m Nordic Optical Telescope. The database consists of multi-epoch photo-polarimetry of 68 pre-main-sequence and main-sequence stars. An investigation of the polarization variability indicates that 22 objects are variable at the 3sigma level in our data. All these objects are pre-main sequence stars, consisting of both T Tauri and Herbig Ae/Be objects while the main sequence, Vega type and post-T Tauri type objects are not variable. The polarization properties of the variable sources are mostly indicative of the UXOR-type behaviour; the objects show highest polarization when the brightness is at minimum. We add seven new objects to the class of UXOR variables (BH Cep, VX Cas, DK Tau, HK Ori, LkHa 234, KK Oph and RY Ori). The main reason for their discovery is the fact that our data-set is the largest in its kind, indicating that many more young UXOR-type pre-main sequence stars remain to be discovered. The set ...

  4. A helium spread among the main sequence stars in NGC 2808

    CERN Document Server

    D'Antona, F; Caloi, V; Pecci, F F; Galleti, S; Rood, R T

    2005-01-01

    We studied the color distribution of the main sequence of the Globular Cluster NGC 2808, based on new deep HST-WFPC2 photometry of a field in the uncrowded outskirts of the cluster. The color distribution of main sequence stars is wider than expected for a single stellar population, given our (carefully determined) measurement errors. About 20% of the sample stars are much bluer than expected and are most plausibly explained as a population having a much larger helium abundance than the bulk of the main sequence. We estimate that the helium mass fraction of these stars is Y ~ 0.4. NGC 2808 may have suffered self-enrichment, with different stellar populations born from the ejecta of the intermediate mass asymptotic giant branch (AGB) stars of the first generation. In addition to the Y=0.40 stars, roughly 30% of the stars should have Y distributed between 0.26-0.29 while 50% have primordial Y, to explain also the peculiar horizontal branch morphology. Three main stages of star formation are identified, the firs...

  5. Discovery of magnetic A supergiants: the descendants of magnetic main-sequence B stars

    Science.gov (United States)

    Neiner, Coralie; Oksala, Mary E.; Georgy, Cyril; Przybilla, Norbert; Mathis, Stéphane; Wade, Gregg; Kondrak, Matthias; Fossati, Luca; Blazère, Aurore; Buysschaert, Bram; Grunhut, Jason

    2017-10-01

    In the context of the high resolution, high signal-to-noise ratio, high sensitivity, spectropolarimetric survey BritePol, which complements observations by the BRITE constellation of nanosatellites for asteroseismology, we are looking for and measuring the magnetic field of all stars brighter than V = 4. In this paper, we present circularly polarized spectra obtained with HarpsPol at ESO in La Silla (Chile) and ESPaDOnS at CFHT (Hawaii) for three hot evolved stars: ι Car, HR 3890 and ε CMa. We detected a magnetic field in all three stars. Each star has been observed several times to confirm the magnetic detections and check for variability. The stellar parameters of the three objects were determined and their evolutionary status was ascertained employing evolution models computed with the Geneva code. ε CMa was already known and is confirmed to be magnetic, but our modelling indicates that it is located near the end of the main sequence, i.e. it is still in a core hydrogen burning phase. ι Car and HR 3890 are the first discoveries of magnetic hot supergiants located well after the end of the main sequence on the Hertzsprung-Russell diagram. These stars are probably the descendants of main-sequence magnetic massive stars. Their current field strength (a few G) is compatible with magnetic flux conservation during stellar evolution. These results provide observational constraints for the development of future evolutionary models of hot stars including a fossil magnetic field.

  6. Angular momentum transport efficiency in post-main sequence low-mass stars

    CERN Document Server

    Spada, F; Arlt, R; Deheuvels, S

    2016-01-01

    Context. Using asteroseismic techniques, it has recently become possible to probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and red giant stars. Under the assumption of local angular momentum conservation, the core contraction and envelope expansion occurring at the end of the main sequence would result in a much larger internal differential rotation than observed. This suggests that angular momentum redistribution must be taking place in the interior of these stars. Aims. We investigate the physical nature of the angular momentum redistribution mechanisms operating in stellar interiors by constraining the efficiency of post-main sequence rotational coupling. Methods. We model the rotational evolution of a 1.25 Msun star using the Yale Rotational stellar Evolution Code. Our models take into account the magnetic wind braking occurring at the surface of the star and the angular momentum transport in the interior, with an efficiency dependent on the degree of internal differential rotati...

  7. Compact object detection in self-lensing binary systems with a main-sequence star

    CERN Document Server

    Rahvar, S; Dominik, M

    2010-01-01

    Detecting compact objects by means of their gravitational lensing effect on an observed companion in a binary system has already been suggested almost four decades ago. However, these predictions were made even before the first observations of gravitational lensing, whereas nowadays gravitational microlensing surveys towards the Galactic bulge yield almost 1000 events per year where one star magnifies the light of a more distant one. With a specific view on those experiments, we therefore carry out simulations to assess the prospects for detection of the transient periodic magnification of the companion star, which lasts typically only a few hours binaries involving a main-sequence star. We find that detectability is given by the achievability of dense monitoring with the required photometric accuracy. In sharp contrast to earlier expectations by other authors, we find that main-sequence stars are not substantially less favourable targets to observe this effect than white dwarfs. The requirement of an almost ...

  8. Pre-main-sequence isochrones -- II. Revising star and planet formation timescales

    CERN Document Server

    Bell, Cameron P M; Mayne, N J; Jeffries, R D; Littlefair, S P

    2013-01-01

    We have derived ages for 13 young (<30 Myr) star-forming regions and find they are up to a factor two older than the ages typically adopted in the literature. This result has wide-ranging implications, including that circumstellar discs survive longer (~10-12 Myr) and that the average Class I lifetime is greater (~1 Myr) than currently believed. For each star-forming region we derived two ages from colour-magnitude diagrams. First we fitted models of the evolution between the zero-age main-sequence and terminal-age main-sequence to derive a homogeneous set of main-sequence ages, distances and reddenings with statistically meaningful uncertainties. Our second age for each star-forming region was derived by fitting pre-main-sequence stars to new semi-empirical model isochrones. For the first time (for a set of clusters younger than 50 Myr) we find broad agreement between these two ages, and since these are derived from two distinct mass regimes that rely on different aspects of stellar physics, it gives us c...

  9. Main-sequence variable stars in young open cluster NGC 1893

    OpenAIRE

    Lata, Sneh; Yadav, Ram Kesh; Pandey, A.K.(Indian Institute of Technology Bombay (IIT), Mumbai, India); Richichi, Andrea; Eswaraiah, C.; Kumar, Brajesh; Kappelmann, Norbert; Sharma, Saurabh

    2014-01-01

    In this paper we present time series photometry of 104 variable stars in the cluster region NGC 1893. The association of the present variable candidates to the cluster NGC 1893 has been determined by using $(U-B)/(B-V)$ and $(J-H)/(H-K)$ two colour diagrams, and $V/(V-I)$ colour magnitude diagram. Forty five stars are found to be main-sequence variables and these could be B-type variable stars associated with the cluster. We classified these objects as $\\beta$ Cep, slowly pulsating B stars an...

  10. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    DEFF Research Database (Denmark)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto

    2017-01-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (T...... slow rotation. In particular, we show that there is no evidence of any secondary companion star, and we put stringent limits on the possible mass of any such purported companion through the phase modulation technique....

  11. Possible evidence for metal accretion onto the surfaces of metal-poor main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Kohei; Yoshii, Yuzuru [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Beers, Timothy C. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Carollo, Daniela [Department of Physics and Astronomy, Macquarie University, Sydney, 2109 NSW (Australia); Lee, Young Sun, E-mail: khattori@ioa.s.u-tokyo.ac.jp [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parameterized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the same mass-assembly and star-formation histories. By analyzing a sample of nearby metal-poor halo and thick-disk stars on the main sequence, taken from Data Release 8 of the Sloan Digital Sky Survey, we find that the median metallicity of G-type dwarfs is systematically higher (by about 0.2 dex) than that of K-type dwarfs having the same median rotational velocity about the Galactic center. If it can be confirmed, this finding may invalidate the long-accepted assumption that the atmospheric metallicities of long-lived stars are conserved over time.

  12. Pre main sequence stars as UV sources for the World Space Observatory-UV mission

    Science.gov (United States)

    Gomez de Castro, Ana I.; Lamzin, Sergei A.

    2011-09-01

    Pre-main sequence stars are bright UV (UV) sources compared with their main sequence analogues. The source of this excess is the high energy processes associated with the physics of accretion/outflow during early stellar evolution. In this review, the main sources of UV excess are described as well as the most significant "unknowns" in the field. Special emphasis is made on the results from the last observations carried out with the Hubble Space Telescope and on the relevance of future dedicated monitoring programs with the World Space Observatory-UV.

  13. Main-Sequence Binary Stars in the Core of NGC 6397

    Science.gov (United States)

    Bolton, A. S.; Cool, A. M.; Anderson, J.

    1999-12-01

    Using HST WFPC2 data, we isolate main-sequence binary candidates in the central region of the globular cluster NGC 6397 based on their locations in an I vs. V - I color--magnitude diagram. We have largely eliminated field stars from the sample beforehand based on proper motions determined from two sets of position data separated by approximately three years. Binary candidates are fit to models based on the empirically derived main-sequence ridge line for the cluster, and component masses are determined using theoretical mass--luminosity relations appropriate to the cluster. Preliminary results suggest an upper limit of 3% on the binary fraction for stars in the apparent magnitude range 17.0 mass ratios greater than approximately 0.45. We also present preliminary results for the distribution of binaries as a function of primary mass and mass ratio, as well as a comparison of these results to previously published findings for field stars.

  14. Possible Evidence for Metal Accretion onto the Surfaces of Metal-Poor Main-Sequence Stars

    CERN Document Server

    Hattori, Kohei; Beers, Timothy C; Carollo, Daniela; Lee, Young Sun

    2014-01-01

    The entire evolution of the Milky Way, including its mass-assembly and star-formation history, is imprinted onto the chemo-dynamical distribution function of its member stars, f(x, v, [X/H]), in the multi-dimensional phase space spanned by position, velocity, and elemental abundance ratios. In particular, the chemo-dynamical distribution functions for low-mass stars (e.g., G- or K-type dwarfs) are precious tracers of the earliest stages of the Milky Way's formation, since their main-sequence lifetimes approach or exceed the age of the universe. A basic tenet of essentially all previous analyses is that the stellar metallicity, usually parametrized as [Fe/H], is conserved over time for main-sequence stars (at least those that have not been polluted due to mass transfer from binary companions). If this holds true, any correlations between metallicity and kinematics for long-lived main-sequence stars of different masses, effective temperatures, or spectral types must strictly be the same, since they reflect the ...

  15. Uncertainties in the determination of the upper mass limit for zero-age main sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Klapp, J.; Langer, N.; Fricke, K.J.

    1987-05-01

    In a recent investigation Klapp et al 1987 obtained a critical mass of 440 Mass of sun for the overstability of very massive extreme population I stars at the main sequence. In this work they investigate the dependence of Klapp et al 1987 results upon the program input physics. They find that stars in the 100 - 500 Mass of sun range are marginally stable (or unstable) and that this mass range should be considered as a transition region from stability to overstability of very massive stars. 12 references, 3 figures, 1 table.

  16. Active phenomena in the pre-main sequence Herbig Ae star HD 163296

    Science.gov (United States)

    Catala, C.; Praderie, F.; Simon, T.; Talavera, A.; The, P. S.

    1989-01-01

    Observations by IUE of the short-term variability of the Mg II and Ca II resonance lines in the Herbig Ae star HD 163296 are presented. Evidence that these lines show a phenomenon of rotational modulation, similar to the one observed in AB Aur, another Herbig Ae star is found. The variations in the spectrum of HD 163296 are even more conspicuous than in the spectrum of AB Aur. Magnetically structured winds may thus be a widespread phenomenon among the pre-main sequence Herbig Ae/Be stars.

  17. The Coronal Temperatures of Low-Mass Main-Sequence Stars

    CERN Document Server

    Johnstone, Colin P

    2015-01-01

    Aims. We study the X-ray emission of low-mass main-sequence stars to derive a reliable general scaling law between coronal temperature and the level of X-ray activity. Methods. We collect ROSAT measurements of hardness ratios and X-ray luminosities for a large sample of stars to derive which stellar X-ray emission parameter is most closely correlated with coronal temperature. We calculate average coronal temperatures for a sample of 24 low-mass main-sequence stars with measured emission measure distributions (EMDs) collected from the literature. These EMDs are based on high-resolution X-ray spectra measured by XMM-Newton and Chandra. Results. We confirm that there is one universal scaling relation between coronal average temperature and surface X-ray flux, Fx, that applies to all low-mass main-sequence stars. We find that coronal temperature is related to Fx by Tcor=0.11 Fx^0.26, where Tcor is in MK and Fx is in erg/s/cm^2.

  18. The coronal temperatures of low-mass main-sequence stars

    Science.gov (United States)

    Johnstone, C. P.; Güdel, M.

    2015-06-01

    Aims: We study the X-ray emission of low-mass main-sequence stars to derive a reliable general scaling law between coronal temperature and the level of X-ray activity. Methods: We collect ROSAT measurements of hardness ratios and X-ray luminosities for a large sample of stars to derive which stellar X-ray emission parameter is most closely correlated with coronal temperature. We calculate average coronal temperatures for a sample of 24 low-mass main-sequence stars with measured emission measure distributions (EMDs) collected from the literature. These EMDs are based on high-resolution X-ray spectra measured by XMM-Newton and Chandra. Results: We confirm that there is one universal scaling relation between coronal average temperature and surface X-ray flux, FX, that applies to all low-mass main-sequence stars. We find that coronal temperature is related to FX by T̅cor = 0.11 FX0.26, where T̅cor is in MK and FX is in erg s-1 cm-2.

  19. The sub-galactic and nuclear main sequences for local star-forming galaxies

    CERN Document Server

    Maragkoudakis, A; Ashby, M L N; Willner, S P

    2016-01-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate surface density ($\\Sigma_{\\textrm{SFR}}$) and stellar mass density ($\\Sigma_{\\star}$) for distinct regions within star forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the "Star Formation Reference Survey" and demonstrate that the SGMS holds down to $ \\sim $1 kpc scales with a slope of $\\alpha=0.91$ and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated star formation rates (SFRs) and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc$-$Irr) having $\\alpha = 0.97$ and early-type spirals (Sa$-$Sbc) having $\\alpha = 0.81$. The SGMS constructed from sub-regions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other sub-regions. Sampling a limited range of SFR$-$M$_{\\star} $ ...

  20. Stellar Parameters of Main Sequence Turn-off Star Candidates Observed with the LAMOST and Kepler

    CERN Document Server

    Wu, Yaqian; Zhang, Xianfei; Li, Tanda; Bi, Shaolan; Liu, Xiaowei; Fu, Jianning; Huang, Yang; Tian, Zhijia; Liu, Kang; Ge, Zhishuai; He, Xin; Zhang, Jinghua

    2016-01-01

    Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant...

  1. The slowly pulsating B-star 18 Peg: A testbed for upper main sequence stellar evolution

    CERN Document Server

    Irrgang, Andreas; Moehler, Sabine; Mugrauer, Markus; Janousch, David

    2016-01-01

    The predicted width of the upper main sequence in stellar evolution models depends on the empirical calibration of the convective overshooting parameter. Despite decades of discussions, its precise value is still unknown and further observational constraints are required to gauge it. Based on a photometric and preliminary asteroseismic analysis, we show that the mid B-type giant 18 Peg is one of the most evolved members of the rare class of slowly pulsating B-stars and, thus, bears tremendous potential to derive a tight lower limit for the width of the upper main sequence. In addition, 18 Peg turns out to be part of a single-lined spectroscopic binary system with an eccentric orbit that is greater than 6 years. Further spectroscopic and photometric monitoring and a sophisticated asteroseismic investigation are required to exploit the full potential of this star as a benchmark object for stellar evolution theory.

  2. ACCRETION RATES ON PRE-MAIN-SEQUENCE STARS IN THE YOUNG OPEN CLUSTER NGC 6530

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, Jose; Del Valle, Luciano; Ruiz, Maria Teresa, E-mail: gallardo@das.uchile.cl, E-mail: ldelvall@das.uchile.cl, E-mail: mtruiz@das.uchile.cl [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile)

    2012-01-15

    It is well accepted that during the star formation process, material from a protoplanetary disk is accreted onto the central object during the first {approx}1-5 Myr. Different authors have published measurements of accretion rates for young low- and intermediate-mass stars in several nearby star-forming regions (SFRs). Due to its somewhat larger distance, the SFR M8 (the Lagoon Nebula) has not been studied to the same extent, despite its abundant population of young stellar objects. We have obtained optical band low-resolution spectra of a sample of pre-main-sequence stars in the open cluster NGC 6530 located in the aforementioned nebulae using the Gemini Multi Object Spectrograph at Gemini-South in multi-object mode. Spectra cover the H{sub {alpha}} emission line used to measure the accretion rate, following the method presented by Natta et al. The observed spectral characteristics are fully consistent with pre-main-sequence stars, showing lithium absorption lines, which are very common in young stellar objects, as well as prominent and broad H{sub {alpha}} emission lines, indicating a T Tauri evolutionary stage. This work presents the first determinations of mass accretion rates of young stellar objects in the open cluster NGC 6530, confirming that they are classical T Tauri stars going through the accretion phase. These observations contribute to a better understanding of the stellar content and evolutionary phase of the very active Lagoon Nebula SFR.

  3. Magnetic Activity of Pre-main Sequence Stars near the Stellar-Substellar Boundary

    CERN Document Server

    Principe, David A; Rodriguez, David

    2015-01-01

    X-ray observations of pre-main sequence (pre-MS) stars of M-type probe coronal emission and offer a means to investigate magnetic activity at the stellar-substellar boundary. Recent observations of main sequence (MS) stars at this boundary display a decrease in fractional X-ray luminosity ($L_{X}$/$L_{bol}$) by almost two orders of magnitude for spectral types M7 and later. We investigate magnetic activity and search for a decrease in X-ray emission in the pre-MS progenitors of these MS stars. We present XMM-Newton X-ray observations and preliminary results for ~10 nearby (30-70 pc), very low mass pre-MS stars in the relatively unexplored age range of 10-30 Myr. We compare the fractional X-ray luminosities of these 10-30 Myr old stars to younger (1-3 Myr) pre-MS brown dwarfs and find no dependence on spectral type or age suggesting that X-ray activity declines at an age later than ~30 Myr in these very low-mass stars.

  4. Magnetic Activity of Pre-main Sequence Stars near the Stellar-Substellar Boundary

    Science.gov (United States)

    Principe, David; Kastner, Joel. H.; Rodriguez, David

    2016-01-01

    X-ray observations of pre-main sequence (pre-MS) stars of M-type probe coronal emission and offer a means to investigate magnetic activity at the stellar-substellar boundary. Recent observations of main sequence (MS) stars at this boundary display a decrease in fractional X-ray luminosity (L X /L bol ) by almost two orders of magnitude for spectral types M7 and later. We investigate magnetic activity and search for a decrease in X-ray emission in the pre-MS progenitors of these MS stars. We present XMM-Newton X-ray observations and preliminary results for ~10 nearby (30-70 pc), very low mass pre-MS stars in the relatively unexplored age range of 10-30 Myr. We compare the fractional X-ray luminosities of these 10-30 Myr old stars to younger (1-3 Myr) pre-MS brown dwarfs and find no dependence on spectral type or age suggesting that X-ray activity declines at an age later than ~30 Myr in these very low-mass stars.

  5. Mapping the Galactic halo with main-sequence and RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Sesar B.

    2012-02-01

    Full Text Available We present an analysis of Galactic halo structure, substructure, and metallicity traced by main-sequence and RR Lyrae stars selected from the SDSS stripe 82 and CFHT Legacy Survey data sets. The main result of the study based on SDSS stripe 82 data is a 2D map of the Galactic halo that reaches distances of 100 kpc and traces previously known and new halo substructures, such as the Sagittarius and Pisces tidal streams. We present strong direct evidence, based on both RR Lyrae and main-sequence stars, that the halo stellar number density profile significantly steepens beyond 30 kpc from the Galactic center. The steepening of the density profile beyond 30 kpc is also evident in the distribution of main-sequence stars observed by the CFHT Legacy Survey along four Galactic lines of sight. In the two CFHT sightlines where we do not detect significant substructure, the median metallicity is found to be independent of distance within systematic uncertainties ([Fe∕H] ~ −1.5 ± 0.1 dex within 30 kpc of the Galactic Center.

  6. On the evolutionary status of chemically peculiar stars of the upper main sequence

    CERN Document Server

    Poehnl, H; Paunzen, E

    2003-01-01

    We present further evidence that the magnetic chemically peculiar stars (CP2) of the upper main sequence already occur at very early stages of the stellar evolution, significantly before they reach 30% of their life-time on the main sequence. This result is especially important for models dealing with dynamo theories, angular momentum loss during the pre- as well as main sequence and evolutionary calculations for CP2 stars. Results form the literature either derived for objects in the Hyades and the UMa cluster or from the Hipparcos mission contradict each other. A way out of this dilemma is to investigate young open clusters with known ages and accurate distances (error < 10%), including CP2 members. Up to now, four open clusters fulfill these requirements: IC 2391, IC 2602, NGC 2451A and NGC 2516. In total, 13 CP2 stars can be found within these clusters. We have used the measurements and calibrations of the Geneva 7-color photometric systems to derive effective temperatures and luminosities. Taking into...

  7. X-ray Emission Properties of Intermediate-Mass, Pre-Main-Sequence Stars

    Science.gov (United States)

    Povich, Matthew S.; Binder, Breanna; Townsley, Leisa K.; Broos, Patrick S.

    2017-08-01

    Intermediate-mass (2-8 M⊙) main-sequence stars with A to mid-B spectral types occupy an X-ray "desert" of weak intrinsic emission between low- and high-mass stars. Lacking the wind-shock driven emission of massive, O and early B stars or the convectively-driven magnetic reconnection flaring activity of later-type stars, X-ray detections of (non-peculiar) main-sequence AB stars are typically ascribed to the presence of unresolved, lower-mass binary companions. There is mounting evidence, however, that intermediate-mass, pre-main sequence stars (IMPS) with GK spectral types produce intrinsic X-ray emission that rapidly decays with time following the development of a radiative zone as IMPS approach the ZAMS as AB stars. This suggests that X-ray emission from IMPS may be a more luminous analog of the well-studied coronal X-ray emission from lower-mass, T Tauri stars. Statistical studies of young IMPS have been hampered by their scarcety in nearby, unobscured star-forming regions. We present the first results from a spectral-fitting study to measure absorption-corrected X-ray luminosities and plasma temperatures for hundreds of candidate X-ray emitting IMPS found in the MYStIX and MAGiX surveys of massive Galactic star forming regions. Candidate IMPS are placed on the HR diagram via a novel infrared spectral energy distribution modeling technique designed for highly-obscured, young massive star-forming regions. The rapid decay of X-ray emission from these objects has the potential to provide an independent chronometer to constrain star formation rates, and may produce an age-dependent bias in the relationship between the stellar X-ray luminosity function and mass function in distant (>2 kpc) regions observed with relatively shallow X-ray observations.This work is supported by the National Science Foundation under grant CAREER-1454334 and by NASA through Chandra Award 18200040.

  8. Pre-main sequence variable stars in young open cluster NGC 1893

    OpenAIRE

    Lata, Sneh; Pandey, A.K.(Indian Institute of Technology Bombay (IIT), Mumbai, India); Chen, W. P.; Maheswar, G.; Chauhan, Neelam

    2012-01-01

    We present results of multi-epoch (fourteen nights during 2007-2010) $V$-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. The members associated with the region are identified on the basis of spectral energy distribution, $J-H/H-K$ two colour diagram and $V/V-I$ colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be ...

  9. Can rotation explain the multiple main sequence turn-offs of Magellanic Cloud star clusters?

    CERN Document Server

    Girardi, Leo; Miglio, Andrea

    2011-01-01

    Many intermediate age star clusters in the Magellanic Clouds present multiple main sequence turn-offs (MMSTO), which challenge the classical idea that star formation in such objects took place over short timescales. It has been recently suggested that the presence of fast rotators among main sequence stars could be the cause of such features (Bastian & de Mink 2009), hence relaxing the need for extended periods of star formation. In this letter, we compute evolutionary tracks and isochrones of models with and without rotation. We find that, for the same age and input physics, both kinds of models present turn-offs with an almost identical position in the colour-magnitude diagrams. As a consequence, a dispersion of rotational velocities in coeval ensembles of stars could not explain the presence of MMSTOs. We construct several synthetic colour-magnitude diagrams for the different kinds of tracks and combinations of them. The models that best reproduce the morphology of observed MMSTOs are clearly those ass...

  10. Pulsating pre-main sequence stars in IC 4996 and NGC 6530

    CERN Document Server

    Zwintz, K; Zwintz, Konstanze; Weiss, Werner W.

    2006-01-01

    Asteroseismology of pulsating pre-main sequence (PMS) stars has the potential of testing the validity of current models of PMS structure and evolution. As a first step, a sufficiently large sample of pulsating PMS stars has to be established, which allows to select candidates optimally suited for a detailed asteroseismological analysis based on photometry from space or ground based network data. A search for pulsating PMS members in the young open clusters IC 4996 and NGC 6530 has been performed to improve the sample of known PMS pulsators. As both clusters are younger than 10 million years, all members with spectral types later than A0 have not reached the zero-age main sequence yet. Hence, IC 4996 and NGC 6530 are most suitable to search for PMS pulsation among their A- and F-type cluster stars. CCD time series photometry in Johnson B and V filters has been obtained for IC 4996 and NGC 6530. The resulting light curves for 113 stars in IC 4996 and 194 stars in NGC 6530 have been subject to detailed frequency...

  11. Asteroseismic measurement of surface-to-core rotation in a main-sequence star*

    Directory of Open Access Journals (Sweden)

    Kurtz Donald W.

    2015-01-01

    Full Text Available We have discovered rotationally split core g-mode triplets and surface p-mode triplets and quintuplets in a terminal age main-sequence A star, KIC 11145123, that shows both δ Sct p-mode pulsations and γ Dor g-mode pulsations. This gives the first robust determination of the rotation of the deep core and surface of a main-sequence star, essentially model-independently. We find its rotation to be nearly uniform with a period near 100 d, but we show with high confidence that the surface rotates slightly faster than the core. A strong angular momentum transfer mechanism must be operating to produce the nearly rigid rotation, and a mechanism other than viscosity must be operating to produce a more rapidly rotating surface than core. Our asteroseismic result, along with previous asteroseismic constraints on internal rotation in some B stars, and measurements of internal rotation in some subgiant, giant and white dwarf stars, has made angular momentum transport in stars throughout their lifetimes an observational science.

  12. Estimate the radius of the convective core of main-sequence stars from observed oscillation frequencies

    CERN Document Server

    Yang, Wuming

    2016-01-01

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 $M_{\\odot}$ from observed frequencies of low-degree p-modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is $\\mathbf{0.140\\pm0.028}$ $R_{\\odot}$. In order to confirm this prediction, a grid of evolutionary models were computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is $0.149$ $R_{\\odot}$, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the c...

  13. Rotating Massive Main-Sequence Stars I: Grids of Evolutionary Models and Isochrones

    CERN Document Server

    Brott, Ines; Cantiello, Matteo; Langer, Norbert; de Koter, Alex; Evans, Chris J; Hunter, Ian; Trundle, Carrie; Vink, Jorick S

    2011-01-01

    We present a dense grid of evolutionary tracks and isochrones of rotating massive main-sequence stars. We provide three grids with different initial compositions tailored to compare with early OB stars in the Small and Large Magellanic Clouds and in the Galaxy. Each grid covers masses ranging from 5 to 60 Msun and initial rotation rates between 0 and about 600 km/s. To calibrate our models we used the results of the VLT-FLAMES Survey of Massive Stars. We determine the amount of convective overshooting by using the observed drop in rotation rates for stars with surface gravities log g < 3.2 to determine the width of the main sequence. We calibrate the efficiency of rotationally induced mixing using the nitrogen abundance determinations for B stars in the Large Magellanic cloud. We describe and provide evolutionary tracks and the evolution of the central and surface abundances. In particular, we discuss the occurrence of quasi-chemically homogeneous evolution, i.e. the severe effects of efficient mixing of t...

  14. An Unusual Eclipse of a Pre-Main Sequence Star in IC 348

    CERN Document Server

    Cohen, R E; Williams, E C

    2003-01-01

    A solar-like pre-main sequence star (TJ 108 = H 187 = LRLL 35 = HMW 15) in the extremely young cluster IC 348 has been found, which apparently experienced an eclipse lasting ~3.5 years, much longer than has ever been detected for any normal eclipsing binary. The light curve is flat-bottomed and rather symmetric, with a depth of 0.66 mag in Cousins I. During eclipse, the system reddened by \\~0.17 mag in R-I. We argue that the eclipsing body is not a star because of the small probability of detecting an eclipse in what would be a very widely separated binary. Instead, it appears that the eclipse was caused by a circumstellar or circumbinary cloud or disk feature which occulted the star, or one of its components, if it is a binary system. We emphasize the importance of more detailed study of this object, which appears to be a new member of a small class of pre-main sequence stars whose variability can be firmly linked to occultation by circumstellar (or circumbinary) matter.

  15. The effect of starspots on the radii of low-mass pre-main sequence stars

    CERN Document Server

    Jackson, R J

    2014-01-01

    A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M<0.5Msun), pre-main sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1-beta)^{-N} compared to unspotted stars of the same luminosity, where beta is the equivalent covering fraction of dark starspots and N \\simeq 0.45+/-0.05. This is a much stronger inflation than predicted by the models of Spruit & Weiss (1986) for main sequence stars with the same beta, where N \\sim 0.2 to 0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally-locked, low-mass eclipsing binary components. The binary components and ZAMS K-dwarfs have radii inflated by \\sim 10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrica...

  16. Low-mass pre--main-sequence stars in the Magellanic Clouds

    CERN Document Server

    Gouliermis, Dimitrios

    2012-01-01

    [Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Te...

  17. The sub-galactic and nuclear main sequences for local star-forming galaxies

    Science.gov (United States)

    Maragkoudakis, A.; Zezas, A.; Ashby, M. L. N.; Willner, S. P.

    2017-04-01

    We describe a sub-galactic main sequence (SGMS) relating star formation rate (SFR) surface density (ΣSFR) and stellar mass density (Σ⋆) for distinct regions within star-forming galaxies, including their nuclei. We use a sample of 246 nearby star-forming galaxies from the 'Star Formation Reference Survey and demonstrate that the SGMS holds down to ˜1 kpc scales with a slope of α = 0.91 and a dispersion of 0.31 dex, similar to the well-known main sequence (MS) measured for globally integrated SFRs and stellar masses. The SGMS slope depends on galaxy morphology, with late-type galaxies (Sc-Irr) having α = 0.97 and early-type spirals (Sa-Sbc) having α = 0.81. The SGMS constructed from subregions of individual galaxies has on average the same characteristics as the composite SGMS from all galaxies. The SGMS for galaxy nuclei shows a dispersion similar to that seen for other subregions. Sampling a limited range of SFR-M⋆ space may produce either sublinearity or superlinearity of the SGMS slope. For nearly all galaxies, both SFR and stellar mass peak in the nucleus, indicating that circumnuclear clusters are among the most actively star-forming regions in the galaxy and the most massive. The nuclear SFR also correlates with total galaxy mass, forming a distinct sequence from the standard MS of star formation. The nuclear MS will be useful for studying bulge growth and for characterizing feedback processes connecting AGN and star formation.

  18. X-rays across the galaxy population - I. Tracing the main sequence of star formation

    Science.gov (United States)

    Aird, J.; Coil, A. L.; Georgakakis, A.

    2017-03-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.

  19. The Helium abundance and Delta Y / Delta Z in Lower Main Sequence stars

    CERN Document Server

    Casagrande, L; Portinari, Laura; Girardi, Leo; Jimenez, Raul

    2007-01-01

    We use nearby K dwarf stars to measure the helium-to-metal enrichment ratio, a diagnostic of the chemical history of the Solar Neighbourhood. Our sample of K dwarfs has homogeneously determined effective temperatures, bolometric luminosities and metallicities, allowing us to fit each star to the appropriate stellar isochrone and determine its helium content indirectly. We use a newly computed set of Padova isochrones which cover a wide range of helium and metal content. Our theoretical isochrones have been checked against a congruous set of main sequence binaries with accurately measured masses, to discuss and validate their range of applicability. We find that the stellar masses deduced from the isochrones are usually in excellent agrement with empirical measurements. Good agreement is also found with empirical mass-luminosity relations. Despite fitting the masses of the stars very well, we find that anomalously low helium content (lower than primordial helium) is required to fit the luminosities and tempera...

  20. Is Main Sequence Galaxy Star Formation Controlled by Halo Mass Accretion?

    CERN Document Server

    Rodriguez-Puebla, Aldo; Behroozi, Peter; Faber, S M

    2015-01-01

    It is known that the galaxy stellar-to-halo mass ratio (SHMR) is nearly independent of redshift from z=0-4. This motivates us to construct a toy model in which we assume that the SMHR for central galaxies measured at redshift z~0 is independent of redshift, which implies that the star formation rate (SFR) is determined by the halo mass accretion rate, a phenomenon we call Stellar-Halo Accretion Rate Coevolution (SHARC). Moreover, we show here that the ~0.3 dex dispersion of the halo mass accretion rate (MAR) is similar to the observed dispersion of the SFR on the main sequence. In the context of bathtub-type models of galaxy formation, SHARC leads to mass-dependent constraints on the relation between SFR and MAR. The SHARC assumption is no doubt over-simplified, but we expect it to be possibly valid for central galaxies with stellar masses of 10^9 - 10^10.5 M_sol that are on the star formation main sequence. Such galaxies represent most of the life history of M_* galaxies, and therefore most of the star forma...

  1. Molecular and atomic gas along and across the main sequence of star-forming galaxies

    CERN Document Server

    Saintonge, A; Cortese, L; Genzel, R; Giovanelli, R; Haynes, M P; Janowiecki, S; Kramer, C; Lutz, K A; Schiminovich, D; Tacconi, L J; Wuyts, S; Accurso, G

    2016-01-01

    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the HI line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within +/-0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive main sequence galaxies, indicating that the ...

  2. Age-rotation relationship for late-type main-sequence stars

    Science.gov (United States)

    Rengarajan, T. N.

    1984-01-01

    With advancing spectral type and increasing age, late main-sequence stars exhibit monotonic decrease in rotational velocity. It is of great interest to extend the rotation-age relationship to stars of later spectral type. In recent times it has become possible to measure directly the rotational periods from the photometric modulation by Ca II H and K line emission. There have also been successful attempts to relate the chromospheric activity as manifested through Ca II H and K lines to the rotation period, and it was shown that the fraction of total stellar luminosity in Ca II H and K lines, corrected for photospheric contribution, is a function of a single parameter related to P and B-V. In the present investigation, this rotation-activity relation is utilized to infer the rotation periods as a function of spectral type. The period versus B-V plot is employed as a basis to infer that the rotational period of main-sequence stars is a single-valued function of mass (B-V color) and age.

  3. Pre-main sequence stars in the stellar association N11 in the Large Magellanic Cloud

    CERN Document Server

    Vallenari, Antonella; Sordo, Rosanna

    2009-01-01

    Magellanic Clouds are of extreme importance to the study of the star formation process in low metallicity environments. In this paper we report on the discovery of pre-main sequence candidates and young embedded stellar objects in N11 located in the Large Magellanic Cloud to cast light on the star formation scenario. We would like to remind that this comparison is complicated by the presence of a large age dispersion detected in the fields. Deep archive HST/ACS photometry is used to derive color-magnitude diagrams of the associations in N~11 and of the foreground field population. These data are complemented by archive IR Spitzer data which allow the detection of young embedded stellar objects. The spatial distribution of the pre-main sequence candidates and young embedded stellar objects is compared with literature data observed at different wavelengths, such as H$_{\\alpha}$ and CO maps, and with the distribution of OB and Herbig Ae/Be stars. The degree of clustering is derived using the Minimal Spanning Tre...

  4. Stellar Diameters and Temperatures I. Main Sequence A, F, & G Stars

    CERN Document Server

    Boyajian, Tabetha S; van Belle, Gerard; Gies, Douglas R; Brummelaar, Theo A ten; von Braun, Kaspar; Farrington, Chris; Goldfinger, P J; O'Brien, David; Parks, J Robert; Richardson, Noel D; Ridgway, Stephen; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit; Touhami, Yamina; Turner, Nils H; White, Russel

    2011-01-01

    We have executed a survey of nearby, main sequence A, F, and G-type stars with the CHARA Array, successfully measuring the angular diameters of fortyfour stars with an average precision of ~ 1.5%. We present new measures of the bolometric flux, which in turn leads to an empirical determination of the effective temperature for the stars observed. In addition, these CHARA-determined temperatures, radii, and luminosities are fit to Yonsei-Yale model isochrones to constrain the masses and ages of the stars. These results are compared to indirect estimates of these quantities obtained by collecting photometry of the stars and applying them to model atmospheres and evolutionary isochrones. We find that for most cases, the models overestimate the effective temperature by ~ 1.5-4%, when compared to our directly measured values. The overestimated temperatures and underestimated radii in these works appear to cause an additional offset in the star's surface gravity measurements, which consequently yield higher masses a...

  5. An Objective Definition for the Main Sequence of Star-Forming Galaxies

    CERN Document Server

    Renzini, Alvio

    2015-01-01

    The Main Sequence (MS) of star-forming galaxies plays a fundamental role in driving galaxy evolution and in our efforts to understand it. However, different studies find significant differences in the normalization, slope and shape of the MS. These discrepancies arise mainly from the different selection criteria adopted to isolate star-forming galaxies, that may include or exclude galaxies with specific star formation rate (SFR) substantially below the MS value. To obviate this limitation of all current criteria, we propose an objective definition of the MS that does not rely at all on a pre-selection of star-forming galaxies. Constructing the 3D SFR-Mass-Number plot, the MS is then defined as the ridge line of the star-forming peak, as illustrated with various figures. The advantages of such definition are manifold. If generally adopted it will facilitate the inter-comparison of results from different groups using the same star formation rate (SFR) and stellar mass diagnostics, or to highlight the relative s...

  6. Mid-Infrared Spectra of Dust Debris Around Main-Sequence Stars

    CERN Document Server

    Jura, M; Furlan, E; Green, J; Sargent, B; Forrest, W J; Watson, D M; Barry, J; Hall, P; Herter, T L; Houck, J R; Sloan, G C; Uchida, K; D'Alessio, P; Brandl, B R; Keller, L D; Kemper, F; Morris, P; Najita, J R; Calvet, N; Hartmann, L; Myers, P C

    2004-01-01

    We report spectra obtained with the Spitzer Space Telescope in the wavelength range between 14 microns and 35 microns of 19 nearby main-sequence stars with infrared excesses. The six stars with strong dust emission show no recognizable spectral features, suggesting that the bulk of the emitting particles have diameters larger than 10 microns. If the observed dust results from collisional grinding of larger solids, we infer minimum masses of the parent body population between 0.004 of the Earth's mass and 0.06 of the Earth's mass. We estimate grain production rates of 10 Gg/s around lambda Boo and HR 1570; selective accretion of this matter may help explain their peculiar surface abundances. There appear to be inner truncations in the dust clouds at 48 AU, 11 AU, 52 AU and 54 AU around HR 333, HR 506, HR 1082 and HR 3927, respectively.

  7. Super-solar metallicity in G0-G3 main sequence stars with V$<$15

    CERN Document Server

    López-Valdivia, R; Chávez, M; Tapia-Schiavon, C; Hernández-Águila, J B; Valdés, J R; Chavushyan, V

    2014-01-01

    The basic stellar atmospheric parameters (effective temperature, surface gravity and global metallicity) were simultaneously determined for a sample of 233 stars, limited in magnitude ($V<15$) with spectral types between G0 and G3 and luminosity class V (main sequence). The analysis was based on spectroscopic observations collected at the Observatorio Astrof\\'isico Guillermo Haro and using a set of Lick-like indices defined in the spectral range of 3800-4800 \\AA. An extensive set of indices computed in a grid of theoretical spectra was used as a comparison tool in order to determine the photospheric parameters. The method was validated by matching the results from spectra of the asteroids Vesta and Ceres with the Sun parameters. The main results were: i) the photospheric parameters were determined for the first time for 213 objects in our sample; ii) a sample of 20 new super metal-rich stars candidates was found.

  8. New radio detections of early-type pre-main-sequence stars

    Science.gov (United States)

    Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.

    1990-01-01

    Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.

  9. On the multiplicity of the zero-age main-sequence O star Herschel 36

    CERN Document Server

    Arias, Julia I; Gamen, Roberto C; Morrell, Nidia I; Apellaniz, Jesus Maiz; Alfaro, Emilio J; Sota, Alfredo; Walborn, Nolan R; Bidin, Christian Moni

    2010-01-01

    We present the analysis of high-resolution optical spectroscopic observations of the zero-age main-sequence O star Herschel 36 spanning six years. This star is definitely a multiple system, with at least three components detected in its spectrum. Based on our radial-velocity (RV) study, we propose a picture of a close massive binary and a more distant companion, most probably in wide orbit about each other. The orbital solution for the binary, whose components we identify as O9 V and B0.5 V, is characterized by a period of 1.5415 +/- 0.0006 days. With a spectral type O7.5 V, the third body is the most luminous component of the system and also presents RV variations with a period close to 498 days. Some possible hypotheses to explain the variability are briefly addressed and further observations are suggested.

  10. A hot horizontal branch star with a close K-type main-sequence companion

    CERN Document Server

    Bidin, C Moni; Montalto, M; Catelan, M; Villanova, S; Piotto, G; Geisler, D

    2015-01-01

    Dynamical interactions in binary systems are thought to play a major role in the formation of extreme horizontal branch stars (EHBs) in the Galactic field. However, it is still unclear if the same mechanisms are at work in globular clusters, where EHBs are predominantly single stars. Here we report on the discovery of a unique close binary system (period ~1.61 days) in the globular cluster NGC6752, comprising an EHB and a main-sequence companion of 0.63+-0.05 Msun. Such a system has no counterpart among nearly two hundred known EHB binaries in the Galactic field. Its discovery suggests that either field studies are incomplete, missing this type of systems possibly because of selection effects, or that a particular EHB formation mechanism is active in clusters but not in the field.

  11. Spatially-Resolved Star Formation Main Sequence of Galaxies in the CALIFA Survey

    CERN Document Server

    Cano-Díaz, M; Zibetti, S; Ascasibar, Y; Bland-Hawthorn, J; Ziegler, B; Delgado, R M González; Walcher, C J; García-Benito, R; Mast, D; Mendoza-Pérez, M A; Falcón-Barroso, J; Galbany, L; Husemann, B; Kehrig, C; Marino, R A; Sánchez-Blázquez, P; López-Cobá, C; López-Sánchez, A R; Vilchez, J M

    2016-01-01

    The "main sequence of galaxies" $-$ defined in terms of the total star formation rate $\\psi$ vs. the total stellar mass $M_*$ $-$ is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially-resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log(M$_{\\odot}$ yr$^{-1}$ Kpc$^{-2}$) and the stellar mass surface density in units of log(M$_{\\odot}$ Kpc$^{-2}$) in individual spaxels which probe spatial scales of 0.5-1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ($\\sigma = 0.23$ dex), irrespective of the dominant ionisation source of the host galaxy or its integrated stellar mass. We highlight: $(i)$ the integrated star formation main sequence formed by galaxies whose dominant ion...

  12. A Multiwavelength Consensus on the Main Sequence of Star-Forming Galaxies at z~2

    CERN Document Server

    Rodighiero, G; Daddi, E; Baronchelli, I; Berta, S; Cresci, G; Franceschini, A; Gruppioni, C; Lutz, D; Mancini, C; Santini, P; Zamorani, G; Silverman, J; Kashino, D; Andreani, P; Cimatti, A; Sanchez, H Dominguez; Floch, E Le; Magnelli, B; Popesso, P; Pozzi, F

    2014-01-01

    We compare various star formation rate (SFR) indicators for star-forming galaxies at $1.4main sequence population as measured from the UV, since the FIR selection picks predominantly only a minority of outliers. However, there is overall agreement between the main sequences derived with the two SFR indicators, when stacking on the PACS maps the BzK-selected galaxies. The resulting logarithmic slope of the SFR-{$M_*$} relation is $\\sim0.8-0.9$, in agreement with that derived from the dust-corrected UV-luminosity. Exploiting deeper 24$\\mu$m-Spitzer data we have characterized a sub-sample of galaxies with reddening and SFRs poorly constrained, as they are very faint in the $B$ band. The combination o...

  13. Dissecting the extended main-sequence turn-off of the young star cluster NGC 1850

    Science.gov (United States)

    Correnti, Matteo; Goudfrooij, Paul; Bellini, Andrea; Kalirai, Jason S.; Puzia, Thomas H.

    2017-05-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (˜100 Myr) star cluster NGC 1850 in the Large Magellanic Cloud. We analyse the cluster colour-magnitude diagram (CMD) and find that it hosts an extended main-sequence turn-off (MSTO) and a double main sequence (MS). We demonstrate that these features cannot be due to photometric errors, field star contamination or differential reddening. From a comparison with theoretical models and Monte Carlo simulations, we show that a coeval stellar population featuring a distribution of stellar rotation rates can reproduce the MS split quite well. However, it cannot reproduce the observed MSTO region, which is significantly wider than the simulated ones. Exploiting narrow-band Hα imaging, we find that the MSTO hosts a population of Hα-emitting stars that are interpreted as rapidly rotating Be-type stars. We explore the possibility that the discrepancy between the observed MSTO morphology and that of the simulated simple stellar population (SSP) is caused by the fraction of these objects that are highly reddened, but we rule out this hypothesis. We demonstrate that the global CMD morphology is well reproduced by a combination of SSPs that covers an age range of ˜35 Myr as well as a wide variety of rotation rates. We derive the cluster mass and escape velocity, and use dynamical evolution models to predict their evolution starting at an age of 10 Myr. We discuss these results and their implications in the context of the extended MSTO phenomenon.

  14. The magnetic field of the pre-main sequence Herbig Ae star HD 190073

    Science.gov (United States)

    Catala, C.; Alecian, E.; Donati, J.-F.; Wade, G. A.; Landstreet, J. D.; Böhm, T.; Bouret, J.-C.; Bagnulo, S.; Folsom, C.; Silvester, J.

    2007-01-01

    Context: The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. Aims: The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. Methods: We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution, high signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Results: Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74± 10 G, does not vary detectably on a one-year timeframe, indicating either an azimuthally symmetric field, a zero inclination angle between the rotation axis and the line of sight, or a very long rotation period. The optical spectrum of HD 190073 exhibits a large number of emission lines. We discuss the formation of these emission lines in the framework of a model involving a turbulent heated region at the base of the stellar wind, possibly powered by magnetic accretion. Conclusions: .This magnetic detection contributes an important new observational discovery which will aid our understanding of stellar magnetism at intermediate masses. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  15. Equilibrium model prediction for the scatter in the star-forming main sequence

    Science.gov (United States)

    Mitra, Sourav; Davé, Romeel; Simha, Vimal; Finlator, Kristian

    2017-01-01

    The analytic `equilibrium model' for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR), and metallicity across the majority of cosmic time with a small number of parameters related to feedback. Here, we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parametrized from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1σ MS scatter to be ˜0.2-0.25 dex over the stellar mass range 108-1011 M⊙ and a redshift range 0.5 ≲ z ≲ 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z ≳ 3, as well as by averaging over shorter time-scales. The contribution from merger-induced star formation is generally small, around 5 per cent today and 10-15 per cent during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.

  16. A probable pre-main sequence chemically peculiar star in the open cluster Stock 16

    CERN Document Server

    Netopil, M; Paunzen, E; Zwintz, K; Pintado, O I; Bagnulo, S

    2014-01-01

    We used the Ultraviolet and Visual Echelle Spectrograph of the ESO-Very Large Telescope to obtain a high resolution and high signal-to-noise ratio spectrum of Stock 16-12, an early-type star which previous Delta-a photometric observations suggest being a chemically peculiar (CP) star. We used spectral synthesis to perform a detailed abundance analysis obtaining an effective temperature of 8400 +/- 400 K, a surface gravity of 4.1 +/- 0.4, a microturbulence velocity of 3.4 +0.7/-0.3 km/s, and a projected rotational velocity of 68 +/- 4 km/s. We provide photometric and spectroscopic evidence showing the star is most likely a member of the young Stock 16 open cluster (age 3-8 Myr). The probable cluster membership, the star's position in the Hertzsprung-Russell diagram, and the found infrared excess strongly suggest the star is still in the pre-main-sequence (PMS) phase. We used PMS evolutionary tracks to determine the stellar mass, which ranges between 1.95 and 2.3 Msun, depending upon the adopted spectroscopic o...

  17. The star formation main sequence and stellar mass assembly of galaxies in the Illustris simulation

    CERN Document Server

    Sparre, Martin; Springel, Volker; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Nelson, Dylan; Sijacki, Debora; Hernquist, Lars

    2014-01-01

    Understanding the physical processes that drive star formation is a key challenge for galaxy formation models. In this article we study the tight correlation between the star formation rate (SFR) and stellar mass of galaxies at a given redshift, how halo growth influences star formation, and star formation histories of individual galaxies. We study these topics using Illustris, a state-of-the-art cosmological hydrodynamical simulation of galaxy formation. Illustris reproduces the observed relation (the star formation main sequence; SFMS) between SFR and stellar mass at redshifts z=0 and z=4, but at intermediate redshifts of z~2, the simulated SFMS has a significantly lower normalisation than reported by observations. The scatter in the relation is consistent with the observed scatter. However, the fraction of outliers above the SFR-stellar mass relation in Illustris is less than that observed. Galaxies with halo masses of ~10^{12} solar masses dominate the SFR density of the Universe, in agreement with the re...

  18. Equilibrium model prediction for the scatter in the star-forming main sequence

    Science.gov (United States)

    Mitra, Sourav; Davé, Romeel; Simha, Vimal; Finlator, Kristian

    2016-10-01

    The analytic "equilibrium model" for galaxy evolution using a mass balance equation is able to reproduce mean observed galaxy scaling relations between stellar mass, halo mass, star formation rate (SFR) and metallicity across the majority of cosmic time with a small number of parameters related to feedback. Here we aim to test this data-constrained model to quantify deviations from the mean relation between stellar mass and SFR, i.e. the star-forming galaxy main sequence (MS). We implement fluctuation in halo accretion rates parameterised from merger-based simulations, and quantify the intrinsic scatter introduced into the MS under the assumption that fluctuations in star formation follow baryonic inflow fluctuations. We predict the 1-σ MS scatter to be ˜0.2 - 0.25 dex over the stellar mass range 108M⊙ to 1011M⊙ and a redshift range 0.5⪉ z⪉ 3 for SFRs averaged over 100 Myr. The scatter increases modestly at z⪆ 3, as well as by averaging over shorter timescales. The contribution from merger-induced star formation is generally small, around 5% today and 10 - 15% during the peak epoch of cosmic star formation. These results are generally consistent with available observations, suggesting that deviations from the MS primarily reflect stochasticity in the inflow rate owing to halo mergers.

  19. THE ORIGIN OF HVS17, AN UNBOUND MAIN SEQUENCE B STAR AT 50 kpc

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Cohen, Judith G., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: jlc@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-09-20

    We analyze Keck Echellette Spectrograph and Imager spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km s{sup –1} in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T{sub eff} and log g with stellar evolution tracks implies that HVS17 is a 3.91 ± 0.09 M{sub ☉}, 153 ± 9 Myr old star at a Galactocentric distance of r = 48.5 ± 4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

  20. The Origin of HVS17, an Unbound Main Sequence B Star at 50 kpc

    CERN Document Server

    Brown, Warren R; Geller, Margaret J; Kenyon, Scott J

    2013-01-01

    We analyze Keck ESI spectroscopy of HVS17, a B-type star traveling with a Galactic rest frame radial velocity of +445 km/s in the outer halo of the Milky Way. HVS17 has the projected rotation of a main sequence B star and is chemically peculiar, with solar iron abundance and sub-solar alpha abundance. Comparing measured T_eff and logg with stellar evolution tracks implies that HVS17 is a 3.91 +-0.09 Msun, 153 +-9 Myr old star at a Galactocentric distance of r=48.5 +-4.6 kpc. The time between its formation and ejection significantly exceeds 10 Myr and thus is difficult to reconcile with any Galactic disk runaway scenario involving massive stars. The observations are consistent, on the other hand, with a hypervelocity star ejection from the Galactic center. We show that Gaia proper motion measurements will easily discriminate between a disk and Galactic center origin, thus allowing us to use HVS17 as a test particle to probe the shape of the Milky Way's dark matter halo.

  1. An extensive VLT/X-shooter library of photospheric templates of pre-main sequence stars

    Science.gov (United States)

    Manara, C. F.; Frasca, A.; Alcalá, J. M.; Natta, A.; Stelzer, B.; Testi, L.

    2017-09-01

    Context. Studies of the formation and evolution of young stars and their disks rely on knowledge of the stellar parameters of the young stars. The derivation of these parameters is commonly based on comparison with photospheric template spectra. Furthermore, chromospheric emission in young active stars impacts the measurement of mass accretion rates, a key quantity for studying disk evolution. Aims: Here we derive stellar properties of low-mass (M⋆≲ 2 M⊙) pre-main sequence stars without disks, which represent ideal photospheric templates for studies of young stars. We also use these spectra to constrain the impact of chromospheric emission on the measurements of mass accretion rates. The spectra are reduced, flux-calibrated, and corrected for telluric absorption, and are made available to the community. Methods: We derive the spectral type for our targets by analyzing the photospheric molecular features present in their VLT/X-shooter spectra by means of spectral indices and comparison of the relative strength of photospheric absorption features. We also measure effective temperature, gravity, projected rotational velocity, and radial velocity from our spectra by fitting them with synthetic spectra with the ROTFIT tool. The targets have negligible extinction (AVhttp://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A86

  2. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    Energy Technology Data Exchange (ETDEWEB)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L' Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally

  3. X-rays across the galaxy population I: tracing the main sequence of star formation

    CERN Document Server

    Aird, J; Georgakakis, A

    2016-01-01

    We use deep Chandra imaging to measure the distribution of X-ray luminosities (L_X) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at L_X < 10^{42} erg/s that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher L_X. Tracking the luminosity of these peaks as a function of stellar mass reveals an "X-ray main sequence" with a constant slope ~0.63 +/- 0.03 over 8.5 < log M*/Msun < 11.5 and 0.1 < z < 4, with a normalization that increases with redshift as (1+z)^{3.79+/-0.12}. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between L_X and SFR. We find that L_X \\propto SFR^{0.83} x (1+z)^{1.3}, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Usin...

  4. A theoretical study of acoustic glitches in low-mass main-sequence stars

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep; Antia, H. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven CT 06520-8101 (United States); Mazumdar, Anwesh, E-mail: kuldeepv@tifr.res.in, E-mail: antia@tifr.res.in, E-mail: sarbani.basu@yale.edu, E-mail: anwesh@tifr.res.in [Homi Bhabha Centre for Science Education, Tata Institute of Fundamental Research, V. N. Purav Marg, Mankhurd, Mumbai 400088 (India)

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index Γ{sub 1} caused by the ionization of He II, but to the peak in Γ{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ☉}.

  5. Molecular and atomic gas along and across the main sequence of star-forming galaxies

    Science.gov (United States)

    Saintonge, Amelie; Catinella, Barbara; Cortese, Luca; Genzel, Reinhard; Giovanelli, Riccardo; Haynes, Martha P.; Janowiecki, Steven; Kramer, Carsten; Lutz, Katharina A.; Schiminovich, David; Tacconi, Linda J.; Wuyts, Stijn; Accurso, Gioacchino

    2016-10-01

    We use spectra from the ALFALFA, GASS and COLD GASS surveys to quantify variations in the mean atomic and molecular gas mass fractions throughout the SFR-M* plane and along the main sequence (MS) of star-forming galaxies. Although galaxies well below the MS tend to be undetected in the Arecibo and IRAM observations, reliable mean atomic and molecular gas fractions can be obtained through a spectral stacking technique. We find that the position of galaxies in the SFR-M* plane can be explained mostly by their global cold gas reservoirs as observed in the H I line, with in addition systematic variations in the molecular-to-atomic ratio and star formation efficiency. When looking at galaxies within ±0.4 dex of the MS, we find that as stellar mass increases, both atomic and molecular gas mass fractions decrease, stellar bulges become more prominent, and the mean stellar ages increase. Both star formation efficiency and molecular-to-atomic ratios vary little for massive MS galaxies, indicating that the flattening of the MS is due to the global decrease of the cold gas reservoirs of galaxies rather than to bottlenecks in the process of converting cold atomic gas to stars.

  6. Pre-main sequence stars older than 8 Myr in the Eagle Nebula

    CERN Document Server

    De Marchi, Guido; Guarcello, M G; Bonito, Rosaria

    2013-01-01

    Attention is given to a population of 110 stars in the NGC 6611 cluster of the Eagle Nebula that have prominent near-infrared (NIR) excess and optical colours typical of pre-main sequence (PMS) stars older than 8 Myr. At least half of those for which spectroscopy exists have a Halpha emission line profile revealing active accretion. In principle, the V-I colours of all these stars would be consistent with those of young PMS objects (< 1 Myr) whose radiation is heavily obscured by a circumstellar disc seen at high inclination and in small part scattered towards the observer by the back side of the disc. However, using theoretical models it is shown here that objects of this type can only account for a few percent of this population. In fact, the spatial distribution of these objects, their X-ray luminosities, their optical brightness, their positions in the colour-magnitude diagram and the weak Li absorption lines of the stars studied spectroscopically suggest that most of them are at least 8 times older th...

  7. HE 0437-5439 -- an unbound hyper-velocity main-sequence B-type star

    CERN Document Server

    Edelmann, H; Heber, U; Christlieb, N; Reimers, D; Edelmann, Heinz; Napiwotzki, Ralf; Heber, Uli; Christlieb, Norbert; Reimers, Dieter

    2005-01-01

    We report the discovery of a 16th magnitude star, HE0437-5439, with a heliocentric radial velocity of +723+-3km/s. A quantitative spectral analysis of high-resolution optical spectra obtained with the VLT and the UVES spectrograph shows that HE0437-5439 is a main sequence B-type star with Teff=20350K, log g=3.77, solar within a factor of a few helium abundance and metal content, rotating at v sin i=54km/s. Using appropriate evolutionary tracks we derive a mass of 8 Msun and a corresponding distance of 61 kpc. Its galactic rest frame velocity is at least 563km/s, almost twice the local Galactic escape velocity, indicating that the star is unbound to the Galaxy. Numerical kinematical experiments are carried out to constrain its place of birth. It has been suggested that such hyper-velocity stars can be formed by the tidal disruption of a binary through interaction with the super-massive black hole at the Galactic center (GC). HE0437-5439 needs about 100Myrs to travel from the GC to its presentposition, much lon...

  8. A Search for Planets and Brown Dwarfs around Post Main Sequence Stars

    Science.gov (United States)

    Otani, Tomomi; Oswalt, Terry D.

    2016-06-01

    The most promising current theory for the origin of subdwarf B (sdB) stars is that they were formed during binary star evolution. This project was conducted to test this hypothesis by searching for companions around six sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion. If it is emitting a periodic signal, the orbital motion of the star around the system’s center of mass causes periodic changes in the light pulse arrival times. O-C diagrams for six sdB pulsators were constructed from several years’ observations, providing useful limits on suspected companions’ minimum masses and semimajor axes. The results were constrained by “period vs. amplitude” and “mass vs. semimajor axis” models to quantify companion masses and semimajor axes that are consistent with the observational data, if any. Two of our targets, V391 Peg and HS0702+6043, are noted in previous publications to have substellar companions. These were used to validate the method used in this research. The results of this study yielded the same masses and semimajor axes for these two stars as the published values, within the uncertainties. Another of the targets, EC20117-4014, is noted in the literature as a binary system containing an sdB and F5V star, however the orbital period and separation were unknown. The new data obtained in this study contain the signal of a companion candidate with a period of 158.01 days. Several possible mass and semimajor axis combinations for the companion are consistent with the observations. One of the other targets in this study displayed preliminary evidence for a companion that will require further observation. Though still a small sample, these results suggest that planets often survive the post-main-sequence evolution of their parent stars.

  9. Orbit and spin evolution of synchronous binary stars on the main sequence

    Institute of Scientific and Technical Information of China (English)

    Lin-Sen Li

    2012-01-01

    A set of synchronous equations are derived from a set of non-synchronous equations.The analytical solutions are given by solving the set of differential equations.The results of the evolutionary trend of the spin-orbit interaction are that the semi-major axis gradually shrinks with time; the orbital eccentricity gradually decreases with time until orbital circularization occurs; the orbital period gradually shortens with time and the rotational angular velocity of the primary component gradually speeds up with time before the orbit achieves circularization.The theoretical results are applied to evolution of the orbit and spin of synchronous binary stars Algol A and B that are on the main sequence.The circularization time,lifetime and the evolutionary numerical solutions of orbit and spin when circularization time occurs are estimated for Algol A and B.

  10. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    CERN Document Server

    Moussa, Mohamed

    2015-01-01

    This paper addresses the effect of generalized uncertainty principle, emerged by a different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, non-relativistic ideal gases and degenerate fermions. A modification in pressure, particle number and energy density are calculated. Astrophysical objects such as main sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity, is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but it may be considered reasonable values in the astrophysical regime.

  11. Effect of Generalized Uncertainty Principle on Main-Sequence Stars and White Dwarfs

    Directory of Open Access Journals (Sweden)

    Mohamed Moussa

    2015-01-01

    Full Text Available This paper addresses the effect of generalized uncertainty principle, emerged from different approaches of quantum gravity within Planck scale, on thermodynamic properties of photon, nonrelativistic ideal gases, and degenerate fermions. A modification in pressure, particle number, and energy density are calculated. Astrophysical objects such as main-sequence stars and white dwarfs are examined and discussed as an application. A modification in Lane-Emden equation due to a change in a polytropic relation caused by the presence of quantum gravity is investigated. The applicable range of quantum gravity parameters is estimated. The bounds in the perturbed parameters are relatively large but they may be considered reasonable values in the astrophysical regime.

  12. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    CERN Document Server

    Bellinger, Earl P; Hekker, Saskia; Basu, Sarbani; Ball, Warrick; Guggenberger, Elisabeth

    2016-01-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational efforts to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A & B, and 34 planet-hosting candidates th...

  13. The effect of disc inclination on the main sequence of star-forming galaxies

    Science.gov (United States)

    Morselli, L.; Renzini, A.; Popesso, P.; Erfanianfar, G.

    2016-11-01

    We use the Sloan Digital Sky Survey (York et al.) data base to explore the effect of the disc inclination angle on the derived star formation rate (SFR), hence on the slope and width of the main-sequence (MS) relation for star-forming galaxies. We find that SFRs for nearly edge-on discs are underestimated by factors ranging from ˜0.2 dex for low-mass galaxies up to ˜0.4 dex for high-mass galaxies. This results in a substantially flatter MS relation for high-inclination discs compared to that for less inclined ones, though the global effect over the whole sample of star-forming galaxies is relatively minor, given the small fraction of high-inclination discs. However, we also find that galaxies with high-inclination discs represent a non-negligible fraction of galaxies populating the so-called green valley, with derived SFRs intermediate between the MS and those of quenched, passively evolving galaxies.

  14. Deep near-IR variability survey of pre-main-sequence stars in Rho Ophiuchi

    CERN Document Server

    de Oliveira, Catarina Alves

    2008-01-01

    Variability is a common characteristic of pre-main-sequence stars (PMS). Near-IR variability surveys of young stellar objects (YSOs) can probe stellar and circumstellar environments and provide information about the dynamics of the on going magnetic and accretion processes. Furthermore, variability can be used as a tool to uncover new cluster members in star formation regions. We hope to achieve the deepest near-IR variability study of YSOs targeting the Rho Ophiuchi cluster. Fourteen epochs of observations were obtained with the Wide Field Camera (WFCAM) at the UKIRT telescope scheduled in a manner that allowed the study of variability on timescales of days, months, and years. Statistical tools, such as the multi-band cross correlation index and the reduced chi-square, were used to disentangle signals of variability from noise. Variability characteristics are compared to existing models of YSOs in order to relate them to physical processes, and then used to select new candidate members of this star-forming r...

  15. Iron-Group Abundances in the Metal-Poor Main Sequence Turnoff Star HD~84937

    CERN Document Server

    Sneden, Christopher; Kobayashi, Chiaki; Pignatari, Marco; Lawler, James E; Hartog, Elizabeth A Den; Wood, Michael P

    2015-01-01

    We have derived new very accurate abundances of the Fe-group elements Sc through Zn (Z = 21-30) in the bright main-sequence turnoff star HD 84937, based on high-resolution spectra covering the visible and ultraviolet spectral regions. New or recent laboratory transition data for 14 species of seven elements have been used. Abundances from more than 600 lines of non-Fe species have been combined with about 550 Fe lines in HD 84937 to yield abundance ratios of high precision. The abundances have been determined from both neutral and ionized transitions, which generally are in agreement with each other. We find no substantial departures from standard LTE Saha ionization balance in this [Fe/H] = -2.32 star. Noteworthy among the abundances are: [Co/Fe] = 0.14 and [Cu/Fe] = -0.83, in agreement with past studies abundance trends in this and other low metallicity stars; and = 0.31, which has not been noted previously. A detailed examination of scandium, titanium, and vanadium abundances in large-sample spectroscopic...

  16. The Recurrent Eclipse of an Unusual Pre--Main-Sequence Star in IC 348

    CERN Document Server

    Nordhagen, S; Williams, E C; Semkov, E

    2006-01-01

    The recurrence of a previously documented eclipse of a solar-like pre--main-sequence star in the young cluster IC 348 has been observed. The recurrence interval is 4.7 $\\pm 0.1$ yr and portions of 4 cycles have now been seen. The duration of each eclipse is at least 3.5 years, or $\\sim 75$% of a cycle, verifying that this is not an eclipse by a stellar companion. The light curve is generally symmetric and approximately flat-bottomed. Brightness at maximum and minimum have been rather stable over the years but the light curve is not perfectly repetitive or smooth and small variations exist at all phases. We confirm that the star is redder when fainter. Models are discussed and it is proposed that this could be a system similar to KH 15D in NGC 2264. Specifically, it may be an eccentric binary in which a portion of the orbit of one member is currently occulted during some binary phases by a circumbinary disk. The star deserves sustained observational attention for what it may reveal about the circumstellar envi...

  17. Constraints on the height of the inner disk rim in pre-main-sequence stars

    CERN Document Server

    Vinković, Dejan

    2014-01-01

    The structure of inner region of protoplanetary disks around young pre-main-sequence stars is still poorly understood. This part of the disk is shaped by various forces influencing dust and gas dynamics and by dust sublimation, which creates abrupt drops in the dust density. This region also emits a strong near-infrared excess that cannot be explained by classical accretion disk models, which suggests the existence of some unusual dust distribution or disk shape. The most prevalent explanation to date is the puffed-up inner disk rim model, where the disk exhibits an optically thin cavity around the star up to the distance of dust sublimation. The critical parameter in this model is the inner disk rim height $z_{\\rm max}$ relative to the rim's distance from the star $R_{\\rm in}$. Observations often require $z_{\\rm max}/R_{\\rm in}\\gtrsim0.2$ to reproduce the near-infrared excess in the spectra. In this paper we put together a comprehensive list of processes that can shape the inner disk rim and combined them to...

  18. The slowly pulsating B-star 18 Pegasi: A testbed for upper main sequence stellar evolution

    Science.gov (United States)

    Irrgang, A.; Desphande, A.; Moehler, S.; Mugrauer, M.; Janousch, D.

    2016-06-01

    The predicted width of the upper main sequence in stellar evolution models depends on the empirical calibration of the convective overshooting parameter. Despite decades of discussions, its precise value is still unknown and further observational constraints are required to gauge it. Based on a photometric and preliminary asteroseismic analysis, we show that the mid B-type giant 18 Peg is one of the most evolved members of the rare class of slowly pulsating B-stars and, thus, bears tremendous potential to derive a tight lower limit for the width of the upper main sequence. In addition, 18 Peg turns out to be part of a single-lined spectroscopic binary system with an eccentric orbit that is greater than 6 years. Further spectroscopic and photometric monitoring and a sophisticated asteroseismic investigation are required to exploit the full potential of this star as a benchmark object for stellar evolution theory. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 265.C-5038(A), 069.C-0263(A), and 073.D-0024(A). Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), proposals H2005-2.2-016 and H2015-3.5-008. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, proposal W15BN015. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  19. Dissecting the Extended Main Sequence Turn-off of the Young Star Cluster NGC 1850

    Science.gov (United States)

    Correnti, Matteo; Goudfrooij, Paul; Bellini, Andrea; Kalirai, Jason S.; Puzia, Thomas H.

    2017-01-01

    We use the Wide Field Camera 3 onboard the Hubble Space Telescope to obtain deep, high-resolution photometry of the young (˜ 100 Myr) star cluster NGC 1850 in the Large Magellanic Cloud. We analyze the cluster colour-magnitude diagram (CMD) and find that it hosts an extended main-sequence turn-off (MSTO) and a double MS. We demonstrate that these features cannot be due to photometric errors, field star contamination, or differential reddening. From a comparison with theoretical models and Monte Carlo simulations, we show that a coeval stellar population featuring a distribution of stellar rotation rates can reproduce the MS split quite well. However, it cannot reproduce the observed MSTO region, which is significantly wider than the simulated ones. Exploiting narrow-band Hα imaging, we find that the MSTO hosts a population of Hα-emitting stars which are interpreted as rapidly rotating Be-type stars. We explore the possibility that the discrepancy between the observed MSTO morphology and that of the simulated simple stellar population (SSP) is caused by the fraction of these objects that are highly reddened, but we rule out this hypothesis. We demonstrate that the global CMD morphology is well-reproduced by a combination of SSPs that cover an age range of ˜ 35 Myr as well as a wide variety of rotation rates. We derive the cluster mass and escape velocity and use dynamical evolution models to predict their evolution starting at an age of 10 Myr. We discuss these results and their implications in the context of the extended MSTO phenomenon.

  20. The first magnetic maps of a pre-main sequence binary star system - HD 155555

    CERN Document Server

    Dunstone, N J; Cameron, A Collier; Marsden, S C; Jardine, M; Stempels, H C; Vlex, J C Ramirez; Donati, J -F

    2008-01-01

    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images. Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between t...

  1. V4046 Sgr: Touchstone to Investigate Spectral Type Discrepancies for Pre-main Sequence Stars

    CERN Document Server

    Kastner, Joel H; Sargent, Benjamin; Smith, C T; Rayner, John

    2014-01-01

    Determinations of the fundamental properties (e.g., masses and ages) of late-type, pre-main sequence (pre-MS) stars are complicated by the potential for significant discrepancies between the spectral types of such stars as ascertained via optical vs. near-infrared observations. To address this problem, we have obtained near-IR spectroscopy of the nearby, close binary T Tauri system V4046 Sgr AB with the NASA Infrared Telescope Facility (IRTF) SPEX spectrometer. The V4046 Sgr close binary (and circumbinary disk) system provides an important test case for spectral type determination thanks to the stringent observational constraints on its component stellar masses (i.e., ~0.9 Msun each) as well as on its age (12-21 Myr) and distance (73 pc). Analysis of the IRTF data indicates that the composite near-IR spectral type for V4046 Sgr AB lies in the range M0-M1, i.e., significantly later than the K5+K7 composite type previously determined from optical spectroscopy. However, the K5+K7 composite type is in better agre...

  2. Tracing the potential planet-forming regions around seven pre-main-sequence stars

    CERN Document Server

    Schegerer, A A; Hummel, C A; Quanz, S P; Richichi, A

    2009-01-01

    We investigate the nature of the innermost regions of seven circumstellar disks around pre-main-sequence stars. Our object sample contains disks apparently at various stages of their evolution. Both single stars and spatially resolved binaries are considered. In particular, we search for inner disk gaps as proposed for several young stellar objects. When analyzing the underlying dust population in the atmosphere of circumstellar disks, the shape of the 10um feature is investigated. We performed interferometric observations in N band 8-13um with MIDI using baseline lengths of between 54m and 127m. The data analysis is based on radiative-transfer simulations using the Monte Carlo code MC3D by modeling simultaneously the SED, N band spectra, and interferometric visibilities. Correlated and uncorrelated N band spectra are compared to investigate the radial distribution of the dust composition of the disk atmosphere. Spatially resolved mid-infrared emission was detected in all objects. For four objects, the observ...

  3. Sublimation of Icy Planetesimals Around Main Sequence Stars--Common Dust Temperatures & Multiple Components

    Science.gov (United States)

    Morales, Farisa Y.; Rieke, G.; Werner, M.; Su, K.; Bryden, G.; Stapelfeldt, K.

    2011-01-01

    We compare the properties of warm dust emission from main-sequence A-type stars to those of dust around solar-type sources with similar Spitzer Space Telescope IRS/MIPS data and similar ages. Both samples have spectral energy distributions which show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures ( 190 K & 55 K for the inner & outer dust components respectively)--just above the ice line for the inner belts. The inner-belt temperature is readily explained if populations of grains are being released by sublimation of ice from icy planetesimals. Evaporation of comets at 170 K transports particles into an inner/warmer belt, where the super thermal grains left behind are found with Tdust >=190 K. 27 of the 50 A-type sources with warm excess are detected with Spitzer/MIPS at 70 µm (S/N > 3); the 50% rate of detection is comparable to the solar-type star sample where 9 of the 19 objects are also seen at MIPS 70 µm. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407. Development of MIPS was funded by NASA through the Jet Propulsion Laboratory, subcontract 960785. This work was also partially supported by contract 1255094 from Caltech/JPL to the University of Arizona.

  4. Detailed Iron-Group Abundances in a Very Metal-Poor Main Sequence Turnoff Star

    Science.gov (United States)

    Sneden, Chris; Roederer, Ian U.; Boesgaard, Ann M.; Lawler, James E.; Den Hartog, Elizabeth; Cowan, John J.; Sobeck, Jennifer

    2017-01-01

    We have obtained Keck HIRES and HST STIS high resolution, high signal-to-noise spectra of the very metal-poor ([Fe/H] ~ -2.9) main-sequence turnoff star BD+03 740. A detailed chemical composition analysis based on synthetic spectrum computations has been conducted. Our initial focus has been on the iron-group elements in the Z = 21-28 range. This study takes advantage of recent improvements in neutral and ionzied species transition data for all of these elements except Sc (Z = 21) by the Wisconsin atomic physics group (see a companion presentation on Cr II at this meeting). Several metal-poor abundance surveys have concluded that there are large overabundances of Co and underabundances of Cr with respect to Fe for stars with [Fe/H] synthesis in the Galaxy.This work has been supported by HST STScI Program GO-14232; and NSF grants AST-1211585 and AST-1616040 to CS; AST-1516182 to JEL and EDH; NASA grant NNX16AE96G to JEL

  5. MHD simulations of near-surface convection in cool main-sequence stars

    CERN Document Server

    Beeck, Benjamin; Reiners, Ansgar

    2014-01-01

    The solar photospheric magnetic field is highly structured owing to its interaction with the convective flows. Its local structure has a strong influence on the profiles of spectral lines not only by virtue of the Zeeman effect, but also through the modification of the thermodynamical structure (e.g. line weakening in hot small-scale magnetic structures). Many stars harbor surface magnetic fields comparable to or larger than the Sun at solar maximum. Therefore, a strong influence of the field on the surface convection and on spectral line profiles can be expected. We carried out 3D local-box MHD simulations of unipolar magnetized regions (average fields of 20, 100, and 500G) with parameters corresponding to six main-sequence stars (spectral types F3V to M2V). The influence of the magnetic field on the convection and the local thermodynamical structure were analyzed in detail. For three spectral lines, we determined the impact of the magnetic field on the disc-integrated Stokes-I profiles. Line weakening has i...

  6. Change in the orbital period of a binary system due to dynamical tides for main-sequence stars

    Science.gov (United States)

    Chernov, S. V.

    2017-03-01

    We investigate the change in the orbital period of a binary system due to dynamical tides by taking into account the evolution of a main-sequence star. Three stars with masses of one, one and a half, and two solar masses are considered. A star of one solar mass at lifetimes t = 4.57 × 109 yr closely corresponds to our Sun. We show that a planet of one Jupiter mass revolving around a star of one solar mass will fall onto the star in the main-sequence lifetime of the star due to dynamical tides if the initial orbital period of the planet is less than P orb ≈ 2.8 days. Planets of one Jupiter mass with an orbital period P orb ≈ 2 days or shorter will fall onto a star of one and a half and two solar masses in the mainsequence lifetime of the star.

  7. The Star Formation Main Sequence in the Hubble Space Telescope Frontier Fields

    Science.gov (United States)

    Santini, Paola; Fontana, Adriano; Castellano, Marco; Di Criscienzo, Marcella; Merlin, Emiliano; Amorin, Ricardo; Cullen, Fergus; Daddi, Emanuele; Dickinson, Mark; Dunlop, James S.; Grazian, Andrea; Lamastra, Alessandra; McLure, Ross J.; Michałowski, Michał. J.; Pentericci, Laura; Shu, Xinwen

    2017-09-01

    We investigate the relation between star formation rate (SFR) and stellar mass (M), i.e., the main sequence (MS) relation of star-forming galaxies, at 1.3≤slant zFrontier Fields, on the basis of rest-frame UV observations. Gravitational lensing combined with deep HST observations allows us to extend the analysis of the MS down to {log} M/{M}ȯ ∼ 7.5 at z≲ 4 and {log} M/{M}ȯ ∼ 8 at higher redshifts, a factor of ∼10 below most previous results. We perform an accurate simulation to take into account the effect of observational uncertainties and correct for the Eddington bias. This step allows us to reliably measure the MS and in particular its slope. While the normalization increases with redshift, we fit an unevolving and approximately linear slope. We nicely extend to lower masses the results of brighter surveys. Thanks to the large dynamic range in mass and by making use of the simulation, we analyzed any possible mass dependence of the dispersion around the MS. We find tentative evidence that the scatter decreases with increasing mass, suggesting a larger variety of star formation histories in low-mass galaxies. This trend agrees with theoretical predictions and is explained as either a consequence of the smaller number of progenitors of low-mass galaxies in a hierarchical scenario and/or of the efficient but intermittent stellar feedback processes in low-mass halos. Finally, we observe an increase in the SFR per unit stellar mass with redshift milder than predicted by theoretical models, implying a still incomplete understanding of the processes responsible for galaxy growth.

  8. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    Science.gov (United States)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kotte, James Schottel; Kasting, James F.; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1M and 5M. Assuming H2O-(inner HZ) and CO2-(outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (approx.10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing long-wave radiation. Hence the inner edge moves inward (approx.7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  9. HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi Kumar; Ramirez, Ramses M.; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); SchottelKotte, James [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Domagal-Goldman, Shawn [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States); Eymet, Vincent, E-mail: ruk15@psu.edu [Laboratoire d' Astrophysique de Bordeaux, Universite de Bordeaux 1, UMR 5804, F-33270 Floirac (France)

    2014-06-01

    The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K-7200 K, for planetary masses between 0.1 M {sub ⊕} and 5 M {sub ⊕}. Assuming H{sub 2}O-(inner HZ) and CO{sub 2}-(outer HZ) dominated atmospheres, and scaling the background N{sub 2} atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (∼10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H{sub 2}O column depth. For larger planets, the H{sub 2}O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (∼7% higher than Earth's flux). The outer HZ changes little due to the competing effects of the greenhouse effect and an increase in albedo. New, three-dimensional climate model results from other groups are also summarized, and we argue that further, independent studies are needed to verify their predictions. Combined with our previous work, the results presented here provide refined estimates of HZs around main-sequence stars and provide a step toward a more comprehensive analysis of HZs.

  10. A New Semi-Empirical Technique For Computing Effective Temperatures For Main Sequence Stars From Their Mass And Radii

    Science.gov (United States)

    Aslan, Gürkan; Soydugan, Faruk; Eker, Zeki; Bilir, Selçuk; Bakış, Volkan

    2016-07-01

    A semi-empirical technique of improving effective temperature for main sequence stars from their observed mass and radius based on the Stefan-Boltzmann law, was introduced and applied to 450 main-sequence stars with accurate parameters. The method requires a mass-luminosity relation (MLR) and theoretical predictions of radius and effective temperature for stars at zero age main-sequence and at terminal age main-sequence. The MLRs, which act as if a catalyst, are necessary but have no effect on the final result. The present sample of main-sequence stars, which are members of the detached double-lined eclipsing binaries in the solar neighborhood chosen from Eker et al. (2014), have an error histogram for the observed effective temperatures with a peak at 2-3%. Errors of refined effective temperatures by the present method are the propagated errors of the observed masses and radii, that is, the refined temperatures and associated errors are independent of the observational temperatures and their associated errors. The histogram of the refined temperature errors shows a peak at less than 1%. A refined sample of stars (270 out of 450) with masses and radii accurate up to 3% and their refined effective temperatures has been used in this study to improve the classical MLRs. One may prefer, however, to use improved classical MLRs, which allows one to compute effective temperatures as accurate as 3.5%.

  11. Fundamental Parameters of Main-Sequence Stars in an Instant with Machine Learning

    Science.gov (United States)

    Bellinger, Earl P.; Angelou, George C.; Hekker, Saskia; Basu, Sarbani; Ball, Warrick H.; Guggenberger, Elisabeth

    2016-10-01

    Owing to the remarkable photometric precision of space observatories like Kepler, stellar and planetary systems beyond our own are now being characterized en masse for the first time. These characterizations are pivotal for endeavors such as searching for Earth-like planets and solar twins, understanding the mechanisms that govern stellar evolution, and tracing the dynamics of our Galaxy. The volume of data that is becoming available, however, brings with it the need to process this information accurately and rapidly. While existing methods can constrain fundamental stellar parameters such as ages, masses, and radii from these observations, they require substantial computational effort to do so. We develop a method based on machine learning for rapidly estimating fundamental parameters of main-sequence solar-like stars from classical and asteroseismic observations. We first demonstrate this method on a hare-and-hound exercise and then apply it to the Sun, 16 Cyg A and B, and 34 planet-hosting candidates that have been observed by the Kepler spacecraft. We find that our estimates and their associated uncertainties are comparable to the results of other methods, but with the additional benefit of being able to explore many more stellar parameters while using much less computation time. We furthermore use this method to present evidence for an empirical diffusion-mass relation. Our method is open source and freely available for the community to use.6

  12. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    Science.gov (United States)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for statisically

  13. The radial distributions of the two main-sequence components in the young massive star cluster NGC 1856

    CERN Document Server

    Li, Chengyuan; Deng, Licai; Milone, Antonino P

    2016-01-01

    The recent discovery of double main sequences in the young, massive star cluster NGC 1856 has caught significant attention. The observations can be explained by invoking two stellar generations with different ages and metallicities or by a single generation of stars composed of two populations characterized by different rotation rates. We analyzed the number ratios of stars belonging to both main-sequence components in NGC 1856 as a function of radius. We found that their number ratios remain approximately unchanged from the cluster's central region to its periphery, indicating that both components are homogeneously distributed in space. Through a comparison of the loci of the best-fitting isochrones with the ridge lines of both stellar components, we found that both multiple stellar populations and rapid stellar rotation can potentially explain the observed main-sequence bifurcation in NGC 1856. However, if NGC1856 were a young representative of the old globular clusters, then the multiple stellar population...

  14. The Star-Formation Main Sequence: The Dependence of Specific Star Formation Rate and Its Dispersion on Galaxy Stellar Mass

    CERN Document Server

    Guo, Kexin; Wang, Tao; Fu, Hai

    2015-01-01

    The dispersion of the star-formation main sequence (SFMS) reflects the diversity of star formation histories and variation in star formation rates (SFRs) in star-forming galaxies (SFGs) with similar stellar masses ($M^\\ast$). We examine the dispersion of local SFMS using a complete sample of Sloan Digital Sky Survey galaxies at 0.01$$8.8. The SFRs are estimated from H$\\alpha$ in combination with 22$\\mu m$ observation from WISE. The catalog of bulge+disk decomposition from Simard et al. (2011) is available for the sample galaxies. We measure the dispersion of specific SFR (SSFR) as a function of $M^*$. We confirm that the dispersion increases with $M^*$ from 0.37$\\pm0.01$dex at $\\log(M^\\ast/M_\\odot)$10.2. Despite star formation is mostly associated with disks, the dispersion of disk SSFR still increases with $M^*$. We conclude that the presence of bulges/bars is likely responsible for the large dispersion of SSFR in massive SFGs while low-mass SFGs are mostly disk-dominated and thus with small dispersion. Our ...

  15. The Interior Structure Constants as an Age Diagnostic for Low-Mass, Pre-Main Sequence Detached Eclipsing Binary Stars

    CERN Document Server

    Feiden, Gregory A

    2013-01-01

    We propose a novel method for determining the ages of low-mass, pre-main sequence stellar systems using the apsidal motion of low-mass detached eclipsing binaries. The apsidal motion of a binary system with an eccentric orbit provides information regarding the interior structure constants of the individual stars. These constants are related to the normalized stellar interior density distribution and can be extracted from the predictions of stellar evolution models. We demonstrate that low-mass, pre-main sequence stars undergoing radiative core contraction display rapidly changing interior structure constants (greater than 5% per 10 Myr) that, when combined with observational determinations of the interior structure constants (with 5 -- 10% precision), allow for a robust age estimate. This age estimate, unlike those based on surface quantities, is largely insensitive to the surface layer where effects of magnetic activity are likely to be most pronounced. On the main sequence, where age sensitivity is minimal,...

  16. Asteroseismic measurement of slow, nearly uniform surface-to-core rotation in the main-sequence F star KIC 9244992

    DEFF Research Database (Denmark)

    Saio, Hideyuki; Kurtz, Donald W.; Takata, Masao;

    2015-01-01

    We have found a rotationally split series of core g-mode triplets and surface p-mode multiplets in a main-sequence F star, KIC 9244992. Comparison with models shows that the star has a mass of about 1.45 M-circle dot, and is at an advanced stage of main-sequence evolution in which the central......, obtained from p-mode splittings, is 66 d, slightly slower than the rotation of 64 d in the core, measured by g-mode splittings. KIC 9244992 is similar to KIC 11145123 in that both are near the end of main-sequence stage with very slow and nearly uniform rotation. This indicates the angular momentum...

  17. Mg II h + k emission lines as stellar activity indicators of main sequence F-K stars

    CERN Document Server

    Buccino, Andrea P

    2008-01-01

    The main purpose of this study is to use the IUE spectra in the analysis of magnetic activity of main sequence F-K stars. Combining IUE observations of MgII and optical spectroscopy of Ca II, the registry of ctivity of stars can be extended in time. We retrieved all the high-resolution spectra of F, G, and K main sequence stars observed by IUE (i.e. 1623 spectra of 259 F to K dwarf stars). We obtained the continuum surface flux near the Mg II h+k lines near 2800 \\AA and the MgII line-core surface flux from the IUE spectra. We obtained a relation between the mean continuum flux near the MgII lines with the colour $B-V$ of the star. For a set of 117 nearly simultaneous observations of Mg II and Ca II fluxes of 21 F5 to K3 main sequence stars, we obtained a colour dependent relation between the Mount Wilson CaII S-index and the MgII emission line-core flux. As an application of this calibration, we computed the Mount Wilson index for all the dF to dK stars which have high resolution IUE spectra. For some of the ...

  18. Photometric determination of the mass accretion rate of pre-main sequence stars. IV. Recent star formation in NGC 602

    CERN Document Server

    De Marchi, Guido; Panagia, Nino

    2013-01-01

    We have studied the young stellar populations in NGC 602, in the Small Magellanic Cloud, using a novel method that we have developed to combine Hubble Space Telescope photometry in the V, I, and Halpha bands. We have identified about 300 pre-main sequence (PMS) stars, all of which are still undergoing active mass accretion, and have determined their physical parameters (effective temperature, luminosity, age, mass and mass accretion rate). Our analysis shows that star formation has been present in this field over the last 60 Myr. In addition, we can recognise at least two clear, distinct, and prominent episodes in the recent past: one about 2 Myr ago, but still ongoing in regions of higher nebulosity, and one (or more) older than 30 Myr, encompassing both stars dispersed in the field and two smaller clusters located about 100 arcsec north of the centre of NGC 602. The relative locations of younger and older PMS stars do not imply a causal effect or triggering of one generation on the other. The strength of th...

  19. Mathematical Assessment of Physical and Chemical Processes from the middle B to the early F Type Main Sequence Stars

    Science.gov (United States)

    Yuce, Kutluay; Adelman, Saul J.

    2016-07-01

    The middle B to the early F main sequence stars are thought to have some of the most quiet atmospheres. In this part of the HR diagram we find stars with atmospheres in radiative equilibrium. They lack the convective circulations of the middle F and cooler stars and the massive stellar winds of hotter stars. Diffusion theory requires the Chemically Peculiar stars to have relatively quiet atmospheres and if there are no magnetic fields they should lack abundance spots. If we look at stars evolving off the Main Sequence in this part of the HR diagram, we see that the evolutionary paths of stars of different mass do not cross. So if we compare stars with the same effective temperature and surface gravity, we are studying stars of the same luminosity and mass. By comparing their elemental abundances, we might be able to identify physical processes which cause their abundances to be different. In this work we begin with stars whose effective temperatures and surface gravities are similar, and which has been analyzed by us using spectra obtained from the Dominion Astrophysical Observatory.

  20. Age-Related Observations of Low Mass Pre-Main and Young Main Sequence Stars (Invited Review)

    CERN Document Server

    Hillenbrand, Lynne A

    2008-01-01

    This overview summarizes the age dating methods available for young sub-solar mass stars. Pre-main sequence age diagnostics include the Hertzsprung-Russell (HR) diagram, spectroscopic surface gravity indicators, and lithium depletion; asteroseismology is also showing recent promise. Near and beyond the zero-age main sequence, rotation period or vsini and activity (coronal and chromospheric) diagnostics along with lithium depletion serve as age proxies. Other authors in this volume present more detail in each of the aforementioned areas. Herein, I focus on pre-main sequence HR diagrams and address the questions: Do empirical young cluster isochrones match theoretical isochrones? Do isochrones predict stellar ages consistent with those derived via other independent techniques? Do the observed apparent luminosity spreads at constant effective temperature correspond to true age spreads? While definitive answers to these questions are not provided, some methods of progression are outlined.

  1. An IUE Atlas of Pre-Main-Sequence Stars. II. Far-Ultraviolet Accretion Diagnostics in T Tauri Stars

    Science.gov (United States)

    Johns-Krull, Christopher M.; Valenti, Jeff A.; Linsky, Jeffrey L.

    2000-08-01

    We use our ultraviolet (UV) atlas of pre-main-sequence stars constructed from all useful, short-wavelength, low-resolution spectra in the International Ultraviolet Explorer (IUE) satellite Final Archive to analyze the short-wavelength UV properties of 49 T Tauri stars (TTSs). We compare the line and continuum fluxes in these TTSs with each other and with previously published parameters of these systems, including rotation rate, infrared excess, and mass accretion rate. The short-wavelength continuum in the classical TTSs (CTTSs) appears to originate in a ~10,000 K optically thick plasma, while in the naked TTSs (NTTSs-stars without dusty disks) the continuum appears to originate in the stellar atmosphere. We show that all of the TTSs in our sample lie in the regime of ``saturated'' magnetic activity due to their small Rossby numbers. However, while some of the TTSs show emission line surface fluxes consistent with this saturation level, many CTTSs show significantly stronger emission than predicted by saturation. In these stars, the emission line luminosity in the high ionization lines present in the spectrum between 1200 and 2000 Å correlates well with the mass accretion rate. Therefore, we conclude that the bulk of the short-wavelength emission seen in CTTSs results from accretion related processes and not from dynamo-driven magnetic activity. Using CTTSs with known mass accretion rates, we calibrate the relationship between M and LC IV to derive the mass accretion rate for some CTTSs which for various reasons have never had their mass accretion rates measured. Finally, several of the CTTSs show strong emission from molecular hydrogen. While emission from H2 cannot form in gas at a temperature of ~105 K, the strength of the molecular hydrogen emission is nevertheless well correlated with all the other emissions displayed in the IUE short-wavelength bandpass. This suggests that the H2 emission is in fact fluorescent emission pumped by the emission (likely Ly

  2. The dustiest Post-Main sequence stars in the Magellanic Clouds

    CERN Document Server

    Jones, Olivia C; Sargent, Benjamin A; Boyer, Martha L; Sewilo, Marta; Hony, Sacha; Roman-Duval, Julia

    2015-01-01

    Using observations from the {\\em Herschel} Inventory of The Agents of Galaxy Evolution (HERITAGE) survey of the Magellanic Clouds, we have found thirty five evolved stars and stellar end products that are bright in the far-infrared. These twenty eight (LMC) and seven (SMC) sources were selected from the 529 evolved star candidates in the HERITAGE far-infrared point source catalogs. Our source identification method is based on spectral confirmation, spectral energy distribution characteristics, careful examination of the multiwavelength images and includes constraints on the luminosity, resulting in a thoroughly vetted list of evolved stars. These sources span a wide range in luminosity and hence initial mass. We found thirteen low- to intermediate mass evolved stars, including asymptotic giant branch (AGB) stars, post-AGB stars, planetary nebulae and a symbiotic star. We also identify ten high mass stars, including four of the fifteen known B[e] stars in the Magellanic Clouds, three extreme red supergiants wh...

  3. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...

  4. Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    CERN Document Server

    Guarcello, M G; Micela, G; Peres, G; Prisinzano, L; Sciortino, S

    2010-01-01

    NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. We identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 micron. In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. We confirm the membership of these stars to M16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T-Tauri stars with disks and envelopes. We show that the age of these stars estimated from the V vs. V-I diagram is unrel...

  5. The first magnetic maps of a pre-main sequence binary star system - HD 155555

    OpenAIRE

    Dunstone, N. J.; Hussain, G. A. J.; Cameron, A. Collier; Marsden, S. C.; Jardine, M.; Stempels, H. C.; Vlex, J. C. Ramirez; Donati, J. -F.

    2008-01-01

    We present the first maps of the surface magnetic fields of a pre-main sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both datasets are analysed using a new binary Zeeman Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarised spectra. Stellar brightness maps are also produc...

  6. The Effect of Screening Factors and Thermonuclear Reaction Rates in the Pre-main Sequence Evolution of Low Mass Stars

    Indian Academy of Sciences (India)

    İ. Küçük; Ş. Çalışkan

    2010-09-01

    In understanding the nucleosynthesis of the elements in stars, one of the most important quantities is the reaction rate and it must be evaluated in terms of the stellar temperature , and its determination involves the knowledge of the excitation function () of the specific nuclear reaction leading to the final nucleus. In this paper, the effect of thermonuclear reaction rates to the pre-main sequence evolution of low mass stars having masses 0.7, 0.8, 0.9 and 1 M⊙ are studied by using our modified Stellar Evolutionary Program.

  7. Evolutionary models for metal-poor low-mass stars lower main sequence of globular clusters and halo field stars

    CERN Document Server

    Baraffe, I; Allard, F; Hauschildt, P H; Baraffe, Isabelle; Chabrier, Gilles; Allard, France; Hauschildt, Peter

    1997-01-01

    We have performed evolutionary calculations of very-low-mass stars from 0.08 to 0.8 $\\msol$ for different metallicites from [M/H]= -2.0 to -1.0 and we have tabulated the mechanical, thermal and photometric characteristics of these models. The calculations include the most recent interior physics and improved non-grey atmosphere models. The models reproduce the entire main sequences of the globular clusters observed with the Hubble Space Telescope over the afore-mentioned range of metallicity. Comparisons are made in the WFPC2 Flight system including the F555, F606 and F814 filters, and in the standard Johnson-Cousins system. We examine the effects of different physical parameters, mixing-length, $\\alpha$-enriched elements, helium fraction, as well as the accuracy of the photometric transformations of the HST data into standard systems. We derive mass-effective temperature and mass-magnitude relationships and we compare the results with the ones obtained with different grey-like approximations. These latter ar...

  8. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary

    Science.gov (United States)

    Eigmüller, Ph.; Eislöffel, J.; Csizmadia, Sz.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, Th.; Rauer, H.; Tkachenko, A.; Voss, H.

    2016-03-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M⊙ and a radius of (1.474 ± 0.040) R⊙. The companion is an M dwarf with a mass of (0.188 ± 0.014) M⊙ and a radius of (0.234 ± 0.009) R⊙. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ˜250 Myr. The mass-radius relation of both components are in agreement with this finding.

  9. AN M DWARF COMPANION TO AN F-TYPE STAR IN A YOUNG MAIN-SEQUENCE BINARY

    Energy Technology Data Exchange (ETDEWEB)

    Eigmüller, Ph.; Csizmadia, Sz.; Erikson, A.; Fridlund, M.; Pasternacki, Th.; Rauer, H. [Institute of Planetary Research, German Aerospace Center Rutherfordstr. 2, D-12489 Berlin (Germany); Eislöffel, J.; Lehmann, H.; Hartmann, M.; Hatzes, A. [Thüringer Landessternwarte Tautenburg Sternwarte 5, D-07778 Tautenburg (Germany); Tkachenko, A. [Instituut voor Sterrenkunde, KU Leuven Celestijnenlaan 200D, 3001 Leuven (Belgium); Voss, H., E-mail: philipp.eigmueller@dlr.de [Universitat de Barcelona, Department of Astronomy and Meteorology Martí i Franquès, 1, E-08028 Barcelona (Spain)

    2016-03-15

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung–Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectroscopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 ± 0.073) M{sub ⊙} and a radius of (1.474 ± 0.040) R{sub ⊙}. The companion is an M dwarf with a mass of (0.188 ± 0.014) M{sub ⊙} and a radius of (0.234 ± 0.009) R{sub ⊙}. The orbital period is (1.35121 ± 0.00001) days. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin–orbit synchronization. This indicates a young main-sequence binary with an age below ∼250 Myr. The mass–radius relation of both components are in agreement with this finding.

  10. An M dwarf Companion to an F-type Star in a young main-sequence binary

    CERN Document Server

    Eigmüller, Ph; Csizmadia, Sz; Lehmann, H; Erikson, A; Fridlund, M; Hartmann, M; Hatzes, A; Pasternacki, Th; Rauer, H; Tkachenko, A; Voss, H

    2016-01-01

    Only a few well characterized very low-mass M dwarfs are known today. Our understanding of M dwarfs is vital as these are the most common stars in our solar neighborhood. We aim to characterize the properties of a rare F+dM stellar system for a better understanding of the low-mass end of the Hertzsprung-Russel diagram. We used photometric light curves and radial velocity follow-up measurements to study the binary. Spectro- scopic analysis was used in combination with isochrone fitting to characterize the primary star. The primary star is an early F-type main-sequence star with a mass of (1.493 +- 0.073) Msun and a radius of (1.474 +- 0.040) Rsun. The companion is an M dwarf with a mass of (0.188 +- 0.014) Msun and a radius of (0.234 +- 0.009) Rsun. The orbital period is (1.35121 +- 0:00001)d. The secondary star is among the lowest-mass M dwarfs known to date. The binary has not reached a 1:1 spin-orbit synchronization. This indicates a young main-sequence binary with an age below ~250 Myrs. The mass-radius re...

  11. Theoretical study of $\\gamma$ Doradus pulsations in pre-main sequence stars

    CERN Document Server

    Bouabid, M -P; Miglio, A; Dupret, M -A; Grigahcène, A; Noels, A

    2010-01-01

    The question of the existence of pre-main sequence (PMS) $\\gamma$~Doradus ($\\gamma$~Dor) has been raised by the observations of young clusters such as NGC~884 hosting $\\gamma$~Dor members. We have explored the properties of $\\gamma$~Dor type pulsations in a grid of PMS models covering the mass range $1.2 M_\\odot < M_* < 2.5 M_\\odot$ and we derive the theoretical instability strip (IS) for the PMS $\\gamma$~Dor pulsators. We explore the possibility of distinguishing between PMS and MS $\\gamma$~Dor by the behaviour of the period spacing of their high order $gravity$-modes ($g$-modes).

  12. Stellar ages and convective cores in field main-sequence stars: first asteroseismic application to two Kepler targets

    CERN Document Server

    Aguirre, V Silva; Brandão, I M; Christensen-Dalsgaard, J; Deheuvels, S; Doğan, G; Metcalfe, T S; Serenelli, A M; Ballot, J; Chaplin, W J; Cunha, M S; Weiss, A; Appourchaux, T; Casagrande, L; Cassisi, S; Creevey, O L; Garcia, R A; Lebreton, Y; Noels, A; Sousa, S G; Stello, D; White, T R; Kawaler, S D; Kjeldsen, H

    2013-01-01

    Using asteroseismic data and stellar evolution models we make the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence life time is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in rad...

  13. STELLAR AGES AND CONVECTIVE CORES IN FIELD MAIN-SEQUENCE STARS: FIRST ASTEROSEISMIC APPLICATION TO TWO KEPLER TARGETS

    Energy Technology Data Exchange (ETDEWEB)

    Silva Aguirre, V.; Christensen-Dalsgaard, J.; Chaplin, W. J. [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Basu, S.; Deheuvels, S. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Brandao, I. M.; Cunha, M. S.; Sousa, S. G. [Centro de Astrofisica and Faculdade de Ciencias, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Dogan, G. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Metcalfe, T. S. [Space Science Institute, Boulder, CO 80301 (United States); Serenelli, A. M.; Garcia, R. A. [Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106 (United States); Ballot, J. [Institut de Recherche en Astrophysique et Planetologie, CNRS, 14 avenue Edouard Belin, F-31400 Toulouse (France); Weiss, A. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748 Garching bei Muenchen (Germany); Appourchaux, T. [Institut d' Astrophysique Spatiale, Universite Paris Sud-CNRS (UMR8617) Batiment 121, F-91405 Orsay Cedex (France); Casagrande, L. [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Cassisi, S. [INAF-Astronomical Observatory of Teramo, Via M. Maggini sn, I-64100 Teramo (Italy); Creevey, O. L. [Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, CNRS, I-06300 Nice, France. (France); Lebreton, Y. [Observatoire de Paris, GEPI, CNRS UMR 8111, F-92195 Meudon (France); Noels, A. [Institute of Astrophysics and Geophysics, University of Liege, B-4000 Liege (Belgium); and others

    2013-06-01

    Using asteroseismic data and stellar evolution models we obtain the first detection of a convective core in a Kepler field main-sequence star, putting a stringent constraint on the total size of the mixed zone and showing that extra mixing beyond the formal convective boundary exists. In a slightly less massive target the presence of a convective core cannot be conclusively discarded, and thus its remaining main-sequence lifetime is uncertain. Our results reveal that best-fit models found solely by matching individual frequencies of oscillations corrected for surface effects do not always properly reproduce frequency combinations. Moreover, slightly different criteria to define what the best-fit model is can lead to solutions with similar global properties but very different interior structures. We argue that the use of frequency ratios is a more reliable way to obtain accurate stellar parameters, and show that our analysis in field main-sequence stars can yield an overall precision of 1.5%, 4%, and 10% in radius, mass, and age, respectively. We compare our results with those obtained from global oscillation properties, and discuss the possible sources of uncertainties in asteroseismic stellar modeling where further studies are still needed.

  14. Instability strips of main sequence B stars: a parametric study of iron enhancement

    CERN Document Server

    Miglio, A; Montalban, J; Dupret, M A

    2006-01-01

    The discovery of beta Cephei stars in low metallicity environments, as well as the difficulty to theoretically explain the excitation of the pulsation modes observed in some beta Cephei and SPB stars, suggest that the iron opacity ``bump'' provided by standard models could be underestimated. We investigate, by means of a parametric study, the effect of a local iron enhancement on the location of the beta Cephei and SPB instability strips.

  15. O VI Observations of the Onset of Convection Zones in Main-Sequence A Stars

    CERN Document Server

    Neff, J E

    2008-01-01

    If magnetic activity in outer stellar atmospheres is due to an interplay between rotation and subsurface convection, as is generally presumed, then one would not expect to observe indicators of activity in stars with T_eff > 8300 K. Any X-ray or ultraviolet line emission from hotter stars must be due either to a different mechanism or to an unresolved, active, binary companion. Due to their poor spatial resolution, X-ray instruments have been especially susceptible to source confusion. At wavelengths longward of 1216 Angstroms, the near ultraviolet spectra of stars hotter than this putative dividing line are dominated by photospheric continuum. We have used FUSE to obtain spectra of the subcoronal O VI emission lines, which lie at a wavelength where the photospheric continuum of the mid- and early-A stars is relatively weak. We observed 14 stars spanning a range in T_eff from 7720 to 10,000 K. Eleven of the 14 stars showed O VI emission lines, including 6 of the 8 targets with T_eff > 8300 K. At face value, t...

  16. The NaI D resonance lines in main-sequence late-type stars

    Science.gov (United States)

    Díaz, Rodrigo F.; Cincunegui, Carolina; Mauas, Pablo J. D.

    2007-07-01

    We study the sodium D lines (D1: 5895.92Å D2: 5889.95Å) in late-type dwarf stars. The stars have spectral types between F6 and M5.5 (B - V between 0.457 and 1.807) and metallicity between [Fe/H] = -0.82 and 0.6. We obtained medium-resolution echelle spectra using the 2.15-m telescope at the Argentinian observatory Complejo Astronómico El Leoncito (CASLEO). The observations have been performed periodically since 1999. The spectra were calibrated in wavelength and in flux. A definition of the pseudo-continuum level is found for all our observations. We also define a continuum level for calibration purposes. The equivalent width of the D lines is computed in detail for all our spectra and related to the colour index (B - V) of the stars. When possible, we perform a careful comparison with previous studies. Finally, we construct a spectral index (R'D) as the ratio between the flux in the D lines and the bolometric flux. We find that, once corrected for the photospheric contribution, this index can be used as a chromospheric activity indicator in stars with a high level of activity. Additionally, we find that combining some of our results, we obtain a method to calibrate in flux stars of unknown colour.

  17. Old pre-main-sequence Stars: Disc reformation by Bondi-Hoyle accretion

    CERN Document Server

    Scicluna, P; Dale, J E; Testi, L

    2014-01-01

    Young stars show evidence of accretion discs which evolve quickly and disperse with an e-folding time of $\\sim$ 3Myr. This is in striking contrast with recent observations that suggest evidence for numerous $>30$ Myr old stars with an accretion disc in large star-forming complexes. We consider whether these observations of apparently old accretors could be explained by invoking Bondi-Hoyle accretion to rebuild a new disc around these stars during passage through a clumpy molecular cloud. We combine a simple Monte Carlo model to explore the capture of mass by such systems with a viscous evolution model to infer the levels of accretion that would be observed. We find that a significant fraction of stars may capture enough material via the Bondi-Hoyle mechanism to rebuild a disc of mass $\\gtrsim$ 1 minimum-mass solar nebula, and $\\lesssim 10\\%$ accrete at observable levels at any given time. A significant fraction of the observed old accretors may be explained with our proposed mechanism. Such accretion may prov...

  18. Binary star influence on post-main-sequence multi-planet stability

    CERN Document Server

    Veras, Dimitri; Dobbs-Dixon, Ian; Gaensicke, Boris T

    2016-01-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation, for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures that are conducive to generating observable heavy metal pollution in white dwarf atmospheres.

  19. The Magnetic Activity of Solar-like Stars at Different Main-Sequence Ages

    Science.gov (United States)

    Lakatos, S. L.; Nandy, D.; Martens, P.

    2005-12-01

    We report on a study of modeling stellar magnetic activity inferred through CaII H+K and ROSAT X-ray emission. The purpose of this project is to create a subset of stars with similar properties to the Sun, but with a wide range of ages (0.6 - 10 Gyrs); to study the CaII H+K emission data and decipher how the stars' emission changes with age; and to compare the X-ray activity to the CaII H+K activity. The ultimate goal of this project is to determine and use the relationships between the stellar parameters to understand the evolution of the magnetic dynamo from an younger Sun to an older Sun. This research is supported by a NSF Research Experience for Undergraduates grant ATM-0243923 and a NASA Living With a Star grant NNG05GE47G to Montana State University.

  20. ALMA observations of alpha Centauri: First detection of main-sequence stars at 3mm wavelength

    CERN Document Server

    Liseau, R; Bayo, A; Bertone, E; Black, J H; del Burgo, C; Chavez, M; Danchi, W; De la Luz, V; Eiroa, C; Ertel, S; Fridlund, M C W; Justtanont, K; Krivov, A; Marshall, J P; Mora, A; Montesinos, B; Nyman, L -A; Olofsson, G; Sanz-Forcada, J; Thebault, P; White, G J

    2014-01-01

    The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. Earlier observations with Herschel and APEX have revealed the temperature minimum of alpha Cen, but these were unable to spatially resolve the binary into individual components. With the data reported here, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870mu. In the present context, we intend to extend the spectral mapping to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. ALMA is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our obj...

  1. Binary star influence on post-main-sequence multi-planet stability

    Science.gov (United States)

    Veras, Dimitri; Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Gänsicke, Boris T.

    2017-02-01

    Nearly every star known to host planets will become a white dwarf, and nearly 100 planet-hosts are now known to be accompanied by binary stellar companions. Here, we determine how a binary companion triggers instability in otherwise unconditionally stable single-star two-planet systems during the giant branch and white dwarf phases of the planet host. We perform about 700 full-lifetime (14 Gyr) simulations with A0 and F0 primary stars and secondary K2 companions, and identify the critical binary distance within which instability is triggered at any point during stellar evolution. We estimate this distance to be about seven times the outer planet separation for circular binaries. Our results help characterize the fates of planetary systems, and in particular which ones might yield architectures which are conducive to generating observable metal pollution in white dwarf atmospheres.

  2. Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

    NARCIS (Netherlands)

    Appourchaux, T.; Benomar, O.; Gruberbauer, M.; Chaplin, W.J.; García, R.A.; Handberg, R.; Verner, G.A.; Antia, H.M.; Campante, T.L.; Davies, G.R.; Deheuvels, S.; Hekker, S.; Howe, R.; Salabert, D.; Bedding, T.R.; White, T.R.; Houdek, G.; Silva Aguirre, V.; Elsworth, Y.P.; Van Cleve, J.; Clarke, B.D.; Hall, J.R.; Kjeldsen, H.

    2012-01-01

    Context. Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars. Aims. We study the variations in the stellar p-mode linewidth as a function of effective temperature. Methods. We study a time series of nine months of Kepler data. We analyse the power spectra of 42

  3. Active Phenomena in the Pre-main Sequence Star AB AUR

    Science.gov (United States)

    Praderie, F.; Simon, T.; Boesgaard, A. M.; Felenbok, P.; Catala, C.; Czarny, J.; Talavera, A.

    1985-01-01

    The Herbig Ae star AB Aur presents short time scale variability in the Mg II and Ca II resonance lines. A qualitative model of the expanding envelope, involving fast and slow streams in a co-rotating structure, is proposed to explain the Mg II spectral variability.

  4. Important consequences of atomic diffusion inside main-sequence stars: opacities, extra-mixing, oscillations

    Directory of Open Access Journals (Sweden)

    Deal M.

    2017-01-01

    Full Text Available Atomic diffusion, including the effects of radiative accelerations on individual elements, leads to important variations of the chemical composition inside stars. The accumulation of important elements in specific layers leads to a local increase of the average opacity and to hydrodynamic instabilities that modify the internal stellar structure. This can also have important consequences for asteroseismology.

  5. Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions

    CERN Document Server

    Gafeira, Ricardo; Fernandes, João

    2012-01-01

    The stellar mass-luminosity relation (MLR) is one of the most famous empirical "laws", discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, hence the mass cannot be derived directly from the observations. It's well known that the MLR has a statistical dispersion which cannot be explained exclusively due to the observational errors in luminosity (or mass). It is an intrinsic dispersion caused by the differences in age and chemical composition from star to star. In this work we discuss the impact of age and metallicity on the MLR. Using the recent data on mass, luminosity, metallicity, and age for 26 FGK stars (all members of binary systems, with observational mass-errors \\leq 3%), including the Sun, we derive the MLR taking into account, separately, mass-luminosity, mass-luminosity-metallicity, and mass-luminosity-metallicity-age. Our results show that the inclusion of age and metallicity in the MLR, ...

  6. On the Interpretation of Sub-Giant Branch Morphologies of Intermediate-Age Star Clusters with Extended Main Sequence Turnoffs

    CERN Document Server

    Goudfrooij, Paul; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H

    2015-01-01

    Recent high-quality photometry of many star clusters in the Magellanic Clouds with ages of 1$\\,-\\,$2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several $10^8$ yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by a SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpre...

  7. The Mdot - M* relation of pre-main sequence stars: a consequence of X-ray driven disc evolution

    CERN Document Server

    Ercolano, B; Owen, J E; Rosotti, G; Manara, C F

    2013-01-01

    We analyse current measurements of accretion rates onto pre-main sequence stars as a function of stellar mass, and conclude that the steep dependance of accretion rates on stellar mass is real and not driven by selection/detection threshold, as has been previously feared. These conclusions are reached by means of statistical tests including a survival analysis which can account for upper limits. The power-law slope of the Mdot-M* relation is found to be in the range of 1.6-1.9 for young stars with masses lower than 1 Msun. The measured slopes and distributions can be easily reproduced by means of a simple disc model which includes viscous accretion and X-ray photoevaporation. We conclude that the Mdot-M* relation in pre-main sequence stars bears the signature of disc dispersal by X-ray photoevaporation, suggesting that the relation is a straight- forward consequence of disc physics rather than an imprint of initial conditions.

  8. ACCURATE QUANTITATIVE SPECTROSCOPY OF OB STARS: C AND N ABUNDANCES NEAR THE MAIN SEQUENCE

    Directory of Open Access Journals (Sweden)

    M. F. Nieva

    2008-01-01

    Full Text Available We present a state-of-the-art analysis technique able to simultaneously reproduce the entire H and He spectra of OB-type stars in the visual and the near-IR and to derive highly accurate metal abundances (so far C and N. The spectrum synthesis relies on a hybrid non-LTE approach involving our most recent model atoms. Accurate atmospheric parameters, practically free of systematic errors, are derived spectroscopically (from Stark-broadened H lines and ionization equilibria of He i/ii and Cii-iv for a sample of randomly distributed stars in the solar vicinity. Highly consistent abundances are found in contrast to previous reports indicating broad scatter and large uncertainties. The improvements result from avoidance of systematic errors in the parameter determination, which may be larger than expected in previous work, and a critical evaluation of atomic data for the model atom construction

  9. The Structure of the Accretion Flow on pre-main-sequence stars

    Science.gov (United States)

    Calvet, Nuria

    1999-07-01

    We propose to test an essential prediction of the magnetospheric accretion model for T Tauri stars. STIS echelle spectra will be used to search for the relatively narrow high-temperature emission lines that must result from the magnetospheric accretion shock, but are not expected in the previous, alternative boundary layer model. By combining the results from high temperature {10^5 K} lines, accessible only with HST, with optical lines and optical-UV continuum emission, we will develop physically self-consistent models of accretion shock structure. The geometrically distribution of the emitting gas as derived from our results will test theories of mass-loading of magnetic field lines at the magnetosphere-disk interface. Analysis of the UV emission lines will also provide improved calibrations between ultraviolet continuum emission and accretion luminosities, and thus improve estimates of mass accretion rates for T Tauri stars.

  10. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets around Main Sequence M Stars

    Science.gov (United States)

    Nava-Sedeño, J. Manik; Ortiz-Cervantes, Adrian; Segura, Antígona; Domagal-Goldman, Shawn D.

    2016-10-01

    Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the star's chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal-Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawa et al. (2002) and Schlesinger and Miller (1983a, 1983b). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin.

  11. Carbon Monoxide and the Potential for Prebiotic Chemistry on Habitable Planets around Main Sequence M Stars.

    Science.gov (United States)

    Nava-Sedeño, J Manik; Ortiz-Cervantes, Adrian; Segura, Antígona; Domagal-Goldman, Shawn D

    2016-10-04

    Lifeless planets with CO2 atmospheres produce CO by CO2 photolysis. On planets around M dwarfs, CO is a long-lived atmospheric compound, as long as UV emission due to the star's chromospheric activity lasts, and the sink of CO and O2 in seawater is small compared to its atmospheric production. Atmospheres containing reduced compounds, like CO, may undergo further energetic and chemical processing to give rise to organic compounds of potential importance for the origin of life. We calculated the yield of organic compounds from CO2-rich atmospheres of planets orbiting M dwarf stars, which were previously simulated by Domagal-Goldman et al. (2014) and Harman et al. (2015), by cosmic rays and lightning using results of experiments by Miyakawa et al. (2002) and Schlesinger and Miller ( 1983a , 1983b ). Stellar protons from active stars may be important energy sources for abiotic synthesis and increase production rates of biological compounds by at least 2 orders of magnitude compared to cosmic rays. Simple compounds such as HCN and H2CO are more readily synthesized than more complex ones, such as amino acids and uracil (considered here as an example), resulting in higher yields for the former and lower yields for the latter. Electric discharges are most efficient when a reducing atmosphere is present. Nonetheless, atmospheres with high quantities of CO2 are capable of producing higher amounts of prebiotic compounds, given that CO is constantly produced in the atmosphere. Our results further support planetary systems around M dwarf stars as candidates for supporting life or its origin. Key Words: Prebiotic chemistry-M dwarfs-Habitable planets-Cosmic rays-Lightning-Stellar activity. Astrobiology 16, 744-754.

  12. The Na I D resonance lines in main sequence late-type stars

    CERN Document Server

    Díaz, Rodrigo F; Mauas, Pablo J D

    2007-01-01

    We study the sodium D lines (D1: 5895.92 \\AA; D2: 5889.95 \\AA) in late-type dwarf stars. The stars have spectral types between F6 and M5.5 (B-V between 0.457 and 1.807) and metallicity between [Fe/H] = -0.82 and 0.6. We obtained medium resolution echelle spectra using the 2.15-m telescope at the argentinian observatory CASLEO. The observations have been performed periodically since 1999. The spectra were calibrated in wavelength and in flux. A definition of the pseudo-continuum level is found for all our observations. We also define a continuum level for calibration purposes. The equivalent width of the D lines is computed in detail for all our spectra and related to the colour index (B-V) of the stars. When possible, we perform a careful comparison with previous studies. Finally, we construct a spectral index (R_D') as the ratio between the flux in the D lines, and the bolometric flux. We find that, once corrected for the photospheric contribution, this index can be used as a chromospheric activity indicator...

  13. On the interpretation of sub-giant branch morphologies of intermediate-age star clusters with extended main sequence turnoffs

    Science.gov (United States)

    Goudfrooij, Paul; Girardi, Léo; Rosenfield, Philip; Bressan, Alessandro; Marigo, Paola; Correnti, Matteo; Puzia, Thomas H.

    2015-06-01

    High-quality photometry of many star clusters in the Magellanic Clouds with ages of 1-2 Gyr revealed main sequence turnoffs (MSTOs) that are significantly wider than can be accounted for by a simple stellar population (SSP). Such extended MSTOs (eMSTOs) are often interpreted in terms of an age spread of several 108 yr, challenging the traditional view of star clusters as being formed in a single star formation episode. Li et al. and Bastian & Niederhofer recently investigated the sub-giant branches (SGBs) of NGC 1651, NGC 1806, and NGC 1846, three star clusters in the Large Magellanic Cloud (LMC) that exhibit an eMSTO. They argued that the SGB of these star clusters can be explained only by an SSP. We study these and two other similar star clusters in the LMC, using extensive simulations of SSPs including unresolved binaries. We find that the shapes of the cross-SGB profiles of all star clusters in our sample are in fact consistent with their cross-MSTO profiles when the latter are interpreted as age distributions. Conversely, SGB morphologies of star clusters with eMSTOs are found to be inconsistent with those of simulated SSPs. Finally, we create PARSEC isochrones from tracks featuring a grid of convective overshoot levels and a very fine grid of stellar masses. A comparison of the observed photometry with these isochrones shows that the morphology of the red clump (RC) of such star clusters is also consistent with that implied by their MSTO in the age spread scenario. We conclude that the SGB and RC morphologies of star clusters featuring eMSTOs are consistent with the scenario in which the eMSTOs are caused by a distribution of stellar ages.

  14. Stellar models for very low mass main sequence stars the role of model atmospheres

    CERN Document Server

    Brocato, E; Castellani, V

    1997-01-01

    We present Very Low Mass stellar models as computed including non-grey model atmospheres for selected assumptions about the star metallicities. The role of atmospheres is discussed and the models are compared with models based on the Eddington approximation and with similar models appeared in the recent literature. Theoretical predictions concerning both the HR diagram location and the mass-luminosity relation are presented and discussed in terms of expectations in selected photometric bands. Comparison with available observational data concerning both galactic globular clusters and dwarfs in the solar neighborhood reveals a satisfactory agreement together with the existence of some residual mismatches.

  15. Accretion in the Rho-Oph pre-main sequence stars

    CERN Document Server

    Natta, A; Testi, L

    2006-01-01

    The aim of this paper is to provide a measurement of the mass accretion rate in a large, complete sample of objects in the core of the star forming region Rho-Oph. The sample includes most of the objects (104 out of 111) with evidence of a circumstellar disk from mid-infrared photometry; it covers a stellar mass range from about 0.03 to 3 Msun and it is complete to a limiting mass of ~0.05 Msun. We used J and K-band spectra to derive the mass accretion rate of each object from the intensity of the hydrogen recombination lines, Pab or Brg. For comparison, we also obtained similar spectra of 35 diskless objects. The results show that emission in these lines is only seen in stars with disks, and can be used as an indicator of accretion. However, the converse does not hold, as about 50% of our disk objects do not have detectable line emission. The measured accretion rates show a strong correlation with the mass of the central object (Macc ~ Mstar^1.8+-0.2) and a large spread, of two orders of magnitude at least, ...

  16. Habitable Zones Around Main-Sequence Stars: Dependence on Planetary Mass

    CERN Document Server

    Kopparapu, Ravi kumar; SchottelKotte, James; Kasting, James F; Domagal-Goldman, Shawn; Eymet, Vincent

    2014-01-01

    The ongoing discoveries of extrasolar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this letter, we present estimates of habitable zones (HZs) around stars with stellar effective temperatures in the range 2600 K - 7200 K, for planetary masses between 0.1 ME and 5 ME. Assuming H2O (inner HZ) and CO2 (outer HZ) dominated atmospheres, and scaling the background N2 atmospheric pressure with the radius of the planet, our results indicate that larger planets have wider HZs than do smaller ones. Specifically, with the assumption that smaller planets will have less dense atmospheres, the inner edge of the HZ (runaway greenhouse limit) moves outward (~10% lower than Earth flux) for low mass planets due to larger greenhouse effect arising from the increased H2O column depth. For larger planets, the H2O column depth is smaller, and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. Hence the inner edge moves inward (...

  17. The metal-rich abundance pattern - spectroscopic properties and abundances for 107 main-sequence stars

    Science.gov (United States)

    Ivanyuk, O. M.; Jenkins, J. S.; Pavlenko, Ya. V.; Jones, H. R. A.; Pinfield, D. J.

    2017-07-01

    We report results from the high-resolution spectral analysis of the 107 metal-rich (mostly [Fe/H] ≥ 7.67 dex) target stars from the Calan-Hertfordshire Extrasolar Planet Search programme observed with HARPS. Using our procedure of finding the best fit to the absorption line profiles in the observed spectra, we measure the abundances of Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Ni, Cu and Zn, and then compare them with known results from different authors. Most of our abundances agree with these works at the level of ±0.05 dex or better for the stars we have in common. However, we do find systematic differences that make direct inferences difficult. Our analysis suggests that the selection of line lists and atomic line data along with the adopted continuum level influence these differences the most. At the same time, we confirm the positive trends of abundances versus metallicity for Na, Mn, Ni and, to a lesser degree, Al. A slight negative trend is observed for Ca, whereas Si and Cr tend to follow iron. Our analysis allows us to determine the positively skewed normal distribution of projected rotational velocities with a maximum peaking at 3 km s-1. Finally, we obtained a Gaussian distribution of microturbulent velocities that has a maximum at 1.2 km s-1 and a full width at half-maximum Δv1/2 = 0.35 km s-1, indicating that metal-rich dwarfs and subgiants in our sample have a very restricted range in microturbulent velocity.

  18. Return to [Log-]Normalcy: Rethinking Quenching, The Star Formation Main Sequence, and Perhaps Much More

    Science.gov (United States)

    Abramson, Louis E.; Gladders, Michael D.; Dressler, Alan; Oemler, Augustus, Jr.; Poggianti, Bianca; Vulcani, Benedetta

    2016-11-01

    Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is often assumed to be clear, but we use a simple “physics-free” model to show that it is not and that exploring its nuances can yield new insights. Comprising nothing more than 2094 loosely constrained lognormal star formation histories (SFHs), the model faithfully reproduces the following data it was not designed to match: stellar mass functions at z≤slant 8; the slope of the star formation rate/stellar mass relation (the SFR “Main Sequence”) at z≤slant 6; the mean {sSFR}(\\equiv {SFR}/{M}* ) of low-mass galaxies at z≤slant 7; “fast-” and “slow-track” quenching; downsizing; and a correlation between formation timescale and {sSFR}({M}* ,t) similar to results from simulations that provides a natural connection to bulge growth. We take these findings—which suggest that quenching is the natural downturn of all SFHs affecting galaxies at rates/times correlated with their densities—to mean that: (1) models in which galaxies are diversified on Hubble timescales by something like initial conditions rival the dominant grow-and-quench framework as good descriptions of the data; or (2) absent spatial information, many metrics of galaxy evolution are too undiscriminating—if not inherently misleading—to confirm a unique explanation. We outline future tests of our model but stress that, even if ultimately incorrect, it illustrates how exploring different paradigms can aid learning and, we hope, more detailed modeling efforts.

  19. Effect of land fraction on weathering and tenure in the habitable zone of terrestrial planets around main-sequence stars

    Science.gov (United States)

    Abbot, D. S.; Ciesla, F. J.; Pierrehumbert, R.; Archer, D. E.

    2011-12-01

    According to current models of volatile delivery, the water fraction of terrestrial planets in the habitable zone of main-sequence stars is likely to be highly variable. This will affect the continental land fraction, and consequently the functioning of weathering and the carbon cycle. We construct a low-order analytical model of climate, continental silicate weathering, and seafloor weathering to investigate, in a general sense, the effect of land fraction on the long-term carbon cycle. This model is useful for gaining physical insight, rather than for making specific predictions. Using our model, we reach the following conclusions: (1) The surface temperature increases with decreasing land fraction, with waterworlds 10's of K warmer than planets with 50% continental coverage. (2) There can be no weathering feedback on a waterworld. The tenure of a waterworld in the habitable zone is therefore likely to be much shorter than the tenure of a planet with some continent in the habitable zone. (3) The silicate weathering feedback is effective even at very low land fractions. The rate of change of a planet's surface temperature as the star it orbits evolves on the main sequence is similar if the land fraction is 0.3 or 0.01.

  20. Variations of the ISM Conditions Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    CERN Document Server

    Martínez-Galarza, Juan R; Lanz, Lauranne; Hayward, Christopher C; Zezas, Andreas; Rosenthal, Lee; Weiner, Aaron; Hung, Chao-Ling; Ashby, Matthew L N; Groves, Brent

    2014-01-01

    (abridged) Significant evidence has been gathered suggesting the existence of a main sequence (MS) of star-forming galaxies that relates their star formation rate and their stellar mass: $SFR \\propto M_*^{\\alpha}$. Several ideas have been suggested to explain fundamental properties of the MS, such as its slope, its dispersion, and its evolution with redshift. However, no consensus has been reached regarding its true nature, or whether the membership of particular galaxies to this MS implies the existence of two different modes of star formation. In order to advance our understanding of the MS, here we use a statistically robust Bayesian Spectral Energy Distribution (SED) analysis (CHIBURST) to consistently analyze the star-forming properties of a set of hydro-dynamical simulations of mergers, as well as observations of real mergers and luminous galaxies, both local and at intermediate redshift. We find a very tight correlation between the specific star formation rate (sSFR) of our fitted galaxies, and the typ...

  1. How dusty is alpha Centauri? Excess or non-excess over the infrared photospheres of main-sequence stars

    CERN Document Server

    Wiegert, J; Thébault, P; Olofsson, G; Mora, A; Bryden, G; Marshall, J P; Eiroa, C; Montesinos, B; Ardila, D; Augereau, J C; Aran, A Bayo; Danchi, W C; del Burgo, C; Ertel, S; Fridlund, M C W; Hajigholi, M; Krivov, A V; Pilbratt, G L; Roberge, A; White, G J

    2014-01-01

    [Abridged] Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby binary aCentauri have higher than solar metallicities, which is thought to promote giant planet formation. We aim to determine the level of emission from debris in the aCen system. Having already detected the temperature minimum, Tmin, of aCenA, we here attempt to do so also for the companion aCenB. Using the aCen stars as templates, we study possible effects Tmin may have on the detectability of unresolved dust discs around other stars. We use Herschel and APEX photometry to determine the stellar spectral energy distributions. In addition, we use APEX for spectral line mapping to study the complex background around aCen seen in the photometric images. Models of stellar atmospheres and discs are used to estimate the amount of debris around these stars. For solar-type stars, a fractional dust luminosity fd 2e-7 could account for SEDs that do not exhibit the Tmin-effect. Slight excesses ...

  2. Extended Main Sequence Turnoffs in Intermediate-Age Star Clusters: A Correlation Between Turnoff Width and Early Escape Velocity

    CERN Document Server

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Kalirai, Jason S; Platais, Imants; Puzia, Thomas H; Correnti, Matteo; Bressan, Alessandro; Chandar, Rupali; Kerber, Leandro; Marigo, Paola; Rubele, Stefano

    2014-01-01

    We present color-magnitude diagram analysis of deep Hubble Space Telescope imaging of a mass-limited sample of 18 intermediate-age (1 - 2 Gyr old) star clusters in the Magellanic Clouds, including 8 clusters for which new data was obtained. We find that ${\\it all}$ star clusters in our sample feature extended main sequence turnoff (eMSTO) regions that are wider than can be accounted for by a simple stellar population (including unresolved binary stars). FWHM widths of the MSTOs indicate age spreads of 200-550 Myr. We evaluate dynamical evolution of clusters with and without initial mass segregation. Our main results are: (1) the fraction of red clump (RC) stars in secondary RCs in eMSTO clusters scales with the fraction of MSTO stars having pseudo-ages $\\leq 1.35$ Gyr; (2) the width of the pseudo-age distributions of eMSTO clusters is correlated with their central escape velocity $v_{\\rm esc}$, both currently and at an age of 10 Myr. We find that these two results are unlikely to be reproduced by the effects ...

  3. On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main sequence stars

    CERN Document Server

    Mendigutía, I; Rigliaco, E; Fairlamb, J R; Calvet, N; Muzerolle, J; Cunningham, N; Lumsden, S L

    2015-01-01

    Correlations between the accretion luminosity and emission line luminosities (L_acc and L_line) of pre-main sequence (PMS) stars have been published for many different spectral lines, which are used to estimate accretion rates. Despite the origin of those correlations is unknown, this could be attributed to direct or indirect physical relations between the emission line formation and the accretion mechanism. This work shows that all (near-UV/optical/near-IR) L_acc-L_line correlations are the result of the fact that the accretion luminosity and the stellar luminosity (L_star) are correlated, and are not necessarily related with the physical origin of the line. Synthetic and observational data are used to illustrate how the L_acc-L_line correlations depend on the L_acc-L_star relationship. We conclude that because PMS stars show the L_acc-L_star correlation immediately implies that L_acc also correlates with the luminosity of all emission lines, for which the L_acc-L_line correlations alone do not prove any phy...

  4. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  5. Non-linearity and environmental dependence of the star forming galaxies Main Sequence

    CERN Document Server

    Erfanianfar, G; Finoguenov, A; Wilman, D; Wuyts, S; Biviano, A; Salvato, M; Mirkazemi, M; Morselli, L; Ziparo, F; Nandra, K; Lutz, D; Elbaz, D; Dickinson, M; Tanaka, M; Altieri, M B; Aussel, H; Bauer, F; Berta, S; Bielby, R M; Brandt, N; Cappelluti, N; Cimatti, A; Cooper, M C; Fadda, D; Ilbert, O; Floch, E Le; Magnelli, B; Mulchaey, J S; Nordon, R; Newman, J A; Poglitsch, A; Pozzi, F

    2015-01-01

    Using data from four deep fields (COSMOS, AEGIS, ECDFS, and CDFN), we study the correlation between the position of galaxies in the star formation rate (SFR) versus stellar mass plane and local environment at $z10^{10.4-10.6}$ $M_{\\odot}$), across all environments. At high redshift ( $0.5

  6. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    Science.gov (United States)

    Meunier, N.; Lagrange, A.-M.; Mbemba Kabuiku, L.; Alex, M.; Mignon, L.; Borgniet, S.

    2017-01-01

    Context. In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV (radial velocity) variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. Aims: It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. Methods: We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. This criterion is derived from the dependence of the convective blueshift with the intensity at the bottom of a large set of selected spectral lines. Results: We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and on the activity level. This allows us to quantify the dependence of granulation properties on magnetic activity for stars other than the Sun. We are indeed able to derive a significant dependence of the convective blueshift on activity level for all types of stars. The attenuation factor of the convective blueshift appears to be constant over the considered range of spectral types. We derive a convective blueshift which decreases towards lower temperatures, with a trend in close agreement with models for Teff lower than 5800 K, but with a significantly larger global amplitude. Differences also remain to be examined in detail for larger Teff. We finally compare the observed RV variation amplitudes with those that could be derived from our convective blueshift using

  7. The pre-main-sequence star V1184 Tauri (CB 34V) at the end of prolonged eclipse

    Science.gov (United States)

    Semkov, E. H.; Peneva, S. P.; Ibryamov, S. I.

    2015-10-01

    Aims: V1184 Tau (CB 34V) lies in the field of the Bok globule CB 34 and was discovered as a large amplitude variable in 1993. According to the first hypothesis of the variability of the star, it is a FU Orionis candidate erupted between 1951 and 1993. During subsequent observations, the star manifests large amplitude variability interpreted as obscuration from circumstellar clouds of dust. We included V1184 Tau (CB 34V) in our target list of highly variable pre-main-sequence stars to determine the reasons for the variations in the brightness of this object. Methods: Data from BVRI photometric observations of the young stellar object V1184 Tau, obtained in the period 2008-2015, are presented in the paper. These data are a continuation of our optical photometric monitoring of the star began in 2000 and continuing to date. The photometric observations of V1184 Tau were performed in two observatories with two medium-sized and two small telescopes. Results: Our results indicate that during periods of maximum light the star shows characteristics typical of T Tauri stars. During the observed deep minimum in brightness, however, V1184 Tau is rather similar to UX Orionis objects. The deep drop in brightness began in 2003 ended in 2015 as the star has returned to maximum light. The light curve during the drop is obviously asymmetric as the decrease in brightness lasts two times longer than the rise. The observed colour reverse on the colour-magnitude diagrams is also confirmation of obscuration from circumstellar clouds of dust as a reason for the large amplitude variability in the brightness. Appendix A is available in electronic form at http://www.aanda.org

  8. Magnetic fields and differential rotation on the pre-main sequence III: The early-G star HD 106506

    CERN Document Server

    Waite, I A; Carter, B D; Hart, R; Donati, J -F; Vélez, J C Ramírez; Semel, M; Dunstone, N

    2011-01-01

    We present photometry and spectropolarimetry of the pre-main sequence star HD 106506. A photometric rotational period of ~1.416 +/- 0.133 days has been derived using observations at Mount Kent Observatory (MKO). Spectropolarimetric data taken at the 3.9-m Anglo-Australian Telescope (AAT) were used to derive spot occupancy and magnetic maps of the star through the technique of Zeeman Doppler imaging (ZDI). The resulting brightness maps indicate that HD 106506 displays photospheric spots at all latitudes including a predominant polar spot. Azimuthal and radial magnetic images of this star have been derived, and a significant azimuthal magnetic field is indicated, in line with other active young stars. A solar-like differential rotation law was incorporated into the imaging process. Using Stokes I information the equatorial rotation rate, $\\Omega_{eq}$, was found to be 4.54 +/- 0.01 rad/d, with a photospheric shear $\\delta\\Omega$ of $0.21_{-0.03}^{+0.02}$ rad/d. This equates to an equatorial rotation period of ~...

  9. Kepler-4b: Hot Neptune-Like Planet of a G0 Star Near Main-Sequence Turnoff

    CERN Document Server

    Borucki, William J; Brown, Timothy M; Basri, Gibor; Batalha, Natalie; Caldwell, Douglas A; Cochran, William D; Dunham, Edward W; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Howell, Steve B; Jenkins, Jon M; Latham, David W; Lissauer, Jack J; Marcy, Geoffrey W; Monet, David; Rowe, Jason F; Sasselov, Dimitar

    2010-01-01

    Early time-series photometry from NASA's Kepler spacecraft has revealed a planet transiting the star we term Kepler-4, at RA = 19h02m27.68s, Dec = +50:08:08.7. The planet has an orbital period of 3.213 days and shows transits with a relative depth of 0.87 x 10^{-3} and a duration of about 3.95 hours. Radial velocity measurements from the Keck HIRES spectrograph show a reflex Doppler signal of 9.3 (+1.1 -1.9) m/s, consistent with a low-eccentricity orbit with the phase expected from the transits. Various tests show no evidence for any companion star near enough to affect the light curve or the radial velocities for this system. From a transit-based estimate of the host star's mean density, combined with analysis of high-resolution spectra, we infer that the host star is near turnoff from the main sequence, with estimated mass and radius of 1.223 (+0.053 -0.091) solar masses and 1.487 (+0.071 -0.084) solar radii. We estimate the planet mass and radius to be 24.5 +/- 3.8 Earth masses and 3.99 +/- 0.21 Earth radi...

  10. On the origin of the correlations between the accretion luminosity and emission line luminosities in pre-main-sequence stars

    Science.gov (United States)

    Mendigutía, I.; Oudmaijer, R. D.; Rigliaco, E.; Fairlamb, J. R.; Calvet, N.; Muzerolle, J.; Cunningham, N.; Lumsden, S. L.

    2015-09-01

    Correlations between the accretion luminosity and emission line luminosities (Lacc and Lline) of pre-main-sequence (PMS) stars have been published for many different spectral lines, which are used to estimate accretion rates. Despite the origin of those correlations is unknown, this could be attributed to direct or indirect physical relations between the emission line formation and the accretion mechanism. This work shows that all (near-UV/optical/near-IR) Lacc-Lline correlations are the result of the fact that the accretion luminosity and the stellar luminosity (L*) are correlated, and are not necessarily related with the physical origin of the line. Synthetic and observational data are used to illustrate how the Lacc-Lline correlations depend on the Lacc-L* relationship. We conclude that because PMS stars show the Lacc-L* correlation immediately implies that Lacc also correlates with the luminosity of all emission lines, for which the Lacc-Lline correlations alone do not prove any physical connection with accretion but can only be used with practical purposes to roughly estimate accretion rates. When looking for correlations with possible physical meaning, we suggest that Lacc/L* and Lline/L* should be used instead of Lacc and Lline. Finally, the finding that Lacc has a steeper dependence on L* for T Tauri stars than for intermediate-mass Herbig Ae/Be stars is also discussed. That is explained from the magnetospheric accretion scenario and the different photospheric properties in the near-UV.

  11. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    CERN Document Server

    Meunier, N; Kabuiku, L Mbemba; Alex, M; Mignon, L; Borgniet, S

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this convective blueshift on magnetic activity, as these are key factors in our model producing the RV. We studied a sample of main sequence stars with spectral types from G0 to K2 and focused on their temporally averaged properties: the activity level and a criterion allowing to characterise the amplitude of the convective blueshift. We find the differential velocity shifts of spectral lines due to convection to depend on the spectral type, the wavelength (this dependence is correlated with the Teff and activity level), and o...

  12. The influence of radiative core growth on coronal X-ray emission from pre-main sequence stars

    CERN Document Server

    Gregory, Scott G; Davies, Claire L

    2016-01-01

    Pre-main sequence (PMS) stars of mass $\\gtrsim0.35\\,{\\rm M}_\\odot$ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analog of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for $\\sim$1000 PMS stars from five of the best studied star forming regions; the ONC, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we deredden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities ($L_{\\rm X}/L_\\ast$) than those on ...

  13. Persistent Sub-Yearly Chromospheric Variations in Lower Main-Sequence Stars: Tau Booe and alpha Com

    Science.gov (United States)

    Maulik, Davesh; Donahue, Robert A.; Baliunas, Sallie L.

    1997-01-01

    The recent discoveries of extrasolar planetary systems around lower main-sequence stars such as tau Booe (HD 120136) has prompted further investigation into their stellar activity. A cursory analysis of tau Booe for cyclic chromospheric activity, based on its 30-yr record of Ca 2 H and K fluxes obtained as part of the HK Project from Mount Wilson Observatory, finds an intermediate, sub-yearly period (approximately 117 d) in chromospheric activity in addition to, and separate from, both its rotation (3.3 d) and long-term variability. As a persistent subyearly period in surface magnetic activity is unprecedented, we investigate this apparent anomaly further by examining chromospheric activity levels of other stars with similar mass, searching for variability in chromospheric activity with periods of less than one year, but longer than measured or predicted rotation. An examination of the time series of 40 mid-to-late F dwarfs yielded one other star for further analysis: alpha Com (HD 114378, P approximately 132 d). The variations for these two stars were checked for persistence and coherence. Based on these determinations, we eliminate the possibilities of rotation, long-term activity cycle, and the evolution of active regions as the cause of this variation in both stars. In particular, for tau Booe we infer that the phenomenon may be chromospheric in origin; however, beyond this, it is difficult to identify anything further regarding the cause of the activity variations, or even whether the observed modulation in the two stars have the same origin.

  14. 2-D and 3-D Models of Convective Turbulence and Oscillations in Intermediate-Mass Main-Sequence Stars

    CERN Document Server

    Guzik, Joyce A; Nelson, N J; Lovekin, C; Kosak, K; Kitiashvili, I N; Mansour, N N; Kosovichev, A

    2016-01-01

    We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the Sun, using three separate approaches: 1) Using the 3-D planar StellarBox radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 2) Applying the spherical 3-D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Doradus/delta Scuti variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive gravity modes; 3) Applying the ROTORC 2-D stellar evolution and dynamics code to calculate evolution with a variety of initial rotat...

  15. Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars

    CERN Document Server

    Wade, G A; Bagnulo, S; Landstreet, J D; Mason, E; Silvester, J; Alecian, E; Böhm, T; Bouret, J C; Catala, C; Donati, J F; Folsom, C; Bale, K

    2006-01-01

    We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of stron...

  16. CONSTRAINING THE EXOZODIACAL LUMINOSITY FUNCTION OF MAIN-SEQUENCE STARS: COMPLETE RESULTS FROM THE KECK NULLER MID-INFRARED SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Mennesson, B.; Serabyn, E.; Colavita, M. M.; Bryden, G.; Doré, O.; Traub, W. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Millan-Gabet, R. [NASA Exoplanet Science Center, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Absil, O. [Département d' Astrophysique, Géophysique et Océanographie, Université de Liège, 17 Allée du Six Août, 4000 Liège (Belgium); Wyatt, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Danchi, W.; Kuchner, M.; Stapelfeldt, K. [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory, Code 667, Greenbelt, MD 20771 (United States); Defrère, D.; Hinz, P. [Steward Observatory, Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Ragland, S. [Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Scott, N. [Center for High Angular Resolution Astronomy, Georgia State University, Mount Wilson, CA 91023 (United States); Woillez, J., E-mail: Bertrand.Mennesson@jpl.nasa.gov [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Munchen (Germany)

    2014-12-20

    Forty-seven nearby main-sequence stars were surveyed with the Keck Interferometer mid-infrared Nulling instrument (KIN) between 2008 and 2011, searching for faint resolved emission from exozodiacal dust. Observations of a subset of the sample have already been reported, focusing essentially on stars with no previously known dust. Here we extend this previous analysis to the whole KIN sample, including 22 more stars with known near- and/or far-infrared excesses. In addition to an analysis similar to that of the first paper of this series, which was restricted to the 8-9 μm spectral region, we present measurements obtained in all 10 spectral channels covering the 8-13 μm instrumental bandwidth. Based on the 8-9 μm data alone, which provide the highest signal-to-noise measurements, only one star shows a large excess imputable to dust emission (η Crv), while four more show a significant (>3σ) excess: β Leo, β UMa, ζ Lep, and γ Oph. Overall, excesses detected by KIN are more frequent around A-type stars than later spectral types. A statistical analysis of the measurements further indicates that stars with known far-infrared (λ ≥ 70 μm) excesses have higher exozodiacal emission levels than stars with no previous indication of a cold outer disk. This statistical trend is observed regardless of spectral type and points to a dynamical connection between the inner (zodi-like) and outer (Kuiper-Belt-like) dust populations. The measured levels for such stars are clustering close to the KIN detection limit of a few hundred zodis and are indeed consistent with those expected from a population of dust that migrated in from the outer belt by Poynting-Robertson drag. Conversely, no significant mid-infrared excess is found around sources with previously reported near-infrared resolved excesses, which typically have levels of the order of 1% over the photospheric flux. If dust emission is really at play in these near-infrared detections, the absence of a strong mid

  17. Decoding the Star-Forming Main Sequence or: How I Learned to Stop Worrying and Love the Central Limit Theorem

    CERN Document Server

    Kelson, Daniel D

    2014-01-01

    Star-formation rates (SFR) of disk galaxies strongly correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such small scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here we demonstrate that it is a simple consequence of the central limit theorem. Our derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk (where the expectation of SFR at any time is equal to the SFR at the previous time). We then derive expectation values for median SSFR of star-forming disks and their scatter over time. We generalize the results for stochastic changes in SFR that are not independent of each other but are correlated over time. For unbiased samples of (disk) galaxies, we derive an expectation that should be independent of mass, decline as 1/T, and have a relative scatter that is independent of mass and time. The derived SFMS and its evolution matches published data to z=10 ...

  18. main sequence stars

    Directory of Open Access Journals (Sweden)

    Celia Rosa Fierro

    2008-01-01

    Full Text Available Usando datos públicos del Ultraviolet and Visual Echelle Spectrograph Paranal Observatory Project (UVES POP, y con el método de la transformada de Fourier, se obtuvieron las velocidades de rotación proyectadas, v sin i, para 16 estrellas en el campo del cúmulo galáctico IC 2391 (o Vel Cluster. Se encontró que sólo 12 de dichos objetos son miembros del cúmulo y al separarlos en dos grupos (es- trellas de secuencia principal y estrellas evolucionadas se encontró una correlación entre la velocidad de rotación y la temperatura efectiva, lo que indica que las es- trellas dentro del cúmulo tienen aproximadamente la misma orientación del eje de rotación. Los cocientes N/C y O/C obtenidos para las estrellas de secuencia prin- cipal se incrementan con v sin i, mostrando evidencias de mezclado inducido por rotación.

  19. Analysis of flares in the chromosphere and corona of main- and pre-main-sequence M-type stars

    Science.gov (United States)

    Crespo-Chacón, I.

    2015-11-01

    This Ph.D. Thesis revolves around flares on main- and pre-main-sequence M-type stars. We use observations in different wavelength ranges with the aim of analysing the effects of flares at different layers of stellar atmospheres. In particular, optical and X-ray observations are used so that we can study how flares affect, respectively, the chromosphere and the corona of stars. In the optical range we carry out a high temporal resolution spectroscopic monitoring of UV Ceti-type stars aimed at detecting non-white-light flares (the most typical kind of solar flares) in stars other than the Sun. With these data we confirm that non-white-light flares are a frequent phenomenon in UV Ceti-type stars, as observed in the Sun. We study and interpret the behaviour of different chromospheric lines during the flares detected on AD Leo. By using a simplified slab model of flares (Jevremović et al. 1998), we are able to determine the physical parameters of the chromospheric flaring plasma (electron density and electron temperature), the temperature of the underlying source, and the surface area covered by the flaring plasma. We also search for possible relationships between the physical parameters of the flaring plasma and other properties such as the flare duration, area, maximum flux and released energy. This work considerably extends the existing sample of stellar flares analysed with good quality spectroscopy in the optical range. In X-rays we take advantage of the great sensitivity, wide energy range, high energy resolution, and continuous time coverage of the EPIC detectors - on-board the XMMNewton satellite - in order to perform time-resolved spectral analysis of coronal flares. In particular, in the UV Ceti-type star CC Eri we study two flares that are weaker than those typically reported in the literature (allowing us to speculate about the role of flares as heating agents of stellar atmospheres); while in the pre-main-sequence M-type star TWA 11B (with no signatures of

  20. Pre-main sequence accretion in the low metallicity Galactic star-forming region Sh 2-284

    CERN Document Server

    Kalari, V M

    2014-01-01

    We present optical spectra of pre-main sequence (PMS) candidates around the H$\\alpha$ region taken with the Southern African Large Telescope, SALT, in the low metallicity ($Z$) Galactic region Sh 2-284, which includes the open cluster Dolidze 25 with an atypical low metallicity of $Z$ $\\sim$ 1/5 $Z_{\\odot}$. It has been suggested on the basis of both theory and observations that PMS mass-accretion rates, $\\dot M_{\\rm{acc}}$, are a function of $Z$. We present the first sample of spectroscopic estimates of mass-accretion rates for PMS stars in any low-$Z$ star-forming region. Our data-set was enlarged with literature data of H$\\alpha$ emission in intermediate-resolution R-band spectroscopy. Our total sample includes 24 objects spanning a mass range between 1 - 2 $M_{\\odot}$ and with a median age of approximately 3.5 Myr. The vast majority (21 out of 24) show evidence for a circumstellar disk on the basis of 2MASS and Spitzer infrared photometry. We find $\\dot M_{\\rm{acc}}$ in the 1 - 2 $M_{\\odot}$ interval to d...

  1. The Confinement of Star-Forming Galaxies into a Main Sequence through Episodes of Gas Compaction, Depletion, and Replenishment

    CERN Document Server

    Tacchella, Sandro; Carollo, C Marcella; Ceverino, Daniel; DeGraf, Colin; Lapiner, Sharon; Mandelker, Nir; Primack, Joel R

    2015-01-01

    Using cosmological simulations, we address the properties of high-redshift star-forming galaxies (SFGs) across their main sequence (MS) in the plane of star-formation rate (SFR) versus stellar mass. We relate them to the evolution of galaxies through phases of gas compaction, depletion, possible replenishment, and eventual quenching. We find that the high-SFR galaxies in the upper envelope of the MS are compact, with high gas fractions and short depletion times ("blue nuggets"), while the lower-SFR galaxies in the lower envelope have lower central gas densities, lower gas fractions and longer depletion times, consistent with observed gradients across the MS. Stellar-structure gradients are negligible. The SFGs oscillate about the MS ridge on timescales $\\sim0.4~t_{\\mathrm{Hubble}}$ ($\\sim1$ Gyr at $z\\sim3$). The propagation upwards is due to gas compaction, triggered, e.g., by mergers, counter-rotating streams, and/or violent disc instabilities. The downturn at the upper envelope is due to central gas depleti...

  2. Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars

    CERN Document Server

    Charbonnel, C; Amard, L; Palacios, A; Talon, S

    2013-01-01

    We study the impact of internal gravity waves (IGW), meridional circulation, shear turbulence, and stellar contraction on the internal rotation profile and surface velocity evolution of solar metallicity low-mass pre-main sequence stars. We compute a grid of rotating stellar evolution models with masses between 0.6 and 2.0Msun taking these processes into account for the transport of angular momentum, as soon as the radiative core appears and assuming no more disk-locking from that moment on.IGW generation along the PMS is computed taking Reynolds-stress and buoyancy into account in the bulk of the stellar convective envelope and convective core (when present). Redistribution of angular momentum within the radiative layers accounts for damping of prograde and retrograde IGW by thermal diffusivity and viscosity in corotation resonance. Over the whole mass range considered, IGW are found to be efficiently generated by the convective envelope and to slow down the stellar core early on the PMS. In stars more massi...

  3. A Highly Consistent Framework for the Evolution of the Star-Forming "Main Sequence" from z~0-6

    CERN Document Server

    Speagle, Joshua S; Capak, Peter L; Silverman, John D

    2014-01-01

    Using a compilation of 25 studies from the literature, we investigate the evolution of the star-forming galaxy (SFG) Main Sequence (MS) in stellar mass and star formation rate (SFR) out to $z \\sim 6$. These studies encompass both stacked and non-stacked data as well as many SFR indicators/timescales and selection methods. After converting all observations to a common set of calibrations, we find a remarkable consensus among MS observations ($\\sim 0.1$ dex 1$\\sigma$ interpublication scatter). By fitting for time evolution of the MS in bins of constant mass, we are able to deconvolve the observed scatter about the MS within each observed redshift bins. After accounting for observed scatter between different SFR indicators, we find the width of the MS distribution is $\\sim 0.2$ dex and remains constant over cosmic time. Our fits indicate the slope of the MS is likely time-dependent, with our best fit $\\log\\textrm{SFR}(M_*,t) = \\left(0.83 \\pm 0.03 - 0.027 \\pm 0.004 \\times t\\right) \\log M_* - \\left(6.38 \\pm 0.27 -...

  4. An Internet server for update pre-main sequence tracks of low- and intermediate-mass stars

    CERN Document Server

    Siess, L; Forestini, M

    2000-01-01

    We present new grids of pre-main sequence (PMS) tracks for stars in the mass range 0.1 to 7.0 Msun. The computations were performed for four different metallicities (Z=0.01, 0.02, 0.03 and 0.04). A fifth table has been computed for the solar composition (Z=0.02), including a moderate overshooting. We describe the update in the physics of the Grenoble stellar evolution code which concerns mostly changes in the equation of state (EOS) adopting the formalism proposed by Pols et al. (1995) and in the treatment of the boundary condition. Comparisons of our models with other grids demonstrate the validity of this EOS in the domain of very low-mass stars. Finally, we present a new server dedicated to PMS stellar evolution which allows the determination of stellar parameters from observational data, the calculation of isochrones, the retrieval of evolutionary files and the possibility to generate graphic outputs. WWW site : http://www-laog.obs.ujf-grenoble.fr/activites/starevol/evol.html

  5. Return to [Log-]Normalcy: Rethinking Quenching, The Star Formation Main Sequence, and Perhaps Much, Much More

    CERN Document Server

    Abramson, Louis E; Dressler, Alan; Oemler, Augustus; Poggianti, Bianca; Vulcani, Benedetta

    2016-01-01

    Knowledge of galaxy evolution rests on cross-sectional observations of different objects at different times. Understanding of galaxy evolution rests on longitudinal interpretations of how these data relate to individual objects moving through time. The connection between the two is generally assumed to be clear, but we use a simple "physics-free" model to show that it is not and that exploring its nuances can lead to new insights. Comprising nothing more than $\\sim2000$ loosely constrained lognormal star formation histories, the model faithfully reproduces the following data it was never designed to match: stellar mass functions at $z\\leq8$; the slope of the star formation rate/stellar mass relation (the SF "Main Sequence") at $z\\leq6$; the mean ${\\rm sSFR}(\\equiv{\\rm SFR}/M_*)$ of low-mass galaxies at $z\\leq7$; "fast-" and "slow-track quenching"; galaxy downsizing; and a correlation between formation timescale and ${\\rm sSFR}(M_*,t)$ similar to recent results from simulations that provides a natural connecti...

  6. The Solar Neighborhood. XXVI. AP Col: The Closest (8.4 pc) Pre-Main-Sequence Star

    CERN Document Server

    Riedel, Adric R; Henry, Todd J; Melis, Carl; Jao, Wei-Chun; Subasavage, John P; 10.1088/0004-6256/142/4/104

    2011-01-01

    We present the results of a multi-technique investigation of the M4.5Ve flare star AP Col, which we discover to be the nearest pre-main-sequence star. These include astrometric data from the CTIO 0.9m, from which we derive a proper motion of 342.0+/-0.5 mas yr^-1, a trigonometric parallax of 119.21+/-0.98 mas (8.39+/-0.07 pc), and photometry and photometric variability at optical wavelengths. We also provide spectroscopic data, including radial velocity (22.4+/-0.3 km s^-1), lithium Equivalent Width (EW) (0.28+/-0.02 A), H-alpha EW (-6.0 to -35 A), {\\it vsini} (11+/-1 km s^-1), and gravity indicators from the Siding Spring 2.3-m WiFeS, Lick 3-m Hamilton echelle, and Keck-I HIRES echelle spectrographs. The combined observations demonstrate that AP Col is the closer of only two known systems within 10 pc of the Sun younger than 100 Myr. Given its space motion and apparent age of 12-50 Myr, AP Col is likely a member of the recently proposed ~40 Myr old Argus/IC 2391 association.

  7. A spectral atlas of post-main-sequence stars in omega Centauri: kinematics, evolution, enrichment and interstellar medium

    CERN Document Server

    van Loon, Jacco Th; Smalley, Barry; Smith, Andrew W; Lyons, Nicola A; McDonald, Iain; Boyer, Martha L

    2007-01-01

    We present a spectral atlas of the post-main-sequence population of the most massive Galactic globular cluster, omega Centauri. Spectra were obtained of more than 1500 stars selected as uniformly as possible from across the (B, B-V) colour-magnitude diagram of the proper motion cluster member candidates of van Leeuwen et al. (2000). The spectra were obtained with the 2dF multi-fibre spectrograph at the Anglo Australian Telescope, and cover the approximate range lambda~3840-4940 Angstroem. We measure the radial velocities, effective temperatures, metallicities and surface gravities by fitting ATLAS9 stellar atmosphere models. We analyse the cluster membership and stellar kinematics, interstellar absorption in the Ca II K line at 3933 Angstroem, the RR Lyrae instability strip and the extreme horizontal branch, the metallicity spread and bimodal CN abundance distribution of red giants, nitrogen and s-process enrichment, carbon stars, pulsation-induced Balmer line emission on the asymptotic giant branch (AGB), an...

  8. Population Parameters of Intermediate-Age Star Clusters in the Large Magellanic Cloud. II. New Insights from Extended Main Sequence Turnoffs in 7 Star Clusters

    CERN Document Server

    Goudfrooij, Paul; Kozhurina-Platais, Vera; Chandar, Rupali

    2011-01-01

    We discuss new photometry from high-resolution images of 7 intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. We fit color-magnitude diagrams (CMDs) with several different sets of theoretical isochrones, and determine systematic uncertainties for population parameters when derived using any one set of isochrones. The cluster CMDs show several interesting features, including extended main sequence turnoff (MSTO) regions, narrow red giant branches, and clear sequences of unresolved binary stars. We show that the extended MSTOs are not caused by photometric uncertainties, contamination by field stars, or the presence of binary stars. Enhanced helium abundances in a fraction of cluster stars are also ruled out as the reason for the extended MSTOs. Quantitative comparisons with simulations indicate that the MSTO regions are better described by a spread in ages than by a bimodal age distribution, although we can not ...

  9. The Effect of Diffusion on Pulsations of Stars on the Upper Main Sequence. $\\delta$ Scuti and Metallic A Stars

    CERN Document Server

    Turcotte, S; Michaud, G; Christensen-Dalsgaard, J

    2000-01-01

    Recent dramatic improvements in the modeling of abundance evolution due to diffusion in A stars have been achieved with the help of monochromatic opacity tables from the OPAL group. An important result in the context of stellar pulsations is the substantial helium abundance shown to be left over in the driving region of delta Scuti-type pulsations in chemically peculiar Am stars. An accurate opacity profile in the entire stellar envelope including the full effect of heavy elements is also now available for the first time. Pulsations are shown to be excluded for young Am stars but occur naturally when these stars evolve off the ZAMS. The predicted variable metallic A stars all lie towards the red edge of the instability strip, in qualitative agreement with the observed variable delta Delphini and mild Am stars. Results show little direct excitation from iron-peak elements in A-type stars. The main abundance effect is due to the settling of helium, along with a marginal effect due to the enhancement of hydrogen...

  10. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    Science.gov (United States)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Aran, A. Bayo; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin

  11. The clustered nature of star formation. Pre--main-sequence clusters in the star-forming region NGC 602/N90 in the Small Magellanic Cloud

    CERN Document Server

    Gouliermis, Dimitrios A; Dolphin, Andrew E; Gennaro, Mario; Tognelli, Emanuele; Moroni, Pier Giorgio Prada

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC602/N90 is characterized by the HII nebular ring N90 and the young cluster of pre--main-sequence (PMS) and early-type main sequence stars NGC602. We present a thorough cluster analysis of the stellar sample identified with HST/ACS camera in the region. We show that apart from the central cluster, low-mass PMS stars are congregated in thirteen additional small compact sub-clusters at the periphery of NGC602. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (~60%) of the total population being clustered, while the remaining is diffusely distributed in the inter-cluster area. From the corresponding color-magnitude diagrams we disentangle an age-difference of ~2.5Myr between NGC602 and the compact sub-clusters which appear younger. The diffuse PMS population appears to host stars as old as those in NGC602. Almost all detected PMS sub-clusters appear to be centrally conc...

  12. Mechanism of the Increase of Helium Abundance in the Atmospheres of Single Main-Sequence B Stars of Early Spectral Subtypes

    Science.gov (United States)

    Staritsin, E.

    2017-06-01

    The observed increase in the surface helium abundance with stellar age in atmospheres of main-sequence B stars is investigated on the base of current theory of partial matter mixing in stellar interior. The intensity of mixing processes is studied in dependence on the mass and momenta of a star.

  13. Extended Magnetospheres in Pre-main-sequence Evolution: From T Tauri Stars to the Brown Dwarf Limit

    Science.gov (United States)

    Gómez de Castro, Ana I.; Marcos-Arenal, Pablo

    2012-04-01

    Low-mass pre-main-sequence stars, i.e., T Tauri stars (TTSs), strongly radiate at high energies, from X-rays to the ultraviolet (UV). This excess radiation with respect to main-sequence cool stars (MSCSs) is associated with the accretion process, i.e., it is produced in the extended magnetospheres, in the accretion shocks on the stellar surface, and in the outflows. Although evidence of accretion shocks and outflow contribution to the high-energy excess have been recently addressed, there is not an updated revision of the magnetospheric contribution. This article addresses this issue. The UV observations of the TTSs in the well-known Taurus region have been analyzed together with the XMM-Newton observations compiled in the XEST survey. For the first time the high sensitivity of the Hubble Space Telescope UV instrumentation has allowed measurement of the UV line fluxes of TTSs to M8 type. UV- and X-ray-normalized fluxes have been determined to study the extent and properties of the TTS magnetospheres as a class. They have been compared with the atmospheres of the MSCSs. The main results from this analysis are (1) the normalized fluxes of all the tracers are correlated; this correlation is independent of the broad mass range and the hardness of the X-ray radiation field; (2) the TTS correlations are different than the MSCS correlations; (3) there is a very significant excess emission in O I in the TTSs compared with MSCSs that seems to be caused by recombination radiation from the disk atmosphere after photoionization by extreme UV radiation; the Fe II/Mg II recombination continuum has also been detected in several TTSs and most prominently in AA Tau; and (4) the normalized flux of the UV tracers anticorrelates with the strength of the X-ray flux, i.e., the stronger the X-ray surface flux is, the weaker the observed UV flux. This last behavior is counterintuitive within the framework of stellar dynamo theory and suggests that UV emission can be produced in the

  14. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    Science.gov (United States)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  15. Revisiting the pre-main-sequence evolution of stars. I. Importance of accretion efficiency and deuterium abundance

    Science.gov (United States)

    Kunitomo, Masanobu; Guillot, Tristan; Takeuchi, Taku; Ida, Shigeru

    2017-03-01

    Context. Protostars grow from the first formation of a small seed and subsequent accretion of material. Recent theoretical work has shown that the pre-main-sequence (PMS) evolution of stars is much more complex than previously envisioned. Instead of the traditional steady, one-dimensional solution, accretion may be episodic and not necessarily symmetrical, thereby affecting the energy deposited inside the star and its interior structure. Aims: Given this new framework, we want to understand what controls the evolution of accreting stars. Methods: We use the MESA stellar evolution code with various sets of conditions. In particular, we account for the (unknown) efficiency of accretion in burying gravitational energy into the protostar through a parameter, ξ, and we vary the amount of deuterium present. Results: We confirm the findings of previous works that, in terms of evolutionary tracks on an Hertzprung-Russell (H-R) diagram, the evolution changes significantly with the amount of energy that is lost during accretion. We find that deuterium burning also regulates the PMS evolution. In the low-entropy accretion scenario, the evolutionary tracks in the H-R diagram are significantly different from the classical tracks and are sensitive to the deuterium content. A comparison of theoretical evolutionary tracks and observations allows us to exclude some cold accretion models (ξ 0) with low deuterium abundances. Conclusions: We confirm that the luminosity spread seen in clusters can be explained by models with a somewhat inefficient injection of accretion heat. The resulting evolutionary tracks then become sensitive to the accretion heat efficiency, initial core entropy, and deuterium content. In this context, we predict that clusters with a higher D/H ratio should have less scatter in luminosity than clusters with a smaller D/H. Future work on this issue should include radiation-hydrodynamic simulations to determine the efficiency of accretion heating and further

  16. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gouliermis, Dimitrios A.; Gennaro, Mario [Max Planck Institute for Astronomy, Koenigstuhl 17, 69117 Heidelberg (Germany); Schmeja, Stefan [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Dolphin, Andrew E. [Raytheon Company, P.O. Box 11337, Tucson, AZ 85734 (United States); Tognelli, Emanuele; Prada Moroni, Pier Giorgio [Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, largo Pontecorvo 3, Pisa I-56127 (Italy)

    2012-03-20

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction ({approx}60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of {approx}2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last {approx}5 Myr. The central cluster NGC 602 was

  17. Alma And Jvla Imaging Of Intense Galaxy-Wide Star Formation In Z 2 Galaxies In The Hudf: Bridging Smgs To The Main Sequence

    Science.gov (United States)

    Rujopakarn, Wiphu

    2017-06-01

    We present 0.4'' resolution extinction-independent distributions of star formation and dust in 11 main-sequence star-forming galaxies (SFGs) at z 2. These galaxies are selected from deep ALMA and JVLA surveys of the Hubble Ultra-Deep Field at 1.3 mm and 5 cm. Morphological classification performed on spatially-resolved stellar mass maps indicates a mixture of disk and morphologically disturbed systems; half of the sample harbor X-ray AGN. We find that their intense star formation most frequently occurs at the location of stellar-mass concentration and extends over an area comparable to their stellar-mass distribution, with a median r_e = 2.4 kpc, thereby providing direct evidence of galaxy-wide star formation in z 2 main-sequence SFGs. In X-ray AGN where radio emission is enhanced over the level associated with star formation, the radio excess pinpoints the AGN, which are found to be cospatial with star formation. The median extinction-independent size of main-sequence SFGs is 2x larger than those of luminous SMGs, providing a constraint on the characteristic SFR of 300 Msun/yr above which a significant population of more compact SFGs appears to emerge, possibly bridging the populations of SMGs to main-sequence SFGs.

  18. A higher efficiency of converting gas to stars push galaxies at z ~ 1.6 well above the star-forming main sequence

    CERN Document Server

    Silverman, J D; Rodighiero, G; Rujopakarn, W; Sargent, M; Renzini, A; Liu, D; Feruglio, C; Kashino, D; Sanders, D; Kartaltepe, J; Nagao, T; Arimoto, N; Berta, S; Bethermin, M; Lutz, D; Magdis, G; Mancini, C; Onodera, M; Zamorani, G

    2015-01-01

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high-redshift. To address this issue, we measure the CO molecular gas content of seven high-redshift starburst galaxies with ALMA and IRAM/PdBI. Our sample is selected from the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ~ 1.6 with Subaru. All galaxies have star formation rates (~300-800 Msolar/yr) elevated, by at least four times, above the star-forming main sequence. We detect CO emission in all cases at high significance, indicative of plentiful gas supplies (f_gas ~ 30-50%). Even more compelling, we firmly establish for the first time that starbursts at high redshift systematically have a lower ratio of CO to total infrared l...

  19. A HIGHER EFFICIENCY OF CONVERTING GAS TO STARS PUSHES GALAXIES AT z ∼ 1.6 WELL ABOVE THE STAR-FORMING MAIN SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, J. D.; Rujopakarn, W. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Daddi, E.; Liu, D. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay (France); Rodighiero, G. [Dipartimento di Fisica e Astronomia, Universita di Padova, vicolo Osservatorio, 3, I-35122 Padova (Italy); Sargent, M. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Renzini, A. [Instituto Nazionale de Astrofisica, Osservatorio Astronomico di Padova, v.co dell’Osservatorio 5, I-35122 Padova (Italy); Feruglio, C. [IRAM—Institut de RadioAstronomie Millimétrique, 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Kashino, D. [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan); Sanders, D. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Kartaltepe, J. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Nagao, T. [Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Arimoto, N. [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI-96720 (United States); Berta, S.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik, D-84571 Garching (Germany); Béthermin, M. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Koekemoer, A., E-mail: john.silverman@ipmu.jp [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218 (United States); and others

    2015-10-20

    Local starbursts have a higher efficiency of converting gas into stars, as compared to typical star-forming galaxies at a given stellar mass, possibly indicative of different modes of star formation. With the peak epoch of galaxy formation occurring at z > 1, it remains to be established whether such an efficient mode of star formation is occurring at high redshift. To address this issue, we measure the molecular gas content of seven high-redshift (z ∼ 1.6) starburst galaxies with the Atacama Large Millimeter/submillimeter Array and IRAM/Plateau de Bure Interferometer. Our targets are selected from the sample of Herschel far-infrared-detected galaxies having star formation rates (∼300–800 M{sub ⊙} yr{sup −1}) elevated (≳4×) above the star-forming main sequence (MS) and included in the FMOS-COSMOS near-infrared spectroscopic survey of star-forming galaxies at z ∼ 1.6 with Subaru. We detect CO emission in all cases at high levels of significance, indicative of high gas fractions (∼30%–50%). Even more compelling, we firmly establish with a clean and systematic selection that starbursts, identified as MS outliers, at high redshift generally have a lower ratio of CO to total infrared luminosity as compared to typical MS star-forming galaxies, although with a smaller offset than expected based on past studies of local starbursts. We put forward a hypothesis that there exists a continuous increase in star formation efficiency with elevation from the MS with galaxy mergers as a possible physical driver. Along with a heightened star formation efficiency, our high-redshift sample is similar in other respects to local starbursts, such as being metal rich and having a higher ionization state of the interstellar medium.

  20. First discovery of a magnetic field in a main sequence delta Scuti star: the Kepler star HD188774

    CERN Document Server

    Neiner, Coralie

    2015-01-01

    The Kepler space mission provided a wealth of {\\delta} Sct-{\\gamma} Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler {\\delta} Sct-{\\gamma} Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with ESPaDOnS at CFHT. The data were analysed with the least squares deconvolution method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid {\\delta} Sct-{\\gamma} Dor star, but the first known magne...

  1. Observation and modeling of main sequence star chromospheres. 3: Differential analysis of hydrogen lines versus activity level in M dwarfs

    Science.gov (United States)

    Houdebine, E. R.; Doyle, J. G.; Koscielecki, M.

    1995-02-01

    donor in the photosphere for all models, and in the chromosphere for low pressure models. Back-ionization by the chromospheric continuum emission and direct ionization by the photospheric radiation field are taking place at about the temperature minimum. Finally, we compare the chromospheric density regimes for main sequence stars (M, K and G dwarfs) for the quiescent and flare states.

  2. Empirical L-M, R-M, and M-Teff relations for main-sequence stars: Components of close binary systems and low-mass stars

    Science.gov (United States)

    Gorda, S. Yu.; Svechnikov, M. A.

    1999-08-01

    A new catalog of photometric, geometric, and absolute elements of 112 detached main-sequence eclipsing variables with known photometric and spectroscopic orbital elements has been combined with speckle-interferometry data for low-mass stars to yield new mass-luminosity, mass-radius, and mass-spectrum relations: M_bol = 4.46 - 9.52 - (lg M > -0.4), M_bol = 6.18 - 5.91 lg M (lg M 0.14), lg R = 0.10 + 1.03 lg M (lg M 3.6), and lg M = - 29.4 + 8.2 lg T_eff (lg T_eff masses and radii used are accurate to 2-3 and 2-4%, respectively; the errors for low-mass stars are larger by factors of 3-4. The coefficients in the relations were derived using linear least squares fitting with corrections for noise in the independent variable.

  3. A planet in an 840-d orbit around a Kepler main-sequence A star found from phase modulation of its pulsations

    CERN Document Server

    Murphy, Simon J; Shibahashi, Hiromoto

    2016-01-01

    We have detected a 12 M$_{\\rm Jup}$ planet orbiting in or near the habitable zone of a main-sequence A star via the pulsational phase shifts induced by orbital motion. The planet has an orbital period of $840\\pm20$ d and an eccentricity of 0.15. All known planets orbiting main-sequence A stars have been found via the transit method or by direct imaging. The absence of astrometric or radial-velocity detections of planets around these hosts makes ours the first discovery using the orbital motion. It is also the first A star known to host a planet within 1$\\sigma$ of the habitable zone. We find evidence for planets in a large fraction of the parameter space where we are able to detect them. This supports the idea that A stars harbor high-mass planets in wide orbits.

  4. Testing the companion hypothesis for the origin of the X-ray emission from intermediate-mass main-sequence stars

    CERN Document Server

    Stelzer, B; Micela, G; Hubrig, S

    2006-01-01

    There is no straightforward explanation for intrinsic X-ray emission from intermediate-mass main-sequence stars. Therefore the observed emission is often interpreted in terms of (hypothesized) late-type magnetically active companion stars. We use Chandra imaging observations to spatially resolve in X-rays a sample of main-sequence B-type stars with recently discovered companions at arcsecond separation. We find that all spatially resolved companions are X-ray emitters, but seven out of eleven intermediate-mass stars are also X-ray sources. If this emission is interpreted in terms of additional sub-arcsecond or spectroscopic companions, this implies a high multiplicity of B-type stars. Firm results on B star multiplicity pending, the alternative, that B stars produce intrinsic X-rays, can not be discarded. The appropriate scenario in this vein is might be a magnetically confined wind, as suggested for the X-ray emission of the magnetic Ap star IQ Aur. However, the only Ap star in the Chandra sample is not dete...

  5. Where stars form: inside-out growth and coherent star formation from HST Halpha maps of 2676 galaxies across the main sequence at z~1

    CERN Document Server

    Nelson, Erica June; Schreiber, Natascha M Förster; Franx, Marijn; Brammer, Gabriel B; Momcheva, Ivelina G; Wuyts, Stijn; Whitaker, Katherine E; Skelton, Rosalind E; Fumagalli, Mattia; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Rix, Hans-Walter; Tacconi, Linda J; van der Wel, Arjen; Bosch, Frank C van den; Oesch, Pascal A; Dickey, Claire; Lange, Johannes Ulf

    2015-01-01

    We present Ha maps at 1kpc spatial resolution for star-forming galaxies at z~1, made possible by the WFC3 grism on HST. Employing this capability over all five 3D-HST/CANDELS fields provides a sample of 2676 galaxies. By creating deep stacked Halpha (Ha) images, we reach surface brightness limits of 1x10^-18\\erg\\s\\cm^2\\arcsec^2, allowing us to map the distribution of ionized gas out to >10kpc for typical L* galaxies at this epoch. We find that the spatial extent of the Ha distribution increases with stellar mass as r(Ha)[kpc]=1.5(Mstars/10^10Msun)^0.23. Furthermore, the Ha emission is more extended than the stellar continuum emission, consistent with inside-out assembly of galactic disks. This effect, however, is mass dependent with r(Ha)/r(stars)=1.1(M/10^10Msun)^0.054, such that at low masses r(Ha)~r(stars). We map the Ha distribution as a function of SFR(IR+UV) and find evidence for `coherent star formation' across the SFR-M plane: above the main sequence, Ha is enhanced at all radii; below the main sequen...

  6. Amplitudes and lifetimes of solar-like oscillations observed by CoRoT* Red-giant versus main-sequence stars

    CERN Document Server

    Baudin, F; Belkacem, K; Hekker, S; Morel, T; Samadi, R; Benomar, O; Goupil, M -J; Carrier, F; Ballot, J; Deheuvels, S; De Ridder, J; Hatzes, A P; Kallinger, T; Weiss, W W

    2011-01-01

    Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {\\mu}Hz). Conclus...

  7. Three-dimensional simulations of near-surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations

    CERN Document Server

    Beeck, Benjamin; Cameron, Robert H; Reiners, Ansgar

    2015-01-01

    The convective envelopes of cool main-sequence stars harbour magnetic fields with a complex global and local structure. These fields affect the near-surface convection and the outer stellar atmospheres in many ways and are responsible for the observable magnetic activity of stars. Our aim is to understand the local structure in unipolar regions with moderate average magnetic flux density. These correspond to plage regions covering a substantial fraction of the surface of the Sun (and likely also the surface of other Sun-like stars) during periods of high magnetic activity. We analyse the results of 18 local-box magnetohydrodynamics simulations covering the upper layers of the convection zones and the photospheres of cool main-sequence stars of spectral types F to early M. The average vertical field in these simulations ranges from 20 to 500G. We find a substantial variation of the properties of the surface magnetoconvection between main-sequence stars of different spectral types. As a consequence of a reduced...

  8. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    Energy Technology Data Exchange (ETDEWEB)

    Pannella, M.; Elbaz, D.; Daddi, E.; Hwang, H. S.; Schreiber, C.; Strazzullo, V.; Aussel, H.; Bethermin, M.; Cibinel, A.; Juneau, S.; Floc’h, E. Le; Leiton, R. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu—CNRS—Université Paris Diderot, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Buat, V. [Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR7326, F-13388, Marseille (France); Charmandaris, V.; Magdis, G. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Penteli (Greece); Ivison, R. J. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Borgne, D. Le [Institut d’Astrophysique de Paris, UMR 7095, CNRS, 98bis boulevard Arago, F-75005 Paris (France); Lin, L. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Morrison, G. E. [Institute for Astronomy, University of Hawaii, Honolulu, Hawaii, HI-96822 (United States); and others

    2015-07-10

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.

  9. Photometric Determination of the Mass Accretion Rates of Pre-main-sequence Stars. V. Recent Star Formation in the 30 Dor Nebula

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino; Beccari, Giacomo

    2017-09-01

    We report on the properties of the low-mass stars that recently formed in the central ∼ 2\\buildrel{ \\prime}\\over{.} 7× 2\\buildrel{ \\prime}\\over{.} 7 of 30 Dor, including the R136 cluster. Using the photometric catalog of De Marchi et al., based on observations with the Hubble Space Telescope, and the most recent extinction law for this field, we identify 1035 bona fide pre-main-sequence (PMS) stars showing {{H}}α excess emission at the 4σ level with an {{H}}α equivalent width of 20 Å or more. We find a wide spread in age spanning the range ∼ 0.1{--}50 {Myr}. We also find that the older PMS objects are placed in front of the R136 cluster and are separated from it by a conspicuous amount of absorbing material, indicating that star formation has proceeded from the periphery into the interior of the region. We derive physical parameters for all PMS stars, including masses m, ages t, and mass accretion rates {\\dot{M}}{acc}. To identify reliable correlations between these parameters, which are intertwined, we use a multivariate linear regression fit of the type {log}{\\dot{M}}{acc}=a× {log}t+b× {log}m+c. The values of a and b for 30 Dor are compatible with those found in NGC 346 and NGC 602. We extend the fit to a uniform sample of 1307 PMS stars with 0.5contract NAS5-26555.

  10. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  11. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars

    OpenAIRE

    Meunier, N.; Lagrange, A. -M.; Kabuiku, L. Mbemba; Alex, M; Mignon, L.; Borgniet, S.

    2016-01-01

    In solar-type stars, the attenuation of convective blueshift by stellar magnetic activity dominates the RV variations over the low amplitude signal induced by low mass planets. Models of stars that differ from the Sun will require a good knowledge of the attenuation of the convective blueshift to estimate its impact on the variations. It is therefore crucial to precisely determine not only the amplitude of the convective blueshift for different types of stars, but also the dependence of this ...

  12. Long-term BVRI light curves of 5 pre-main sequence stars in the field of "Gulf of Mexico"

    OpenAIRE

    Ibryamov, Sunay I.; Semkov, Evgeni H.; Peneva, Stoyanka P.

    2014-01-01

    We present new data from BVRI photometric observations of five PMS stars during the period from April 2013 to July 2014. The stars are located in the field of NGC 7000/IC 5070 ("Gulf of Mexico") - a region with active star formation. The presented paper is a continuation of our long-term photometric investigations of the young stellar objects in this region. The long-term multicolor photometric observations of PMS stars are very important for their exact classification. Our results show that ...

  13. Long-term BVRI light curves of 5 pre-main sequence stars in the field of "Gulf of Mexico"

    CERN Document Server

    Ibryamov, Sunay I; Peneva, Stoyanka P

    2014-01-01

    We present new data from BVRI photometric observations of five PMS stars during the period from April 2013 to July 2014. The stars are located in the field of NGC 7000/IC 5070 ("Gulf of Mexico") - a region with active star formation. The presented paper is a continuation of our long-term photometric investigations of the young stellar objects in this region. The long-term multicolor photometric observations of PMS stars are very important for their exact classification. Our results show that the studied stars exhibit different types of photometric variability in all bands. We tried to classify them using our data from the long-term photometry and data published by other authors.

  14. UVI colour gradients of 0.4 < z < 1.4 star-forming main-sequence galaxies in CANDELS: dust extinction and star formation profiles

    Science.gov (United States)

    Wang, Weichen; Faber, S. M.; Liu, F. S.; Guo, Yicheng; Pacifici, Camilla; Koo, David C.; Kassin, Susan A.; Mao, Shude; Fang, Jerome J.; Chen, Zhu; Koekemoer, Anton M.; Kocevski, Dale D.; Ashby, M. L. N.

    2017-08-01

    This paper uses radial colour profiles to infer the distributions of dust, gas and star formation in z = 0.4-1.4 star-forming main-sequence galaxies. We start with the standard UVJ-based method to estimate dust extinction and specific star formation rate (sSFR). By replacing J with I band, a new calibration method suitable for use with ACS+WFC3 data is created (i.e. UVI diagram). Using a multi-wavelength multi-aperture photometry catalogue based on CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), UVI colour profiles of 1328 galaxies are stacked in stellar mass and redshift bins. The resulting colour gradients, covering a radial range of 0.2-2.0 effective radii, increase strongly with galaxy mass and with global AV. Colour gradient directions are nearly parallel to the Calzetti extinction vector, indicating that dust plays a more important role than stellar population variations. With our calibration, the resulting AV profiles fall much more slowly than stellar mass profiles over the measured radial range. sSFR gradients are nearly flat without central quenching signatures, except for M⋆ > 1010.5 M⊙, where central declines of 20-25 per cent are observed. Both sets of profiles agree well with previous radial sSFR and (continuum) AV measurements. They are also consistent with the sSFR profiles and, if assuming a radially constant gas-to-dust ratio, gas profiles in recent hydrodynamic models. We finally discuss the striking findings that SFR scales with stellar mass density in the inner parts of galaxies, and that dust content is high in the outer parts despite low stellar mass surface densities there.

  15. Constraints on the tidal dissipation factor of a main sequence star: The case of OGLE-TR-56b

    Science.gov (United States)

    Carone, Ludmila; Pätzold, Martin

    2007-04-01

    The planet OGLE-TR-56b is the extrasolar giant planet closest to its host star. This planet and its star exchange extreme tidal forces. This leads to a reduction of the planetary orbit and a spin-up of the stellar rotation. The tidal migration rate depends crucially on the ratio of the tidal dissipation factor Q* and the stellar love number kof the star, which is only poorly known and estimates range within 5×1051.5×109no observable influence by tidal forces on the planet's orbit within the lifetime for the star can be found. A lower limit for the possible values of the parameter Q*/kfor the G-type star OGLE-TR-56 was found by studying the evolution of possible tidal interaction into the future and in the past. This study demonstrates that on the basis of conservative model assumptions, a considerable but unrealistic spin-up of the star can be expected if Q*/k<2×107, which is not in agreement with observed stellar rotation periods. From a statistical analysis based on a Monte-Carlo tidal evolution simulation, the Q*/k parameter can be constrained to the range 2×107

  16. Habitability of Super-Earth Planets around Main-Sequence Stars including Red Giant Branch Evolution: Models based on the Integrated System Approach

    CERN Document Server

    Cuntz, M; Schroeder, K -P; Bounama, C; Franck, S

    2011-01-01

    In a previous study published in Astrobiology, we focused on the evolution of habitability of a 10 M_E super-Earth planet orbiting a star akin to the Sun. This study was based on a concept of planetary habitability in accordance to the integrated system approach that describes the photosynthetic biomass production taking into account a variety of climatological, biogeochemical, and geodynamical processes. In the present study, we pursue a significant augmentation of our previous work by considering stars with zero-age main sequence masses between 0.5 and 2.0 M_sun with special emphasis on models of 0.8, 0.9, 1.2 and 1.5 M_sun. Our models of habitability consider again geodynamical processes during the main-sequence stage of these stars as well as during their red giant branch evolution. Pertaining to the different types of stars, we identify so-called photosynthesis-sustaining habitable zones (pHZ) determined by the limits of biological productivity on the planetary surface. We obtain various sets of solution...

  17. Molybdenum, Ruthenium, and the Heavy r-process Elements in Moderately Metal-Poor Main-Sequence Turnoff Stars

    CERN Document Server

    Peterson, Ruth C

    2013-01-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six ti...

  18. MOLYBDENUM, RUTHENIUM, AND THE HEAVY r-PROCESS ELEMENTS IN MODERATELY METAL-POOR MAIN-SEQUENCE TURNOFF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Ruth C. [Astrophysical Advances, 607 Marion Place, Palo Alto, CA 94301 (United States)

    2013-05-01

    The ratios of elemental abundances observed in metal-poor stars of the Galactic halo provide a unique present-day record of the nucleosynthesis products of its earliest stars. While the heaviest elements were synthesized by the r- and s-processes, dominant production mechanisms of light trans-ironic elements were obscure until recently. This work investigates further our 2011 conclusion that the low-entropy regime of a high-entropy wind (HEW) produced molybdenum and ruthenium in two moderately metal-poor turnoff stars that showed extreme overabundances of those elements with respect to iron. Only a few, rare nucleosynthesis events may have been involved. Here we determine abundances for Mo, Ru, and other trans-Fe elements for 28 similar stars by matching spectral calculations to well-exposed near-UV Keck HIRES spectra obtained for beryllium abundances. In each of the 26 turnoff stars with Mo or Ru line detections and no evidence for s-process production (therefore old), we find Mo and Ru to be three to six times overabundant. In contrast, the maximum overabundance is reduced to factors of three and two for the neighboring elements zirconium and palladium. Since the overproduction peaks sharply at Mo and Ru, a low-entropy HEW is confirmed as its origin. The overabundance level of the heavy r-process elements varies significantly, from none to a factor of four, but is uncorrelated with Mo and Ru overabundances. Despite their moderate metallicity, stars in this group trace the products of different nucleosynthetic events: possibly very few events, possibly events whose output depended on environment, metallicity, or time.

  19. Dust disks around old Pre Main-Sequence stars HST\\/NICMOS2 scattered light images and modeling

    CERN Document Server

    Augereau, J C; Mouillet, D; Ménard, F

    2000-01-01

    We present recent near-infrared detections of circumstellar disks around the two old PMS Herbig stars HD 141569 and HD 100546 obtained with the HST/NICMOS2 camera. They reveal extended structures larger than 350-400 AU in radius. While the HD 100546 disk appears as a continuous disk down to 40 AU, the HD 141569 environment seems more complex, splitted at least into two dust populations. As a convincing example, the full modeling of the disk surrounding HR 4796, another old PMS star, is detailed and confronted with more recent observations.

  20. Measuring the mass of a pre-main sequence binary star through the orbit of TWA5A

    Energy Technology Data Exchange (ETDEWEB)

    Konopacky, Q; Ghez, A; Duchene, G; McCabe, C; Macintosh, B

    2007-01-18

    We present the results of a five year monitoring campaign of the close binary TWA 5Aab in the TW Hydrae association, using speckle and adaptive optics on the W.M. Keck 10 m telescopes. These measurements were taken as part of our ongoing monitoring of pre-main sequence (PMS) binaries in an effort to increase the number of dynamically determined PMS masses and thereby calibrate the theoretical PMS evolutionary tracks. Our observations have allowed us to obtain the first determination of this system's astrometric orbit. We find an orbital period of 5.94 {+-} 0.09 years and a semi-major axis of 0.''066 {+-} 0.''005. Combining these results with a kinematic distance, we calculate a total mass of 0.71 {+-} 0.14 M{sub {circle_dot}} (D/44 pc){sup 3}. for this system. This mass measurement, as well as the estimated age of this system, are consistent to within 2{sigma} of all theoretical models considered. In this analysis, we properly account for correlated uncertainties, and show that while these correlations are generally ignored, they increase the formal uncertainties by up to a factor of five and therefore are important to incorporate. With only a few more years of observation, this type of measurement will allow the theoretical models to be distinguished.

  1. Hydrodynamic Simulations of the Interaction between an AGB Star and a Main Sequence Companion in Eccentric Orbits

    CERN Document Server

    Staff, Jan E; Macdonald, Daniel; Galaviz, Pablo; Passy, Jean-Claude; Iaconi, Roberto; Mac Low, Mordecai-Mark

    2015-01-01

    The Rotten Egg Nebula has at its core a binary composed of a Mira star and an A-type companion at a separation >10 au. It has been hypothesized to have formed by strong binary interactions between the Mira and a companion in an eccentric orbit during periastron passage ~800 years ago. We have performed hydrodynamic simulations of an asymptotic giant branch star interacting with companions with a range of masses in orbits with a range of initial eccentricities and periastron separations. For reasonable values of the eccentricity, we find that Roche lobe overflow can take place only if the periods are <<100 years. Moreover, mass transfer causes the system to enter a common envelope phase within several orbits. Since the central star of the Rotten Egg nebula is an AGB star, we conclude that such a common envelope phase must have lead to a merger, so the observed companion must have been a tertiary companion of a binary that merged at the time of nebula ejection. Based on the mass and timescale of the simul...

  2. A constraint on the formation timescale of the young open cluster NGC 2264: Lithium abundance of pre-main sequence stars

    CERN Document Server

    Lim, Beomdu; Kim, Jinyoung S; Bessell, Michael S; Hwang, Narae; Park, Byeong-Gon

    2016-01-01

    The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered as a result of a real spread in age, the corresponding cluster formation timescale would be about 5 -- 20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars, can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T_eff [K] <= 6500). Li abundance unde...

  3. The Gaia-ESO Survey: lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars

    Science.gov (United States)

    Jeffries, R. D.; Jackson, R. J.; Franciosini, E.; Randich, S.; Barrado, D.; Frasca, A.; Klutsch, A.; Lanzafame, A. C.; Prisinzano, L.; Sacco, G. G.; Gilmore, G.; Vallenari, A.; Alfaro, E. J.; Koposov, S. E.; Pancino, E.; Bayo, A.; Casey, A. R.; Costado, M. T.; Damiani, F.; Hourihane, A.; Lewis, J.; Jofre, P.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Zaggia, S.; Zwitter, T.

    2017-01-01

    We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars cannot simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding γ2 Velorum. The age of 7.5 ± 1 Myr inferred from the CMD is much younger than that implied by the strong Li depletion seen in the cluster M-dwarfs, and the Li depletion occurs at much redder colours than predicted. The epoch at which a star of a given mass depletes its Li and the surface temperature of that star are both dependent on its radius. We demonstrate that if the low-mass stars have radii ˜10 per cent larger at a given mass and age, then both the CMD and the Li-depletion pattern of the Gamma Velorum cluster are explained at a common age of ≃18-21 Myr. This radius inflation could be produced by some combination of magnetic suppression of convection and extensive cool starspots. Models that incorporate radius inflation suggest that PMS stars, similar to those in the Gamma Velorum cluster, in the range 0.2 30 per cent) than inferred from conventional, non-magnetic models in the Hertzsprung-Russell diagram. Systematic changes of this size may be of great importance in understanding the evolution of young stars, disc lifetimes and the formation of planetary systems.

  4. Research Progress of the Main Sequence of Star-forming Galaxies%恒星形成星系主序关系的研究进展

    Institute of Scientific and Technical Information of China (English)

    高宇翔; 郭可欣; 郑宪忠

    2015-01-01

    The tight correlation between star formation rates (SFRs) and stellar mass among star-forming galaxies (SFGs) is often referred to as the main sequence of SFGs, which is one of the fundamental relations involved in galaxy evolution. Characterizing the slope, normalization and scatter of the main sequence provides key constraints on our un-derstanding of the physical processes regulating star formation in galaxies. The global SFR drops by about a factor of 30 from z ’2 to z ’0, while the timescale of gas consumption increases from 0.5 × 109 to 1.5 × 109 years. The slope of the main sequence changes from the low-mass end to the high-mass end, indicating that the physical processes governing star formation are of dependence on galaxy stellar mass. The scenario of staged galaxy formation offers reasonable explanations for the scatter in specific SFR (SSFR). Starburst galaxies lying off the main sequence with high SSFR contribute merely part of the cosmic star formation density, but probably play an important role in quenching star formation. Investigations of the main sequence of high-z SFGs requires much efforts with next generation observing facilities. The studies of the main sequence of SFGs thus provide key insights into galaxy formation and evolution.%恒星形成星系的恒星形成率与其恒星质量的相关关系被称为恒星形成星系主序关系,是描述星系演化的基本关系之一。准确测定不同红移处主序关系的斜率、弥散和零点能够对理解星系恒星形成活动的演化及其物理过程提供关键的观测限制。已有的研究揭示,恒星形成星系的整体恒星形成率从z ’2到z ’0下降为原值的1/30,气体消耗时标却由5亿年增至15亿年;主序关系的斜率在大质量和小质量星系段有变化,反映出决定恒星形成活动的物理过程有系统差别;而星系可能经历多个阵发性的恒星形成爆发活动,有助于更好地解释主序关系的弥散

  5. Local Stellar Kinematics from RAVE data - VI. Metallicity Gradients Based on the F-G Main-sequence Stars

    CERN Document Server

    Plevne, O; Karaali, S; Bilir, S; Ak, S; Bostanci, Z F

    2015-01-01

    We estimated iron and metallicity gradients in the radial and vertical directions with the F and G type dwarfs taken from the RAVE DR4 database. The sample defined by the constraints Zmax8 kpc. The range of the iron and metallicity abundance for the F and G type dwarfs on elongated orbits, [-0.13, -0.01), is similar to the thin-disc stars, while at least half of their space velocity components agree better with those of the thick-disc stars. The vertical iron gradients estimated for the F and G type dwarfs on circular orbits are d[Fe/H]/dZmax=-0.176(0.039) dex/kpc and d[Fe/H]/dZmax=-0.119(0.036) dex/kpc for the intervals Zmax<= 825 and Zmax<=1500 pc, respectively.

  6. Migration and Growth of Protoplanetary Embryos. III. Mass and Metallicity Dependence for FGKM Main-sequence Stars

    Science.gov (United States)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.

    2016-06-01

    Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%-50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%-15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕-η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J-M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J-Z * correlation.

  7. The intrinsic scatter along the main sequence of star-forming galaxies at z ∼ 0.7

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kexin; Zhong Zheng, Xian [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West-Beijing Road, Nanjing 210008 (China); Fu, Hai, E-mail: kxguo@pmo.ac.cn, E-mail: xzzheng@pmo.ac.cn, E-mail: hai-fu@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States)

    2013-11-20

    A sample of 12,614 star-forming galaxies (SFGs) with stellar mass >10{sup 9.5} M {sub ☉} between 0.6 < z < 0.8 from COSMOS is selected to study the intrinsic scatter of the correlation between star formation rate (SFR) and stellar mass. We derive SFR from ultraviolet (UV) and infrared (IR) luminosities. A stacking technique is adopted to measure IR emission for galaxies undetected at 24 μm. We confirm that the slope of the mass-SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 10{sup 9.5} M {sub ☉} to 10{sup 11.5} M {sub ☉}. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 μm. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26, and 0.31 dex with a typical measurement uncertainty of ≲ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass-SFR relation seems not constant in the sense that the scatter in SSFR is smaller for SFGs of stellar mass <10{sup 10.5} M {sub ☉}. If confirmed, this suggests that the physical processes governing star formation become systematically less violent for less massive galaxies. The SSFR distribution for SFGs with intermediate mass 10{sup 10}-10{sup 10.5} M {sub ☉} is characterized by a prominent excess of intense starbursts in comparison with other mass bins. We argue that this feature reflects that both violent (e.g., major/minor mergers) and quiescent processes are important in regulating star formation in this intermediate-mass regime.

  8. Migration and Growth of Protoplanetary Embryos III: Mass and Metallicity Dependence for FGKM main-sequence stars

    CERN Document Server

    Liu, Beibei; Lin, Doug

    2016-01-01

    Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) ($\\eta_\\oplus$) is around $30 \\%- 50\\%$, independent of the stellar mass $M_\\ast$ and metallicity $Z_\\ast$. In contrast, the fraction of solar-type stars harboring one or more gas giants ($\\eta_J $) with masses $M_{\\rm p} > 100 \\ M_\\oplus $ is nearly $ 10\\%-15\\%$, and it appears to increase with both $M_\\ast$ and $Z_\\ast$. Regardless of the properties of their host stars, the total mass of some multiple super-Earth systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation heated disk regions. We attribute the cause for the $\\eta_\\oplus$-$\\eta_{\\rm J}$ dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ($M_c \\sim 10 \\ M_\\opl...

  9. Can we predict the global magnetic topology of a pre-main sequence star from its position in the Hertzsprung-Russell diagram?

    CERN Document Server

    Gregory, S G; Morin, J; Hussain, G A J; Mayne, N J; Hillenbrand, L A; Jardine, M

    2012-01-01

    ZDI studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (HR) diagrams for the stars in the sample. Intriguingly, the large scale field topology of a given pre-main sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we argue that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the HR diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the HR diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core...

  10. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    CERN Document Server

    Xiang, M -S; Yuan, H -B; Huang, Y; Wang, C; Ren, J -J; Chen, B -Q; Sun, N -C; Zhang, H -W; Huo, Z -Y; Rebassa-Mansergas, A

    2015-01-01

    We use 297 042 main sequence turn-off stars selected from the LSS-GAC to determine the radial and vertical gradients of stellar metallicity of the Galactic disk in the anti-center direction. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars of oldest ages (>11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars of oldest ages (>11Gyr) are negative and show only very weak variations with the Galactocentric distance in the disk plane, $R$, while those yielded by younger stars show strong variations with $R$. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maxima (steepest) at age ...

  11. Population Parameters of Intermediate-Age Star Clusters in the Large Magellanic Cloud. III. Dynamical Evidence for a Range of Ages Being Responsible for Extended Main Sequence Turnoffs

    CERN Document Server

    Goudfrooij, Paul; Chandar, Rupali; Kozhurina-Platais, Vera

    2011-01-01

    We present new analysis of 11 intermediate-age (1-2 Gyr) star clusters in the Large Magellanic Cloud based on Hubble Space Telescope imaging data. Seven of the clusters feature main sequence turnoff (MSTO) regions that are wider than can be accounted for by a simple stellar population, whereas their red giant branches indicate a single value of [Fe/H]. The star clusters cover a range in present-day mass from about 1E4 to 2E5 solar masses. We compare radial distributions of stars in the upper and lower parts of the MSTO region, and calculate cluster masses and escape velocities from the present time back to a cluster age of 10 Myr. Our main result is that for all clusters in our sample with estimated escape velocities > 15 km/s at an age of 10 Myr, the stars in the brightest half of the MSTO region are significantly more centrally concentrated than the stars in the faintest half AND more massive red giant branch and asymptotic giant branch stars. This is not the case for clusters with escape velocities < 10...

  12. A New Method for the Assessment of Age and Age-Spread of Pre-Main Sequence Stars in Young Stellar Associations of the Magellanic Clouds

    CERN Document Server

    Da Rio, Nicola; Gennaro, Mario

    2010-01-01

    We present a new method for the evaluation of the age and age-spread among pre-main-sequence (PMS) stars in star-forming regions in the Magellanic Clouds, accounting simultaneously for photometric errors, unresolved binarity, differential extinction, stellar variability, accretion and crowding. The application of the method is performed with the statistical construction of synthetic color-magnitude diagrams using PMS evolutionary models. We convert each isochrone into 2D probability distributions of artificial PMS stars in the CMD by applying the aforementioned biases that dislocate these stars from their original CMD positions. A maximum-likelihood technique is then applied to derive the probability for each observed star to have a certain age, as well as the best age for the entire cluster. We apply our method to the photometric catalog of ~2000 PMS stars in the young association LH 95 in the LMC, based on the deepest HST/ACS imaging ever performed toward this galaxy, with a detection limit of V~28, corresp...

  13. The Gaia-ESO Survey: Lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars

    CERN Document Server

    Jeffries, R D; Franciosini, E; Randich, S; Barrado, D; Frasca, A; Klutsch, A; Lanzafame, A C; Prisinzano, L; Sacco, G G; Gilmore, G; Vallenari, A; Alfaro, E J; Koposov, S E; Pancino, E; Bayo, A; Casey, A R; Costado, M T; Damiani, F; Hourihane, A; Lewis, J; Jofre, P; Magrini, L; Monaco, L; Morbidelli, L; Worley, C C; Zaggia, S; Zwitter, T

    2016-01-01

    We show that non-magnetic models for the evolution of pre-main-sequence (PMS) stars *cannot* simultaneously describe the colour-magnitude diagram (CMD) and the pattern of lithium depletion seen in the cluster of young, low-mass stars surrounding $\\gamma^2$ Velorum. The age of 7.5+/-1 Myr inferred from the CMD is much younger than that implied by the strong Li depletion seen in the cluster M-dwarfs and the Li depletion occurs at much redder colours than predicted. The epoch at which a star of a given mass depletes its Li and the surface temperature of that star are both dependent on its radius. We demonstrate that if the low-mass stars have radii ~10 per cent larger at a given mass and age, then both the CMD and Li depletion pattern of the Gamma Vel cluster are explained at a common age of 18-21 Myr. This radius inflation could be produced by some combination of magnetic suppression of convection and extensive cool starspots. Models that incorporate radius inflation suggest that PMS stars similar to those in t...

  14. The Intrinsic Scatter Along The Main Sequence of Star-Forming Galaxies at z ~ 0.7

    CERN Document Server

    Guo, Kexin; Fu, Hai

    2013-01-01

    A sample of 12614 star-forming galaxies (SFGs) with stellar mass >10^9.5 M_sun between 0.6star formation rate (SFR) and stellar mass. We derive SFR from ultraviolet (UV) and infrared (IR) luminosities. A stacking technique is adopted to measure IR emission for galaxies undetected at 24 micron. We confirm that the slope of the mass-SFR relation is close to unity. We examine the distributions of specific SFRs (SSFRs) in four equally spaced mass bins from 10^9.5 M_sun to 10^11.5 M_sun. Different models are used to constrain the scatter of SSFR for lower mass galaxies that are mostly undetected at 24 micron. The SFR scatter is dominated by the scatter of UV luminosity and gradually that of IR luminosity at increasing stellar mass. We derive SSFR dispersions of 0.18, 0.21, 0.26 and 0.31 dex with a typical measurement uncertainty of <~ 0.01 dex for the four mass bins. Interestingly, the scatter of the mass-SFR relation...

  15. Magnetic fields and differential rotation on the pre-main sequence I: The early-G star HD 141943 - brightness and magnetic topologies

    CERN Document Server

    Marsden, S C; Vélez, J C Ramírez; Alecian, E; Brown, C J; Carter, B D; Donati, J F; Dunstone, N; Hart, R; Semel, M; Waite, I A

    2011-01-01

    Spectroscopic and spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at four observing epochs (in 2006, 2007, 2009 and 2010). The observations were undertaken at the 3.9-m Anglo-Australian Telescope using the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. Brightness and surface magnetic field topologies were reconstructed for the star using the technique of least-squares deconvolution to increase the signal-to-noise of the data. The reconstructed brightness maps show that HD 141943 had a weak polar spot and a significant amount of low latitude features, with little change in the latitude distribution of the spots over the 4 years of observations. The surface magnetic field was reconstructed at three of the epochs from a high order (l <= 30) spherical harmonic expansion of the spectropolarimetric observations. The reconstructed magnetic topologies show that in 2007 and 2010 the surface magnetic field was reasonably balanced betwee...

  16. Probing the anomalous extinction of four young star clusters: the use of colour-excess, main sequence fitting and fractal analysis

    CERN Document Server

    Fernandes, B; Hetem, A

    2012-01-01

    Four young star clusters were studied in order to characterize their anomalous extinction or variable reddening that could be due to a possible contamination by dense clouds or circumstellar effects. The extinction law (Rv) was evaluated by adopting two methods: (i) the use of theoretical expressions based on the colour-excess of stars with known spectral type, and (ii) the analysis of two-colour diagrams, where the slope of observed colours distribution is compared to the normal distribution. An algorithm to reproduce the zero age main sequence (ZAMS) reddened colours was developed in order to derive the average visual extinction (Av) that provides the best fitting of the observational data. The structure of the clouds was evaluated by means of statistical fractal analysis, aiming to compare their geometric structure with the spatial distribution of the cluster members. The cluster NGC 6530 is the only object of our sample showing anomalous extinction. In average, the other clusters are suffering normal exti...

  17. A Turnover in the Galaxy Main Sequence of Star Formation at $M_{*} \\sim 10^{10} M_{\\odot}$ for Redshifts $z < 1.3$

    CERN Document Server

    Lee, Nicholas; Casey, Caitlin M; Toft, Sune; Scoville, N Z; Hung, Chao-Ling; Floc'h, Emeric Le; Ilbert, Olivier; Zahid, H Jabran; Aussel, Herve; Capak, Peter; Kartaltepe, Jeyhan S; Kewley, Lisa J; Li, Yanxia; Schawinski, Kevin; Sheth, Kartik; Xiao, Quanbao

    2015-01-01

    The relationship between galaxy star formation rates (SFR) and stellar masses ($M_\\ast$) is re-examined using a mass-selected sample of $\\sim$62,000 star-forming galaxies at $z \\le 1.3$ in the COSMOS 2-deg$^2$ field. Using new far-infrared photometry from $Herschel$-PACS and SPIRE and $Spitzer$-MIPS 24 $\\mu$m, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram $(NUV - r)$ vs. $(r - K)$, we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median $SFR$ and $M_\\ast$ follows a power-law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about $M_{0} \\sim 10^{10} M_{\\odot}$ at all redshifts. The low mass power...

  18. The Gaia-ESO Survey: pre-main-sequence stars in the young open cluster NGC 3293

    Science.gov (United States)

    Delgado, A. J.; Sampedro, L.; Alfaro, E. J.; Costado, M. T.; Yun, J. L.; Frasca, A.; Lanzafame, A. C.; Drew, J. E.; Eislöffel, J.; Blomme, R.; Morel, T.; Lobel, A.; Semaan, T.; Randich, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Kalari, V.; Gilmore, G.; Flaccomio, E.; Carraro, G.; Lardo, C.; Monaco, L.; Prisinzano, L.; Sousa, S. G.; Morbidelli, L.; Lewis, J.; Koposov, S.; Hourihane, A.; Worley, C.; Casey, A.; Franciosini, E.; Sacco, G.; Magrini, L.

    2016-08-01

    The young open cluster NGC3293 is included in the observing program of the Gaia-ESO survey (GES). The radial velocity values provided have been used to assign cluster membership probabilities by means of a single-variable parametric analysis. These membership probabilities are compared to the results of the photometric membership assignment of NGC3293, based on UBVRI photometry. The agreement of the photometric and kinematic member samples amounts to 65 per cent, and could increase to 70 per cent as suggested by the analysis of the differences between both samples. A number of photometric PMS candidate members of spectral type F are found, which are confirmed by the results from VPHAS photometry and SED fitting for the stars in common with VPHAS and GES data sets. Excesses at mid- and near-infrared wavelengths, and signs of Hα emission, are investigated for them. Marginal presence of Hα emission or infilling is detected for the candidate members. Several of them exhibit moderate signs of U excess and weak excesses at mid-IR wavelengths. We suggest that these features originate from accretion discs in their last stages of evolution.

  19. Calibrating convective-core overshooting with eclipsing binary systems. The case of low-mass main-sequence stars

    CERN Document Server

    Valle, G; Moroni, P G Prada; Degl'Innocenti, S

    2016-01-01

    In a robust statistical way, we quantify the uncertainty that affects the calibration of the overshooting efficiency parameter $\\beta$ that is owing to the uncertainty on the observational data in double-lined eclipsing binary systems. We also quantify the bias that is caused by the lack of constraints on the initial helium content and on the efficiencies of the superadiabatic convection and microscopic diffusion. We adopted a modified grid-based SCEPtER pipeline using as observational constraints the effective temperatures, [Fe/H], masses, and radii of the two stars. In a reference scenario of mild overshooting $\\beta = 0.2$ for the synthetic data, we found both large statistical uncertainties and biases on the estimated $\\beta$. For the first 80% of the MS evolution, $\\beta$ is biased and practically unconstrained in the whole explored range [0.0; 0.4]. In the last 5% of the MS the bias vanishes and the $1 \\sigma$ error is about 0.05. For synthetic data computed with $\\beta = 0.0$, the estimated $\\beta$ is ...

  20. Stellar Activity on the Young Suns of Orion: COUP Observations of K5-7 Pre-Main Sequence Stars

    CERN Document Server

    Wolk, S J; Micela, G; Favata, F; Glassgold, A E; Shang, H; Feigelson, E D

    2005-01-01

    In January 2003, the Chandra Orion Ultradeep Project (COUP) detected about 1400 young stars during a 13.2 day observation of the Orion Nebula Cluster (ONC). This paper studies a well-defined sample of 28 solar-mass COUP sources to characterize the magnetic activity of analogs of the young Sun and thereby to improve understanding of the effects of solar X-rays on the solar nebula during the era of planet formation. We find that active young Suns spend 70% of their time in a characteristic state with relatively constant flux and magnetically confined plasma with temperatures kT_2 = 2.1 * kT_1. During characteristic periods, the 0.5-8 keV X-ray luminosity is about 0.03% of the bolometric luminosity. One or two powerful flares per week with peak luminosities logL_x ~ 30-32 erg/s are typically superposed on this characteristic emission accompanied by heating of the hot plasma component from ~2.4 keV to ~7 keV at the flare peak. The energy distribution of flares superposed on the characteristic emission level follo...

  1. Mid-IR spectra of Pre-Main Sequence Herbig stars: an explanation for the non-detections of water lines

    CERN Document Server

    Antonellini, S; Lahuis, F; Woitke, P; Thi, W -F; Meijerink, R; Aresu, G; Spaans, M; Güdel, M; Liebhart, A

    2016-01-01

    The mid-IR detection rate of water lines in disks around Herbig stars disks is about 5\\%, while it is around 50\\% for disks around TTauri stars. The reason for this is still unclear. In this study, we want to find an explanation for the different detection rates between low mass and high mass pre-main-sequence stars (PMSs) in the mid-IR regime. We run disk models with stellar parameters adjusted to spectral types B9 through M2, using the radiation thermo-chemical disk modeling code ProDiMo. We produce convolved spectra at the resolution of Spitzer IRS, JWST MIRI and VLT VISIR spectrographs. We apply random noise derived from typical Spitzer spectra for a direct comparison with observations. The strength of the mid-IR water lines correlates directly with the luminosity of the central star. We explored a small parameter space around a standard disk model, considering dust-to-gas mass ratio, disk gas mass, mixing coefficient for dust settling, flaring index, dust maximum size and size power law distribution inde...

  2. The stellar content of the Hamburg/ESO survey VI. The metallicity distribution of main-sequence turnoff stars in the Galactic halo

    CERN Document Server

    Li, H N; Sch{ö}rck, T; Norris, J E; Bessell, M S; Yong, D; Beers, T C; Lee, Y S; Frebel, A; Zhao, G

    2010-01-01

    To investigate the metallicity distribution function (MDF) of the Galactic halo, a metal-poor main-sequence turnoff-star (MSTO) sample was selected from the Hamburg/ESO objective-prism survey (HES) database. Corresponding follow-up moderate-resolution observations (R ~ 2000) of some 682 stars (among which 617 were accepted program stars) were carried out with the 2.3m telescope at the Siding Spring Observatory (SSO). Corrections for the survey volume covered by the sample stars were quantitatively estimated and applied to the observed MDF. The corrections are quite small, when compared with those for a previously studied sample of metal-poor giants. The corrected observational MDF of the turnoff sample was then compared with that of the giants, as well as with a number of theoretical predictions of Galactic chemical evolution, including the mass-loss modified simple model. We show that, though the survey-volume corrected MDFs of the metal-poor turnoff and the halo giants notably differ in the region of [Fe/H]...

  3. Searching for gas giant planets on Solar System scales - A NACO/APP L'-band survey of A- and F-type Main Sequence stars

    CERN Document Server

    Meshkat, T; Reggiani, M; Quanz, S P; Mamajek, E E; Meyer, M R

    2015-01-01

    We report the results of a direct imaging survey of A- and F-type main sequence stars searching for giant planets. A/F stars are often the targets of surveys, as they are thought to have more massive giant planets relative to solar-type stars. However, most imaging is only sensitive to orbital separations $>$30 AU, where it has been demonstrated that giant planets are rare. In this survey, we take advantage of the high-contrast capabilities of the Apodizing Phase Plate coronagraph on NACO at the Very Large Telescope. Combined with optimized principal component analysis post-processing, we are sensitive to planetary-mass companions (2 to 12 $M_{\\rm Jup}$) at Solar System scales ($\\leq$30 AU). We obtained data on 13 stars in L'-band and detected one new companion as part of this survey: an M$6.0\\pm0.5$ dwarf companion around HD 984. We re-detect low-mass companions around HD 12894 and HD 20385, both reported shortly after the completion of this survey. We use Monte Carlo simulations to determine new constraints...

  4. Low-resolution spectroscopy of main sequence stars belonging to 12 Galactic globular clusters. I. CH and CN band strength variations

    CERN Document Server

    Pancino, E; Zoccali, M; Carrera, R

    2010-01-01

    Globular clusters show abundance variations for light elements that are not yet well understood. The preferred explanation involves a self-enrichment scenario, with two subsequent generations of stars. Observations of main sequence stars allow us to investigate the signature of this chemically processed material without the complicating effects of internal mixing. Our goal is to investigate the C-N anti-correlation with low-resolution spectroscopy of 20-50 stars fainter than the first dredge-up in seven globular clusters (NGC288, NGC1851, NGC5927, NGC6352, NGC6388, and Pal12) with different properties. We complemented our observations with 47~Tuc archival data, with four additional clusters from the literature (M15, M22, M55, NGC362), and with additional literature data on NGC288. In this first paper, we measured the strength of CN and CH band indices, and we investigated the anti-correlation and bimodality of these indices. We compared r_CN, the ratio of stars belonging to the CN-strong and weak groups, with...

  5. The Ages and Masses of a Million Galactic-disk Main-sequence Turnoff and Subgiant Stars from the LAMOST Galactic Spectroscopic Surveys

    Science.gov (United States)

    Xiang, Maosheng; Liu, Xiaowei; Shi, Jianrong; Yuan, Haibo; Huang, Yang; Chen, Bingqiu; Wang, Chun; Tian, Zhijia; Wu, Yaqian; Yang, Yong; Zhang, Huawei; Huo, Zhiying; Ren, Juanjuan

    2017-09-01

    We present estimates of stellar age and mass for 0.93 million Galactic-disk main-sequence turnoff and subgiant stars from the LAMOST Galactic Spectroscopic Surveys. The ages and masses are determined by matching with stellar isochrones using a Bayesian algorithm, utilizing effective temperature {T}{eff}, absolute magnitude {M}V, metallicity [Fe/H], and α-element to iron abundance ratio [α/Fe] deduced from the LAMOST spectra. Extensive examinations suggest the age and mass estimates are robust. Overall, the sample stars have a median error of 34% for the age estimates, and half of the stars older than 2 Gyr have age uncertainties of only 20%-30%. The median error for the mass estimates of the whole sample of stars is ˜8%. The huge data set demonstrates good correlations among stellar age, [Fe/H] ([α/H]), and [α/Fe]. Particularly, double-sequence features are revealed in both the age-[α/Fe] and age-[Fe/H]([α/H]) spaces. In the [Fe/H]-[α/Fe] space, stars of 8-10 Gyr exhibit both the thin and thick disk sequences, while younger (older) stars show only the thin (thick) disk sequence, indicating that the thin disk became prominent 8-10 Gyr ago, while the thick disk formed earlier and was almost quenched 8 Gyr ago. Stellar ages exhibit positive vertical and negative radial gradients across the disk, and the outer disk of R ≳ 9 kpc exhibits a strong flare in stellar age distribution.

  6. Planetary Construction Zones in Occultation: Eclipses by Circumsecondary and Circumplanetary Disks and a Candidate Eclipse of a Pre-Main Sequence Star in Sco-Cen

    CERN Document Server

    Mamajek, Eric E; Pecaut, Mark; Moolekamp, Fred; Scott, Erin L; Kenworthy, Matthew; Cameron, Andrew Collier; Parley, Neil

    2011-01-01

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We present photometric and spectroscopic data for a pre-main sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered ~0.9 Msun member of the ~16 Myr-old Upper Centaurus-Lupus subgroup of Sco-Cen at a distance of 128+-13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 29 April 2007 (as discovered in SuperWASP photometry, and with portions of the dimming confirmed by ASAS data). At least 5 multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of ~1 mag eclipses symmetrically occurring +-12 days and +-26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a ~54 day period in 2007, and a strong >1 mag dimming event occurring over a ~12 day span. We place a firm lower limit on the period of 850 days (i.e. the o...

  7. The multipolar magnetic fields of accreting pre-main-sequence stars: B at the inner disk, B along the accretion flow, and B at the accretion shock

    CERN Document Server

    Gregory, Scott G; Hussain, Gaitee A J

    2016-01-01

    Zeeman-Doppler imaging studies have revealed the complexity of the large-scale magnetic fields of accreting pre-main-sequence stars. All have multipolar magnetic fields with the octupole component being the dominant field mode for many of the stars studied thusfar. Young accreting stars with fully convective interiors often feature simple axisymmetric magnetic fields with dipole components of order a kilo-Gauss (at least those of mass $\\gtrsim0.5\\,{\\rm M}_\\odot$), while those with substantially radiative interiors host more complex non-axisymmetric magnetic fields with dipole components of order a few 0.1 kilo-Gauss. Here, via several simple examples, we demonstrate that i). in most cases, the dipole component alone can be used to estimate the disk truncation radius (but little else); ii) due the presence of higher order magnetic field components, the field strength in the accretion spots is far in excess of that expected if a pure dipole magnetic field is assumed. (Fields of $\\sim$6$\\,{\\rm kG}$ have been mea...

  8. On the Structure and Properties of Differentially Rotating Main-Sequence Stars in the 1-2 M_sun Range

    CERN Document Server

    MacGregor, K B; Skumanich, Andrew; Metcalfe, T S

    2007-01-01

    We conduct a systematic examination of the properties of models for chemically homogeneous, differentially rotating, main-sequence stars of mass 1-2 M_sun. The models were constructed using a code based on a reformulation of the self-consistent field method of computing the equilibrium stellar structure for a specified conservative internal rotation law. [abridged] Relative to nonrotating stars of the same mass, these models all have reduced luminosities and effective temperatures, and flattened photospheric shapes (i.e., decreased polar radii) with equatorial radii that can be larger or smaller, depending on the degree of differential rotation. For a fixed ratio of the axial rotation rate to the surface equatorial rotation rate, increasingly rapid rotation generally deepens convective envelopes, shrinks convective cores, and can lead to the presence of a convective core (envelope) in a 1 M_sun (2 M_sun) model, a feature that is absent in a nonrotating star of the same mass. The positions of differentially ro...

  9. Zodiacal Exoplanets in Time (ZEIT) III: A Neptune-sized planet orbiting a pre-main-sequence star in the Upper Scorpius OB Association

    CERN Document Server

    Mann, Andrew W; Rizzuto, Aaron C; Irwin, Jonathan; Feiden, Gregory A; Gaidos, Eric; Mace, Gregory N; Kraus, Adam L; James, David J; Ansdell, Megan; Charbonneau, David; Covey, Kevin R; Ireland, Michael J; Jaffe, Daniel T; Johnson, Marshall C; Kidder, Benjamin; Vanderburg, Andrew

    2016-01-01

    We confirm and characterize a close-in ($P_\\rm{orb}$ = 5.425 days), super-Neptune sized ($5.04^{+0.34}_{-0.37}$ Earth radii) planet transiting EPIC 205117205 (2MASS J16101473-1919095), a late-type (M3) pre-main sequence ($\\simeq$11 Myr-old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (<20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet's properties and constrain the average stellar density. We determine EPIC 205117205's bolometric flux and effective temperature from moderate resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise (6-7%) radius and mass for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscop...

  10. PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z {approx} 1-3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Tacconi, L. J.; Genzel, R.; Wuyts, S.; Foerster Schreiber, N. M.; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer Extraterrestrische Physik (MPE), Giessenbachstr., D-85748 Garching (Germany); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, F-38406 St. Martin d' Heres, Grenoble (France); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Observatorio de Madrid, Alfonso XII, 3, E-28014 Madrid (Spain); Naab, T. [Max-Planck Institut fuer Astrophysik, Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); Omont, A., E-mail: linda@mpe.mpg.de, E-mail: genzel@mpe.mpg.de [IAP, CNRS and Universite Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); and others

    2013-05-01

    We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z {approx} 1.2 and 2.2, with log(M{sub *}(M{sub Sun })) {>=} 10.4 and log(SFR(M{sub Sun }/yr)) {>=} 1.5. Including a correction for the incomplete coverage of the M{sub *} -SFR plane, and adopting a ''Galactic'' value for the CO-H{sub 2} conversion factor, we infer average gas fractions of {approx}0.33 at z {approx} 1.2 and {approx}0.47 at z {approx} 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z {approx} 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a {approx}0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z {approx} 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M{sub *}, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z {approx} 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.

  11. Zodiacal Exoplanets in Time (ZEIT). III. A Short-period Planet Orbiting a Pre-main-sequence Star in the Upper Scorpius OB Association

    Science.gov (United States)

    Mann, Andrew W.; Newton, Elisabeth R.; Rizzuto, Aaron C.; Irwin, Jonathan; Feiden, Gregory A.; Gaidos, Eric; Mace, Gregory N.; Kraus, Adam L.; James, David J.; Ansdell, Megan; Charbonneau, David; Covey, Kevin R.; Ireland, Michael J.; Jaffe, Daniel T.; Johnson, Marshall C.; Kidder, Benjamin; Vanderburg, Andrew

    2016-09-01

    We confirm and characterize a close-in ({P}{{orb}} = 5.425 days), super-Neptune sized ({5.04}-0.37+0.34 {R}\\oplus ) planet transiting K2-33 (2MASS J16101473-1919095), a late-type (M3) pre-main-sequence (11 Myr old) star in the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. The host star has the kinematics of a member of the Upper Scorpius OB association, and its spectrum contains lithium absorption, an unambiguous sign of youth (\\lt 20 Myr) in late-type dwarfs. We combine photometry from K2 and the ground-based MEarth project to refine the planet’s properties and constrain the host star’s density. We determine K2-33’s bolometric flux and effective temperature from moderate-resolution spectra. By utilizing isochrones that include the effects of magnetic fields, we derive a precise radius (6%-7%) and mass (16%) for the host star, and a stellar age consistent with the established value for Upper Scorpius. Follow-up high-resolution imaging and Doppler spectroscopy confirm that the transiting object is not a stellar companion or a background eclipsing binary blended with the target. The shape of the transit, the constancy of the transit depth and periodicity over 1.5 yr, and the independence with wavelength rule out stellar variability or a dust cloud or debris disk partially occulting the star as the source of the signal; we conclude that it must instead be planetary in origin. The existence of K2-33b suggests that close-in planets can form in situ or migrate within ˜10 Myr, e.g., via interactions with a disk, and that long-timescale dynamical migration such as by Lidov-Kozai or planet-planet scattering is not responsible for all short-period planets.

  12. New Clues to the Cause of Extended Main Sequence Turn-Offs in Intermediate-Age Star Clusters in the Magellanic Clouds

    CERN Document Server

    Correnti, Matteo; Kalirai, Jason S; Girardi, Leo; Puzia, Thomas H; Kerber, Leandro

    2014-01-01

    We use the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) to obtain deep, high resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass ($\\approx$ $10^4$ $M_{\\odot}$) and significantly different core radii, namely NGC2209 and NGC2249. For comparison purposes, we also re-analyzed archival HST images of NGC1795 and IC2146, two other relatively low mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main sequence turnoff (MSTO) regions in NGC2209 and NGC2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC1795 and IC2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that the differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC2209 and IC2146) experienced...

  13. The Distances to Open Clusters from Main-Sequence Fitting. V. Extension of Color Calibration and Test using Cool and Metal-Rich Stars in NGC 6791

    CERN Document Server

    An, Deokkeun; Pinsonneault, Marc H; Lee, Jae-Woo

    2015-01-01

    We extend our effort to calibrate stellar isochrones in the Johnson-Cousins ($BVI_C$) and the 2MASS ($JHK_s$) filter systems based on observations of well-studied open clusters. Using cool main-sequence (MS) stars in Praesepe, we define empirical corrections to the Lejeune et al. color-effective temperature ($T_{\\rm eff}$) relations down to $T_{\\rm eff} \\sim 3600$ K, complementing our previous work based on the Hyades and the Pleiades. We apply empirically corrected isochrones to existing optical and near-infrared photometry of cool ($T_{\\rm eff} \\leq 5500$ K) and metal-rich ([Fe/H]$=+0.37$) MS stars in NGC 6791. The current methodology relies on an assumption that color-$T_{\\rm eff}$ corrections are independent of metallicity, but we find that estimates of color-excess and distance from color-magnitude diagrams with different color indices converge on each other at the precisely known metallicity of the cluster. Along with a satisfactory agreement with eclipsing binary data in the cluster, we view the improv...

  14. Evolution of a 3 \\msun star from the main sequence to the ZZ Ceti stage the role played by element diffusion

    CERN Document Server

    Althaus, L G; Corsico, A H; Benvenuto, O G

    2002-01-01

    The purpose of this paper is to present new full evolutionary calculations for DA white dwarf stars with the major aim of providing a physically sound reference frame for exploring the pulsation properties of the resulting models in future communications. Here, white dwarf evolution is followed in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. In particular, we follow the evolution of a 3 \\msun model from the zero-age main sequence (the adopted metallicity is Z=0.02) all the way from the stages of hydrogen and helium burning in the core up to the thermally pulsing phase. After experiencing 11 thermal pulses, the model is forced to evolve towards its white dwarf configuration by invoking strong mass loss episodes. Further evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. Emphasis is placed on the evolution of the ch...

  15. Searching for young Jupiter analogs around AP Col: L-band high-contrast imaging of the closest pre-main sequence star

    CERN Document Server

    Quanz, Sascha P; Janson, Markus; Avenhaus, Henning; Meyer, Michael R; Hillenbrand, Lynne A

    2012-01-01

    The nearby M-dwarf AP Col was recently identified by Riedel et al. 2011 as a pre-main sequence star (age 12 - 50 Myr) situated only 8.4 pc from the Sun. The combination of its youth, distance, and intrinsically low luminosity make it an ideal target to search for extrasolar planets using direct imaging. We report deep adaptive optics observations of AP Col taken with VLT/NACO and Keck/NIRC2 in the L-band. Using aggressive speckle suppression and background subtraction techniques, we are able to rule out companions with mass m >= 0.5 - 1M_Jup for projected separations a>4.5 AU, and m >= 2 M_Jup for projected separations as small as 3 AU, assuming an age of 40 Myr using the COND theoretical evolutionary models. Using a different set of models the mass limits increase by a factor of ~2. The observations presented here are the deepest mass-sensitivity limits yet achieved within 20 AU on a star with direct imaging. While Doppler radial velocity surveys have shown that Jovian bodies with close-in orbits are rare ar...

  16. Helium-Abundance and Other Composition Effects on the Properties of Stellar Surface Convection in Solar-like Main-sequence Stars

    CERN Document Server

    Tanner, Joel D; Demarque, Pierre

    2013-01-01

    We investigate the effect of helium abundance and $\\alpha$-element enhancement on the properties of convection in envelopes of solar-like main-sequence stars stars using a grid of 3D radiation hydrodynamic simulations. Helium abundance increases the mean molecular weight of the gas, and alters opacity by displacing hydrogen. Since the scale of the effect of helium may depend on the metallicity, the grid consists of simulations with three helium abundances ($Y=0.1, 0.2, 0.3$), each with two metallicities ($Z=0.001, 0.020)$. We find that changing the helium mass fraction generally affects structure and convective dynamics in a way opposite to that of metallicity. Furthermore, the effect is considerably smaller than that of metallicity. The signature of helium differs from that of metallicity in the manner in which the photospheric velocity distribution is affected. \\rev{We also find that helium abundance and surface gravity behave largely in similar ways, but differ in the way they affect the mean molecular wei...

  17. The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence

    Science.gov (United States)

    Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R.

    2014-10-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant H ii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O star winds to denser WNh Wolf-Rayet star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain both stellar and wind parameters. For the first time, we observationally resolve the transition between optically thin O star winds and optically thick hydrogen-rich WNh Wolf-Rayet winds. Our results suggest the existence of a "kink" between both mass-loss regimes, in agreement with recent Monte Carlo simulations. For the optically thick regime, we confirm the steep dependence on the classical Eddington factor Γe from previous theoretical and observational studies. The transition occurs on the main sequence near a luminosity of 106.1L⊙, or a mass of 80 ... 90 M⊙. Above this limit, we find that - even when accounting for moderate wind clumping (with fv = 0.1) - wind mass-loss rates are enhanced with respect to standard prescriptions currently adopted in stellar evolution calculations. We also show that this results in substantial helium surface enrichment. Finally, based on our spectroscopic analyses, we are able to provide the most accurate ionising fluxes for VMS known to date, confirming the pivotal role of VMS in ionising and

  18. New clues to the cause of extended main-sequence turnoffs in intermediate-age star clusters in the Magellanic Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Correnti, Matteo; Goudfrooij, Paul; Kalirai, Jason S. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Girardi, Leo [Osservatorio Astronomico di Padova, INAF, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Puzia, Thomas H. [Institute of Astrophysics, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul 7820436, Santiago (Chile); Kerber, Leandro, E-mail: correnti@stsci.edu, E-mail: goudfroo@stsci.edu, E-mail: jkalirai@stsci.edu, E-mail: leo.girardi@oapd.inaf.it, E-mail: tpuzia@astro.puc.cl, E-mail: lkerber@gmail.com [Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-000 Ilhéus, Bahia (Brazil)

    2014-10-01

    We use the Wide Field Camera 3 on board the Hubble Space Telescope (HST) to obtain deep, high-resolution images of two intermediate-age star clusters in the Large Magellanic Cloud of relatively low mass (≈10{sup 4} M {sub ☉}) and significantly different core radii, namely NGC 2209 and NGC 2249. For comparison purposes, we also reanalyzed archival HST images of NGC 1795 and IC 2146, two other relatively low-mass star clusters. From the comparison of the observed color-magnitude diagrams with Monte Carlo simulations, we find that the main-sequence turnoff (MSTO) regions in NGC 2209 and NGC 2249 are significantly wider than that derived from simulations of simple stellar populations, while those in NGC 1795 and IC 2146 are not. We determine the evolution of the clusters' masses and escape velocities from an age of 10 Myr to the present age. We find that differences among these clusters can be explained by dynamical evolution arguments if the currently extended clusters (NGC 2209 and IC 2146) experienced stronger levels of initial mass segregation than the currently compact ones (NGC 2249 and NGC 1795). Under this assumption, we find that NGC 2209 and NGC 2249 have estimated escape velocities, V {sub esc} ≳ 15 km s{sup –1} at an age of 10 Myr, large enough to retain material ejected by slow winds of first-generation stars, while the two clusters that do not feature extended MSTOs have V {sub esc} ≲ 12 km s{sup –1} at that age. These results suggest that the extended MSTO phenomenon can be better explained by a range of stellar ages rather than a range of stellar rotation velocities or interacting binaries.

  19. The Mass Function of Main-Sequence Stars in NGC 6397 from Near-Infrared and Optical High-Resolution Hubble Space Telescope Observations

    Science.gov (United States)

    De Marchi, Guido; Paresce, Francesco; Pulone, Luigi

    2000-02-01

    We have investigated the properties of the stellar mass function in the globular cluster NGC 6397 through the use of a large set of Hubble Space Telescope (HST) observations. The latter include existing WFPC 2 images in the V and I bands, obtained at ~4.5‧ and 10' radial distances, as well as a series of deep images in the J and H bands obtained with the NIC 2 and NIC 3 cameras of the NICMOS instrument pointed, respectively, to regions located ~4.5‧ and ~3.2‧ from the center. These observations span the region from ~1 to ~3 times the cluster's half-light radius (rhl~=3') and have been subjected to the same, homogeneous data processing so as to guarantee that the ensuing results could be directly compared to one another. We have built color-magnitude diagrams that we use to measure the luminosity function of main-sequence stars extending from just below the turnoff all the way down to the hydrogen-burning limit. All luminosity functions derived in this way show the same, consistent behavior in that they all increase with decreasing luminosity up to a peak at MI~=8.5 or MH~=7 and then drop precipitously well before photometric incompleteness becomes significant. Within the observational uncertainties, at MI~=12 or MH~=10.5 (~0.09 Msolar) the luminosity functions are compatible with zero. The direct comparison of our NIC 2 field with previous WFPC 2 observations of the same area shows that down to MH~=11 there are no more faint, red stars than those already detected by the WFPC 2, thus excluding a significant population of faint, low-mass stars at the bottom of the main sequence. By applying the best available mass-luminosity relation appropriate to the metallicity of NGC 6397 and consistent with our color-magnitude diagrams to both the optical and the IR data, we obtain a mass function that shows a break in slope at ~0.3 Msolar. No single-exponent power-law distribution is compatible with these data, regardless of the value of the exponent. We find that a

  20. GOODS-HERSCHEL: star formation, dust attenuation and the FIR-radio correlation on the Main Sequence of star-forming galaxies up to z~4

    CERN Document Server

    Pannella, Maurilio; Daddi, Emanuele; Dickinson, Mark E; Hwang, Ho Seong; Schreiber, Corentin; Strazzullo, Veronica; Aussel, Herve; Bethermin, Matthieu; Buat, Veronique; Charmandaris, Vassilis; Cibinel, Anna; Juneau, Stephanie; Ivison, Rob; Borgne, Damien Le; Floc'h, Emeric Le; Leiton, Roger; Lin, Lihwai; Magdis, Georgios; Morrison, Glenn E; Mullaney, James R; Onodera, Masato; Renzini, Alvio; Salim, Samir; Sargent, Mark T; Scott, Douglas; Shu, Xinwen; Wang, Tao

    2014-01-01

    We use the deep panchromatic dataset available in the GOODS-N field, spanning all the way from GALEX ultra-violet to VLA radio continuum data, to select a star-forming galaxy sample at z~[0.5-4] and robustly measure galaxy photometric redshifts, star formation rates, stellar masses and UV rest-frame properties. We quantitatively explore, using mass-complete samples, the evolution of the star formation activity and dust attenuation properties of star-forming galaxies up to z~4. Our main results can be summarized as follows: i) we find that the slope of the SFR-M correlation is consistent with being constant, and equal to ~0.8 at least up to z~1.5, while the normalization keeps increasing to the highest redshift, z~4, we are able to explore; ii) for the first time in this work, we are able to explore the FIR-radio correlation for a mass-selected sample of star-forming galaxies: the correlation does not evolve up to z~4; iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-f...

  1. Rotating Massive Main-Sequence Stars II: Simulating a Population of LMC early B-type Stars as a Test of Rotational Mixing

    CERN Document Server

    Brott, Ines; Hunter, Ian; de Koter, Alex; Langer, Norbert; Dufton, Philip L; Cantiello, Matteo; Trundle, Carrie; Lennon, Danny J; de Mink, Selma E; Yoon, Sung-Chul; Anders, Peter

    2011-01-01

    Rotational mixing in massive stars is a widely applied concept, with far reaching consequences for stellar evolution. Nitrogen surface abundances for a large and homogeneous sample of massive B-type stars in the LMC were obtained by the VLT-FLAMES Survey of Massive Stars. This sample is the first covering a broad range of projected stellar rotational velocities, with a large enough sample of high quality data to allow for a statistically significant analysis. We use the sample to provide the first rigorous test of the theory of rotational mixing in massive stars. We calculated a grid of stellar evolution models, using the FLAMES sample to calibrate some of the uncertain mixing processes. We developed a new population-synthesis code, which uses this grid to simulate a large population of stars with masses, ages and rotational velocity distributions consistent with those from the FLAMES sample. The synthesized population is then filtered by the selection effects in the observed sample, to enable a direct compar...

  2. Time-Series Photometry of Stars in and around the Lagoon Nebula. I. Rotation Periods of 290 Low-Mass Pre-Main-Sequence Stars in NGC 6530

    CERN Document Server

    Henderson, Calen B

    2011-01-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of ~50,000 stars in the Lagoon Nebula \\ion{H}{2} region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 < P < 10 d; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level ($\\log L_X / L_{\\rm bol} \\approx -3.3$). However, we find a significant positive correlation between $L_X / L_{\\rm bol}$ and co-rotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coron...

  3. TIME-SERIES PHOTOMETRY OF STARS IN AND AROUND THE LAGOON NEBULA. I. ROTATION PERIODS OF 290 LOW-MASS PRE-MAIN-SEQUENCE STARS IN NGC 6530

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Calen B. [Department of Astronomy, Ohio State University, 140 W. 18th Ave., Columbus, OH 43210 (United States); Stassun, Keivan G., E-mail: henderson@astronomy.ohio-state.edu [Department of Physics and Astronomy, Vanderbilt University, VU Station B 1807, Nashville, TN 37235 (United States)

    2012-03-01

    We have conducted a long-term, wide-field, high-cadence photometric monitoring survey of {approx}50,000 stars in the Lagoon Nebula H II region. This first paper presents rotation periods for 290 low-mass stars in NGC 6530, the young cluster illuminating the nebula, and for which we assemble a catalog of infrared and spectroscopic disk indicators, estimated masses and ages, and X-ray luminosities. The distribution of rotation periods we measure is broadly uniform for 0.5 days < P < 10 days; the short-period cutoff corresponds to breakup. We observe no obvious bimodality in the period distribution, but we do find that stars with disk signatures rotate more slowly on average. The stars' X-ray luminosities are roughly flat with rotation period, at the saturation level (log L{sub X} /L{sub bol} Almost-Equal-To -3.3). However, we find a significant positive correlation between L{sub X} /L{sub bol} and corotation radius, suggesting that the observed X-ray luminosities are regulated by centrifugal stripping of the stellar coronae. The period-mass relationship in NGC 6530 is broadly similar to that of the Orion Nebula Cluster (ONC), but the slope of the relationship among the slowest rotators differs from that in the ONC and other young clusters. We show that the slope of the period-mass relationship for the slowest rotators can be used as a proxy for the age of a young cluster, and we argue that NGC 6530 may be slightly younger than the ONC, making it a particularly important touchstone for models of angular momentum evolution in young, low-mass stars.

  4. MEASUREMENT OF SPIN-ORBIT MISALIGNMENT AND NODAL PRECESSION FOR THE PLANET AROUND PRE-MAIN-SEQUENCE STAR PTFO 8-8695 FROM GRAVITY DARKENING

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Jason W. [Department of Physics, University of Idaho, Moscow, ID 83844-0903 (United States); Van Eyken, Julian C. [Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106-9530 (United States); Jackson, Brian K. [Carnegie Institution of Washington, DTM, 5241 Broad Branch Road, NW Washington, DC 20015-1305 (United States); Ciardi, David R. [NASA Exoplanet Science Institute, Caltech M/S 100-22, Pasadena, CA 91125 (United States); Fortney, Jonathan J., E-mail: jwbarnes@uidaho.edu [Department of Astronomy, University of California Santa Cruz, Santa Cruz, CA 95064 (United States)

    2013-09-01

    PTFO 8-8695b represents the first transiting exoplanet candidate orbiting a pre-main-sequence star (van Eyken et al. 2012, ApJ, 755, 42). We find that the unusual lightcurve shapes of PTFO 8-8695 can be explained by transits of a planet across an oblate, gravity-darkened stellar disk. We develop a theoretical framework for understanding precession of a planetary orbit's ascending node for the case when the stellar rotational angular momentum and the planetary orbital angular momentum are comparable in magnitude. We then implement those ideas to simultaneously and self-consistently fit two separate lightcurves observed in 2009 December and 2010 December. Our two self-consistent fits yield M{sub p} = 3.0 M{sub Jup} and M{sub p} = 3.6 M{sub Jup} for assumed stellar masses of M{sub *} = 0.34 M{sub Sun} and M{sub *} = 0.44 M{sub Sun} respectively. The two fits have precession periods of 293 days and 581 days. These mass determinations (consistent with previous upper limits) along with the strength of the gravity-darkened precessing model together validate PTFO 8-8695b as just the second hot Jupiter known to orbit an M-dwarf. Our fits show a high degree of spin-orbit misalignment in the PTFO 8-8695 system: 69 Degree-Sign {+-} 2 Degree-Sign or 73. Degree-Sign 1 {+-} 0. Degree-Sign 5, in the two cases. The large misalignment is consistent with the hypothesis that planets become hot Jupiters with random orbital plane alignments early in a system's lifetime. We predict that as a result of the highly misaligned, precessing system, the transits should disappear for months at a time over the course of the system's precession period. The precessing, gravity-darkened model also predicts other observable effects: changing orbit inclination that could be detected by radial velocity observations, changing stellar inclination that would manifest as varying vsin i, changing projected spin-orbit alignment that could be seen by the Rossiter-McLaughlin effect, changing

  5. Atomic diffusion in metal poor stars. The influence on the Main Sequence fitting distance scale, subdwarfs ages and the value of Delta Y/ Delta Z

    Science.gov (United States)

    Salaris, M.; Groenewegen, M. A. T.; Weiss, A.

    2000-03-01

    The effect of atomic diffusion on the Main Sequence (MS) of metal-poor low mass stars is investigated. Since diffusion alters the stellar surface chemical abundances with respect to their initial values, one must ensure - by calibrating the initial chemical composition of the theoretical models - that the surface abundances of the models match the observed ones of the stellar population under scrutiny. When properly calibrated, our models with diffusion reproduce well within the errors the Hertzsprung-Russell diagram of Hipparcos subdwarfs with empirically determined T_eff values and high resolution spectroscopical [Fe/H] determinations. Since the observed surface abundances of subdwarfs are different from the initial ones due to the effect of diffusion, while the globular clusters stellar abundances are measured in Red Giants, which have practically recovered their initial abundances after the dredge-up, the isochrones to be employed for studying globular clusters and Halo subdwarfs with the same observational value of [Fe/H] are different and do not coincide. This is at odds with the basic assumption of the MS-fitting technique for distance determinations. However, the use of the rather large sample of Hipparcos lower MS subdwarfs with accurate parallaxes keeps at minimum the effect of these differences, for two reasons. First, it is possible to use subdwarfs with observed [Fe/H] values close to the cluster one; this minimizes the colour corrections (which are derived from the isochrones) needed to reduce all the subdwarfs to a mono-metallicity sequence having the same [Fe/H] than the cluster. Second, one can employ objects sufficiently faint so that the differences between the subdwarfs and cluster MS with the same observed value of [Fe/H] are small (they increase for increasing luminosity). We find therefore that the distances based on standard isochrones are basically unaltered when diffusion is taken properly into account. On the other hand, the absolute ages

  6. Three-dimensional simulations of near-surface convection in main-sequence stars. IV. Effect of small-scale magnetic flux concentrations on centre-to-limb variation and spectral lines

    CERN Document Server

    Beeck, Benjamin; Cameron, Robert H; Reiners, Ansgar

    2015-01-01

    Magnetic fields affect the local structure of the photosphere of stars. They can considerably influence the radiative properties near the optical surface, flow velocities, and the temperature and pressure profiles. We aim at understanding qualitatively the influence of small magnetic flux concentrations in unipolar plage regions on the centre-to-limb variation of the intensity and its contrast and on the shape of spectral line profiles in cool main-sequence stars. We analyse the bolometric and continuum intensity and its angular dependence of 24 radiative magnetohydrodynamic simulations of the near-surface layers of main-sequence stars with six different sets of stellar parameters (spectral types F to early M) and four different average magnetic field strengths (including the non-magnetic case). We also calculated disc-integrated profiles of three spectral lines. The small magnetic flux concentrations formed in the magnetic runs of simulations have a considerable impact on the intensity and its centre-to-limb...

  7. Angular momentum transport by internal gravity waves. IV - Wave generation by surface convection zone, from the pre-main sequence to the early-AGB in intermediate mass stars

    CERN Document Server

    Talon, Suzanne

    2008-01-01

    This is the fourth in a series of papers that deal with angular momentum transport by internal gravity waves in stellar interiors. Here, we want to examine the potential role of waves in other evolutionary phases than the main sequence. We study the evolution of a 3Msun Population I model from the pre-main sequence to the early-AGB phase and examine whether waves can lead to angular momentum redistribution and/or element diffusion at the external convection zone boundary. We find that, although waves produced by the surface convection zone can be ignored safely for such a star during the main sequence, it is not the case for later evolutionary stages. In particular, angular momentum transport by internal waves could be quite important at the end of the sub-giant branch and during the early-AGB phase. Wave-induced mixing of chemicals is expected during the early-AGB phase.

  8. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of HII regions

    CERN Document Server

    Haemmerlé, Lionel

    2016-01-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at $2\\,M_\\odot$ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on timescales as short as 100 - 1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in ...

  9. The evolution of massive stars and their spectra I. A non-rotating 60 Msun star from the zero-age main sequence to the pre-supernova stage

    CERN Document Server

    Groh, Jose; Ekstrom, Sylvia; Georgy, Cyril

    2014-01-01

    For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and atmospheric models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry, aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-rotating 60 Msun star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He...

  10. Post-Main Sequence Evolution of Debris Discs

    OpenAIRE

    Bonsor, Amy; Wyatt, Mark

    2010-01-01

    The population of debris discs on the main sequence is well constrained, however very little is known about debris discs around evolved stars. In this work we provide a theoretical framework that considers the effects of stellar evolution on debris discs; firstly considering the evolution of an individual disc from the main sequence through to the white dwarf phase, then extending this to the known population of debris discs around main sequence A stars. It is found that discs around evolved ...

  11. The rotation period distributions of 4--10 Myr T Tauri stars in Orion OB1: New constraints on pre-main-sequence angular momentum evolution

    CERN Document Server

    Karim, Md Tanveer; Briceno, Cesar; Vivas, A Katherina; Raetz, Stefanie; Mateu, Cecilia; Downes, Juan Jose; Calvet, Nuria; Hernandez, Jesus; Neuhauser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; Cruz-Dias, Gustavo A; Aarnio, Alicia; James, David J; Hackstein, Moritz

    2016-01-01

    Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (4-10 Myr) have been less studied, even though they hold key insight to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1,974 confirmed T Tauri members of various sub-regions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time-series from three different surveys. For 564 of the stars (~32% of the weak-lined T Tauri stars and ~13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet publis...

  12. The Rotation Period Distributions of 4-10 Myr T Tauri Stars in Orion OB1: New Constraints on Pre-main-sequence Angular Momentum Evolution

    Science.gov (United States)

    Karim, Md Tanveer; Stassun, Keivan G.; Briceño, César; Vivas, A. Katherina; Raetz, Stefanie; Mateu, Cecilia; José Downes, Juan; Calvet, Nuria; Hernández, Jesús; Neuhäuser, Ralph; Mugrauer, Markus; Takahashi, Hidenori; Tachihara, Kengo; Chini, Rolf; Cruz-Dias, Gustavo A.; Aarnio, Alicia; James, David J.; Hackstein, Moritz

    2016-12-01

    Most existing studies of the angular momentum evolution of young stellar populations have focused on the youngest (≲1-3 Myr) T Tauri stars. In contrast, the angular momentum distributions of older T Tauri stars (˜4-10 Myr) have been less studied, even though they hold key insights to understanding stellar angular momentum evolution at a time when protoplanetary disks have largely dissipated and when models therefore predict changes in the rotational evolution that can in principle be tested. We present a study of photometric variability among 1974 confirmed T Tauri members of various subregions of the Orion OB1 association, and with ages spanning 4-10 Myr, using optical time series from three different surveys. For 564 of the stars (˜32% of the weak-lined T Tauri stars and ˜13% of the classical T Tauri stars in our sample) we detect statistically significant periodic variations, which we attribute to the stellar rotation periods, making this one of the largest samples of T Tauri star rotation periods yet published. We observe a clear change in the overall rotation period distributions over the age range 4-10 Myr, with the progressively older subpopulations exhibiting systematically faster rotation. This result is consistent with angular momentum evolution model predictions of an important qualitative change in the stellar rotation periods starting at ˜5 Myr, an age range for which very few observational constraints were previously available.

  13. A deep x-ray survey of the Pleiades cluster and the B6-A3 main sequence stars in Orion

    Science.gov (United States)

    Caillault, Jean-Pierre

    1993-01-01

    We have obtained deep ROSAT images of three regions within the Pleiades open cluster. We have detected 317 X-ray sources in these ROSAT PSPC images, 171 of which we associate with certain probable members of the Pleiades cluster. We detect nearly all Pleiades members with spectral types later than G0 and within 25 arcminutes of our three field centers where our sensitivity is highest. This has allowed us to derive for the first time the luminosity function for the G, K, and M dwarfs of an open cluster without the need to use statistical techniques to account for the presence of upper limits in the data sample. Because of our high X-ray detection frequency down to the faint limit of the optical catalog, we suspect that some of our unidentified X-ray sources are previously unknown, very low-mass members of the Pleiades. A large fraction of the Pleiades members detected with ROSAT have published rotational velocities. Plots of L(sub x)/L(sub bol) versus spectroscopic rotational velocity show tightly correlated 'saturation' type relations for stars with (B - V)(sub O) greater than 0.60. For each of several color ranges, X-ray luminosities rise rapidly with increasing rotation rate until v sin i approximately equals 15 km/s, and then remain essentially flat for rotation rates up to at least v sin i approximately equal to 100 km/s. The dispersion in rotation among low-mass stars in the Pleiades is by far the dominant contributor to the dispersion in L(subx) at a given mass. Only about 35 percent of the B.A. and early F stars in the Pleiades are detected as X-ray sources in our survey. There is no correlation between X-ray flux and rotation for these stars. The X-ray luminosity function for the early-type Pleiades stars appears to be bimodal, with only a few exceptions. We either detect these stars at fluxes in the range found for low-mass stars or we derive X-ray limits below the level found for most Pleiades dwarfs. The X-ray spectra for the early-type Pleiades stars

  14. The VLT-FLAMES Tarantula Survey XVII. Physical and wind properties of massive stars at the top of the main sequence

    CERN Document Server

    Bestenlehner, Joachim M; Vink, Jorick S; Najarro, F; de Koter, A; Sana, H; Evans, C J; Crowther, P A; Hénault-Brunet, V; Herrero, A; Langer, N; Schneider, F R N; Simón-Díaz, S; Taylor, W D; Walborn, N R

    2014-01-01

    The evolution and fate of very massive stars (VMS) is tightly connected to their mass-loss properties. Their initial and final masses differ significantly as a result of mass loss. VMS have strong stellar winds and extremely high ionising fluxes, which are thought to be critical sources of both mechanical and radiative feedback in giant Hii regions. However, how VMS mass-loss properties change during stellar evolution is poorly understood. In the framework of the VLT-Flames Tarantula Survey (VFTS), we explore the mass-loss transition region from optically thin O to denser WNh star winds, thereby testing theoretical predictions. To this purpose we select 62 O, Of, Of/WN, and WNh stars, an unprecedented sample of stars with the highest masses and luminosities known. We perform a spectral analysis of optical VFTS as well as near-infrared VLT/SINFONI data using the non-LTE radiative transfer code CMFGEN to obtain stellar and wind parameters. For the first time, we observationally resolve the transition between op...

  15. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    Science.gov (United States)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  16. Main sequence masses and radii from gravitational redshifts

    CERN Document Server

    Von Hippel, T

    1995-01-01

    Modern instrumentation makes it possible to measure the mass to radius ratio for main sequence stars in open clusters from gravitational redshifts. For stars where independent information is available for either the mass or the radius, this application of general relativity directly determines the other quantity. Applicable examples are: 1) measuring the radii of solar metallicity main sequence stars for which the mass - luminosity relation is well known, 2) measuring the radii for stars where model atmospheres can be used to determine the surface gravity (the mass to radius squared ratio), 3) refining the mass - radius relation for main sequence stars, and 4) measuring the change in radius as stars evolve off the main sequence and up the giant branch.

  17. A Search for Coronal Emission at the Bottom of the Main-Sequence: Stars and Brown Dwarf Candidates with Spectral Types Later than M7 and the Rotation-Activity Relation

    Science.gov (United States)

    Stringfellow, Guy

    2004-01-01

    This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.

  18. Where Stars Form: Inside-out Growth and Coherent Star Formation from HST Hα Maps of 3200 Galaxies across the Main Sequence at 0.7 < z < 1.5

    Science.gov (United States)

    Nelson, Erica June; van Dokkum, Pieter G.; Förster Schreiber, Natascha M.; Franx, Marijn; Brammer, Gabriel B.; Momcheva, Ivelina G.; Wuyts, Stijn; Whitaker, Katherine E.; Skelton, Rosalind E.; Fumagalli, Mattia; Hayward, Christopher C.; Kriek, Mariska; Labbé, Ivo; Leja, Joel; Rix, Hans-Walter; Tacconi, Linda J.; van der Wel, Arjen; van den Bosch, Frank C.; Oesch, Pascal A.; Dickey, Claire; Ulf Lange, Johannes

    2016-09-01

    We present Hα maps at 1 kpc spatial resolution for star-forming galaxies at z ˜ 1, made possible by the Wide Field Camera 3 grism on Hubble Space Telescope (HST). Employing this capability over all five 3D-HST/CANDELS fields provides a sample of 3200 galaxies enabling a division into subsamples based on stellar mass and star formation rate (SFR). By creating deep stacked Hα images, we reach surface brightness limits of 1 × 10-18 erg s-1 cm-2 arcsec-2, allowing us to map the distribution of ionized gas to ˜10 kpc for typical L* galaxies at this epoch. We find that the spatial extent of the Hα distribution increases with stellar mass as {r}{{H}α }=1.5{({M}* /{10}10{M}⊙ )}0.23 kpc. The Hα emission is more extended than the stellar continuum emission, consistent with inside-out assembly of galactic disks. This effect grows stronger with mass as {r}{{H}α }/{r}* =1.1 {({M}* /{10}10{M}⊙ )}0.054. We map the Hα distribution as a function of SFR(IR+UV) and find evidence for “coherent star formation” across the SFR-M * plane: above the main sequence (MS), Hα is enhanced at all radii; below the MS, Hα is depressed at all radii. This suggests that at all masses the physical processes driving the enhancement or suppression of star formation act throughout the disks of galaxies. At high masses ({10}10.5\\lt {M}* /{M}⊙ \\lt {10}11), above the MS, Hα is particularly enhanced in the center, potentially building bulges and/or supermassive black holes. Below the MS, a strong central dip in the EW(Hα), as well as the inferred specific SFR, appears. Importantly, though, across the entirety of the SFR-M * plane, the absolute SFR as traced by Hα is always centrally peaked, even in galaxies below the MS.

  19. The Life Cycles of Stars: An Information & Activity Booklet Grades K-8, 1997-1998. Star-Child--A Learning Center for Young Astronomers.

    Science.gov (United States)

    Truelove, Elizabeth; Dejoie, Joyce

    This booklet contains information and activities on the life cycle of stars. Materials can be adapted for kindergarten through grade 8 classrooms. Background information on massive stars and medium stars and activities with subjects such as star life, constellation shapes, nebula terminology, astronomical distances, and pulsars is included. The 12…

  20. Radio Properties of the BAT AGN: the FIR-Radio Relation, the Fundamental Plane, and the Main Sequence of Star Formation

    CERN Document Server

    Smith, Krista Lynne; Vogel, Stuart; Shimizu, Thomas T; Miller, Neal

    2016-01-01

    We have conducted 22 GHz 1" JVLA imaging of 70 radio-quiet AGN from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission to that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGN, and find general consistency with both models. However, we find that the $L_{\\mathrm{R}} / L_{\\mathrm{X}}$ relation does not distinguish between star formation and non-relativistic AGN-driven outf...

  1. The hidden AGN main sequence: Evidence for a universal SMBH accretion to star formation rate ratio since z~2 producing a M_BH-M* relation

    CERN Document Server

    Mullaney, J R; Béthermin, M; Elbaz, D; Juneau, S; Pannella, M; Sargent, M T; Alexander, D M; Hickox, R C

    2012-01-01

    Using X-ray stacking analyses we estimate the average amounts of supermassive black hole (SMBH) growth taking place in star-forming galaxies (SFGs) at z~1 and z~2 as a function of galaxy stellar mass (M*). We find the average rate of SMBH growth taking place in SFGs follows remarkably similar trends with both M* and redshift as the average star-formation rates (SFRs) of these galaxies (i.e., dM_BH/dt ~ M*^(0.86+/-0.39) for the z~1 sample and dM_BH/dt ~ M*^(1.05+/-0.36) for the z~2 sample). It follows that the ratio of SMBH growth rate to SFR is (a) flat with respect to galaxy stellar mass (b) not evolving with redshift and (c) close to the ratio required to maintain/establish a SMBH to stellar mass ratio of ~10^(-3) as also inferred from today's M_BH-M_Bulge relationship. We interpret this as evidence that SMBHs have, on average, grown in-step with their host galaxies since at least z~2, irrespective of host galaxy mass and AGN triggering mechanism and that the relative growth rates are more important in esta...

  2. Photospheric Acne at The Bottom of the Main-Sequence: Doppler Images of M4.5 - M9V Stars

    Science.gov (United States)

    Barnes, John R.; Haswell, Carole A.; Jeffers, Sandra V.; Jones, Hugh R. A.; Pavlenko, Yakiv V.; Lohr, Marcus E.; Jenkins, James S.

    2016-07-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is notwell known. Time series spectra of fullyconvective M dwarfs taken in the red-optical with UVES reveal numerous line profiledistortions which are interpreted as starspots. New Doppler images of HU Del (GJ 791.2A; M4.5V), BL Ceti (GJ 65A; M5.5V)and UV Ceti (GJ 65B; M6V) attwoepochs separated by three nights are presented. We find that contrastratioscorrespondingto photosphere-spot temperature differences of only 100-400 Kare sufficient to model the time series spectra of M4.5V - M9Vstars. Starspotsare reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent.The distribution and low-contrast of the spots/spot-groups that we recover are likely to be responsible for the low amplitudephotometric variability seen in late-M dwarfs. The stability of the spot patterns in the two sets of timeseries observationsenables us to measure the latitude dependent differential rotation, which we find to be consistent with zero.

  3. Optical spectroscopy of X-ray sources in the Taurus molecular cloud: discovery of ten new pre-main sequence stars

    CERN Document Server

    Scelsi, L; Affer, L; Argiroffi, C; Pillitteri, I; Maggio, A; Micela, G

    2008-01-01

    We have analyzed optical spectra of 25 X-ray sources identified as potential new members of the Taurus molecular cloud (TMC), in order to confirm their membership in this SFR. Fifty-seven candidates were previously selected among the X-ray sources in the XEST survey, having a 2MASS counterpart compatible with a PMS star based on color-magnitude and color-color diagrams. We obtained high-resolution optical spectra for 7 of these candidates with the SARG spectrograph at the TNG telescope, which were used to search for Li absorption and to measure the Ha line and the radial and rotational velocities; 18 low-resolution optical spectra obtained with DOLORES for other candidate members were used for spectral classification, for Ha measurements, and to assess membership together with IR color-color and color-magnitude diagrams and additional information from the X-ray data. We found that 3 sources show Li absorption, with equivalent widths of ~500 mA, broad spectral line profiles, indicating v sin i ~20-40 km/s, rad...

  4. On the Coupling between Helium Settling and Rotation-Induced Mixing in Stellar Radiative Zones II- Application to light elements in population I main-sequence stars

    CERN Document Server

    Théado, S; Theado, Sylvie; Vauclair, Sylvie

    2003-01-01

    In the two previous papers of this series, we have discussed the importance of t he $\\mu$-gradients due to helium settling on rotation-induced mixing, first in a n approximate analytical way, second in a 2D numerical simulation. We have found that, for slowly rotating low mass stars, a process of ``creeping paralysis" in which the circulation and the diffusion are nearly frozen may take place below the convective zone. Here we apply this theory to the case of lithium and beryll ium in galactic clusters and specially the Hyades. We take into account the rota tional braking with rotation velocities adjusted to the present observations. We find that two different cells of meridional circulation appear on the hot side of the "lithium dip" and that the "creeping paralysis" process occurs, not dir ectly below the convective zone, but deeper inside the radiative zone, at the to p of the second cell. As a consequence, the two cells are disconnected, which ma y be the basic reason for the lithium increase with effecti...

  5. Magnetic fields and differential rotation on the pre-main sequence II: The early-G star HD 141943 - coronal magnetic field, H-alpha emission and differential rotation

    CERN Document Server

    Marsden, S C; Vélez, J C Ramírez; Alecian, E; Brown, C J; Carter, B D; Donati, J F; Dunstone, N; Hart, R; Semel, M; Waite, I A

    2011-01-01

    Spectropolarimetric observations of the pre-main sequence early-G star HD 141943 were obtained at three observing epochs (2007, 2009 and 2010). The observations were obtained using the 3.9-m Anglo-Australian telescope with the UCLES echelle spectrograph and the SEMPOL spectropolarimeter visitor instrument. The brightness and surface magnetic field topologies (given in Paper I) were used to determine the star's surface differential rotation and reconstruct the coronal magnetic field of the star. The coronal magnetic field at the 3 epochs shows on the largest scales that the field structure is dominated by the dipole component with possible evidence for the tilt of the dipole axis shifting between observations. We find very high levels of differential rotation on HD 141943 (~8 times the solar value for the magnetic features and ~5 times solar for the brightness features) similar to that evidenced by another young early-G star, HD 171488. These results indicate that a significant increase in the level of differe...

  6. Debris disks in main sequence binary systems

    CERN Document Server

    Trilling, D E; Stapelfeldt, K R; Rieke, G H; Su, K Y L; Gray, R O; Corbally, C J; Bryden, G; Chen, C H; Boden, A; Beichman, C A

    2006-01-01

    We observed 69 A3-F8 main sequence binary star systems using the Multiband Imaging Photometer for Spitzer onboard the Spitzer Space Telescope. We find emission significantly in excess of predicted photospheric flux levels for 9(+4/-3)% and 40(+7/-6)% of these systems at 24 and 70 microns, respectively. Twenty two systems total have excess emission, including four systems that show excess emission at both wavelengths. A very large fraction (nearly 60%) of observed binary systems with small (<3 AU) separations have excess thermal mission. We interpret the observed infrared excesses as thermal emission from dust produced by collisions in planetesimal belts. The incidence of debris disks around main sequence A3-F8 binaries is marginally higher than that for single old AFGK stars. Whatever combination of nature (birth conditions of binary systems) and nurture (interactions between the two stars) drives the evolution of debris disks in binary systems, it is clear that planetesimal formation is not inhibited to a...

  7. Post-Main Sequence Evolution of Debris Discs

    CERN Document Server

    Bonsor, Amy

    2010-01-01

    The population of debris discs on the main sequence is well constrained, however very little is known about debris discs around evolved stars. In this work we provide a theoretical framework that considers the effects of stellar evolution on debris discs; firstly considering the evolution of an individual disc from the main sequence through to the white dwarf phase, then extending this to the known population of debris discs around main sequence A stars. It is found that discs around evolved stars are harder to detect than on the main sequence. In the context of our models discs should be detectable with Herschel or Alma on the giant branch, subject to the uncertain effect of sublimation on the discs. The best chances are for hot young white dwarfs, fitting nicely with the observations e.g the helix nebula (Su et al. 2007) and 9 systems presented by Chu & Bilikova.

  8. Stochastically excited oscillations on the upper main sequence

    DEFF Research Database (Denmark)

    Antoci, Victoria

    2013-01-01

    Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough to stochastic......Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough...... to stochastically excite oscillations. Because of the low amplitudes, exploring stochastically excited pulsations became possible only with space missions such as Kepler and CoRoT. Here I review the recent results and discuss among others, pulsators such as delta Scuti, gamma Doradus, roAp, beta Cephei, Slowly...

  9. Thermohaline instability and rotation-induced mixing. III - Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars at various metallicities

    CERN Document Server

    Lagarde, N; Charbonnel, C; Eggenberger, P; Ekström, S; Palacios, A

    2012-01-01

    The availability of asteroseismic constraints for a large sample of stars from the missions CoRoT and Kepler paves the way for various statistical studies of the seismic properties of stellar populations. In this paper, we evaluate the impact of rotation-induced mixing and thermohaline instability on the global asteroseismic parameters at different stages of the stellar evolution from the Zero Age Main Sequence to the Thermally Pulsating Asymptotic Giant Branch to distinguish stellar populations. We present a grid of stellar evolutionary models for four metallicities (Z = 0.0001, 0.002, 0.004, and 0.014) in the mass range between 0.85 to 6.0 Msun. The models are computed either with standard prescriptions or including both thermohaline convection and rotation-induced mixing. For the whole grid we provide the usual stellar parameters (luminosity, effective temperature, lifetimes, ...), together with the global seismic parameters, i.e. the large frequency separation and asymptotic relations, the frequency corre...

  10. Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster

    CERN Document Server

    Fossati, L; Monier, R; Khan, S A; Kochukhov, O; Landstreet, J; Wade, G; Weiss, W

    2007-01-01

    Aims. We aim to provide observational constraints on diffusion models that predict peculiar chemical abundances in the atmospheres of Am stars. We also intend to check if chemical peculiarities and slow rotation can be explained by the presence of a weak magnetic field. Methods. We have obtained high resolution, high signal-to-noise ratio spectra of eight previously-classified Am stars, two normal A-type stars and one Blue Straggler, considered to be members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements, with a higher precision than was ever obtained before for this cluster. For seven of these stars we also obtained spectra in circular polarization and applied the LSD technique to constrain the longitudinal magnetic field. Results. No magnetic field was detected in any of the analysed stars. HD 73666, a Blue Straggler previously considered as an Ap (Si) star, turns out to have the abundances of a no...

  11. Circumstellar Material on and off the Main Sequence

    Science.gov (United States)

    Steele, Amy; Debes, John H.; Deming, Drake

    2017-06-01

    There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.

  12. Distributions of Quasar Hosts on the Galaxy Main Sequence Plane

    Science.gov (United States)

    Zhang, Zhoujian; Shi, Yong; Rieke, George H.; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-03-01

    The relation between star formation rates (SFRs) and stellar masses, i.e., the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically selected PG and 12 near-IR-selected Two Micron All Sky Survey (2MASS) quasars at z ≤ 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the SFRs through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios, or even morphology types (ellipticals, spirals, and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/mergers to ellipticals. However, combined with results at higher redshift, they suggest that quasars can be widely triggered in normal galaxies as long as they contain abundant gas and have ongoing star formation.

  13. The double main sequence of Omega Centauri

    CERN Document Server

    Bedin, L R

    2004-01-01

    Recent, high precision photometry of Omega Centauri, the biggest Galactic globular cluster, has been obtained with Hubble Space Telescope. The color magnitude diagram reveals an unexpected bifurcation of colors in the main sequence (MS). The newly found double MS, the multiple turnoffs and subgiant branches, and other sequences discovered in the past along the red giant branch of this cluster add up to a fascinating but frustrating puzzle. Among the possible explanations for the blue main sequence an anomalous overabundance of helium is suggested. The hypothesis will be tested with a set of FLAMES@VLT data we have recently obtained (ESO DDT program), and with forthcoming ACS@HST images.

  14. A DOUBLE MAIN SEQUENCE IN THE GLOBULAR CLUSTER NGC 6397

    Energy Technology Data Exchange (ETDEWEB)

    Milone, A. P.; Aparicio, A. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands (Spain); Marino, A. F. [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Piotto, G. [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 3, Padova I-35122 (Italy); Bedin, L. R.; Anderson, J. [Space Telescope Science Institute, 3800 San Martin Drive, Baltimore, MD 21218 (United States); Cassisi, S. [INAF-Osservatorio Astronomico di Collurania, via Mentore Maggini, I-64100 Teramo (Italy); Rich, R. M., E-mail: milone@iac.es, E-mail: aparicio@iac.es, E-mail: amarino@MPA-Garching.MPG.DE, E-mail: giampaolo.piotto@unipd.it, E-mail: jayander@stsci.edu, E-mail: bedin@stsci.edu, E-mail: cassisi@oa-teramo.inaf.it, E-mail: rmr@astro.ucla.edu [Division of Astronomy and Astrophysics, University of California, Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States)

    2012-01-20

    High-precision multi-band Hubble Space Telescope (HST) photometry reveals that the main sequence of the globular cluster NGC 6397 splits into two components, containing {approx}30% and {approx}70% of the stars. This double sequence is consistent with the idea that the cluster hosts two stellar populations: (1) a primordial population that has a composition similar to field stars, containing {approx}30% of the stars, and (2) a second generation with enhanced sodium and nitrogen, depleted carbon and oxygen, and a slightly enhanced helium abundance ({Delta}Y {approx} 0.01). We examine the color difference between the two sequences across a variety of color baselines and find that the second sequence is anomalously faint in m{sub F336W}. Theoretical isochrones indicate that this could be due to NH depletion.

  15. The dynamics of post-main sequence planetary systems

    Science.gov (United States)

    Mustill, Alexander James

    2017-06-01

    The study of planetary systems after their host stars have left the main sequence is of fundamental importance for exoplanet science, as the most direct determination of the compositions of extra-Solar planets, asteroids and comets is in fact made by an analysis of the elemental abundances of the remnants of these bodies accreted into the atmospheres of white dwarfs.To understand how the accreted bodies relate to the source populations in the planetary system, and to model their dynamical delivery to the white dwarf, it is necessary to understand the effects of stellar evolution on bodies' orbits. On the red giant branch (RGB) and asymptotic giant branch (AGB) prior to becoming a white dwarf, stars expand to a large size (>1 au) and are easily deformed by orbiting planets, leading to tidal energy dissipation and orbital decay. They also lose half or more of their mass, causing the expansion of bodies' orbits. This mass loss increases the planet:star mass ratio, so planetary systems orbiting white dwarfs can be much less stable than those orbiting their main-sequence progenitors. Finally, small bodies in the system experience strong non-gravitational forces during the RGB and AGB: aerodynamic drag from the mass shed by the star, and strong radiation forces as the stellar luminosity reaches several thousand Solar luminosities.I will review these effects, focusing on planet--star tidal interactions and planet--asteroid interactions, and I will discuss some of the numerical challenges in modelling systems over their entire lifetimes of multiple Gyr.

  16. Pre-main-sequence isochrones -- I. The Pleiades benchmark

    CERN Document Server

    Bell, Cameron P M; Mayne, N J; Jeffries, R D; Littlefair, S P

    2012-01-01

    We present a critical assessment of commonly used pre-main-sequence isochrones by comparing their predictions to a set of well-calibrated colour-magnitude diagrams of the Pleiades in the wavelength range 0.4 to 2.5 microns. Our analysis shows that for temperatures less than 4000 K the models systematically overestimate the flux by a factor two at 0.5 microns, though this decreases with wavelength, becoming negligible at 2.2 microns. In optical colours this will result in the ages for stars younger than 10 Myr being underestimated by factors between two and three. We show that using observations of standard stars to transform the data into a standard system can introduce significant errors in the positioning of pre-main-sequences in colour-magnitude diagrams. Therefore we have compared the models to the data in the natural photometric system in which the observations were taken. Thus we have constructed and tested a model of the system responses for the Wide-Field Camera on the Isaac Newton Telescope. As a ben...

  17. Stellar Winds on the Main-Sequence I: Wind Model

    CERN Document Server

    Johnstone, C P; Lüftinger, T; Toth, G; Brott, I

    2015-01-01

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

  18. On the Eccentricity Excitation in Post-main-sequence Binaries

    Science.gov (United States)

    Rafikov, Roman R.

    2016-10-01

    Several classes of stellar binaries with post-main-sequence (post-MS) components—millisecond pulsars with the white dwarf companions (MSP+WD) and periods of {P}b∼ 30 days, binaries hosting post-asymptotic giant branch stars, or barium stars with {P}b ∼ several years—feature high eccentricities (up to 0.4) despite the expectation of their efficient tidal circularization during their post-MS evolution. It was suggested that the eccentricities of these binaries can be naturally excited by their tidal coupling to the circumbinary disk, formed by the material ejected from the binary. Here we critically reassess this idea using simple arguments rooted in the global angular momentum conservation of the disk+binary system. Compared to previous studies, we (1) fully account for the viscous spreading of the circumbinary disk, (2) consider the possibility of reaccretion from the disk onto the binary (in agreement with simulations and empirical evidence), and (3) allow for the reduced viscosity after the disk expands, cools, and forms dust. These ingredients conspire to significantly lower the efficiency of eccentricity excitation by the disk tides. We find that explaining eccentricities of the post-MS binaries is difficult and requires massive (≳ {10}-2 {M}ȯ ), long-lived (≳ {10}5 years) circumbinary disks that do not reaccrete. While disk tides may account for the eccentricities of the MSP+WD binaries, we show reaccretion to also be detrimental for these systems. Reduced efficiency of the disk-driven excitation motivates the study of alternative mechanisms for producing the peculiar eccentricities of the post-MS binaries.

  19. Distributions of quasar hosts on the galaxy main-sequence plane

    CERN Document Server

    Zhang, Zhoujian; Rieke, George H; Xia, Xiaoyang; Wang, Yikang; Sun, Bingqing; Wan, Linfeng

    2016-01-01

    The relation between star formation rates and stellar masses, i.e. the galaxy main sequence, is a useful diagnostic of galaxy evolution. We present the distributions relative to the main sequence of 55 optically-selected PG and 12 near-IR-selected 2MASS quasars at z <= 0.5. We estimate the quasar host stellar masses from Hubble Space Telescope or ground-based AO photometry, and the star formation rates through the mid-infrared aromatic features and far-IR photometry. We find that PG quasar hosts more or less follow the main sequence defined by normal star-forming galaxies while 2MASS quasar hosts lie systematically above the main sequence. PG and 2MASS quasars with higher nuclear luminosities seem to have higher specific SFRs (sSFRs), although there is a large scatter. No trends are seen between sSFRs and SMBH masses, Eddington ratios or even morphology types (ellipticals, spirals and mergers). Our results could be placed in an evolutionary scenario with quasars emerging during the transition from ULIRGs/m...

  20. The main sequences of NGC2808: constraints on the early disc accretion scenario

    CERN Document Server

    Cassisi, Santi

    2013-01-01

    [Abridged] A new scenario --early disc accretion-- has been proposed very recently to explain the origin of the multiple population phenomenon in Galactic globular clusters. It envisages the possibility that a fraction of low- and very low-mass cluster stars may accrete the ejecta of interacting massive binary (and possibly also fast rotating massive) stars during the fully convective, pre-main sequence stage, to reproduce the CN and ONa anticorrelations observed among stars in individual clusters. This scenario is assumed to be able to explain the presence (and properties) of the multiple populations in the majority of globular clusters in the Milky Way. Here we have considered the well studied cluster NGC 2808, which displays a triple main sequence with well defined and separate He abundances. Knowledge of these abundances allowed us to put strong constraints on the He mass fraction and amount of matter to be accreted by low-mass pre-main sequence stars. We find that the minimum He mass fraction in the accr...

  1. Main-Sequence Effective Temperatures from a Revised Mass-Luminosity Relation Based on Accurate Properties

    CERN Document Server

    Eker, Z; Soydugan, E; Bilir, S; Gokce, E Yaz; Steer, I; Tuysuz, M; Senyuz, T; Demircan, O

    2015-01-01

    The mass-luminosity (M-L), mass-radius (M-R) and mass-effective temperature ($M-T_{eff}$) diagrams for a subset of galactic nearby main-sequence stars with masses and radii accurate to $\\leq 3\\%$ and luminosities accurate to $\\leq 30\\%$ (268 stars) has led to a putative discovery. Four distinct mass domains have been identified, which we have tentatively associated with low, intermediate, high, and very high mass main-sequence stars, but which nevertheless are clearly separated by three distinct break points at 1.05, 2.4, and 7$M_{\\odot}$ within the mass range studied of $0.38-32M_{\\odot}$. Further, a revised mass-luminosity relation (MLR) is found based on linear fits for each of the mass domains identified. The revised, mass-domain based MLRs, which are classical ($L \\propto M^{\\alpha}$), are shown to be preferable to a single linear, quadratic or cubic equation representing as an alternative MLR. Stellar radius evolution within the main-sequence for stars with $M>1M_{\\odot}$ is clearly evident on the M-R d...

  2. Beyond the Main Sequence: Testing the accuracy of stellar masses predicted by the PARSEC evolutionary tracks

    CERN Document Server

    Ghezzi, Luan

    2015-01-01

    Characterizing the physical properties of exoplanets, and understanding their formation and orbital evolution requires precise and accurate knowledge of the physical properties of their host stars. Accurately measuring stellar mass is particularly important because the masses of host stars likely influence planet occurrence and the architectures of planetary systems observed today. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question, with suggestions that the evolutionary models could contain systematic errors that would cause mass estimates of these evolved stars to be overestimated. We investigate these concerns using a sample of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the extant literature. We find very good agreement between ...

  3. The distance to NGC 6397 by M-subdwarf main-sequence fitting

    CERN Document Server

    Reid, I N; Gizis, John E.

    1998-01-01

    Recent years have seen a substantial improvement both in photometry of low luminosity stars in globular clusters and in modelling the stellar atmospheres of late-type dwarfs. We build on these observational and theoretical advances in undertaking the first determination of the distance to a globular cluster by main-sequence fitting using stars on the lower main sequence. The calibrating stars are extreme M subdwarfs, as classified by Gizis (1997), with parallaxes measured to a precision of better than 10%. Matching against King et al's (1998) deep (V, (V-I)) photometry of NGC 6397, and adopting E_{B-V}=0.18 mag, we derive a true distance modulus of 12.13 +- 0.15 mag for the cluster. This compares with (m-M)_0=12.24 +- 0.1 derived through conventional main-sequence fitting in the (V, (B-V)) plane. Allowing for intrinsic differences due to chemical composition, we derive a relative distance modulus of delta (m-M)_0=2.58 mag between NGC 6397 and the fiducial metal-poor cluster M92. We extend this calibration to ...

  4. Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    CERN Document Server

    Lund, Mikkel N; Aguirre, Víctor Silva; Chaplin, William J; Serenelli, Aldo M; García, Rafael A; Latham, David W; Casagrande, Luca; Bieryla, Allyson; Davies, Guy R; Viani, Lucas S; Buchhave, Lars A; Miglio, Andrea; Soderblom, David R; Valenti, Jeff A; Stefanik, Robert P; Handberg, Rasmus

    2016-01-01

    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be performed. These are the first ever detections of solar-like oscillations in main-sequence stars in an open cluster.

  5. Evidence of accretion triggered oscillations in the pre-main-sequence interacting binary AK Sco

    CERN Document Server

    de Castro, Ana I Gomez; Talavera, Antonio

    2012-01-01

    Pre-main sequence (PMS) binaries are surrounded by circumbinary disks from which matter falls onto both components. The material dragged from the circumbinary disk flows onto each star through independent streams channelled by the variable gravitational field. The action of the bar-like potential is most prominent in high eccentricity systems made of two equal mass stars. AK Sco is a unique PMS system composed of two F5 stars in an orbit with e=0.47. Henceforth, it is an ideal laboratory to study matter infall in binaries and its role in orbit circularization. In this letter, we report the detection of a 1.3mHz ultra low frequency oscillation in the ultraviolet light curve at periastron passage. This oscillation last 7 ks being most likely fed by the gravitational energy released when the streams tails spiralling onto each star get in contact at periastron passage enhancing the accretion flow; this unveils a new mechanism for angular momentum loss during pre-main sequence evolution and a new type of interacti...

  6. Mass-loss through the L2 Lagrange point - application to main-sequence EMRI

    Science.gov (United States)

    Linial, Itai; Sari, Re'em

    2017-08-01

    We consider stable mass transfer from the secondary to the primary of an extreme mass ratio binary system. We show that when the mass transfer is sufficiently fast, mass leakage occurs through the outer Lagrange point L2, in addition to the usual transfer through L1. We provide an analytical estimate for the mass leakage rate through L2 and find the conditions in which it is comparable to the mass transfer rate through L1. Focusing on a binary system of a main-sequence star and a supermassive black hole, driven by the emission of gravitational radiation, we show that it may sustain stable mass transfer, along with mass-loss through L2. If such a mass transferring system occurs at our Galactic Centre, it produces a gravitational wave signal detectable by future detectors, such as Laser Interferometer Space Antenna (LISA). The signal evolves according to the star's adiabatic index and cooling time. For low-mass stars, the evolution is faster than the Kelvin-Helmholtz cooling rate driving the star out of the main-sequence. In some cases, the frequency and amplitude of the signal may both decrease with time, contrary to the standard chirp of a coalescing binary. Mass-loss through L2, when occurs, decreases the evolution time-scale of the emitted gravitational wave signal by up to a few tens of per cent. We conclude that L2 mass ejection is a crucial factor in analysing gravitational waves signals produced by such systems.

  7. Stellar Models of Multiple Populations in Globular Clusters. I. The Main Sequence of NGC 6752

    CERN Document Server

    Dotter, Aaron; Conroy, Charlie; Milone, A P; Marino, A F; Yong, David

    2014-01-01

    We present stellar atmosphere and evolution models of main sequence stars in two stellar populations of the Galactic globular cluster NGC 6752. These populations represent the two extremes of light-element abundance variations in the cluster. NGC 6752 is a benchmark cluster in the study of multiple stellar populations because of the rich array of spectroscopic abundances and panchromatic Hubble Space Telescope photometry. The spectroscopic abundances are used to compute stellar atmosphere and evolution models. The synthetic spectra for the two populations show significant differences in the ultraviolet and, for the coolest temperatures, in the near-infrared. The stellar evolution models exhibit insignificant differences in the H-R diagram except on the lower main sequence. The appearance of multiple sequences in the colour-magnitude diagrams (CMDs) of NGC 6752 is almost exclusively due to spectral effects caused by the abundance variations. The models reproduce the observed splitting and/or broadening of sequ...

  8. The Main Sequences of Starforming Galaxies and Active Galactic Nuclei at High Redshift

    CERN Document Server

    Mancuso, Claudia; Shi, J; Gonzàlez-Nuevo, J; Bèthermin, M; Danese, L

    2016-01-01

    We provide a novel, unifying physical interpretation on the origin, the average shape, the scatter, and the cosmic evolution for the main sequences of starforming galaxies and active galactic nuclei at high redshift z $\\gtrsim$ 1. We achieve this goal in a model-independent way by exploiting: (i) the redshift-dependent SFR functions based on the latest UV/far-IR data from HST/Herschel, and re- lated statistics of strong gravitationally lensed sources; (ii) deterministic evolutionary tracks for the history of star formation and black hole accretion, gauged on a wealth of multiwavelength observations including the observed Eddington ratio distribution. We further validate these ingredients by showing their consistency with the observed galaxy stellar mass functions and AGN bolometric luminosity functions at different redshifts via the continuity equation approach. Our analysis of the main sequence for high-redshift galaxies and AGNs highlights that the present data are consistently interpreted in terms of an in...

  9. Post main sequence evolution of icy minor planets: water retention and white dwarf pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai

    2017-06-01

    We investigate the evolution of icy minor planets from the moment of their birth and through the all evolutionary stages of their host stars, including the main sequence, red giant branch and asymptotic giant branch phases. We then asses the degree of water retention in planetary systems around white dwarf, as a function of various parameters. We consider progenitor stars of different masses and metallicities. We also consider minor planets of various sizes, initial orbital distances, compositions and formation times. Our results indicate that water can survive to the white dwarf stage in a variety of circumstances, especially around G, F, A and even some B type stars. We discuss the significance of water retention with respect to white dwarf pollution and also for planet habitability.

  10. The age-metallicity relation in the solar neighbourhood from a pilot sample of white dwarf-main sequence binaries

    CERN Document Server

    Rebassa-Mansergas, A; García-Berro, E; Freeman, K C; Cojocaru, R; Manser, C J; Pala, A F; Gänsicke, B T; Liu, X -W

    2016-01-01

    The age-metallicity relation (AMR) is a fundamental observational constraint for understanding how the Galactic disc formed and evolved chemically in time. However, there is not yet an agreement on the observational properties of the AMR for the solar neighbourhood, primarily due to the difficulty in obtaining accurate stellar ages for individual field stars. We have started an observational campaign for providing the much needed observational input by using wide white dwarf-main sequence (WDMS) binaries. White dwarfs are natural clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since the progenitors of white dwarfs and the main sequence stars were born at the same time, WDMS binaries provide a unique opportunity to observationally constrain in a robust way the properties of the AMR. In this work we present the AMR derived from analysing a pilot sample of 23 WDMS binaries and provide clear observational evidence for the lack of correlation between...

  11. Magnetic Activity Analysis for a Sample of G-type Main Sequence Kepler Targets

    Science.gov (United States)

    Mehrabi, Ahmad; He, Han; Khosroshahi, Habib

    2017-01-01

    The variation of a stellar light curve owing to rotational modulation by magnetic features (starspots and faculae) on the star’s surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation as two proxies to study the stellar magnetic properties for a large sample of G-type main sequence Kepler targets, for which the rotation periods were recently determined. By analyzing the correlation between the two magnetic proxies, it is found that: (1) the two proxies are positively correlated for most of the stars in our sample, and the percentages of negative, zero, and positive correlations are 4.27%, 6.81%, and 88.91%, respectively; (2) negative correlation stars cannot have a large magnitude of light-curve variation; and (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlation one increases. These results indicate that stars with shorter rotation period tend to have positive correlation between the two proxies, and a good portion of the positive correlation stars have a larger magnitude of light-curve variation (and hence more intense magnetic activities) than negative correlation stars.

  12. The Solar Neighborhood. XXXVII: The Mass-Luminosity Relation for Main-sequence M Dwarfs

    Science.gov (United States)

    Benedict, G. F.; Henry, T. J.; Franz, O. G.; McArthur, B. E.; Wasserman, L. H.; Jao, Wei-Chun; Cargile, P. A.; Dieterich, S. B.; Bradley, A. J.; Nelan, E. P.; Whipple, A. L.

    2016-11-01

    We present a mass-luminosity relation (MLR) for red dwarfs spanning a range of masses from 0.62 {{ M }}⊙ to the end of the stellar main sequence at 0.08 {{ M }}⊙ . The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries, component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars and a K-band MLR with 45 stars with fit residuals half of those of the V band. We use GJ 831 AB as an example, obtaining an absolute trigonometric parallax, π abs = 125.3 ± 0.3 mas, with orbital elements yielding {{ M }}{{A}}=0.270+/- 0.004 {{ M }}⊙ and {{ M }}{{B}}=0.145+/- 0.002 {{ M }}⊙ . The mass precision rivals that derived for eclipsing binaries. A remaining major task is the interpretation of the intrinsic cosmic scatter in the observed MLR for low-mass stars in terms of physical effects. In the meantime, useful mass values can be estimated from the MLR for the ubiquitous red dwarfs that account for 75% of all stars, with applications ranging from the characterization of exoplanet host stars to the contribution of red dwarfs to the mass of the universe. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  13. BEYOND THE MAIN SEQUENCE: TESTING THE ACCURACY OF STELLAR MASSES PREDICTED BY THE PARSEC EVOLUTIONARY TRACKS

    Energy Technology Data Exchange (ETDEWEB)

    Ghezzi, Luan; Johnson, John Asher, E-mail: lghezzi@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-10-20

    Characterizing the physical properties of exoplanets and understanding their formation and orbital evolution requires precise and accurate knowledge of their host stars. Accurately measuring stellar masses is particularly important because they likely influence planet occurrence and the architectures of planetary systems. Single main-sequence stars typically have masses estimated from evolutionary tracks, which generally provide accurate results due to their extensive empirical calibration. However, the validity of this method for subgiants and giants has been called into question by recent studies, with suggestions that the masses of these evolved stars could have been overestimated. We investigate these concerns using a sample of 59 benchmark evolved stars with model-independent masses (from binary systems or asteroseismology) obtained from the literature. We find very good agreement between these benchmark masses and the ones estimated using evolutionary tracks. The average fractional difference in the mass interval ∼0.7–4.5 M{sub ⊙} is consistent with zero (−1.30 ± 2.42%), with no significant trends in the residuals relative to the input parameters. A good agreement between model-dependent and -independent radii (−4.81 ± 1.32%) and surface gravities (0.71 ± 0.51%) is also found. The consistency between independently determined ages for members of binary systems adds further support for the accuracy of the method employed to derive the stellar masses. Taken together, our results indicate that determination of masses of evolved stars using grids of evolutionary tracks is not significantly affected by systematic errors, and is thus valid for estimating the masses of isolated stars beyond the main sequence.

  14. The Solar Neighborhood XXXVIII: The Mass-Luminosity Relation for Main Sequence M Dwarfs

    CERN Document Server

    Benedict, G F; Franz, O G; McArthur, B E; Wasserman, L H; Jao, Wei-Chun; Cargile, P A; Dieterich, S B; Bradley, A J; Nelan, E P; Whipple, A L

    2016-01-01

    We present a Mass-Luminosity Relation (MLR) for red dwarfs spanning a range of masses from 0.62 Msun to the end of the stellar main sequence at 0.08 Msun. The relation is based on 47 stars for which dynamical masses have been determined, primarily using astrometric data from Fine Guidance Sensors (FGS) 3 and 1r, white-light interferometers on the Hubble Space Telescope (HST), and radial velocity data from McDonald Observatory. For our HST/FGS sample of 15 binaries component mass errors range from 0.4% to 4.0% with a median error of 1.8%. With these and masses from other sources, we construct a V-band MLR for the lower main sequence with 47 stars, and a K-band MLR with 45 stars with fit residuals half of those of the V-band. We use GJ 831 AB as an analysis example, obtaining an absolute trigonometric parallax, pi_abs = 125.3 +/- 0.3 milliseconds of arc, with orbital elements yielding MA = 0.270 +/- 0.004 Msun and MB = 0.145 +/- 0.002 Msun. The mass precision rivals that derived for eclipsing binaries. A remain...

  15. Deep wide-field imaging down to the oldest main sequence turn-offs in the Sculptor dwarf spheroidal galaxy

    NARCIS (Netherlands)

    de Boer, T. J. L.; Tolstoy, E.; Saha, A.; Olsen, K.; Irwin, M. J.; Battaglia, G.; Hill, V.; Shetrone, M. D.; Fiorentino, G.; Cole, A.

    2011-01-01

    We present wide-field photometry of resolved stars in the nearby Sculptor dwarf spheroidal galaxy using CTIO/MOSAIC, going down to the oldest main sequence turn-off. The accurately flux calibrated wide field colour-magnitude diagrams can be used to constrain the ages of different stellar populations

  16. Testing scaling relations for solar-like oscillations from the main sequence to red giants using Kepler data

    NARCIS (Netherlands)

    Huber, D.; Bedding, T.R.; Stello, D.; Hekker, S.; Mathur, S.; Mosser, B.; Verner, G.A.; Bonanno, A.; Buzasi, D.L.; Campante, T.L.; Elsworth, Y.P.; Hale, S.J.; Kallinger, T.; Silva Aguirre, V.; Chaplin, W.J.; de Ridder, J.; Garcia, R.A.; Appourchaux, T.; Frandsen, S.; Houdek, G.; Molenda-Żakowicz, J.; Monteiro, M.J.P.F.G.; Christensen-Dalsgaard, J.; Gilliland, R.L.; Kawaler, S.D.; Kjeldsen, H.; Broomhall, A.M.; Corsaro, E.; Salabert, D.; Sanderfer, D.T.; Seader, S.E.; Smith, J.C.

    2011-01-01

    We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν), and oscillation

  17. The Evolution of Main-Sequence and Starburst Galaxies Across Cosmic Time

    Science.gov (United States)

    Aravena, Manuel

    2015-08-01

    In the last decade, significant progress has been achieved in the understanding of the evolution of star formation in galaxies as a function of redshift. Its is now clear that the majority of galaxies at zform a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this ‘main-sequence’, showing short duty cycles and thus producing most of their stars in a single burst of star formation (‘starburst’) within a few 100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak.While progress has been impressive, a number of questions are still unanswered. In this talk, I will review our current observational understanding of this ‘main-sequence’ vs ‘starburst’ galaxy paradigm, and will address how future observations (e.g. with ALMA) will help us to have better insights into the fundamental properties of these galaxies.

  18. Gaia-ESO Survey: The analysis of pre-main sequence stellar spectra

    CERN Document Server

    Lanzafame, A C; Damiani, F; Franciosini, E; Cottaar, M; Sousa, S G; Tabernero, H M; Klutsch, A; Spina, L; Biazzo, K; Prisinzano, L; Sacco, G G; Randich, S; Brugaletta, E; Mena, E Delgado; Adibekyan, V; Montes, D; Bonito, R; Gameiro, J F; Alcalá, J M; Hernández, J I González; Jeffries, R; Messina, S; Meyer, M; Gilmore, G; Asplund, M; Binney, J; Bonifacio, P; Drew, J E; Feltzing, S; Ferguson, A M N; Micela, G; Negueruela, I; Prusti, T; Rix, H-W; Vallenari, A; Alfaro, E J; Prieto, C Allende; Babusiaux, C; Bensby, T; Blomme, R; Bragaglia, A; Flaccomio, E; Francois, P; Hambly, N; Irwin, M; Koposov, S E; Korn, A J; Smiljanic, R; Van Eck, S; Walton, N; Bayo, A; Bergemann, M; Carraro, G; Costado, M T; Edvardsson, B; Heiter, U; Hill, V; Hourihane, A; Jackson, R J; Jofré, P; Lardo, C; Lewis, J; Lind, K; Magrini, L; Marconi, G; Martayan, C; Masseron, T; Monaco, L; Morbidelli, L; Sbordone, L; Worley, C C; Zaggia, S

    2015-01-01

    This paper describes the analysis of UVES and GIRAFFE spectra acquired by the Gaia-ESO Public Spectroscopic Survey in the fields of young clusters whose population includes pre-main sequence (PMS) stars. Both methods that have been extensively used in the past and new ones developed in the contest of the Gaia-ESO survey enterprise are available and used. The internal precision of these quantities is estimated by inter-comparing the results obtained by such different methods, while the accuracy is estimated by comparison with independent external data, like effective temperature and surface gravity derived from angular diameter measurements, on a sample of benchmarks stars. Specific strategies are implemented to deal with fast rotation, accretion signatures, chromospheric activity, and veiling. The analysis carried out on spectra acquired in young clusters' fields during the first 18 months of observations, up to June 2013, is presented in preparation of the first release of advanced data products. Stellar par...

  19. Deep HST-WFPC2 photometry of NGC 288. II. The Main Sequence Luminosity Function

    CERN Document Server

    Bellazzini, M; Montegriffo, P; Messineo, M; Monaco, L; Rood, R T; Pecci, Flavio Fusi; Montegriffo, Paolo; Messineo, Maria

    2002-01-01

    The Main Sequence Luminosity Function (LF) of the Galactic globular cluster NGC 288 has been obtained using deep WFPC2 photometry. We have employed a new method to correct for completeness and fully account for bin-to-bin migration due to blending and/or observational scatter. The effect of the presence of binary systems in the final LF is quantified and is found to be negligible. There is a strong indication of the mass segregation of unevolved single stars and clear signs of a depletion of low mass stars in NGC 288 with respect to other clusters. The results are in good agreement with the prediction of theoretical models of the dynamical evolution of NGC 288 that take into account the extreme orbital properties of this cluster.

  20. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence

    CERN Document Server

    Hallinan, G; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-01-01

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower a...

  1. Differential rotation on both components of the pre main-sequence binary system HD 155555

    CERN Document Server

    Dunstone, N J; Cameron, A Collier; Marsden, S C; Jardine, M; Barnes, J R; Vlex, J C Ramirez; Donati, J -F

    2008-01-01

    We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole laptimes as determined from the intensity spectra are 80 days for the primary star and 163 days for the secondary. Similarly for the magnetic spectra we obtain equator-pole laptimes of 44 and 71 days respectively, showing that the shearing timescale of magnetic regions is approximately half that found for stellar spots. Both components are therefore found to have rates of differential rotation similar to those of the same spectral type main sequence single stars. The results for HD 155555 are therefore in contrast to tho...

  2. Theoretical seismic properties of pre-main sequence gamma Doradus pulsators

    CERN Document Server

    Bouabid, M -P; Miglio, A; Dupret, M -A; Grigahcene, A; Noels, A

    2011-01-01

    Context. gamma Doradus (gamma Dor) are late A and F-type stars pulsating with high order gravity modes (g-modes). The existence of different evolutionary phases crossing the gamma Dor instability strip raises the question of the existence of pre-main sequence (PMS) gamma Dor stars. Aims. We intend to study the differences between the asteroseismic behaviour of PMS and main sequence (MS) gamma Dor pulsators as it is predicted by the current theory of stellar evolution and stability. Methods. We explore the adiabatic and non-adiabatic properties of high order g-modes in a grid of PMS and MS models covering the mass range 1.2 Msun < Mstar < 2.5 Msun. Results. We derive the theoretical instability strip (IS) for the PMS gamma Dor pulsators. This IS covers the same effective temperature range as the MS gamma Dor one. Nevertheless, the frequency domain of unstable modes in PMS models with a fully radiative core is larger than in MS models, even if they present the same number of unstable modes. Moreover, the ...

  3. Rotational mixing in tidally locked massive main-sequence binaries

    CERN Document Server

    de Mink, S E; Langer, N; Pols, O R

    2008-01-01

    One of the main uncertainties in evolutionary calculations of massive stars is the efficiency of internal mixing. It changes the chemical profile inside the star and can therefore affect the structure and further evolution. We demonstrate that eclipsing binaries, in which the tides synchronize the rotation period of the stars and the orbital period, constitute a potentially strong test for the efficiency of rotational mixing. We present detailed stellar evolutionary models of massive binaries assuming the composition of the Small Magellanic Cloud. In these models we find enhancements in the surface nitrogen abundance of up to 0.6 dex.

  4. Magnetic activity analysis for a sample of G-type main sequence \\emph{Kepler} targets

    CERN Document Server

    Mehrabi, A; Khosroshahi, H

    2016-01-01

    The variation of a stellar light curve owing to the rotational modulation by the magnetic features (starspots and faculae) on the star's surface can be used to investigate the magnetic properties of the host star. In this paper, we use the periodicity and magnitude of the light-curve variation, as two proxies, suggested by (He et al. 2015), to study the stellar magnetic properties for a large sample of G-type main sequence \\emph{Kepler} targets, for which the rotation periods recently determined by (McQuillan et al. 2014). By analyzing the correlation between the two magnetic proxies, it is found that: (1) The two proxies are positively correlated for most of the stars in our sample, and the percentages of negative, zero, and positive correlation are $4.27\\%$, $6.81\\%$, and $88.91\\%$, respectively; (2) Negative correlation stars cannot have large magnitude of light-curve variation; (3) with the increase of rotation period, the relative number of positive correlation stars decreases and the negative correlatio...

  5. Older and Colder: The impact of starspots on pre-main sequence stellar evolution

    CERN Document Server

    Somers, Garrett

    2015-01-01

    We assess the impact of starspots on the evolution of late-type stars during the pre-main sequence (pre-MS) using a modified stellar evolution code. We find that heavily spotted models of mass 0.1-1.2\\msun\\ are inflated by up to $10$% during the pre-MS, and up to 4% and 9% for fully- and partially-convective stars at the zero-age MS, consistent with measurements from active eclipsing binary systems. Spots similarly decrease stellar luminosity and $T_{\\rm eff}$, causing isochrone-derived masses to be under-estimated by up to a factor of $2 \\times$, and ages to be under-estimated by a factor of 2-10$\\times$, at 3 Myr. Consequently, pre-MS clusters and their active stars are systematically older and more massive than often reported. Cluster ages derived with the lithium depletion boundary technique are erroneously young by $\\sim 15$% and $10$% at $30$ and $100$ Myr respectively, if 50% spotted stars are interpreted with un-spotted models. Finally, lithium depletion is suppressed in spotted stars with radiative c...

  6. The far infra-red SEDs of main sequence and starburst galaxies

    CERN Document Server

    Cowley, William I; Lagos, Claudia del P; Lacey, Cedric G; Baugh, Carlton M; Cole, Shaun

    2016-01-01

    We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies ($M_{\\star}\\gtrsim10^{10}$ $h^{-1}$M$_{\\odot}$) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass ($M_{\\star}$) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and $M_\\star$, up to redshift $z\\sim6$. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts ($0.5\\lesssim z\\lesss...

  7. Pre-main sequence spectroscopic binaries suitable for VLTI observations

    CERN Document Server

    Guenther, E W; Mundt, R; Covino, E; Alcalá, J M; Cusano, F; Stecklum, B

    2007-01-01

    A severe problem of the research in star-formation is that the masses of young stars are almost always estimated only from evolutionary tracks. Since the tracks published by different groups differ, it is often only possible to give a rough estimate of the masses of young stars. It is thus crucial to test and calibrate the tracks. Up to now, only a few tests of the tracks could be carried out. However, with the VLTI it is now possible to set constrains on the tracks by determining the masses of many young binary stars precisely. In order to use the VLTI efficiently, a first step is to find suitable targets, which is the purpose of this work. Given the distance of nearby star-forming regions, suitable VLTI targets are binaries with orbital periods between at least 50 days, and few years. Although a number of surveys for detecting spectroscopic binaries have been carried out, most of the binaries found so far have periods which are too short. We thus surveyed the Chamaeleon, Corona Australis, Lupus, Sco-Cen, rh...

  8. DISSECTING THE QUASAR MAIN SEQUENCE: INSIGHT FROM HOST GALAXY PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi [Tsinghua Center for Astrophysics, Department of Physics, Tsinghua University, Beijing 100084 (China); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L{sub Edd}) of the black hole (BH) accretion. Shen and Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ{sub *} (hence, the BH mass via the M–σ{sub *} relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ{sub *} systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ{sub *} on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  9. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties

    Science.gov (United States)

    Sun, Jiayi; Shen, Yue

    2015-05-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical Fe ii strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/LEdd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing Fe ii strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion σ* (hence, the BH mass via the M-σ* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, σ* systematically decreases with increasing Fe ii strength, confirming that the Eddington ratio increases with Fe ii strength. We also found that at fixed luminosity and Fe ii strength, there is little dependence of σ* on the broad Hβ FWHM. These new results reinforce the framework that the Eddington ratio and orientation govern most of the diversity seen in broad-line quasar properties.

  10. Dissecting the quasar main sequence: insight from host galaxy properties

    CERN Document Server

    Sun, Jiayi

    2015-01-01

    The diverse properties of broad-line quasars appear to follow a well-defined main sequence along which the optical FeII strength increases. It has been suggested that this sequence is mainly driven by the Eddington ratio (L/L_Edd) of the black hole (BH) accretion. Shen & Ho demonstrated with quasar clustering analysis that the average BH mass decreases with increasing FeII strength when quasar luminosity is fixed, consistent with this suggestion. Here we perform an independent test by measuring the stellar velocity dispersion sigma* (hence the BH mass via the M-sigma* relation) from decomposed host spectra in low-redshift Sloan Digital Sky Survey quasars. We found that at fixed quasar luminosity, sigma* systematically decreases with increasing FeII strength, confirming that Eddington ratio increases with FeII strength. We also found that at fixed luminosity and FeII strength, there is little dependence of sigma* on the broad Hbeta FWHM. These new results reinforce the framework put forward by Shen & H...

  11. Orbital Parameters for a Pre-Main Sequence Binary System

    Science.gov (United States)

    Karnath, Nicole; Prato, L.; Wasserman, L.

    2011-01-01

    The young system VSB 111 was originally classified as a single-lined spectroscopic binary in the star forming region of NGC 2264. Using the Keck II telescope we measured radial velocities for both the primary and secondary components in the infrared. By combining these data with previous visible light observations of the primary star, we derived the period, eccentricity, and other orbital parameters, as well as the mass ratio of the system. With additional information gained from further observations, for example the inclination derived from the angularly resolved orbit, we will eventually obtain the individual stellar masses, necessary to help to calibrate models of young star evolution. Furthermore, by compiling dozens or even hundreds of mass ratios for young binaries we can use mass ratio distributions to improve our understanding of binary star formation. No infrared excess or any other indication of a circumstellar disk is in evidence for VSB 111, indicating that either the accretion rate has dropped to an undetectable value or that this system has aged enough that its disk has dissipated, if originally present. Given the approximately 900 day period of this system, and its relatively high eccentricity, 0.8, the action of the companion could have been responsible for early dissipation of any disk material.

  12. Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster

    DEFF Research Database (Denmark)

    Lund, Mikkel N.; Basu, Sarbani; Silva Aguirre, Víctor;

    2016-01-01

    The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2 mission, and short-cadence data were collected on a number of cool main-sequence stars. Here, we report results on two F-type stars that show detectable oscillations of a quality that allows asteroseismic analyses to be pe...

  13. High Resolution Imaging of PHIBSS z~2 Main Sequence Galaxies in CO J=1-0

    CERN Document Server

    Bolatto, A D; Leroy, A K; Tacconi, L J; Bouché, N; Schreiber, N M Förster; Genzel, R; Cooper, M C; Fisher, D B; Combes, F; García-Burillo, S; Burkert, A; Bournaud, F; Weiss, A; Saintonge, A; Wuyts, S; Sternberg, A

    2015-01-01

    We present Karl G. Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four $z\\sim2$ main sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-$z$ Blue Sequence Survey (PHIBSS) which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H$_2$ conversion, we measure surface densities of $\\Sigma_{mol}\\sim1200$ M$_\\odot$pc$^{-2}$ in projection and estimate $\\Sigma_{mol}\\sim500-900$ M$_\\odot$pc$^{-2}$ deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios $r_{31}$ th...

  14. Acne at The Bottom Of The Main Sequence

    Science.gov (United States)

    Barnes, John; Haswell, C.; Jenkins, J.; Jeffers, S.; Jones, H. R. A.; Lohr, M.; Pavlenko, Y.

    2016-08-01

    Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is not well known. Time series spectra of fully convective M dwarfs taken in the red-optical with UVES reveal numerous line profile distortions which are interpreted as starspots. We derive Doppler images for four M4.5V - M9V stars and find that contrast ratios corresponding to photosphere-spot temperature differences of only 200-300 K are sufficient to model the timeseries spectra. Although more starspot structure is found at high latitudes, spots are reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent. The occurrence of low-contrast spots at predominantly high latitudes is in general likely to be responsible for the low amplitude photometric variability seen in late-M dwarfs. The recovered starspot patterns are used to assess their effect on precision radial velocity surveys aimed at detecting planets around this population of stars.

  15. Multiple stellar populations in Magellanic Cloud clusters. V. The split main sequence of the young cluster NGC1866

    CERN Document Server

    Milone, A P; D'Antona, F; Bedin, L R; Piotto, G; Jerjen, H; Anderson, J; Dotter, A; Di Criscienzo, M; Lagioia, E P

    2016-01-01

    One of the most unexpected results in the field of stellar populations of the last few years, is the discovery that some Magellanic-Cloud globular clusters younger than ~400 Myr, exhibit bimodal main sequences (MSs) in their color-magnitude diagrams (CMDs). Moreover, these young clusters host an extended main sequence turn off (eMSTO) in close analogy with what is observed in most ~1-2 Gyr old clusters of both Magellanic Clouds. We use high-precision Hubble-Space-Telescope photometry to study the young star cluster NGC1866 in the Large Magellanic Cloud. We discover an eMSTO and a split MS. The analysis of the CMD reveals that (i) the blue MS is the less populous one, hosting about one-third of the total number of MS stars; (ii) red-MS stars are more centrally concentrated than blue-MS stars; (iii) the fraction of blue-MS stars with respect to the total number of MS stars drops by a factor of ~2 in the upper MS with F814W <~19.7. The comparison between the observed CMDs and stellar models reveals that the o...

  16. TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

    Energy Technology Data Exchange (ETDEWEB)

    Huber, D.; Bedding, T. R.; Stello, D. [Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006 (Australia); Hekker, S. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Mathur, S. [High Altitude Observatory, NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); Mosser, B. [LESIA, CNRS, Universite Pierre et Marie Curie, Universite Denis, Diderot, Observatoire de Paris, 92195 Meudon cedex (France); Verner, G. A.; Elsworth, Y. P.; Hale, S. J.; Chaplin, W. J. [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom); Bonanno, A. [INAF Osservatorio Astrofisico di Catania (Italy); Buzasi, D. L. [Eureka Scientific, 2452 Delmer Street Suite 100, Oakland, CA 94602-3017 (United States); Campante, T. L. [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Kallinger, T. [Department of Physics and Astronomy, University of British Columbia, Vancouver (Canada); Silva Aguirre, V. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); De Ridder, J. [Instituut voor Sterrenkunde, K.U.Leuven (Belgium); Garcia, R. A. [Laboratoire AIM, CEA/DSM-CNRS, Universite Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191, Gif-sur-Yvette (France); Appourchaux, T. [Institut d' Astrophysique Spatiale, UMR 8617, Universite Paris Sud, 91405 Orsay Cedex (France); Frandsen, S. [Danish AsteroSeismology Centre (DASC), Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Houdek, G., E-mail: dhuber@physics.usyd.edu.au [Institute of Astronomy, University of Vienna, 1180 Vienna (Austria); and others

    2011-12-20

    We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen and Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.

  17. The Discovery of Solar-like Activity Cycles Beyond the End of the Main Sequence?

    CERN Document Server

    Route, Matthew

    2016-01-01

    The long-term magnetic behavior of objects near the cooler end of the stellar main sequence is poorly understood. Most theoretical work on the generation of magnetism in these ultracool dwarfs (spectral type >=M7 stars and brown dwarfs) suggests that their magnetic fields should not change in strength and direction. Using polarized radio emission measurements of their magnetic field orientations, I demonstrate that these cool, low-mass, fully-convective objects appear to undergo magnetic polarity reversals analogous to those that occur on the Sun. This powerful new technique potentially indicates that the patterns of magnetic activity displayed by the Sun continue to exist, despite the fully convective interiors of these objects, in contravention of several leading theories of the generation of magnetic fields by internal dynamos.

  18. KH 15D: Gradual Occultation of a Pre-Main-Sequence Binary

    CERN Document Server

    Winn, J N; Johnson, J A; Stanek, K Z; Garnavich, P M; Winn, Joshua N.; Holman, Matthew J.; Johnson, John A.; Stanek, Krzysztof Z.; Garnavich, Peter M.

    2004-01-01

    We propose that the extraordinary "winking star" KH 15D is an eccentric pre-main-sequence binary that is gradually being occulted by an opaque screen. This model accounts for the periodicity, depth, duration, and rate of growth of the modern eclipses; the historical light curve from photographic plates; and the existing radial velocity measurements. It also explains the re-brightening events that were previously observed during mid-eclipse, and the subsequent disappearance of these events. We predict the future evolution of the system and its full radial velocity curve. Given the small velocity of the occulting screen relative to the center of mass of the binary, the screen is probably associated with the binary, and may be the edge of a precessing circumbinary disk.

  19. Calibrating the Mass-Luminosity Relation at the End of the Main Sequence

    Science.gov (United States)

    Henry, Todd

    2000-07-01

    This is a continuation of GO 6047/6566/7493/8282. We use HST-FGS3/1R to calibrate the mass-luminosity relation {MLR} for stars less massive than 0.2 Msun, with special emphasis on objects near the stellar/brown dwarf border. Our goals are to determine Mv values to 0.10 magnitude, masses to 5%, and more than double the number of objects with masses determined to be less than 0.20 Msun. This program uses the combination of HST-FGS3/1R at optical wavelengths and ground-based infrared speckle work to examine nearby, subarcsecond binary systems. Several of the objects included have M main sequence, and making them brown dwarf candidates.

  20. The Main Sequence of Explosive Solar Active Regions: Comparison of Emerging and Mature Active Regions

    Science.gov (United States)

    Falconer, David; Moore, Ron

    2011-01-01

    For mature active regions, an active region s magnetic flux content determines the maximum free energy the active region can have. Most Large flares and CMEs occur in active regions that are near their free-energy limit. Active-region flare power radiated in the GOES 1-8 band increases steeply as the free-energy limit is approached. We infer that the free-energy limit is set by the rate of release of an active region s free magnetic energy by flares, CMEs and coronal heating balancing the maximum rate the Sun can put free energy into the active region s magnetic field. This balance of maximum power results in explosive active regions residing in a "mainsequence" in active-region (flux content, free energy content) phase space, which sequence is analogous to the main sequence of hydrogen-burning stars in (mass, luminosity) phase space.

  1. Pre-main-sequence binaries with tidally disrupted discs: the Br gamma in HD 104237

    CERN Document Server

    Garcia, P J V; Dougados, C; Bacciotti, F; Clausse, J -M; Massi, F; Mérand, A; Petrov, R; Weigelt, G

    2013-01-01

    Active pre-main-sequence binaries with separations of around ten stellar radii present a wealth of phenomena unobserved in common systems. The study of these objects is extended from Classical T Tauri stars to the Herbig Ae star HD 104237. Spectro-interferometry with the VLTI/AMBER is presented. It is found that the K-band continuum squared visibilities are compatible with a circumbinary disc with a radius of ~0.5 AU. However, a significant fraction (~50 per cent) of the flux is unresolved and not fully accounted by the stellar photospheres. The stars probably don't hold circumstellar discs, in addition to the circumbinary disk, due to the combined effects of inner magnetospheric truncation and outer tidal truncation. This unresolved flux likely arises in compact structures inside the tidally disrupted circumbinary disc. Most ($\\gtrsim 90$ per cent) of the Br gamma line emission is unresolved. The line-to-continuum spectro-astrometry shifts in time, along the direction of the Ly alpha jet known to be driven b...

  2. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence.

    Science.gov (United States)

    Hallinan, G; Littlefair, S P; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-07-30

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs.

  3. RX J0942.7-7726AB: an isolated pre-main sequence wide binary

    CERN Document Server

    Murphy, Simon J; Bessell, Michael S

    2012-01-01

    We report the discovery of two young M-dwarfs, RX J0942.7-7726 (M1) and 2MASS J09424157-7727130 (M4.5), that were found only 42 arcsec apart in a survey for pre-main sequence stars surrounding the open cluster eta Chamaeleontis. Both stars have congruent proper motions and near-infrared photometry. Medium-resolution spectroscopy reveals that they are coeval (age 8-12 Myr), codistant (100-150 pc) and thus almost certainly form a true wide binary with a projected separation of 4000-6000 AU. The system appears too old and dynamically fragile to have originated in eta Cha and a traceback analysis argues for its birth in or near the Scorpius-Centaurus OB Association. RX J0942.7-7726AB joins a growing group of wide binaries kinematically linked to Sco-Cen, suggesting that such fragile systems can survive the turbulent environment of their natal molecular clouds while still being dispersed with large velocities. Conversely, the small radial velocity difference between the stars (2.7 \\pm 1.0 km/s) could mean the syst...

  4. The quadruple pre-main sequence system LkCa3: Implications for stellar evolution models

    CERN Document Server

    Torres, Guillermo; Badenas, Mariona; Prato, L; Schaefer, G H; Wasserman, Lawrence H; Mathieu, Robert D; Latham, David W

    2013-01-01

    We report the discovery that the pre-main sequence object LkCa3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (~0.5 arc sec) visual pair, with one component being a moderately eccentric 12.94-day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented with new near-infrared spectroscopy shows both visual components to be double-lined, the second one having a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and near-infrared flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we detect also the rotational signal of the primary in the 4.06-day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of ...

  5. Exploring pre-main-sequence variables of the ONC: the new variables

    Science.gov (United States)

    Parihar, Padmakar; Messina, Sergio; Distefano, Elisa; Shantikumar, N. S.; Medhi, Biman J.

    2009-12-01

    Since 2004, we have been engaged in a long-term observing programme to monitor young stellar objects (YSOs) in the Orion Nebula Cluster (ONC). We have collected about 2000 frames in V, R and I broad-band filters on more than 200 nights distributed over five consecutive observing seasons. The high-quality and time-extended photometric data give us an opportunity to address various phenomena associated with young stars. The prime motivations of this project are (i) to explore various manifestations of stellar magnetic activity in very young low-mass stars, (ii) to search for new pre-main-sequence eclipsing binaries and (iii) to look for any EXor and FUor-like transient activities associated with YSOs. Since this is the first paper on this programme, we give a detailed description of the science drivers, the observation and the data reduction strategies as well. In addition to these, we also present a large number of new periodic variables detected from our first 5 yr of time-series photometric data. Our study reveals that about 72 per cent of classical T Tauri stars (CTTS) in our field of view are periodic, whereas only 32 per cent of weak-lined T Tauri stars (WTTS) are periodic. This indicates that inhomogeneity patterns on the surface of CTTS of the ONC stars are much more stable than on WTTS. From our multiyear monitoring campaign, we found that the photometric surveys based on single season are incapable of identifying all periodic variables. And any study on evolution of angular momentum based on single-season surveys must be carried out with caution.

  6. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.;

    2011-01-01

    We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced...... for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation....

  7. Two new SB2 binaries with main sequence B-type pulsators in the Kepler field

    Science.gov (United States)

    Papics, P. I.

    2013-06-01

    OB stars are important in the chemistry and evolution of the Universe, but the sample of targets well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Our study extends this sample with two spectroscopic binary systems. Aims. Our goal is to provide orbital solutions, fundamental parameters and abundances from disentangled high-resolution high signal-to-noise spectra, as well as to analyse and interpret the variations in the Kepler light curve of these carefully selected targets. This way we continue our efforts to map the instability strips of β Cep and slowly pulsating B stars using the combination of high-resolution ground-based spectroscopy and uninterrupted space-based photometry. Methods. We fit Keplerian orbits to radial velocities measured from selected absorption lines of high-resolution spectroscopy using synthetic composite spectra to obtain orbital solutions. We use revised masks to obtain optimal light curves from the original pixel-data from the Kepler satellite, which provided better long term stability compared to the pipeline processed light curves. We use various time-series analysis tools to explore and describe the nature of variations present in the light curve. Results. We find two eccentric double-lined spectroscopic binary systems containing a total of three main sequence B-type stars (and one F-type component) of which at least one in each system exhibits light variations. The light curve analysis (combined with spectroscopy) of the system of two B stars points towards the presence of tidally excited g modes in the primary component. We interpret the variations seen in the second system as classical g mode pulsations driven by the κ mechanism in the B type primary, and explain the unexpected power in the p mode region as a result of nonlinear resonant mode excitation.

  8. Exploring pre-main sequence variables of ONC: The new variables

    CERN Document Server

    Parihar, Padmakar; Distefano, Elisa; Shantikumar N S; Medhi, Biman J

    2009-01-01

    Since 2004, we have been engaged in a long-term observing program to monitor young stellar objects in the Orion Nebula Cluster. We have collected about two thousands frames in V, R, and I broad-band filters on more than two hundred nights distributed over five consecutive observing seasons. The high-quality and time-extended photometric data give us an opportunity to address various phenomena associated with young stars. The prime motivations of this project are i) to explore various manifestations of stellar magnetic activity in very young low-mass stars; ii) to search for new pre-main sequence eclipsing binaries; and iii) to look for any EXor and FUor like transient activities associated with YSOs. Since this is the first paper on this program, we give a detailed description of the science drivers, the observation and the data reduction strategies as well. In addition to these, we also present a large number of new periodic variables detected from our first five years of time-series photometric data. Our st...

  9. Pre-Main sequence Turn-On as a chronometer for young clusters: NGC346 as a benchmark

    CERN Document Server

    Cignoni, M; Sabbi, E; Nota, A; Degl'Innocenti, S; Moroni, P G Prada; Gallagher, J S

    2010-01-01

    We present a novel approach to derive the age of very young star clusters, by using the Turn-On (TOn). The TOn is the point in the color-magnitude diagram (CMD) where the pre-main sequence (PMS) joins the main sequence (MS). In the MS luminosity function (LF) of the cluster, the TOn is identified as a peak followed by a dip. We propose that by combining the CMD analysis with the monitoring of the spatial distribution of MS stars it is possible to reliably identify the TOn in extragalactic star forming regions. Compared to alternative methods, this technique is complementary to the turn-off dating and avoids the systematic biases affecting the PMS phase. We describe the method and its uncertainties, and apply it to the star forming region NGC346, which has been extensively imaged with the Hubble Space Telescope (HST). This study extends the LF approach in crowded extragalactic regions and opens the way for future studies with HST/WFC3, JWST and from the ground with adaptive optics.

  10. Testing Scaling Relations for Solar-Like Oscillations from the Main Sequence to Red Giants using Kepler Data

    CERN Document Server

    Huber, D; Stello, D; Hekker, S; Mathur, S; Mosser, B; Verner, G A; Bonanno, A; Buzasi, D L; Campante, T L; Elsworth, Y P; Hale, S J; Kallinger, T; Aguirre, V Silva; Chaplin, W J; De Ridder, J; Garcia, R A; Appourchaux, T; Frandsen, S; Houdek, G; Molenda-Zakowicz, J; Monteiro, M J P F G; Christensen-Dalsgaard, J; Gilliland, R L; Kawaler, S D; Kjeldsen, H; Broomhall, A M; Corsaro, E; Salabert, D; Sanderfer, D T; Seader, S E; Smith, J C

    2011-01-01

    We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main-sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (nu_max), the large frequency separation (Delta_nu) and oscillation amplitudes. We show that the difference of the Delta_nu-nu_max relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M)^s scaling nor the revised scaling relation by Kjeldsen & Bedding (2011) are accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main-sequence to red-giants to a precision of ~25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency ...

  11. High-resolution Imaging of PHIBSS z ˜ 2 Main-sequence Galaxies in CO J = 1 → 0

    Science.gov (United States)

    Bolatto, A. D.; Warren, S. R.; Leroy, A. K.; Tacconi, L. J.; Bouché, N.; Förster Schreiber, N. M.; Genzel, R.; Cooper, M. C.; Fisher, D. B.; Combes, F.; García-Burillo, S.; Burkert, A.; Bournaud, F.; Weiss, A.; Saintonge, A.; Wuyts, S.; Sternberg, A.

    2015-08-01

    We present Karl Jansky Very Large Array observations of the CO J=1-0 transition in a sample of four z˜ 2 main-sequence galaxies. These galaxies are in the blue sequence of star-forming galaxies at their redshift, and are part of the IRAM Plateau de Bure HIgh-z Blue Sequence Survey which imaged them in CO J=3-2. Two galaxies are imaged here at high signal-to-noise, allowing determinations of their disk sizes, line profiles, molecular surface densities, and excitation. Using these and published measurements, we show that the CO and optical disks have similar sizes in main-sequence galaxies, and in the galaxy where we can compare CO J=1-0 and J=3-2 sizes we find these are also very similar. Assuming a Galactic CO-to-H2 conversion, we measure surface densities of {{{Σ }}}{mol}˜ 1200 {M}⊙ pc-2 in projection and estimate {{{Σ }}}{mol}˜ 500-900 {M}⊙ pc-2 deprojected. Finally, our data yields velocity-integrated Rayleigh-Jeans brightness temperature line ratios r31 that are approximately at unity. In addition to the similar disk sizes, the very similar line profiles in J=1-0 and J=3-2 indicate that both transitions sample the same kinematics, implying that their emission is coextensive. We conclude that in these two main-sequence galaxies there is no evidence for significant excitation gradients or a large molecular reservoir that is diffuse or cold and not involved in active star formation. We suggest that r31 in very actively star-forming galaxies is likely an indicator of how well-mixed the star formation activity and the molecular reservoir are.

  12. Multiple stellar populations in Magellanic Cloud clusters - V. The split main sequence of the young cluster NGC 1866

    Science.gov (United States)

    Milone, A. P.; Marino, A. F.; D'Antona, F.; Bedin, L. R.; Piotto, G.; Jerjen, H.; Anderson, J.; Dotter, A.; Criscienzo, M. Di; Lagioia, E. P.

    2017-03-01

    One of the most unexpected results in the field of stellar populations of the last few years is the discovery that some Magellanic Cloud globular clusters younger than ∼400 Myr exhibit bimodal main sequences (MSs) in their colour-magnitude diagrams (CMDs). Moreover, these young clusters host an extended main-sequence turn-off (eMSTO) in close analogy with what is observed in most ∼1-2 Gyr old clusters of both Magellanic Clouds. We use high-precision Hubble Space Telescope photometry to study the young star cluster NGC 1866 in the Large Magellanic Cloud. We discover an eMSTO and a split MS. The analysis of the CMD reveals that (i) the blue MS is the less populous one, hosting about one-third of the total number of MS stars; (ii) red MS stars are more centrally concentrated than blue MS stars; (iii) the fraction of blue MS stars with respect to the total number of MS stars drops by a factor of ∼2 in the upper MS with mF814W ≲ 19.7. The comparison between the observed CMDs and stellar models reveals that the observations are consistent with ∼200 Myr old highly rotating stars on the red MS, with rotation close to critical value, plus a non-rotating stellar population spanning an age interval between ∼140 and 220 Myr, on the blue MS. Noticeable, neither stellar populations with different ages only, nor coeval stellar models with different rotation rates, properly reproduce the observed split MS and eMSTO. We discuss these results in the context of the eMSTO and multiple MS phenomenon.

  13. THE QUADRUPLE PRE-MAIN-SEQUENCE SYSTEM LkCa 3: IMPLICATIONS FOR STELLAR EVOLUTION MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Guillermo; Latham, David W. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Ruiz-Rodriguez, Dary; Prato, L.; Wasserman, Lawrence H. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Badenas, Mariona [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Schaefer, G. H. [CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Mathieu, Robert D., E-mail: gtorres@cfa.harvard.edu [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-08-10

    We report the discovery that the pre-main-sequence (PMS) object LkCa 3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close ({approx}0.''5) visual pair, with one component being a moderately eccentric 12.94 day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented by new near-infrared (NIR) spectroscopy shows both visual components to be double lined; the second one has a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and NIR flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we also detect the rotational signal of the primary in the 4.06 day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting that the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa 3 and the well-known quadruple PMS system GG Tau with the widely used models from the Lyon series for a mixing length parameter of {alpha}{sub ML} = 1.0 strongly favor the Dartmouth models.

  14. The ALMA Redshift 4 Survey (AR4S). I. The massive end of the z = 4 main sequence of galaxies

    Science.gov (United States)

    Schreiber, C.; Pannella, M.; Leiton, R.; Elbaz, D.; Wang, T.; Okumura, K.; Labbé, I.

    2017-03-01

    We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M∗) larger than 5 × 1010M⊙ at 3.5 measurement errors and selection effects: we find a linear relation between SFR and M∗, with a median sSFR = 2.8 ± 0.8 Gyr and a dispersion around that relation of 0.28 ± 0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof that the main sequence of star-forming galaxies was already in place at z = 4, at least among massive galaxies. These new constraints on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that the bulk of star formation in galaxies is driven by the same mechanism from z = 4 to the present day, that is, over at least 90% of the cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the z = 4 galaxy population.

  15. A statistical analysis of X-ray variability in pre-main sequence objects of the Taurus Molecular Cloud

    CERN Document Server

    Stelzer, B; Briggs, K; Micela, G; Scelsi, L; Audard, M; Pillitteri, I; Güdel, M

    2006-01-01

    This work is part of a systematic X-ray survey of the Taurus star forming complex with XMM-Newton. We study the time series of all X-ray sources associated with Taurus members, to statistically characterize their X-ray variability, and compare the results to those for pre-main sequence stars in the Orion Nebula Cluster and to expectations arising from a model where all the X-ray emission is the result of a large number of stochastically occurring flares. We find that roughly half of the detected X-ray sources show variability above our sensitivity limit, and in ~ 26 % of the cases this variability is recognized as flares. Variability is more frequently detected at hard than at soft energies. The variability statistics of cTTS and wTTS are undistinguishable, suggesting a common (coronal) origin for their X-ray emission. We have for the first time applied a rigorous maximum likelihood method in the analysis of the number distribution of flare energies on pre-main sequence stars. In its differential form this di...

  16. The mosaic multiple stellar populations in $\\omega$ Centauri : the Horizontal Branch and the Main Sequence

    CERN Document Server

    Tailo, Marco; D'Antona, Francesca; Caloi, Vittoria; Ventura, Paolo

    2016-01-01

    We interpret the stellar population of $\\omega$ Centauri by means of a population synthesis analysis, following the most recent observational guidelines for input metallicities, helium and [(C+N+O)/Fe] contents. We deal at the same time with the main sequences, sub-giant and horizontal branch data. The reproduction of the observed colour magnitude features is very satisfying and bears interesting hints concerning the evolutionary history of this peculiar stellar ensemble. Our main results are: 1) no significant spread in age is required to fit the colour-magnitude diagram. Indeed we can use coeval isochrones for the synthetic populations, and we estimate that the ages fall within a $\\sim 0.5$ Gyr time interval; in particular the most metal rich population can be coeval (in the above meaning) with the others, if its stars are very helium--rich (Y$\\sim$0.37) and with the observed CNO enhancement ([(C+N+O)/Fe] = + 0.7); 2) a satisfactory fit of the whole HB is obtained, consistent with the choice of the populati...

  17. Pre-main-sequence isochrones -- III. The Cluster Collaboration isochrone server

    CERN Document Server

    Bell, Cameron P M; Naylor, Tim; Mayne, N J; Jeffries, R D; Mamajek, Eric E; Rowe, John

    2014-01-01

    We present an isochrone server for semi-empirical pre-main-sequence model isochrones in the following systems: Johnson-Cousins, Sloan Digital Sky Survey, Two-Micron All-Sky Survey, Isaac Newton Telescope (INT) Wide-Field Camera, and INT Photometric H$\\alpha$ Survey (IPHAS)/UV-Excess Survey (UVEX). The server can be accessed via the Cluster Collaboration webpage {http://www.astro.ex.ac.uk/people/timn/isochrones/}. To achieve this we have used the observed colours of member stars in young clusters with well-established age, distance and reddening to create fiducial loci in the colour-magnitude diagram. These empirical sequences have been used to quantify the discrepancy between the models and data arising from uncertainties in both the interior and atmospheric models, resulting in tables of semi-empirical bolometric corrections (BCs) in the various photometric systems. The model isochrones made available through the server are based on existing stellar interior models coupled with our newly derived semi-empiric...

  18. The main-sequence rotation-colour relation in the Coma Berenices open cluster

    CERN Document Server

    Cameron, A Collier; Hebb, L; Skinner, G; Anderson, D R; Christian, D J; Clarkson, W I; Enoch, B; Irwin, J; Joshi, Y; Haswell, C A; Hellier, C; Horne, K D; Kane, S R; Lister, T A; Maxted, P F L; Norton, A J; Parley, N; Pollacco, D; Ryans, R; Scholz, A; Skillen, I; Smalley, B; Street, R A; West, R G; Wilson, D M; Wheatley, P J

    2009-01-01

    We present the results of a photometric survey of rotation rates in the Coma Berenices (Melotte 111) open cluster, using data obtained as part of the SuperWASP exoplanetary transit-search programme. The goal of the Coma survey was to measure precise rotation periods for main-sequence F, G and K dwarfs in this intermediate-age (~600 Myr) cluster, and to determine the extent to which magnetic braking has caused the stellar spin periods to converge. We find a tight, almost linear relationship between rotation period and J-K colour with a root-mean square scatter of only 2 percent. The relation is similar to that seen among F, G and K stars in the Hyades. Such strong convergence can only be explained if angular momentum is not at present being transferred from a reservoir in the deep stellar interiors to the surface layers. We conclude that the coupling timescale for angular momentum transport from a rapidly-spinning radiative core to the outer convective zone must be substantially shorter than the cluster age, a...

  19. THE EVOLVED MAIN-SEQUENCE CHANNEL: HST AND LBT OBSERVATIONS OF CSS 120422:111127+571239

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, M.; Callanan, P. [Department of Physics, University College Cork, Cork (Ireland); Garnavich, P.; Littlefield, C. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Szkody, P. [Department of Astronomy, University of Washington, Seattle, WA (United States); Pogge, R. [Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43202 (United States)

    2015-12-20

    The “evolved main-sequence (EMS)” channel is thought to contribute significantly to the population of AM CVn-type systems in the Galaxy, and also to the number of cataclysmic variables (CVs) detected below the period minimum for hydrogen rich systems. CSS 120422:J111127+571239 was discovered by the Catalina Sky Survey in 2012 April. Its period was found to be 56 minutes, well below the minimum, and the optical spectrum is clearly depleted in hydrogen relative to helium, but still has two orders of magnitude more hydrogen than AM CVn stars. Doppler tomography of the Hα line hinted at a spiral structure existing in the disk. Here we present spectroscopy of CSS 120422:J111127+571239 using the Cosmic Origins Spectrograph FUV instrument on the Hubble Space Telescope and using the MODS spectrograph on the Large Binocular Telescope. The UV spectrum shows Si iv, N v, and He ii, but no detectable C iv. The anomalous nitrogen/carbon ratio is seen in a small number of other CVs and confirms a unique binary evolution. We also present and compare the optical spectrum of V418 Ser and advocate that it is also an EMS system.

  20. The Evolved Main-sequence Channel: HST and LBT Observations of CSS120422:111127+571239

    Science.gov (United States)

    Kennedy, M.; Garnavich, P.; Callanan, P.; Szkody, P.; Littlefield, C.; Pogge, R.

    2015-12-01

    The “evolved main-sequence (EMS)” channel is thought to contribute significantly to the population of AM CVn-type systems in the Galaxy, and also to the number of cataclysmic variables (CVs) detected below the period minimum for hydrogen rich systems. CSS 120422:J111127+571239 was discovered by the Catalina Sky Survey in 2012 April. Its period was found to be 56 minutes, well below the minimum, and the optical spectrum is clearly depleted in hydrogen relative to helium, but still has two orders of magnitude more hydrogen than AM CVn stars. Doppler tomography of the Hα line hinted at a spiral structure existing in the disk. Here we present spectroscopy of CSS 120422:J111127+571239 using the Cosmic Origins Spectrograph FUV instrument on the Hubble Space Telescope and using the MODS spectrograph on the Large Binocular Telescope. The UV spectrum shows Si iv, N v, and He ii, but no detectable C iv. The anomalous nitrogen/carbon ratio is seen in a small number of other CVs and confirms a unique binary evolution. We also present and compare the optical spectrum of V418 Ser and advocate that it is also an EMS system.

  1. A surprise at the bottom of the main sequence: Rapid rotation and NO H-alpha emission

    Science.gov (United States)

    Basri, Gibor; Marcy, Geoffrey W.

    1995-01-01

    We report Kech Observatory high-resolution echelle spectra from 640-850 nm for eight stars near the faint end of the main sequence. These spectra are the highest resolution spectra of such late-type stars, and clearly resolve the TiO, VO, and atomic lines. The sample includes the field brown-dwarf candidate, BRI 0021-0214 (M9.5+). Very unexpectedly, it shows the most rapid rotation in the entire samples, v sin i approximately 40 km/s, which is 20x faster than typical field nonemission M stars. Equally surprising is that BRI 0021 exhibits no emission or absorptionat H-alpha. We argue that this absence is not simply due to its cool photosphere, but that stellar activity declines in a fundamental way at the end of the main sequence. As it is the first very late M dwarf observed at high spectral resolution, BRI 0021 may be signaling a qualitative change in the angular momentum loss rate among the lowest mass stars. Conventionally, its rapid rotation would have marked BRI 0021 as very young, consistent with the selection effect which arises if the latest-type dwarfs are really brown dwarfs on cooling curves. In any case, it is unprecedented to find no sign of stellar activity in such a rapidly rotating convective star. We also discuss the possible conflict between this observation and the extremely strong H-alpha seen in another very cool star, PC 0025+0447. Extrapolation of M-L relations for BRI 0021 yields M approximately 0.065 solar mass, and the other sample objects have expected masses near the H-burning limit. These include two Pleiades brown-dwarf candidates, four field M6 dwarfs and one late-type T Tauri star. The two Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades membership. Similarly, the late-type T Tauri star has v sin i approximately 30 km/s and H alpha emission indicate of its

  2. VizieR Online Data Catalog: Habitable zones around main-sequence stars (Kopparapu+, 2014)

    Science.gov (United States)

    Kopparapu, R. K.; Ramirez, R. M.; Schottelkotte, J.; Kasting, J. F.; Domagal-Goldman, S.; Eymet, V.

    2017-08-01

    Language: Fortran 90 Code tested under the following compilers/operating systems: ifort/CentOS linux Description of input data: No input necessary. Description of output data: Output files: HZs.dat, HZ_coefficients.dat System requirements: No major system requirement. Fortran compiler necessary. Calls to external routines: None. Additional comments: None (1 data file).

  3. Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler

    DEFF Research Database (Denmark)

    Appourchaux, T.; Chaplin, W. J.; García, R. A.

    2012-01-01

    estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths, and mode heights. We developed and describe a methodology for extracting a single set of mode frequencies from multiple sets derived by different methods and individual scientists. We report on how...

  4. Effective Temperatures of Selected Main-sequence Stars with Most Accurate Parameters

    CERN Document Server

    Soydugan, F; Soydugan, E; Bilir, S; Gökçe, E Yaz; Steer, I; Tüysüz, M; Şenyüz, T; Demircan, O

    2014-01-01

    In this study, the distributions of the double-lined detached binaries (DBs) on the planes of mass-luminosity, mass radius and mass-effective temperature have been studied. We improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2004a). With accurate observational data available to us, a method for improving effective temperatures for eclipsing binaries with accurate masses and radii were suggested.

  5. Effective Temperatures of Selected Main-Sequence Stars with the Most Accurate Parameters

    Science.gov (United States)

    Soydugan, F.; Eker, Z.; Soydugan, E.; Bilir, S.; Gökçe, E. Y.; Steer, I.; Tüysüz, M.; Šenyüz, T.; Demircan, O.

    2015-07-01

    In this study we investigate the distributions of the properties of detached double-lined binaries (DBs) in the mass-luminosity, mass-radius, and mass-effective temperature diagrams. We have improved the classical mass-luminosity relation based on the database of DBs by Eker et al. (2014a). Based on the accurate observational data available to us we propose a method for improving the effective temperatures of eclipsing binaries with accurate mass and radius determinations.

  6. The Great Escape III: Placing post-main-sequence evolution of planetary and binary systems in a Galactic context

    CERN Document Server

    Veras, Dimitri; Wyatt, Mark C; Tout, Christopher A

    2013-01-01

    Our improving understanding of the life cycle of planetary systems prompts investigations of the role of the Galactic environment before, during and after Asymptotic Giant Branch (AGB) stellar evolution. Here, we investigate the interplay between stellar mass loss, Galactic tidal perturbations, and stellar flybys for evolving stars which host one planet, smaller body or stellar binary companion and reside in the Milky Way's bulge or disc. We find that the potential evolutionary pathways from a main sequence (MS) to a white dwarf (WD) planetary system are a strong function of Galactocentric distance only with respect to the prevalence of stellar flybys. Planetary ejection and collision with the parent star should be more common towards the bulge. At a given location anywhere in the Galaxy, if the mass loss is adiabatic, then the secondary is likely to avoid close flybys during AGB evolution, and cannot eventually escape the resulting WD because of Galactic tides alone. Partly because AGB mass loss will shrink ...

  7. YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Calderon, M.; Stauffer, J. R.; Rebull, L. M. [Spitzer Science Center, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States); Stassun, K. G. [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Vrba, F. J. [U. S. Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Road, Flagstaff, AZ 86001-8521 (United States); Prato, L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Hillenbrand, L. A.; Carpenter, J. M. [Astronomy Department, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States); Terebey, S.; Angione, J. [Department of Physics and Astronomy, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Covey, K. R. [Department of Astronomy, Cornell University, 226 Space Sciences Building, Ithaca, NY 14853 (United States); Terndrup, D. M. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Gutermuth, R. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Song, I. [Physics and Astronomy Department, University of Georgia, Athens, GA 30602-2451 (United States); Plavchan, P. [NASA Exoplanet Science Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Marchis, F. [SETI Institute, Carl Sagan Center, 189 N San Bernado Av, Mountain View, CA 94043 (United States); Garcia, E. V. [Department of Physics, Fisk University, 1000 17th Ave. N, Nashville, TN 37208 (United States); Margheim, S. [Gemini Observatory, Southern Operations Center, Casilla 603, La Serena (Chile); Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Irwin, J. M., E-mail: mariamc@cab.inta-csic.es [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

    2012-07-10

    Eclipsing binaries (EBs) provide critical laboratories for empirically testing predictions of theoretical models of stellar structure and evolution. Pre-main-sequence (PMS) EBs are particularly valuable, both due to their rarity and the highly dynamic nature of PMS evolution, such that a dense grid of PMS EBs is required to properly calibrate theoretical PMS models. Analyzing multi-epoch, multi-color light curves for {approx}2400 candidate Orion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have identified 12 stars whose light curves show eclipse features. Four of these 12 EBs are previously known. Supplementing our light curves with follow-up optical and near-infrared spectroscopy, we establish two of the candidates as likely field EBs lying behind the ONC. We confirm the remaining six candidate systems, however, as newly identified ONC PMS EBs. These systems increase the number of known PMS EBs by over 50% and include the highest mass ({theta}{sup 1} Ori E, for which we provide a complete set of well-determined parameters including component masses of 2.807 and 2.797 M{sub Sun }) and longest-period (ISOY J053505.71-052354.1, P {approx} 20 days) PMS EBs currently known. In two cases ({theta}{sup 1} Ori E and ISOY J053526.88-044730.7), enough photometric and spectroscopic data exist to attempt an orbit solution and derive the system parameters. For the remaining systems, we combine our data with literature information to provide a preliminary characterization sufficient to guide follow-up investigations of these rare, benchmark systems.

  8. The overlooked role of stellar variability in the extended main sequence of LMC intermediate-age clusters

    CERN Document Server

    Salinas, Ricardo; Strader, Jay; Vivas, A Katherina; Ramos, Rodrigo Contreras

    2016-01-01

    Intermediate-age star clusters in the Large Magellanic Cloud show extended main sequence turn offs (MSTOs), which are not consistent with a canonical single stellar population. These broad turn offs have been interpreted as evidence for extended star formation and/or stellar rotation. Since most of these studies use single frames per filter to do the photometry, the presence of variable stars near the MSTO in these clusters has remained unnoticed and their impact totally ignored. We model the influence of Delta Scuti using synthetic CMDs, adding variable stars following different levels of incidence and amplitude distributions. We show that Delta Scuti observed at a single phase will produce a broadening of the MSTO without affecting other areas of a CMD like the upper MS or the red clump; furthermore, the amount of spread introduced correlates with cluster age as observed. This broadening is constrained to ages ~ 1-3 Gyr when the MSTO area crosses the instability strip, which is also consistent with observat...

  9. Multiple stellar populations in Magellanic Cloud clusters. IV. The double main sequence of the young cluster NGC1755

    CERN Document Server

    Milone, A P; D'Antona, F; Bedin, L R; Da Costa, G S; Jerjen, H; Mackey, A D

    2016-01-01

    Nearly all the star clusters with ages of ~1-2 Gyr in both Magellanic Clouds exhibit an extended main-sequence turn off (eMSTO) whose origin is under debate. The main scenarios suggest that the eMSTO could be either due to multiple generations of stars with different ages or to coeval stellar populations with different rotation rates. In this paper we use Hubble-Space-Telescope images to investigate the ~80-Myr old cluster NGC1755 in the LMC. We find that the MS is split with the blue and the red MS hosting about the 25% and the 75% of the total number of MS stars, respectively. Moreover, the MSTO of NGC1755 is broadened in close analogy with what is observed in the ~300-Myr-old NGC1856 and in most intermediate-age Magellanic-Cloud clusters. We demonstrate that both the split MS and the eMSTO are not due to photometric errors, field-stars contamination, differential reddening, or non-interacting binaries. These findings make NGC1755 the youngest cluster with an eMSTO. We compare the observed CMD with isochron...

  10. Two new SB2 binaries with main sequence B-type pulsators in the Kepler field

    Science.gov (United States)

    Pápics, P. I.; Tkachenko, A.; Aerts, C.; Briquet, M.; Marcos-Arenal, P.; Beck, P. G.; Uytterhoeven, K.; Triviño Hage, A.; Southworth, J.; Clubb, K. I.; Bloemen, S.; Degroote, P.; Jackiewicz, J.; McKeever, J.; Van Winckel, H.; Niemczura, E.; Gameiro, J. F.; Debosscher, J.

    2013-05-01

    Context. OB stars are important in the chemistry and evolution of the Universe, but the sample of targets that is well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Aims: We extend this sample with two spectroscopic binary systems. Our goal is to provide orbital solutions, fundamental parameters, and abundances from disentangled high-resolution high signal-to-noise spectra, as well as to analyse and interpret the variations in the Kepler light curve of these carefully selected targets. This way we continue our efforts to map the instability strips of β Cep and slowly pulsating B stars using the combination of high-resolution ground-based spectroscopy and uninterrupted space-based photometry. Methods: We fit Keplerian orbits to radial velocities measured from selected absorption lines of high-resolution spectroscopy using synthetic composite spectra to obtain orbital solutions. We used revised masks to obtain optimal light curves from the original pixel-data from the Kepler satellite, which provided better long-term stability compared to the pipeline-processed light curves. We used various time-series analysis tools to explore and describe the nature of variations present in the light curve. Results: We find two eccentric double-lined spectroscopic binary systems containing a total of three main sequence B-type stars (and one F-type component), of which at least one in each system exhibits light variations. The light curve analysis (combined with spectroscopy) of the system of two B stars points towards the presence of tidally excited g modes in the primary component. We interpret the variations seen in the second system as classical g mode pulsations driven by the κ mechanism in the B type primary, and explain the unexpected power in the p mode region as the result of nonlinear resonant mode excitation. Based on observations made with the Mercator telescope, operated by the

  11. Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions

    CERN Document Server

    Liu, Z W; Roepke, F K; Edelmann, P; Wang, B; Kromer, M; Hillebrandt, W; Han, Z W

    2012-01-01

    The identity of the progenitor systems of SNe Ia is still uncertain. In the single-degenerate (SD) scenario, the interaction between the SN blast wave and the outer layers of a main sequence (MS) companion star strips off H-rich material which is then mixed into the ejecta. Strong contamination of the SN ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the SD progenitor model. In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. We use Eggleton's stellar evolution code including the optically thick accretion wind model and the possibility of the effects of accretion disk instabilities to obtain realistic models of companions for different progenitor systems. The impact of the SN blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing t...

  12. Kinder Lernen Deutsch Materials Evaluation Project: Grades K-8.

    Science.gov (United States)

    American Association of Teachers of German.

    The Kinder Lernen Deutsch (Children Learn German) project, begun in 1987, is designed to promote German as a second language in grades K-8. The project is premised on the idea that the German program will contribute to the total development of the child and the child's personality. Included in this guide are a selection of recommended core…

  13. How to Weave... the Web Into K-8 Science

    Science.gov (United States)

    Wetzel, David R.

    2005-01-01

    Like a search engine for science teachers, How to... "Weave the Web into K-8 Science" is a custom-made guide to bringing the best of the Internet into the classroom. Author David Wetzel has done the work of locating online materials. The book offers resources for Web-based science teaching and learning plus online technical help for both…

  14. Fostering Creativity in Children, K-8: Theory and Practice.

    Science.gov (United States)

    Lynch, Mervin D., Ed.; Harris, Carole Ruth, Ed.

    This book identifies strategies for use by classroom teachers in grades K-8 to nurture the development of creativity. Section 1 offers general strategies to stimulate productive thinking. Section 2 examines personality, creative thinking, and appropriate teaching strategies. Section 3 is dedicated to teaching special groups. Section 4 focuses on…

  15. Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    Science.gov (United States)

    Kóspál, Á.; Salter, D. M.; Hogerheijde, M. R.; Moór, A.; Blake, G. A.

    2011-03-01

    Context. Recent observations of the low-mass pre-main sequence (PMS), eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are briefly capable of interacting and forced to reorganize, typically near periastron. Aims: We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists entirely of short-period, close-separation binaries that possess either a high orbital eccentricity (e > 0.1) or a circular orbit (e ≈ 0). Methods: Using the MAMBO2 array on the IRAM 30 m telescope, we carried out continuous monitoring at 1.25 mm (240 GHz) over a 4-night period during which all of the high-eccentricity binaries approached periastron. We also obtained simultaneous optical VRI measurements, since a strong link is often observed between stellar reconnection events (traced via X-rays) and optical brightenings. Results: UZ Tau E is the only source to be detected at millimeter wavelengths, and it exhibited significant variation (F1.25mm = 87-179 mJy); it is also the only source to undergo strong simultaneous optical variability (ΔR ≈ 0.9 mag). The binary possesses the largest orbital eccentricity in the current sample, a predicted factor in star-star magnetic interaction events. With orbital parameters and variable accretion activity similar to DQ Tau, the millimeter behavior of UZ Tau E draws many parallels to the DQ Tau model for colliding magnetospheres. However, on the basis of our observations alone, we cannot determine whether the variability is repetitive, or if it

  16. Head rotation trajectories compared with eye saccades by main sequence relationships.

    Science.gov (United States)

    Stark, L; Zangemeister, W H; Edwards, J; Grinberg, J; Jones, A; Lehman, S; Lubock, P; Narayan, V; Nystrom, M

    1980-08-01

    A helmet apparatus permitted duration, peak velocity, and peak acceleration measurements as functions of magnitude of horizontal head rotation; these "main sequence" data give evidence for multipulse-step neurological signals appropriate for time optimal control of head rotation similar to those of saccadic eye movements.

  17. From CoRoT 102899501 to the Sun. A time evolution model of chromospheric activity on the main sequence

    CERN Document Server

    Gondoin, P; Fridlund, M; Frasca, A; Guenther, E W; Hatzes, A; Deeg, H J; Parviainen, H; Eigmueller, P; Deleuil, M

    2012-01-01

    Using a model based on the rotational modulation of the visibility of active regions, we analyse the high-accuracy CoRoT lightcurve of the active young star CoRoT102899501. Spectroscopic follow-up observations are used to derive its fundamental parameters. We compare its chromospheric activity level with a model of chrosmospheric activity evolution established by combining relationships between the R'HK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. We measure the spot coverage of the stellar surface as a function of time, and find evidence for a tentative increase from 5-14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on CoRoT102899501 is corroborated by a strong emission in the Balmer and Ca II HK lines (logR'HK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625+/-0.002 days and do not show evidence for differential rotation. The effective temperature (Teff=...

  18. Lifestyles of the Stars.

    Science.gov (United States)

    National Aeronautics and Space Administration, Cocoa Beach, FL. John F. Kennedy Space Center.

    Some general information on stars is provided in this National Aeronautics and Space Administration pamphlet. Topic areas briefly discussed are: (1) the birth of a star; (2) main sequence stars; (3) red giants; (4) white dwarfs; (5) neutron stars; (6) supernovae; (7) pulsars; and (8) black holes. (JN)

  19. MML 53: a new low-mass, pre-main sequence eclipsing binary in the Upper Centarus-Lupus Region discovered by SuperWASP

    CERN Document Server

    Hebb, L; Aigrain, S; Collier-Cameron, A; Hodgkin, S T; Irwin, J M; Maxted, P F L; Pollacco, D; Street, R A; Wilson, D M; Stassun, K G

    2010-01-01

    We announce the discovery of a new low-mass, pre-main sequence eclipsing binary, MML 53. Previous observations of MML 53 found it to be a pre-main sequence spectroscopic multiple associated with the 15-22 Myr Upper Centaurus Lupus cluster. We identify the object as an eclipsing binary for the first time through the analysis of multiple seasons of time series photometry from the SuperWASP transiting planet survey. Re-analysis of a single archive spectrum shows MML 53 to be a spatially unresolved triple system of young stars which all exhibit significant lithium absorption. Two of the components comprise an eclipsing binary with period, P = 2.097891(6) +- 0.000005 and mass ratio, q~0.8. Here, we present the analysis of the discovery data.

  20. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable

    CERN Document Server

    Mustill, Alexander J; Villaver, Eva; Veras, Dimitri; Davis, Philip J; Horner, Jonathan; Wittenmyer, Robert A

    2013-01-01

    Recent observations of the NN Serpentis post-common envelope binary system have revealed eclipse timing variations that have been attributed to the presence of two Jovian-mass exoplanets. Under the assumption that these planets are real and survived from the binary's Main Sequence state, we reconstruct initial binaries that give rise to the present NN Ser configuration and test the dynamical stability of the original system. Under standard assumptions about binary evolution, we find that survival of the planets through the entire Main Sequence life-time is very unlikely. Hence, we conclude that the planets are not survivors from before the Common Envelope phase, implying that either they formed recently out of material ejected from the primary, or that the observed signals are of non-planetary origin.

  1. Definition of the Pleiades Main Sequence in the Hertzsprung-Russell Diagram

    Science.gov (United States)

    Hansen-Ruiz, C. S.; van Leeuwen, F.

    1997-08-01

    The Pleiades main sequence is intrinsically of very small width. Disturbances to this width come primarily from three sources: local interstellar reddening (related to the reflection nebulae), multiplicity and variations in the distance moduli related to the size of the cluster (~20 pc diameter). Walraven 5-channel photometry can be used to remove most of the reddening related effects. A full literature survey was made concerning multiplicity to provide information needed to correct for multiplicity effects. The locus of the resulting corrected main sequence can be determined using Hipparcos parallaxes (van Leeuwen and Hansen-Ruiz 1997), providing a well defined observational isochrone for the study of stellar evolution and stellar structure. Preliminary results are presented.

  2. Discovery of ZZ Cetis in detached white dwarf plus main-sequence binaries

    CERN Document Server

    Pyrzas, S; Hermes, J J; Copperwheat, C M; Rebassa-Mansergas, A; Dhillon, V S; Littlefair, S P; Marsh, T R; Parsons, S G; Savoury, C D J; Schreiber, M R; Barros, S C C; Bento, J; Breedt, E; Kerry, P

    2014-01-01

    We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective temperatures of the WDs. We observed a total of 26 systems using ULTRACAM mounted on ESO's 3.5m New Technology Telescope (NTT) at La Silla. Our photometric observations reveal pulsations in seven WDs of our sample, including the first pulsating white dwarf with a main-sequence companion in a post common envelope binary, SDSSJ1136+0409. Asteroseismology of these new pulsating systems will provide crucial insight into how binary interactions, particularly the common envelope phase, affect the internal structure and evolution of WDs. In addition, our observations have revealed the partially eclipsing nature of one of our targets, SDSSJ1223-0056.

  3. Photometric amplitudes and phases of B-type main sequence pulsators: sources of inaccuracy

    CERN Document Server

    Szewczuk, Wojciech

    2010-01-01

    We discuss all possible sources of uncertainties in theoretical values of the photometric amplitudes and phases of B-type main sequence pulsators. These observables are of particular importance because they contain information about the mode geometry as well as about stellar physics. Here, we study effects of various parameters coming both from theory of linear nonadiabatic oscillations and from models of stellar atmospheres. In particular, we show effects of chemical composition, opacities and, for the first time, effects of the NLTE atmospheres.

  4. A Critical Assessment of Ages Derived Using Pre-Main-Sequence Isochrones in Colour-Magnitude Diagrams

    Science.gov (United States)

    Bell, Cameron P. M.

    2012-11-01

    In this thesis a critical assessment of the ages derived using theoretical pre-main-sequence (pre-MS) stellar evolutionary models is presented by comparing the predictions to the low-mass pre-MS population of 14 young star-forming regions (SFRs) in colour-magnitude diagrams (CMDs). Deriving pre-MS ages requires precise distances and estimates of the reddening. Therefore, the main-sequence (MS) members of the SFRs have been used to derive a self-consistent set of statistically robust ages, distances and reddenings with associated uncertainties using a maximum-likelihood fitting statistic and MS evolutionary models. A photometric method for de-reddening individual stars - known as the Q-method - in regions where the extinction is spatially variable has been updated and is presented. The effects of both the model dependency and the SFR composition on these derived parameters are also discussed. The problem of calibrating photometric observations of red pre-MS stars is examined and it is shown that using observations of MS stars to transform the data into a standard photometric system can introduce significant errors in the position of the pre-MS locus in CMD space. Hence, it is crucial that precise photometric studies - especially of pre-MS objects - be carried out in the natural photometric system of the observations. This therefore requires a robust model of the system responses for the instrument used, and thus the calculated responses for the Wide-Field Camera on the Isaac Newton Telescope are presented. These system responses have been tested using standard star observations and have been shown to be a good representation of the photometric system. A benchmark test for the pre-MS evolutionary models is performed by comparing them to a set of well-calibrated CMDs of the Pleiades in the wavelength regime 0.4-2.5 μm. The masses predicted by these models are also tested against dynamical masses using a sample of MS binaries by calculating the system magnitude in a

  5. Deep 2MASS Photometry of M67 and Calibration of the Main Sequence J-Ks Color Difference as an Age Indicator

    CERN Document Server

    Sarajedini, Ata; Kirkpatrick, Allison

    2009-01-01

    We present an analysis of Two Micron All Sky Survey (2MASS) calibration photometry of the old open cluster M67 (NGC 2682). The proper motion-cleaned color-magnitude diagram (CMD) resulting from these data extends ~3 magnitudes deeper than one based on data from the point source catalog. The CMD extends from above the helium-burning red clump to a faint limit that is more than 7 magnitudes below the main sequence turnoff in the Ks band. After adopting a reddening of E(B-V) = 0.041 +/- 0.004 and a metal abundance of [Fe/H] = -0.009 +/- 0.009 based on a survey of published values, we fit the unevolved main sequence of M67 to field main sequence stars with 2MASS photometry and Hipparcos parallaxes. This analysis yields distance moduli of (m-M)Ks = 9.72 +/- 0.05 and (m-M)o = 9.70 +/- 0.05, which are consistent with published values. We compare the theoretical isochrones of Girardi et al. and Dotter et al. to the CMD of M67 and comment on the relative merits of each set of models. These comparisons suggest an age b...

  6. The SDSS spectroscopic catalogue of white dwarf-main sequence binaries: new identifications from DR9-12

    CERN Document Server

    Rebassa-Mansergas, A; Parsons, S G; Gaensicke, B T; Schreiber, M R; Garcia-Berro, E; Liu, X -W; Koester, D

    2016-01-01

    We present an updated version of the spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS). We identify 939 WDMS binaries within the data releases (DR) 9-12 of SDSS plus 40 objects from DR 1-8 that we missed in our previous works, 646 of which are new. The total number of spectroscopic SDSS WDMS binaries increases to 3294. This is by far the largest and most homogeneous sample of compact binaries currently available. We use a decomposition/fitting routine to derive the stellar parameters of all systems identified here (white dwarf effective temperatures, surface gravities and masses, and secondary star spectral types). The analysis of the corresponding stellar parameter distributions shows that the SDSS WDMS binary population is seriously affected by selection effects. We also measure the NaI 8183.27, 8194.81 absorption doublet and Halpha emission radial velocities (RV) from all SDSS WDMS binary spectra identified in this work. 98 objects are found to di...

  7. Differential rotation on both components of the pre main-sequence binary system HD 155555

    OpenAIRE

    Dunstone, N. J.; Hussain, G A J; Cameron, A. Collier; Marsden, S. C.; Jardine, M.; Barnes, J. R.; Vlex, J. C. Ramirez; Donati, J.-F.

    2008-01-01

    We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole...

  8. Differential rotation on both components of the pre main-sequence binary system HD 155555

    OpenAIRE

    Dunstone, N. J.; Hussain, G. A. J.; Cameron, A. Collier; Marsden, S. C.; Jardine, M.; Barnes, J.R.; Vlex, J. C. Ramirez; Donati, J. -F.

    2008-01-01

    We present the first measurements of surface differential rotation on a pre-main sequence binary system. Using intensity (Stokes I) and circularly polarised (Stokes V) timeseries spectra, taken over eleven nights at the Anglo-Australian Telescope (AAT), we incorporate a solar-like differential rotation law into the surface imaging process. We find that both components of the young, 18 Myr, HD 155555 (V824 Ara, G5IV + K0IV) binary system show significant differential rotation. The equator-pole...

  9. Preparing K-8 Teachers to Conduct Inquiry Oriented Science Education

    Science.gov (United States)

    Gross, N. A.; Garik, P.; Nolan, M. D.; Winrich, C.; Derosa, D.; Duffy, A.; Jariwala, M.; Konjoian, B.

    2010-12-01

    The need for STEM professional development for K-8 teachers is well documented. Such professional development promises broad impact, but it must have a positive effect on teachers’ knowledge and skills: 1) a focus on content knowledge, 2) opportunities for active learning, and 3) coherence with other activities. However, sustained impact is only achieved through intensive professional development. In response to the need for science education courses for K-8 teachers, for the past three years, the School of Education and the Department of Physics have collaborated to offer K-8 teachers science content courses of extended duration (75 contact hours) that emphasize inquiry based learning and investigation. The School of Education graduate courses have consisted of five three-hour meetings during the months of May and June, and a two week intensive period in July when the participants come for six hours per day. The alignment of these courses with inquiry teaching was confirmed using the Reformed Teaching Observation Protocol (RTOP). Courses offered in this format have been: --Immersion in Green Energy (IGE) -alternative sources of energy and how electricity is generated (75 teachers over the last 3 years), --Immersion in Global Energy Distribution (IGED) -understanding global climate as an outcome of insolation, convection, and radiation (27 teachers over the last 2 years) The Immersion courses cover a spectrum for inquiry learning that begins with introduction to equipment and experiments through guided discovery and culminates with students taking responsibility for defining and completing their own investigative projects. As a specific example, we consider here the IGED course. For IGED, the first five sessions are devoted to content and learning to use experimental equipment such as digital data collection probes to measure temperature, CO2 and salinity. Content addressed during these sessions include the differentiation between conduction, convection, and

  10. White dwarf-main sequence binaries from LAMOST: the DR1 catalogue

    CERN Document Server

    Ren, Juanjuan; Luo, Ali; Zhao, Yongheng; Xiang, Maosheng; Liu, Xiaowei; Zhao, Gang; Jin, Ge; Zhang, Yong

    2014-01-01

    Context. White dwarf-main sequence (WDMS) binaries are used to study several different important open problems in modern astrophysics. Aims. The Sloan Digital Sky Survey (SDSS) identified the largest catalogue of WDMS binaries currently known. However, this sample is seriously affected by selection effects and the population of systems containing cool white dwarfs and early-type companions is under-represented.Here we search for WDMS binaries within the spectroscopic data release 1 of the LAMOST (Large sky Area Multi-Object fiber Spectroscopic Telescope) survey. LAMOST and SDSS follow different target selection algorithms. Hence, LAMOST WDMS binaries may be drawn from a different parent population and thus help in overcoming the selection effects incorporated by SDSS on the current observed population. Methods. We develop a fast and efficient routine based on the wavelet transform to identify LAMOST WDMS binaries containing a DA white dwarf and a M dwarf companion, and apply a decomposition/fitting routine to...

  11. Post main sequence evolution of icy minor planets: Implications for water retention and white dwarf pollution

    CERN Document Server

    Malamud, Uri

    2016-01-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water depleted planetary material. Among tens of known cases, merely two cases involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results show that previous studies have either underestimated or overestimated water retention. We also reaffirm that water can survive in a variety of circumstanc...

  12. The discovery of a low mass, pre-main-sequence stellar association around $\\gamma$ Velorum

    CERN Document Server

    Pozzo, M; Naylor, T; Totten, E J; Harmer, S; Kenyon, M E

    2000-01-01

    We report the serendipitous discovery of a population of low mass, pre-mainsequence stars (PMS) in the direction of the Wolf-Rayet/O-star binary systemgamma^{2} Vel and the Vela OB2 association. We argue that gamma^{2} Vel and thelow mass stars are truly associated, are approximately coeval and that both areat distances between 360-490 pc, disagreeing at the 2 sigma level with therecent Hipparcos parallax of gamma^{2} Vel, but consistent with older distanceestimates. Our results clearly have implications for the physical parameters ofthe gamma^{2} Vel system, but also offer an exciting opportunity to investigatethe influence of high mass stars on the mass function and circumstellar disclifetimes of their lower mass PMS siblings.

  13. Differential rotation of main-sequence dwarfs and its dynamo-efficiency

    CERN Document Server

    Kitchatinov, L L

    2010-01-01

    A new version of a numerical model of stellar differential rotation based on mean-field hydrodynamics is presented and tested by computing the differential rotation of the Sun. The model is then applied to four individual stars including two moderate and two fast rotators to reproduce their observed differential rotation quite closely. A series of models for rapidly rotating ($P_{rot} = 1$~day) stars of different masses and compositions is generated. The effective temperature is found convenient to parameterize the differential rotation: variations with metallicity, that are quite pronounced when the differential rotation is considered as a function of the stellar mass, almost disappear in the dependence of differential rotation on temperature. The differential rotation increases steadily with surface temperature to exceed the largest differential rotation observed to date for the hottest F-stars we considered. This strong differential rotation is, however, found not to be efficient for dynamos when the effic...

  14. A Search for Radio Emission at the Bottom of the Main Sequence and Beyond

    CERN Document Server

    Krishnamurthi, A; Linsky, J L; Krishnamurthi, Anita; Leto, Giuseppe; Linsky, Jeffrey L.

    1999-01-01

    We have used the VLA to conduct a deep search for 3.6 cm radio emission from nearby very low mass stars and brown dwarfs. The Gudel-Benz relation is used to predict radio luminosities for some very low mass stars and candidate brown dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small, whereas the measured radio flux from the brown dwarf candidate Rho Oph GY 31 is relatively strong. In light of our new observations, this object remains an anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for our targets.

  15. A Search for Radio Emission at the Bottom of the Main Sequence and Beyond

    Science.gov (United States)

    Krishnamurthi, Anita; Leto, Giuseppe; Linsky, Jeffrey L.

    1999-09-01

    We have used the VLA to conduct a deep search for 3.6 cm radio emission from nearby very low mass stars and brown dwarfs. The Güdel-Benz relation is used to predict radio luminosities for some very low mass stars and candidate brown dwarfs with measured X-ray fluxes. The predicted radio fluxes are quite small, whereas the measured radio flux from the brown dwarf candidate GY 31 in the rho Oph cloud is relatively strong. In light of our new observations, this object remains an anomaly. We present upper limits for our measured radio fluxes at 3.6 cm for our targets.

  16. A Comparison of Elementary/K-8 and Middle Schools' Suspension Rates

    Science.gov (United States)

    Arcia, Emily

    2007-01-01

    This study was undertaken to examine the suspension percentages among three sixth-grade transition groups: (a) students who attended elementary or K-8 schools in sixth grade and K-8 schools in seventh grade, (b) students who attended elementary or K-8 schools in sixth grade and middle schools in seventh grade, and (c) students who attended middle…

  17. A Tale of Two Anomalies: Depletion, Dispersion, and the Connection between the Stellar Lithium Spread and Inflated Radii on the Pre-main Sequence

    Science.gov (United States)

    Somers, Garrett; Pinsonneault, Marc H.

    2014-07-01

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T eff is nearly universal, and sets in by ~200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  18. A tale of two anomalies: Depletion, dispersion, and the connection between the stellar lithium spread and inflated radii on the pre-main sequence

    Energy Technology Data Exchange (ETDEWEB)

    Somers, Garrett; Pinsonneault, Marc H., E-mail: somers@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43201 (United States)

    2014-07-20

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age, and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass-dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed T{sub eff} is nearly universal, and sets in by ∼200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispersion in stars of fixed mass and age, during the epoch of pre-MS Li destruction, is responsible for the spread in Li abundances and the correlation between rotation and Li in young cool stars, most well known in the Pleiades. We calculate stellar models, inflated to match observed radius anomalies in magnetically active systems, and the resulting range of Li abundances reproduces the observed patterns of young clusters. We discuss ramifications for pre-MS evolutionary tracks and age measurements of young clusters, and suggest an observational test.

  19. Stellar Boron Abundances near the Main-sequence Turnoff of the Open Cluster NGC 3293 and Implications for the Efficiency of Rotationally Driven Mixing in Stellar Envelopes

    Science.gov (United States)

    Proffitt, Charles R.; Lennon, Daniel J.; Langer, Norbert; Brott, Ines

    2016-06-01

    Spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and the Space Telescope Imaging Spectrograph covering the B iii resonance line have been obtained for 10 early-B stars near the turnoff of the young Galactic open cluster NGC 3293. This is the first sample of boron abundance determinations in a single, clearly defined population of early-B stars that also covers a substantial range of projected rotational velocities. In most of these stars we detect partial depletion of boron at a level consistent with that expected for rotational mixing in single stars, but inconsistent with expectations for depletion from close binary evolution. However, our results do suggest that the efficiency of rotational mixing is at or slightly below the low end of the range predicted by the available theoretical calculations. The two most luminous targets observed have a very large boron depletion and may be the products of either binary interactions or post-main-sequence evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal GO-12520.

  20. A systematic study of effects of stellar rotation, age spread and binaries on color-magnitude diagrams with extended main-sequence turn-offs

    CERN Document Server

    Li, Zhongmu; Zhang, Liyun; Zhang, Xi; Chen, Li

    2016-01-01

    Stellar rotation, age spread and binary stars are thought to be three most possible causes of the peculiar color-magnitude diagrams (CMDs) of some star clusters, which exhibit extended main-sequence turn-offs (eMSTOs). It is far from getting a clear answer. This paper studies the effects of three above causes on the CMDs of star clusters systematically. A rapid stellar evolutionary code and a recently published database of rotational effects of single stars have been used, via an advanced stellar population synthesis technique. As a result, we find a consistent result for rotation to recent works, which suggests that rotation is able to explain, at least partially, the eMSTOs of clusters, if clusters are not too old ($<$ 2.0\\,Gyr). In addition, an age spread of 200 to 500\\,Myr reproduces extended turn-offs for all clusters younger than 2.5\\,Gyr, in particular, for those younger than 2.2\\,Gyr. Age spread also results in extended red clumps (eRCs) for clusters younger than 0.5\\,Gyr. The younger the clusters,...

  1. CoRoT 223992193: A new, low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk

    CERN Document Server

    Gillen, Edward; McQuillan, Amy; Bouvier, Jerome; Hodgkin, Simon; Alencar, Silvia H P; Terquem, Caroline; Southworth, John; Gibson, Neale P; Cody, Ann Marie; Lendl, Monika; Morales-Calderón, Maria; Favata, Fabio; Stauffer, John; Micela, Giuseppina

    2013-01-01

    We present the discovery of CoRoT 223992193, a double-lined, detached eclipsing binary, comprising two pre-main sequence M dwarfs, discovered by the CoRoT space mission during a 23-day observation of the 3 Myr old NGC 2264 star-forming region. Using multi-epoch optical and near-IR follow-up spectroscopy with FLAMES on the Very Large Telescope and ISIS on the William Herschel Telescope we obtain a full orbital solution and derive the fundamental parameters of both stars by modelling the light curve and radial velocity data. The orbit is circular and has a period of $3.8745745 \\pm 0.0000014$ days. The masses and radii of the two stars are $0.67 \\pm 0.01$ and $0.495 \\pm 0.007$ $M_{\\odot}$ and $1.30 \\pm 0.04$ and $1.11 ~^{+0.04}_{-0.05}$ $R_{\\odot}$, respectively. This system is a useful test of evolutionary models of young low-mass stars, as it lies in a region of parameter space where observational constraints are scarce; comparison with these models indicates an apparent age of $\\sim$3.5-6 Myr. The systemic ve...

  2. A High-Resolution Multiband Survey of Westerlund 2 With the Hubble Space Telescope. II. Mass accretion in the Pre-Main Sequence Population

    CERN Document Server

    Zeidler, Peter; Nota, Antonella; Sabbi, Elena; Pasquali, Anna; Tosi, Monica; Bonanos, Alceste Z; Christian, Carol

    2016-01-01

    We present a detailed analysis of the pre-main-sequence (PMS) population of the young star cluster Westerlund~2 (Wd2), the central ionizing cluster of the HII region RCW 49, using data from a high resolution multi-band survey with the Hubble Space Telescope. The data were acquired with the Advanced Camera for Surveys in the F555W, F814W, and F658N filters and with the Wide Field Camera 3 in the F125W, F160W, and F128N filters. We find a mean age of the region of 1.04+-0.72 Myr. The combination of dereddened F555W and F814W photometry in combination with F658N photometry allows us to study and identify stars with H_alpha excess emission. With a careful selection of 240 bona-fide PMS H_alpha excess emitters we were able to determine their H_alpha luminosity, which has a mean value L(H_alpha)=1.67 x 10^{-31} erg s^{-1}. Using the PARSEC 1.2S isochrones to obtain the stellar parameters of the PMS stars we determined a mean mass accretion rate \\dot M_acc=4.43 x 10^{-8} M_sun yr^{-1} per star. A careful analysis of...

  3. EXPORT : Spectral classification and projected rotational velocities of Vega-type and pre-main sequence stars

    NARCIS (Netherlands)

    Mora, A; Merin, B; Solano, E; Montesinos, B; de Winter, D; Eiroa, C; Ferlet, R; Grady, CA; Miranda, LF; Oudmaijer, RD; Palacios, J; Quirrenbach, A; Harris, AW; Rauer, H; Cameron, A; Deeg, HJ; Garzon, F; Penny, A; Schneider, J; Tsapras, Y; Wesselius, PR

    2001-01-01

    In this paper we present the first comprehensive results extracted from the spectroscopic campaigns carried out by the EXPORT (EXoPlanetary Observational Research Team) consortium. During 1998-1999, EXPORT carried out an intensive observational effort in the framework of the origin and evolution of

  4. The Mass Function of Main Sequence Stars in NGC6397 from Near IR and Optical High Resolution HST Observations

    CERN Document Server

    De Marchi, G; Pulonen, L E; Marchi, Guido De; Paresce, Francesco; Pulone, Luigi

    1999-01-01

    We have investigated the properties of the stellar mass function in the globular cluster NGC6397 using a large set of HST observations that include WFPC2 images in V and I, obtained at ~4' and 10' radial distances, and a series of deep images in the J and H bands obtained with the NIC2 and NIC3 cameras of NICMOS pointed to regions located ~4.5' and ~3.2' from the center. These observations span the region from ~1 to ~3 times the cluster's half-light radius. All luminosity functions, derived from color magniutde diagrams, increase with decreasing luminosity up to a peak at M_I~8.5 or M_H~7 and then precipitously drop well before photometric incompleteness becomes significant. Within the observational uncertainties, at M_I~12 or M_H~10.5 (~0.09 Msun) the luminosity functions are compatible with zero. By applying the best available mass- luminosity relation appropriate to the metallicity of NGC6397 to both the optical and IR data, we obtain a mass function that shows a break in slope at data, regardless of the v...

  5. Hunting for millimeter flares from magnetic reconnection in pre-main sequence spectroscopic binaries

    CERN Document Server

    Kóspál, Á; Hogerheijde, M R; Moór, A; Blake, G A

    2010-01-01

    Recent observations of the low-mass pre-main sequence, eccentric spectroscopic binaries DQ Tau and V773 Tau A reveal that their millimeter spectrum is occasionally dominated by flares from non-thermal emission processes. The transient activity is believed to be synchrotron in nature, resulting from powerful magnetic reconnection events when the separate magnetic structures of the binary components are capable of interacting and forced to reorganize, typically near periastron. We conducted the first systematic study of the millimeter variability toward a sample of 12 PMS spectroscopic binaries with the aim to characterize the proliferation of flares amongst sources likely to experience similar interbinary reconnection events. The source sample consists of short-period, close-separation binaries that possess either a high orbital eccentricity or a circular orbit. Using the MAMBO2 array on the IRAM 30m telescope, we carried out continuous monitoring at 1.25 mm over a 4-night period during which all of the high-e...

  6. The population of white dwarf-main sequence binaries in the SDSS DR 12

    Science.gov (United States)

    Cojocaru, R.; Rebassa-Mansergas, A.; Torres, S.; García-Berro, E.

    2017-09-01

    We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disc aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disc, on the contribution of WD+MS binaries from the thick disc (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).

  7. Physics of star formation in galaxies

    CERN Document Server

    Palla, F

    2002-01-01

    Begining with a historical introduction, ""Star Formation: The Early History"", this text then presents two long articles on ""Pre-Main-Sequence Evolution of Stars and Young Clusters"" and ""Observations of Young Stellar Objects"".

  8. Diffusion and pulsations in slowly rotating B stars

    CERN Document Server

    Turcotte, S

    2005-01-01

    Diffusion in cool B stars of the main sequence has been shown to strongly affect opacities and convection in cool B stars of the main sequence. We show here that diffusion in B stars maintains or enhances the excitation of pulsations in these stars. This result conflicts with observations as cool B stars that show evidence of diffusion, the HgMn stars, are stable to the current detection level. We discuss possible implications of this discrepancy for the models.

  9. A Tale of Two Anomalies: Depletion, Dispersion, and the Connection Between the Stellar Lithium Spread and Inflated Radii on the Pre-Main Sequence

    CERN Document Server

    Somers, Garrett

    2014-01-01

    We investigate lithium depletion in standard stellar models (SSMs) and main sequence (MS) open clusters, and explore the origin of the Li dispersion in young, cool stars of equal mass, age and composition. We first demonstrate that SSMs accurately predict the Li abundances of solar analogs at the zero-age main sequence (ZAMS) within theoretical uncertainties. We then measure the rate of MS Li depletion by removing the [Fe/H]-dependent ZAMS Li pattern from three well-studied clusters, and comparing the detrended data. MS depletion is found to be mass dependent, in the sense of more depletion at low mass. A dispersion in Li abundance at fixed $T_{\\rm eff}$ is nearly universal, and sets in by $\\sim$200 Myr. We discuss mass and age dispersion trends, and the pattern is mixed. We argue that metallicity impacts the ZAMS Li pattern, in agreement with theoretical expectations but contrary to the findings of some previous studies, and suggest Li as a test of cluster metallicity. Finally, we argue that a radius dispers...

  10. Detection of the Main Sequence Turn-off of a Newly Discovered Milky Way Halo Structure in the Triangulum-Andromeda Region

    CERN Document Server

    Majewski, S R; Rocha-Pinto, H J; Patterson, R J; Guhathakurta, P; Reitzel, David B

    2004-01-01

    An upper main sequence (MS) and main-sequence turn-off (MSTO) feature appears in the color-magnitude diagram (CMD) of a large area photometric survey of the southern half of M31 stretching to M33. Imaging in the Washington M,T_2,DDO51 photometric system allows us to remove the background M31/M33 giants from our CMD and more clearly define the dwarf star feature, which has an MSTO near M ~ 20.5. The corresponding stellar population shows little density variation over the 12 X 6 square degree area of the sky sampled and is of very low surface brightness, >32 mag/arcsec^2. We show that this feature is not the same as a previously identified, MS+MSTO in the foreground of the Andromeda Galaxy that has been associated with the tidal stream ringing the Milky Way disk at less than half the distance. Thus, the new stellar system is a separate, more distant entity, perhaps a segment of tidal debris from a disrupted satellite galaxy. It is most likely related to the structure with similar distance, location and density ...

  11. Two new SB2 binaries with main sequence B-type pulsators in the Kepler field

    CERN Document Server

    Pápics, P I; Aerts, C; Briquet, M; Marcos-Arenal, P; Beck, P G; Uytterhoeven, K; Hage, A Triviño; Southworth, J; Clubb, K I; Bloemen, S; Degroote, P; Jackiewicz, J; McKeever, J; Van Winckel, H; Niemczura, E; Gameiro, J F; Debosscher, J

    2013-01-01

    Context: OB stars are important in the chemistry and evolution of the Universe, but the sample of targets well understood from an asteroseismological point of view is still too limited to provide feedback on the current evolutionary models. Our study extends this sample with two spectroscopic binary systems. AIMS. Our goal is to provide orbital solutions, fundamental parameters and abundances from disentangled high-resolution high signal-to-noise spectra, as well as to analyse and interpret the variations in the Kepler light curve of these carefully selected targets. This way we continue our efforts to map the instability strips of beta Cep and SPB stars using the combination of high-resolution ground-based spectroscopy and uninterrupted space-based photometry. Methods: We fit Keplerian orbits to radial velocities measured from selected absorption lines of high-resolution spectroscopy using synthetic composite spectra to obtain orbital solutions. We use revised masks to obtain optimal light curves from the or...

  12. Pre-Main Sequence variables in the VMR-D : identification of T Tauri-like accreting protostars through Spitzer-IRAC variability

    CERN Document Server

    Giannini, T; Elia, D; Strafella, F; De Luca, M; Fazio, G; Marengo, M; Nisini, B; Smith, H A

    2009-01-01

    We present a study of the infrared variability of young stellar objects by means of two Spitzer-IRAC images of the Vela Molecular Cloud D (VMR-D) obtained in observations separated in time by about six months. By using the same space-born IR instrumentation, this study eliminates all the unwanted effects usually unavoidable when comparing catalogs obtained from different instruments. The VMR-D map covers about 1.5 square deg. of a site where star formation is actively ongoing. We are interested in accreting pre-main sequence variables whose luminosity variations are due to intermittent events of disk accretion (i.e. active T Tauri stars and EXor type objects). The variable objects have been selected from a catalog of more than 170,000 sources detected at a S/N ratio > 5. We searched the sample of variables for ones whose photometric properties are close to those of known EXor's. These latter are monitored in a more systematic way than T Tauri stars and the mechanisms that regulate the observed phenomenology a...

  13. Massive Stars

    Science.gov (United States)

    Livio, Mario; Villaver, Eva

    2009-11-01

    Participants; Preface Mario Livio and Eva Villaver; 1. High-mass star formation by gravitational collapse of massive cores M. R. Krumholz; 2. Observations of massive star formation N. A. Patel; 3. Massive star formation in the Galactic center D. F. Figer; 4. An X-ray tour of massive star-forming regions with Chandra L. K. Townsley; 5. Massive stars: feedback effects in the local universe M. S. Oey and C. J. Clarke; 6. The initial mass function in clusters B. G. Elmegreen; 7. Massive stars and star clusters in the Antennae galaxies B. C. Whitmore; 8. On the binarity of Eta Carinae T. R. Gull; 9. Parameters and winds of hot massive stars R. P. Kudritzki and M. A. Urbaneja; 10. Unraveling the Galaxy to find the first stars J. Tumlinson; 11. Optically observable zero-age main-sequence O stars N. R. Walborn; 12. Metallicity-dependent Wolf-Raynet winds P. A. Crowther; 13. Eruptive mass loss in very massive stars and Population III stars N. Smith; 14. From progenitor to afterlife R. A. Chevalier; 15. Pair-production supernovae: theory and observation E. Scannapieco; 16. Cosmic infrared background and Population III: an overview A. Kashlinsky.

  14. Evaluating gyrochronology on the zero-age-main-sequence: rotation periods in the southern open cluster Blanco 1 from the Kelt-South survey

    Energy Technology Data Exchange (ETDEWEB)

    Cargile, P. A.; Pepper, J.; Siverd, R.; Stassun, K. G. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); James, D. J. [Cerro Tololo Inter-American Observatory, La Serena (Chile); Kuhn, R. B., E-mail: p.cargile@vanderbilt.edu [South African Astronomical Observatory, Cape Town (South Africa)

    2014-02-10

    We report periods for 33 members of Blanco 1 as measured from Kilodegree Extremely Little Telescope-South light curves, the first reported rotation periods for this benchmark zero-age-main-sequence open cluster. The distribution of these stars spans from late-A or early-F dwarfs to mid-K with periods ranging from less than a day to ∼8 days. The rotation period distribution has a morphology similar to the coeval Pleiades cluster, suggesting the universal nature of stellar rotation distributions. Employing two different gyrochronology methods, we find an age of 146{sub −14}{sup +13} Myr for the cluster. Using the same techniques, we infer an age of 134{sub −10}{sup +9} Myr for the Pleiades measured from existing literature rotation periods. These rotation-derived ages agree with independently determined cluster ages based on the lithium depletion boundary technique. Additionally, we evaluate different gyrochronology models and quantify levels of agreement between the models and the Blanco 1/Pleiades rotation period distributions, including incorporating the rotation distributions of clusters at ages up to 1.1 Gyr. We find the Skumanich-like spin-down rate sufficiently describes the rotation evolution of stars hotter than the Sun; however, we find cooler stars rotating faster than predicted by a Skumanich law, suggesting a mass dependence in the efficiency of stellar angular momentum loss rate. Finally, we compare the Blanco 1 and Pleiades rotation period distributions to available nonlinear angular momentum evolution models. We find they require a significant mass dependence on the initial rotation rate of solar-type stars to reproduce the observed range of rotation periods at a given stellar mass and are furthermore unable to predict the observed over-density of stars along the upper envelope of the clusters' rotation distributions.

  15. Entropy Production of Stars

    Directory of Open Access Journals (Sweden)

    Leonid M. Martyushev

    2015-06-01

    Full Text Available The entropy production (inside the volume bounded by a photosphere of main-sequence stars, subgiants, giants, and supergiants is calculated based on B–V photometry data. A non-linear inverse relationship of thermodynamic fluxes and forces as well as an almost constant specific (per volume entropy production of main-sequence stars (for 95% of stars, this quantity lies within 0.5 to 2.2 of the corresponding solar magnitude is found. The obtained results are discussed from the perspective of known extreme principles related to entropy production.

  16. Empirical Tests of Pre-Main-Sequence Stellar Evolution Models with Eclipsing Binaries

    CERN Document Server

    Stassun, Keivan G; Torres, Guillermo

    2014-01-01

    We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We also provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies...

  17. Pre-main-sequence population in NGC 1893 region: X-ray properties

    CERN Document Server

    Pandey, A K; Yadav, Ram Kesh; Richichi, Andrea; Lata, Sneh; Pandey, J C; Ojha, D K; Chen, W P

    2013-01-01

    Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTSs) in the NGC 1893 region. We found a correlation between the X-ray luminosity, $L_X$, and the stellar mass (in the range 0.2$-$2.0 \\msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study ($\\sim$ 0.9) for NGC 1893 is smaller than those ($\\sim$1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 ($\\sim$ 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age...

  18. Prospects for detecting decreasing exoplanet frequency with main sequence age using PLATO

    CERN Document Server

    Veras, Dimitri; Mustill, Alexander J; Pollacco, Don

    2015-01-01

    The space mission PLATO will usher in a new era of exoplanetary science by expanding our current inventory of transiting systems and constraining host star ages, which are currently highly uncertain. This capability might allow PLATO to detect changes in planetary system architecture with time, particularly because planetary scattering due to Lagrange instability may be triggered long after the system was formed. Here, we utilize previously published instability timescale prescriptions to determine PLATO's capability to detect a trend of decreasing planet frequency with age for systems with equal-mass planets. For two-planet systems, our results demonstrate that PLATO may detect a trend for planet masses which are at least as massive as super-Earths. For systems with three or more planets, we link their initial compactness to potentially detectable frequency trends in order to aid future investigations when these populations will be better characterized.

  19. An unusual very low-mass high-amplitude pre-main sequence periodic variable

    CERN Document Server

    Rodriguez-Ledesma, Maria V; Ibrahimov, Mansur; Messina, Sergio; Parihar, Padmakar; Hessman, Frederic; de Oliveira, Catarina Alves; Herbst, William

    2012-01-01

    We have investigated the nature of the variability of CHS7797, an unusual periodic variable in the Orion Nebula Cluster. An extensive I-band photometric data set of CHS7797 was compiled between 2004-2010 using various telescopes. Further optical data have been collected in R and z' bands. In addition, simultaneous observations of the ONC region including CHS7797 were performed in the I, J, Ks and IRAC [3.6] and [4.5] bands over a time interval of about 40d. CHS7797 shows an unusual large-amplitude variation of about 1.7 mag in the R, I, and z' bands with a period 17.786. The amplitude of the brightness modulation decreases only slightly at longer wavelengths. The star is faint during 2/3 of the period and the shape of the phased light-curves for seven different observing seasons shows minor changes and small-amplitude variations. Interestingly, there are no significant colour-flux correlations for wavelengths smaller than 2microns, while the object becomes redder when fainter at longer wavelengths. CHS7797 ha...

  20. Absolute properties of the main-sequence eclipsing binary FM Leo

    CERN Document Server

    Ratajczak, M; Schwarzenberg-Czerny, A; Dimitrov, W; Konacki, M; Helminiak, K G; Bartczak, P; Fagas, M; Kaminski, K; Kankiewicz, P; Borczyk, W; Rozek, A

    2009-01-01

    First spectroscopic and new photometric observations of the eclipsing binary FM Leo are presented. The main aims were to determine orbital and stellar parameters of two components and their evolutionary stage. First spectroscopic observations of the system were obtained with DDO and PST spectrographs. The results of the orbital solution from radial velocity curves are combined with those derived from the light-curve analysis (ASAS-3 photometry and supplementary observations of eclipses with 1 m and 0.35 m telescopes) to derive orbital and stellar parameters. JKTEBOP, Wilson-Devinney binary modelling codes and a two-dimensional cross-correlation (TODCOR) method were applied for the analysis. We find the masses to be M_1 = 1.318 $\\pm$ 0.007 and M_2 = 1.287 $\\pm$ 0.007 M_sun, the radii to be R_1 = 1.648 $\\pm$ 0.043 and R_2 = 1.511 $\\pm$ 0.049 R_sun for primary and secondary stars, respectively. The evolutionary stage of the system is briefly discussed by comparing physical parameters with current stellar evoluti...

  1. Human rotavirus K8 strain represents a new VP4 serotype.

    Science.gov (United States)

    Li, B; Larralde, G; Gorziglia, M

    1993-01-01

    The complete VP4 gene of the human rotavirus (HRV) K8 strain (G1 serotype) was cloned and inserted into the baculovirus transfer vector pVL941 under the control of the polyhedrin promoter. A K8VP4 recombinant baculovirus was obtained by cotransfection of Spodoptera frugiperda (Sf9) cells with transfer vector DNA containing the K8VP4 gene and wild-type baculovirus DNA. Infection of Sf9 cells with this VP4 recombinant baculovirus resulted in the production of a protein that is similar in size and antigenic activity to the authentic VP4 of the K8 strain. Guinea pigs immunized with the expressed VP4 developed antibodies that neutralized the infectivity of the K8 strain. This antiserum neutralized HRV strains belonging to VP4 serotypes 1A, 1B, and 2 with efficiency eightfold or lower than that of the homologous virus, indicating that the human rotavirus K8 strain represents a distinct VP4 serotype (P3). In addition, low levels of cross-immunoprecipitation of the K8VP4 and its VP5 and VP8 subunits with hyperimmune antisera to HRV strains representing different VP4 serotype specificities also suggested that the K8 strain possesses a unique VP4 with few epitopes in common with other P-serotype strains. Images PMID:8380098

  2. Controversial Age Spreads from the Main Sequence Turn-Off and Red Clump in Intermediate-Age Clusters in the LMC

    CERN Document Server

    Niederhofer, F; Kozhurina-Platais, V; Hilker, M; de Mink, S E; Cabrera-Ziri, I; Li, C; Ercolano, B

    2015-01-01

    Most star clusters at an intermediate age (1-2 Gyr) in the Large and Small Magellanic Clouds show a puzzling feature in their color-magnitude diagrams (CMD) that is not in agreement with a simple stellar population. The main sequence turn-off of these clusters is much broader than would be expected from photometric uncertainties. One interpretation of this feature is that age spreads of the order 200-500 Myr exist within individual clusters, although this interpretation is highly debated. Such large age spreads should affect other parts of the CMD, which are sensitive to age, as well. In this study, we analyze the CMDs of a sample of 12 intermediate-age clusters in the Large Magellanic Cloud that all show an extended turn-off using archival optical data taken with the Hubble Space Telescope. We fit the star formation history of the turn-off region and the red clump region independently with two different theoretical isochrone models. We find that in most of the cases, the age spreads inferred from the red clu...

  3. Helium in atmospheres of binary stars

    Energy Technology Data Exchange (ETDEWEB)

    Leushin, V.V. (Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Fiziki)

    The helium abundances were obtained for 25 bright components of binary stars by model atmosphere analysis. The helium abundance for binary stars that lie on the main sequence are larger in the average than in single normal stars. The stars on the Hertzsppung - russel diagram lie at a larger distance from the zero age line than those with normal helium abundance.

  4. 白矮-主序双星的搜寻及研究进展%Research Progress on Searching for White Dwarf-Main Sequence Binaries

    Institute of Scientific and Technical Information of China (English)

    任娟娟; 罗阿理; 赵永恒

    2014-01-01

    White dwarf-main sequence binaries (WDMS) are the most common compact binary ob jects in the Galaxy, each of which consists of a white dwarf and a main sequence star and is evolved from main sequence binary. About 25 percent of the WDMS binaries are close WDMS binaries that evolved through a common envelope phase, and are commonly referred to as post-common-envelope binaries (PCEBs). The remaining 75 percent are wide WDMS binaries that did not evolve through a common envelope phase, with the orbital separation roughly the same as the orbital separation of the initial main sequence binary. Generally, the two components can be seen clearly from the WDMS binary spectra optically. Thanks to the large spectroscopic survey like SDSS and LAMOST, the number of WDMS binaries has been increased dramatically recently. A large number of wide WDMS binaries and PCEBs have been identified by the follow-up observations of these WDMS bina-ries. Currently, more than 2000 WDMS binaries have been discovered spectroscopically and about 200 PCEBs have been confirmed. Upon the large sample of SDSS WDMS binaries and PCEBs identified, many important researches have been carried on, such as the com-mon envelope theory, the origin of low mass white dwarf, mass-radius relations of both white dwarfs and low mass main sequence stars, and the pairing properties of main sequence stars. However, as the SDSS WDMS binaries sample has serious selection effects, which is strongly biased against binary systems containing cool white dwarf and/or early type companions, we still need to search more WDMS binaries to enlarge the sample. The LAMOST sky survey began its five years regular survey from September 2012, which will observe a large number of targets in the Milky Way. From the recent data release (DR1) of LAMOST, more than 100 WDMS binaries have been found. With the ongoing SDSS and LAMOST survey, more WDMS binaries are hoped to be identified and extend the existing WDMS binary sample. In this paper

  5. On the determination of the He abundance distribution in globular clusters from the width of the main sequence

    Science.gov (United States)

    Cassisi, Santi; Salaris, Maurizio; Pietrinferni, Adriano; Hyder, David

    2017-01-01

    One crucial piece of information to study the origin of multiple stellar populations in globular clusters is the range of initial helium abundances ΔY amongst the sub-populations hosted by each cluster. These estimates are commonly obtained by measuring the width in colour of the unevolved main sequence in an optical colour-magnitude diagram (CMD). The measured colour spread is then compared with predictions from theoretical stellar isochrones with varying initial He abundances to determine ΔY. The availability of UV/optical magnitudes, thanks to the Hubble Space Telescope UV Legacy Survey of Galactic GCs project, will allow the homogeneous determination of ΔY for a large Galactic globular cluster sample. From a theoretical point of view, accurate UV CMDs can efficiently disentangle the various sub-populations, and main sequence colour differences in the ACS F606W - (F606W - F814W) diagram allow an estimate of ΔY. We demonstrate that from a theoretical perspective, the (F606W - F814W) colour is an extremely reliable He-abundance indicator. The derivative dY/d(F606W - F814W), computed at a fixed luminosity along the unevolved main sequence, is largely insensitive to the physical assumptions made in stellar model computations, being more sensitive to the choice of the bolometric correction scale, and is only slightly dependent on the adopted set of stellar models. From a theoretical point of view, the (F606W - F814W) colour width of the cluster main sequence is therefore a robust diagnostic of the ΔY range.

  6. Robotics Technologies for K-8 Educators:A Semiotic Approach for Instructional Design

    Directory of Open Access Journals (Sweden)

    Antoinette P. Bruciati

    2004-02-01

    Full Text Available Play in the K-8 curriculum? What robotic technologies are currently available for educators having no prior computer programming experience? and How should instruction in robotics technologies for K-8 educators be designed? Robotics engineering courses have provided undergraduate computer science students with opportunities for designing and programming simulations of robotic tasks. In contrast, many teacher education programs have lacked courses in this area. Educators who have not gained a conceptual understanding of computer programming could lack the skills that would have enabled them to successfully integrate robotics technologies into their K-8 curriculum.

  7. A Wide-Field Survey for Transiting Hot Jupiters and Eclipsing Pre-Main-Sequence Binaries in Young Stellar Associations

    CERN Document Server

    Oelkers, Ryan J; Marshall, Jennifer L; DePoy, Darren L; Lambas, Diego G; Colazo, Carlos; Stringer, Katelyn

    2016-01-01

    The past two decades have seen a significant advancement in the detection, classification and understanding of exoplanets and binaries. This is due, in large part, to the increase in use of small-aperture telescopes (< 20 cm) to survey large areas of the sky to milli-mag precision with rapid cadence. The vast majority of the planetary and binary systems studied to date consist of main-sequence or evolved objects, leading to a dearth of knowledge of properties at early times (< 50 Myr). Only a dozen binaries and one candidate transiting Hot Jupiter are known among pre-main sequence objects, yet these are the systems that can provide the best constraints on stellar formation and planetary migration models. The deficiency in the number of well-characterized systems is driven by the inherent and aperiodic variability found in pre-main-sequence objects, which can mask and mimic eclipse signals. Hence, a dramatic increase in the number of young systems with high-quality observations is highly desirable to gui...

  8. Magnetic chemically peculiar stars

    CERN Document Server

    Schöller, Markus

    2015-01-01

    Chemically peculiar (CP) stars are main-sequence A and B stars with abnormally strong or weak lines for certain elements. They generally have magnetic fields and all observables tend to vary with the same period. Chemically peculiar stars provide a wealth of information; they are natural atomic and magnetic laboratories. After a brief historical overview, we discuss the general properties of the magnetic fields in CP stars, describe the oblique rotator model, explain the dependence of the magnetic field strength on the rotation, and concentrate at the end on HgMn stars.

  9. Ages of young stars

    CERN Document Server

    Soderblom, David R; Jeffries, Rob D; Mamajek, Eric E; Naylor, Tim

    2013-01-01

    Determining the sequence of events in the formation of stars and planetary systems and their time-scales is essential for understanding those processes, yet establishing ages is fundamentally difficult because we lack direct indicators. In this review we discuss the age challenge for young stars, specifically those less than ~100 Myr old. Most age determination methods that we discuss are primarily applicable to groups of stars but can be used to estimate the age of individual objects. A reliable age scale is established above 20 Myr from measurement of the Lithium Depletion Boundary (LDB) in young clusters, and consistency is shown between these ages and those from the upper main sequence and the main sequence turn-off -- if modest core convection and rotation is included in the models of higher-mass stars. Other available methods for age estimation include the kinematics of young groups, placing stars in Hertzsprung-Russell diagrams, pulsations and seismology, surface gravity measurement, rotation and activ...

  10. Making physics fun key concepts, classroom activities, and everyday examples, grades K-8

    CERN Document Server

    Prigo, Robert

    2007-01-01

    In easy-to-understand language, this resource presents engaging, ready-to-use learning experiences that address the "big ideas" in K-8 science education and help students make larger, real-world connections.

  11. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    CERN Document Server

    Sitko, Michael L; Kimes, Robin L; Beerman, Lori C; Martus, Cameron; Lynch, David K; Russell, Ray W; Grady, Carol A; Schneider, Glenn; Lisse, Carey M; Nuth, Joseph A; Cure, Michel; Henden, Arne A; Kraus, Stefan; Motta, Veronica; Tamura, Motohide; Hornbeck, Jeremy; Williger, Gerard M; Fugazza, Dino

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 micron) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (including Br gamma, Pa beta, and the 0.8446 micron line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10^-8 solar masses per year was derived from the Br gamma and Pa beta lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for d...

  12. Variability of Disk Emission in Pre-main Sequence and Related Stars. V. Changes in the Innermost Disk Structure of the Herbig AE Star HD 31648 = MWC 480

    Science.gov (United States)

    Fernandes, Rachel; Long, Zachary; Sitko, Michael L.; Grady, C. A.; Kusakabe, Nobuhiko

    2017-01-01

    We present five epochs of near IR observations of the protoplanetary disk around HD 31648 (MWC 480). A mass accretion rate of approximately 1.1×10-7 Msun/year was derived from Brγ and Paβ lines. The spectral energy distribution (SED) reveals a variability of about 30% between 1.5 and 10 microns. We present the theoretical modeling analysis of the disk in HD 31648 using Monte-Carlo Radiation Transfer Code (MRTC). We find that varying the height of the inner rim successfully produces a shift in the NIR flux.

  13. XMM-Newton monitoring of the close pre-main-sequence binary AK Sco. Evidence of tide driven filling of the inner gap in the circumbinary disk

    CERN Document Server

    de Castro, Ana I Gomez; Talavera, Antonio; Sytov, A Yu; Bisikalo, D

    2013-01-01

    AK~Sco stands out among pre-main sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit and the strong tides driven by it. AK Sco consists of two F5 type stars that get as close as 11R$_*$ at periastron passage. The presence of a dense ($n_e \\sim 10^{11}$~cm$^{-3}$) extended envelope has been unveiled recently. In this article, we report the results from a XMM-Newton based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of $\\sim 3$ with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T$\\sim 6.4\\times 10^{6}$ K and it is found that the N$_H$ column density rises from 0.35$\\times 10^{21}$~cm$^{-2}$ at periastron to 1.11$\\times 10^{21}$~cm$^{-2}$ at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high energy magnetospheric radiation on the circumstellar ...

  14. Unraveling the formation history of the black hole X-ray binary LMC X-3 from the zero age main sequence to the present

    Science.gov (United States)

    Sørensen, Mads; Fragos, Tassos; Steiner, James F.; Antoniou, Vallia; Meynet, Georges; Dosopoulou, Fani

    2017-01-01

    Aims: We have endeavoured to understand the formation and evolution of the black hole (BH) X-ray binary LMC X-3. We estimated the properties of the system at four evolutionary stages: (1) at the zero-age main-sequence (ZAMS); (2) immediately before the supernova (SN) explosion of the primary; (3) immediately after the SN; and (4) at the moment when Roche-lobe overflow began. Methods: We used a hybrid approach that combined detailed calculations of the stellar structure and binary evolution with approximate population synthesis models. This allowed us to estimate potential natal kicks and the evolution of the BH spin. We incorporated as model constraints the most up-to-date observational information throughout, which include the binary orbital properties, the companion star mass, effective temperature, surface gravity and radius, and the BH mass and spin. Results: We find at 5% and 95% confidence, respectively, that LMC X-3 began as a ZAMS system with the mass of the primary star in the range M1,ZAMS = 22-31 M⊙ and a secondary star of M2,ZAMS = 5.0-8.3 M⊙, in a wide (PZAMS ≳ 2.000 days) and eccentric (eZAMS ≳ 0.18) orbit. Immediately before the SN, the primary had a mass of M1,preSN = 11.1-18.0 M⊙, but the secondary star was largely unaffected. The orbital period decreased to 0.6-1.7 days and is still eccentric 0 ≤ epreSN ≤ 0.44. We find that a symmetric SN explosion with no or small natal kicks (a few tens of km s-1) imparted on the BH cannot be formally excluded, but large natal kicks in excess of ≳120 km s-1 increase the estimated formation rate by an order of magnitude. Following the SN, the system has a BH MBH,postSN = 6.4-8.2 M⊙ and is set on an eccentric orbit. At the onset of the Roche-lobe overflow, the orbit is circular and has a period of PRLO = 0.8-1.4 days. The full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A12

  15. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. III. The Main Sequence's Multiple Populations Galore

    Science.gov (United States)

    Bellini, A.; Milone, A. P.; Anderson, J.; Marino, A. F.; Piotto, G.; van der Marel, R. P.; Bedin, L. R.; King, I. R.

    2017-08-01

    We take advantage of the exquisite quality of the Hubble Space Telescope 26-filter astro-photometric catalog of the core of ω Cen presented in the first paper of this series and the empirical differential-reddening correction presented in the second paper in order to distill the main sequence into its constituent populations. To this end, we restrict ourselves to the five most useful filters: the magic “trio” of F275W, F336W, and F438W, along with F606W and F814W. We develop a strategy for identifying color systems where different populations stand out most distinctly, then we isolate those populations and examine them in other filters where their subpopulations also come to light. In this way, we have identified at least 15 subpopulations, each of which has a distinctive fiducial curve through our five-dimensional photometric space. We confirm the MSa to be split into two subcomponents, and find that both the bMS and the rMS are split into three subcomponents. Moreover, we have discovered two additional MS groups: the MSd (which has three subcomponents) shares similar properties with the bMS, and the MSe (which has four subcomponents) has properties more similar to those of the rMS. We examine the fiducial curves together and use synthetic spectra to infer relative heavy-element, light-element, and helium abundances for the populations. Our findings show that the stellar populations and star formation history of ω Cen are even more complex than inferred previously. Finally, we provide as a supplement to the original catalog a list that identifies for each star which population it is most likely associated with. Based on archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  16. Main: Sequences [KOME

    Lifescience Database Archive (English)

    Full Text Available Sequences Amino Acid Sequence Amino Acid sequence of full length cDNA (Longest ORF) kome_ine_full_seq...uence_amino_db.fasta.zip kome_ine_full_sequence_amino_db.zip kome_ine_full_sequence_amino_db ...

  17. Main: Sequences [KOME

    Lifescience Database Archive (English)

    Full Text Available Sequences Nucleotide Sequence Nucleotide sequence of full length cDNA (trimmed sequence) kome_ine_full_seq...uence_db.fasta.zip kome_ine_full_sequence_db.zip kome_ine_full_sequence_db ...

  18. On the determination of the He abundance distribution in globular clusters from the width of the main sequence

    CERN Document Server

    Cassisi, Santi; Pietrinferni, Adriano; Hyde, David

    2016-01-01

    One crucial piece of information to study the origin of multiple stellar populations in globular clusters, is the range of initial helium abundances $\\Delta{Y}$ amongst the sub-populations hosted by each cluster. These estimates are commonly obtained by measuring the width in colour of the unevolved main sequence in an optical colour-magnitude-diagram. The measured colour spread is then compared with predictions from theoretical stellar isochrones with varying initial He abundances, to determine $\\Delta{Y}$. The availability of UV/optical magnitudes thanks to the {\\sl HST UV Legacy Survey of Galactic GCs} project, will allow the homogeneous determination of $\\Delta{Y}$ for a large Galactic globular cluster sample. From a theoretical point of view, accurate UV CMDs can efficiently disentangle the various sub-populations, and main sequence colour differences in the ACS $F606W-(F606W-F814W)$ diagram allow an estimate of $\\Delta{Y}$. We demonstrate that from a theoretical perspective the ($F606W-F814W$) colour is...

  19. First determination of s-process element abundances in pre-main sequence clusters. Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602

    Science.gov (United States)

    D'Orazi, V.; De Silva, G. M.; Melo, C. F. H.

    2017-02-01

    Context. Several high-resolution spectroscopic studies have provided compelling observational evidence that open clusters display a decreasing trend of their barium abundances as a function of the cluster's age. Young clusters (ages ≲ 200 Myr) exhibit significant enhancement in the [Ba/Fe] ratios, at variance with solar-age clusters where the Ba content has been found to be [Ba/Fe] 0 dex. Different viable solutions have been suggested in the literature; nevertheless, a conclusive interpretation of such a peculiar trend has not been found. Interestingly, it is debated whether the other species produced with Ba via s-process reactions follow the same trend with age. Aims: Pre-main sequence clusters (≈10-50 Myr) show the most extreme behaviour in this respect: their [Ba/Fe] ratios can reach 0.65 dex, which is higher than the solar value by a factor of four. Crucially, there are no investigations of the other s-process species for these young stellar populations. In this paper we present the first determination of Y, Zr, La, and Ce in clusters IC 2391, IC 2602, and the Argus association. The main objective of our work is to ascertain whether these elements reveal the same enhancement as Ba. Methods: We have exploited high-resolution, high signal-to-noise spectra in order to derive abundances for Y, Zr, La, and Ce via spectral synthesis calculations. Our sample includes only stars with very similar atmospheric parameters so that internal errors due to star-to-star inhomogeneity are negligible. The chemical analysis was carried out in a strictly differential way, as done in all our previous investigations, to minimise the impact of systematic uncertainties. Results: Our results indicate that, at variance with Ba, all the other s-process species exhibit a solar scaled pattern; these clusters confirm a similar trend discovered in the slightly older local associations (e.g. AB Doradus, Carina-Near), where only Ba exhibit enhanced value with all other s-process species

  20. The Star Formation Histories of Disk Galaxies: the Live, the Dead, and the Undead

    CERN Document Server

    Oemler, Augustus; Gladders, Michael D; Dressler, Alan; Poggianti, Bianca M; Vulcani, Benedetta

    2016-01-01

    We reexamine the systematic properties of local galaxy populations, using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below the "main sequence" of star formation vs mass. We find an unexpectedly large population of galaxies with star formation rates intermediate between vigorously star-forming main sequence galaxies and passive galaxies, and with gas content disproportionately high for their star formation rates. Several lines of evidence suggest that these quiescent galaxies form a distinct population rather than a low star formation tail of the main sequence. We demonstrate that a tight main sequence, evolving with epoch, is a natural outcome of most histories of star formation and has little astrophysical significance, but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dep...

  1. Influence of the Choice of Core-Envelope Transition Point on the Binary Merger of Two Main-sequence Components

    Institute of Scientific and Technical Information of China (English)

    Xue-Fei Chen; Zhan-Wen Han

    2005-01-01

    We have studied the influence of different choices of core-envelope transition point on the final merger of contact binaries with two main-sequence components. A binary of 1.00 + 0.90 M⊙ with an initial orbital period of 0.35d is examined. The mass fraction of the primary mixed with the matter of the secondary,qmix, determined by the chosen core-envelope transition point, ranges from 0.04 to 1.00 in our analysis. If as qmix < 0.8, none of the helium-rich matter in the center of the primary is mixed into the envelope, and there is little distinction in the evolutionary tracks of the mergers. The timescales of the mergers remaining on the main sequence, tBS, are very similar (~ 6.2 × 108yr) if qmix < 0.71, since no hydrogen-rich matter of the secondary is mixed into the core of the mergers;for qmix > 0.71, the larger qmix is, the greater the mixing, hence the longer the blue straggler lifetime, tBS, and also the greater the luminosity. For qmix = 1.00,tBS ~ 8.5 × 10/ yr. Estimation by ( )r - ( )a = 0.0 shows that the point at which tBS begins to increase is about qmix = 0.68. In comparison with the homogeneously mixed models, the merger with a helium profile similar to that of the primary is less luminous and has a shorter tBS.

  2. A Review of Walden University's Online MSED Science (K-8) Program

    Science.gov (United States)

    Iadevaia, David G.

    2010-01-01

    This review is based on the experience of an adjunct professor teaching in the Walden University online MSED Science (K-8) program. The program described by Walden University and the actual implementation of the science component of the program as experienced by the Professor will be presented. The program, while a noble attempt at a completely…

  3. The Educational Software Design and Evaluation for K-8: Oral and Dental Health Software

    Science.gov (United States)

    Kabakci, Isil; Birinci, Gurkay; Izmirli, Serkan

    2007-01-01

    The aim of this study is to inform about the development of the software "Oral and Dental Health" that will supplement the course of Science and Technology for K8 students in the primary school curriculum and to carry out an evaluation study of the software. This software has been prepared for educational purposes. In relation to the…

  4. Transforming Schools through Expanded Learning Time: Orchard Gardens K-8 Pilot School. Update 2013

    Science.gov (United States)

    Chan, Roy

    2013-01-01

    For years, Orchard Gardens K-8 Pilot School was plagued by low student achievement and high staff turnover. Then, in 2010, with an expanded school schedule made possible through federal funding, Orchard Gardens began a remarkable turnaround. Today, the school is demonstrating how increased learning time, combined with other key turnaround…

  5. Bibliography of Research Support for K-8th Grade Inclusive Education

    Science.gov (United States)

    National Center on Schoolwide Inclusive School Reform: The SWIFT Center, 2014

    2014-01-01

    Presented here are references to books, chapters, and peer-reviewed journal articles that provide evidence for improved student outcomes through inclusive education in elementary and middle schools (K-8th grades). Not included here are the broad evidence bases for each feature in the SWIFT framework.

  6. Teaching Every Child to Read: Innovative and Practical Strategies for K-8 Educators and Caretakers

    Science.gov (United States)

    Dunn, Rita; Blake, Brett Elizabeth

    2008-01-01

    This book provides educators, parents and caretakers with a variety of instructional strategies for engaging K-8 students. These approaches are designed to enable all students to read easily and enjoyably by utilizing different styles and approaches. The techniques are not generally found in conventional classrooms, but are specifically targeted…

  7. Teaching English Language Learners: 43 Strategies for Successful K-8 Classrooms

    Science.gov (United States)

    Colombo, Michaela

    2011-01-01

    Ideal as a supplementary text for a variety of courses and as a guide for in-service teachers and for professional development settings, "Teaching English Language Learners: 43 Strategies for Successful K-8 Classrooms" provides teachers of all content areas with a broad, practical approach to teaching English language learners in the regular…

  8. Reaching Out: A K-8 Resource for Connecting Families and Schools.

    Science.gov (United States)

    Kyle, Diane W.; McIntyre, Ellen; Miller, Karen B.; Moore, Gayle H.

    Noting that developing a strong relationship between the elementary or middle school and the family can help prevent students feelings of alienation and problems in learning, this guidebook provides a resource to help K-8 educators involve the entire family in the educational experience. Chapter 1 of the book outlines the vision for parent…

  9. Differentiated Instruction for K-8 Math and Science: Activities and Lesson Plans

    Science.gov (United States)

    Hamm, Mary; Adams, Dennis

    2008-01-01

    This book offers practical recommendations to reach every student in a K-8 classroom. Research-based and written in a teacher-friendly style, it will help teachers with classroom organization and lesson planning in math and science. Included are math and science games, activities, ideas, and lesson plans based on the math and science standards.…

  10. Inquiry-Based Course in Physics and Chemistry for Preservice K-8 Teachers

    Science.gov (United States)

    Loverude, Michael E.; Gonzalez, Barbara L.; Nanes, Roger

    2011-01-01

    We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat…

  11. Teaching English Language Learners: 43 Strategies for Successful K-8 Classrooms

    Science.gov (United States)

    Colombo, Michaela

    2011-01-01

    Ideal as a supplementary text for a variety of courses and as a guide for in-service teachers and for professional development settings, "Teaching English Language Learners: 43 Strategies for Successful K-8 Classrooms" provides teachers of all content areas with a broad, practical approach to teaching English language learners in the regular…

  12. The Gaia-ESO Survey: the first abundance determination of the pre-main-sequence cluster Gamma Velorum

    CERN Document Server

    Spina, L; Palla, F; Sacco, G G; Magrini, L; Franciosini, E; Morbidelli, L; Prisinzano, L; Alfaro, E J; Biazzo, K; Frasca, A; Hernandez, J I Gonzalez; Sousa, S G; Adibekyan, V; Delgado-Mena, E; Montes, D; Tabernero, H; Klutsch, A; Gilmore, G; Feltzing, S; Jeffries, R D; Micela, G; Vallenari, A; Bensby, T; Bragaglia, A; Flaccomio, E; Koposov, S; Lanzafame, A C; Pancino, E; Recio-Blanco, A; Smiljanic, R; Costado, M T; Damiani, F; Hill, V; Hourihane, A; Jofre, P; de Laverny, P; Masseron, T; Worley, C

    2014-01-01

    Knowledge of the abundance distribution of star forming regions and young clusters is critical to investigate a variety of issues, from triggered star formation and chemical enrichment by nearby supernova explosions to the ability to form planetary systems.In spite of this, detailed abundance studies are currently available for relatively few regions. In this context, we present the analysis of the metallicity of the Gamma Velorum cluster, based on the products distributed in the first internal release of the Gaia-ESO Survey. The Gamma Velorum candidate members have been observed with FLAMES, using both UVES and Giraffe, depending on the target brightness and spectral type. In order to derive a solid metallicity determination for the cluster, membership of the observed stars must be first assessed. To this aim, we use several membership criteria including radial velocities, surface gravity estimates, and the detection of the photospheric lithium line. Out of the 80 targets observed with UVES, we identify 14 h...

  13. Crystal Structure and Spectroscopic Characterization of K8(VO)2O(SO4)6:

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Rasmussen, Rikke Christina; Fehrmann, Rasmus;

    2003-01-01

    Red and yellow dichroistic crystals of a vanadium(V) compound, potassium (mu-oxo, di-mu-suifato)bis(oxodisulfato-vanadate), K-8(VO)(2)O(SO4)(6), have been obtained from the ternary catalytic model melt system K2S2O7-K2SO4-V2O5. By slow cooling of the melt from 420 to 355 degreesC, crystal growth...

  14. 七彩虹推出K8 PCI—E主板

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    七彩虹近日推出基于VUA KBT890+VT8237R苍片组的“飞龙勇士C.K8T890 MAX”主板。该主板支持Socket 939的Athlon 64处理器。1GHz Hypernsport总线,双通道DDR400内存PCI-Express×16图形总线接口.

  15. Post-main Sequence Evolution of Icy Minor Planets: Implications for Water Retention and White Dwarf Pollution

    Science.gov (United States)

    Malamud, Uri; Perets, Hagai B.

    2016-12-01

    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.

  16. An Analysis of the Population of Extended Main Sequence Turn-off Clusters in the Large Magellanic Cloud

    CERN Document Server

    Piatti, Andrés E

    2016-01-01

    We combine a number of recent studies of the extended main sequence turn-off (eMSTO) phenomenon in intermediate age stellar ($1-2$ Gyr) clusters in the Large Magellanic Cloud (LMC) in order to investigate its origin. By employing the largest sample of eMSTO LMC clusters so far used, we show that cluster core radii, masses, and dynamical state are not related to the genesis of eMSTOs. Indeed, clusters in our sample have core radii, masses and age-relaxation time ratios in the range $\\approx$ 2--6 pc, 3.35- 5.50 (log($M_{cls}$/$M_\\odot$) and 0.2-8.0, respectively. These results imply that the eMSTO phenomenon is not caused by actual age spreads within the clusters. Furthermore, we confirm from a larger cluster sample recent results including young eMSTO LMC clusters, that the FWHM at the MSTOs correlates most strongly with cluster age, suggesting that a stellar evolutionary effect is the underlying cause.

  17. An Analysis of the Population of Extended Main Sequence Turn-off Clusters in the Large Magellanic Cloud

    Science.gov (United States)

    Piatti, Andrés E.; Bastian, Nate

    2016-08-01

    We combine a number of recent studies of the extended main sequence turn-off (eMSTO) phenomenon in intermediate age stellar (1 - 2 Gyr) clusters in the Large Magellanic Cloud (LMC) in order to investigate its origin. By employing the largest sample of eMSTO LMC clusters so far used, we show that cluster core radii, masses, and dynamical state are not related to the genesis of eMSTOs. Indeed, clusters in our sample have core radii, masses and age-relaxation time ratios in the range ≈ 2-6 pc, 3.35- 5.50 (log(Mcls/M⊙) and 0.2-8.0, respectively. These results imply that the eMSTO phenomenon is not caused by actual age spreads within the clusters. Furthermore, we confirm from a larger cluster sample recent results including young eMSTO LMC clusters, that the FWHM at the MSTOs correlates most strongly with cluster age, suggesting that a stellar evolutionary effect is the underlying cause.

  18. The fate of the pre-main sequence-rich clusters Collinder197 and vdB92: dissolution?

    CERN Document Server

    Bonatto, Charles

    2010-01-01

    We investigate the nature and possible evolution of the young Galactic star clusters Collinder 197 (Cr 197) and vdB 92. The colour-magnitude diagrams (CMDs) are basically characterised by a poorly-populated MS and a dominant fraction ($\\ga75%$) of PMS stars, and the combined MS and PMS CMD morphology in both clusters consistently constrains the age to within $5\\pm4$ Myr, with a $\\sim10$ Myr spread in the star formation process. The MS$ + $PMS stellar masses are $\\approx660^{+102}_{-59} \\ms$ (Cr 197) and $\\approx750^{+101}_{-51} \\ms$ (vdB 92). Cr 197 and vdB 92 appear to be abnormally large, when compared to clusters within the same age range. They have irregular stellar radial density distributions (RDPs) with a marked excess in the innermost region, a feature that, at less than 10 Myr, is more likely related to the star formation and/or molecular cloud fragmentation than to age-dependent dynamical effects. The velocity dispersion of both clusters, derived from proper motions, is in the range $\\sim15 - 22 \\km...

  19. Magnetic fields in beta Cep, SPB, and Be stars

    CERN Document Server

    Schoeller, M; Briquet, M; Ilyin, I

    2013-01-01

    Recent observational and theoretical results emphasize the potential significance of magnetic fields for structure, evolution, and environment of massive stars. Depending on their spectral and photometric behavior, the upper main-sequence B-type stars are assigned to different groups, such as beta Cep stars and slowly pulsating B (SPB) stars, He-rich and He-deficient Bp stars, Be stars, BpSi stars, HgMn stars, or normal B-type stars. All these groups are characterized by different magnetic field geometry and strength, from fields below the detection limit of a few Gauss up to tens of kG. Our collaboration was the first to systematically study the magnetic fields in representative samples of different types of main-sequence B stars. In this article, we give an overview about what we have learned during the last years about magnetic fields in beta Cep, SPB, and Be stars.

  20. SImulator of GAlaxy Millimetre/submillimetre Emission (SIGAME): CO emission from massive z=2 main-sequence galaxies

    DEFF Research Database (Denmark)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian

    2016-01-01

    is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer.......5 and radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does...

  1. Accretion and outflow activity on the late phases of pre-main-sequence evolution. The case of RZ Piscium

    Science.gov (United States)

    Potravnov, I. S.; Mkrtichian, D. E.; Grinin, V. P.; Ilyin, I. V.; Shakhovskoy, D. N.

    2017-03-01

    RZ Psc is an isolated high-latitude post-T Tauri star that demonstrates a UX Ori-type photometric activity. The star shows very weak spectroscopic signatures of accretion, but at the same time possesses the unusual footprints of the wind in Na i D lines. In the present work we investigate new spectroscopic observations of RZ Psc obtained in 2014 during two observation runs. We found variable blueshifted absorption components (BACs) in lines of the other alcali metals, K i 7699 Å and Ca ii IR triplet. We also confirmed the presence of a weak emission component in the Hα line, which allowed us to estimate the mass accretion rate on the star as Ṁ ≤ 7 × 10-12M⊙ yr-1. We could not reveal any clear periodicity in the appearance of BACs in sodium lines. Nevertheless, the exact coincidence of the structure and velocities of the Na i D absorptions observed with the interval of about one year suggests that such a periodicity should exist.

  2. SImulator of GAlaxy Millimeter/submillimeter Emission (SIGAME): CO emission from massive z=2 main sequence galaxies

    CERN Document Server

    Olsen, Karen P; Brinch, Christian; Sommer-Larsen, Jesper; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew

    2015-01-01

    We present SIGAME (SImulator of GAlaxy Molecular Emission), a new numerical code designed to simulate the 12CO rotational line emission spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the initial hot and partly ionised SPH gas and distributed in Giant Molecular Cloud (GMCs). The GMCs are subjected to far-UV radiation fields and cosmic ray ionisation rates which scale with the local star formation rate volume density, thereby ensuring that the thermal state of the gas is directly coupled to the in situ star formation conditions. Level populations as well as line radiative transport of the CO rotational lines are solved for with the 3-D radiative transfer code LIME. We have applied SIGAME to cosmological SPH simulations of three disk galaxies at z=2 with stellar masses in the range ~(0.5-2)x10^11 Msun and star formation rates ~40-140 Msun/yr, for which we predict a low-excitation gas ...

  3. 出发!K8L——AMD新一代核心简析

    Institute of Scientific and Technical Information of China (English)

    Prometheus; 刘晋

    2006-01-01

    AMD自从发布了K8系列处理器之后,一直占据着CPU性能宝座的头把交椅。去年,AMD又早于Intel发布了超级强大的Athlon 64 X2 4800+双核产品,当时真可谓是风光无限。但是,今年上半年,Intel依靠神秘的Core 2 Duo处理器夺回了性能的桂冠。

  4. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Gomez de Castro, Ana Ines [S. D. Astronomia y Geodesia and Instituto de Matematica Interdisciplinar, Fac. de CC Matematicas, Universidad Complutense, E-28040 Madrid (Spain); Lopez-Santiago, Javier [Departamento de Astrofisica, Fac de CC Fisicas, Universidad Complutense, E-28040 Madrid (Spain); Talavera, Antonio [European Space Astronomy Center, Villanueva de la Canada, E-28691, Madrid (Spain); Sytov, A. Yu.; Bisikalo, D. [Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya St. 48, 109017 Moscow (Russian Federation)

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  5. Kuiper belts around nearby stars

    NARCIS (Netherlands)

    Nilsson, R.; Liseau, R.; Brandeker, A.; Olofsson, G.; Pilbratt, G. L.; Risacher, C.; Rodmann, J.; Augereau, J-C.; Bergman, P.; Eiroa, C.; Fridlund, M.; Thebault, P.; White, G. J.

    2010-01-01

    Context. The existence of dusty debris disks around a large fraction of solar type main-sequence stars, inferred from excess far-IR and submillimetre emission compared to that expected from stellar photospheres, suggests that leftover planetesimal belts analogous to the asteroid-and comet reservoirs

  6. A test of the asteroseismic numax scaling relation for solar-like oscillations in main-sequence and sub-giant stars

    CERN Document Server

    Coelho, H R; Basu, S; Serenelli, A; Miglio, A; Reese, D R

    2015-01-01

    Large-scale analyses of stellar samples comprised of cool, solar-like oscillators now commonly utilize the so-called asteroseismic scaling relations to estimate fundamental stellar properties. In this paper we present a test of the scaling relation for the global asteroseismic parameter $\

  7. Variability of Disk Emission in Pre-Main Sequence and Related Stars. III. Exploring Structural Changes in the Pre-transitional Disk in HD 169142

    CERN Document Server

    Wagner, Kevin R; Grady, Carol A; Whitney, Barbara A; Swearingen, Jeremy R; Champney, Elizabeth H; Johnson, Alexa N; Werren, Chelsea; Russell, Ray W; Schneider, Glenn H; Momose, Munetake; Muto, Takayuki; Inoue, Akio K; Lauroesch, James T; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M; Hornbeck, Jeremy; Wisniewski, John P; Woodgate, Bruce E

    2014-01-01

    We present near-IR and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ~1.5-10 {\\mu}m over a maximum timescale of 10 years. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the <1 AU region of the disk. Through analysis of the Pa {\\beta} and Br {\\gamma} lines in our data we derive a mass accretion rate in May 2013 of (1.5 - 2.7) x 10^-9 Msun/yr. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 years of observations. We find that shifting the outer edge (r = 0.3 AU) of t...

  8. 主序星的Ⅴ波段经验质光关系%The Ⅴ Band Empirical Mass-Luminosity Relation for Main Sequence Stars

    Institute of Scientific and Technical Information of China (English)

    夏芳; 傅燕宁

    2010-01-01

    恒星质量是恒星物理以及恒星系统动力学研究中一个不可或缺的参量.双星轨道拟合是获取恒星(动力学)质量的最可靠途径,而绝大部分恒星的质量仍然需要通过恒星质光关系来估计,因此,通过拟合恒星动力学质量和光度数据得到经验质光关系的工作具有重要意义.尽管主序星的Ⅴ波段质光关系由于金属丰度的影响而具有一定的弥散性,但有研究表明这种影响主要限于恒星质量小于 0.6M_⊙的情况.对于较大质量的主序星,近年来的观测拟合研究积累了比较充分的动力学质量和Ⅴ波段光度数据,从而为显著改进上述质光关系提供了可能.利用一个能合理分配两个不同量纲观测量权重的拟合方法,根据 203 颗恒星的动力学质量和光度数据给出了主序星的Ⅴ波段经验质光关系,该结果对此前结果的改进不仅具有统计显著性,而且其对恒星质量估计的相对误差已达到约 5%.因此,该结果不仅可以用于开展有关恒星物理或恒星系统动力学方面的统计性研究,而且对具体实际多星系统的长期动力学研究和短期定位研究等也有应用价值.

  9. The Carbon Star Phenomenon

    Science.gov (United States)

    Wing, Robert F.

    2000-06-01

    The atmospheres of many stars have chemical compositions that are significantly different from that of the interstellar medium from which they are formed. This symposium considered all kinds of late-type stars showing altered compositions, the carbon stars being simply the best-known of these. All stages of stellar evolution from the main sequence to the ejection of a planetary nebula were considered, with emphasis on the changes that occur on the asymptotic giant branch. The spectroscopic properties of the photospheres and circumstellar envelopes of chemically-peculiar red giant stars, their origins via single-star evolution or mass transfer in binary systems, and the methods currently used to study them were all discussed in detail. This volume includes the full texts of papers given orally at the symposium and abstracts of the posters. Link: http://www.wkap.nl/book.htm/0-7923-6347-7

  10. Dynamo action and magnetic activity during the pre-main sequence: Influence of rotation and structural changes

    Science.gov (United States)

    Emeriau-Viard, Constance; Brun, Allan Sacha

    2017-10-01

    During the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.

  11. BIOINFORMATICS IN THE K-8 CLASSROOM: DESIGNING INNOVATIVE ACTIVITIES FOR TEACHER IMPLEMENTATION.

    Science.gov (United States)

    Shuster, Michele; Claussen, Kira; Locke, Melly; Glazewski, Krista

    At the intersection of biology and computer science is the growing field of bioinformatics-the analysis of complex datasets of biological relevance. Despite the increasing importance of bioinformatics and associated practical applications, these are not standard topics in elementary and middle school classrooms. We report on a pilot project and its evolution to support implementation of bioinformatics-based activities in elementary and middle school classrooms. Specifically, we ultimately designed a multi-day summer teacher professional development workshop, in which teachers design innovative classroom activities. By focusing on teachers, our design leverages enhanced teacher knowledge and confidence to integrate innovative instructional materials into K-8 classrooms and contributes to capacity building in STEM instruction.

  12. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  13. KEY COMPARISON: Report on key comparison EUROMET.EM-K8 (DC voltage ratio)

    Science.gov (United States)

    Marullo Reedtz, G.; Cerri, R.

    2004-01-01

    The purpose of the regional comparison EUROMET.EM-K8 was to compare the scaling capabilities up to 1000 V DC of the European national metrology institutes, thus extending to Europe the evaluation of equivalence of voltage ratio measurements obtained by the comparison CCEM-K8. Twenty laboratories participated, with the Istituto Elettrotecnico Nazionale Galileo Ferraris (Torino, Italy) acting as pilot laboratory. The circulation of the travelling standard, a resistive voltage divider, started in July 1998 and ended in January 2002. The technical protocol requested the measurement of voltage ratios 1000 V/10 V and 100 V/10 V, the measurement of other ratios being optional. Nineteen laboratories reported measurements of the mandatory ratios. For these ratios, the measurement methods used are described and the process to evaluate the comparison reference value and the degrees of equivalence is reported in detail. The relative uncertainty of the comparison, given by the combination of the uncertainty of the reference value and the instability of the transfer standard, was about 0.26×10-6 for ratio 1000 V/10 V and about 0.16×10-6 for ratio 100 V/10 V, at 95% level of confidence. The results for the optional ratios are reported in an appendix. With some exceptions, the agreement between the results is satisfactory. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the Mutual Recognition Arrangement (MRA).

  14. Magnetic Field Generation in Stars

    CERN Document Server

    Ferrario, Lilia; Zrake, Jonathan

    2015-01-01

    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a ...

  15. SImulator of GAlaxy Millimetre/submillimetre Emission (SÍGAME): CO emission from massive z = 2 main-sequence galaxies

    Science.gov (United States)

    Olsen, Karen P.; Greve, Thomas R.; Brinch, Christian; Sommer-Larsen, Jesper; Rasmussen, Jesper; Toft, Sune; Zirm, Andrew

    2016-04-01

    We present SÍGAME (SImulator of GAlaxy Millimetre/submillimetre Emission), a new numerical code designed to simulate the 12CO rotational line spectrum of galaxies. Using sub-grid physics recipes to post-process the outputs of smoothed particle hydrodynamics (SPH) simulations, a molecular gas phase is condensed out of the hot and partly ionized SPH gas. The gas is subjected to far-UV radiation fields and cosmic ray ionization rates which are set to scale with the local star formation rate volume density. Level populations and radiative transport of the CO lines are solved with the 3D radiative transfer code LIME. We have applied SÍGAME to cosmological SPH simulations of three disc galaxies at z = 2 with stellar masses in the range ˜0.5-2 × 1011 M⊙ and star formation rates ˜40-140 M⊙ yr-1. Global CO luminosities and line ratios are in agreement with observations of disc galaxies at z ˜ 2 up to and including J = 3-2 but falling short of the few existing J=5-4 observations. The central 5 kpc regions of our galaxies have CO 3 - 2/1 - 0 and 7 - 6/1 - 0 brightness temperature ratios of ˜0.55-0.65 and ˜0.02-0.08, respectively, while further out in the disc the ratios drop to more quiescent values of ˜0.5 and <0.01. Global CO-to-H2 conversion (αCO) factors are {˜eq } 1.5 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}, i.e. ˜2-3 times below the typically adopted values for disc galaxies, and αCO increases with radius, in agreement with observations of nearby galaxies. Adopting a top-heavy Giant Molecular Cloud (GMC) mass spectrum does not significantly change the results. Steepening the GMC density profiles leads to higher global line ratios for Jup ≥ 3 and CO-to-H2 conversion factors [{˜eq } 3.6 {{M_{⊙}} pc^{-2} (K km s^{-1})^{-1}}].

  16. Monte Carlo simulations of post-common-envelope white dwarf + main sequence binaries: The effects of including recombination energy

    CERN Document Server

    Zorotovic, M; García-Berro, E; Camacho, J; Torres, S; Rebassa-Mansergas, A; Gänsicke, B T

    2014-01-01

    Detached WD+MS PCEBs are perhaps the most suitable objects for testing predictions of close-compact binary-star evolution theories, in particular, CE evolution. The population of WD+MS PCEBs has been simulated by several authors in the past and compared with observations. However, most of those predictions did not take the possible contributions to the envelope ejection from additional sources of energy (mostly recombination energy) into account. Here we update existing binary population models of WD+MS PCEBs by assuming that a fraction of the recombination energy available within the envelope contributes to ejecting the envelope. We performed Monte Carlo simulations of 10^7 MS+MS binaries for 9 different models using standard assumptions for the initial primary mass function, binary separations, and initial-mass-ratio distribution and evolved these systems using the publicly available BSE code. Including a fraction of recombination energy leads to a clear prediction of a large number of long orbital period (...

  17. Preservice Teachers' Perspectives on 'Appropriate' K-8 Climate Change and Environmental Science Topics

    Science.gov (United States)

    Ford, D. J.

    2013-12-01

    With the release of the Next Generation Science Standards (NRC, 2013), climate change and related environmental sciences will now receive greater emphasis within science curricula at all grade levels. In grades K-8, preparation in foundational content (e.g., weather and climate, natural resources, and human impacts on the environment) and the nature of scientific inquiry will set the groundwork for later learning of climate change in upper middle and high school. These rigorous standards increase pressure on elementary and middle school teachers to possess strong science content knowledge, as well as experience supporting children to develop scientific ideas through the practices of science. It also requires a set of beliefs - about children and the science that is appropriate for them - that is compatible with the goals set out in the standards. Elementary teachers in particular, who often have minimal preparation in the earth sciences (NSF, 2007), and entrenched beliefs about how particular topics ought to be taught (Holt- Reynolds, 1992; Pajares, 1992), including climate change (Bryce & Day, 2013; Lambert & Bleicher, 2013), may face unique challenges in adjusting to the new standards. If teachers hold beliefs about climate change as controversial, for example, they may not consider it an appropriate topic for children, despite its inclusion in the standards. On the other hand, those who see a role for children in efforts to mitigate human impacts on the environment may be more enthusiastic about the new standards. We report on a survey of preservice K-8 teachers' beliefs about the earth and environmental science topics that they consider to be appropriate and inappropriate for children in grades K-3, 4-5, and 6-8. Participants were surveyed on a variety of standards-based topics using terminology that signals publicly and scientifically neutral (e.g. weather, ecosystems) to overtly controversial (evolution, global warming) science. Results from pilot data

  18. 生防茵K-8对南方根结线虫的防治及其鉴定%The Identification of Biocontrol Bacterium K-8 and Its Biological Control Against Meloidogyne incognita

    Institute of Scientific and Technical Information of China (English)

    梁建根; 郑经武; 郝中娜; 王连平; 陶荣祥; 张昕

    2011-01-01

    为了明确生防菌株K-8对南方根结线虫的防效及其分类地位,采用亚甲基蓝染色法测定了生防菌株K-8的发酵液对南方根结线虫2龄幼虫存活的影响,考察了其对南方根结线虫的防效,对其鉴定采用生理生化法、表型培养观察法、脂肪酸分析并结合16S rDNA序列分析法.结果表明,击倒试验发现,生防菌株K-8发酵液对南方根结线虫2龄幼虫有一定的杀伤作用,其矫正死亡率为70.8%,与化学药剂200 g/L克线丹的69.4%将近.菌株K-8对南方根结线虫温室盆栽防治效果为47.8%,明显高于对照200 g/L克线丹的防效41.3%.菌株K-8的形态与生理生化特性与巨大芽孢杆菌很接近,根据SI值和差值,脂肪分析把其鉴定为Bacillus megatenum,由16S rDNA序列分析的系统发育树发现,菌株K-8的序列与Bacillus megaterium构成1个分支,进化上的距离最近,由此可将其鉴定为巨大芽孢杆菌Bacillus megaterium.综合3种鉴定方法,最后把菌株鉴定为巨大芽孢杆菌Bacillus megaterium.%In order to evaluate classification status of biocontrol K-8 and its control efficacy to Meloidogyne incognita, using methylene blue staining method, death efficacy of biocontrol strain K-8 to Meloidogyne incogita was determined, its control efficacy to Meloidogyne incognita was studied by pot tests, and its identification was launched by means of phenotypic characteristics observation, physiological and biochemical indexes determination, FAME identity and the assay of 16S rDNA sequences. The results showed that the fermentation broth of strain K-8 showed a better killing effect on second stage juvennil Meloidogyne incognita and its correct death rate was 70.8%, which was close to that of 69.4% of 200 g/L cadusafos, pot trials of strain K-8 indicated that it had a better control efficacy to Meloidogyne incognita and was 47.8%, significantly better than that of 41.3% of 200 g/L cadusafos. According to the similarity index (SI

  19. The National Teacher Enhancement Program (K-8) coordinated by the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.

    1991-01-01

    Teachers need help, not harassment. So do the establishments in which teachers practice their profession. Community resources must be marshalled to provide help to local schools and teachers. In 1990 the National Science Foundation (NSF) established a unique educational activity named the National Teacher Enhancement Program (NTEP). NSF took advantage of the Department of Energy (DOE) sponsored educational programs and resources at several large DOE contractor labs that had had prior experience with DOE supported teacher enhancement programs. While DOE concentrated on teacher enhancement activities for secondary teachers, the NSF concentrated on teachers from grades K-8. The Oak Ridge National Laboratory (ORNL) is the lead organization for both administering and coordinating the grant. Other participating laboratories are Argonne National Laboratory (ANL), Fermi National Accelerator Laboratory (FERMI), Battelle-Pacific Northwest Laboratory (PNL), Lawrence Livermore Laboratory (LLNL) with some support functions provided by Brookhaven National Laboratory (BNL) and the Oak Ridge Associated Universities (ORAU). The program calls for a three week duration workshop to be conducted at each lab followed by in-service training and other activities during the year. The NSF/NTEP protocol calls for networking among the participating organizations and some of the teachers. An assessment effort is also an integral part of the program. 2 refs.

  20. Amino acid contents and transport of fixed N in nodules of Leucaena leucocephala variety K-8

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, J.D.

    1987-04-01

    Seedlings of Leucaena leucocephala var. K-8 were grown with a N-free fertilizer or fertilizer containing /sup 15/N-depleted (NH/sub 4/)/sub 2/SO/sub 4/ (0.01 atom /sup 15/N; 10 ppm). The nodules of 5 month old trees grown on N-free media were used for /sup 15/N-enriched treatment and as controls. Nodules from plants grown on /sup 15/N-depleted media were also used. Nodules were extracted with 0.5% aqueous toluene and aliquots were analyzed with a Beckman 120B Amino Acid Analyzer. Samples were separated into free ammonium, Asp-N, Glu-N, Asn and Gln amide- and amino-N, and remaining amino acids. Fractions were then analyzed for /sup 15/N content. Asn (27.3 umol/gfw) represented 56% of the total free amino acid pool in the nodules. Asn (amide-N and amino-N) also represented approximately 77% of the total N fixed during the one hour /sup 15/N-enriched N/sub 2/ and the /sup 15/N-depleted treatments. Based on these findings and the fact that the ureide fraction is barely detectable in the nodules (0.25 ..mu..mol/gfw), the authors considers L. leucocephala an amide transporter of fixed N. Additional information will be presented on the amino acid contents of tissues, as well as a time course of amino acid content from seed through nodulation.