WorldWideScience

Sample records for k562 tumor cells

  1. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  2. Potent antitumor activities of recombinant human PDCD5 protein in combination with chemotherapy drugs in K562 cells

    International Nuclear Information System (INIS)

    Shi, Lin; Song, Quansheng; Zhang, Yingmei; Lou, Yaxin; Wang, Yanfang; Tian, Linjie; Zheng, Yi; Ma, Dalong; Ke, Xiaoyan; Wang, Ying

    2010-01-01

    Conventional chemotherapy is still frequently used. Programmed cell death 5 (PDCD5) enhances apoptosis of various tumor cells triggered by certain stimuli and is lowly expressed in leukemic cells from chronic myelogenous leukemia patients. Here, we describe for the first time that recombinant human PDCD5 protein (rhPDCD5) in combination with chemotherapy drugs has potent antitumor effects on chronic myelogenous leukemia K562 cells in vitro and in vivo. The antitumor efficacy of rhPDCD5 protein with chemotherapy drugs, idarubicin (IDR) or cytarabine (Ara-C), was examined in K562 cells in vitro and K562 xenograft tumor models in vivo. rhPDCD5 protein markedly increased the apoptosis rates and decreased the colony-forming capability of K562 cells after the combined treatment with IDR or Ara-C. rhPDCD5 protein by intraperitoneal administration dramatically improved the antitumor effects of IDR treatment in the K562 xenograft model. The tumor sizes and cell proliferation were significantly decreased; and TUNEL positive cells were significantly increased in the combined group with rhPDCD5 protein and IDR treatment compared with single IDR treatment groups. rhPDCD5 protein, in combination with IDR, has potent antitumor effects on chronic myelogenous leukemia K562 cells and may be a novel and promising agent for the treatment of chronic myelogenous leukemia.

  3. Putative tyrosine kinases expressed in K-562 human leukemia cells

    International Nuclear Information System (INIS)

    Partanen, J.; Maekelae, T.P.; Lehvaeslaiho, H.; Alitalo, K.; Alitalo, R.

    1990-01-01

    Tyrosine phosphorylation is important in the transmission of growth and differentiation signals; known tyrosine kinases include several oncoproteins and growth factor receptors. Interestingly, some differentiated cell types, such as erythrocytes and platelets contain high amounts of phosphotyrosine. The authors analyzed tyrosine kinases expressed in the K-562 chronic myelogenous leukemia cell line, which has a bipotential erythroid and megakaryoblastoid differentiation capacity. Analysis of 359 polymerase chain reaction-amplified cDNA clones led to the identification of 14 different tyrosine kinase-related sequences (JTK1-14). Two of the clones (JTK2 and JTK4) represent unusual members of the fibroblast growth factor receptor gene family, and the clones JTK5, JTK11, and JTK14 may also belong to the family of receptor tyrosine kinases but lack a close relationship to any known tyrosine kinase. Each of these different genes has its own characteristic expression pattern in K-562 cells and several other human tumor cell lines. In addition, the JTK11 and JTK14 mRNAs are induced during the megakaryoblastoid differentiation of K-562 cells. These tyrosine kinases may have a role in the differentiation of megakaryoblasts or in the physiology of platelets

  4. Effect of JTV1 gene on the proliferation and apoptosis of K562 cells and its mechanism

    Directory of Open Access Journals (Sweden)

    Yan WU

    2011-05-01

    Full Text Available Objective To investigate the effect of tumor-suppressing gene JTV1 on proliferation and apoptosis of leukemic K562 cells,and the changes in apoptosis factors Bcl-2,C-myc and Bax genes.Methods The recombinate vector pcDNA3.1-JTV1,and the empty vector pcDNA3.1 were transfected into K562 cells as control.The cell proliferation of K562 cells was evaluated by colony formation assay;the cell cycle and apoptosis rate were assessed by flow cytometry(FCM;the mRNA levels of apoptosis related genes Bax,Bcl-2 and C-myc were determined by RT-PCR;the protein levels of Bax,Bcl-2 and C-myc were assayed by Western Blotting.Results The colony formation assay showed that the proliferation of K562 cells decreased when the expression of JTV1 gene was up-regulated.FCM assay showed that the G phase cells in pcDNA3.1-JTV1 positive transfection group increased compared with that of the control group and the pcDNA3.1 empty vector transfected group,and the differences were statistically significant(P < 0.05.Compared with the control group and the empty vector group,the mRNA transcription level and the protein translation level of Bax gene increased significantly,and the mRNA transcription level and the protein translation level of Bcl-2 and C-myc gene were reduced significantly(P < 0.05.Conclusions The expressions of Bcl-2 and C-myc gene are inhibited when the gene JTV1 is up-regulated,leading to an increase in Bax gene expression,inhibition of K562 cell proliferation,and promotion of tumor cells apoptosis.Over expression of JTV1 gene can inhibit the proliferation of K562 cells and promote cell apoptosis by inhibiting Bcl-2 and C-myc expression and up-regulating that of Bax.

  5. The Effects of Royal Jelly on In-Vitro Cytotoxicity of K562 Cells and Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    SE Hosseini

    2014-02-01

    Full Text Available Abstract Background & aim: Royal jelly, secreted by worker bees, has different biological activities on cells and tissues. The aim of this study was to evaluate the effects of royal jelly on peripheral blood mononuclear cells and on the tumor category of K562 cell line. Methods: In the present experimental study, three subjects were selected separately with three repetitions. K562 (104 cells and PBMC (105 cells with different concentrations of royal jelly (5, 10, 25, 50 and 100 mg/ml were cultured under standard conditions for 48 and 72 h separately. The fatality rate on PBMC cells and K562 cancer cells was evaluated by using MTT (Tetrazolium Dye-Reduction Assay. The number of viable cells in PBMC that were exposed for 48 hours with Royal Jelly was evaluated by trypan blue staining. Data were analyzed by ANOVA. Results: The royal jelly had no cytotoxicity effect on PBMC cells but at concentration of 50 and 100 mg/mL the cytotoxicity effect were observed on k562 cells whereas, at 10 and 25 mg/ml the number of PBMC viable cells increased. Conclusion: Due to the lack of lethality of royal jelly on PBMC cells and PBMC cell viability and an increase in the fatality rate of cancer cells in the future, royal jelly can be used as a potential candidate for treatment of leukemia. Keywords: Royal jelly, K562, peripheral blood mononuclear cell

  6. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Xie, Ji-Sheng [Youjiang Medical College for Nationalities, Guangxi 533000 (China); Meng, Xin; Guan, Yifu [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China); Wang, Hua-Qin, E-mail: wanghq_doctor@hotmail.com [Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110001 (China)

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2{alpha} (eIF2{alpha}), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2{alpha} inhibitor, or overexpression of dominant negative mutants of PERK or eIF2{alpha}, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2{alpha} branch of UPR in RES-induced inhibition of cell proliferation.

  7. Implication of unfolded protein response in resveratrol-induced inhibition of K562 cell proliferation

    International Nuclear Information System (INIS)

    Liu, Bao-Qin; Gao, Yan-Yan; Niu, Xiao-Fang; Xie, Ji-Sheng; Meng, Xin; Guan, Yifu; Wang, Hua-Qin

    2010-01-01

    Resveratrol (RES), a natural plant polyphenol, is an effective inducer of cell cycle arrest and apoptosis in a variety of carcinoma cell types. In addition, RES has been reported to inhibit tumorigenesis in several animal models suggesting that it functions as a chemopreventive and anti-tumor agent in vivo. The chemopreventive and chemotherapeutic properties associated with resveratrol offer promise for the design of new chemotherapeutic agents. However, the mechanisms by which RES mediates its effects are not yet fully understood. In this study, we showed that RES caused cell cycle arrest and proliferation inhibition via induction of unfolded protein response (UPR) in human leukemia K562 cell line. Treatment of K562 cells with RES induced a number of signature UPR markers, including transcriptional induction of GRP78 and CHOP, phosphorylation of eukaryotic initiation factor 2α (eIF2α), ER stress-specific XBP-1 splicing, suggesting the induction of UPR by RES. RES inhibited proliferation of K562 in a concentration-dependent manner. Flow cytometric analyses revealed that K562 cells were arrested in G1 phase upon RES treatment. Salubrinal, an eIF2α inhibitor, or overexpression of dominant negative mutants of PERK or eIF2α, effectively restored RES-induced cell cycle arrest, underscoring the important role of PERK/eIF2α branch of UPR in RES-induced inhibition of cell proliferation.

  8. Circumvention of acquired resistance to doxorubicin in K562 human leukemia cells by oxatomide.

    Science.gov (United States)

    Ishikawa, M; Fujita, R; Furusawa, S; Takayanagi, M; Sasaki, K; Satoh, S

    2001-10-01

    We studied the effect of oxatomide, an antiallergic drug, on the resistance of K562 cells to doxorubicin. Oxatomide synergistically potentiated the cytotoxicity of doxorubicin in doxorubicin-resistant K562 cells (K562/DXR) at a concentration of 1-10 microM, but had hardly any synergistic effect on the parental cell line (K562) at the same concentration. Oxatomide inhibit P-glycoprotein pump-efflux activity and the binding of [3H]-azidopine to the cell-surface protein P-glycoprotein, in a dose-related manner. These results indicate that oxatomide reverses the multidrug-resistance phenotype through direct interaction with P-glycoprotein.

  9. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells.

    Science.gov (United States)

    Suriguga; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. © 2013.

  10. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2016-06-01

    Full Text Available Background Beta-ionone is an aroma compound found in the Rosaceae family. Some evidence supported that beta-ionone has a great potential for cancer prevention. To date, the anti-proliferative and apoptotic effects of beta-ionone in human leukemia cell line K562 were not studied. Objectives Hence, we investigated whether beta-ionone could inhibit cell growth and induce apoptosis in the K562 cells. Materials and Methods In this experimental study, human leukemia cell line K562 was cultured and anti-proliferation effect of beta-ionone with different doses (25 - 400 µm at different times (24 - 96 hours on treated cells was evaluated by the MTT assay. To determine apoptosis rate, the Hoechst 33342 staining and flow cytometry was performed. Results The MTT assay showed that beta-ionone inhibited proliferation of K562 cells in a dose-dependent manner significantly (P = 0.0008. Moreover, the increased apoptotic rate was found after incubation of K562 cells with 200 µm beta-ionone. The Hoechst staining and flow cytometry analysis indicated that beta-ionone could increase apoptosis of K562 cells in a dose-dependent manner. Conclusions The results demonstrated that beta-ionone has anti-proliferative and apoptotic effects on K562 cells, and in the future may be used in the treatment of some leukemia sub-types.

  11. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2013-12-15

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation.

  12. The role of catechol-O-methyltransferase in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Suriguga,; Li, Xiao-Fei; Li, Yang; Yu, Chun-Hong; Li, Yi-Ran; Yi, Zong-Chun

    2013-01-01

    Catechol is widely used in pharmaceutical and chemical industries. Catechol is also one of phenolic metabolites of benzene in vivo. Our previous study showed that catechol improved erythroid differentiation potency of K562 cells, which was associated with decreased DNA methylation in erythroid specific genes. Catechol is a substrate for the catechol-O-methyltransferase (COMT)-mediated methylation. In the present study, the role of COMT in catechol-enhanced erythroid differentiation of K562 cells was investigated. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation and induced mRNA expression of erythroid specific genes in K562 cells. Treatment with catechol caused a time- and concentration-dependent increase in guaiacol concentration in the medium of cultured K562 cells. When COMT expression was knocked down by COMT shRNA expression in K562 cells, the production of guaiacol significantly reduced, and the sensitivity of K562 cells to cytotoxicity of catechol significantly increased. Knockdown of COMT expression by COMT shRNA expression also eliminated catechol-enhanced erythroid differentiation of K562 cells. In addition, the pre-treatment with methyl donor S-adenosyl-L-methionine or its demethylated product S-adenosyl-L-homocysteine induced a significant increase in hemin-induced Hb synthesis in K562 cells and the mRNA expression of erythroid specific genes. These findings indicated that O-methylation catalyzed by COMT acted as detoxication of catechol and involved in catechol-enhanced erythroid differentiation of K562 cells, and the production of S-adenosyl-L-homocysteine partly explained catechol-enhanced erythroid differentiation. - Highlights: • Catechol enhanced hemin-induced hemoglobin accumulation. • COMT-catalyzed methylation acted as detoxication of catechol. • COMT involved in catechol-enhanced erythroid differentiation

  13. Inhibitory effect of PTD-OD-HA fusion protein on Bcr-Abl in K562 cells

    Directory of Open Access Journals (Sweden)

    Miao GAO

    2012-10-01

    Full Text Available Objective To study the transduction dynamics, location of PTD-OD-HA fusion protein and its interaction with Bcr-Abl oncoprotein in K562 cell lines, and explore the influence of PTD-OD-HA fusion protein on oligomerization and tyrosine kinase activity of Bcr-Abl. Methods PTD-OD-HA fusion protein was labeled with FITC and co-cultured with K562 cells. The transduction efficiency of labeled PTD-OD-HA at different doses and time intervals was observed under fluorescence microscope. The location of labeled PTD-OD-HA fusion protein in K562 cells was detected by confocal microscopy. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was confirmed by coimmunoprecipitation. The phosphorylation of Bcr-Abl oncoprotein was detected by Western blotting. Results PTD-OD-HA fusion protein labeled with FITC was transduced into K562 cells in a dose- and time-dependent manner. PTD-OD-HA fusion protein was located in the cytoplasm of K562 cells and was consistent with the location of Bcr-Abl oncoprotein. The interaction of PTD-OD-HA fusion protein with Bcr-Abl oncoprotein was proved in K562 cells. This interaction could interrupt the homologous oligomerization of Bcr-Abl oncoprotein and reduce the phosphorylation of Bcr-Abl oncoprotein. Conclusion PTD-OD-HA fusion protein could be transduced into K562 cells efficiently, inhibit the oligomerization and reduce the phosphorylation of Bcr-Abl oncoprotein.

  14. Radiation-induced apoptosis in differentially modulated by PTK inhibitora in K562 cells

    International Nuclear Information System (INIS)

    Lee, Hyung Sik; Moon, Chang Woo; Hur, Won Joo; Jeong, Su Jin; Jeong Min Ho; Lee, Jeong Hyeon; Lim, Young Jin; Park, Heon Joo

    2000-01-01

    The effect of PTK inhibitors (herbimycin A and genistein) on the induction of radiation-induced apoptosis in Ph-positive K562 leukemia cell line was investigated. K562 cells in exponential growth phase were irradiated with a linear accelerator at room temperature. For 6 MV X-ray irradiation and drug treatment, cultures were initiated at 2x10 6 cells/ml. The cells were irradiated with 10Gy. Stock solutions of herbimycin A and genistein were prepared in dimethyl sulphoxide (DMSO). After incubation at 37 .deg. for 0-48 h, the extent of apoptosis was determined using agarose gel electrophoresis and TUNEL assay. The progression of cells through the cell cycle after irradiation and drug treatment was also determined with flow cytometry. Western blot analysis was used to monitor bcl-2, bcl-X-L and bax protein levels. Treatment with 10 Gy X-irradiation did not result in the induction of apoptosis. The HMA alone (500 nM) also failed to induce apoptosis. By contrast, incubation of K562 cells with HMA after irradiation resulted in a substantial induction of nuclear condensation and fragmentation by agarose gel electrophoresis and TUNEL assay. Genistein failed to enhance the ability of X-irradiation to induce DNA fragmentation. Enhancement of apoptosis by HMA was not attributable to downregulation of the bcl-2 or bcl-X-L anti-apoptotic proteins. When the cells were irradiated and maintained with HMA, the percentage of cells in G2/M phase decreased to 30-40% at 48 h. On the other hand, cells exposed to 10 Gy X-irradiation alone or maintained with genistein did not show marked cell cycle redistribution. We have shown that nanomolar concentrations of the PTK inhibitor HMA synergize with X-irradiation in inducing the apoptosis in Ph (+) K562 leukemia cell line. While, genistein, a PTK inhibitor which is not selective for p210 bcr/abl failed to enhance the radiation induced apoptosis in K562 cells. It is unlikely that the ability of HMA to enhance apoptosis in K562 cells is

  15. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  16. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    International Nuclear Information System (INIS)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun

    2012-01-01

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  17. The role of DNA methylation in catechol-enhanced erythroid differentiation of K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Fei; Wu, Xiao-Rong; Xue, Ming; Wang, Yan; Wang, Jie; Li, Yang; Suriguga,; Zhang, Guang-Yao; Yi, Zong-Chun, E-mail: yizc@buaa.edu.cn

    2012-11-15

    Catechol is one of phenolic metabolites of benzene in vivo. Catechol is also widely used in pharmaceutical and chemical industries. In addition, fruits, vegetables and cigarette smoke also contain catechol. Our precious study showed that several benzene metabolites (phenol, hydroquinone, and 1,2,4-benzenetriol) inhibited erythroid differentiation of K562 cells. In present study, the effect of catechol on erythroid differentiation of K562 cells was investigated. Moreover, to address the role of DNA methylation in catechol-induced effect on erythroid differentiation in K562 cells, methylation levels of erythroid-specific genes were analyzed by Quantitative MassARRAY methylation analysis platform. Benzidine staining showed that exposure to catechol enhanced hemin-induced hemoglobin accumulation in K562 cells in concentration- and time-dependent manners. The mRNA expression of erythroid specific genes, including α-globin, β-globin, γ-globin, erythroid 5-aminolevulinate synthase, erythroid porphobilinogen deaminase, and transcription factor GATA-1 genes, showed a significant concentration-dependent increase in catechol-treated K562 cells. The exposure to catechol caused a decrease in DNA methylation levels at a few CpG sites in some erythroid specific genes including α-globin, β-globin and erythroid porphobilinogen deaminase genes. These results indicated that catechol improved erythroid differentiation potency of K562 cells at least partly via up-regulating transcription of some erythroid related genes, and suggested that inhibition of DNA methylation might be involved in up-regulated expression of some erythroid related genes. -- Highlights: ► Catechol enhanced hemin-induced hemoglobin accumulation. ► Exposure to catechol resulted in up-regulated expression of erythroid genes. ► Catechol reduced methylation levels at some CpG sites in erythroid genes.

  18. 5-(2-Carboxyethenyl) isatin derivative induces G2/M cell cycle arrest and apoptosis in human leukemia K562 cells

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan; Fan, Zhen-Chuan; Zhang, Yong-Min; Teng, Yu-Ou; Yu, Peng

    2014-01-01

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G 2 /M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC 50 ) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G 2 /M phase and accumulated subsequently in the sub-G 1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G 2 /M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation

  19. The effect of β-ionone on telomerase activity in the human leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2015-06-01

    Full Text Available Background: Telomerase is highly activated in most human cancer cells, therefore, its inhibition has been proposed as a novel and promising strategy for cancer therapy. Many plant-derived anticancer agents act through inhibition of telomerase activity and induction of apoptosis. β-ionone, a carotenoid compound isolated from Roseaceae, has been reported to possess anticancer properties. The present study was undertaken to examine the mechanism of β-ionone-induced apoptosis in human leukemia cell line K562 with special emphasis on its role in telomerase inhibition. Method: In this study the anti-proliferation effect of β-ionone on K562 cells was evaluated by MTT assay. Apoptosis rate was detected by Hoechst staining and flow cytometry analysis. Telomerase activity was measured by (TRAP ELISA assay. Results: Exposure of K562 cells to β-ionone caused a dose-dependent decrease in proliferation. Flow cytometry analysis and Hoechst staining showed that percentage of apoptotic cells markedly increased with an increase in β-ionone concentration. Compared to control cells, treatment of K562 cells with β-ionone resulted in a significant decrease of telomerase activity. Moreover, a positive correlation was detected between telomerase inhibition and apoptosis induction in the treated K562 cells. Conclusion: Based on these results, β-ionone is an appropriate candidate for inhibiting telomerase activity in K562 cells. Therefore, it may be utilized as a novel drug against some leukemia cell lines.

  20. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Directory of Open Access Journals (Sweden)

    Shi D

    2016-11-01

    Full Text Available Dan Shi,1,* Yan Liu,1,* Ronggang Xi,1 Wei Zou,2 Lijun Wu,3 Zhiran Zhang,1 Zhongyang Liu,1 Chao Qu,1 Baoli Xu,1 Xiaobo Wang1 1Department of Pharmacy, The 210th Hospital of People’s Liberation Army, 2College of Life Science, Liaoning Normal University, Dalian, Liaoning, 3Department of Pharmaceutics, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China *These authors contributed equally to this work Abstract: Chronic myelogenous leukemia (CML is characterized by the t(9;22 (q34;q11-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1 participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during

  1. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  2. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  3. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    Science.gov (United States)

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (Pcompound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  4. Small Molecule TH-39 Potentially Targets Hec1/Nek2 Interaction and Exhibits Antitumor Efficacy in K562 Cells via G0/G1 Cell Cycle Arrest and Apoptosis Induction.

    Science.gov (United States)

    Zhu, Yongxia; Wei, Wei; Ye, Tinghong; Liu, Zhihao; Liu, Li; Luo, Yong; Zhang, Lidan; Gao, Chao; Wang, Ningyu; Yu, Luoting

    2016-01-01

    Cancer is still a major public health issue worldwide, and new therapeutics with anti-tumor activity are still urgently needed. The anti-tumor activity of TH-39, which shows potent anti-proliferative activity against K562 cells with an IC50 of 0.78 µM, was investigated using immunoblot, co-immunoprecipitation, the MTT assay, and flow cytometry. Mechanistically, TH-39 may disrupt the interaction between Hec1 and Nek2 in K562 cells. Moreover, TH-39 inhibited cell proliferation in a concentration- and time-dependent manner by influencing the morphology of K562 cells and inducing G0/G1 phase arrest. G0/G1 phase arrest was associated with down-regulation of CDK2-cyclin E complex and CDK4/6-cyclin D complex activities. Furthermore, TH-39 also induced cell apoptosis, which was associated with activation of caspase-3, down-regulation of Bcl-2 expression and up-regulation of Bax. TH-39 could also decrease mitochondrial membrane potential (Δψm) and increase reactive oxygen species (ROS) accumulation in K562 cells. The results indicated that TH-39 might induce apoptosis via the ROS-mitochondrial apoptotic pathway. This study highlights the potential therapeutic efficacy of the anti-cancer compound TH-39 in treatment-resistant chronic myeloid leukemia. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  6. Expression of human gamma-globin genes in human erythroleukemia (K562) cells.

    Science.gov (United States)

    Donovan-Peluso, M; Acuto, S; Swanson, M; Dobkin, C; Bank, A

    1987-12-15

    K562 cells express embryonic (epsilon) and fetal (gamma) globins and hemoglobins but not adult (beta) globin. To define the cis acting regulatory elements involved in the discrimination between gamma and beta genes, we have constructed chimeric genes composed of portions of gamma and beta and evaluated their expression in stable K562 transfectants. A gamma beta fusion gene containing gamma 5' sequences to the EcoRI site in exon 3 and beta sequences 3' is expressed at 10-40% that of the endogenous gamma level. In 50% of the lines, this fusion gene appropriately increases its expression in response to hemin, an inducer of endogenous globin gene expression in K562 cells. In contrast, a beta gamma fusion gene, containing beta sequences 5' to the EcoRI site in exon 3 and gamma sequences 3', is neither expressed nor correctly initiated. A beta gene containing gamma-intervening sequence (IVS) 2 accumulates an mRNA transcript when analyzed with a 3' beta probe. However, no correctly initiated beta mRNA is observed. A gamma gene with beta-IVS 2 is only inducible in one of six expressing clones. All the results are consistent with the presence of stage-specific trans acting factors in K562 cells that stimulate expression of gamma genes and suggest a significant role for gamma-IVS 2 in gamma gene expression.

  7. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457 (China); Obesita and Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris (France); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  8. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  9. Delayed K562 cell apoptosis promoted by cleaved LyGDI after 60Co γ-rays irradiation

    International Nuclear Information System (INIS)

    Sun Huali; Duan Weiming; Shao Yanyan; Xiao Hainan; Zhou Xinwen

    2010-01-01

    Objective: To elucidate the function and regulatory mechanism of LyGDI involved delayed cell death in the human K562 cells and HL-60 cells induced by 60 Co γ-rays. Methods: Erythrosine B cells staining was used to count the apoptosis rate. PI staining and flow cytometry were applied to check the cell cycle. The expression of LYGDI and Rac1 was resolved by Western blot by using monoclonal antibody of LyGDI and Rac1. The distribution of Rac1 protein in cells was observed with immunofluorescence by using the confocal microscope. Results: The K562 cells showed G 2 /M phase arrest and the percent age was 71.3%. The apoptosis rate was very low at early post-irradiation stage in the K562 cells. The apoptosis rate was 14% in the K562 cells at 24 h post-irradiation with 8 Gy of γ-rays, and delayed cell apoptosis was present. LyGDI was cleaved in the K562 cells irradiated by 4 Gy 60 Co γ-rays after 24 hours post-irradiation. The expression of Rac1 protein was not altered at all, but the distribution was changed in the irradiated cells while the Rac1 protein moved to cell membrane and a little in cell nucleus. The Rac1 was activated with the losing the binding affinity with the LyGDI. Conclusion: LyGDI could promote the delayed cell apoptosis, which is through the activation of the Rac1. (authors)

  10. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  11. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  12. PENGARUH EKSTRAK JAMU TERHADAP AKTIVITAS SEL NATURAL KILLER DALAM MELISIS ALUR SEL LEUKIMIA (K-562 SECARA IN VITRO [The Effects of Commercial “Jamu” Extracts on Natural Killer Cell Activity in Lysing Leukemic Cell Line (K-562 in vitro

    Directory of Open Access Journals (Sweden)

    Elisa Veronica D.C. 2

    2002-04-01

    Full Text Available Natural killer (NK cell consitutes white blood cells which specifically functions in lysing tumor and virus invected cells. In this research, a commercial “Jamu” was tested to observe its effect on NK cells activity against leukemic cell lines (K562 in vitro. Jamu was extracted with hot water, diluted and added into cell cultures consisted of a mixture of human peripheric limphocyte cells, as the source of the effector NK cells, and K562 cell line i.e., the target cells which were cell line derived from human leukemia and had been labelled with H3-thymidine. The mixture of the cells were made by culturing the two cells at the ratio of 50:1 and 100 : 1, respectively. The results showed that lysing activity of NK cells in the presence of “Jamu” water extract measured as lysing percentage and lysing index increased only slightly, which were not statiscally significant. It should be considered that the test used in this research represents only a part of the lysing mechanism by NK cells against the target cells. An in vivo test for a period of time will be recessary to elucidate ffurther this NK cell activity.

  13. Musashi2 modulates K562 leukemic cell proliferation and apoptosis involving the MAPK pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijuan; Tan, Shi; Wang, Juan; Chen, Shana; Quan, Jing; Xian, Jingrong; Zhang, Shuai shuai; He, Jingang; Zhang, Ling, E-mail: lingzhang@cqmu.edu.cn

    2014-01-01

    The RNA-binding protein Musashi2 (Msi2) has been identified as a master regulator within a variety of stem cell populations via the regulation of translational gene expression. A recent study has suggested that Msi2 is strongly expressed in leukemic cells of acute myeloid leukemia patients, and elevated Msi2 is associated with poor prognosis. However, the potential role of Msi2 in leukemogenesis is still not well understood. Here, we investigated the effect of Msi2 knockdown on the biological properties of leukemic cells. High expression of Msi2 was found in K562 and KG-1a leukemic cell lines, and low expression was observed in the U937 cell line. We transduced K562 cells with two independent adenoviral shRNA vectors targeting Msi2 and confirmed knockdown of Msi2 at the mRNA and protein levels. Msi2 silencing inhibited cell growth and caused cell cycle arrest by increasing the expression of p21 and decreasing the expression of cyclin D1 and cdk2. In addition, knockdown of Msi2 promoted cellular apoptosis via the upregulation of Bax and downregulation of Bcl-2 expression. Furthermore, Msi2 knockdown resulted in the inactivation of the ERK/MAPK and p38/MAPK pathways, but no remarkable change in p-AKT was observed. These data provide evidence that Msi2 plays an important role in leukemogenesis involving the MAPK signaling pathway, which indicates that Msi2 may be a novel target for leukemia treatment. - Highlights: • Knockdown of Msi2 inhibited K562 cell growth and arrested cell cycle progression. • Knockdown of Msi2 induced K562 cell apoptosis via the regulation of Bax and Bcl-2. • The MAPK pathway was involved in the process of Msi2-mediated leukemogenesis. • Our data indicate that Msi2 is a potential new target for leukemia treatment.

  14. Anticancer activity of Pupalia lappacea on chronic myeloid leukemia K562 cells.

    Science.gov (United States)

    Ravi, Alvala; Alvala, Mallika; Sama, Venkatesh; Kalle, Arunasree M; Irlapati, Vamshi K; Reddy, B Madhava

    2012-12-05

    Cancer is one of the most prominent human diseases which has enthused scientific and commercial interest in the discovery of newer anticancer agents from natural sources. Here we demonstrated the anticancer activity of ethanolic extract of aerial parts of Pupalia lappacea (L) Juss (Amaranthaceae) (EAPL) on Chronic Myeloid Leukemia K562 cells. Antiproliferative activity of EAPL was determined by MTT assay using carvacrol as a positive control. Induction of apoptosis was studied by annexin V, mitochondrial membrane potential, caspase activation and cell cycle analysis using flow cytometer and modulation in protein levels of p53, PCNA, Bax and Bcl2 ratio, cytochrome c and cleavage of PARP were studied by Western blot analysis. The standardization of the extract was performed through reverse phase-HPLC using Rutin as biomarker. The results showed dose dependent decrease in growth of K562 cells with an IC50 of 40 ± 0.01 μg/ml by EAPL. Induction of apoptosis by EAPL was dose dependent with the activation of p53, inhibition of PCNA, decrease in Bcl2/Bax ratio, decrease in the mitochondrial membrane potential resulting in release of cytochrome c, activation of multicaspase and cleavage of PARP. Further HPLC standardization of EAPL showed presence 0.024% of Rutin. Present study significantly demonstrates anticancer activity of EAPL on Chronic Myeloid Leukemia (K562) cells which can lead to potential therapeutic agent in treating cancer. Rutin, a known anti cancer compound is being reported and quantified for the first time from EAPL.

  15. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells

    Directory of Open Access Journals (Sweden)

    Giuseppe Fiume

    2016-11-01

    Full Text Available The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03% of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7% and 698 downregulated (54.3% RNAs. In K562 cells, 1959 (3.1% of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7% and 906 downregulated (46.3%. Only 137 transcripts (0.22% were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  16. IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.

    Science.gov (United States)

    Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana

    2016-11-07

    The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.

  17. Retinoic acid receptor gamma impacts cellular adhesion, Alpha5Beta1 integrin expression and proliferation in K562 cells.

    Science.gov (United States)

    Kelley, Melissa D; Phomakay, Raynin; Lee, Madison; Niedzwiedz, Victoria; Mayo, Rachel

    2017-01-01

    The interplay between cellular adhesion and proliferation is complex; however, integrins, particularly the α5β1 subset, play a pivotal role in orchestrating critical cellular signals that culminate in cellular adhesion and growth. Retinoids modify the expression of a variety of adhesive/proliferative signaling proteins including α5β1 integrins; however, the role of specific retinoic acid receptors involved in these processes has not been elucidated. In this study, the effect of all-trans-retinoic acid receptor (RAR) agonists on K562 cellular adhesion, proliferation, and α5β1 integrin cell surface expression was investigated. RARγ agonist exposure increased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin and FN-120 in a time- and concentration dependent manner, while RARα or RARβ agonist treatment had no effect on cellular adhesion. Due to the novel RARγ- dependent cellular adhesion response exhibited by K562 cells, we examined α5 and β1 integrin subunit expression when K562 cells were exposed to retinoid agonists or vehicle for 24, 48, 72 or 96 hours. Our data demonstrates no differences in K562 cell surface expression of the α5 integrin subunit when cells were exposed to RARα, RARβ, or RARγ agonists for all time points tested. In contrast, RARγ agonist exposure resulted in an increase in cell surface β1 integrin subunit expression within 48 hours that was sustained at 72 and 96 hours. Finally, we demonstrate that while exposure to RARα or RARβ agonists have no effect on K562 cellular proliferation, the RARγ agonist significantly dampens K562 cellular proliferation levels in a time- and concentration- dependent manner. Our study is the first to report that treatment with a RARγ specific agonist augments cellular adhesion to α5β1 integrin substrates, increases cell surface levels of the β1 integrin subunit, and dampens cellular proliferation in a time and concentration dependent manner in a human

  18. [Effect of Recombinant Adenovirus AdE-SH2-Caspase 8 on the Apoptosis of Imatinib-resistant K562/G01 Cell Line].

    Science.gov (United States)

    Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li

    2015-08-01

    To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.

  19. 9-cis-retinoic Acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells.

    Science.gov (United States)

    Hanson, Amanda M; Gambill, Jessica; Phomakay, Venusa; Staten, C Tyler; Kelley, Melissa D

    2014-01-01

    Retinoids are established pleiotropic regulators of both adaptive and innate immune responses. Recently, troglitazone, a PPAR gamma agonist, has been demonstrated to have anti-inflammatory effects. Separately, retinoids and troglitazone are implicated in immune related processes; however, their combinatory role in cellular adhesion and proliferation has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) and troglitazone on K562 cellular adhesion and proliferation was investigated. Troglitazone exposure decreased K562 cellular adhesion to RGD containing extracellular matrix proteins fibronectin, FN-120, and vitronectin in a concentration and time-dependent manner. In the presence of troglitazone, 9-cis-retinoic acid restores cellular adhesion to levels comparable to vehicle treatment alone on fibronectin, FN-120, and vitronectin substrates within 72 hours. Due to the prominent role of integrins in attachment to extracellular matrix proteins, we evaluated the level of integrin α5 subunit expression. Troglitazone treatment results in decrease in α5 subunit expression on the cell surface. In the presence of both agonists, cell surface α5 subunit expression was restored to levels comparable to vehicle treatment alone. Additionally, troglitazone and 9-cis-RA mediated cell adhesion was decreased in the presence of a function blocking integrin alpha 5 inhibitor. Further, through retinoid metabolic profiling and HPLC analysis, our study demonstrates that troglitazone augments retinoid availability in K562 cells. Finally, we demonstrate that troglitazone and 9-cis-retinoic acid synergistically dampen cellular proliferation in K562 cells. Our study is the first to report that the combination of troglitazone and 9-cis-retinoic acid restores cellular adhesion, alters retinoid availability, impacts integrin expression, and dampens cellular proliferation in K562 cells.

  20. Use of zinc-finger nucleases to knock out the WAS gene in K562 cells: a human cellular model for Wiskott-Aldrich syndrome

    Directory of Open Access Journals (Sweden)

    Miguel G. Toscano

    2013-03-01

    Mutations in the WAS gene cause Wiskott-Aldrich syndrome (WAS, which is characterized by eczema, immunodeficiency and microthrombocytopenia. Although the role of WASP in lymphocytes and myeloid cells is well characterized, its role on megakaryocyte (MK development is poorly understood. In order to develop a human cellular model that mimics the megakaryocytic-derived defects observed in WAS patients we used K562 cells, a well-known model for study of megakaryocytic development. We knocked out the WAS gene in K562 cells using a zinc-finger nuclease (ZFN pair targeting the WAS intron 1 and a homologous donor DNA that disrupted WASP expression. Knockout of WASP on K562 cells (K562WASKO cells resulted in several megakaryocytic-related defects such as morphological alterations, lower expression of CD41ɑ, lower increments in F-actin polymerization upon stimulation, reduced CD43 expression and increased phosphatidylserine exposure. All these defects have been previously described either in WAS-knockout mice or in WAS patients, validating K562WASKO as a cell model for WAS. However, K562WASPKO cells showed also increased basal F-actin and adhesion, increased expression of CD61 and reduced expression of TGFβ and Factor VIII, defects that have never been described before for WAS-deficient cells. Interestingly, these phenotypic alterations correlate with different roles for WASP in megakaryocytic differentiation. All phenotypic alterations observed in K562WASKO cells were alleviated upon expression of WAS following lentiviral transduction, confirming the role of WASP in these phenotypes. In summary, in this work we have validated a human cellular model, K562WASPKO, that mimics the megakaryocytic-related defects found in WAS-knockout mice and have found evidences for a role of WASP as regulator of megakaryocytic differentiation. We propose the use of K562WASPKO cells as a tool to study the molecular mechanisms involved in the megakaryocytic-related defects observed in WAS

  1. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria; Ronchi, Antonella; Ruoppolo, Margherita; Santorelli, Lucia; Steinfelder, Robert; Elangovan, Sudharshan; Fugazza, Cristina; Caterino, Marianna

    2017-01-01

    are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark

  2. Inhibitiory properties of cytoplasmic extract of Lactobacilli isolated from common carp intestine on human chronic myelocytic leukemia K562 cell line: an in vitro study

    Directory of Open Access Journals (Sweden)

    Kabiri F

    2011-03-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Lactobacillus species are genetically diverse groups of Lactic Acid Bacteria (LAB that have been introduced as probiotics, because of some characteristics such as their anti-tumor properties, helping the intestinal flora balance, production of antibiotics, stimulation of host immune response, etc. The aim of this study was to investigate the effects of cytoplasmic extraction and cell wall of Lactobacillus species isolated from the intestine of common carp on human chronic myelocytic leukemia or K562 cancer cell lines."n"nMethods: The intestinal contents of 115 common carp captured from the natural resources of West Azerbaijan province in Iran were examined for LAB. After isolation, the identification of Lactobacilli was done according to traditional and molecular bacteriological tests. Subsequently, a suspension of each bacterium was prepared and the protein content of the cytoplasm was extracted. Cell wall disintegration was done by cell lysis buffer and sonication. The effects of cytoplasmic extraction and cell wall on K562 cell line proliferation were investigated by MTT assays."n"nResults: The cytoplasmic extraction of the isolated Lactobacilli had significant (p<0.05 anti

  3. Structural Characteristics of the Novel Polysaccharide FVPA1 from Winter Culinary-Medicinal Mushroom, Flammulina velutipes (Agaricomycetes), Capable of Enhancing Natural Killer Cell Activity against K562 Tumor Cells.

    Science.gov (United States)

    Jia, Wei; Feng, Jie; Zhang, Jing-Song; Lin, Chi-Chung; Wang, Wen-Han; Chen, Hong-Ge

    2017-01-01

    FVPA1, a novel polysaccharide, has been isolated from fruiting bodies of the culinary-medicinal mushroom Flammulina velutipes, a historically popular, widely cultivated and consumed functional food with an attractive taste, beneficial nutraceutical properties such as antitumor and immunomodulatory effects, and a number of essential biological activities. The average molecular weight was estimated to be ~1.8 × 104 Da based on high-performance size exclusion chromatography. Sugar analyses, methylation analyses, and 1H, 13C, and 2-dimensional nuclear magnetic resonance spectroscopy revealed the following structure of the repeating units of the FVPA1 polysaccharide Identification of this structure would conceivably lead to better understanding of the nutraceutical functions of this very important edible fungus. Bioactivity tests in vitro indicated that FVPA1 could significantly enhance natural killer cell activity against K562 tumor cells.

  4. The proteomic study of sodium butyrate antiproliferative/cytodifferentiation effects on K562 cells

    Czech Academy of Sciences Publication Activity Database

    Grebeňová, D.; Kuželová, K.; Pluskalová, M.; Pešlová, G.; Halada, Petr; Hrkal, Z.

    2006-01-01

    Roč. 37, - (2006), s. 210-217 ISSN 1079-9796 R&D Projects: GA MZd NL7681 Institutional research plan: CEZ:AV0Z50200510 Keywords : k562 * cell cycle * hemoglobin synthesis Subject RIV: EE - Microbiology, Virology Impact factor: 2.678, year: 2006

  5. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl+ K562 and Jak2(V617F)+ HEL Leukemia Cells

    International Nuclear Information System (INIS)

    Weber, Axel; Borghouts, Corina; Brendel, Christian; Moriggl, Richard; Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd

    2015-01-01

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl + K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells, Stat5

  6. Aqueous extract of Crataegus azarolus protects against DNA damage in human lymphoblast Cell K562 and enhances antioxidant activity.

    Science.gov (United States)

    Mustapha, Nadia; Bouhlel, Inès; Chaabane, Fadwa; Bzéouich, Imèn Mokdad; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2014-02-01

    The present study was carried out to characterize the cellular antioxidant effect of the aqueous extract of Crataegus azarolus and its antigenotoxic potential using human myelogenous cells, K562. The antioxidant capacity of this extract was evaluated by determining its cellular antioxidant activity (CAA) in K562 cells. Also, preceding antigenotoxicity assessment, its eventual genotoxicity property was investigated by evaluating its capacity to induce the DNA degradation of treated cell nuclei. As no genotoxicity was detected at different exposure times, its ability to protect cell DNA against H2O2 oxidative effect was investigated, using the "comet assay." It appears that 800 μg/mL of extract inhibited the genotoxicity induced by H2O2 with a rate of 41.30 %, after 4 h of incubation. In addition, this extract revealed a significant cellular antioxidant capacity against the reactive oxygen species in K562 cells.

  7. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  8. The best time of cytotoxicity for extracted cell wall from Lactobacillus casei and paracasei in K562 cell line

    Directory of Open Access Journals (Sweden)

    Riki M

    2013-02-01

    Full Text Available Background: The aim of this study was to evaluate the effect of extracted cell walls from Lactobacillus casei and Lactobacillus paracasei as probiotic bacteria (isolated from common carp intestine on K562 and the role of cell concentration on the results of MTT [3-(4,5-Dimethylthiazol-2-yl2,5- Diphenyl tetrazolium Bromide] test.Methods: For this purpose, bacteria were cultured in specific medium (MRS broth at anaerobic condition for 24-48 hour. After incubation period culture medium was centri-fuged, then the cells were washed twice with PBS buffer to remove additional medium. Finally, collected bacterial cell disrupted by Sonication and cell walls were separated from other components by centrifugation. After that, different concentrations of cell walls (500, 1000, 2000 and 4000 µg/ml were prepared in RPMI medium for each bacteria, separately. Then anticancer properties of the cell walls were determined in vitro at 12, 24, 48 and 72 h, also the effect of K562 concentration was assayed with MTT technique.Results: The results showed extracted cell wall from both probiotic statistically (P=0.098 have anti turmeric properties in K562 and their properties will arise in relation with concentration. As well as, we found that the number of cell had not any affect on the result of MTT assay.Conclusion: We conclude that the cytotoxicity property of extracted cell wall is related in the type of bacteria, but this anticancer property would warrant further study on the clinical application of extracted cell wall.

  9. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    Science.gov (United States)

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Stat5 Exerts Distinct, Vital Functions in the Cytoplasm and Nucleus of Bcr-Abl{sup +} K562 and Jak2(V617F){sup +} HEL Leukemia Cells

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Axel [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany); Borghouts, Corina [Ganymed Pharmaceuticals AG, Mainz 55131 (Germany); Brendel, Christian [Boston Children’s Hospital, Division of Hematology/Oncology, Boston, MA 02115 (United States); Moriggl, Richard [Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna 1090 (Austria); Delis, Natalia; Brill, Boris; Vafaizadeh, Vida; Groner, Bernd, E-mail: Groner@em.uni-frankfurt.de [Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main 60596 (Germany)

    2015-03-19

    Signal transducers and activators of transcription (Stats) play central roles in the conversion of extracellular signals, e.g., cytokines, hormones and growth factors, into tissue and cell type specific gene expression patterns. In normal cells, their signaling potential is strictly limited in extent and duration. The persistent activation of Stat3 or Stat5 is found in many human tumor cells and contributes to their growth and survival. Stat5 activation plays a pivotal role in nearly all hematological malignancies and occurs downstream of oncogenic kinases, e.g., Bcr-Abl in chronic myeloid leukemias (CML) and Jak2(V617F) in other myeloproliferative diseases (MPD). We defined the mechanisms through which Stat5 affects growth and survival of K562 cells, representative of Bcr-Abl positive CML, and HEL cells, representative for Jak2(V617F) positive acute erythroid leukemia. In our experiments we suppressed the protein expression levels of Stat5a and Stat5b through shRNA mediated downregulation and demonstrated the dependence of cell survival on the presence of Stat5. Alternatively, we interfered with the functional capacities of the Stat5 protein through the interaction with a Stat5 specific peptide ligand. This ligand is a Stat5 specific peptide aptamer construct which comprises a 12mer peptide integrated into a modified thioredoxin scaffold, S5-DBD-PA. The peptide sequence specifically recognizes the DNA binding domain (DBD) of Stat5. Complex formation of S5-DBD-PA with Stat5 causes a strong reduction of P-Stat5 in the nuclear fraction of Bcr-Abl-transformed K562 cells and a suppression of Stat5 target genes. Distinct Stat5 mediated survival mechanisms were detected in K562 and Jak2(V617F)-transformed HEL cells. Stat5 is activated in the nuclear and cytosolic compartments of K562 cells and the S5-DBD-PA inhibitor most likely affects the viability of Bcr-Abl{sup +} K562 cells through the inhibition of canonical Stat5 induced target gene transcription. In HEL cells

  11. Involvement of CD147 on multidrug resistance through the regulation of P-glycoprotein expression in K562/ADR leukemic cell line

    Directory of Open Access Journals (Sweden)

    Aoranit Somno

    2016-01-01

    Full Text Available The relationship between P-gp and CD147 in the regulation of MDR in leukemic cells has not been reported. This study aimed to investigate the correlation between CD147 and P-gp in the regulation of drug resistance in the K562/ADR leukemic cell line. The results showed that drug-resistant K562/ADR cells expressed significantly higher P-gp and CD147 levels than drug-free K562/ADR cells. To determine the regulatory effect of CD147 on P-gp expression, anti-CD147 antibody MEM-M6/6 significantly decreased P-gp and CD147 mRNA and protein levels. This is the first report to show that CD147 mediates MDR in leukemia through the regulation of P-gp expression.

  12. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  13. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  14. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    Science.gov (United States)

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  15. Synergistic effect of hydrogen peroxide on polyploidization during the megakaryocytic differentiation of K562 leukemia cells by PMA.

    Science.gov (United States)

    Ojima, Yoshihiro; Duncan, Mark Thompson; Nurhayati, Retno Wahyu; Taya, Masahito; Miller, William Martin

    2013-08-15

    The human myelogenous cell line, K562 has been extensively used as a model for the study of megakaryocytic (MK) differentiation, which could be achieved by exposure to phorbol 12-myristate 13-acetate (PMA). In this study, real-time PCR analysis revealed that the expression of catalase (cat) was significantly repressed during MK differentiation of K562 cells induced by PMA. In addition, PMA increased the intracellular reactive oxygen species (ROS) concentration, suggesting that ROS was a key factor for PMA-induced differentiation. PMA-differentiated K562 cells were exposed to hydrogen peroxide (H2O2) to clarify the function of ROS during MK differentiation. Interestingly, the percentage of high-ploidy (DNA content >4N) cells with H2O2 was 34.8±2.3% at day 9, and was 70% larger than that without H2O2 (21.5±0.8%). Further, H2O2 addition during the first 3 days of PMA-induced MK differentiation had the greatest effect on polyploidization. In an effort to elucidate the mechanisms of enhanced polyploidization by H2O2, the BrdU assay clearly indicated that H2O2 suppressed the division of 4N cells into 2N cells, followed by the increased polyploidization of K562 cells. These findings suggest that the enhancement in polyploidization mediated by H2O2 is due to synergistic inhibition of cytokinesis with PMA. Although H2O2 did not increase ploidy during the MK differentiation of primary cells, we clearly observed that cat expression was repressed in both immature and mature primary MK cells, and that treatment with the antioxidant N-acetylcysteine effectively blocked and/or delayed the polyploidization of immature MK cells. Together, these findings suggest that MK cells are more sensitive to ROS levels during earlier stages of maturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Macrophage inflammatory protein-3α influences growth of K562 leukemia cells in co-culture with anticancer drug-pretreated HS-5 stromal cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Chiou, T.-J.; Tzeng, W.-F.; Chu, S.T.

    2008-01-01

    Stromal cell monolayers have been an important means of studying the regulation of hematopoiesis, because they produce cytokines. Cytosine arabinoside, vincristine, daunorubicin, and doxorubicin are common drugs for hematological cancer therapy, and they may have some effects on bone marrow stroma during chemotherapy. The aim of this study was to elucidate interactions between the bone marrow stromal microenvironment and leukemic cells after drug treatment. We tested the hypothesis that human HS-5 stromal cells, pretreated with anticancer drugs, affected the growth of leukemic K562 cells by changing the cytokines in the culture microenvironment. Thereafter, proliferation of K562 cells increased nearly 2.5-fold compared the co-cultivation with drugs-pretreated HS-5 stromal cells and drugs-untreated HS-5 stromal cells. The results indicated that co-cultivation with HS-5 stromal cells pretreated with drugs caused significant K562 cell proliferation. Cytokines in the microenvironment were detected via the RayBio Human Cytokine Antibody Array Membrane. The levels of the cytokines CKβ, IL-12, IL-13, IGFBP-2, MCP-1, MCP-3, MCP-4, MDC, MIP-1β and MIP-1δ were decreased, with a particularly marked decrease in MIP-3α. In co-culture medium, there was a 20-fold decrease in MIP-3α in daunorubicin-pretreated HS-5 cells and at least a 3-fold decrease in Ara-C-pretreated cells. This indicated a significant effect of anticancer drugs on the stromal cell line. Using phosphorylated Erk and pRb proteins as cell proliferation markers, we found that phosphorylation of these markers in K562 cells was inhibited during co-cultivation with drug-pretreated stromal cells in MIP-3α-supplemented medium and restored by MIP-3α antibody supplement. In conclusion, anticancer drug pretreatment suppresses the negative control exerted by HS-5 cells on leukemic cell proliferation, via modulation of cytokines in the microenvironment, especially at the level of MIP-3α

  17. Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death.

    Science.gov (United States)

    Galeano, Eva; Nieto, Elena; García-Pérez, Ana Isabel; Delgado, M Dolores; Pinilla, Montserrat; Sancho, Pilar

    2005-10-01

    Dequalinium (DQA) is a delocalized lipophylic cation that selectively targets the mitochondria of carcinoma cells. However, the underlying mechanisms of DQA action are not yet well understood. We have studied the effects of DQA on two different leukemia cell lines: NB4, derived from acute promyelocytic leukemia, and K562, derived from chronic myeloid leukemia. We found that DQA displays differential cytotoxic activity in these cell lines. In NB4 cells, a low DQA concentration (2microM) induces a mixture of apoptosis and necrosis, whereas a high DQA concentration (20microM) induces mainly necrosis. However, K562 cell death was always by necrosis as the cells showed a resistance to apoptosis at all time-periods and DQA concentrations assayed. In both cell lines, the cell death seems to be mediated by alterations of mitochondrial function as evidenced by loss of mitochondrial transmembrane potential, O2*- accumulation and ATP depletion. The current study improves the knowledge on DQA as a novel anticancer agent with a potential application in human acute promyelocytic leukemia chemotherapy.

  18. Dual Functions of the C5a Receptor as a Connector for the K562 Erythroblast-Like Cell-THP-1 Macrophage-Like Cell Island and as a Sensor for the Differentiation of the K562 Erythroblast-Like Cell during Haemin-Induced Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Hiroshi Nishiura

    2012-01-01

    Full Text Available The transcriptional nuclear factor binding to the Y box of human leukocyte antigen genes (NF-Y for the C5a receptor (C5aR gene is active in erythroblasts. However, the roles of the C5aR in erythropoiesis are unclear. We have previously demonstrated that apoptotic cell-derived ribosomal protein S19 (RP S19 oligomers exhibit extraribosomal functions in promoting monocyte chemotaxis and proapoptosis via the C5aR without receptor internalisation. In contrast to the extraribosomal functions of the RP S19, a proapoptotic signal in pro-EBs, which is caused by mutations in the RP S19 gene, is associated with the inherited erythroblastopenia, Diamond-Blackfan anaemia. In this study, we detected C5aR expression and RP S19 oligomer generation in human erythroleukemia K562 cells during haemin-induced erythropoiesis. Under monocell culture conditions, the differentiation into K562 erythrocyte-like cells was enhanced following the overexpression of Wild-type RP S19. Conversely, the differentiation was repressed following the overexpression of mutant RP S19. An RP S19 oligomer inhibitor and a C5aR inhibitor blocked the association of the K562 basophilic EB-like cells and the THP-1 macrophage-like cells under coculture conditions. When bound to RP S19 oligomers, the C5aR may exhibit dual functions as a connector for the EB-macrophage island and as a sensor for EB differentiation in the bone marrow.

  19. Unravelling pathways downstream Sox6 induction in K562 erythroid cells by proteomic analysis

    KAUST Repository

    Barbarani, Gloria

    2017-10-20

    The Sox6 transcription factor is crucial for terminal maturation of definitive red blood cells. Sox6-null mouse fetuses present misshapen and nucleated erythrocytes, due to impaired actin assembly and cytoskeleton stability. These defects are accompanied with a reduced survival of Sox6-/- red blood cells, resulting in a compensated anemia. Sox6-overexpression in K562cells and in human primary ex vivo erythroid cultures enhances erythroid differentiation and leads to hemoglobinization, the hallmark of erythroid maturation. To obtain an overview on processes downstream to Sox6 expression, we performed a differential proteomic analysis on human erythroid K562cells overexpressing Sox6. Sox6-overexpression induces dysregulation of 64 proteins, involved in cytoskeleton remodeling and in protein synthesis, folding and trafficking, key processes for erythroid maturation. Moreover, 43 out of 64 genes encoding for differentially expressed proteins contain within their proximal regulatory regions sites that are bound by SOX6 according to ENCODE ChIP-seq datasets and are possible direct SOX6 targets. SAR1B, one of the most induced proteins upon Sox6 overexpression, shares a conserved regulatory module, composed by a double SOX6 binding site and a GATA1 consensus, with the adjacent SEC24 A gene. Since both genes encode for COPII components, this element could concur to the coordinated expression of these proteins during erythropoiesis.

  20. Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells.

    Science.gov (United States)

    Hildén, K; Tuuri, T; Erämaa, M; Ritvos, O

    1999-07-20

    Activins were originally isolated based on their ability to stimulate follicle-stimulating hormone secretion but later they have been shown to regulate a number of different cellular functions such as nerve cell survival, mesoderm induction during early embryogenesis as well as hematopoiesis. We studied the regulation of activin A, a homodimer of betaA-subunits, mRNA and protein in K562 erythroleukemia cells, which are known to be induced toward the erythroid lineage in response to activin or TGF-beta or toward the megakaryocytic lineage by the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). Here we show by Northern blot analysis as well as by Western and ligand blotting that TPA strongly promotes activin betaA-subunit mRNA and activin A protein expression in K562 cells in time- and concentration dependent manner. In contrast, neither activin A nor TGF-beta induced betaA-subunit mRNA expression during erythroid differentiation in K562 cells. Interestingly, whereas activin type II receptors are not regulated during K562 cell differentiation (Hilden et al. (1994) Blood 83, 2163-2170), we now show that the activin type I and IB receptor mRNAs are clearly induced by TPA but not by activin or TGF-beta. We also show that the inducing effect of TPA on expression of activin betaA-subunit mRNA is potentiated by the protein kinase A activator 8-bromo-cAMP. We conclude that activin A and its type I receptors appear to be co-ordinately up-regulated during megakaryocytic differentiation of K562 cells.

  1. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  2. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    Science.gov (United States)

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. CLEC4M慢病毒载体的构建及其在K562细胞中的表达

    Directory of Open Access Journals (Sweden)

    WANG Yuanyuan

    2014-06-01

    Full Text Available ObjectiveTo construct the lentiviral vector encoding CLEC4M and prepare K-562 cells with stable overexpression of CLEC4M. MethodsThe gene sequence of normal CLEC4M was cloned by RT-PCR and then inserted into GV166 vector to construct GV166-CLEC4M lentiviral expression vector, and then lentiviral packaging was performed by transfection of 293T cells. The obtained lentiviral liquid was used to infect human leukemia cell line K-562. Real-time PCR and Western blot were used to detect the overexpression of CLEC4M in K-562 cells. ResultsSequencing showed that the recombinant lentiviral expression plasmid GV166-CLEC4M was successfully constructed. Lentiviruses could efficiently infect K-562 cells, according to real-time PCR. CLEC4M was successfully over-expressed in K-562 cells at mRNA and protein levels. ConclusionThe construction of lentiviral vector encoding CLEC4M lays a foundation for further study of CLEC4M gene involved in HCV entry into host cells.

  4. PaDef defensin from avocado (Persea americana var. drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis.

    Science.gov (United States)

    Flores-Alvarez, Luis José; Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2018-06-01

    Plant defensins, a group of antimicrobial peptides, show selective cytotoxicity toward cancer cells. However, their mechanisms of action remain poorly understood. Here, we evaluated the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on K562 chronic myeloid leukemia cells and analyzed the pathway involved in the induction of cell death. The defensin PaDef was not cytotoxic against human PBMCs; however, it was cytotoxic for K562 cell line (IC 50  = 97.3 μg/ml) activating apoptosis at 12 h. PaDef did not affect the mitochondrial membrane potential (ΔΨm), neither the transmembranal potential or the release of intracellular calcium. Also, PaDef induced gene expression of caspase 8 (∼2 fold), TNF-α (∼4 fold) and TNFR1 (∼10 fold). In addition, the activation of caspase 8 was detected at 24 h, whereas caspase 9 activity was not modified, suggesting that the extrinsic apoptosis pathway could be activated. In conclusion, PaDef induces apoptosis on K562 cells, which is related to the activation of caspase 8 and involves the participation of TNF-α, which is a novel property for a plant defensin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    International Nuclear Information System (INIS)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-01-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression

  6. Oxidative stress by ascorbate/menadione association kills K562 human chronic myelogenous leukaemia cells and inhibits its tumour growth in nude mice.

    Science.gov (United States)

    Verrax, Julien; Stockis, Julie; Tison, Aurélie; Taper, Henryk S; Calderon, Pedro Buc

    2006-09-14

    The effect of oxidative stress induced by the ascorbate/menadione-redox association was examined in K562 cells, a human erythromyeloid leukaemia cell line. Our results show that ascorbate enhances menadione redox cycling, leading to the formation of intracellular reactive oxygen species (as shown by dihydrorhodamine 123 oxidation). The incubation of cells in the presence of both ascorbate/menadione and aminotriazole, a catalase inhibitor, resulted in a strong decrease of cell survival, reinforcing the role of H(2)O(2) as the main oxidizing agent killing K562 cells. This cell death was not caspase-3-dependent. Indeed, neither procaspase-3 and PARP were processed and only a weak cytochrome c release was observed. Moreover, we observed only 23% of cells with depolarized mitochondria. In ascorbate/menadione-treated cells, DNA fragmentation was observed without any sign of chromatin condensation (DAPI and TUNEL tests). The cell demise by ascorbate/menadione is consistent with a necrosis-like cell death confirmed by both cytometric profile of annexin-V/propidium iodide labeled cells and by light microscopy examination. Finally, we showed that a single i.p. administration of the association of ascorbate and menadione is able to inhibit the growth of K562 cells by about 60% (in both tumour size and volume) in an immune-deficient mice model. Taken together, these results reinforced our previous claims about a potential application of the ascorbate/menadione association in cancer therapy.

  7. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    Science.gov (United States)

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  8. Nuclear topography of beta-like globin gene cluster in IL-3-stimulated human leukemic K-562 cells

    Czech Academy of Sciences Publication Activity Database

    Galiová-Šustáčková, Gabriela; Bártová, Eva; Kozubek, Stanislav

    2004-01-01

    Roč. 33, č. 1 (2004), s. 4-14 ISSN 1079-9796 R&D Projects: GA ČR GA301/01/0186; GA AV ČR KSK5052113; GA AV ČR IAA5004306; GA ČR GA202/04/0907; GA MŠk ME 565 Institutional research plan: CEZ:AV0Z5004920 Keywords : beta-like globin gene cluster * K-562 cells * nuclear topography Subject RIV: BO - Biophysics Impact factor: 2.549, year: 2004

  9. Comparison of different methods for erythroid differentiation in the K562 cell line.

    Science.gov (United States)

    Shariati, Laleh; Modaress, Mehran; Khanahmad, Hossein; Hejazi, Zahra; Tabatabaiefar, Mohammad Amin; Salehi, Mansoor; Modarressi, Mohammad Hossein

    2016-08-01

    To compare methods for erythroid differentiation of K562 cells that will be promising in the treatment of beta-thalassemia by inducing γ-globin synthesis. Cells were treated separately with: RPMI 1640 medium without glutamine, RPMI 1640 medium without glutamine supplemented with 1 mM sodium butyrate, RPMI 1640 medium supplemented with 1 mM sodium butyrate, 25 µg cisplatin/ml, 0.1 µg cytosine arabinoside/ml. The highest differentiation (84 %) with minimum toxicity was obtained with cisplatin at 15 µg /ml. Real-time RT-PCR showed that expression of the γ-globin gene was significantly higher in the cells differentiated with cisplatin compared to undifferentiated cells (P < 0.001). Cisplatin is useful in the experimental therapy of ß-globin gene defects and can be considered for examining the basic mechanism of γ-reactivation.

  10. 6′-Hydroxy Justicidin B Triggers a Critical Imbalance in Ca2+ Homeostasis and Mitochondrion-Dependent Cell Death in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Jiaoyang Luo

    2018-06-01

    Full Text Available Justicia procumbens (J. procumbens is a traditional Chinese herbal medicine which was used for the treatment of fever, pain, and cancer. A compound 6′-hydroxy justicidin B (HJB isolated from J. procumbens exhibits promising biological properties. However, the mechanism of action and the in vivo behavior of HJB remain to be elucidated. In this study, we investigated the mechanism of action of HJB on human leukemia K562 cells and its pharmacokinetic properties in rats. The results demonstrated that HJB significantly inhibited the proliferation of K562 cells and promoted apoptosis. Besides, HJB resulted in decreased mitochondrial membrane potential deltaPSIm, increased the level of the calcium homeostasis regulator protein TRPC6 and cytosolic calcium. The activity of caspase-8, caspase-9 and the expression of p53 were significantly increased after treatment with HJB. Additionally, HJB has rapid absorption rate and relative long elimination t1/2, indicating a longer residence time in vivo. The results indicate that HJB inhibited the proliferation of K562 cells and induced apoptosis by affecting the function of mitochondria and calcium homeostasis to activate the p53 signaling pathway. The pharmacokinetic study of HJB suggested it is absorbed well and has moderate metabolism in vivo. These results present HJB as a potential novel alternative to standard human leukemia therapies.

  11. MiR-27a Promotes Hemin-Induced Erythroid Differentiation of K562 Cells by Targeting CDC25B

    Directory of Open Access Journals (Sweden)

    Dongsheng Wang

    2018-03-01

    Full Text Available Background/Aims: MicroRNAs (miRNAs play a crucial role in erythropoiesis. MiR-23a∼27a∼24-2 clusters have been proven to take part in erythropoiesis via some proteins. CDC25B (cell division control Cdc2 phosphostase B is also the target of mir-27a; whether it regulates erythropoiesis and its mechanism are unknown. Methods: To evaluate the potential role of miR-27a during erythroid differentiation, we performed miR-27a gain- and loss-of-function experiments on hemin-induced K562 cells. We detected miR-27a expression after hemin stimulation at different time points. At the same time, the γ-globin gene also was measured via real-time PCR. According to the results of the chips, we screened the target protein of miR-27a through a dual-luciferase reporter assay and identified it via Western blot analyses. To evaluate the function of CDC25B, benzidine staining and flow cytometry were employed to detect the cell differentiation and cell cycle. Results: We found that miR-27a promotes hemin-induced erythroid differentiation of human K562 cells by targeting cell division cycle 25 B (CDC25B. Overexpression of miR-27a promotes the differentiation of hemin-induced K562 cells, as demonstrated by γ-globin overexpression. The inhibition of miR-27a expression suppresses erythroid differentiation, thus leading to a reduction in the γ-globin gene. CDC25B was identified as a new target of miR-27a during erythroid differentiation. Overexpression of miR-27a led to decreased CDC25B expression after hemin treatment, and CDC25B was up-regulated when miR-27a expression was inhibited. Moreover, the inhibition of CDC25B affected erythroid differentiation, as assessed by γ-globin expression. Conclusion: This study is the first report of the interaction between miR-27a and CDC25B, and it improves the understanding of miRNA functions during erythroid differentiation.

  12. Comparative Study of Different Nano-Formulations of Curcumin for Reversal of Doxorubicin Resistance in K562R Cells.

    Science.gov (United States)

    Dash, Tapan K; Konkimalla, V Badireenath

    2017-02-01

    Curcumin is very well established as a chemo-therapeutic, chemo-preventive and chemo-sensitizing agent in diverse disease conditions. As the isolated pure form has poor solubility and pharmacokinetic problems, therefore it is encapsulated in to several nano-formulations to improve its bioavailability. Here in the current study, we aim to compare different nano-formulations of curcumin for their chemo-sensitizing activity in doxorubicin (DOX) resistant K562 cells. Four different curcumin formulations were prepared namely DMSO assisted curcumin nano-dispersion (CurD, 260 nm), liposomal curcumin (CurL, 165 nm), MPEG-PCL micellar curcumin (CurM, 18 nm) and cyclodextrin encapsulated curcumin (CurN, 37 nm). The formulations were subjected to particle characterizations (size, zeta potential, release studies), followed by biological assays such as cellular uptake, P-gp inhibitory activity and reversal of DOX resistance by co-treatment with DOX. Curcumin uptake in K562N and K562R cells was mildly reduced when treated with CurL and CurM, while for CurD and CurN the uptake remained equivalent. However, CurL retained P-gp inhibitory activity of curcumin and with a considerable chemo-sensitizing effect but CurM showed no P-gp inhibitory activity. CurN retained above biological activities, but requires a secondary carrier under in vivo conditions. From the results, CurM was found to be most suitable for solubilization of curcumin where as CurL can be considered as most suitable nano-formulation for reversal of DOX resistance.

  13. Effects of light irradiation upon photodynamic therapy based on 5-aminolevulinic acid–gold nanoparticle conjugates in K562 cells via singlet oxygen generation

    Directory of Open Access Journals (Sweden)

    Xu H

    2012-09-01

    Full Text Available Hao Xu, Chen Liu, Jiansheng Mei, Cuiping Yao, Sijia Wang, Jing Wang, Zheng Li, Zhenxi ZhangKey Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shannxi, People’s Republic of ChinaPurpose: As a precursor of the potent photosensitizer protoporphyrin IX (PpIX, 5-aminolevulinic acid (5-ALA, was conjugated onto cationic gold nanoparticles (GNPs to improve the efficacy of photodynamic therapy (PDT.Methods: Cationic GNPs reduced by branched polyethyleneimine and 5-ALA were conjugated onto the cationic GNPs by creating an electrostatic interaction at physiological pH. The efficacy of ALA-GNP conjugates in PDT was investigated under irradiation with a mercury lamp (central wavelength of 395 nm and three types of light-emitting diode arrays (central wavelengths of 399, 502, and 621 nm, respectively. The impacts of GNPs on PDT were then analyzed by measuring the intracellular PpIX levels in K562 cells and the singlet oxygen yield of PpIX under irradiation.Results: The 2 mM ALA-GNP conjugates showed greater cytotoxicity against K562 cells than ALA alone. Light-emitting diode (505 nm irradiation of the conjugates caused a level of K562 cell destruction similar to that with irradiation by a mercury lamp, although it had no adverse effects on drug-free control cells. These results may be attributed to the singlet oxygen yield of PpIX, which can be enhanced by GNPs.Conclusion: Under irradiation with a suitable light source, ALA-GNP conjugates can effectively destroy K562 cells. The technique offers a new strategy of PDT.Keywords: nonradiative energy transfer, photodamage, protoporphyrin IX, selective destruction, singlet oxygen sensor green reagent, surface plasmon resonance

  14. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Involvement of p38 MAPK- and JNK-modulated expression of Bcl-2 and Bax in Naja nigricollis CMS-9-induced apoptosis of human leukemia K562 cells.

    Science.gov (United States)

    Chen, Ying-Jung; Liu, Wen-Hsin; Kao, Pei-Hsiu; Wang, Jeh-Jeng; Chang, Long-Sen

    2010-06-15

    CMS-9, a phospholipase A(2) (PLA(2)) isolated from Naja nigricollis venom, induced apoptosis of human leukemia K562 cells, characterized by mitochondrial depolarization, modulation of Bcl-2 family members, cytochrome c release and activation of caspases 9 and 3. Moreover, an increase in intracellular Ca2+ concentration and the production of reactive oxygen species (ROS) was noted. Pretreatment with BAPTA-AM (Ca2+ chelator) and N-acetylcysteine (NAC, ROS scavenger) proved that Ca2+ was an upstream event in inducing ROS generation. Upon exposure to CMS-9, activation of p38 MAPK and JNK was observed in K562 cells. BAPTA-AM or NAC abrogated CMS-9-elicited p38 MAPK and JNK activation, and rescued viability of CMS-9-treated K562 cells. SB202190 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) suppressed CMS-9-induced dissipation of mitochondrial membrane potential, Bcl-2 down-regulation, Bax up-regulation and increased mitochondrial translocation of Bax. Inactivation of PLA(2) activity reduced drastically the cytotoxicity of CMS-9, and a combination of lysophosphatidylcholine and stearic acid mimicked the cytotoxic effects of CMS-9. Taken together, our data suggest that CMS-9-induced apoptosis of K562 cells is catalytic activity-dependent and is mediated through mitochondria-mediated death pathway triggered by Ca2+/ROS-evoked p38 MAPK and JNK activation. 2010 Elsevier Ltd. All rights reserved.

  16. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Maria Aparecida M. [Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil). Dept. de Quimica; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Esteves-Souza, Andressa; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica]. E-mail: echevarr@ufrrj.br

    2007-03-15

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC{sub 50} = 166 {mu}M (1), 164 {mu}M (2), 65 {mu}M (6) and 10 {mu}M (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC{sub 50} = 38 {mu}M (3), 33 {mu}M (5), 36 {mu}M (6) and 43 {mu}M (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  17. Natural and semi-synthetic clerodanes of Croton cajucara and their cytotoxic effects against ehrlich carcinoma and human K562 leukemia cells

    International Nuclear Information System (INIS)

    Maciel, Maria Aparecida M.; Martins, Jenilce R.; Pinto, Angelo C.; Kaiser, Carlos R.; Esteves-Souza, Andressa; Echevarria, Aurea

    2007-01-01

    The clerodane-type diterpene, trans-dehydrocrotonin (1) the major component of Croton cajucara has shown striking correlation with its therapeutic use in traditional folk medicine. Phytochemical investigations led to the isolation of the metabolites 1, cajucarinolide (6), isocajucarinolide (7), trans-crotonin (2), trans-cajucarin B (3), cis-cajucarin B (4), trans-cajucarin A (5), N-methyltyrosine, vanillic acid and 4-hydroxy-benzoic acid. 6 and 7 were synthesized in good yield by regiospecific oxidation of 1 using singlet-oxygen. All clerodanes were studied for their cytotoxic effects against human K562 leukemia and Ehrlich carcinoma cells. Ehrlich carcinoma assays with IC 50 = 166 μM (1), 164 μM (2), 65 μM (6) and 10 μM (7) related to cell growth inhibitory effects were dose dependent. Furthermore, moderate cytotoxic activity against K562 leukemia cells was observed with IC 50 = 38 μM (3), 33 μM (5), 36 μM (6) and 43 μM (7). The semi-synthetic 2, 6 and 7 showed similar results when compared to the corresponding natural clerodanes. (author)

  18. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  19. Holotoxin A1 Induces Apoptosis by Activating Acid Sphingomyelinase and Neutral Sphingomyelinase in K562 and Human Primary Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Seong-Hoon Yun

    2018-04-01

    Full Text Available Marine triterpene glycosides are attractive candidates for the development of anticancer agents. Holotoxin A1 is a triterpene glycoside found in the edible sea cucumber, Apostichopus (Stichopus japonicus. We previously showed that cladoloside C2, the 25(26-dihydro derivative of holotoxin A1, induced apoptosis in human leukemia cells by activating ceramide synthase 6. Thus, we hypothesized that holotoxin A1, which is structurally similar to cladoloside C2, might induce apoptosis in human leukemia cells through the same molecular mechanism. In this paper, we compared holotoxin A1 and cladoloside C2 for killing potency and mechanism of action. We found that holotoxin A1 induced apoptosis more potently than cladoloside C2. Moreover, holotoxin A1 induced apoptosis in K562 cells by activating caspase-8 and caspase-3, but not by activating caspase-9. During holotoxin A1-induced apoptosis, acid sphingomyelinase (SMase and neutral SMase were activated in both K562 cells and human primary leukemia cells. Specifically inhibiting acid SMase and neutral SMаse with chemical inhibitors or siRNAs significantly inhibited holotoxin A1–induced apoptosis. These results indicated that holotoxin A1 might induce apoptosis by activating acid SMase and neutral SMase. In conclusion, holotoxin A1 represents a potential anticancer agent for treating leukemia. Moreover, the aglycone structure of marine triterpene glycosides might affect the mechanism involved in inducing apoptosis.

  20. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe.

    Directory of Open Access Journals (Sweden)

    Macario Martinez-Castillo

    Full Text Available Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562, were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562, which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.

  1. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  2. K5/K14-positive cells contribute to salivary gland-like breast tumors with myoepithelial differentiation

    DEFF Research Database (Denmark)

    Boecker, Werner; Stenman, Goeran; Loening, Thomas

    2013-01-01

    different cell lineages and define their cellular hierarchy in tumors with myoepithelial differentiation. isTILT analysis of a series of 28 breast, salivary, and lacrimal gland tumors, including pleomorphic adenomas (n=8), epithelial-myoepithelial tumors (n=9), and adenoid cystic carcinomas (n=11) revealed...... heterologeous cell differentiations such as squamous and mesenchymal progenies. p63 was co-expressed with K5/K14 in basal-like progenitor cells, myoepithelial, and squamous cells but not in glandular cells. Our results show that the corresponding counterpart tumors of breast and salivary/lacrimal glands have....... For that reason, we performed an in situ triple immunofluorescence lineage/differentiation tracing (isTILT) and qRT-PCR study of basal (K5/K14), glandular (K7/K8/18), and epidermal-specific squamous (K10) keratins, p63, and smooth muscle actin (SMA; myoepithelial marker) with the aim to construct and trace...

  3. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  4. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    Science.gov (United States)

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  5. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  6. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  7. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2018-03-01

    Full Text Available The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  8. Cellular uptake, nuclear localization and cytotoxicity of 125I-labelled DNA minor groove binding ligands in K562, human erythroleukaemia cells

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2000-01-01

    Full text: Iodine-125 decays by orbital electron capture and internal conversion resulting in the emission of numerous Auger electrons which produce a highly localised radiochemical damage in the immediate vicinity of the site of decay. Given the requirement to deliver 125 I to the nuclear DNA, a minor groove binding bibenzimidazole, 125 I-iodoHoechst 33258 was investigated. It has been noted that this analogue may be prone to de-iodination in vitro and in vivo, given the presence of an orthoiodophenol moiety which is analogous to that in thyroxins. Therefore, an 125 I -iodoHoechst analogue without the hydroxyl group was also studied. The 125 I -iodoHoechst 33258 analogue was prepared by direct iodination of Hoechst 33258 and 125 I iodoHoechst was prepared by demetallation of a trimethylstannyl precursor. DNA binding studies indicated that both iodo-analogues bind to calf thymus DNA, K D = 89 ± 30nM, n = 0.018 bp - 1 for iodoHoechst 33258 and K D = 121 ± 31nM, n = 0.024 bp -1 for iodoHoechst. Similarly, nuclear localization following incubation with 5μM of either ligand at 37 deg C was observed in K562 cells by fluorescence microscopy. Flow cytometry was used to investigate the kinetics of drug uptake and efflux in K562 cells. The results indicated that when 10 6 cells were incubated with 5μM ligand at 37 deg C, the uptake reached a plateau at approximately 43 minutes for iodoHoechst 33258 and approximately 52 minutes for iodoHoechst. Ligand efflux results indicated two-phase kinetics. The initial phase which involves 50-60% of drug was characterised by a half-life time (t 1/2 ) of 55.4 minutes for efflux of iodoHoechst 33258 and a t 1/2 of 10.3 minutes for efflux of iodoHoechst, at 37 deg C. Furthermore, the results suggested that the DNA binding sites in a 10 6 cell/ml suspension were saturated by incubation with 3μM iodoHoechst 33258 and 5μM iodoHoechst. In the initial cytotoxicity experiments using 125 I-iodoHoechst 33258, K562 cells were incubated for 1

  9. Overcoming imatinib resistance using Src inhibitor CGP76030, Abl inhibitor nilotinib and Abl/Lyn inhibitor INNO-406 in newly established K562 variants with BCR-ABL gene amplification.

    Science.gov (United States)

    Morinaga, Koji; Yamauchi, Takahiro; Kimura, Shinya; Maekawa, Taira; Ueda, Takanori

    2008-06-01

    Because imatinib (IM) resistance in chronic myeloid leukemia is primarily caused by the re-establishment of Abl kinase, new inhibitors may be efficacious. We evaluated 3 new agents against 2 new K562 variants, IM-R1 and IM-R2 cells, which were developed having 7- and 27-fold greater IM resistance, respectively, than the parental K562 cells. Both variants possessed BCR-ABL gene amplification along with elevated levels of its transcript and protein. Greater BCR-ABL gene amplification was observed in IM-R2 cells than in IM-R1 cells, which was consistent with the higher mRNA and protein levels of Bcr-Abl, and ultimately correlated with the greater IM resistance in IM-R2 cells. No mutation in the Abl kinase domain was detected in either variant. Despite the absence of Lyn overexpression, the Src kinase inhibitor CGP76030 showed positive cooperability with IM in inhibiting cell growth of not only K562 cells but also these 2 variants. This might be because of the augmented inhibition of Erk1/2 phosphorylation. The new Abl kinase inhibitor nilotinib was 10-fold more potent than IM in inhibiting the growth of K562 cells. Nilotinib inhibited the growth of IM-R1 and IM-R2 cells as potently as K562 cells. The combination of nilotinib with CGP76030 showed little additivity, because the potency of nilotinib masked the efficacy of CGP76030. The new dual Abl/Lyn inhibitor INNO-406 (formerly NS-187) was slightly more potent than nilotinib in inhibiting the growth of all 3 cell lines. Because BCR-ABL gene amplification occurs in blast crisis, these inhibitors might overcome IM resistance in such patients' leukemia. (c) 2008 Wiley-Liss, Inc.

  10. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways.

    Science.gov (United States)

    Dharmapuri, Gangappa; Doneti, Ravinder; Philip, Gundala Harold; Kalle, Arunasree M

    2015-07-01

    Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    Science.gov (United States)

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  12. K-RAS and N-RAS mutations in testicular germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bekir Muhammet Hacioglu

    2017-05-01

    Full Text Available Testicular cancer is a relatively rare tumor type, accounting for approximately 1% of all cancers in men. However, among men aged between 15 and 40 years, testicular cancer is the most commonly diagnosed malignancy. Testicular germ cell tumors (TGCTs are classified as seminoma and non-seminoma. The RAS oncogene controls several cellular functions, including cell proliferation, apoptosis, migration, and differentiation. Thus, RAS signaling is important for normal germ cell development. Mutations of the Kirsten RAS (K-RAS gene are present in over 20% of all cancers. RAS gene mutations have also been reported in TGCTs. We investigated K-RAS and N-RAS mutations in seminoma and non-seminoma TGCT patients. A total of 24 (55% pure seminoma cases and 19 (45% non-seminoma cases were included in the study. K-RAS and N-RAS analyses were performed in our molecular pathology laboratory, using K-RAS and N-RAS Pyro Kit 24 V1 (Qiagen. In total, a RAS mutation was present in 12 patients (27%: 7 seminoma (29% and 5 non-seminoma cases (26% [p = 0.55]. A K-RAS mutation was present in 4 pure seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63], and an N-RAS mutation was observed in 4 seminoma tumors (16% and 3 non-seminoma tumors (15% [p = 0.63]. Both, K-RAS and N-RAS mutations were present in two patients: one with seminoma tumor and the other with non-seminoma tumor. To date, no approved targeted therapy is available for the treatment of TGCTs. The analysis of K-RAS and N-RAS mutations in these tumors may provide more treatment options, especially in platinum-resistant tumors.

  13. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana

    2015-10-09

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  14. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana; Biamonte, Flavia; Candeloro, Patrizio; Di Sanzo, Maddalena; Cozzi, Anna; Di Vito, Anna; Quaresima, Barbara; Lobello, Nadia; Trecroci, Francesca; Di Fabrizio, Enzo M.; Levi, Sonia; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  15. Dynamic iodide trapping by tumor cells expressing the thyroidal sodium iodide symporter

    International Nuclear Information System (INIS)

    Dingli, David; Bergert, Elizabeth R.; Bajzer, Zeljko; O'Connor, Michael K.; Russell, Stephen J.; Morris, John C.

    2004-01-01

    The thyroidal sodium iodide symporter (NIS) in combination with various radioactive isotopes has shown promise as a therapeutic gene in various tumor models. Therapy depends on adequate retention of the isotope in the tumor. We hypothesized that in the absence of iodide organification, isotope trapping is a dynamic process either due to slow efflux or re-uptake of the isotope by cells expressing NIS. Iodide efflux is slower in ARH-77 and K-562 cells expressing NIS compared to a thyroid cell line. Isotope retention half times varied linearly with the number of cells expressing NIS. With sufficient NIS expression, iodide efflux is a zero-order process. Efflux kinetics in the presence or absence of perchlorate also supports the hypothesis that iodide re-uptake occurs and contributes to the retention of the isotope in tumor cells. Iodide organification was insignificant. In vivo studies in tumors composed of mixed cell populations confirmed these observations

  16. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  17. Heme-binding plasma membrane proteins of K562 erythroleukemia cells: Adsorption to heme-microbeads, isolation with affinity chromatography

    International Nuclear Information System (INIS)

    Majuri, R.

    1989-01-01

    Heme-microbeads attached themselves to the surface of viable K562 cells in a manner inhibitable by free hemin, indicating heme-recptor interaction. The microbeads were at first evenly distributed, but after prolonged incubation at 37 deg. C they formed a cap on one pole of the cells indicating clustering of the membrane heme receptors. Membrane proteins were labeled by culturing the cells in the presence of 35 S-methionine and were then solubilized with Triton X-114. The hydrophobic proteins contained about 20% of the total bound label. The solubilized membrane proteins were subsequently adsorbed to a heme-Sepharose affinity gel. According to SDS-electrophorsis and subsequent autoradiography, the immobilized heme captures two proteins or a protein with two polypeptides of 20 000 and 32 000 daltons. The larger of these was only wekly labeled with 35 S. The same two bands were observed if the cell surface proteins were labeled with 125 I by the lactoperoxidase method and the subsequently solubilized membrane proteins were isolated with heme-Sepharose. (author)

  18. Effect of taurine on expressions of MMP-2 in K562 leukemia cell line exposed to γ-rays

    International Nuclear Information System (INIS)

    Fan Yan; Wu Shiliang; Xu Lan; Chou Hao; Zhou Yinghui

    2003-01-01

    Objective: To study the effect of γ-irradiation on expressions of MMP-2 in leukaemia cells and the suppressive effect of taurine(Tau) on irradiated tumour cells in terms of cellular level. Methods: The cells in the control group and Tau (50 mg/L, 100 mg/L, 200 mg/L) groups were irradiated with 15 Gy γ-rays. The expressions of MMP-2 were examined through Western-blotting after handled with gel-loading buffer within 12 h. Results: The expressions of MMP-2 were enhanced evidently in the positive control group, while they were less in the negative control group. In the Tau(50 mg/L, 100 mg/L, 200 mg/L) groups, the expressions of MMP-2 were diminished in turns, and they were almost identical between the negative control group and the Tau 200 mg/L group. Conclusion: Irradiation with γ-rays at a dose of 15 Gy can significantly stimulate the expressions of MMP-2 in K562 cells; Tau can inhibit the expressions of MMP-2 and its effect depends on to its dosage; Tau can inhabit the invasiveness and migration of irradiated tumour cells, so it has the biologic protective and therapeutic effects

  19. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells.

    Science.gov (United States)

    Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Nonomura, Takako; Masaki, Tsutomu; Uchida, Naohito; Yoshiji, Hitoshi; Kuriyama, Shigeki

    2007-08-01

    Although a number of studies have shown that vitamin K possesses antitumor activities on various neoplastic cell lines, there are few reports demonstrating in vivo antitumor effects of vitamin K, and the antitumor effect on colorectal cancer (CRC) remains to be examined. Therefore, antitumor effects of vitamin K on CRC were examined both in vitro and in vivo. Vitamins K2, K3 and K5 suppressed the proliferation of colon 26 cells in a dose-dependent manner, while vitamin K1 did not. On flow cytometry, induction of apoptosis by vitamins K2, K3 and K5 was suggested by population in sub-G1 phase of the cell cycle. Hoechst 33342 staining and a two-color flow cytometric assay using fluorescein isothiocyanate-conjugated annexin V and propidium iodide confirmed that vitamins K2, K3 and K5 induced apoptotic death of colon 26 cells. Enzymatic activity of caspase-3 in colon 26 cells was significantly up-regulated by vitamins K2, K3 and K5. The pan-caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone, substantially prevented vitamin K-mediated apoptosis. In vivo study using syngeneic mice with subcutaneously established colon 26 tumors demonstrated that intravenous administration of vitamins K2, K3 and K5 significantly suppressed the tumor growth. The number of apoptotic tumor cells was significantly larger in the vitamin K-treated groups than in the control group. These results suggest that vitamins K2, K3 and K5 exerted effective antitumor effects on CRC in vitro and in vivo by inducing caspase-dependent apoptotic death of tumor cells, suggesting that these K vitamins may be promising agents for the treatment of patients with CRC.

  20. RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Houcai; Yu, Jing; Zhang, Lixia; Xiong, Yuanyuan; Chen, Shuying; Xing, Haiyan; Tian, Zheng; Tang, Kejing; Wei, Hui; Rao, Qing; Wang, Min; Wang, Jianxiang, E-mail: wangjx@ihcams.ac.cn

    2014-04-18

    Highlights: • RPS27a expression was up-regulated in advanced-phase CML and AL patients. • RPS27a knockdown changed biological property of K562 and K562/G01 cells. • RPS27a knockdown affected Raf/MEK/ERK, P21 and BCL-2 signaling pathways. • RPS27a knockdown may be applicable for new combination therapy in CML patients. - Abstract: Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.

  1. Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix.

    Science.gov (United States)

    Neri, L M; Bortul, R; Zweyer, M; Tabellini, G; Borgatti, P; Marchisio, M; Bareggi, R; Capitani, S; Martelli, A M

    1999-06-01

    The higher order of chromatin organization is thought to be determined by the nuclear matrix, a mainly proteinaceous structure that would act as a nucleoskeleton. The matrix is obtained from isolated nuclei by a series of extraction steps involving the use of high salt and nonspecific nucleases, which remove chromatin and other loosely bound components. It is currently under debate whether these structures, isolated in vitro by unphysiological extraction buffers, correspond to a nucleoskeleton existing in vivo. In most cell types investigated, the nuclear matrix does not spontaneously resist these extractions steps; rather, it must be stabilized before the application of extracting agents. In this study nuclei, isolated from K562 human erythroleukemia cells, were stabilized by incubation with different metal ions (Ca2+, Cu2+, Zn2+, Cd2+), and the matrix was obtained by extraction with 2 M NaCl. By means of ultrastructural analysis of the resulting structures, we determined that, except for Ca2+, all the other metals induced a stabilization of the matrix, which retained the inner fibrogranular network and residual nucleoli. The biochemical composition, analyzed by two-dimensional gel electrophoresis separation, exhibited a distinct matrix polypeptide pattern, characteristic of each type of stabilizing ion employed. We also investigated to what extent metal ions could maintain in the final structures the original distribution of three inner matrix components, i.e. NuMA, topoisomerase IIalpha, and RNP. Confocal microscopy analysis showed that only NuMa, and, to a lesser extent, topoisomerase IIalpha, were unaffected by stabilization with divalent ions. On the contrary, the fluorescent RNP patterns detected in the resulting matrices were always disarranged, irrespective of the stabilization procedure. These results indicate that several metal ions are powerful stabilizing agents of the nuclear matrix prepared from K562 erythroleukemia cells and also strengthen the

  2. A nanocomplex of Cu(II) with theophylline drug; synthesis, characterization, and anticancer activity against K562 cell line

    Science.gov (United States)

    Sahlabadi, Maryam; Daryanavard, Marzieh; Hadadzadeh, Hassan; Amirghofran, Zahra

    2018-03-01

    A new mononuclear of copper (II), [Cu(theophylline)2(H2O)3]·2H2O, has been synthesized by reaction of theophylline (1,3-dimethyl-7H-purine-2,6-dione) with copper (II) nitrate in water. Further, its nanocomplex has been prepared through the three different methods including sonication, grinding, and a combination thereof, sonication-grinding. The prepared nanocomplex was characterized using different techniques including FT-IR, UV-Vis, X-ray diffraction (XRD) analysis, and field-emission scanning electron microscopy (FE-SEM). Moreover, the anticancer activity of the precursor complex, nanocomplex, free theophylline ligand, and the starting copper salt (Cu(NO3)2·3H2O) was investigated against the K562 cell line. The results show that the nanocomplex is an effective nano metal-based anticancer agent with IC50 = 11.7 μM.

  3. Ultrasensitive electrochemical detection of tumor cells based on multiple layer CdS quantum dots-functionalized polystyrene microspheres and graphene oxide - polyaniline composite.

    Science.gov (United States)

    Wang, Jidong; Wang, Xiaoyu; Tang, Hengshan; Gao, Zehua; He, Shengquan; Li, Jian; Han, Shumin

    2018-02-15

    In this work, a novel ultrasensitive electrochemical biosensor was developed for the detection of K562 cell by a signal amplification strategy based on multiple layer CdS QDs functionalized polystyrene microspheres(PS) as bioprobe and graphene oxide(GO) -polyaniline(PANI) composite as modified materials of capture electrode. Due to electrostatic force of different charge, CdS QDs were decorated on the surface of PS by PDDA (poly(diallyldimethyl-ammonium chloride)) through a layer-by-layer(LBL) assemble technology, in which the structure of multiple layer CdS QDs increased the detection signal intensity. Moreover, GO-PANI composite not only enhanced the electron transfer rate, but also increased tumor cells load ratio. The resulting electrochemical biosensor was used to detect K562 cells with a lower detection limit of 3 cellsmL -1 (S/N = 3) and a wider linear range from 10 to 1.0 × 10 7 cellsmL -1 . This sensor was also used for mannosyl groups on HeLa cells and Hct116 cells, which showed high specificity and sensitivity. This signal amplification strategy would provide a novel approach for detection, diagnosis and treatment for tumor cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Complete genome of Phenylobacterium zucineum – a novel facultative intracellular bacterium isolated from human erythroleukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Sun Jie

    2008-08-01

    Full Text Available Abstract Background Phenylobacterium zucineum is a recently identified facultative intracellular species isolated from the human leukemia cell line K562. Unlike the known intracellular pathogens, P. zucineum maintains a stable association with its host cell without affecting the growth and morphology of the latter. Results Here, we report the whole genome sequence of the type strain HLK1T. The genome consists of a circular chromosome (3,996,255 bp and a circular plasmid (382,976 bp. It encodes 3,861 putative proteins, 42 tRNAs, and a 16S-23S-5S rRNA operon. Comparative genomic analysis revealed that it is phylogenetically closest to Caulobacter crescentus, a model species for cell cycle research. Notably, P. zucineum has a gene that is strikingly similar, both structurally and functionally, to the cell cycle master regulator CtrA of C. crescentus, and most of the genes directly regulated by CtrA in the latter have orthologs in the former. Conclusion This work presents the first complete bacterial genome in the genus Phenylobacterium. Comparative genomic analysis indicated that the CtrA regulon is well conserved between C. crescentus and P. zucineum.

  5. Overexpression of Hiwi Inhibits the Growth and Migration of Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Wang, Yalin; Jiang, Yan; Ma, Ning; Sang, Bailu; Hu, Xiaolin; Cong, Xiaofeng; Liu, Ziling

    2015-09-01

    Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by dysregulated growth and proliferation of hematopoietic stem/progenitor cells in bone marrow and excessive expansion of hematopoietic compartments in peripheral blood. Expression deletion of Hiwi, a human Piwi homolog, has been reported to be implicated in leukemogenesis. We here explored Hiwi's role in CML pathogenesis by determining how and whether its forced overexpression could affect CML cell growth and migration. The present results showed that lentivirus-mediated overexpression of Hiwi significantly suppressed cell proliferation and induced obvious apoptosis in K562 cells, a CML line cell line. Tumors in BALB/c nude mice generated by the K562 cells expressing Hiwi were much smaller than those formed by the control cells. Like in vitro, Hiwi upregulation induced cell apoptosis in the tumor tissues in vivo. Additionally, Hiwi elevation suppressed K562 cell migration and inhibited the activity and expression of matrix metalloproteinase-2 and -9. In summary, our study demonstrates that Hiwi overexpression inhibits CML cell growth and migration, providing insights into its role in CML pathogenesis.

  6. Time-series analysis in imatinib-resistant chronic myeloid leukemia K562-cells under different drug treatments.

    Science.gov (United States)

    Zhao, Yan-Hong; Zhang, Xue-Fang; Zhao, Yan-Qiu; Bai, Fan; Qin, Fan; Sun, Jing; Dong, Ying

    2017-08-01

    Chronic myeloid leukemia (CML) is characterized by the accumulation of active BCR-ABL protein. Imatinib is the first-line treatment of CML; however, many patients are resistant to this drug. In this study, we aimed to compare the differences in expression patterns and functions of time-series genes in imatinib-resistant CML cells under different drug treatments. GSE24946 was downloaded from the GEO database, which included 17 samples of K562-r cells with (n=12) or without drug administration (n=5). Three drug treatment groups were considered for this study: arsenic trioxide (ATO), AMN107, and ATO+AMN107. Each group had one sample at each time point (3, 12, 24, and 48 h). Time-series genes with a ratio of standard deviation/average (coefficient of variation) >0.15 were screened, and their expression patterns were revealed based on Short Time-series Expression Miner (STEM). Then, the functional enrichment analysis of time-series genes in each group was performed using DAVID, and the genes enriched in the top ten functional categories were extracted to detect their expression patterns. Different time-series genes were identified in the three groups, and most of them were enriched in the ribosome and oxidative phosphorylation pathways. Time-series genes in the three treatment groups had different expression patterns and functions. Time-series genes in the ATO group (e.g. CCNA2 and DAB2) were significantly associated with cell adhesion, those in the AMN107 group were related to cellular carbohydrate metabolic process, while those in the ATO+AMN107 group (e.g. AP2M1) were significantly related to cell proliferation and antigen processing. In imatinib-resistant CML cells, ATO could influence genes related to cell adhesion, AMN107 might affect genes involved in cellular carbohydrate metabolism, and the combination therapy might regulate genes involved in cell proliferation.

  7. Photodynamic treatment (ALA-PDT) suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells

    Czech Academy of Sciences Publication Activity Database

    Pluskalová, M.; Pešlová, G.; Grebeňová, D.; Halada, Petr; Hrkal, Z.

    2006-01-01

    Roč. 83, - (2006), s. 205-212 ISSN 1011-1344 R&D Projects: GA MZd NL7681 Institutional research plan: CEZ:AV0Z50200510 Keywords : k562 * bcr -abl * photodynamic treatment Subject RIV: EE - Microbiology, Virology Impact factor: 1.909, year: 2006

  8. Effect of low dose radiation (LDR) on biological activity of NK cell

    International Nuclear Information System (INIS)

    Yang Liyun; Lin Meixiong; Luo Min; Ran Min; Liang Xuefei

    2006-01-01

    Objective: To study the in vitro and in vivo effect of LDR on the proliferation and killing activity of mouse NK cells with exploitation of the related mechanism of signal transduction. The effect of infused NK cells on inhibiton of oncogenesis and tumor burden regression was also studied. Methods: Mononuclear cells extracted from mouse spleen were treated with immunomagnetic bead for the isolation of CD3 - /CD16 + , CD56 + cells. After verified with flowcytometry, these NK cells were cultured with mice splenic cells (irradiated with 20Gy 60 Co gamma ray) as feeder cells and rhIL-2 as induction factor for 3 rounds (5 days each round). Specimens of cultured NK cells were treated with different doses of radiation (25mGy, 75mGy, 200mGy, 500mGy), the proliferation index (PI) with tumoreidal activity on K562 cells (with 3 H-TdR) incorporation was examined at 4h, 24h, 48h, 72h after irradiation respectively. The role of P38MAPK signal pathway in the LDR effect was examined with adding either inhibitor (SB203580) or activator (P79350) of P38MAPK into the culture and measuring the PI, Killing activity (as expression of the related factors IFN-gamma, FasL, perforin) of NK cells thereafter. The in vivo test involved exposing mice to whole body 25mGy irradiation, harvesting splenic NK cells at 4h, 24h, 48h, 72h later respectively and performing the above-described in vitro procedures. Inhibition of oncogenesis was examined in vivo with infusion of cultured NK cells (LDR treated vs LDR non-treated) 10 days after infusion of K562 cells into mice and examination of hepatic/splenic CD 13+ , S-stage cells and peripheral blood tumor cells in the sacrificed animal another 10 days later. Also, K562 cells were innoculated subcutaneously into mice. After tumor nodule formation (2.0 x 2.0 mm), NK cells (LDR treated vs non-treated) were infused and regression of the tumor nodule with the weight of hepatic tumor mass was noticed in sacrificed animals on d 8 and the survival rate on d 40

  9. Carbon monoxide induced erythroid differentiation of K562 cells mimics the central macrophage milieu in erythroblastic islands.

    Directory of Open Access Journals (Sweden)

    Shlomi Toobiak

    Full Text Available Growing evidence supports the role of erythroblastic islands (EI as microenvironmental niches within bone marrow (BM, where cell-cell attachments are suggested as crucial for erythroid maturation. The inducible form of the enzyme heme oxygenase, HO-1, which conducts heme degradation, is absent in erythroblasts where hemoglobin (Hb is synthesized. Yet, the central macrophage, which retains high HO-1 activity, might be suitable to take over degradation of extra, harmful, Hb heme. Of these enzymatic products, only the hydrophobic gas molecule--CO can transfer from the macrophage to surrounding erythroblasts directly via their tightly attached membranes in the terminal differentiation stage.Based on the above, the study hypothesized CO to have a role in erythroid maturation. Thus, the effect of CO gas as a potential erythroid differentiation inducer on the common model for erythroid progenitors, K562 cells, was explored. Cells were kept under oxygen lacking environment to mimic BM conditions. Nitrogen anaerobic atmosphere (N₂A served as control for CO atmosphere (COA. Under both atmospheres cells proliferation ceased: in N₂A due to cell death, while in COA as a result of erythroid differentiation. Maturation was evaluated by increased glycophorin A expression and Hb concentration. Addition of 1%CO only to N₂A, was adequate for maintaining cell viability. Yet, the average Hb concentration was low as compared to COA. This was validated to be the outcome of diversified maturation stages of the progenitor's population.In fact, the above scenario mimics the in vivo EI conditions, where at any given moment only a minute portion of the progenitors proceeds into terminal differentiation. Hence, this model might provide a basis for further molecular investigations of the EI structure/function relationship.

  10. Down-regulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth

    Science.gov (United States)

    Li, Ming; Radvanyi, Laszlo; Yin, Bingnan; Li, Jia; Chivukula, Raghavender; Lin, Kevin; Lu, Yue; Shen, JianJun; Chang, David Z.; Li, Donghui; Johanning, Gary L.; Wang-Johanning, Feng

    2017-01-01

    Purpose We investigated the role of the human endogenous retrovirus type K (HERV-K) envelope (env) gene in pancreatic cancer (PC). Experimental Design shRNA was employed to knockdown (KD) the expression of HERV-K in PC cells. Results HERV-K env expression was detected in seven PC cell lines and in 80% of PC patient biopsies, but not in two normal pancreatic cell lines or uninvolved normal tissues. A new HERV-K splice variant was discovered in several PC cell lines. RT activity and virus-like particles were observed in culture media supernatant obtained from Panc-1 and Panc-2 cells. HERV-K viral RNA levels and anti-HERV-K antibody titers were significantly higher in PC patient sera (N=106) than in normal donor sera (N=40). Importantly, the in vitro and in vivo growth rates of three PC cell lines were significantly reduced after HERV-K KD by shRNA targeting HERV-K env, and there was reduced metastasis to lung after treatment. RNA-seq results revealed changes in gene expression after HERV-K env KD, including RAS and TP53. Furthermore, downregulation of HERV-K Env protein expression by shRNA also resulted in decreased expression of RAS, p-ERK, p-RSK, and p-AKT in several PC cells or tumors. Conclusion These results demonstrate that HERV-K influences signal transduction via the RAS-ERK-RSK pathway in PC. Our data highlight the potentially important role of HERV-K in tumorigenesis and progression of PC, and indicate that HERV-K viral proteins may be attractive biomarkers and/or tumor-associated antigens, as well as potentially useful targets for detection, diagnosis and immunotherapy of PC. PMID:28679769

  11. Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong

    2017-06-13

    Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.

  12. Induction of Mitochondrial Dependent Apoptosis in Human Leukemia K562 Cells by Meconopsis integrifolia: A Species from Traditional Tibetan Medicine

    Directory of Open Access Journals (Sweden)

    Jianping Fan

    2015-06-01

    Full Text Available Objectives: Meconopsis integrifolia (M. integrifolia is one of the most popular members in Traditional Tibetan Medicine. This study aimed to investigate the anticancer effect of M. integrifolia and to detect the underlying mechanisms of these effects. Methods: 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT assay and trypan blue assay were used to evaluate the cytotoxicity of M. integrifolia. Changes in cell nuclear morphology and reactive oxygen species (ROS level were observed by fluorescent microscopy. Apoptosis ratio, DNA damage and mitochondrial membrane potential (MMP loss were analyzed by flow cytometry. Western blotting assay was adopted to detect the proteins related to apoptosis. Immunofluorescence was used to observe the release of cytochrome C. Results: The obtained data revealed that M. integrifolia could significantly inhibit K562 cell viability, mainly by targeting apoptosis induction and cell cycle arrest in G2/M phase. Collapse in cell morphology, chromatin condensation, DNA damage and ROS accumulation were observed. Further mechanism detection revealed that mitochondrion might be a key factor in M. integrifolia-induced apoptosis. Conclusions: M. integrifolia could induce mitochondria mediated apoptosis and cell cycle arrest in G2/M phase with little damage to normal cells, suggesting that M. integrifolia might be a potential and efficient anticancer agent that deserves further investigation.

  13. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    Science.gov (United States)

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  14. Novel radiosensitizers for locally advanced epithelial tumors: inhibition of the PI3K/Akt survival pathway in tumor cells and in tumor-associated endothelial cells as a novel treatment strategy?

    International Nuclear Information System (INIS)

    Riesterer, Oliver; Tenzer, Angela; Zingg, Daniel; Hofstetter, Barbara; Vuong, Van; Pruschy, Martin; Bodis, Stephan

    2004-01-01

    In locally advanced epithelial malignancies, local control can be achieved with high doses of radiotherapy (RT). Concurrent chemoradiotherapy can improve tumor control in selected solid epithelial adult tumors; however, treatment-related toxicity is of major concern and the therapeutic window often small. Therefore, novel pharmacologic radiosensitizers with a tumor-specific molecular target and a broad therapeutic window are attractive. Because of clonal heterogeneity and the high mutation rate of these tumors, combined treatment with single molecular target radiosensitizers and RT are unlikely to improve sustained local tumor control substantially. Therefore, radiosensitizers modulating entire tumor cell survival pathways in epithelial tumors are of potential clinical use. We discuss the preclinical efficacy and the mechanism of three different, potential radiosensitizers targeting the PTEN/PI3K/Akt survival pathway. These compounds were initially thought to act as single-target agents against growth factor receptors (PKI 166 and PTK 787) or protein kinase C isoforms (PKC 412). We describe an additional target for these compounds. PKI 166 (an epidermal growth factor [EGF] receptor inhibitor) and PKC 412, target the PTEN/PI3K/Akt pathway mainly in tumor cells, and PTK 787 (a vascular endothelial growth factor [VEGF] receptor inhibitor) in endothelial cells. Even for these broader range molecular radiosensitizers, the benefit could be restricted to human epithelial tumor cell clones with a distinct molecular profile. Therefore, these potential radiosensitizers have to be carefully tested in specific model systems before introduction in early clinical trials

  15. Pertussis toxin inhibits somatostatin-induced K+ conductance in human pituitary tumor cells

    International Nuclear Information System (INIS)

    Yamashita, N.; Kojima, I.; Shibuya, N.; Ogata, E.

    1987-01-01

    The effect of pertussis toxin on somatostatin-induced K + current was examined in dissociated human pituitary tumor cells obtained from two acromegalic patients. Somatostatin-induced hyperpolarization or K + current was observed in 20 of 23 cells in adenoma 1 and 10 of 11 cells in adenoma 2. After treatment with pertussis toxin for 24 h, these responses were completely suppressed (0/14 in adenoma, 1, 0/10 in adenoma 2). Spontaneous action potentials, K + , Na + , and Ca 2+ currents were well preserved after pertussis toxin treatment. When crude membrane fraction was incubated with [ 32 P]NAD, a 41K protein was ADP-ribosylated by pertussis toxin. Hormone release was inhibited by somatostatin and this inhibition was blocked by pertussis toxin treatment

  16. Alkaloid-rich fraction of Himatanthus lancifolius contains anti-tumor agents against leukemic cells

    Directory of Open Access Journals (Sweden)

    Melissa Pires de Lima

    2010-06-01

    Full Text Available The effects of the alkaloid-rich fraction of Himatanthus lancifolius (Müll. Arg Woodson on normal marrow cells and leukemic cell lines were investigated. After 48 h exposure, the proliferation assay showed significant cell growth inhibition for Daudi (0.1-10 µg/mL, K-562 (1-10 µg/mL, and REH cells (10-100 µg/mL, yet was inert for normal marrow cells. A similar inhibition profile was observed in clonogenic assays. This alkaloid-rich fraction, in which uleine is the main compound, showed no signs of toxicity to any cells up to 10 µg/mL. Cell feature analyses after induction of differentiation showed maintenance of the initial phenotype. Flow cytometric expression of Annexin-V and 7-AAD in K-562 and Daudi cells has indicated that the cells were not undergoing apoptosis or necrosis, suggesting cytostatic activity for tumor cellsOs efeitos da fração rica em alcalóides indólicos de Himatanthus lancifolius (Müll. Arg Woodson sobre células normais de medula óssea e linhagens celulares leucêmicas foram investigados. Após 48 horas de exposição, os ensaios de proliferação demonstraram efeitos inibitórios significativos para as linhagens Daudi (0,1-10 µg/mL, K-562 (1-10 µg/mL e REH (10-100 µg/mL, enquanto mostrou-se inerte sobre células normais de medula óssea. Os perfis de inibição se repetiram nos ensaios clonogênicos. A fração rica em alcalóides, na qual a uleína é a substância majoritária, não demonstrou toxicidade até a dose de 10 µg/mL para nenhuma das células incluídas no estudo. Da mesma forma, não se observou influência dessa fração sobre a diferenciação celular dessas linhagens, mas manutenção de seu estado maturacional inicial. O conjunto de dados descritos associado à baixa co-expressão de anexina-V e 7-AAD sugerem que esta fração exerce atividade citostática para células tumorais.

  17. Reduced H3K27me3 expression in Merkel cell polyoma virus-positive tumors.

    Science.gov (United States)

    Busam, Klaus J; Pulitzer, Melissa P; Coit, Daniel C; Arcila, Maria; Leng, Danielle; Jungbluth, Achim A; Wiesner, Thomas

    2017-06-01

    Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.

  18. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    Science.gov (United States)

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  19. Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes

    Directory of Open Access Journals (Sweden)

    Coukos George

    2011-08-01

    Full Text Available Abstract Background Development of a standardized platform for the rapid expansion of tumor-infiltrating lymphocytes (TILs with anti-tumor function from patients with limited TIL numbers or tumor tissues challenges their clinical application. Methods To facilitate adoptive immunotherapy, we applied genetically-engineered K562 cell-based artificial antigen presenting cells (aAPCs for the direct and rapid expansion of TILs isolated from primary cancer specimens. Results TILs outgrown in IL-2 undergo rapid, CD28-independent expansion in response to aAPC stimulation that requires provision of exogenous IL-2 cytokine support. aAPCs induce numerical expansion of TILs that is statistically similar to an established rapid expansion method at a 100-fold lower feeder cell to TIL ratio, and greater than those achievable using anti-CD3/CD28 activation beads or extended IL-2 culture. aAPC-expanded TILs undergo numerical expansion of tumor antigen-specific cells, remain amenable to secondary aAPC-based expansion, and have low CD4/CD8 ratios and FOXP3+ CD4+ cell frequencies. TILs can also be expanded directly from fresh enzyme-digested tumor specimens when pulsed with aAPCs. These "young" TILs are tumor-reactive, positively skewed in CD8+ lymphocyte composition, CD28 and CD27 expression, and contain fewer FOXP3+ T cells compared to parallel IL-2 cultures. Conclusion Genetically-enhanced aAPCs represent a standardized, "off-the-shelf" platform for the direct ex vivo expansion of TILs of suitable number, phenotype and function for use in adoptive immunotherapy.

  20. Culture of Dendritic Cells in vitro and Its Anti-tumor Immonotherapy

    Directory of Open Access Journals (Sweden)

    Yanwen ZHOU

    2010-05-01

    Full Text Available Background and objective Immunocompromised patients with malignant tumor always lack of strong anti-tumor immune response, because the antigenicity of tumor cells is weak, and antigen-presenting cell function is low, so that can not be effectively presenting tumor antigens to the lymphocytes. Therefore, how to effectively induce anti-tumor immune response is the key issue. Through the study on establishing a method to culture dendritic cells (DC in vitro and to observe the anti-lung cancer immunological effect induced by DC, we provided definite experiment basis for the clinic application of vaccine based on DC. Methods Through the experiment we get the soluble antigen polypeptide from lung cancer cells GLC-82 by 3 mol/L potassium chloride. DCs are cultured and obtained from peripheral blood mononuclear cell by GM-CSF, IL-4 and TNF-a. DCs are identified by flow cytometer (FCM and immunostaining. DCs modified by lung cancer tumor soluble antigen (TSA and staphylococcal enterotox in A (SEA, DCs modified by TSA or DCs modified by SEA or DCs modified by nothing were cultivated together with T lymphocyte, and the obtained cells are named TSA-SEA-DCL or TSA-DCL or SEA-DCL or DCL as effector cells. The anti-tumor activity of every effector cells against target cells was assayed with MTT method. Shape of DCs and effector cells, and the process of killing target cells were observed in microscope. Results Induced DCs expressed more CD1a, CD80 and HLA-DR, which had typical cell traits such as tree branch. The killing ratio of the TSA-SEA-DCL in vitro to GLC-82 is larger than TSA-DCL, SEA-DCL and DCL, also larger than to K562. When the effector cells cultivate with target cells, we can observe the CTL approach and gather to the cancer cell, induce it necrosis and apoptosis. Conclusion Ripe DCs that have typical characteristic and phenotype could be induced successfully. High potency and relatively specific antilung caner effect can be prepared in virtue of

  1. C-reactive protein bearing cells are a subpopulation of natural killer cell precursors

    International Nuclear Information System (INIS)

    Baum, L.L.; Krueger, N.X.

    1986-01-01

    Cell surface C-reactive protein (S-CRP) is expressed on the surface membrane of a small percentage of lymphocytes. Anti-CRP inhibits natural killer (NK) function. Since NK effectors are heterogeneous, they suspected that the cells expressing S-CRP (CRP + ) might respond differently to stimulation than the NK effectors lacking S-CRP (CRP - ). Methods were developed to separate CRP + and CRP - lymphocytes and their functional responses were examined and compared. These techniques are dependent upon the binding of CRP to its ligands, C-polysaccharide (CPS) or Phosphocholine (PC). The first method involves rosette formation with CPS coupled autologous red blood cells; the second method utilizes the binding of CRP + lymphocytes to PC-sepharose. Lymphocytes separated using either of these techniques yield similar results. CRP - lymphocytes respond to 3 day incubation with PHA or Il-2 by producing effectors which kill 51 Cr labeled K562 tumor cells, CRP + precursors do not. CRP + lymphocytes respond to a 5 day incubation with inactivated K562 by producing effectors which kill K562; CRP - precursors do not. NK functional activity of both is increased by incubation with interferon. This ability to respond differently to stimulation suggests that CRP + and CRP - cells are functionally distinct

  2. Burkholderia cenocepacia K56-2 trimeric autotransporter adhesin BcaA binds TNFR1 and contributes to induce airway inflammation.

    Science.gov (United States)

    Mil-Homens, Dalila; Pinto, Sandra N; Matos, Rute G; Arraiano, Cecília; Fialho, Arsenio M

    2017-04-01

    Chronic lung disease caused by persistent bacterial infections is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). CF pathogens acquire antibiotic resistance, overcome host defenses, and impose uncontrolled inflammation that ultimately may cause permanent damage of lungs' airways. Among the multiple CF-associated pathogens, Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria have become prominent contributors of disease progression. Here, we demonstrate that BcaA, a trimeric autotransporter adhesin (TAA) from the epidemic strain B. cenocepacia K56-2, is a tumor necrosis factor receptor 1-interacting protein able to regulate components of the tumor necrosis factor signaling pathway and ultimately leading to a significant production of the proinflammatory cytokine IL-8. Notably, this study is the first to demonstrate that a protein belonging to the TAA family is involved in the induction of the inflammatory response during B. cenocepacia infections, contributing to the success of the pathogen. Moreover, our results reinforce the relevance of the TAA BcaA as a multifunctional protein with a major role in B. cenocepacia virulence. © 2016 John Wiley & Sons Ltd.

  3. Nitric oxide-releasing nanoparticles: synthesis, characterization, and cytotoxicity to tumorigenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pelegrino, Milena T. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Silva, Letícia C.; Watashi, Carolina M. [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil); Haddad, Paula S. [Universidade Federal de São Paulo, Exact and Earth Sciences Department (Brazil); Rodrigues, Tiago; Seabra, Amedea B., E-mail: amedea.seabra@ufabc.edu.br [Universidade Federal do ABC, UFABC, Center of Natural and Human Sciences (Brazil)

    2017-02-15

    Nitric oxide (NO) is involved in several biological processes, including toxicity against tumor cells. The aim of this study was to synthesize, characterize, and evaluate the cytotoxicity of NO-releasing chitosan nanoparticles. A thiol-containing molecule, mercaptosuccinic acid (MSA), was encapsulated (encapsulation efficiency of 99%) in chitosan/sodium tripolyphosphate nanoparticles (CS NPs). The obtained nanoparticles showed an average hydrodynamic size of 108.40 ± 0.96 nm and polydispersity index of 0.26 ± 0.01. MSA-CS NPs were nitrosated leading to S-nitroso-MSA-CS NPs, which act as NO donor. The cytotoxicity of CS NPs, MSA-CS NPs, and S-nitroso-MSA-CS NPs were evaluated in several tumor cells, including human hepatocellular carcinoma (HepG2), mouse melanoma (B16F10), and human chronic myeloid leukemia (K562) cell lines and Lucena-1, a vincristine-resistant K562 cell line. Both CS NPs and MSA-CS NPs did not cause toxic effects in these cells, whereas S-nitroso-MSA-CS NPs caused potent cytotoxic effects in all the tested tumor cell lines. The half-maximal inhibitory concentration values of S-nitroso-MSA-CS NPs were 19.7, 10.5, 22.8, and 27.8 μg·mL{sup −1} for HepG2, B16F10, K562, and Lucena-1 cells, respectively. In contrast, S-nitroso-MSA-CS NPs exhibited lower cytotoxic to non-tumorigenic melanocytes (Melan-A) when compared with melanoma B16F10. Therefore, the results highlight the potential use of NO-releasing CS NPs in antitumor chemotherapy.

  4. SENYAWA BIOAKTIF RIMPANG JAHE (Zingiber officinale Roscue MENINGKATKAN RESPON SITOLITIK SEL NK TERHADAP SEL KANKER DARAH K-562 IN VITRO [Ginger Root Bioactive Compounds Increased Cytolitic Response of Natural Killer (NK Cells Against Leucemic Cell Line K-562 In Vitro

    Directory of Open Access Journals (Sweden)

    Fransiska Rungkat Zakaria 2

    2006-08-01

    Full Text Available Natural killer (NK cell, a kind of lymphocyte cells, plays an important role in attacking infectious, immature, and cancer cell. Its function could be modulated by food bioactive compounds. This experiment was conducted to investigate the effects of ginger root bioactive compounds such as oleoresin, gingerol, and shogaol on cytolitic response of NK cell in vitro. Lymphocyte cells were isolated by centrifugation on ficoll-hypaque density (1,77 ?0,001 g/ml method. Leukemic cells line K-562 as target cells(TC labelled by [3H]-timidin, together with lymphocyte as effector cell (EC were cultured in two ratio levels of EC : TC equal to 1:50 and 1:100, and two culture conditions, for 4 hours, respectively. Paraquate dichloride (1,1-dimethyl-4,4-bipyridilium dichloride 3 mM was used to induce stress oxidative circumstance. Cytolytic capacity of NK cells was determined by percentage of TC lysed by NK cells, in normal and oxidative stress conditions. Statistical analysis showed that the effects of ginger bioactive compounds on cytolytic response of NK cell depended on the culture conditions, as shown by cultures in the presence of oleoresin, and gingerol, but not shogaol. In the lymphocyte culture without stress oxidative, oleoresin, gingerol and shogaol compounds increased significantly cytolytic response of NK cells cultured at a ratio of TC : EC equal to 1:50, with the highest increament of 65 % at oleoresin concentration of 50 ?g/ml. However, in culture at a ratio of TC : EC equals to 1:100, only oleoresin at a concentration of 50 ?g/ml increased significantly cytolytic response of NK cells with the highest increament of 8 %. Shogaol did not affect significantly NK cells cytolytic response. Under stress oxidative conditions, shogaol increased significantly cytolytic response of NK cells cultured at a ratio of TC:EC equal to 1:50, but the highest increament of 56 % , was by oleoresin at concentration of 50 ?g/ml. Meanwhile, oleoresin and gingerol did

  5. Role of glycolysis inhibition and poly(ADP-ribose) polymerase activation in necrotic-like cell death caused by ascorbate/menadione-induced oxidative stress in K562 human chronic myelogenous leukemic cells.

    Science.gov (United States)

    Verrax, Julien; Vanbever, Stéphanie; Stockis, Julie; Taper, Henryk; Calderon, Pedro Buc

    2007-03-15

    Among different features of cancer cells, two of them have retained our interest: their nearly universal glycolytic phenotype and their sensitivity towards an oxidative stress. Therefore, we took advantage of these features to develop an experimental approach by selectively exposing cancer cells to an oxidant insult induced by the combination of menadione (vitamin K(3)) and ascorbate (vitamin C). Ascorbate enhances the menadione redox cycling, increases the formation of reactive oxygen species and kills K562 cells as shown by more than 65% of LDH leakage after 24 hr of incubation. Since both lactate formation and ATP content are depressed by about 80% following ascorbate/menadione exposure, we suggest that the major intracellular event involved in such a cytotoxicity is related to the impairment of glycolysis. Indeed, NAD(+) is rapidly and severely depleted, a fact most probably related to a strong Poly(ADP-ribose) polymerase (PARP) activation, as shown by the high amount of poly-ADP-ribosylated proteins. The addition of N-acetylcysteine (NAC) restores most of the ATP content and the production of lactate as well. The PARP inhibitor dihydroxyisoquinoline (DiQ) was able to partially restore both parameters as well as cell death induced by ascorbate/menadione. These results suggest that the PARP activation induced by the oxidative stress is a major but not the only intracellular event involved in cell death by ascorbate/menadione. Due to the high energetic dependence of cancer cells on glycolysis, the impairment of such an essential pathway may explain the effectiveness of this combination to kill cancer cells. (c) 2006 Wiley-Liss, Inc.

  6. In Vitro Characterization and Evaluation of the Cytotoxicity Effects of Nisin and Nisin-Loaded PLA-PEG-PLA Nanoparticles on Gastrointestinal (AGS and KYSE-30), Hepatic (HepG2) and Blood (K562) Cancer Cell Lines.

    Science.gov (United States)

    Goudarzi, Fariba; Asadi, Asadollah; Afsharpour, Maryam; Jamadi, Robab Hassanvand

    2018-05-01

    The aim of this study was an in vitro evaluation and comparison of the cytotoxic effects of free nisin and nisin-loaded PLA-PEG-PLA nanoparticles on gastrointestinal (AGS and KYSE-30), hepatic (HepG2), and blood (K562) cancer cell lines. To create this novel anti-cancer drug delivery system, the nanoparticles were synthesized and then loaded with nisin. Subsequently, their biocompatibility, ability to enter cells, and physicochemical properties, including formation, size, and shape, were studied using hemolysis, fluorescein isothiocyanate (FITC), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), respectively. Then, its loading efficiency and release kinetics were examined to assess the potential impact of this formulation for the nanoparticle carrier candidacy. The cytotoxicities of nisin and nisin-loaded nanoparticles were evaluated by using the MTT and Neutral Red (NR) uptake assays. Detections of the apoptotic cells were done via Ethidium Bromide (EB)/Acridine Orange (AO) staining. The FTIR spectra, SEM images, and DLS graph confirmed the formations of the nanoparticles and nisin-loaded nanoparticles with spherical, distinct, and smooth surfaces and average sizes of 100 and 200 nm, respectively. The loading efficiency of the latter nanoparticles was about 85-90%. The hemolysis test represented their non-cytotoxicities and the FITC images indicated their entrance inside the cells. An increase in the percentage of apoptotic cells was observed through EB/AO staining. These results demonstrated that nisin had a cytotoxic effect on AGS, KYSE-30, HepG2, and K562 cancer cell lines, while the cytotoxicity of nisin-loaded nanoparticles was more than that of the free nisin.

  7. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    Science.gov (United States)

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  8. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells

    OpenAIRE

    Takuya Yamane; Tatsuji Sakamoto; Takenori Nakagaki; Yoshihisa Nakano

    2018-01-01

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis, Lactococcus. lactis subsp. Cremoris, Lactococcus. Lactis subsp. Lactis biovar diacetylactis, Lactobacillus plantarum, Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei. In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cell...

  9. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Feuser, Paulo Emilio [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil); Jacques, Amanda Virtuoso [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin [Federal University of Paraná, Department of Biochemistry and Molecular Biology (Brazil); Santos-Silva, Maria Claudia dos [Federal University of Santa Catarina, Department of Clinical Analyses (Brazil); Sayer, Claudia; Araújo, Pedro H. Hermes de, E-mail: pedro.h.araujo@ufsc.br [Federal University of Santa Catarina, Department of Chemical Engineering and Food Engineering (Brazil)

    2016-04-15

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  10. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    International Nuclear Information System (INIS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; Santos-Silva, Maria Claudia dos; Sayer, Claudia; Araújo, Pedro H. Hermes de

    2016-01-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  11. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    Science.gov (United States)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  12. Analysis of the role of COP9 Signalosome (CSN subunits in K562; the first link between CSN and autophagy

    Directory of Open Access Journals (Sweden)

    Bunce Christopher M

    2009-04-01

    Full Text Available Abstract Background The COP9/signalosome (CSN is a highly conserved eight subunit complex that, by deneddylating cullins in cullin-based E3 ubiquitin ligases, regulates protein degradation. Although studied in model human cell lines such as HeLa, very little is known about the role of the CSN in haemopoietic cells. Results Greater than 95% knockdown of the non-catalytic subunit CSN2 and the deneddylating subunit CSN5 of the CSN was achieved in the human myeloid progenitor cell line K562. CSN2 knockdown led to a reduction of both CSN5 protein and mRNA whilst CSN5 knockdown had little effect on CSN2. Both knockdowns inhibited CSN deneddylase function as demonstrated by accumulation of neddylated Cul1. Furthermore, both knockdowns resulted in the sequential loss of Skp2, Cdc4 and β-TrCP F-box proteins. These proteins were rescued by the proteasome inhibitor MG132, indicating the autocatalytic degradation of F-box proteins upon loss of CSN2 or CSN5. Interestingly, altered F-box protein gene expression was also observed in CSN2 and CSN5 knockdowns, suggesting a potential role of the CSN in regulating F-box protein transcription. Loss of either CSN subunit dramatically reduced cell growth but resulted in distinct patterns of cell death. CSN5 knockdown caused mitotic defects, G2/M arrest and apoptotic cell death. CSN2 knockdown resulted in non-apoptotic cell death associated with accumulation of both the autophagy marker LC3-II and autophagic vacuoles. Treatment of vector control K562 cells with the autophagy inhibitors 3-methyladenine and bafilomycin A1 recapitulated the growth kinetics, vacuolar morphology and LC3-II accumulation of CSN2 knockdown cells indicating that the cellular phenotype of CSN2 cells arises from autophagy inhibition. Finally, loss of CSN2 was associated with the formation of a CSN5 containing subcomplex. Conclusion We conclude that CSN2 is required for CSN integrity and the stability of individual CSN subunits, and postulate

  13. Encapsulation of Piper cabralanum (Piperaceae) nonpolar extract in poly(methyl methacrylate) by miniemulsion and evaluation of increase in the effectiveness of antileukemic activity in K562 cells.

    Science.gov (United States)

    Mendes, Anderson Nogueira; Filgueiras, Lívia Alves; Siqueira, Monica Regina Pimentel; Barbosa, Gleyce Moreno; Holandino, Carla; de Lima Moreira, Davyson; Pinto, José Carlos; Nele, Marcio

    2017-01-01

    This study aimed to synthesize and characterize nanoparticles (NPs) of poly(methyl methacrylate) (PMMA) and evaluate their ability to incorporate plant extracts with antitumor activity and low dissolution in aqueous media. The extract used was n -hexane partition of the methanol extract of Piper cabralanum (PCA-HEX). PMMA NPs were obtained using the mini-emulsion method, which was able to encapsulate almost 100% of PCA-HEX. The synthesized polymeric particles presented with a size of 200 nm and a negative charge. Cytotoxicity tests by MTT and trypan blue assays showed that NPs without PCA-HEX did not kill leukemic cells (K562 cells). NPs containing PCA-HEX were able to enhance cell death when compared to pure extract. The results showed that PMMA NPs could be useful as a drug delivery system as they can enhance the antitumor activity of the PCA-HEX extract by more than 20-fold. PMMA NPs containing plant extracts with antitumor activities may be an alternative to control the evolution of diseases such as leukemia.

  14. Silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway.

    Science.gov (United States)

    Li, Yumei; Zhang, Chunmei; Cai, Danfeng; Chen, Congde; Mu, Dongmei

    2017-12-01

    Rhabdoid tumors, which tend to occur prior to the age of 2 years, are one of the most aggressive malignancies and have a poor prognosis due to the frequency of metastasis. Silibinin, a natural extract, has been approved as a potential tumor suppressor in various studies, however, whether or not it also exerts its antitumor capacity in rhabdoid tumors, particularly with regards to tumor migration and invasion, is unclear. The rhabdoid tumor G401 cell line was used in the present in vitro study. An MTT assay was used to assess the cytotoxicity of silibinin on G401 cells, cell migration was studied using a wound healing assay and a Transwell migration assay, and cell invasion was determined using a Transwell invasion assay. The underlying mechanism in silibinin inhibited cell migration and invasion was investigated by western blot analysis and further confirmed using a specific inhibitor. Experimental results demonstrated that high doses of silibinin suppressed cell viability, and that low doses of silibinin inhibited cell migration and invasion without affecting cell proliferation. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway was involved in the silibinin-induced inhibition of metastasis. Silibinin inactivated the PI3K/Akt pathway, and inhibited cell migration and invasion, an effect that was further enhanced when LY294002, a classic PI3K inhibitor, was used concurrently. In general, silibinin inhibits migration and invasion of the rhabdoid tumor G401 cell line via inactivation of the PI3K/Akt signaling pathway and may be a potential chemotherapeutic drug to combat rhabdoid tumors in the future.

  15. Silencing of BCR/ABL Chimeric Gene in Human Chronic Myelogenous Leukemia Cell Line K562 by siRNA-Nuclear Export Signal Peptide Conjugates.

    Science.gov (United States)

    Shinkai, Yasuhiro; Kashihara, Shinichi; Minematsu, Go; Fujii, Hirofumi; Naemura, Madoka; Kotake, Yojiro; Morita, Yasutaka; Ohnuki, Koichiro; Fokina, Alesya A; Stetsenko, Dmitry A; Filichev, Vyacheslav V; Fujii, Masayuki

    2017-06-01

    Herein we described the synthesis of siRNA-NES (nuclear export signal) peptide conjugates by solid phase fragment coupling and the application of them to silencing of bcr/abl chimeric gene in human chronic myelogenous leukemia cell line K562. Two types of siRNA-NES conjugates were prepared, and both sense strands at 5' ends were covalently linked to a NES peptide derived from TFIIIA and HIV-1 REV, respectively. Significant enhancement of silencing efficiency was observed for both of them. siRNA-TFIIIA NES conjugate suppressed the expression of BCR/ABL gene to 8.3% at 200 nM and 11.6% at 50 nM, and siRNA-HIV-1REV NES conjugate suppressed to 4.0% at 200 nM and 6.3% at 50 nM, whereas native siRNA suppressed to 36.3% at 200 nM and 30.2% at 50 nM. We could also show complex of siRNA-NES conjugate and designed amphiphilic peptide peptideβ7 could be taken up into cells with no cytotoxicity and showed excellent silencing efficiency. We believe that the complex siRNA-NES conjugate and peptideβ7 is a promising candidate for in vivo use and therapeutic applications.

  16. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    Science.gov (United States)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  17. The effect of lysate of spleen cells after low dose radiation (LDR) on NK activity

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2003-01-01

    To find effect of lysate of spleen cells after LDR on NK activity of CD 57 cells or non-CD 57 cells, lysate of spleen cells after LDR were extracted. McAb (anti CD 57 cells) was used to separate CD 57 cells from human peripheral blood by Panning direct method. The CD 57 cells and non-CD 57 cells were used as effective cells. K 562 cells labelled by 3 H-TdR were used as target cells. The ratio of effect cells to target cells was 10:1. NK activity of CD 57 cells or non-CD 5 -7 cells with the lysate of spleen cells after LDR was reflected by the efficiency of anti tumor cells. The 3 H-TdR incorporation in K 562 cells cultured with non-CD 57 cells was significantly lower than that with CD 57 cells. After use of the lysate of spleen cells after LDR, NK activities of CD 57 cells and non-CD 57 cells were 1.24 and 1.58 respectively. They were both increased obviously compared with control groups. The effect of anti K 562 cells of non-CD 57 cells is even greater than that of CD 57 cells. The lysate of spleen cells after LDR can enhance the effect of both non-CD 57 cells and CD 57 cells

  18. Anti-tumor effect of hot aqueous extracts from Sonchus oleraceus (L.) L. and Juniperus sabina L - Two traditional medicinal plants in China.

    Science.gov (United States)

    Huyan, Ting; Li, Qi; Wang, Yi-Lin; Li, Jing; Zhang, Jian-Yang; Liu, Ya-Xiong; Shahid, Muhammad Riaz; Yang, Hui; Li, Huan-Qing

    2016-06-05

    Sonchus oleraceus (L.) L (SO) and Juniperus sabina L (JS) are traditional medicinal plants in China. And the aqueous extracts of them have been used to treat tumor, inflammatory diseases, infection and so on in Chinese folk culture. However, the underlying mechanisms of their anti-tumor activities have not been illustrated yet. This study aims to evaluate the inhibitory effects of aqueous extracts from SO and JS on tumor cells. The prepared aqueous extracts of SO and JS were used to treat HepG-2 and K562 tumor cells, while the human peripheral blood mononuclear cells (PBMCs) were set as normal control. The viabilities, cell cycle and apoptosis of tumor cells after extracts treatment were assessed, in addition the expression of apoptosis-related genes (FasL, caspase 3, 6, 7, 8, 9, and 10) were analyzed. Meanwhile, the adherence and migration of HepG-2 were tested, and the expression levels of MMPs and ICAM-1 were analyzed. On top of that, the pSTAT in the two cells were also analyzed and suggested the related signaling pathway that the extracts acted on with in these tumor cells. Results showed that aqueous extracts of SO and JS have inhibitory effects on HepG-2 and K562 cells by decreasing cell viability and inducing apoptosis via up-regulation of the expression of the apoptosis-related genes FasL, caspase 3 and caspase 9. The extracts had different IC50 on tumor cells and PBMCs, which could block the tumor cell cycle at the G(0)/G(1) stage and significantly inhibit the adherence of HepG-2 cells. The extracts inhibited migration of these cells by inhibiting the expression of ICAM-1, MMP-2 and MMP-9. Further study indicated that the inhibition of pSTAT1 and 3 might be responsible for the inhibitory effects of the extracts on tumor cells. The results of this study indicated that SO and JS extracts had the anti-tumor effects, which may be developed as novel anti-tumor drugs and used in cancer therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  20. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    Science.gov (United States)

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  1. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  2. Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro

    International Nuclear Information System (INIS)

    Lee, Myung Za; Lee, Won Young

    1994-01-01

    Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cells hut not CCL-120 normal cells to radiation. Ouabain inhibits the Na+-K+-pump rapidly thus it increases intracellular Na concentration. Vanadate which is distributed extensively in almost all living organisms in known to be a Na+-K+-ATPase inhibitors. This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of Na+-K+-ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMG cell and trypan blue dye exclusion test for L120, and spleen cells. Measurements of Na+-K+-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined 10-6 M vanadate and radiation treated cells were done. The results were summarized as follows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Minimum or cytotoxicity was seen with vanadate below concentration of 10-6 M. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. E. 2-Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. Na+-K+-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiation itself inhibited Na+-K+-ATPase activity of tumor cell with high Na+- K+-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with original Na+-K+-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized

  3. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment.

    Science.gov (United States)

    Huang, Jixian; Lu, Ziyuan; Xiao, Yajuan; He, Bolin; Pan, Chengyun; Zhou, Xuan; Xu, Na; Liu, Xiaoli

    2018-02-05

    BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.

  4. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  5. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  6. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    Science.gov (United States)

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  7. Human breast tumor cells are more resistant to cardiac glycoside toxicity than non-tumorigenic breast cells.

    Directory of Open Access Journals (Sweden)

    Rebecca J Clifford

    Full Text Available Cardiotonic steroids (CTS, specific inhibitors of Na,K-ATPase activity, have been widely used for treating cardiac insufficiency. Recent studies suggest that low levels of endogenous CTS do not inhibit Na,K-ATPase activity but play a role in regulating blood pressure, inducing cellular kinase activity, and promoting cell viability. Higher CTS concentrations inhibit Na,K-ATPase activity and can induce reactive oxygen species, growth arrest, and cell death. CTS are being considered as potential novel therapies in cancer treatment, as they have been shown to limit tumor cell growth. However, there is a lack of information on the relative toxicity of tumor cells and comparable non-tumor cells. We have investigated the effects of CTS compounds, ouabain, digitoxin, and bufalin, on cell growth and survival in cell lines exhibiting the full spectrum of non-cancerous to malignant phenotypes. We show that CTS inhibit membrane Na,K-ATPase activity equally well in all cell lines tested regardless of metastatic potential. In contrast, the cellular responses to the drugs are different in non-tumor and tumor cells. Ouabain causes greater inhibition of proliferation and more extensive apoptosis in non-tumor breast cells compared to malignant or oncogene-transfected cells. In tumor cells, the effects of ouabain are accompanied by activation of anti-apoptotic ERK1/2. However, ERK1/2 or Src inhibition does not sensitize tumor cells to CTS cytotoxicity, suggesting that other mechanisms provide protection to the tumor cells. Reduced CTS-sensitivity in breast tumor cells compared to non-tumor cells indicates that CTS are not good candidates as cancer therapies.

  8. Induction of erythroid differentiation in human erythroleukemia cells by depletion of malic enzyme 2.

    Directory of Open Access Journals (Sweden)

    Jian-Guo Ren

    2010-09-01

    Full Text Available Malic enzyme 2 (ME2 is a mitochondrial enzyme that catalyzes the conversion of malate to pyruvate and CO2 and uses NAD as a cofactor. Higher expression of this enzyme correlates with the degree of cell de-differentiation. We found that ME2 is expressed in K562 erythroleukemia cells, in which a number of agents have been found to induce differentiation either along the erythroid or the myeloid lineage. We found that knockdown of ME2 led to diminished proliferation of tumor cells and increased apoptosis in vitro. These findings were accompanied by differentiation of K562 cells along the erythroid lineage, as confirmed by staining for glycophorin A and hemoglobin production. ME2 knockdown also totally abolished growth of K562 cells in nude mice. Increased ROS levels, likely reflecting increased mitochondrial production, and a decreased NADPH/NADP+ ratio were noted but use of a free radical scavenger to decrease inhibition of ROS levels did not reverse the differentiation or apoptotic phenotype, suggesting that ROS production is not causally involved in the resultant phenotype. As might be expected, depletion of ME2 induced an increase in the NAD+/NADH ratio and ATP levels fell significantly. Inhibition of the malate-aspartate shuttle was insufficient to induce K562 differentiation. We also examined several intracellular signaling pathways and expression of transcription factors and intermediate filament proteins whose expression is known to be modulated during erythroid differentiation in K562 cells. We found that silencing of ME2 leads to phospho-ERK1/2 inhibition, phospho-AKT activation, increased GATA-1 expression and diminished vimentin expression. Metabolomic analysis, conducted to gain insight into intermediary metabolic pathways that ME2 knockdown might affect, showed that ME2 depletion resulted in high orotate levels, suggesting potential impairment of pyrimidine metabolism. Collectively our data point to ME2 as a potentially novel

  9. Cell swelling activates K+ and Cl- channels as well as nonselective, stretch-activated cation channels in ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Christensen, Ove; Hoffmann, Else Kay

    1992-01-01

    Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does...... system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after...... by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches...

  10. Targeting the cell cycle and the PI3K pathway: a possible universal strategy to reactivate innate tumor suppressor programmes in cancer cells.

    Science.gov (United States)

    David-Pfeuty, Thérèse; Legraverend, Michel; Ludwig, Odile; Grierson, David S

    2010-04-01

    Corruption of the Rb and p53 pathways occurs in virtually all human cancers. This could be because it lends oncogene-bearing cells a surfeit of Cdk activity and growth, enabling them to elaborate strategies to evade tumor-suppressive mechanisms and divide inappropriately. Targeting both Cdk activities and the PI3K pathway might be therefore a potentially universal means to palliate their deficiency in cancer cells. We showed that the killing efficacy of roscovitine and 16 other purines and potentiation of roscovitine-induced apoptosis by the PI3K inhibitor, LY294002, decreased with increasing corruption of the Rb and p53 pathways. Further, we showed that purines differing by a single substitution, which exerted little lethal effect on distant cell types in rich medium, could display widely-differing cytotoxicity profiles toward the same cell types in poor medium. Thus, closely-related compounds targeting similar Cdks may interact with different targets that could compete for their interaction with therapeutically-relevant Cdk targets. In the perspective of clinical development in association with the PI3K pathway inhibitors, it might thus be advisable to select tumor cell type-specific Cdk inhibitors on the basis of their toxicity in cell-culture-based assays performed at a limiting serum concentration sufficient to suppress their interaction with undesirable crossreacting targets whose range and concentration would depend on the cell genotype.

  11. Vaccination directed against the human endogenous retrovirus-K (HERV-K) gag protein slows HERV-K gag expressing cell growth in a murine model system.

    Science.gov (United States)

    Kraus, Benjamin; Fischer, Katrin; Sliva, Katja; Schnierle, Barbara S

    2014-03-26

    Human endogenous retroviruses (HERVs) are remnants of ancestral infections and chromosomally integrated in all cells of an individual, are transmitted only vertically and are defective in viral replication. However enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed inter-alia in HIV-infected individuals and tumor patients. Therefore HERV-K might serve as a tumor-specific antigen or even as a constant target for the development of an HIV vaccine. To verify our hypothesis, we tested the immunogenicity of HERV-K Gag by using a recombinant vaccinia virus (MVA-HKcon) expressing the HERV-K Gag protein and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) and the HERV-K Gag protein (RLZ-HKGag cells). Subcutaneous application of RLZ-HKGag cells into syngenic BALB/c mice resulted in the formation of local tumors in MVA vaccinated mice. MVA-HKcon vaccination reduced the tumor growth. Furthermore, intravenous injection of RLZ-HKGag cells led to the formation of pulmonary metastases. Vaccination of tumor-bearing mice with MVA-HKcon drastically reduced the number of pulmonary RLZ-HKGag tumor nodules compared to vaccination with wild-type MVA. The data demonstrate that HERV-K Gag is a useful target for vaccine development and might offer new treatment opportunities for cancer patients.

  12. Retroviral-mediated transfer and expression of human β-globin genes in cultured murine and human erythroid cells

    International Nuclear Information System (INIS)

    Weber-Benarous, A.; Cone, R.D.; London, I.M.; Mulligan, R.C.

    1988-01-01

    The authors cloned human β-globin DNA sequences from a genomic library prepared from DNA isolated from the human leukemia cell line K562 and have used the retroviral vector pZip-NeoSV(X)1 to introduce a 3.0-kilobase segment encompassing the globin gene into mouse erythroleukemia cells. Whereas the endogenous K562 β-globin gene is repressed in K562 cells, when introduced into mouse erythroleukemia cells by retroviral-mediated gene transfer, the β-globin gene from K562 cells was transcribed and induced 5-20-fold after treatment of the cells with dimethyl sulfoxide. The transcripts were correctly initiated, and expression and regulation of the K562 gene were identical to the expression of a normal human β-globin gene transferred into mouse erythroleukemia cells in the same way. They have also introduced the normal human β-globin gene into K562 cells using the same retrovirus vector. SP6 analysis of the RNA isolated from the transduced cells showed that the normal β-globin gene was transcribed at a moderately high level, before or after treatment with hemin. Based on these data, they suggest that the lack of expression of the endogenous β-globin gene in K562 cells does not result from an alteration in the gene itself and may not result from a lack of factor(s) necessary for β-lobin gene transcription. Retroviral-mediated transfer of the human β-globin gene may, however, uniquely influence expression of the gene K562 cells

  13. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Qinghuang Chen

    Full Text Available CDKN3 (cyclin-dependent kinase inhibitor 3, a dual specificity protein phosphatase, dephosphorylates cyclin-dependent kinases (CDKs and thus functions as a key negative regulator of cell cycle progression. Deregulation or mutations of CDNK3 have been implicated in various cancers. However, the role of CDKN3 in Bcr-Abl-mediated chronic myelogenous leukemia (CML remains unknown. Here we found that CDKN3 acts as a tumor suppressor in Bcr-Abl-mediated leukemogenesis. Overexpression of CDKN3 sensitized the K562 leukemic cells to imanitib-induced apoptosis and dramatically inhibited K562 xenografted tumor growth in nude mouse model. Ectopic expression of CDKN3 significantly reduced the efficiency of Bcr-Abl-mediated transformation of FDCP1 cells to growth factor independence. In contrast, depletion of CDKN3 expression conferred resistance to imatinib-induced apoptosis in the leukemic cells and accelerated the growth of xenograph leukemia in mice. In addition, we found that CDKN3 mutant (CDKN3-C140S devoid of the phosphatase activity failed to affect the K562 leukemic cell survival and xenografted tumor growth, suggesting that the phosphatase of CDKN3 was required for its tumor suppressor function. Furthermore, we observed that overexpression of CDKN3 reduced the leukemic cell survival by dephosphorylating CDK2, thereby inhibiting CDK2-dependent XIAP expression. Moreover, overexpression of CDKN3 delayed G1/S transition in K562 leukemic cells. Our results highlight the importance of CDKN3 in Bcr-Abl-mediated leukemogenesis, and provide new insights into diagnostics and therapeutics of the leukemia.

  14. Increased suppression of oncolytic adenovirus carrying mutant k5 on colorectal tumor

    International Nuclear Information System (INIS)

    Fan Junkai; Xiao Tian; Gu Jinfa; Wei Na; He Lingfeng; Ding Miao; Liu Xinyuan

    2008-01-01

    Angiogenesis plays a key role in the development of a wide variety of malignant tumors. The approach of targeting antiangiogenesis has become an important field of cancer gene therapy. In this study, the antiangiogenesis protein K5 (the kringle 5 of human plasminogen) has been mutated by changing leucine71 to arginine to form mK5. Then the ZD55-mK5, which is an oncolytic adenovirus expressing mK5, was constructed. It showed stronger inhibition on proliferation of human umbilical vein endothelial cell. Moreover, in tube formation and embryonic chorioallantoic membrane assay, ZD55-mK5 exhibited more effective antiangiogenesis than ZD55-K5. In addition, ZD55-mK5 generated obvious suppression on the growth of colorectal tumor xenografts and prolonged the life span of nude mice. These results indicate that ZD55-mK5 is a potent agent for inhibiting the tumor angiogenesis and tumor growth

  15. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism.

    Science.gov (United States)

    Bonilla-Porras, Angelica R; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2011-06-10

    Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM) or 100:1 (300 μM: 3 μM), respectively. We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  16. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  17. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  18. Tumor vessel normalization by the PI3K inhibitor HS-173 enhances drug delivery.

    Science.gov (United States)

    Kim, Soo Jung; Jung, Kyung Hee; Son, Mi Kwon; Park, Jung Hee; Yan, Hong Hua; Fang, Zhenghuan; Kang, Yeo Wool; Han, Boreum; Lim, Joo Han; Hong, Soon-Sun

    2017-09-10

    Tumor vessels are leaky and immature, which causes poor oxygen and nutrient supply to tumor vessels and results in cancer cell metastasis to distant organs. This instability of tumor blood vessels also makes it difficult for anticancer drugs to penetrate and reach tumors. Numerous tumor vessel normalization approaches have been investigated for improving drug delivery into tumors. In this study, we investigated whether phosphoinositide 3-kinase (PI3K) inhibitors are able to improve vascular structure and function over the prolonged period necessary to achieve effective vessel normalization. The PI3K inhibitors, HS-173 and BEZ235 potently suppressed tumor growth and hypoxia, and increased tumor apoptosis in animal models. PI3K inhibitors also induced a regular, flat monolayer of endothelial cells (ECs) in vessels, improving stability of vessel structure, and normalized tumor vessels by increasing vascular maturity, pericyte coverage, basement membrane thickness, and tight-junctions. These effects resulted in a decrease in tumor vessel tortuosity and vessel thinning, and improved vessel function and blood flow. The tumor vessel stabilization effect of the PI3K inhibitor HS-173 also decreased the number of metastatic lung nodules in vivo metastasis model. Furthermore, HS-173 improved the delivery of doxorubicin into the tumor region, enhancing its anticancer effects. Mechanistic studies suggested that PI3K inhibitor HS-173-induced vessel normalization reflected changes in endothelial Notch signaling. Taken together, our findings indicate that vessel normalization by PI3K inhibitors restrained tumor growth and metastasis while improving chemotherapy by enhancing drug delivery into the tumor, suggesting that HS-173 may have a therapeutic value as an enhancer or an anticancer drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells.

    Science.gov (United States)

    Van Tendeloo, V F; Ponsaerts, P; Lardon, F; Nijs, G; Lenjou, M; Van Broeckhoven, C; Van Bockstaele, D R; Berneman, Z N

    2001-07-01

    Designing effective strategies to load human dendritic cells (DCs) with tumor antigens is a challenging approach for DC-based tumor vaccines. Here, a cytoplasmic expression system based on mRNA electroporation to efficiently introduce tumor antigens into DCs is described. Preliminary experiments in K562 cells using an enhanced green fluorescent protein (EGFP) reporter gene revealed that mRNA electroporation as compared with plasmid DNA electroporation showed a markedly improved transfection efficiency (89% versus 40% EGFP(+) cells, respectively) and induced a strikingly lower cell toxicity (15% death rate with mRNA versus 51% with plasmid DNA). Next, mRNA electroporation was applied for nonviral transfection of different types of human DCs, including monocyte-derived DCs (Mo-DCs), CD34(+) progenitor-derived DCs (34-DCs) and Langerhans cells (34-LCs). High-level transgene expression by mRNA electroporation was obtained in more than 50% of all DC types. mRNA-electroporated DCs retained their phenotype and maturational potential. Importantly, DCs electroporated with mRNA-encoding Melan-A strongly activated a Melan-A-specific cytotoxic T lymphocyte (CTL) clone in an HLA-restricted manner and were superior to mRNA-lipofected or -pulsed DCs. Optimal stimulation of the CTL occurred when Mo-DCs underwent maturation following mRNA transfection. Strikingly, a nonspecific stimulation of CTL was observed when DCs were transfected with plasmid DNA. The data clearly demonstrate that Mo-DCs electroporated with mRNA efficiently present functional antigenic peptides to cytotoxic T cells. Therefore, electroporation of mRNA-encoding tumor antigens is a powerful technique to charge human dendritic cells with tumor antigens and could serve applications in future DC-based tumor vaccines.

  20. The humanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity against human ovarian cancer through tumor-associated macrophages.

    Science.gov (United States)

    Bougherara, Houcine; Némati, Fariba; Nicolas, André; Massonnet, Gérald; Pugnière, Martine; Ngô, Charlotte; Le Frère-Belda, Marie-Aude; Leary, Alexandra; Alexandre, Jérôme; Meseure, Didier; Barret, Jean-Marc; Navarro-Teulon, Isabelle; Pèlegrin, André; Roman-Roman, Sergio; Prost, Jean-François; Donnadieu, Emmanuel; Decaudin, Didier

    2017-11-21

    Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient's tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials.

  1. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    Science.gov (United States)

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  2. EM23, a natural sesquiterpene lactone from Elephantopus mollis H.B.K., induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Hongyu eLi

    2016-03-01

    Full Text Available Elephantopus mollis H.B.K. (EM is a traditional herbal medicine with multiple pharmacological activities. However, the efficacy of EM in treating human leukemia is currently unknown. In the current study, we report that EM23, a natural sesquiterpene lactone isolated from EM, inhibits the proliferation of human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells by inducing apoptosis. Translocation of membrane-associated phospholipid phosphatidylserines, changes in cell morphology, activation of caspases and cleavage of PARP were concomitant with this inhibition. The involvement of the mitochondrial pathway in EM23-mediated apoptosis was suggested by observed disruptions in mitochondrial membrane potential (MMP. Mechanistic studies indicated that EM23 caused a marked increase in the level of reactive oxygen species (ROS. Pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, almost fully reversed EM23-mediated apoptosis. In EM23-treated cells, the expression levels of thioredoxin (Trx and thioredoxinreductase (TrxR, two components of the Trx system involved in maintaining cellular redox homeostasis, were significantly down-regulated. Concomitantly, Trx regulated the activation of apoptosis signal-regulating kinase 1 (ASK1 and its downstream regulatory targets, the p38, JNK, and ERK MAPKs. EM23-mediated activation of ASK1/MAPKs was significantly inhibited in the presence of NAC. Furthermore, tumor necrosis factor alpha (TNF-α-mediated activation of nuclear factor-κB (NF-κB was suppressed by EM23, as suggested by the observed blockage of p65 nuclear translocation, phosphorylation and reversion of IκBα degradation following EM23 treatment. Taken together, these results provide important insights into the anticancer activities of the EM component EM23 against human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells.

  3. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    Directory of Open Access Journals (Sweden)

    Baoan Chen

    2009-03-01

    Full Text Available Baoan Chen1,* Jian Cheng1,* Yanan Wu1, Feng Gao1, Wenlin Xu2, et al 1Department of Hematology;2Department of Hematology, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, PR China *These authors have contributed equally to this workAbstract: In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4 combined with daunorubicin (DNR in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.Keywords: 5-bromotetrandrine, magnetic nanoparticle of Fe3O4, multidrug-resistance, xenograft model

  4. Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism

    Directory of Open Access Journals (Sweden)

    Velez-Pardo Carlos

    2011-06-01

    Full Text Available Abstract Background Secondary therapy-related acute lymphoblastic leukemia might emerge following chemotherapy and/or radiotherapy for primary malignancies. Therefore, other alternatives should be pursued to treat leukemia. Results It is shown that vitamin K3- or vitamin C- induced apoptosis in leukemia cells by oxidative stress mechanism involving superoxide anion radical and hydrogen peroxide generation, activation of NF-κB, p53, c-Jun, protease caspase-3 activation and mitochondria depolarization leading to nuclei fragmentation. Cell death was more prominent when Jurkat and K562 cells are exposed to VC and VK3 in a ratio 1000:1 (10 mM: 10 μM or 100:1 (300 μM: 3 μM, respectively. Conclusion We provide for the first time in vitro evidence supporting a causative role for oxidative stress in VK3- and VC-induced apoptosis in Jurkat and K562 cells in a domino-like mechanism. Altogether these data suggest that VK3 and VC should be useful in the treatment of leukemia.

  5. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    Directory of Open Access Journals (Sweden)

    Snehal Shabrish

    2016-01-01

    Full Text Available Natural killer (NK cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA and calcium ionophore (Ca2+-ionophore instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p<0.0001. It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells.

  6. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    Science.gov (United States)

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  7. Aurora kinase A revives dormant laryngeal squamous cell carcinoma cells via FAK/PI3K/Akt pathway activation

    Science.gov (United States)

    Yang, Li-yun; He, Chang-yu; Chen, Xue-hua; Su, Li-ping; Liu, Bing-ya; Zhang, Hao

    2016-01-01

    Revival of dormant tumor cells may be an important tumor metastasis mechanism. We hypothesized that aurora kinase A (AURKA), a cell cycle control kinase, promotes the transition of laryngeal squamous cell carcinoma (LSCC) cells from G0 phase to active division. We therefore investigated whether AURKA could revive dormant tumor cells to promote metastasis. Western blotting revealed that AURKA expression was persistently low in dormant laryngeal cancer Hep2 (D-Hep2) cells and high in non-dormant (T-Hep2) cells. Decreasing AURKA expression in T-Hep2 cells induced dormancy and reduced FAK/PI3K/Akt pathway activity. Increasing AURKA expression in D-Hep2 cells increased FAK/PI3K/Akt pathway activity and enhanced cellular proliferation, migration, invasion and metastasis. In addition, FAK/PI3K/Akt pathway inhibition caused dormancy-like behavior and reduced cellular mobility, migration and invasion. We conclude that AURKA may revive dormant tumor cells via FAK/PI3K/Akt pathway activation, thereby promoting migration and invasion in laryngeal cancer. AURKA/FAK/PI3K/Akt inhibitors may thus represent potential targets for clinical LSCC treatment. PMID:27356739

  8. In vitro effects of PCDDs/Fs on NK-like cell activity of Eisenia andrei earthworms

    Directory of Open Access Journals (Sweden)

    Hayet Belmeskine

    2012-02-01

    Full Text Available In this study, we assessed in vitro the effects of PCDD/Fs on the NK-like cell activity in Eisenia andrei earthworms using flow cytometry for analysis. NK-like coelomocytes isolated from E. andrei and used as effectors were exposed to various concentrations of PCDDs/Fs mixture, C1 (6.25x10-3 ng 2378- TCDD/mL, C2 (12.5x10-3 ng 2378-TCDD/mL and C3 (25x10-3 ng 2378-TCDD/mL, before adding them to human tumoral cells (K562 used as targets. We evaluated the percentage of targets lysed by Nk-like cells. The results showed a significant stimulation of the NKlike activity at C3 when PCDD/Fs were not removed from effectors before contact with targets, while no effects were noted when the effectors were washed (PCDD/Fs removed or fixed. Assessment of the viability of the targets (K562, exposed alone and separately from effectors, to the three concentrations of PCDD/Fs, C1, C2 and C3, showed that all these concentrations were cytotoxic for K562. Results suggest that PCDD/Fs concentrations tested in this assay may be considered too low to induce suppressive effects on the immune function such as the NK-like activity in E. andrei earthworms.

  9. A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival

    Directory of Open Access Journals (Sweden)

    Roussos Charis

    2009-12-01

    Full Text Available Abstract Background Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor growth activity through inhibition of cancer cell proliferation, survival, angiogenesis and inflammatory response. However, no studies have addressed its mechanisms of action at genome-wide gene expression level. Methods To investigate molecular mechanisms triggered by mastic oil, Lewis Lung Carcinoma cells were treated with mastic oil or DMSO and RNA was collected at five distinct time points (3-48 h. Microarray expression profiling was performed using Illumina mouse-6 v1 beadchips, followed by computational analysis. For a number of selected genes, RT-PCR validation was performed in LLC cells as well as in three human cancer cell lines of different origin (A549, HCT116, K562. PTEN specific inhibition by a bisperovanadium compound was applied to validate its contribution to mastic oil-mediated anti-tumor growth effects. Results In this work we demonstrated that exposure of Lewis lung carcinomas to mastic oil caused a time-dependent alteration in the expression of 925 genes. GO analysis associated expression profiles with several biological processes and functions. Among them, modifications on cell cycle/proliferation, survival and NF-κB cascade in conjunction with concomitant regulation of genes encoding for PTEN, E2F7, HMOX1 (up-regulation and NOD1 (down-regulation indicated some important mechanistic links underlying the anti-proliferative, pro-apoptotic and anti-inflammatory effects of mastic oil. The expression profiles of Hmox1, Pten and E2f7 genes were similarly altered by mastic oil in the majority of test cancer cell lines. Inhibition of PTEN partially reversed mastic oil effects on tumor cell growth, indicating a multi-target mechanism of action. Finally, k-means clustering, organized the significant gene list in eight clusters demonstrating a similar

  10. El coactivador de receptores nucleares RAC3 tiene un rol protector de la Apoptosis inducida por distintos estímulos RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    Directory of Open Access Journals (Sweden)

    Georgina P. Coló

    2007-10-01

    Full Text Available RAC3 pertenece a la familia de coactivadores de receptores nucleares p160, y se encuentra sobreexpresado en varios tumores. Demostramos previamente que RAC3 es coactivador del factor de transcripción anti-apoptótico NF-kapa;B. En este trabajo investigamos su rol en la apoptosis inducida por H2O2 en una línea celular no tumoral derivada de riñón embrionario humano (HEK293, y por el ligando inductor de apoptosis relacionado a TNF (TRAIL en una línea de leucemia mieloide crónica humana (K562, naturalmente resistente a la muerte por este estímulo. Observamos que las células tumorales K562 poseen niveles altos de RAC3 comparados con las células no tumorales HEK293. La sobreexpresión normal de coactivador o por transfección, inhibe la apoptosis mediante una disminución de la activación de caspasas, translocación del factor inductor de apoptosis (AIF al núcleo, aumento de la actividad de NF-kapa;B y las quinasas AKT y p38 y disminución de la quinasa ERK. Lo opuesto fue observado por disminución de RAC3 mediante la técnica de ARN interferente (RNAi en K562, aumentando así la apoptosis inducida por TRAIL. Estas evidencias sugieren que una sobreexpresión de RAC3 contribuye al desarrollo de tumores, participando en las cascadas que controlan la muerte celular por mecanismos no estrictamente dependientes de hormonas esteroideas y/o de acetilación, constituyendo esto un posible blanco de ataque para el tratamiento de tumores.RAC3 belongs to the family of p160 nuclear receptors coactivators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-kappa;B coactivator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H2O2 in the human embryonic kidney cell line (HEK293, and tumor necrosis factor-related apoptosis inducing ligand (TRAIL in a human chronic myeloid leukemia cell line (K562 naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels

  11. Acadesine kills chronic myelogenous leukemia (CML cells through PKC-dependent induction of autophagic cell death.

    Directory of Open Access Journals (Sweden)

    Guillaume Robert

    Full Text Available CML is an hematopoietic stem cell disease characterized by the t(9;22 (q34;q11 translocation encoding the oncoprotein p210BCR-ABL. The effect of acadesine (AICAR, 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside a compound with known antileukemic effect on B cell chronic lymphoblastic leukemia (B-CLL was investigated in different CML cell lines. Acadesine triggered loss of cell metabolism in K562, LAMA-84 and JURL-MK1 and was also effective in killing imatinib-resistant K562 cells and Ba/F3 cells carrying the T315I-BCR-ABL mutation. The anti-leukemic effect of acadesine did not involve apoptosis but required rather induction of autophagic cell death. AMPK knock-down by Sh-RNA failed to prevent the effect of acadesine, indicating an AMPK-independent mechanism. The effect of acadesine was abrogated by GF109203X and Ro-32-0432, both inhibitor of classical and new PKCs and accordingly, acadesine triggered relocation and activation of several PKC isoforms in K562 cells. In addition, this compound exhibited a potent anti-leukemic effect in clonogenic assays of CML cells in methyl cellulose and in a xenograft model of K562 cells in nude mice. In conclusion, our work identifies an original and unexpected mechanism by which acadesine triggers autophagic cell death through PKC activation. Therefore, in addition to its promising effects in B-CLL, acadesine might also be beneficial for Imatinib-resistant CML patients.

  12. Receptor for activated protein kinase C 1 suppresses gastric tumor progression through nuclear factor-kB pathway.

    Science.gov (United States)

    Yong-Zheng, X; Wan-Li, M; Ji-Ming, M; Xue-Qun, R

    2015-12-01

    Nuclear factor-kB (NF-kB) activity is crucial for survival and proliferation of many kinds of malignancies, including gastric cancer (GC). The receptor for activated protein kinase C 1 (RACK1) is known to regulate tumor development, whereas the underlined mechanism has not been described clearly. We analyzed expression of RACK1 in paired human GC samples by both real-time polymerase chain reaction (PCR) and western blot. Effects of RACK inhibition with small interfering RNA or its overexpression in cultured GC cell lines were evaluated in cell viabilities. NF-kB signaling was investigated using luciferase reporter assay and real-time PCR. RACK1 was significantly decreased in GC samples. Knockdown of RACK elevated GC cell viabilities, whereas overexpression of RACK1 suppressed tumorigenesis of GC cells. Importantly, NF-kB signaling was enhanced after RACK1 expression was inhibited, suggesting the negative regulation of the pro-oncogenic NF-kB activity by RACK1 might contribute to its tumor suppressor role in GC cells. Our results support that RACK1 suppresses gastric tumor progression through the NF-kB signaling pathway.

  13. Alterations in the K-ras and p53 genes in rat lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States)] [and others

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  14. Vaccination directed against the human endogenous retrovirus-K envelope protein inhibits tumor growth in a murine model system.

    Science.gov (United States)

    Kraus, Benjamin; Fischer, Katrin; Büchner, Sarah M; Wels, Winfried S; Löwer, Roswitha; Sliva, Katja; Schnierle, Barbara S

    2013-01-01

    Human endogenous retrovirus (HERV) genomes are chromosomally integrated in all cells of an individual. They are normally transcriptionally silenced and transmitted only vertically. Enhanced expression of HERV-K accompanied by the emergence of anti-HERV-K-directed immune responses has been observed in tumor patients and HIV-infected individuals. As HERV-K is usually not expressed and immunological tolerance development is unlikely, it is an appropriate target for the development of immunotherapies. We generated a recombinant vaccinia virus (MVA-HKenv) expressing the HERV-K envelope glycoprotein (ENV), based on the modified vaccinia virus Ankara (MVA), and established an animal model to test its vaccination efficacy. Murine renal carcinoma cells (Renca) were genetically altered to express E. coli beta-galactosidase (RLZ cells) or the HERV-K ENV gene (RLZ-HKenv cells). Intravenous injection of RLZ-HKenv cells into syngenic BALB/c mice led to the formation of pulmonary metastases, which were detectable by X-gal staining. A single vaccination of tumor-bearing mice with MVA-HKenv drastically reduced the number of pulmonary RLZ-HKenv tumor nodules compared to vaccination with wild-type MVA. Prophylactic vaccination of mice with MVA-HKenv precluded the formation of RLZ-HKenv tumor nodules, whereas wild-type MVA-vaccinated animals succumbed to metastasis. Protection from tumor formation correlated with enhanced HERV-K ENV-specific killing activity of splenocytes. These data demonstrate for the first time that HERV-K ENV is a useful target for vaccine development and might offer new treatment opportunities for diverse types of cancer.

  15. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma [Retraction

    Directory of Open Access Journals (Sweden)

    Lin FO

    2016-10-01

    Full Text Available The Editor-in-Chief and Publisher of OncoTargets and Therapy have been alerted to unacceptable levels of duplication with another published paper: Zhang D, Ni Z, Xu X, and Xiao J. MiR-32 Functions as a Tumor Suppressor and Directly Targets EZH2 in Human Oral Squamous Cell Carcinoma. Medical Science Monitor. 20:2527–2535, 2014.Accordingly, we retract Lin FO, Yao LJ, Xiao J, Liu DF, and Ni ZY. MiR-206 functions as a tumor suppressor and directly targets K-Ras in human oral squamous cell carcinoma. OncoTargets and Therapy. 2014;7:1583–1591.This Retraction relates to 

  16. Chemistry and Selective Tumor Cell Growth Inhibitory Activity of Polyketides from the South China Sea Sponge Plakortis sp.

    Science.gov (United States)

    Li, Jiao; Li, Cui; Riccio, Raffaele; Lauro, Gianluigi; Bifulco, Giuseppe; Li, Tie-Jun; Tang, Hua; Zhuang, Chun-Lin; Ma, Hao; Sun, Peng; Zhang, Wen

    2017-05-03

    Simplextone E ( 1 ), a new metabolite of polyketide origin, was isolated with eight known analogues ( 2 - 9 ) from the South China Sea sponge Plakortis sp. The relative configuration of the new compound was elucidated by a detailed analysis of the spectroscopic data and quantum mechanical calculation of NMR chemical shifts, aided by the newly reported DP4+ approach. Its absolute configuration was determined by the TDDFT/ECD calculation. Simplextone E ( 1 ) is proven to be one of the isomers of simplextone D. The absolute configuration at C-8 in alkyl chain of plakortone Q ( 2 ) was also assigned based on the NMR calculation. In the preliminary in vitro bioassay, compounds 6 and 7 showed a selective growth inhibitory activity against HCT-116 human colon cancer cells with IC 50 values of 8.3 ± 2.4 and 8.4 ± 2.3 μM, corresponding to that of the positive control, adriamycin (IC 50 4.1 μM). The two compounds also showed selective activities towards MCF-7 human breast cancer and K562 human erythroleukemia cells while compound 3 only displayed weak activity against K562 cells.

  17. 31 CFR 56.2 - Sales price.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Sales price. 56.2 Section 56.2 Money and Finance: Treasury Regulations Relating to Money and Finance DOMESTIC GOLD AND SILVER OPERATIONS SALE OF SILVER § 56.2 Sales price. Sales of silver will be at prices offered through the competitive...

  18. Antitumor Efficacy of the Dual PI3K/mTOR Inhibitor PF-04691502 in a Human Xenograft Tumor Model Derived from Colorectal Cancer Stem Cells Harboring a PIK3CA Mutation.

    Directory of Open Access Journals (Sweden)

    Douglas D Fang

    Full Text Available PIK3CA (phosphoinositide-3-kinase, catalytic, alpha polypeptide mutations can help predict the antitumor activity of phosphatidylinositol-3-kinase (PI3K/mammalian target of rapamycin (mTOR pathway inhibitors in both preclinical and clinical settings. In light of the recent discovery of tumor-initiating cancer stem cells (CSCs in various tumor types, we developed an in vitro CSC model from xenograft tumors established in mice from a colorectal cancer patient tumor in which the CD133+/EpCAM+ population represented tumor-initiating cells. CD133+/EpCAM+ CSCs were enriched under stem cell culture conditions and formed 3-dimensional tumor spheroids. Tumor spheroid cells exhibited CSC properties, including the capability for differentiation and self-renewal, higher tumorigenic potential and chemo-resistance. Genetic analysis using an OncoCarta™ panel revealed a PIK3CA (H1047R mutation in these cells. Using a dual PI3K/mTOR inhibitor, PF-04691502, we then showed that blockage of the PI3K/mTOR pathway inhibited the in vitro proliferation of CSCs and in vivo xenograft tumor growth with manageable toxicity. Tumor growth inhibition in mice was accompanied by a significant reduction of phosphorylated Akt (pAKT (S473, a well-established surrogate biomarker of PI3K/mTOR signaling pathway inhibition. Collectively, our data suggest that PF-04691502 exhibits potent anticancer activity in colorectal cancer by targeting both PIK3CA (H1047R mutant CSCs and their derivatives. These results may assist in the clinical development of PF-04691502 for the treatment of a subpopulation of colorectal cancer patients with poor outcomes.

  19. Blocking the proliferation of human tumor cell lines by peptidase inhibitors from Bauhinia seeds.

    Science.gov (United States)

    Nakahata, Adriana Miti; Mayer, Barbara; Neth, Peter; Hansen, Daiane; Sampaio, Misako Uemura; Oliva, Maria Luiza Vilela

    2013-03-01

    In cancer tumors, growth, invasion, and formation of metastasis at a secondary site play a pivotal role, participating in diverse processes in the development of the pathology, such as degradation of extracellular matrix. Bauhinia seeds contain relatively large quantities of peptidase inhibitors, and two Bauhinia inhibitors were obtained in a recombinant form from the Bauhinia bauhinioides species, B. bauhinoides cruzipain inhibitor, which is a cysteine and serine peptidase inhibitor, and B. bauhinioides kallikrein inhibitor, which is a serine peptidase inhibitor. While recombinant B. bauhinoides cruzipain inhibitor inhibits human neutrophil elastase cathepsin G and the cysteine proteinase cathepsin L, recombinant B. bauhinioides kallikrein inhibitor inhibits plasma kallikrein and plasmin. The effects of recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor on the viability of tumor cell lines with a distinct potential of growth from the same tissue were compared to those of the clinical cytotoxic drug 5-fluorouracil. At 12.5 µM concentration, recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor were more efficient than 5-fluorouracil in inhibiting MKN-28 and Hs746T (gastric), HCT116 and HT29 (colorectal), SkBr-3 and MCF-7 (breast), and THP-1 and K562 (leukemia) cell lines. Additionally, recombinant B. bauhinoides cruzipain inhibitor inhibited 40 % of the migration of Hs746T, the most invasive gastric cell line, while recombinant B. bauhinioides kallikrein inhibitor did not affect cell migration. Recombinant B. bauhinioides kallikrein inhibitor and recombinant B. bauhinoides cruzipain inhibitor, even at high doses, did not affect hMSC proliferation while 5-fluorouracil greatly reduced the proliferation rates of hMSCs. Therefore, both recombinant B. bauhinoides cruzipain inhibitor and recombinant B. bauhinioides kallikrein inhibitor might be considered for further studies

  20. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    International Nuclear Information System (INIS)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng; Fan, Zhen-Chuan; Zhang, Yong-Min; Guo, Na; Teng, Yu-Ou; Yu, Peng

    2016-01-01

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC 50 ) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC 50 of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl 3 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC 50 of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC 50 of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  1. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  2. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kB/BCL-2 and PI3K/Akt signal pathway

    Directory of Open Access Journals (Sweden)

    Minfei Yang

    2017-11-01

    Full Text Available This study aimed to investigate the effects of Estrogen receptor β (ERβ on osteosarcoma cells, and explore the regulatory mechanisms involved in this process. Osteosarcoma U2-OS cells consisted four groups, and treated by E2, E2 + LY294002 (ERβ agonists, E2 + ERβ siRNA, E2 + ERβ siRNA + LY294002, respectively. Cell counting kit 8 (CCK-8 assay was performed to detect the cell viability of U2-OS cells in each group. The effects of ERβ on the migration and invasion ability of U2-OS cells were examined by wound healing assay and transwell cell culture chamber, respectively. The expression of Inhibitor of apoptosis protein (IAP and integrin α5 in U2-OS cells of each group was detected by quantitative RT-PCR, and the expression of phosphorylated p65 (p-p65, p-AKT and Bcl-2 was detected by western blotting. The cell viability, migration and invasion ability of U2-OS cells were significantly increased by ERβ siRNA, but inhibited by ERβ agonists LY294002 (p < 0.05. ERβ siRNA significantly downregulated Integrin α5 and unregulated IAP in U2-OS cells (p < 0.05. The expression of p-p65, p-AKT and Bcl-2 was significantly reduced by LY294002, but increased by ERβ siRNA (p < 0.05. In conclusion, ERβ exhibited obvious anti-tumor effects on osteosarcoma cells by regulating integrin, IAP, NF-kBBCL-2 and PI3K/Akt signal pathway. Keywords: Estrogen receptor β, Osteosarcoma, Anti-tumor, Regulatory mechanism

  3. Sensitivity of T lymphocytes to gamma rays in patients with cervix tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oueslati, R; Kdous, CH; Chouikha, M [Lab. Immunology, Hopital de Tunis, (Tunisia); Maalej, M; Kochbati, N [Service Radiotherapy, Institut Salah Azeiz, (Tunisia)

    1995-10-01

    In this work we studied the effect of radiotherapy on normal cells in patients with cervix tumors treated only by gamma rays. In our laboratory, after lymphocytes separation, we tested the proliferation system of these cells against the phytohemagglutinin and the concanavalin a antigens; at the same time we tested their sensitivity to lys the erythroid tumor cells line K 562. According to the clinical stage of disease the 25 patients studied were divided in two groups; group I composed of 14 patients at stage I and II proximal, received 50 Gy from a cesium 137 source, in intrauterine and in continuous treatment during 4 days. The second group composed of 11 patients at stage II distal and III, received 50 Gy from a cobalt-60 source in extra uterine, the treatment is fractioned in 3 to 5 times per week, at each time the patient received 1,5 - 3 Gy. To compare with their immunological status before treatment, until 1 month after total dose received, all of our patients lost transitory their capacity to prolifere in vitro. Although the capacity to lys the tumor cells is diminished in cancer patients, the drop of this activity is principally. The selective recuperation of T lymphocytes stimulated by concanavalin A is also observed. 3 figs., 2 tabs.

  4. Sensitivity of T lymphocytes to gamma rays in patients with cervix tumor

    International Nuclear Information System (INIS)

    Oueslati, R.; Kdous, CH.; Chouikha, M.; Maalej, M.; Kochbati, N.

    1995-01-01

    In this work we studied the effect of radiotherapy on normal cells in patients with cervix tumors treated only by gamma rays. In our laboratory, after lymphocytes separation, we tested the proliferation system of these cells against the phytohemagglutinin and the concanavalin a antigens; at the same time we tested their sensitivity to lys the erythroid tumor cells line K 562. According to the clinical stage of disease the 25 patients studied were divided in two groups; group I composed of 14 patients at stage I and II proximal, received 50 Gy from a cesium 137 source, in intrauterine and in continuous treatment during 4 days. The second group composed of 11 patients at stage II distal and III, received 50 Gy from a cobalt-60 source in extra uterine, the treatment is fractioned in 3 to 5 times per week, at each time the patient received 1,5 - 3 Gy. To compare with their immunological status before treatment, until 1 month after total dose received, all of our patients lost transitory their capacity to prolifere in vitro. Although the capacity to lys the tumor cells is diminished in cancer patients, the drop of this activity is principally. The selective recuperation of T lymphocytes stimulated by concanavalin A is also observed. 3 figs., 2 tabs

  5. Vitamins C and K3 sensitize human urothelial tumors to gemcitabine.

    Science.gov (United States)

    Kassouf, Wassim; Highshaw, Ralph; Nelkin, Gina M; Dinney, Colin P; Kamat, Ashish M

    2006-10-01

    We evaluated the antitumor effects of vitamins C and K3 for human urothelial carcinoma and the potential use of the combination of vitamins C plus K3 as a sensitizing agent for conventional chemotherapy for urothelial carcinoma. The antiproliferative and apoptotic effects of vitamin C alone, vitamin K3 alone, vitamins C plus K3, gemcitabine alone and gemcitabine plus vitamins C plus K3 were assessed in vitro by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, propidium iodide staining and flow cytometry. For in vivo studies we implanted UMUC-14 tumorigenic urothelial carcinoma cells into the subcutis of nude mice. One week later we treated 10 mice each with saline (control), vitamins C plus K3, gemcitabine or gemcitabine plus vitamins C plus K3. Treatment was continued for 4 weeks, followed by necropsy. Tumor volume was measured and tumor kinetics were established. Apoptosis and proliferation were evaluated in tumor sections using immunohistochemistry and TUNEL assay. Vitamins C plus K3 induced cytostasis and caused apoptosis to a greater degree than either vitamin alone (p Vitamins C plus K3 also substantially augmented the effects of gemcitabine in vitro. There were 32.3% apoptosis with gemcitabine plus vitamins C plus K3, 5.3% with gemcitabine alone and 15.8% with vitamins C plus K3 alone (p vitamins C plus K3 compared with that in the control or for either agent alone. Mean tumor weight and growth rate in the gemcitabine plus vitamins C plus K3 group (237 mg and 11.3 mm3 daily) were decreased compared with those in the control (530 mg and 34.3 mm3 daily), and those for vitamins C plus K3 alone (490 mg and 25.2 mm3 daily) and gemcitabine alone (400 mg and 21.3 mm3 daily) (p Vitamins C and K3 have significant antiproliferative and apoptotic effects when used in combination. This combination enhances the efficacy of gemcitabine against bladder cancer in vivo.

  6. The role of heat shock protein 90 in the regulation of tumor cell apoptosis.

    Science.gov (United States)

    Kaigorodova, E V; Ryazantseva, N V; Novitskii, V V; Belkina, M V; Maroshkina, A N

    2011-02-01

    Programmed death of Jurkat tumor cells was studied under conditions of culturing with 17-AAG selective inhibitor of heat shock protein with a molecular weight of 90 kDa and etoposide. Apoptosis realization was evaluated by fluorescent microscopy with FITC-labeled annexin V and propidium iodide. Activity of caspase-3 was evaluated spectrophotometrically. Inhibition of heat shock protein with a molecular weight of 90 kDa activated the apoptotic program in Jurkat tumor cells and etoposide-induced apoptosis. The heat shock protein with a molecular weight of 90 kDa acted as apoptosis inhibitor in tumor cells.

  7. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    Science.gov (United States)

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  8. Synthesis and Biological Evaluation of Novel Furozan-Based Nitric Oxide-Releasing Derivatives of Oridonin as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Hao Cai

    2012-06-01

    Full Text Available To search for novel nitric oxide (NO releasing anti-tumor agents, a series of novel furoxan/oridonin hybrids were designed and synthesized. Firstly, the nitrate/nitrite levels in the cell lysates were tested by a Griess assay and the results showed that these furoxan-based NO-releasing derivatives could produce high levels of NO in vitro. Then the anti-proliferative activity of these hybrids against four human cancer cell lines was also determined, among which, 9h exhibited the most potential anti-tumor activity with IC50 values of 1.82 µM against K562, 1.81 µM against MGC-803 and 0.86 µM against Bel-7402, respectively. Preliminary structure-activity relationship was concluded based on the experimental data obtained. These results suggested that NO-donor/natural product hybrids may provide a promising approach for the discovery of novel anti-tumor agents.

  9. 40 CFR 721.562 - Substituted alkylamine salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkylamine salt. 721.562 Section 721.562 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.562 Substituted alkylamine salt...

  10. 32 CFR 562.3 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Definitions. 562.3 Section 562.3 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY ORGANIZED RESERVES RESERVE OFFICERS' TRAINING CORPS... area. Region commanders are located at: (1) US Army First ROTC Region, Fort Bragg, NC 28307. (2) US...

  11. Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells.

    Science.gov (United States)

    Payne, Kyle K; Keim, Rebecca C; Graham, Laura; Idowu, Michael O; Wan, Wen; Wang, Xiang-Yang; Toor, Amir A; Bear, Harry D; Manjili, Masoud H

    2016-09-01

    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25(+) NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25(+) NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy. © The Author(s).

  12. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway

    Science.gov (United States)

    Zhang, Mingsheng; Xue, Enda; Shao, Wei

    2016-01-01

    Background Nephroblastoma (Wilms’ tumor [WT]) is the most common malignant renal cancer in children. Although the outcome of WT has significantly improved as a result of the combination of surgery, chemotherapy, and radiotherapy; in some cases WT results in severe complications. Thus, novel strategies that would decrease treatment burden are required. The aim of the current study was to investigate the synergistic antitumor effect of andrographolide (AND) in combination with vincristine (VCR) on WT cells. Methods Cell Counting Kit-8 assay was used to investigate the synergistic antiproliferation effect of AND and/or VCR on SK-NEP-1 cells in vitro. Meanwhile, SK-NEP-1 xenografts were used to detect the antitumor effect in vivo. Apoptosis and autophagy were then detected by Annexin V, monodansylcadaverine staining. Finally, the underlying signaling transduction was determined with Western blotting. Results The combination of AND with VCR significantly suppressed SK-NEP-1 cell proliferation in vitro and inhibited xenograft tumor growth in vivo, compared with AND or VCR treatment alone. In addition, the synergistic antitumor effect of AND on the cells was due to an increased apoptosis, not autophagy. Moreover, PI3K-AKT-p53 signaling pathway was involved in the process of combination treatment, which was confirmed when a selective AKT activator was applied. Conclusion The combination of AND with VCR has a strong synergistic antitumor effect on WT via PI3K-AKT-p53 signaling pathway, thereby representing a potential treatment for WT in the near future. PMID:27729773

  13. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    Science.gov (United States)

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  14. Characterization of histone H3K27 modifications in the β-globin locus

    International Nuclear Information System (INIS)

    Kim, Yea Woon; Kim, AeRi

    2011-01-01

    Research highlights: → The β-globin locus control region is hyperacetylated and monomethylated at histone H3K27. → Highly transcribed globin genes are marked by H3K27ac, but H3K27me2 is remarkable at silent globin genes in erythroid K562 cells. → Association of PRC2 subunits is comparable with H3K27me3 pattern. → Modifications of histone H3K27 are established in an enhancer-dependent manner. -- Abstract: Histone H3K27 is acetylated or methylated in the environment of nuclear chromatin. Here, to characterize the modification pattern of H3K27 in locus control region (LCR) and to understand the correlation of various H3K27 modifications with transcriptional activity of genes, we analyzed the human β-globin locus using the ChIP assay. The LCR of the human β-globin locus was enriched by H3K27ac and H3K27me1 in erythroid K562 cells. The highly transcribed globin genes were hyperacetylated at H3K27, but the repressed globin genes were highly dimethylated at this lysine in these cells. However, in non-erythroid 293FT cells, the β-globin locus was marked by a high level of H3K27me3. EZH2 and SUZ12, subunits of polycomb repressive complex 2, were comparably detected with the H3K27me3 pattern in K562 and 293FT cells. In addition, H3K27ac, H3K27me1 and H3K27me3 were established in an enhancer-dependent manner in a model minichromosomal locus containing an enhancer and its target gene. Taken together, these results show that H3K27 modifications have distinctive correlations with the chromatin state or transcription level of genes and are influenced by an enhancer.

  15. Pancreatic islet cell tumor

    Science.gov (United States)

    ... cell tumors; Islet of Langerhans tumor; Neuroendocrine tumors; Peptic ulcer - islet cell tumor; Hypoglycemia - islet cell tumor ... stomach acid. Symptoms may include: Abdominal pain Diarrhea ... and small bowel Vomiting blood (occasionally) Glucagonomas make ...

  16. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    OpenAIRE

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice w...

  17. Haploidentical hematopoietic SCT increases graft-versus-tumor effect against renal cell carcinoma.

    Science.gov (United States)

    Budak-Alpdogan, T; Sauter, C T; Bailey, C P; Biswas, C S; Panis, M M; Civriz, S; Flomenberg, N; Alpdogan, O

    2013-08-01

    Allogeneic hematopoietic SCT (HSCT) has been shown to be an effective treatment option for advanced renal cell cancer (RCC). However, tumor resistance/relapse remains as the main post transplant issue. Therefore, enhancing graft-versus-tumor (GVT) activity without increasing GVHD is critical for improving the outcome of HSCT. We explored the GVT effect of haploidentical-SCT (haplo-SCT) against RCC in murine models. Lethally irradiated CB6F1 (H2K(b/d)) recipients were transplanted with T-cell-depleted BM cells from B6CBAF1 (H2K(b/k)) mice. Haplo-SCT combined with a low-dose haploidentical (HI) T-cell infusion (1 × 10(5)) successfully provided GVT activity without incurring GVHD. This effect elicited murine RCC growth control and consequently displayed a comparative survival advantage of haplo-SCT recipients when compared with MHC-matched (B6D2F1CB6F1) and parent-F1 (B6CB6F1) transplant recipients. Recipients of haplo-SCT had an increase in donor-derived splenic T-cell numbers, T-cell proliferation and IFN-γ-secreting donor-derived T-cells, a critical aspect for anti-tumor activity. The splenocytes from B6CBAF1 mice had a higher cytotoxicity against RENCA cells than the splenocytes from B6 and B6D2F1 donors after tumor challenge. These findings suggest that haplo-SCT might be an innovative immunotherapeutic platform for solid tumors, particularly for renal cell carcinoma.

  18. Co-Expansion of Cytokine-Induced Killer Cells and Vγ9Vδ2 T Cells for CAR T-Cell Therapy.

    Directory of Open Access Journals (Sweden)

    Shou-Hui Du

    Full Text Available Gamma delta (γδ T cells and cytokine-induced killer (CIK cells, which are a heterogeneous population of T lymphocytes and natural killer T (NKT cells, have been separately expanded ex vivo and shown to be capable of targeting and mediating cytotoxicity against various tumor cells in a major histocompatibility complex-unrestricted manner. However, the co-expansion and co-administration of these immune cells have not been explored. In this study we describe an efficient method to expand simultaneously both CIK and Vγ9Vδ2 T cells, termed as CIKZ cells, from human peripheral blood mononuclear cells (PBMCs using Zometa, interferon-gamma (IFN-γ, interleukin 2 (IL-2, anti-CD3 antibody and engineered K562 feeder cells expressing CD64, CD137L and CD86. A 21-day culture of PBMCs with this method yielded nearly 20,000-fold expansion of CIKZ cells with γδ T cells making up over 20% of the expanded population. The expanded CIKZ cells exhibited antitumor cytotoxicity and could be modified to express anti-CD19 chimeric antigen receptor (CAR, anti-CEA CAR, and anti-HER2 CAR to enhance their specificity and cytotoxicity against CD19-, CEA-, or HER2-positive tumor cells. The tumor inhibitory activity of anti-CD19 CAR-modified CIKZ cells was further demonstrated in vivo in a Raji tumor mouse model. The findings herein substantiate the feasibility of co-expanding CIK and γδ cells for adoptive cellular immunotherapy applications such as CAR T-cell therapy against cancer.

  19. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Muhd Khuzaimi Nik Man

    2015-01-01

    Full Text Available Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS, human breast (MCF-7 and MDA-MB-231, and cervical (HeLa cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11 and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11 cell lines.

  20. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI.

    Science.gov (United States)

    Weidensteiner, Claudia; Reichardt, Wilfried; Shami, Paul J; Saavedra, Joseph E; Keefer, Larry K; Baumer, Brunhilde; Werres, Anna; Jasinski, Robert; Osterberg, Nadja; Weyerbrock, Astrid

    2013-04-01

    Nitric oxide (NO) released from NO donors can be cytotoxic in tumor cells and can enhance the transport of drugs into brain tumors by altering blood-tumor barrier permeability. The NO donor JS-K [O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] releases NO upon enzymatic activation selectively in cells overexpressing glutathione-S-transferases (GSTs) such as gliomas. Thus, JS-K-dependent NO effects - especially on cell viability and vascular permeability - were investigated in U87 glioma cells in vitro and in an orthotopic U87 xenograft model in vivo by magnetic resonance imaging (MRI). In vitro experiments showed dose-dependent antiproliferative and cytotoxic effects in U87 cells. In addition, treatment of U87 cells with JS-K resulted in a dose-dependent activation of soluble guanylate cyclase and intracellular accumulation of cyclic guanosine monophosphate (cGMP) which was irreversibly inhibited by the selective inhibitor of soluble guanylate cyclase ODQ (1H-[1,2,4]oxadiazolo(4,3a)quinoxaline-1-one). Using dynamic contrast enhanced MRI (DCE-MRI) as a minimally invasive technique, we demonstrated for the first time a significant increase in the DCE-MRI read-out initial area under the concentration curve (iAUC60) indicating an acute increase in blood-tumor barrier permeability after i.v. treatment with JS-K. Repeated MR imaging of animals with intracranial U87 gliomas under treatment with JS-K (3.5 μmol/kg JS-K 3×/week) and of untreated controls on day 12 and 19 after tumor inoculation revealed no significant changes in tumor growth, edema formation or tumor perfusion. Immunohistochemical workup of the brains showed a significant antiproliferative effect of JS-K in the gliomas. Taken together, in vitro and in vivo data suggest that JS-K has antiproliferative effects in U87 gliomas and opens the blood-tumor barrier by activation of the NO/cGMP signaling pathway. This might be a novel approach to facilitate entry of therapeutic

  1. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, 300457 (China); Obesita & Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 place Jussieu, 75005, Paris (France); Guo, Na [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2016-04-08

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  2. 16 CFR 5.62 - Hearing rights of respondent.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Hearing rights of respondent. 5.62 Section 5.62 Commercial Practices FEDERAL TRADE COMMISSION ORGANIZATION, PROCEDURES AND RULES OF PRACTICE STANDARDS OF CONDUCT Disciplinary Actions Concerning Postemployment Conflict of Interest § 5.62 Hearing...

  3. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  4. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  5. 46 CFR 154.562 - Cargo hose: Hydrostatic test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at...

  6. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  7. The anti-tumor efficacy of 3C23K, a glyco-engineered humanized anti-MISRII antibody, in an ovarian cancer model is mainly mediated by engagement of immune effector cells.

    Science.gov (United States)

    Estupina, Pauline; Fontayne, Alexandre; Barret, Jean-Marc; Kersual, Nathalie; Dubreuil, Olivier; Le Blay, Marion; Pichard, Alexandre; Jarlier, Marta; Pugnière, Martine; Chauvin, Maëva; Chardès, Thierry; Pouget, Jean-Pierre; Deshayes, Emmanuel; Rossignol, Alexis; Abache, Toufik; de Romeuf, Christophe; Terrier, Aurélie; Verhaeghe, Lucie; Gaucher, Christine; Prost, Jean-François; Pèlegrin, André; Navarro-Teulon, Isabelle

    2017-06-06

    Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was

  8. [Compound K suppresses myeloid-derived suppressor cells in a mouse model bearing CT26 colorectal cancer xenograft].

    Science.gov (United States)

    Wang, Rong; Li, Yalin; Wang, Wuzhou; Zhou, Meijuan; Cao, Zhaohui

    2015-05-01

    To investigate the effect of ginseng-derived compound K (C-K) on apoptosis, immunosuppressive activity, and pro-inflammatory cytokine production of myeloid-derived suppressor cells (MDSCs) from mice bearing colorectal cancer xenograft. Flow-sorted bone marrow MDSCs from Balb/c mice bearing CT26 tumor xenograft were treated with either C-K or PBS for 96 h and examined for apoptosis with Annexin V/7-AAD, Cox-2 and Arg-1 expressions using qRT-PCR, and supernatant IL-1β, IL-6, and IL-17 levels with ELISA. C-K- or PBS-treated MDSCs were subcutaneously implanted along with CT26 tumor cells in WT Balb/c mice, and the tumor size and morphology were evaluated 21 days later. C-K treatment significantly increased the percentages of early and late apoptotic MDSCs in vitro (Pimmunosuppresive effect of MDSCs to inhibit tumor cell proliferation in mice, which suggests a new strategy of tumor therapy by targeting MDSCs.

  9. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  10. Andrographolide promotes vincristine-induced SK-NEP-1 tumor cell death via PI3K-AKT-p53 signaling pathway

    Directory of Open Access Journals (Sweden)

    Zhang M

    2016-09-01

    Full Text Available Mingsheng Zhang, Enda Xue, Wei Shao Department of Pediatric Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong Province, People’s Republic of China Background: Nephroblastoma (Wilms’ tumor [WT] is the most common malignant renal cancer in children. Although the outcome of WT has significantly improved as a result of the combination of surgery, chemotherapy, and radiotherapy; in some cases WT results in severe complications. Thus, novel strategies that would decrease treatment burden are required. The aim of the current study was to investigate the synergistic antitumor effect of andrographolide (AND in combination with vincristine (VCR on WT cells.Methods: Cell Counting Kit-8 assay was used to investigate the synergistic antiproliferation effect of AND and/or VCR on SK-NEP-1 cells in vitro. Meanwhile, SK-NEP-1 xenografts were used to detect the antitumor effect in vivo. Apoptosis and autophagy were then detected by Annexin V, monodansylcadaverine staining. Finally, the underlying signaling transduction was determined with Western blotting.Results: The combination of AND with VCR significantly suppressed SK-NEP-1 cell proliferation in vitro and inhibited xenograft tumor growth in vivo, compared with AND or VCR treatment alone. In addition, the synergistic antitumor effect of AND on the cells was due to an increased apoptosis, not autophagy. Moreover, PI3K-AKT-p53 signaling pathway was involved in the process of combination treatment, which was confirmed when a selective AKT activator was applied.Conclusion: The combination of AND with VCR has a strong synergistic antitumor effect on WT via PI3K-AKT-p53 signaling pathway, thereby representing a potential treatment for WT in the near future. Keywords: andrographolide, vincristine, p53, drug combination

  11. Tumor cell proliferation kinetics and tumor growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Tubiana, M

    1989-01-01

    The present knowledge on the growth rate and the proliferation kinetics of human tumor is based on the measurement of the tumor doubling times (DT) in several hundred patients and on the determination of the proportion of proliferating cells with radioactive thymidine or by flow cytometry in large numbers of patients. The results show that the DT of human tumor varies widely, from less than one week to over one year with a median value of approximately 2 months. The DTs are significantly correlated with the histological type. They depend upon (1) the duration of the cell cycle whose mean duration is 2 days with small variations from tumor to tumor, (2) the proportion of proliferating cells and consequently the cell birth rate which varies widely among tumors and which is significantly correlated to the DT, (3) the cell loss factors which also vary widely and which are the greatest when proliferation is most intensive. These studies have several clinical implications: (a) they have further increased our understanding of the natural history of human tumor, (b) they have therapeutic implications since tumor responsiveness and curability by radiation and drugs are strongly influenced by the cell kinetic parameters of the tumor, (c) the proportion of proliferating cells is of great prognostic value in several types of human cancers. The investigation of the molecular defects, which are correlated with the perturbation of control of cell proliferation, should lead to significant fundamental and therapeutic advances. (orig.).

  12. ERK and PI3K regulate different aspects of the epithelial to mesenchymal transition of mammary tumor cells induced by truncated MUC1

    International Nuclear Information System (INIS)

    Horn, Galit; Gaziel, Avital; Wreschner, Daniel H.; Smorodinsky, Nechama I.; Ehrlich, Marcelo

    2009-01-01

    Epithelial to mesenchymal transition (EMT) integrates changes to cell morphology and signaling pathways resulting from modifications to the cell's transcriptional response. Different combinations of stimuli ignite this process in the contexts of development or tumor progression. The human MUC1 gene encodes multiple alternatively spliced forms of a polymorphic oncoprotein that is aberrantly expressed in epithelial malignancies. MUC1 is endowed with various signaling modules and has the potential to mediate proliferative and morphological changes characteristic of the progression of epithelial tumors. The tyrosine-rich cytoplasmic domain and the heavily glycosylated extracellular domain both play a role in MUC1-mediated signal transduction. However, the attribution of function to specific domains of MUC1 is difficult due to the concomitant presence of multiple forms of the protein, which stem from alternative splicing and proteolytic cleavage. Here we show that DA3 mouse mammary tumor cells stably transfected with a truncated genomic fragment of human MUC1 undergo EMT. In their EMT, these cells demonstrate altered [i] morphology, [ii] signaling pathways and [iii] expression of epithelial and mesenchymal markers. Similarly to well characterized human breast cancer cell lines, cells transfected with truncated MUC1 show an ERK-dependent increased spreading on fibronectin, and a PI3K-dependent enhancement of their proliferative rate.

  13. Tumor cell surface proteins

    International Nuclear Information System (INIS)

    Kennel, S.J.; Braslawsky, G.R.; Flynn, K.; Foote, L.J.; Friedman, E.; Hotchkiss, J.A.; Huang, A.H.L.; Lankford, P.K.

    1982-01-01

    Cell surface proteins mediate interaction between cells and their environment. Unique tumor cell surface proteins are being identified and quantified in several tumor systems to address the following questions: (i) how do tumor-specific proteins arise during cell transformation; (ii) can these proteins be used as markers of tumor cell distribution in vivo; (iii) can cytotoxic drugs be targeted specifically to tumor cells using antibody; and (iv) can solid state radioimmunoassay of these proteins provide a means to quantify transformation frequencies. A tumor surface protein of 180,000 M/sub r/ (TSP-180) has been identified on cells of several lung carcinomas of BALB/c mice. TSP-180 was not detected on normal lung tissue, embryonic tissue, or other epithelial or sarcoma tumors, but it was found on lung carcinomas of other strains of mice. Considerable amino acid sequence homology exists among TSP-180's from several cell sources, indicating that TSP-180 synthesis is directed by normal cellular genes although it is not expressed in normal cells. The regulation of synthesis of TSP-180 and its relationship to normal cell surface proteins are being studied. Monoclonal antibodies (MoAb) to TSP-180 have been developed. The antibodies have been used in immunoaffinity chromatography to isolate TSP-180 from tumor cell sources. This purified tumor antigen was used to immunize rats. Antibody produced by these animals reacted at different sites (epitopes) on the TSP-180 molecule than did the original MoAb. These sera and MoAb from these animals are being used to identify normal cell components related to the TSP-180 molecule

  14. Cell Death Conversion under Hypoxic Condition in Tumor Development and Therapy

    Directory of Open Access Journals (Sweden)

    Yu Qiu

    2015-10-01

    Full Text Available Hypoxia, which is common during tumor progression, plays important roles in tumor biology. Failure in cell death in response to hypoxia contributes to progression and metastasis of tumors. On the one hand, the metabolic and oxidative stress following hypoxia could lead to cell death by triggering signal cascades, like LKB1/AMPK, PI3K/AKT/mTOR, and altering the levels of effective components, such as the Bcl-2 family, Atg and p62. On the other hand, hypoxia-induced autophagy can serve as a mechanism to turn over nutrients, so as to mitigate the adverse condition and then avoid cell death potentially. Due to the effective role of hypoxia, this review focuses on the crosstalk in cell death under hypoxia in tumor progression. Additionally, the illumination of cell death in hypoxia could shed light on the clinical applications of cell death targeted therapy.

  15. Enrichment of tumor cells for cell kinetic analysis in human tumor biopsies using cytokeratin gating

    International Nuclear Information System (INIS)

    Haustermans, K.; Hofland, I.; Ramaekers, M.; Ivanyi, D.; Balm, A.J.M.; Geboes, K.; Lerut, T.; Schueren, E. van der; Begg, A.C.

    1996-01-01

    Purpose: To determine the feasibility of using cytokeratin antibodies to distinguish normal and malignant cells in human tumors using flow cytometry. The goal was ultimately to increase the accuracy of cell kinetic measurements on human tumor biopsies. Material and methods: A panel of four antibodies was screened on a series of 48 tumors from two centres; 22 head and neck tumors (Amsterdam) and 26 esophagus carcinomas (Leuven). First, screening was carried out by immunohistochemistry on frozen sections to test intensity of staining and the fraction of cytokeratin-positive tumor cells. The antibody showing the most positive staining was then used for flow cytometry on the same tumor. Results: The two broadest spectrum antibodies (AE1/AE3, E3/C4) showed overall the best results with immunohistochemical staining, being positive in over 95% of tumors. Good cell suspensions for DNA flow cytometry could be made from frozen material by a mechanical method, whereas enzymatic methods with trypsin or collagenase were judged failures in almost all cases. >From fresh material, both collagenase and trypsin produced good suspensions for flow cytometry, although the fraction of tumor cells, judged by proportion aneuploid cells, was markedly higher for trypsin. Using the best cytokeratin antibody for each tumor, two parameter flow cytometry was done (cytokeratin versus DNA content). Enrichment of tumor cells was then tested by measuring the fraction of aneuploid cells (the presumed malignant population) of cytokeratin-positive cells versus all cells. An enrichment factor ranging between 0 (no enrichment) and 1 (perfect enrichment, tumor cells only) was then calculated. The average enrichment was 0.60 for head and neck tumors and 0.59 for esophagus tumors. Conclusions: We conclude that this method can substantially enrich the proportion of tumor cells in biopsies from carcinomas. Application of this method could significantly enhance accuracy of tumor cell kinetic measurements

  16. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Diana Marklein

    Full Text Available We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX. We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.

  17. Highly active microbial phosphoantigen induces rapid yet sustained MEK/Erk- and PI-3K/Akt-mediated signal transduction in anti-tumor human gammadelta T-cells.

    Directory of Open Access Journals (Sweden)

    Daniel V Correia

    Full Text Available BACKGROUND: The unique responsiveness of Vgamma9Vdelta2 T-cells, the major gammadelta subset of human peripheral blood, to non-peptidic prenyl pyrophosphate antigens constitutes the basis of current gammadelta T-cell-based cancer immunotherapy strategies. However, the molecular mechanisms responsible for phosphoantigen-mediated activation of human gammadelta T-cells remain unclear. In particular, previous reports have described a very slow kinetics of activation of T-cell receptor (TCR-associated signal transduction pathways by isopentenyl pyrophosphate and bromohydrin pyrophosphate, seemingly incompatible with direct binding of these antigens to the Vgamma9Vdelta2 TCR. Here we have studied the most potent natural phosphoantigen yet identified, (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, produced by Eubacteria and Protozoa, and examined its gammadelta T-cell activation and anti-tumor properties. METHODOLOGY/PRINCIPAL FINDINGS: We have performed a comparative study between HMB-PP and the anti-CD3epsilon monoclonal antibody OKT3, used as a reference inducer of bona fide TCR signaling, and followed multiple cellular and molecular gammadelta T-cell activation events. We show that HMB-PP activates MEK/Erk and PI-3K/Akt pathways as rapidly as OKT3, and induces an almost identical transcriptional profile in Vgamma9(+ T-cells. Moreover, MEK/Erk and PI-3K/Akt activities are indispensable for the cellular effects of HMB-PP, including gammadelta T-cell activation, proliferation and anti-tumor cytotoxicity, which are also abolished upon antibody blockade of the Vgamma9(+ TCR Surprisingly, HMB-PP treatment does not induce down-modulation of surface TCR levels, and thereby sustains gammadelta T-cell activation upon re-stimulation. This ultimately translates in potent human gammadelta T-cell anti-tumor function both in vitro and in vivo upon transplantation of human leukemia cells into lymphopenic mice, CONCLUSIONS/SIGNIFICANCE: The development of

  18. Vitamins K2, K3 and K5 exert in vivo antitumor effects on hepatocellular carcinoma by regulating the expression of G1 phase-related cell cycle molecules.

    Science.gov (United States)

    Kuriyama, Shigeki; Hitomi, Misuzu; Yoshiji, Hitoshi; Nonomura, Takako; Tsujimoto, Tatsuhiro; Mitoro, Akira; Akahane, Takami; Ogawa, Mutsumi; Nakai, Seiji; Deguchi, Akihiro; Masaki, Tsutomu; Uchida, Naohito

    2005-08-01

    A number of studies have shown that various vitamins K, specifically vitamin K2, possessed antitumor activity on various types of rodent- and human-derived neoplastic cell lines. However, there are only a small number of reports demonstrating in vivo antitumor effects of vitamins K. Furthermore, the mechanism of antitumor effects of vitamins K still remains to be examined. In the present study, we examined the antitumor effects of vitamins K2, K3 and K5 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vivo. Furthermore, to examine the mechanism of antitumor actions of these vitamins K, mRNA expression levels of various G1 phase-related cell cycle molecules were evaluated by using a real-time reverse transcription-polymerase chain reaction (RT-PCR) method. HCC-bearing animals were produced by implanting PLC/PRF/5 cells subcutaneously into athymic nude mice, and drinking water containing vitamin K2, K3 or K5 was given to the animals. Treatments with vitamins K2, K3 and K5 were shown to markedly inhibit the growth of HCC tumors. To examine the mechanism of in vivo antitumor effects of vitamins K, total RNA was extracted from HCC tumors, and the expression of G1 phase-related cell cycle molecules was quantitatively examined. Real-time RT-PCR demonstrated that the expression of the cell cycle-driving molecule, cyclin-dependent kinase 4 (Cdk4), in HCC was significantly reduced by the treatments with vitamin K2, K3 and K5. Conversely, the expression of the cell cycle-suppressing molecules, Cdk inhibitor p16INK4a and retinoblastoma, in HCC was significantly enhanced by the treatments with vitamins K2, K3 and K5. These results indicate that vitamins K2, K3 and K5 exert antitumor effects on HCC by regulating the expression of G1 phase-related cell cycle molecules. These results also indicate that vitamins K2, K3 and K5 may be useful agents for the treatment of patients with HCC.

  19. Effect of microRNA-135a on Cell Proliferation, Migration, Invasion, Apoptosis and Tumor Angiogenesis Through the IGF-1/PI3K/Akt Signaling Pathway in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Zhou, Yufei; Li, Shaoxia; Li, Jiangtao; Wang, Dongfeng; Li, Quanxing

    2017-01-01

    This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. These findings indicated that miR-135a promotes cell apoptosis and inhibits

  20. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Joana Maia

    2018-02-01

    Full Text Available Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased, ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.

  1. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    Science.gov (United States)

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  2. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...

  3. Tumor-Infiltrating Immune Cells Promoting Tumor Invasion and Metastasis: Existing Theories

    Directory of Open Access Journals (Sweden)

    Yan-gao Man, Alexander Stojadinovic, Jeffrey Mason, Itzhak Avital, Anton Bilchik, Bjoern Bruecher, Mladjan Protic, Aviram Nissan, Mina Izadjoo, Xichen Zhang, Anahid Jewett

    2013-01-01

    Full Text Available It is a commonly held belief that infiltration of immune cells into tumor tissues and direct physical contact between tumor cells and infiltrated immune cells is associated with physical destructions of the tumor cells, reduction of the tumor burden, and improved clinical prognosis. An increasing number of studies, however, have suggested that aberrant infiltration of immune cells into tumor or normal tissues may promote tumor progression, invasion, and metastasis. Neither the primary reason for these contradictory observations, nor the mechanism for the reported diverse impact of tumor-infiltrating immune cells has been elucidated, making it difficult to judge the clinical implications of infiltration of immune cells within tumor tissues. This mini-review presents several existing hypotheses and models that favor the promoting impact of tumor-infiltrating immune cells on tumor invasion and metastasis, and also analyzes their strength and weakness.

  4. Determinates of tumor response to radiation: Tumor cells, tumor stroma and permanent local control

    International Nuclear Information System (INIS)

    Li, Wende; Huang, Peigen; Chen, David J.; Gerweck, Leo E.

    2014-01-01

    Background and purpose: The causes of tumor response variation to radiation remain obscure, thus hampering the development of predictive assays and strategies to decrease resistance. The present study evaluates the impact of host tumor stromal elements and the in vivo environment on tumor cell kill, and relationship between tumor cell radiosensitivity and the tumor control dose. Material and methods: Five endpoints were evaluated and compared in a radiosensitive DNA double-strand break repair-defective (DNA-PKcs −/− ) tumor line, and its DNA-PKcs repair competent transfected counterpart. In vitro colony formation assays were performed on in vitro cultured cells, on cells obtained directly from tumors, and on cells irradiated in situ. Permanent local control was assessed by the TCD 50 assay. Vascular effects were evaluated by functional vascular density assays. Results: The fraction of repair competent and repair deficient tumor cells surviving radiation did not substantially differ whether irradiated in vitro, i.e., in the absence of host stromal elements and factors, from the fraction of cells killed following in vivo irradiation. Additionally, the altered tumor cell sensitivity resulted in a proportional change in the dose required to achieve permanent local control. The estimated number of tumor cells per tumor, their cloning efficiency and radiosensitivity, all assessed by in vitro assays, were used to predict successfully, the measured tumor control doses. Conclusion: The number of clonogens per tumor and their radiosensitivity govern the permanent local control dose

  5. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  6. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Schneider, Frank; Ma, Lin; Wenz, Frederik [Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim (Germany); Herskind, Carsten, E-mail: carsten.herskind@medma.uni-heidelberg.de [Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim (Germany)

    2013-03-15

    Purpose: Intraoperative radiation therapy (IORT) with low-energy x-rays is used to treat the tumor bed during breast-conserving surgery. The purpose was to determine the relative biologic effectiveness (RBE) of 50-kV x-rays for inactivation of cells irradiated in a tumor-bed phantom. Methods and Materials: The RBE was determined for clonogenic inactivation of human tumor and normal cells (MCF7, human umbilical vein endothelial cells, normal skin fibroblasts), and hamster V79 cells. The 50-kV x-rays from the Intrabeam machine (Carl Zeiss Surgical) with a spherical 4-cm applicator were used. Cells were irradiated in a water-equivalent phantom at defined distances (8.1-22.9 mm) from the applicator surface. The 50-kV x-rays from a surface therapy machine (Dermopan, Siemens) were included for comparison; 6-MV x-rays were used as reference radiation. Results: At 8.1-mm depth in the phantom (dose rate 15.1 Gy/h), mean RBE values of 50-kV x-rays from Intrabeam were 1.26 to 1.42 for the 4 cell types at doses yielding surviving fractions in the range of 0.01 to 0.5. Confidence intervals were in the range of 1.2 and 1.5. Similar RBE values were found for 50-kV x-rays from Dermopan for V79 (1.30, CI 1.25-1.36, P=.74) and GS4 (1.42, CI 1.30-1.54, P=.67). No significant dependence of RBE on dose was found for Intrabeam, but RBE decreased at a larger distance (12.7 mm; 9.8 Gy/h). Conclusions: An increased clinically relevant RBE was found for cell irradiation with Intrabeam at depths in the tumor bed targeted by IORT. The reduced RBE values at larger distances may be related to increased repair of sublethal damage during protracted irradiation or to hardening of the photon beam energy.

  7. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer

    International Nuclear Information System (INIS)

    Karamitopoulou, Eva

    2013-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial–mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  8. Tumor budding cells, cancer stem cells and epithelial-mesenchymal transition-type cells in pancreatic cancer.

    Science.gov (United States)

    Karamitopoulou, Eva

    2012-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4) and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with Wingless-INT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT). Emerging evidence has demonstrated that cancer stem cells (CSCs), small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion, and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5) of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric, and ampullary) carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs, and EMT-type cells in PDAC.

  9. Tumor Budding Cells, Cancer Stem Cells and Epithelial-Mesenchymal Transition-type Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Eva eKaramitopoulou

    2013-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is one of the most lethal cancers with a 5-year survival rate of less than 5%. Moreover, PDAC escapes early detection and resists treatment. Multiple combinations of genetic alterations are known to occur in PDAC including mutational activation of KRAS, inactivation of p16/CDKN2A and SMAD4 (DPC4 and dysregulation of PTEN/PI3K/AKT signaling. Through their interaction with WNT pathway, the downstream molecules of these pathways have been implicated in the promotion of epithelial-mesenchymal transition (EMT. Emerging evidence has demonstrated that cancer stem cells (CSCs, small populations of which have been identified in PDAC, and EMT-type cells play critical roles in drug resistance, invasion and metastasis in pancreatic cancer. EMT may be histologically represented by the presence of tumor budding which is described as the occurrence of single tumor cells or small clusters (<5 of dedifferentiated cells at the invasive front of gastrointestinal (including colorectal, oesophageal, gastric and ampullary carcinomas and is linked to poor prognosis. Tumor budding has recently been shown to occur frequently in PDAC and to be associated with adverse clinicopathological features and decreased disease-free and overall survival. The aim of this review is to present a short overview on the morphological and molecular aspects that underline the relationship between tumor budding cells, CSCs and EMT-type cells in PDAC.

  10. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  11. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    Energy Technology Data Exchange (ETDEWEB)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-11-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation.

  12. Limiting-dilution analysis for the determination of leukemic cell frequencies after bone marrow decontamination with mafosfamide or merocyanine 540

    International Nuclear Information System (INIS)

    Porcellini, A.; Talevi, N.; Marchetti-Rossi, M.T.; Palazzi, M.; Manna, A.; Sparaventi, G.; Delfini, C.; Valentini, M.

    1987-01-01

    To stimulate a leukemia remission marrow, cell suspensions of normal human bone marrow were mixed with human acute lymphoblastic or myelogenous leukemic cells of the CCRF-SF, Nalm-6, and K-562 lines. The cell mixtures were incubated in vitro with mafosfamide (AZ) or with the photoreactive dye merocyanine 540 (MC-540). A quantity of 10(4) cells of the treated suspensions was dispensed into microculture plates, and graded cell numbers of the line used to contaminate the normal marrow were added. Limiting-dilution analysis was used to estimate the frequency of leukemia cells persisting after treatment with the decontaminating agents. Treatment with AZ or MC-540 produced a total elimination (ie, 6 logs or 5.3 logs respectively) of B cell acute leukemia cells (CCRF-SB), whereas nearly 1.7 logs and 2 logs of K-562 acute myelogenous blasts were still present in the cell mixtures after treatment with MC-540 and AZ, respectively. Treatment of the Nalm-6-contaminated cell mixtures with AZ resulted in 100% elimination of clonogenic cells, whereas nearly 80% decontamination was obtained with MC-540. Our results suggest that treatment with AZ could be an effective method of eliminating clonogenic tumor cells from human bone marrow. MC-540, shown by previous studies to spare sufficient pluripotential stem cells to ensure hemopoietic reconstitution in the murine model and in clinical application, has comparable effects and merits trials for possible clinical use in autologous bone marrow transplantation

  13. Tumor stem cells: A new approach for tumor therapy (Review)

    Science.gov (United States)

    MENG, MIN; ZHAO, XIN-HAN; NING, QIAN; HOU, LEI; XIN, GUO-HONG; LIU, LI-FENG

    2012-01-01

    Recent studies have demonstrated the existence of a minority of tumor cells possessing the stem cell properties of self-renewal and differentiation in leukemia and several solid tumors. However, these cells do not possess the normal regulatory mechanisms of stem cells. Following transplantation, they are capable of initiating tumorigenesis and are therefore known as ‘tumor stem cells’. Cellular origin analysis of tumor stem cells has resulted in three hypotheses: Embryonal rest hypothesis, anaplasia and maturation arrest. Several signaling pathways which are involved in carcinogenesis, including Wnt/β-catenin, Notch and Oct-4 signaling pathways are crucial in normal stem cell self-renewal decisions, suggesting that breakdown in the regulation of self-renewal may be a key event in the development of tumors. Thus, tumors can be regarded as an abnormal organ in which stem cells have escaped from the normal constraints on self-renewal, thus, leading to abnormally differentiated tumor cells that lose the ability to form tumors. This new model for maligancies has significance for clinical research and treatment. PMID:22844351

  14. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    Directory of Open Access Journals (Sweden)

    Benencia Fabian

    2008-04-01

    Full Text Available Abstract Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV B radiation using a convenient tumor model expressing human papilloma virus (HPV E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions.

  15. Circulating tumor cells and their relationship with clinical and morphological characteristics of colorectal cancer

    Directory of Open Access Journals (Sweden)

    O I Kit

    2018-02-01

    Full Text Available Aim. To investigate the dependence of the number of circulating tumor cells in peripheral blood of colorectal cancer patients on the clinical and morphological characteristics of underlying disease. Methods. 91 patients with verified metastatic colorectal cancer Т3-4N1-2М1 were included in the study. The average age of the patients was 61.5±1.7 years. The patients were divided into the study group (laparoscopic surgical treatment, n=44 and control group (open surgical intervention, n=47. The number of circulating tumor cells was determined in CellSearch™ system in the peripheral blood drawn before the intervention. The study of the association of attributes by constructing contingency tables consisted in calculating Pearson’s contingency coefficient c2 with Mantel-Haenszel correction for likelihood (nonparametric correction, estimating statistical significance of contingency and analyzing the tightness of the association by A. Chuprov’s mutual contingency coefficient. Results. We found contingency of the number of circulating tumor cells with clinical and morphological parameters of patients with colorectal cancer. The relationship between potential risk factors and increase of the number of circulating tumor cells in the peripheral blood was observed in all colorectal cancer patients, regardless of the surgical intervention method. The most pronounced association of the number of circulating tumor cells in the peripheral blood of metastatic colorectal cancer patients before surgery according to the mutual contingency coefficient (K was shown to be with present distant metastases (status M1b; K=0.63, p=0.0001 and stage T4 (K=0.56, p=0.0009. Conclusion. The obtained results emphasize the important predictive significance of the circulating tumor cells level in peripheral blood for assessment of the potential for colorectal cancer progression.

  16. The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior

    Directory of Open Access Journals (Sweden)

    Florian Weinberg

    2017-06-01

    Full Text Available Despite being overexpressed in different tumor entities, RIO kinases are hardly characterized in mammalian cells. We investigated the role of these atypical kinases in different cancer cells. Using isogenic colon-, breast- and lung cancer cell lines, we demonstrate that knockdown of RIOK1, but not of RIOK2 or RIOK3, strongly impairs proliferation and invasiveness in conventional and 3D culture systems. Interestingly, these effects were mainly observed in RAS mutant cancer cells. In contrast, growth of RAS wildtype Caco-2 and Bcr-Abl-driven K562 cells is not affected by RIOK1 knockdown, suggesting a specific requirement for RIOK1 in the context of oncogenic RAS signaling. Furthermore, we show that RIOK1 activates NF-κB signaling and promotes cell cycle progression. Using proteomics, we identified the pro-invasive proteins Metadherin and Stathmin1 to be regulated by RIOK1. Additionally, we demonstrate that RIOK1 promotes lung colonization in vivo and that RIOK1 is overexpressed in different subtypes of human lung- and breast cancer. Altogether, our data suggest RIOK1 as a potential therapeutic target, especially in RAS-driven cancers.

  17. Dual PI3K/mTOR inhibitors, GSK2126458 and PKI-587, suppress tumor progression and increase radiosensitivity in nasopharyngeal carcinoma.

    Science.gov (United States)

    Liu, Tongxin; Sun, Quanquan; Li, Qi; Yang, Hua; Zhang, Yuqin; Wang, Rong; Lin, Xiaoshan; Xiao, Dong; Yuan, Yawei; Chen, Longhua; Wang, Wei

    2015-02-01

    Although combined chemoradiotherapy has provided considerable improvements for nasopharyngeal carcinoma (NPC), recurrence and metastasis are still frequent. The PI3K/Akt/mTOR pathway plays a critical role in tumor formation and tumor cell survival after radiation-induced DNA damage. In the present study, we evaluated whether inhibition of PI3K/mTOR by two novel dual inhibitors, GSK2126458 and PKI-587, could suppress tumor progression and sensitize NPC cells to radiation. Four NPC cell lines (CNE-1, CNE-2, 5-8F, and 6-10B) were used to analyze the effects of GSK216458 and PKI-587 on cell proliferation, migration, invasion, clonogenic survival, amount of residual γ-H2AX foci, cell cycle, and apoptosis after radiation. A 5-8F xenograft model was used to evaluate the in vivo effects of the two compounds in combination with ionizing radiation (IR). Both GSK216458 and PKI-587 effectively inhibited cell proliferation and motility in NPC cells and suppressed phosphorylation of Akt, mTOR, S6, and 4EBP1 proteins in a concentration- and time-dependent manner. Moreover, both compounds sensitized NPC cells to IR by increasing DNA damage, enhancing G2-M cell-cycle delay, and inducing apoptosis. In vivo, the combination of IR with GSK2126458 or PKI-587 significantly inhibited tumor growth. Antitumor effect was correlated with induction of apoptosis and suppression of the phosphorylation of mTOR, Akt, and 4EBP1. These new findings suggest the usefulness of PI3K/mTOR dual inhibition for antitumor and radiosensitizing. The combination of IR with a dual PI3K/mTOR inhibitor, GSK2126458 or PKI-587, might be a promising therapeutic strategy for NPC. ©2014 American Association for Cancer Research.

  18. Low PIP4K2B expression in human breast tumors correlates with reduced patient survival: A role for PIP4K2B in the regulation of E-cadherin expression.

    Science.gov (United States)

    Keune, Willem-Jan; Sims, Andrew H; Jones, David R; Bultsma, Yvette; Lynch, James T; Jirström, Karin; Landberg, Goran; Divecha, Nullin

    2013-12-01

    Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known. Here, we have interrogated the expression of PIP4K2B in a cohort (489) of patients with breast tumor using immunohistochemical staining and by a meta-analysis of gene expression profiles from 2,999 breast tumors, both with associated clinical outcome data. Low PIP4K2B expression was associated with increased tumor size, high Nottingham histological grade, Ki67 expression, and distant metastasis, whereas high PIP4K2B expression strongly associated with ERBB2 expression. Kaplan-Meier curves showed that both high and low PIP4K2B expression correlated with poorer patient survival compared with intermediate expression. In normal (MCF10A) and tumor (MCF7) breast epithelial cell lines, mimicking low PIP4K2B expression, using short hairpin RNA interference-mediated knockdown, led to a decrease in the transcription and expression of the tumor suppressor protein E-cadherin (CDH1). In MCF10A cells, knockdown of PIP4K2B enhanced TGF-β-induced epithelial to mesenchymal transition (EMT), a process required during the development of metastasis. Analysis of gene expression datasets confirmed the association between low PIP4K2B and low CDH1expression. Decreased CDH1 expression and enhancement of TGF-β-induced EMT by reduced PIP4K2B expression might, in part, explain the association between low PIP4K2B expression and poor patient survival.

  19. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  20. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    Science.gov (United States)

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  1. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  2. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    Directory of Open Access Journals (Sweden)

    Maciej H Swat

    Full Text Available Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution. Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  3. The influence of the stem cell marker ALDH and the EGFR-PI3 kinase act signaling pathway on the radiation resistance of human tumor cell lines

    International Nuclear Information System (INIS)

    Mihatsch, Julia

    2014-01-01

    Cancer is the second leading cause of death in industriated nations. Besides surgery and chemotherapy, radiotherapy (RT) is an important approach by which about 60% of patients are treated. The response of these patients to RT is very heterogenous. On the one hand, there are patients with tumors which are radiosensitive and can be cured, but on the other hand patients bear tumors which are quite resistant to radiotherapy. A Radioresistant phenotype of tumor cells causes treatment failure consequently leading to a limited response to radiotherapy. It is proposed, that radiotherapy outcome mainly depends on the potential of radiation on controlling growth, proliferation and survival of a specific population of tumor cells called cancer stem cells (CSCs) or tumor-initiating cells. Based on experimental studies so far reported it is assumed that the population of CSC varies in tumors from different entities and is relatively low compared to the tumor bulk cells in general. According to the CSC hypothesis, it might be concluded that the differential response of tumors to radiotherapy depends on CSC populations, since these supposedly slow replicating cells are able to initiate a tumor, to self renew indefinitely and to generate the differentiated progeny of a tumor. Besides the role of cancer stem cells in radiotherapy response, ionizing radiation (IR) activates the epidermal growth factor receptor (EGFR) and its downstream signaling pathways such as phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways. Among these pathways, PI3K/Akt is one of the most important pathways involved in post-irradiation survival: Activation of Akt results in activation of DNA-dependent protein kinase, catalytic subunit (DNA-PKcs). DNA-PKcs is a core enzyme involved in repair of IR-induced DNA-double strand breaks (DNA-DSB) through non-homologous end joining (NHEJ). The aim of the

  4. Human CD34+ cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand target both tumor cells and tumor vasculature.

    Science.gov (United States)

    Lavazza, Cristiana; Carlo-Stella, Carmelo; Giacomini, Arianna; Cleris, Loredana; Righi, Marco; Sia, Daniela; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Francolini, Maura; Gloghini, Annunziata; Carbone, Antonino; Formelli, Franca; Gianni, Alessandro M

    2010-03-18

    Adenovirus-transduced CD34+ cells expressing membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL+ cells) exert potent antitumor activity. To further investigate the mechanism(s) of action of CD34-TRAIL+ cells, we analyzed their homing properties as well as antitumor and antivascular effects using a subcutaneous myeloma model in immunodeficient mice. After intravenous injection, transduced cells homed in the tumor peaking at 48 hours when 188 plus or minus 25 CD45+ cells per 10(5) tumor cells were detected. Inhibition experiments showed that tumor homing of CD34-TRAIL+ cells was largely mediated by vascular cell adhesion molecule-1 and stromal cell-derived factor-1. Both CD34-TRAIL+ cells and soluble (s)TRAIL significantly reduced tumor volume by 40% and 29%, respectively. Computer-aided analysis of TdT-mediated dUTP nick end-labeling-stained tumor sections demonstrated significantly greater effectiveness for CD34-TRAIL+ cells in increasing tumor cell apoptosis and necrosis over sTRAIL. Proteome array analysis indicated that CD34-TRAIL+ cells and sTRAIL activate similar apoptotic machinery. In vivo staining of tumor vasculature with sulfosuccinimidyl-6-(biotinamido) hexanoate-biotin revealed that CD34-TRAIL+ cells but not sTRAIL significantly damaged tumor vasculature, as shown by TdT-mediated dUTP nick end-labeling+ endothelial cells, appearance of hemorrhagic areas, and marked reduction of endothelial area. These results demonstrate that tumor homing of CD34-TRAIL+ cells induces early vascular disruption, resulting in hemorrhagic necrosis and tumor destruction.

  5. Antioxidant activity and cytotoxic profie of Chuquiraga spinosa Lessing on human tumor cell lines: A promissory plant from Peruvian flra

    Directory of Open Access Journals (Sweden)

    Oscar Herrera-Calderon

    2017-05-01

    Full Text Available Objective: To determine the phytochemical content, antioxidant activity in vitro and cytotoxicity of crude ethanol extract (CEE, n-hexane fraction (NHF, petroleum ether fraction (PEF, chloroform fraction (CLF and ethyl acetate fraction (EAF of aerial parts of Chuquiraga spinosa (C. spinosa Lessing. Methods: Phytochemical screening was developed by color and precipitated formation. The evaluation of antioxidant activity was assessed using hydroxyl and nitric oxide radical. Total phenolic content (TPC and total flavonoids content (TFC were measured by using standard methods by spectrophotometry. The cytotoxic effect was determined on human tumor cell lines including MCF-7, H-460, HT-29, M-14, HUTU-80, K-562 and DU-145. Results: Phytochemical analysis confirmed the presence of phenols, flavonoids in crude extract and its all fractions. The CEE showed the highest antioxidant activity, for OH and NO radical scavenging tests (IC50 = 15.16 ± 3.45 μg/mL and IC50 = 18.91 ± 1.13 μg/mL, respectively. TPC was found to be the highest in the CEE (121.36 mg of gallic acid equivalent/g of dried extract compared to other fractions. The ranking order of NHF, PEF, CLF, EAF and CEE for TFC was 21.17 < 35.20 < 62.19 < 70.25 < 78.25 mg quercetin equivalent/g of dried extract. The crude ethanolic extract (μg/mL showed a high cytotoxicity on MCF-7 (IC50 = 9.25 ± 0.81, K-562 (IC50 = 7.34 ± 1.00, HT-29 (IC50 = 8.52 ± 2.69, H-460 (IC50 = 5.32 ± 1.05, M-14 (IC50 = 8.30 ± 0.60, DU-145 (IC50 = 7.09 ± 0.09, HUTU-80 (IC50 = 6.20 ± 0.50. Conclusions: The study showed that CEE of the aerial parts of C. spinosa can be measured as a natural source of antioxidant which might be effective towards preventing or slowing oxidative stress related to chronic diseases as well as cytotoxic agent.

  6. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    Science.gov (United States)

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Specificity of antigens on UV radiation-induced antigenic tumor cell variants measured in vitro and in vivo

    International Nuclear Information System (INIS)

    Hostetler, L.W.; Romerdahl, C.A.; Kripke, M.L.

    1989-01-01

    The purpose of this study was to determine whether antigenic variants cross-react immunologically with the parental tumor and whether the UVR-associated antigen unique to UVR-induced tumors is also present on the variants. Antigenic (regressor) variants and nonimmunogenic (progressor) clones derived from UV-irradiated cultures of the C3H K1735 melanoma and SF19 spontaneous fibrosarcoma cell lines were used to address these questions. In an in vivo immunization and challenge assay, the antigenic variants did not induce cross-protection among themselves, but each induced immunity against the immunizing variant, the parent tumor cells, and nonimmunogenic clones derived from UV-irradiated parent cultures. Therefore, the variants can be used to induce in mice a protective immunity that prevents the growth of the parent tumor and nonimmunogenic clones, but not other antigenic variants. In contrast, immunization with cells of the parental tumor or the nonimmunogenic clones induced no protective immunity against challenge with any of the cell lines. Utilizing the K1735 melanoma-derived cell lines in vitro, T-helper (Th) cells isolated from tumor-immunized mice were tested for cross-reactivity by their ability to collaborate with trinitrophenyl-primed B-cells in the presence of trinitrophenyl-conjugated tumor cells. Also, the cross-reactivity of cytotoxic T-lymphocytes from tumor-immunized mice was assessed by a 4-h 51Cr-release assay. Antigenic variants induced cytotoxic T-lymphocytes and Th activity that was higher than that induced by the parent tumor and nonimmunogenic clones from the UVR-exposed parent tumor and cross-reacted with the parental tumor cells and nonimmunogenic clones, but not with other antigenic variants

  8. Antitumor effect of triptolide in T-cell lymphoblastic lymphoma by inhibiting cell viability, invasion, and epithelial–mesenchymal transition via regulating the PI3K/AKT/mTOR pathway

    Directory of Open Access Journals (Sweden)

    Huang Y

    2018-02-01

    Full Text Available Yan Huang, Sun Wu, Yuan Zhang, Lihua Wang, Yan Guo Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, People’s Republic of China Introduction: T-cell lymphoblastic lymphoma (T-LBL is a widely disseminated disease worldwide. Triptolide (TPL is purified from Chinese herb and displays anti-inflammatory, anti-fertility, anti-tumor and immunosuppressive effects. Materials and methods: Here, in vitro and in vivo experiments were conducted to investigate the anti-tumor effect of TPL treatment in T-LBL and the potential mechanism in T-LBL progression. Results: TPL inhibited cell proliferation of T-LBL cells (Jurkat cells and Molt-3 cells in a dose-dependent manner. Flow cytometry analysis showed that cell apoptosis rate was increased by TPL treatment. TPL also up-regulated the expression of Caspase-3, Bax and down-regulated the expression of Bcl-2, indicating that TPL promoted apoptosis in Jurkat cells. Moreover, TPL inhibited invasion ability of Jurkat cells and down-regulated the expression of MMP-3 and MMP-9 in a dose-dependent manner. The expression of Snail, Slug, Twist and Integrin αVβ6 was decreased and the expression of E-cadherin was increased by TPL treatment, indicating that TPL inhibited EMT of Jurkat cells. Apart from that, TPL treatment attenuated the phoslevels of PI3K, Akt and mTOR and suppressed AKT activation compared with control group, suggesting that TPL inhibited PI3K/Akt/mTOR signal pathway in T-LBL. In vivo experiments showed that TPL inhibited tumor growth of T-LBL and promoted apoptosis of tumor cells. The expression of PCNA, Bcl-2, Snail, p-PI3K, p-Akt and mTOR was suppressed by TPL in a dose-dependent manner, suggesting that TPL suppressed tumor growth and promoted apoptosis of tumor cells by inhibiting PI3K/Akt/mTOR signal pathway in T-LBL. Conclusion: In conclusion, TPL exerted anti-tumor effect in T-LBL by inhibiting cell viability, invasion and EMT via regulating the PI3K

  9. Tumor-specific CD4+ T cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory T cells.

    Science.gov (United States)

    Akhmetzyanova, Ilseyar; Zelinskyy, Gennadiy; Schimmer, Simone; Brandau, Sven; Altenhoff, Petra; Sparwasser, Tim; Dittmer, Ulf

    2013-02-01

    The important role of tumor-specific cytotoxic CD8(+) T cells is well defined in the immune control of the tumors, but the role of effector CD4(+) T cells is poorly understood. In the current research, we have used a murine retrovirus-induced tumor cell line of C57BL/6 mouse origin, namely FBL-3 cells, as a model to study basic mechanisms of immunological control and escape during tumor formation. This study shows that tumor-specific CD4(+) T cells are able to protect against virus-induced tumor cells. We show here that there is an expansion of tumor-specific CD4(+) T cells producing cytokines and cytotoxic molecule granzyme B (GzmB) in the early phase of tumor growth. Importantly, we demonstrate that in vivo depletion of regulatory T cells (Tregs) and CD8(+) T cells in FBL-3-bearing DEREG transgenic mice augments IL-2 and GzmB production by CD4(+) T cells and increases FV-specific CD4(+) T-cell effector and cytotoxic responses leading to the complete tumor regression. Therefore, the capacity to reject tumor acquired by tumor-reactive CD4(+) T cells largely depends on the direct suppressive activity of Tregs. We suggest that a cytotoxic CD4(+) T-cell immune response may be induced to enhance resistance against oncovirus-associated tumors.

  10. Expression profile of CREB knockdown in myeloid leukemia cells

    International Nuclear Information System (INIS)

    Pellegrini, Matteo; Cheng, Jerry C; Voutila, Jon; Judelson, Dejah; Taylor, Julie; Nelson, Stanley F; Sakamoto, Kathleen M

    2008-01-01

    The cAMP Response Element Binding Protein, CREB, is a transcription factor that regulates cell proliferation, differentiation, and survival in several model systems, including neuronal and hematopoietic cells. We demonstrated that CREB is overexpressed in acute myeloid and leukemia cells compared to normal hematopoietic stem cells. CREB knockdown inhibits leukemic cell proliferation in vitro and in vivo, but does not affect long-term hematopoietic reconstitution. To understand downstream pathways regulating CREB, we performed expression profiling with RNA from the K562 myeloid leukemia cell line transduced with CREB shRNA. By combining our expression data from CREB knockdown cells with prior ChIP data on CREB binding we were able to identify a list of putative CREB regulated genes. We performed extensive analyses on the top genes in this list as high confidence CREB targets. We found that this list is enriched for genes involved in cancer, and unexpectedly, highly enriched for histone genes. Furthermore, histone genes regulated by CREB were more likely to be specifically expressed in hematopoietic lineages. Decreased expression of specific histone genes was validated in K562, TF-1, and primary AML cells transduced with CREB shRNA. We have identified a high confidence list of CREB targets in K562 cells. These genes allow us to begin to understand the mechanisms by which CREB contributes to acute leukemia. We speculate that regulation of histone genes may play an important role by possibly altering the regulation of DNA replication during the cell cycle

  11. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  12. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  13. Peculiarities in the CT findings of germ cell tumors in various tumor localizations

    International Nuclear Information System (INIS)

    Tazoe, Makoto; Miyagami, Mitsusuke; Tsubokawa, Takashi

    1991-01-01

    The CT findings of 17 germ cell tumors were studied in relation to the locations of the tumor, the pathological diagnoses, and the tumor markers (AFP and HCG). Generally, the CT findings of germ cell tumors depended on the pathological diagnoses more strongly than on the location of the tumors. On plain CT of 7 germ cell tumors in the pineal region, all of them demonstrated heterogeneous findings. Hydrocephalus was seen in 6 cases (86%) and calcification in 6 cases (86%) of the germ cell tumors in the pineal region. Calcification and hydrocephalus that appeared more often than in other regions were characteristic of germ cell tumors of the pineal region. The germ cell tumors in the basal ganglia had a slightly homogenous high density, with small cysts and calcification in most of them on plain CT. On enhanced CT, the tumors were moderately enhanced in all cases located in the basal ganglia. Four cases of germ cell tumors located in the basal ganglia revealed the dilatation of lateral ventricle due to hemispheric atrophy in the tumor side. The germ cell tumors showing an increase in the tumor markers such as AFP and HCG, which were usually malignant germ cell tumors, were strongly enhanced on enhanced CT. (author)

  14. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    Directory of Open Access Journals (Sweden)

    Roberta Lotti

    2016-01-01

    Full Text Available Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC originate from alterations in keratinocyte stem cells (KSC gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD and non-RAD (NRAD cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin, while it increases the level of differentiation markers (K10, involucrin. Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  15. Natural killer (NK)-cell activity in sorted subsets of peripheral blood mononuclear cells from patients with severe combined immunodeficiency

    NARCIS (Netherlands)

    ten Berge, R. J.; Schellekens, P. T.; Budding-Koppenol, A.; Dooren, L. J.; Vossen, J. M.

    1987-01-01

    Natural killer-cell activity for K562 target cells was measured in 13 patients with severe combined immunodeficiency before bone marrow transplantation. Both unseparated peripheral blood mononuclear cells and sorted cell subsets (B73.1 positive, B73.1 negative, OKT3 positive, OKT3 negative) were

  16. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors

    Directory of Open Access Journals (Sweden)

    Xiaonan Zhang

    2015-11-01

    Full Text Available The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an “Achilles heel” for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.

  17. Involvement of ERK-Nrf-2 signaling in ionizing radiation induced cell death in normal and tumor cells.

    Directory of Open Access Journals (Sweden)

    Raghavendra S Patwardhan

    Full Text Available Prolonged oxidative stress favors tumorigenic environment and inflammation. Oxidative stress may trigger redox adaptation mechanism(s in tumor cells but not normal cells. This may increase levels of intracellular antioxidants and establish a new redox homeostasis. Nrf-2, a master regulator of battery of antioxidant genes is constitutively activated in many tumor cells. Here we show that, murine T cell lymphoma EL-4 cells show constitutive and inducible radioresistance via activation of Nrf-2/ERK pathway. EL-4 cells contained lower levels of ROS than their normal counterpart murine splenic lymphocytes. In response to radiation, the thiol redox circuits, GSH and thioredoxin were modified in EL-4 cells. Pharmacological inhibitors of ERK and Nrf-2 significantly enhanced radiosensitivity and reduced clonogenic potential of EL-4 cells. Unirradiated lymphoma cells showed nuclear accumulation of Nrf-2, upregulation of its dependent genes and protein levels. Interestingly, MEK inhibitor abrogated its nuclear translocation suggesting role of ERK in basal and radiation induced Nrf-2 activation in tumor cells. Double knockdown of ERK and Nrf-2 resulted in higher sensitivity to radiation induced cell death as compared to individual knockdown cells. Importantly, NF-kB which is reported to be constitutively active in many tumors was not present at basal levels in EL-4 cells and its inhibition did not influence radiosensitivity of EL-4 cells. Thus our results reveal that, tumor cells which are subjected to heightened oxidative stress employ master regulator cellular redox homeostasis Nrf-2 for prevention of radiation induced cell death. Our study reveals the molecular basis of tumor radioresistance and highlights role of Nrf-2 and ERK.

  18. MRI of islet cell tumors of the pancreas

    International Nuclear Information System (INIS)

    Ohtomo, Kuni; Itai, Yuji; Yoshikawa, Koki; Kokubo, Taka; Yashiro, Naofumi; Iio, Masahiro; Atomi, Yu

    1986-01-01

    Magnetic resonance imaging (MRI) was performed in five patients with islet cell tumors of the pancreas, using 0.35 T and 1.5 T superconductive magnets. MRI identified tumors in 3 patients. The tumors seen in the 3 patients appeared as areas of higher signal intensity than the liver on spin-echo (SE) images with repetition time of 1,600 msec/echo time of 35 or 70 msec, and as areas of similar or lower intensity on SE 400/35 or 70 images. The tumor imaged by SE techniques with 1,600/35 msec, 400/35 msec, and 1,600/35 or 70 msec in one patient was manifested by prolongation of T1 and T2, as compared with the liver. Tumors in the remaining two patients, which were not detected on MRI, were 15 mm or smaller. MRI remains to be improved in the visualization of small lesions. (Namekawa, K.)

  19. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Ru [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Liao, Wei-Siang [Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Wu, Ya-Hui [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Murugan, Kaliyappan [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chen, Chinpiao, E-mail: chinpiao@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chao, Jui-I, E-mail: jichao@faculty.nctu.edu.tw [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China)

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  20. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-01-01

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy

  1. Protolichesterinic acid enhances doxorubicin-induced apoptosis in HeLa cells in vitro.

    Science.gov (United States)

    Brisdelli, Fabrizia; Perilli, Mariagrazia; Sellitri, Doriana; Bellio, Pierangelo; Bozzi, Argante; Amicosante, Gianfranco; Nicoletti, Marcello; Piovano, Marisa; Celenza, Giuseppe

    2016-08-01

    The aim of this study was to investigate the effect of protolichesterinic acid, a lichen secondary metabolite, on anti-proliferative activity of doxorubicin in three human cancer cell lines, HeLa, SH-SY5Y and K562 cells. The data obtained from MTT assays, performed on cells treated with protolichesterinic acid and doxorubicin alone and in combination, were analysed by the median-effect method as proposed by Chou and Talalay and the Bliss independence model. Apoptosis rate was evaluated by fluorescence microscopy, caspase-3, 8 and 9 activities were detected by spectrofluorimetric analysis and protein expression of Bim, Bid, Bax and Mcl-2 was analysed by Western blotting. The interaction of protolichesterinic acid with thioesterase domain of human fatty acid synthase (hFAS) was investigated by a molecular docking study. The in vitro activity of doxorubicin against HeLa cancer cell line, but not against SH-SY5Y and K562 cells, was synergically increased by protolichesterinic acid. The increased cytotoxicity caused by protolichesterinic acid in HeLa cells was due to a pro-apoptotic effect and was associated to caspase-3, 8 and 9 activation. The simultaneous treatment for 24h with protolichesterinic acid plus doxorubicin caused an increase of Bim protein expression and the appearance of cleaved form of Bid protein. The molecular modelling analysis showed that protolichesterinic acid seemed to behave as a competitive inhibitor of hFAS. These results suggest that protolichesterinic acid could be envisaged as an useful tool against certain types of tumor cells in combination with anticancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. S6Ks isoforms contribute to viability, migration, docetaxel resistance and tumor formation of prostate cancer cells

    International Nuclear Information System (INIS)

    Amaral, Camila L.; Freitas, Lidia B.; Tamura, Rodrigo E.; Tavares, Mariana R.; Pavan, Isadora C. B.; Bajgelman, Marcio C.; Simabuco, Fernando M.

    2016-01-01

    The S6 Kinase (S6K) proteins are some of the main downstream effectors of the mammalian Target Of Rapamycin (mTOR) and act as key regulators of protein synthesis and cell growth. S6K is overexpressed in a variety of human tumors and is correlated to poor prognosis in prostate cancer. Due to the current urgency to identify factors involved in prostate cancer progression, we aimed to reveal the cellular functions of three S6K isoforms–p70-S6K1, p85-S6K1 and p54-S6K2–in prostate cancer, as well as their potential as therapeutic targets. In this study we performed S6K knockdown and overexpression and investigated its role in prostate cancer cell proliferation, colony formation, viability, migration and resistance to docetaxel treatment. In addition, we measured tumor growth in Nude mice injected with PC3 cells overexpressing S6K isoforms and tested the efficacy of a new available S6K1 inhibitor in vitro. S6Ks overexpression enhanced PC3-luc cell line viability, migration, resistance to docetaxel and tumor formation in Nude mice. Only S6K2 knockdown rendered prostate cancer cells more sensitive to docetaxel. S6K1 inhibitor PF-4708671 was particularly effective for reducing migration and proliferation of PC3 cell line. These findings demonstrate that S6Ks play an important role in prostate cancer progression, enhancing cell viability, migration and chemotherapy resistance, and place both S6K1 and S6K2 as a potential targets in advanced prostate cancer. We also provide evidence that S6K1 inhibitor PF-4708671 may be considered as a potential drug for prostate cancer treatment. The online version of this article (doi:10.1186/s12885-016-2629-y) contains supplementary material, which is available to authorized users

  3. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    tumors for MDA-MB-231 and U-87 MG tumors, with dose enhancement ratios of 1.9. U-373 MG tumors expressing EGFR-CD533 demonstrated a 4-fold increase in the tumor doubling time after IR (3 x 3 Gy) compared with LacZ transduced tumors. EGF treatment activated EGFR, as quantified by tyrosine phosphorylation (Tyr-P) and mediated activation of its downstream target mitogen activated protein kinase (MAPK), but had no effect on EGFRvIII. In contrast, IR stimulated a 4-fold increase in Tyr-P of EGFRvIII, resulting in a maximum 9-fold activation of MAPK and a 3-fold activation of the PI3K signal transduction pathway. A specific tyrphostin inhibitor of EGFR and EGFRvIII, AG1478, reduced the radiation-induced activation of MAPK and PI3K to a maximum of 2-fold, similar to the activation profile observed in CHO cells transfected with null vectors. Colony formation and cell growth assays verified that cells expressing EGFRvIII are markedly protected against the cytotoxic effects of IR. Finally, Ad-EGFR-CD533 transduction of U-373 MG cells expressing EGFRvIII significantly reduced basal Tyr-P and IR-induced activation of EGFRvIII. Conclusion: The effects of in vivo expression of constitutively active EGFRvIII on cellular radiosensitivity have not previously been considered. We demonstrate here that expression of EGFRvIII enhances the relative radioresistance of tumor cells in vitro and in vivo. This resistance is mediated by the significantly greater radiation-induced activation of EGFRvIII relative to EGFR and as a consequence a greater stimulation of both the MAPK and PI3K cytoprotective pathways. Importantly, the genetic disruption of EGFR function by expression of EGFR-CD533 is equally effective with either EGFR or EGFRvIII

  4. In vivo measurement of cell proliferation in canine brain tumor using C-11-labeled FMAU and PET

    International Nuclear Information System (INIS)

    Conti, Peter S.; Bading, James R.; Mouton, Peter P.; Links, Jonathan M.; Alauddin, Mian M.; Fissekis, John D.; Ravert, Hayden T.; Hilton, John; Wong, Dean F.; Anderson, James H.

    2008-01-01

    Introduction: Noncatabolized thymidine analogs are being developed for use in imaging DNA synthesis. We sought to relate a labeling index measured by immunohistochemical staining bromodeoxyuridine (BUdR) technique to the uptake of 11 C 2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) measured with positron emission tomography (PET) in a brain tumor model. Methods: Adult beagles (n=8) with implanted brain tumors received [ 11 C]FMAU and dynamic imaging with arterial sampling. Six dogs were then infused with BUdR (200 mg/m 2 ) and sacrificed. Tumor time-activity curves (TACs) obtained from computed-tomography-defined regions of interest were corrected for partial volume effects and crosstalk from brain tissue. Tissue was analyzed for the percentage of tumor volume occupied by viable cells and by viable cells in S-phase as identified by BUdR staining. PET/[ 11 C]FMAU and BUdR were compared by linear regression analysis and analysis of variance, as well as by a nonparametric rank correlation test. Results: Tumor standardized uptake values (SUVs) and tumor-to-contralateral-brain uptake ratios at 50 min were 1.6±0.4 and 5.5±1.2 (n=8; mean±S.E.M.), respectively. No 11 C-labeled metabolites were observed in the blood through 60 min. Tumor TACs were well described with a three-compartment/four-parameter model (k 4 =0) and by Patlak analysis. Parametric statistical analysis showed that FMAU clearance from plasma into tumor Compartment 3 (K FMAU ) was significantly correlated with S-phase percent volume (P=.03), while tumor SUV was significantly correlated with both S-phase percent volume and cell percent volume (P=.02 and .03, respectively). Patlak slope, K FMAU and tumor SUV were equivalent with regard to rank correlation analysis, which showed that tumor uptake and trapping of FMAU were correlated with the volume density of dividing cells (P=.0003) rather than nondividing cells (P=.3). Conclusions: Trapping of [ 11 C]FMAU correlated with tumor growth rate, as

  5. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug JS-K in murine erythroleukemia cells.

    Science.gov (United States)

    Kaczmarek, Monika Z; Holland, Ryan J; Lavanier, Stephen A; Troxler, Jami A; Fesenkova, Valentyna I; Hanson, Charlotte A; Cmarik, Joan L; Saavedra, Joseph E; Keefer, Larry K; Ruscetti, Sandra K

    2014-03-01

    The nitric oxide (NO) prodrug JS-K, a promising anti-cancer agent, consists of a diazeniumdiolate group necessary for the release of NO as well as an arylating ring. In this study, we research the mechanism by which JS-K kills a murine erythroleukemia cell line and determine the roles of NO and arylation in the process. Our studies indicate that JS-K inhibits the PI 3-kinase/Akt and MAP kinase pathways. This correlates with the activation of the tumor suppressor FoxO3a and increased expression of various caspases, leading to apoptosis. The arylating capability of JS-K appears to be sufficient for inducing these biological effects. Overall, these data suggest that JS-K kills tumor cells by arylating and inactivating signaling molecules that block the activation of a tumor suppressor. Published by Elsevier Ltd.

  6. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  7. Downregulation of an Aim-1 Kinase Couples with Megakaryocytic Polyploidization of Human Hematopoietic Cells

    Science.gov (United States)

    Kawasaki, Akira; Matsumura, Itaru; Miyagawa, Jun-ichiro; Ezoe, Sachiko; Tanaka, Hirokazu; Terada, Yasuhiko; Tatsuka, Masaaki; Machii, Takashi; Miyazaki, Hiroshi; Furukawa, Yusuke; Kanakura, Yuzuru

    2001-01-01

    During the late phase of megakaryopoiesis, megakaryocytes undergo polyploidization, which is characterized by DNA duplication without concomitant cell division. However, it remains unknown by which mechanisms this process occurs. AIM-1 and STK15 belong to the Aurora/increase-in-ploidy (Ipl)1 serine/threonine kinase family and play key roles in mitosis. In a human interleukin-3–dependent cell line, F-36P, the expressions of AIM-1 and STK15 mRNA were specifically observed at G2/M phase of the cell cycle during proliferation. In contrast, the expressions of AIM-1 and STK15 were continuously repressed during megakaryocytic polyploidization of human erythro/megakaryocytic cell lines (F-36P, K562, and CMK) treated with thrombopoietin, activated ras (H-rasG12V), or phorbol ester. Furthermore, their expressions were suppressed during thrombopoietin-induced polyploidization of normal human megakaryocytes. Activation of AIM-1 by the induced expression of AIM-1(wild-type) canceled TPA-induced polyploidization of K562 cells significantly, whereas that of STK15 did not. Moreover, suppression of AIM-1 by the induced expression of AIM-1 (K/R, dominant-negative type) led to polyploidization in 25% of K562 cells, whereas STK15(K/R) showed no effect. Also, the induced expression of AIM-1(K/R) in CMK cells provoked polyploidization up to 32N. These results suggested that downregulation of AIM-1 at M phase may be involved in abortive mitosis and polyploid formation of megakaryocytes. PMID:11266445

  8. Efecto de extractos de la esponja calcarea Leucetta aff. floridana sobre el ciclo de líneas celulares leucemoides Effect of extracts from the calcareous sponge Leucetta aff. floridana on the cell cycle of leukemoid cell lines

    Directory of Open Access Journals (Sweden)

    Diana Margarita Márquez Fernández

    2012-12-01

    .Introduction: Leucetta aff. floridana sponge produces compounds with differential antiproliferative activity on lung and breast cancer. Nevertheless, this activity in other tumour cell lines has not yet been tested and it remains unknown whether its antiproliferative potential is correlated with the cell progression through cell cycle or not. Objective: To evaluate the antiproliferative and anticlonogenic potential and the effect of methanolic and hexanic extracts of sponge L. aff. floridana from the Colombian Caribbean region on the cell cycle of Jurkat and K562 leukemoid cell lines. Methods: The viability and antiproliferative effect were determined using trypan blue assay at 0, 24, 48, 72 and 96 hours. Clongenicity and effect on cell cycle were assayed at 10 and 100 µg/mL Data obtained were analyzed using multifactorial ANOVA and Tukey's test. Results: The hexanic extract presented antiproliferative activity in both Jurkat and K652 cell lines; Jurkat being more sensitive than K652. These results were confirmed by clongenicity assays. The hexanic extract also showed its effect on the dose-dependent accumulation of Sub-G1 cells, although it was different in the two cell lines. The duration of the treatment with the hexanic extract was not significant for K562 cell line, but it was for Jurkat cells. Additionally, the percentage of cell accumulation in Sub-G1 was higher in K562 than in Jurkat cells. The methanolic extract showed antiproliferative effect similar to that of the hexanic extract, but more potent at the lowest concentration (10 µg/mL in K652 cell line clonegenicity. The effect on cell cycle was also similar to that of the hexanic extract, but in this case the duration of treatment was not significant in the cell accumulation in Sub-G1. Conclusions: Altogether these results show the differential potential of the extracts on the cell cycle of the evaluated leukemoid cell lines.

  9. Cancer stem cells and the tumor microenvironment: interplay in tumor heterogeneity.

    Science.gov (United States)

    Albini, Adriana; Bruno, Antonino; Gallo, Cristina; Pajardi, Giorgio; Noonan, Douglas M; Dallaglio, Katiuscia

    2015-01-01

    Tumor cells able to recapitulate tumor heterogeneity have been tracked, isolated and characterized in different tumor types, and are commonly named Cancer Stem Cells or Cancer Initiating Cells (CSC/CIC). CSC/CIC are disseminated in the tumor mass and are resistant to anti-cancer therapies and adverse conditions. They are able to divide into another stem cell and a "proliferating" cancer cell. They appear to be responsible for disease recurrence and metastatic dissemination even after apparent eradication of the primary tumor. The modulation of CSC/CIC activities by the tumor microenvironment (TUMIC) is still poorly known. CSC/CIC may mutually interact with the TUMIC in a special and unique manner depending on the TUMIC cells or proteins encountered. The TUMIC consists of extracellular matrix components as well as cellular players among which endothelial, stromal and immune cells, providing and responding to signals to/from the CSC/CIC. This interplay can contribute to the mechanisms through which CSC/CIC may reside in a dormant state in a tissue for years, later giving rise to tumor recurrence or metastasis in patients. Different TUMIC components, including the connective tissue, can differentially activate CIC/CSC in different areas of a tumor and contribute to the generation of cancer heterogeneity. Here, we review possible networking activities between the different components of the tumor microenvironment and CSC/CIC, with a focus on its role in tumor heterogeneity and progression. We also summarize novel therapeutic options that could target both CSC/CIC and the microenvironment to elude resistance mechanisms activated by CSC/CIC, responsible for disease recurrence and metastases.

  10. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death.

    Science.gov (United States)

    Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra

    2018-01-15

    Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    International Nuclear Information System (INIS)

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells

  12. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression.

    Science.gov (United States)

    Ma, Ruihua; Ji, Tiantian; Chen, Degao; Dong, Wenqian; Zhang, Huafeng; Yin, Xiaonan; Ma, Jingwei; Liang, Xiaoyu; Zhang, Yi; Shen, Guanxin; Qin, Xiaofeng; Huang, Bo

    2016-04-01

    Despite identification of macrophages in tumors (tumor-associated macrophages, TAM) as potential targets for cancer therapy, the origin and function of TAM in the context of malignancy remain poorly characterized. Here, we show that microparticles (MPs), as a by-product, released by tumor cells act as a general mechanism to mediate M2 polarization of TAM. Taking up tumor MPs by macrophages is a very efficient process, which in turn results in the polarization of macrophages into M2 type, not only leading to promoting tumor growth and metastasis but also facilitating cancer stem cell development. Moreover, we demonstrate that the underlying mechanism involves the activation of the cGAS/STING/TBK1/STAT6 pathway by tumor MPs. Finally, in addition to murine tumor MPs, we show that human counterparts also possess consistent effect on human M2 polarization. These findings provide new insights into a critical role of tumor MPs in remodeling of tumor microenvironment and better understanding of the communications between tumors and macrophages.

  13. Isolation and characterization of human glycophorin A cDNAs using a synthetic oligonucleotide approach: nucleotide sequence, mRNA structure and regulation by 12-O-tetradecanoylphorbol 13-acetate (TPA)

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1986-01-01

    The authors have previously shown that treatment of human erythroleukemic K562 cells with the tumor-promoting phorbol ester, TPA, results in a diminished expression of glycophorin A at the level of protein biosynthesis and in vitro mRNA translation activity. To further examine the structure, relationships and expression of human glycophorins they have successfully isolated and sequenced several glycophorin A specific cDNA clones derived from K562 cells, by making extensive use of mixed and exact synthetic oligonucleotides as primers and radioactively labeled probes. The nucleotide sequence obtained from the largest glycophorin A cDNA suggests the presence of a hydrophobic leader-like peptide of at least 19 amino acids. Northern gel analysis using both whole cDNA-plasmid and synthetic oligonucleotide probes revealed the existence of multiple mRNAs, three of which they believe to be glycophorin A-specific, whereas a fourth and smaller mRNA appears to be glycophorin B-specific. Furthermore, the abundance of all four glycophorin mRNAs were found to be extensively reduced following treatment of K562 cells with TPA suggesting coordinate regulation, possibly at the level of gene transcription

  14. Flow cytometric evaluation of the effects of 3-bromopyruvate (3BP) and dichloracetate (DCA) on THP-1 cells: a multiparameter analysis

    NARCIS (Netherlands)

    Verhoeven, H.A.; Griensven, van L.J.L.D.

    2012-01-01

    Two human leukemia cells K562 and THP-1, the breast cancer lines MCF-7 and ZR-75-1, and the melanoma line MDA-MB-435S were compared by flowcytometry for their behaviour at increasing levels of 3BP. K562 and THP-1 responded to 3BP by membrane depolarization and increased ROS; MCF-7 and ZR-75-1 showed

  15. Cell kinetics of Ehrlich ascites carcinoma transplanted in mice with different degrees of tumor resistance

    International Nuclear Information System (INIS)

    Brandt, K.L.B.

    1974-01-01

    Cell proliferation kinetics of Ehrlich ascites carcinoma grown in two strains of mice with different degrees of resistance to this tumor were examined. In the first portion of the study, growth of Ehrlich ascites carcinoma in nonresistant Swiss (Iowa) and slightly resistant CF1 mice was examined by measuring animal weight gain and host survival time after intraperitoneal injection of tumor cells. Since it appeared that CF1 mice were inherently more resistant than Swiss mice to the Ehrlich carcinoma, the second part of this investigation involved attempts to immunize CF1 mice against the tumor. Subcutaneous injections of Ehrlich cells previously exposed in vitro to 5000 R of 250 kVp x rays were utilized. One immunizing inoculation of lethally irradiated tumor cells afforded protection against an intraperitoneal challenge of 40 thousand Ehrlich cells. By varying the number and timing of immunizing inoculations it was possible to induce different degrees of tumor resistance in these mice. The most effective immunizing procedure utilized multiple inoculations of lethally irradiated tumor cells (LITC), followed by challenges with viable tumor cells (less than 1 million) which were rejected. These mice could then resist challenge inocula of 4 million viable tumor cells. In a few animals the immunizing procedures were ineffective; these animals, when challenged, developed even larger tumors than control mice. Tumor cell proliferation kinetics in these animals as well as in mice that were rejecting the tumor were examined in the third phase of the project. A shortening of the cell cycle was observed in almost all LITC-treated mice, whether tumor growth was eventually inhibited or stimulated. Decreased duration of the DNA-synthesis phase (S) of the tumor cell cycle was also a consistent finding. The role of the immune response in stimulating mitosis as well as in killing foreign cells was discussed. (U.S.)

  16. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence......Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, based on the fact that TGF-ß1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-ß1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12...

  17. Non-cell autonomous or secretory tumor suppression.

    Science.gov (United States)

    Chua, Christelle En Lin; Chan, Shu Ning; Tang, Bor Luen

    2014-10-01

    Many malignancies result from deletions or loss-of-function mutations in one or more tumor suppressor genes, the products of which curb unrestrained growth or induce cell death in those with dysregulated proliferative capacities. Most tumor suppressors act in a cell autonomous manner, and only very few proteins are shown to exert a non-cell autonomous tumor suppressor function on other cells. Examples of these include members of the secreted frizzled-related protein (SFRP) family and the secreted protein acidic and rich in cysteine (SPARC)-related proteins. Very recent findings have, however, considerably expanded our appreciation of non-cell autonomous tumor suppressor functions. Broadly, this may occur in two ways. Intracellular tumor suppressor proteins within cells could in principle inhibit aberrant growth of neighboring cells by conditioning an antitumor microenvironment through secreted factors. This is demonstrated by an apparent non-cell autonomous tumor suppressing property of p53. On the other hand, a tumor suppressor produced by a cell may be secreted extracellularly, and taken up by another cell with its activity intact. Intriguingly, this has been recently shown to occur for the phosphatase and tensin homolog (PTEN) by both conventional and unconventional modes of secretion. These recent findings would aid the development of therapeutic strategies that seek to reinstate tumor suppression activity in therapeutically recalcitrant tumor cells, which have lost it in the first place. © 2014 Wiley Periodicals, Inc.

  18. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  19. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    Science.gov (United States)

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  20. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression

    Science.gov (United States)

    Simon, Priscilla S.; Bardhan, Kankana; Chen, May R.; Paschall, Amy V.; Lu, Chunwan; Bollag, Roni J.; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L.; Pollock, Raphael E.; Liu, Kebin

    2016-01-01

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression. PMID:27014915

  1. Experimental rat lung tumor model with intrabronchial tumor cell implantation.

    Science.gov (United States)

    Gomes Neto, Antero; Simão, Antônio Felipe Leite; Miranda, Samuel de Paula; Mourão, Lívia Talita Cajaseiras; Bezerra, Nilfácio Prado; Almeida, Paulo Roberto Carvalho de; Ribeiro, Ronaldo de Albuquerque

    2008-01-01

    The objective of this study was to develop a rat lung tumor model for anticancer drug testing. Sixty-two female Wistar rats weighing 208 +/- 20 g were anesthetized intraperitoneally with 2.5% tribromoethanol (1 ml/100 g live weight), tracheotomized and intubated with an ultrafine catheter for inoculation with Walker's tumor cells. In the first step of the experiment, a technique was established for intrabronchial implantation of 10(5) to 5 x 10(5) tumor cells, and the tumor take rate was determined. The second stage consisted of determining tumor volume, correlating findings from high-resolution computed tomography (HRCT) with findings from necropsia and determining time of survival. The tumor take rate was 94.7% for implants with 4 x 10(5) tumor cells, HRCT and necropsia findings matched closely (r=0.953; p<0.0001), the median time of survival was 11 days, and surgical mortality was 4.8%. The present rat lung tumor model was shown to be feasible: the take rate was high, surgical mortality was negligible and the procedure was simple to perform and easily reproduced. HRCT was found to be a highly accurate tool for tumor diagnosis, localization and measurement and may be recommended for monitoring tumor growth in this model.

  2. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Xin P

    2017-04-01

    Full Text Available Pengliang Xin, Chuntuan Li, Yan Zheng, Qunyi Peng, Huifang Xiao, Yuanling Huang, Xiongpeng Zhu Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Licheng, Quanzhou, Fujian Province, China Background: Phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is a therapy target of cancer. We aimed to confirm the effect of dual PI3K/mTOR inhibitor NVP-BEZ235 on proliferation, apoptosis, and autophagy of chronic myelogenous leukemia (CML cells and sensitivity of tyrosine kinase inhibitor in vitro.Methods: Two human CML cell lines, K562 and KBM7R (T315I mutant strain, were used. The proliferation of CML cells was detected by MTS (Owen’s reagent assay. Cell cycle and apoptosis assay were examined by flow cytometric analysis. The phosphorylation levels and the expression levels were both evaluated by Western blot analysis. NVP-BEZ235 in combination with imatinib was also used to reveal the effect on proliferation and apoptosis.Results: NVP-BEZ235 significantly inhibited the proliferation in a time- and dose-dependent manner, and the half-maximal inhibitory concentration values of NVP-BEZ235 inhibiting the proliferation of K562 and KBM7R were 0.37±0.21 and 0.43±0.27 µmol/L, respectively, after 48 h. Cell apoptosis assay showed that NVP-BEZ235 significantly increased the late apoptotic cells. Cell cycle analysis indicated that the cells were mostly arrested in G1/G0 phase after treatment by NVP-BEZ235. In addition, results also found that, after treatment by NVP-BEZ235, phosphorylation levels of Akt kinase and S6K kinase significantly reduced, and the expression levels of cleaved caspase-3 significantly increased; meanwhile, the expression levels of caspase-3, B-cell lymphoma-2, cyclin D1, and cyclin D2 significantly decreased, and the ratio of LC3II/LC3I was significantly increased with increased LC3II expression level. Moreover, imatinib in combination with NVP-BEZ235

  3. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression.

    Science.gov (United States)

    Han, Yanmei; Liu, Qiuyan; Hou, Jin; Gu, Yan; Zhang, Yi; Chen, Zhubo; Fan, Jia; Zhou, Weiping; Qiu, Shuangjian; Zhang, Yonghong; Dong, Tao; Li, Ning; Jiang, Zhengping; Zhu, Ha; Zhang, Qian; Ma, Yuanwu; Zhang, Lianfeng; Wang, Qingqing; Yu, Yizhi; Li, Nan; Cao, Xuetao

    2018-04-19

    Identifying tumor-induced leukocyte subsets and their derived circulating factors has been instrumental in understanding cancer as a systemic disease. Nevertheless, how primary tumor-induced non-leukocyte populations in distal organs contribute to systemic spread remains poorly defined. Here, we report one population of tumor-inducible, erythroblast-like cells (Ter-cells) deriving from megakaryocyte-erythroid progenitor cells with a unique Ter-119 + CD45 - CD71 + phenotype. Ter-cells are enriched in the enlarged spleen of hosts bearing advanced tumors and facilitate tumor progression by secreting neurotrophic factor artemin into the blood. Transforming growth factor β (TGF-β) and Smad3 activation are important in Ter-cell generation. In vivo blockade of Ter-cell-derived artemin inhibits hepatocellular carcinoma (HCC) growth, and artemin deficiency abolishes Ter-cells' tumor-promoting ability. We confirm the presence of splenic artemin-positive Ter-cells in human HCC patients and show that significantly elevated serum artemin correlates with poor prognosis. We propose that Ter-cells and the secreted artemin play important roles in cancer progression with prognostic and therapeutic implications. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Dudás, József; Fullár, Alexandra; Romani, Angela; Pritz, Christian; Kovalszky, Ilona; Hans Schartinger, Volker; Mathias Sprinzl, Georg; Riechelmann, Herbert

    2013-01-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells

  5. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Fullár, Alexandra, E-mail: fullarsz@gmail.com [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Romani, Angela, E-mail: angela.romani@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Pritz, Christian, E-mail: christian.pritz@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Kovalszky, Ilona, E-mail: koval@korb1.sote.hu [1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest (Hungary); Hans Schartinger, Volker, E-mail: volker.schartinger@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Mathias Sprinzl, Georg, E-mail: georg.sprinzl@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria); Riechelmann, Herbert, E-mail: herbert.riechelmann@i-med.ac.at [Department of Otorhinolaryngology and Head and Neck Surgery, Medical University Innsbruck, Anichstrasse 35, A-6020 Innsbruck (Austria)

    2013-04-01

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factor κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.

  6. JS-K has Potent Anti-Angiogenic Activity in vitro and Inhibits Tumor Angiogenesis in a Multiple Myeloma Model in vivo

    Science.gov (United States)

    Kaur, Gurmeet; Kiziltepe, Tanyel; Anderson, Kenneth C.; Kutok, Jeffery L.; Jia, Lee; Boucher, Kenneth M.; Saavedra, Joseph E.; Keefer, Larry K.; Shami, Paul J.

    2009-01-01

    Glutathione S-Transferases (GST) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases NO on metabolism by GST. O2-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent anti-neoplastic activity. We studied the effect of JS-K on angiogenesis. JS-K inhibited the proliferation of HUVEC’s with a 50% inhibitory concentration (IC50) of 0.432, 0.466, and 0.505 µM at 24, 48, and 72 hours, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 µM, respectively. JS-K inhibited cell migration at 5 hours using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 µM. In the chick aortic ring assay using VEGF or FGF-b for vessel growth stimulation, 0.5 µM JS-K completely inhibited vessel growth. JS-K inhibited tumor angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. JS-K is a potent inhibitor of angiogenesis in vitro and tumor vessel growth in vivo. As such, it establishes a new class of anti-neoplastic agents that target the malignant cells directly as well as their microenvironment. PMID:20723011

  7. [Clinical Significance and Mechanism of PI3K p110β Overexpression
 in Non-small Cell Lung Cancer].

    Science.gov (United States)

    Xiong, Yan; Qu, Linlin; Li, Dong; Wang, Ying; Li, Ting

    2017-12-20

    Phosphatidylinositide 3-kinases (PI3K) pathway is one of the most important pathway in cells, which plays an important role in proliferation, growth, differentiation and mobility of cells. The aberrant activation of PI3K pathway was exsited in 50%-70% cases of non-small cell lung cancer (NSCLC). As the key point in PI3K pathway, expression of PI3K plays a critical role in activity of the pathway, which is closely related with the initiation and development of NSCLC, furthermore with the response of tumor to target treatment. Our study is to analyze the clinical significance and mechanism of PI3K p110β overexpression in NSCLC. Expression of p110β and other proteins in PI3K pathway were detected by immunohistochemistry in 170 cases of NSCLC. Correlation between expression of p110β and clinicopathological characteristics of patients as well as expression of other proteins in PI3K pathway was analyzed. In 170 NSCLC, overexpression of p110β was found in 41.8% of cases. Correlation between overexpression of p110β and Ki 67 index was significant (P=0.040). No significant difference of p110 expression were observed among different cohorts of gender, age, smoking status, classification, grade and stage (P>0.05). Correlation between expression of p110β and other proteins in PI3K pathway was various, positively correlated with PTEN loss (P0.05). Overexpression of p110β is frequently detected in NSCLC. It is closely related with PTEN loss NSCLC, which shows that it plays an important role in maintaining and developing of tumors driven by PTEN loss. It initiates the proliferation of tumor cells in NSCLC without phosphorylating Akt. PIK3CB mutation is not the major cause of overexpression of p110β. Dysregulation of receptor tyrosine kinases (RTKs) doesn't show potential of increasing p110β level in cancer tissue, furthermore the expression of p110β in tumors with EGFR mutation is lower than in tumors without EGFR mutation.

  8. Stimulation of granulocytic cell iodination by pine cone antitumor substances

    International Nuclear Information System (INIS)

    Unten, S.; Sakagami, H.; Konno, K.

    1989-01-01

    Antitumor substances (Fractions VI and VII) prepared from the NaOH extract of pine cone significantly stimulated the iodination (incorporation of radioactive iodine into an acid-insoluble fraction) of human peripheral blood adherent mononuclear cells, polymorphonuclear cells (PMN), and human promyelocytic leukemic HL-60 cells. In contrast, these fractions did not significantly increase the iodination of nonadherent mononuclear cells, red blood cells, other human leukemic cell lines (U-937, THP-1, K-562), human diploid fibroblast (UT20Lu), or mouse cell lines (L-929, J774.1). Iodination of HL-60 cells, which were induced to differentiate by treatment with either retinoic acid or tumor necrosis factor, were stimulated less than untreated cells. The stimulation of iodination of both PMN and HL-60 cells required the continuous presence of these fractions and was almost completely abolished by the presence of myeloperoxidase inhibitors. The stimulation activity of these fractions was generally higher than that of various other immunopotentiators. Possible mechanisms of extract stimulation of myeloperoxidase-containing cell iodination are discussed

  9. Eurycomanone and Eurycomanol from Eurycoma longifolia Jack as Regulators of Signaling Pathways Involved in Proliferation, Cell Death and Inflammation

    Directory of Open Access Journals (Sweden)

    Shéhérazade Hajjouli

    2014-09-01

    Full Text Available Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.

  10. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  11. Studies on cross-immunity among syngeneic tumors by immunization with gamma-irradiated tumor cells

    International Nuclear Information System (INIS)

    Ito, Izumi

    1977-01-01

    In order to clarify whether cross-immunity among 3-methyl-cholanthrene (MCA)-induced sarcomas in C3H/He mice can be established or not, transplantations of syngeneic tumors were carried out in mice immunized with gamma-irradiated (13,000 rad 60 Co) tumor cells and in those immunized with living tumor cells thereafter. The following results were obtained. By using immunizing procedure with only gamma-irradiated tumor cells, a pair of tumors originating from one and the same mouse showed cross-resistance to each other. However, no such evidence was seen among tumors originating from different mice. Cross-immunity among syngeneic tumors originating from different mice could be clearly observed, when immunizing procedure using living tumor cells was added after the treatment with gamma-irradiated tumor cells. It was considered that common antigenicity among MCA-induced sarcoma cells was decreased by gamma-irradiation and that individual differences of tumor antigenecity were shown distinctly under such conditions. (auth.)

  12. Curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway.

    Science.gov (United States)

    Tian, Binqiang; Zhao, Yingmei; Liang, Tao; Ye, Xuxiao; Li, Zuowei; Yan, Dongliang; Fu, Qiang; Li, Yonghui

    2017-08-01

    We have previously reported that curcumin inhibits urothelial tumor development in a rat bladder carcinogenesis model. In this study, we report that curcumin inhibits urothelial tumor development by suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway. Curcumin inhibits IGF2 expression at the transcriptional level and decreases the phosphorylation levels of IGF1R and IRS-1 in bladder cancer cells and N-methyl-N-nitrosourea (MNU)-induced urothelial tumor tissue. Ectopic expression of IGF2 and IGF1R, but not IGF1, in bladder cancer cells restored this process, suggesting that IGF2 is a target of curcumin. Moreover, introduction of constitutively active AKT1 abolished the inhibitory effect of curcumin on cell proliferation, migration, and restored the phosphorylation levels of 4E-BP1 and S6K1, suggesting that curcumin functions via suppressing IGF2-mediated AKT/mTOR signaling pathway. In summary, our results reveal that suppressing IGF2 and IGF2-mediated PI3K/AKT/mTOR signaling pathway is one of the mechanisms of action of curcumin. Our findings suggest a new therapeutic strategy against human bladder cancer caused by aberrant activation of IGF2, which are useful for translational application of curcumin.

  13. Characterization of Compounds with Tumor–Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii Mycelia Produced by Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Henan Zhang

    2017-04-01

    Full Text Available The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC, high-speed countercurrent chromatography (HSCCC, and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS spectroscopic methods as ergosterol (RF1, ergosta-7,22-dien-3β-yl pentadecanoate (RF3, 3,4-dihydroxy benzaldehyde(RF6, inoscavinA (RF7, baicalein(RF10, and 24-ethylcholesta-5,22-dien-3β-ol (RF13. To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  14. The PDL1-PD1 Axis Converts Human Th1 Cells Into Regulatory T Cells

    Science.gov (United States)

    Amarnath, Shoba; Mangus, Courtney W.; Wang, James C.M.; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E.; Massey, Paul R.; Felizardo, Tania C.; Riley, James L.; Levine, Bruce L.; June, Carl H.; Medin, Jeffrey A.; Fowler, Daniel H.

    2011-01-01

    Immune surveillance by T helper type 1 (Th1) cells is critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GvHD) after transplantation. The inhibitory molecule programmed death ligand-1 (PDL1) has been shown to anergize human Th1 cells, but other mechanisms of PDL1-mediated Th1 inhibition such as the conversion of Th1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause Th1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET+ Th1 cells into FOXP3+ regulatory T cells (TREGS) in vivo, thereby preventing human-into-mouse xenogeneic GvHD (xGvHD). Either blocking PD1 expression on Th1 cells by siRNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized Th1 cell differentiation during PDL1 challenge and restored the capacity of Th1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human Th1 cells to manifest in vivo plasticity, resulting in a TREG phenotype that severely impairs cell-mediated immunity. Converting human Th1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GvHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection. PMID:22133721

  15. Interaction of leukemic cells with proteins of the extracellular matrix Interações de células leucêmicas com proteínas da matriz extracelular

    Directory of Open Access Journals (Sweden)

    Adriana Rodrigues-Anjos

    2004-01-01

    Full Text Available The interaction of neoplastic cells with basement membrane molecules is the first step for the dissemination of tumor cells in vivo. Leukemic cells have a great ability to spread in the host, since cells are released from the bone marrow to the circulation. In this study we analysed whether CEM, U937, K562 and HL-60 cells were able to attach to different concentrations of laminin and/or fibronectin and/or type IV collagen. Attachment to type IV collagen was low, but it increased with the addition of laminin and occurred in all four leukemic cell lines. On the other hand, attachment to fibronectin was higher, but it decreased with the addition of laminin in the assays using U937 and HL-60 cells. The combination of type IV collagen and fibronectin was a good substratum for cellular attachment. However, the addition of laminin to this substratum impaired its attachment activity in U937, HL-60 and K562. These data suggest that laminin may control cellular attachment to the extracellular matrix during leukemic dissemination in hosts in different ways.A interação de células neoplásicas com moléculas da membrana basal é a primeira etapa para a disseminação, in vivo, de células tumorais in vivo. As células leucêmicas possuem grande capacidade de espraiamento e disseminação no organismo uma vez que as mesmas são liberadas da medula óssea para a circulação. Neste trabalho avaliamos a capacidade das linhagens celulares CEM, U937, K562 and HL-60 em aderirem a uma matriz extracelular constituída por diferentes concentrações de laminina e,ou fibronectina e sobre colágeno IV. A adesão de todas a linhagens leucêmicas a colágeno IV foi baixa, mas aumentou com a associação à laminina. Por outro lado, as células U937 e HL-60 apresentaram alta ligação à fibronectina porém, foi reduzida com a adição de laminina. A associação de colágeno IV e fibronectina possibilitou um bom substrato para a adesão celular. Entretanto, a adi

  16. Role of Axumin PET Scan in Germ Cell Tumor

    Science.gov (United States)

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  17. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    Science.gov (United States)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  18. The Supportive Role of Insulin-Like Growth Factor-I in the Differentiation of Murine Mesenchymal Stem Cells into Corneal-Like Cells

    Czech Academy of Sciences Publication Activity Database

    Trošan, Peter; Javorková, Eliška; Zajícová, Alena; Hájková, Michaela; Heřmánková, Barbora; Kössl, Jan; Holáň, Vladimír

    2016-01-01

    Roč. 7, č. 17 (2016), s. 23156-23169 ISSN 1547-3287 R&D Projects: GA ČR(CZ) GA14-12580S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1309; GA MŠk(CZ) LO1508 Institutional support: RVO:68378041 Keywords : mesenchymal stem cells * corneal-like cells * insulin -like growth factor-I * differentiation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2016

  19. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment.

    Science.gov (United States)

    Zhou, Zhuo Long; Ma, Jing; Tong, Ming-Hui; Chan, Barbara Pui; Wong, Alice Sze Tsai; Ngan, Alfonso Hing Wan

    The adhesion and traction behavior of leukemia cells in their microenvironment is directly linked to their migration, which is a prime issue affecting the release of cancer cells from the bone marrow and hence metastasis. In assessing the effectiveness of phorbol 12-myristate 13-acetate (PMA) treatment, the conventional batch-cell transwell-migration assay may not indicate the intrinsic effect of the treatment on migration, since the treatment may also affect other cellular behavior, such as proliferation or death. In this study, the pN-level adhesion and traction forces between single leukemia cells and their microenvironment were directly measured using optical tweezers and traction-force microscopy. The effects of PMA on K562 and THP1 leukemia cells were studied, and the results showed that PMA treatment significantly increased cell adhesion with extracellular matrix proteins, bone marrow stromal cells, and human fibroblasts. PMA treatment also significantly increased the traction of THP1 cells on bovine serum albumin proteins, although the effect on K562 cells was insignificant. Western blots showed an increased expression of E-cadherin and vimentin proteins after the leukemia cells were treated with PMA. The study suggests that PMA upregulates adhesion and thus suppresses the migration of both K562 and THP1 cells in their microenvironment. The ability of optical tweezers and traction-force microscopy to measure directly pN-level cell-protein or cell-cell contact was also demonstrated.

  20. Effect of verapamil on cellular uptake of Tc-99m MIBI and tetrofosmin on several cancer cells

    International Nuclear Information System (INIS)

    Kim, Dae Hyun; Yoo, Jung Ah; Bae, Jin Ho; Jeong, Shin Young; Suh, Myung Rang; Ahn, Byeong Cheol; Lee, Kyu Bo; Lee, Jae Tae

    2004-01-01

    Cellular uptake of 99 mTc-sestamibi (MIBI) and 99 mTc-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Cellular uptakes of Tc-99m MIBI and TF were measured in erythroleukemia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto 200 μM at 1*10 6 cells/ m l at 37.deg.C. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of 100 μM and the maximal increase at 50 μM was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7m SK-OV3 cells were decreased with verapamil treatment at a concentration over 1 μM. With a concentration of 200 μM verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with 10μM, but were also decreased with verapamil higher than 10μM, resulting 40% and 5% of baseline at 50 μM. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at 200 μM. Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased

  1. Autocrine Effects of Tumor-Derived Complement

    Directory of Open Access Journals (Sweden)

    Min Soon Cho

    2014-03-01

    Full Text Available We describe a role for the complement system in enhancing cancer growth. Cancer cells secrete complement proteins that stimulate tumor growth upon activation. Complement promotes tumor growth via a direct autocrine effect that is partially independent of tumor-infiltrating cytotoxic T cells. Activated C5aR and C3aR signal through the PI3K/AKT pathway in cancer cells, and silencing the PI3K or AKT gene in cancer cells eliminates the progrowth effects of C5aR and C3aR stimulation. In patients with ovarian or lung cancer, higher tumoral C3 or C5aR mRNA levels were associated with decreased overall survival. These data identify a role for tumor-derived complement proteins in promoting tumor growth, and they therefore have substantial clinical and therapeutic implications.

  2. Isoginkgetin inhibits tumor cell invasion by regulating phosphatidylinositol 3-kinase/Akt-dependent matrix metalloproteinase-9 expression.

    Science.gov (United States)

    Yoon, Sang-Oh; Shin, Sejeong; Lee, Ho-Jae; Chun, Hyo-Kon; Chung, An-Sik

    2006-11-01

    Matrix metalloproteinase (MMP)-9 plays a key role in tumor invasion. Inhibitors of MMP-9 were screened from Metasequoia glyptostroboides (Dawn redwood) and one potent inhibitor, isoginkgetin, a biflavonoid, was identified. Noncytotoxic levels of isoginkgetin decreased MMP-9 production profoundly, but up-regulated the level of tissue inhibitor of metalloproteinase (TIMP)-1, an inhibitor of MMP-9, in HT1080 human fibrosarcoma cells. The major mechanism of Ras-dependent MMP-9 production in HT1080 cells was phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor-kappaB (NF-kappaB) activation. Expression of dominant-active H-Ras and p85 (a subunit of PI3K) increased MMP-9 activity, whereas dominant-negative forms of these molecules decreased the level of MMP-9. H-Ras did not increase MMP-9 in the presence of a PI3K inhibitor, LY294002, and a NF-kappaB inhibitor, SN50. Further studies showed that isoginkgetin regulated MMP-9 production via PI3K/Akt/NF-kappaB pathway, as evidenced by the findings that isoginkgetin inhibited activities of both Akt and NF-kappaB. PI3K/Akt is a well-known key pathway for cell invasion, and isoginkgetin inhibited HT1080 tumor cell invasion substantially. Isoginkgetin was also quite effective in inhibiting the activities of Akt and MMP-9 in MDA-MB-231 breast carcinomas and B16F10 melanoma. Moreover, isoginkgetin treatment resulted in marked decrease in invasion of these cells. In summary, PI3K/Akt is a major pathway for MMP-9 expression and isoginkgetin markedly decreased MMP-9 expression and invasion through inhibition of this pathway. This suggests that isoginkgetin could be a potential candidate as a therapeutic agent against tumor invasion.

  3. Tumor cell culture on collagen–chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies

    Directory of Open Access Journals (Sweden)

    Aziz Mahmoudzadeh

    2016-07-01

    Full Text Available Tumor cells naturally live in three-dimensional (3D microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen–chitosan scaffold compared with 2D plate cultures. Collagen–chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen–chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies.

  4. Tumor cell culture on collagen-chitosan scaffolds as three-dimensional tumor model: A suitable model for tumor studies.

    Science.gov (United States)

    Mahmoudzadeh, Aziz; Mohammadpour, Hemn

    2016-07-01

    Tumor cells naturally live in three-dimensional (3D) microenvironments, while common laboratory tests and evaluations are done in two-dimensional (2D) plates. This study examined the impact of cultured 4T1 cancer cells in a 3D collagen-chitosan scaffold compared with 2D plate cultures. Collagen-chitosan scaffolds were provided and passed confirmatory tests. 4T1 tumor cells were cultured on scaffolds and then tumor cells growth rate, resistance to X-ray radiation, and cyclophosphamide as a chemotherapy drug were analyzed. Furthermore, 4T1 cells were extracted from the scaffold model and were injected into the mice. Tumor growth rate, survival rate, and systemic immune responses were evaluated. Our results showed that 4T1 cells infiltrated the scaffolds pores and constructed a 3D microenvironment. Furthermore, 3D cultured tumor cells showed a slower proliferation rate, increased levels of survival to the X-ray irradiation, and enhanced resistance to chemotherapy drugs in comparison with 2D plate cultures. Transfer of extracted cells to the mice caused enhanced tumor volume and decreased life span. This study indicated that collagen-chitosan nanoscaffolds provide a suitable model of tumor that would be appropriate for tumor studies. Copyright © 2016. Published by Elsevier B.V.

  5. Altered deoxyribonuclease activity in cancer cells and its role in non toxic adjuvant cancer therapy with mixed vitamins C and K3.

    Science.gov (United States)

    Taper, Henryk S

    2008-01-01

    The alterations of deoxyribonuclease DNase activity in cancer cells were the basis of the utilization of mixed vitamins C and K3 in a nontoxic, adjuvant cancer therapy. In order to localize exactly the altered activities of DNase in cancer cells, histochemical methods were utilized. The deficiency of alkaline and acid DNase activity appeared to be characteristic for non-necrotic cells of malignant human and animal tumors. This enzymatic deficiency appeared in experimental carcinogenesis before the phenotypic signs of malignancy. Tumor promoters directly reduced the activity of both DNases. The incidence of spontaneous malignant human and animal tumors appeared to be inversely proportional to the intensity of the activity of both DNases in normal cells and tissues from which these tumors were derived. The fact that alkaline and acid DNase activity was reactivated during the spontaneous and therapeutically induced necrosis of cancer cells suggests that this enzymatic deficiency of DNase activity in cancer cells was due to the action of specific inhibitors of DNases. Characteristic variations of serum alkaline DNase activity in positive responders to therapy, examined in more than 800 cancer-bearing patients, may be the basis for the development of a useful test for therapeutic prognosis and for monitoring of cancer bearing patients. Acid DNase was selectively reactivated in malignant tumor cells by vitamin C (sodium ascorbate), whereas alkaline DNase was reactivated by vitamin K3. Joint vitamin C and K3 administration produced in vitro and in vivo tumor growth inhibition, potentiation and sensitization of chemo- and/or radiotherapy and a decrease in the number of metastases in animals with experimental tumors. Joint vitamin C and K3 administration may be considered as a possible new, non-toxic, adjuvant cancer therapy, which can be easily introduced into the classic protocols of clinical cancer therapy without any supplementary risk for patients.

  6. Interaction of tumor cells with the microenvironment

    Directory of Open Access Journals (Sweden)

    Lehnert Hendrik

    2011-09-01

    Full Text Available Abstract Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT, migration, invasion (i.e. migration through connective tissue, metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.

  7. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  8. The lifetime of hypoxic human tumor cells

    International Nuclear Information System (INIS)

    Durand, Ralph E.; Sham, Edward

    1998-01-01

    Purpose: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. Materials and Methods: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. Results: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. Conclusion: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system

  9. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Nan, Yang; Guo, Liyun; Song, Yunpeng; Wang, Le; Yu, Kai; Huang, Qiang; Zhong, Yue

    2017-08-01

    Glioblastoma is a highly invasive and challenging tumor of the central nervous system. The mutation/deletion of the tumor suppressor phosphatase and tensin homolog (PTEN) gene is the main genetic change identified in glioblastomas. PTEN plays a critical role in tumorigenesis and has been shown to be an important therapeutic target. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 is commonly used to inhibit glioma cell growth via regulation of the PI3K/AKT signaling pathway. In this study, we examined the growth inhibitory effects of a combinatorial therapy of adenoviral-mediated PTEN (Ad-PTEN) and LY294002 on LN229 and U251 glioma cells in vitro and on tumor xenografts in vivo. In vitro, LN229 and U251 glioma cells were treated by combinatorial therapy with Ad-PTEN and LY294002. The growth ability was determined by MTT assay. The cell cycle distribution was analyzed by flow cytometry. Cell invasive ability was analyzed by transwell invasion assay and cell apoptosis analysis via FITC-Annexin V analysis. In vivo, U251 subcutaneous glioblastoma xenograft was used to assay anti-tumor effect of combinatorial therapy with Ad-PTEN and LY294002 by mean volume of tumors, immunohistochemistry and TUNEL method. The combinatorial treatment clearly suppressed cell proliferation, arrested the cell cycle, reduced cell invasion and promoted cell apoptosis compared with the Ad-PTEN or LY294002 treatment alone. The treatment worked by inhibiting the PI3K/AKT pathway. In addition, the growth of U251 glioma xenografts treated with the combination of Ad-PTEN and LY294002 was significantly inhibited compared with those treated with Ad-PTEN or LY294002 alone. Our data indicated that the combination of Ad-PTEN and LY294002 effectively suppressed the malignant growth of human glioma cells in vitro and in tumor xenografts, suggesting a promising new approach for glioma gene therapy that warrants further investigation.

  10. Galectin-3 mediates cross-talk between K-Ras and Let-7c tumor suppressor microRNA.

    Directory of Open Access Journals (Sweden)

    Ran Levy

    Full Text Available BACKGROUND: Galectin-3 (Gal-3 and active (GTP-bound K-Ras contribute to the malignant phenotype of many human tumors by increasing the rate of cell proliferation, survival, and migration. These Gal-3-mediated effects result from a selective binding to K-Ras.GTP, causing increased nanoclustering in the cell membrane and leading to robust Ras signaling. Regulation of the interactions between Gal-3 and active K-Ras is not fully understood. METHODS AND FINDINGS: To gain a better understanding of what regulates the critical interactions between these two proteins, we examined the role of Gal-3 in the regulation of K-Ras by using Gal-3-knockout mouse embryonic-fibroblasts (Gal-3-/- MEFs and/or Gal-3/Gal-1 double-knockout MEFs. We found that knockout of Gal-3 induced strong downregulation (∼60% of K-Ras and K-Ras.GTP. The downregulation was somewhat more marked in the double-knockout MEFs, in which we also detected robust inhibition(∼50% of ERK and Akt activation. These additional effects are probably attributable to inhibition of the weak interactions of K-Ras.GTP with Gal-1. Re-expression of Gal-3 reversed the phenotype of the Gal-3-/- MEFs and dramatically reduced the disappearance of K-Ras in the presence of cycloheximide to the levels seen in wild-type MEFs. Furthermore, phosphorylation of Gal-3 by casein kinase-1 (CK-1 induced translocation of Gal-3 from the nucleus to the cytoplasm and the plasma membrane, leading to K-Ras stabilization accompanied by downregulation of the tumor suppressor miRNA let-7c, known to negatively control K-Ras transcription. CONCLUSIONS: Our results suggest a novel cross-talk between Gal-3-mediated downregulation of let 7c microRNA (which in turn negatively regulates K-Ras transcription and elucidates the association among Gal-3 let-7c and K-Ras transcription/translation, cellular compartmentalization and activity.

  11. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L

    1988-01-01

    cells identified this protein in BAEC lysates. In frozen sections, these polyclonal antibodies and monoclonal antibodies raised against human tumor 69-kD stained the endothelium of bovine aorta and the medial smooth muscle cells, but not surrounding connective tissue or elastin fibers. When...... nonpermeabilized BAEC were stained in an in vitro migration assay, there appeared to be apical patches of 69 kD staining in stationary cells. However, when released from contact inhibition, 69 kD was localized to ruffling membranes on cells at the migrating front. Permeabilized BAEC stained for 69 kD diffusely...... in permeabilized cultured microvascular endothelial cells in a continuous staining pattern at 6 h postplating which redistributed to punctate patches along the length of the filaments at confluence (96 h). In addition, 69 kD co-distribution with laminin could also be demonstrated in cultured subconfluent cells...

  12. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins.

    Science.gov (United States)

    Thibado, Seth P; Thornthwaite, Jerry T; Ballard, Thomas K; Goodman, Brandon T

    2018-02-01

    Rapidly accumulating laboratory and clinical research evidence indicates that anthocyanins exhibit anticancer activity and the evaluation of bilberry anthocyanins as chemo-preventive agents is progressing. It has previously been demonstrated that anthocyanins upregulate tumor suppressor genes, induce apoptosis in cancer cells, repair and protect genomic DNA integrity, which is important in reducing age-associated oxidative stress, and improve neuronal and cognitive brain function. Bilberry anthocyanins have pronounced health effects, even though they have a low bioavailability. To increase the bioavailability, Bilberry was encapsulated in 5.5 nm diameter liposomal micelles, called NutraNanoSpheres (NNS), at a concentration of 2.5 mg/50 µl [25% (w/w) anthocyanins]. These Bilberry NNS were used to study the apoptotic/cytotoxic effects on K562 Human Erythroleukemic cancer cells. Flow cytometric fluorescent quantification of the uptake of propidium iodide in a special cell viability formulation into dead K562 cells was used to determine the effects of Bilberry on the viability of K562 cells. The concentrations of Bilberry that demonstrated the greatest levels of percentage inhibition, relative to the control populations, were biphasic, revealing a 60-70% inhibition between 0.018-1.14 mg/ml (n=6) and 60% inhibition at 4 mg/ml. The lowest percentage inhibition (30%) occurred at 2 mg/ml. The lethal dose 50 was determined to be 0.01-0.04 mg/ml of Bilberry per 105 K562 cells at 72 h of cell culture exposure. At 48 h incubation, the highest percentage of inhibition was only 27%, suggesting involvement of a long-term apoptotic event. These levels, which demonstrated direct cytotoxic effects, were 8-40 times lower than levels required for Bilberry that is not encapsulated. The increase in bioavailability with the Bilberry NNS and its water solubility demonstrated the feasibility of using Bilberry NNS in cancer patient clinical trials.

  13. [Isolation and identification of brain tumor stem cells from human brain neuroepithelial tumors].

    Science.gov (United States)

    Fang, Jia-sheng; Deng, Yong-wen; Li, Ming-chu; Chen, Feng-Hua; Wang, Yan-jin; Lu, Ming; Fang, Fang; Wu, Jun; Yang, Zhuan-yi; Zhou, Xang-yang; Wang, Fei; Chen, Cheng

    2007-01-30

    To establish a simplified culture system for the isolation of brain tumor stem cells (BTSCs) from the tumors of human neuroepithelial tissue, to observe the growth and differentiation pattern of BTSCs, and to investigate their expression of the specific markers. Twenty-six patients with brain neuroepithelial tumors underwent tumor resection. Two pieces of tumor tissues were taken from each tumor to be dissociated, triturated into single cells in sterile DMEM-F12 medium, and then filtered. The tumor cells were seeded at a concentration of 200,000 viable cells per mL into serum-free DMEM-F12 medium simply supplemented with B27, human basic fibroblast growth factor (20 microg/L), human epidermal growth factor (20 microg /L), insulin (4 U/L), L-glutamine, penicillin and streptomycin. After the primary brain tumor spheres (BTSs) were generated, they were triturated again and passed in fresh medium. Limiting dilution assay was performed to observe the monoclone formation. 5-bromodeoxyuridine (BrdU) incorporation test was performed to observe the proliferation of the BTS. The BTSCs were cultured in mitogen-free DMEM-F12 medium supplemented with 10% fetal bovine serum to observe their differentiation. Immunocytochemistry was used to examine the expression of CD133 and nestin, specific markers of BTSC, and the rate of CD133 positive cells. Only a minority of subsets of cells from the tumors of neuroepithelial tissue had the capacity to survive, proliferate, and generate free-floating neurosphere-like BTSs in the simplified serum-free medium. These cells attached to the poly-L-lysine coated coverslips in the serum-supplemented medium and differentiated. The BTSCs were CD133 and nestin positive. The rate of CD133 positive cells in the tumor specimens was (21 +/- 6.2)% - (38 +/- 7.0)%. A new simplified culture system for the isolation of BTSCs is established. The tumors of human neuroepithelial tissue contain CD133 and nestin positive tumor stem cells which can be isolated

  14. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  15. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian (China); Zeng, Yeting [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Wang, Xinrui [Department of Biochemistry and Molecular Biology, Fujian Medical University, Fuzhou 350108, Fujian (China); Ma, Xiaoxiao [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States); Li, Qianqian; Li, Ningbo; Su, Hongying [Department of Pathology and Institute of Oncology, Preclinical School, Fujian Medical University, Fuzhou 350108, Fujian (China); Huang, Wendong [Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, CA 91010 (United States)

    2016-05-27

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  16. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    International Nuclear Information System (INIS)

    Huang, Xiongfei; Zeng, Yeting; Wang, Xinrui; Ma, Xiaoxiao; Li, Qianqian; Li, Ningbo; Su, Hongying; Huang, Wendong

    2016-01-01

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth by rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.

  17. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    International Nuclear Information System (INIS)

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-01-01

    Highlights: ► Sigma1 ligand treatment mediates decrease in tumor cell mass. ► Identification of a Sigma1 ligand with reversible translational repressor actions. ► Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  18. Norcantharidin inhibits tumor growth and vasculogenic mimicry of human gallbladder carcinomas by suppression of the PI3-K/MMPs/Ln-5γ2 signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jing-Tao; Sun, Wei; Zhang, Wen-Zhong; Ge, Chun-Yan; Liu, Zhong-Yan; Zhao, Ze-Ming; Lu, Xing-Sui; Fan, Yue-Zu

    2014-01-01

    Vasculogenic mimicry (VM) is a novel tumor blood supply in some highly aggressive malignant tumors. Recently, we reported VM existed in gallbladder carcinomas (GBCs) and the formation of the special passage through the activation of the PI3K/MMPs/Ln-5γ2 signaling pathway. GBC is a highly aggressive malignant tumor with disappointing treatments and a poor prognosis. Norcantharidin (NCTD) has shown to have multiple antitumor activities against GBCs, etc; however the exact mechanism is not thoroughly elucidated. In this study, we firstly investigated the anti-VM activity of NCTD as a VM inhibitor for GBCs and its underlying mechanisms. In vitro and in vivo experiments to determine the effects of NCTD on proliferation, invasion, migration, VM formation, hemodynamic and tumor growth of GBC-SD cells and xenografts were respectively done by proliferation, invasion, migration assays, H&E staining and CD31-PAS double stainings, optic/electron microscopy, tumor assay, and dynamic micro-MRA. Further, immunohistochemistry, immunofluorescence, Western blotting and RT-PCR were respectively used to examine expression of VM signaling-related markers PI3-K, MMP-2, MT1-MMP and Ln-5γ2 in GBC-SD cells and xenografts in vitro and in vivo. After treatment with NCTD, proliferation, invasion, migration of GBC-SD cells were inhibited; GBC-SD cells and xenografts were unable to form VM-like structures; tumor center-VM region of the xenografts exhibited a decreased signal in intensity; then cell or xenograft growth was inhibited. Whereas all of untreated GBC-SD cells and xenografts formed VM-like structures with the same conditions; the xenograft center-VM region exhibited a gradually increased signal; and facilitated cell or xenograft growth. Furthermore, expression of MMP-2 and MT1-MMP products from sections/supernates of 3-D matrices and the xenografts, and expression of PI3-K, MMP-2, MM1-MMP and Ln-5γ2 proteins/mRNAs of the xenografts were all decreased in NCTD or TIMP-2 group; (all P

  19. Metaphyseal giant cell tumor

    International Nuclear Information System (INIS)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    1986-01-01

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed. (Author) [pt

  20. TNF-α promotes cell survival through stimulation of K+ channel and NFκB activity in corneal epithelial cells

    International Nuclear Information System (INIS)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-01-01

    Tumor necrosis factor (TNF-α) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-α also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-α stimulation induced activation of a voltage-gated K + channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-α on downstream events included NFκB nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-α induced increases in p21 expression resulting in partial cell cycle attenuation in the G 1 phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-α-induced K + channel activity effectively prevented NFκB nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-α. In conclusion, TNF-α promotes survival of HCE cells through sequential stimulation of K + channel and NFκB activities. This response to TNF-α is dependent on stimulating K + channel activity because following suppression of K + channel activity TNF-α failed to activate NFκB nuclear translocation and binding to nuclear DNA

  1. Antitumor Activity of Tenacissoside H on Esophageal Cancer through Arresting Cell Cycle and Regulating PI3K/Akt-NF-κB Transduction Cascade

    Directory of Open Access Journals (Sweden)

    Yong-sen Jia

    2015-01-01

    Full Text Available Objective. The purpose of the study was to elucidate the molecular mechanism of tenacissoside H (TDH inhibiting esophageal carcinoma infiltration and proliferation. Methods. In vitro, EC9706 cells were treated with TDH. Cells proliferation and cell cycle were assayed. PI3K and NF-κB mRNAs expression were determined by real time PCR. In vivo, model of nude mice with tumor was established. Mice were treated with TDH. Inhibition ratio of tumor volume was calculated. PCNA expression was examined. Protein expression in PI3K/Akt-NF-κB signaling pathway was determined. Results. In vitro, TDH significantly inhibited cells proliferation in a time-and-dose-dependent manner. TDH arrested the cell cycle in S phase and significantly inhibited PI3K and NF-κB mRNA expression, compared with blank controlled group (P<0.05. In vivo, TDH strongly inhibits tumor growth and volume. PCNA expression was significantly decreased after treatment of TDH. TDH downregulated proteins expression in PI3K/Akt-NF-κB transduction cascade (P<0.05. Conclusion. TDH inhibited esophageal carcinoma infiltration and proliferation both in vitro and in vivo. The anticancer activity has relation to arresting the cell cycle at the S phase, inhibited the PCNA expression of transplanted tumors in nude mice, and regulated the protein expression in the PI3K/Akt-NF-κB transduction cascade.

  2. Antigen localization controls T cell-mediated tumor immunity.

    Science.gov (United States)

    Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J

    2011-08-01

    Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.

  3. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Moulder, J.E.

    1989-01-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  4. The K-Ras 4A isoform promotes apoptosis but does not affect either lifespan or spontaneous tumor incidence in aging mice

    International Nuclear Information System (INIS)

    Plowman, Sarah J.; Arends, Mark J.; Brownstein, David G.; Luo Feijun; Devenney, Paul S.; Rose, Lorraine; Ritchie, Ann-Marie; Berry, Rachel L.; Harrison, David J.; Hooper, Martin L.; Patek, Charles E.

    2006-01-01

    Ras proteins function as molecular switches in signal transduction pathways, and, here, we examined the effects of the K-ras4A and 4B splice variants on cell function by comparing wild-type embryonic stem (ES) cells with K-ras tmΔ4A/tmΔ4A (exon 4A knock-out) ES cells which express K-ras4B only and K-ras -/- (exons 1-3 knock-out) ES cells which express neither splice variant, and intestinal epithelium from wild-type and K-ras tmΔ4A/tmΔ4A mice. RT-qPCR analysis found that K-ras4B expression was reduced in K-ras tmΔ4A/tmΔ4A ES cells but unaffected in small intestine. K-Ras deficiency did not affect ES cell growth, and K-Ras4A deficiency did not affect intestinal epithelial proliferation. K-ras tmΔ4A/tmΔ4A and K-ras -/- ES cells showed a reduced capacity for differentiation following LIF withdrawal, and K-ras -/- cells were least differentiated. K-Ras4A deficiency inhibited etoposide-induced apoptosis in ES cells and intestinal epithelial cells. However, K-ras tmΔ4A/tmΔ4A ES cells were more resistant to etoposide-induced apoptosis than K-ras -/- cells. The results indicate that (1) K-Ras4A promotes apoptosis while K-Ras4B inhibits it, and (2) K-Ras4B, and possibly K-Ras4A, promotes differentiation. The findings raise the possibility that alteration of the K-Ras4A/4B isoform ratio modulates tumorigenesis by differentially affecting stem cell survival and/or differentiation. However, K-Ras4A deficiency did not affect life expectancy or spontaneous overall tumor incidence in aging mice

  5. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  7. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail ‘histone code’ and Riz1 tumor suppressor function

    Science.gov (United States)

    Congdon, Lauren M.; Sims, Jennifer K.; Tuzon, Creighton T.; Rice, Judd C.

    2014-01-01

    PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function. PMID:24423864

  8. NKT cells as an ideal anti-tumor immunotherapeutic.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Okamoto, Yoshitaka; Kunii, Naoki; Nakayama, Toshinori; Motohashi, Shinichiro; Taniguchi, Masaru

    2013-12-02

    Human natural killer T (NKT) cells are characterized by their expression of an invariant T cell antigen receptor α chain variable region encoded by a Vα24Jα18 rearrangement. These NKT cells recognize α-galactosylceramide (α-GalCer) in conjunction with the MHC class I-like CD1d molecule and bridge the innate and acquired immune systems to mediate efficient and augmented immune responses. A prime example of one such function is adjuvant activity: NKT cells augment anti-tumor responses because they can rapidly produce large amounts of IFN-γ, which acts on NK cells to eliminate MHC negative tumors and also on CD8 cytotoxic T cells to kill MHC positive tumors. Thus, upon administration of α-GalCer-pulsed DCs, both MHC negative and positive tumor cells can be effectively eliminated, resulting in complete tumor eradication without tumor recurrence. Clinical trials have been completed in a cohort of 17 patients with advanced non-small cell lung cancers and 10 cases of head and neck tumors. Sixty percent of advanced lung cancer patients with high IFN-γ production had significantly prolonged median survival times of 29.3 months with only the primary treatment. In the case of head and neck tumors, 10 patients who completed the trial all had stable disease or partial responses 5 weeks after the combination therapy of α-GalCer-DCs and activated NKT cells. We now focus on two potential powerful treatment options for the future. One is to establish artificial adjuvant vector cells containing tumor mRNA and α-GalCer/CD1d. This stimulates host NKT cells followed by DC maturation and NK cell activation but also induces tumor-specific long-term memory CD8 killer T cell responses, suppressing tumor metastasis even 1 year after the initial single injection. The other approach is to establish induced pluripotent stem (iPS) cells that can generate unlimited numbers of NKT cells with adjuvant activity. Such iPS-derived NKT cells produce IFN-γ in vitro and in vivo upon

  9. [Cytotoxic effect of physalis peruviana in cell culture of colorectal and prostate cancer and chronic myeloid leukemia].

    Science.gov (United States)

    Quispe-Mauricio, Angel; Callacondo, David; Rojas, José; Zavala, David; Posso, Margarita; Vaisberg, Abraham

    2009-01-01

    The plants have been used as drugs for centuries. However, limited research has been done on its great potential as sources of new therapeutic agents. The purpose of this study was to evaluate Physalis peruviana cytotoxic activity on cell lines HT-29, PC-3, K-562 and VERO. The HT-29 cell lines, PC-3, K-562 and VERO, were exposed to four concentrations of P. peruviana ethanolic leave and stem extracts, also at different concentrations of cisplatin and 5-fluorouracil (5-FU), which were used as positive controls. We found rates of growth within 48 hours, then we determined the inhibitory concentration 50 (IC50) using linear regression analysis and the index of selectivity of each sample. The P. peruviana ethanolic leave and stem extracts showed cytotoxic activity. The IC50 in g/mL in leaves and stems were, 0.35 (r =-0.95 p peruviana leaves and steams ethanolic extracts were more cytotoxic than cisplatin and 5 FU, on the lines HT-29, PC-3 and K562. Furthermore the P. peruviana cytotoxic effects were less than cisplatin and 5-FU for VERO control cells lines.

  10. Quantitative ultrasound characterization of tumor cell death: ultrasound-stimulated microbubbles for radiation enhancement.

    Directory of Open Access Journals (Sweden)

    Hyunjung Christina Kim

    Full Text Available The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy. In parallel, in situ end-labelling (ISEL staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.

  11. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  12. Oncogenic K-Ras Activates p38 to Maintain Colorectal Cancer Cell Proliferation during MEK Inhibition

    Directory of Open Access Journals (Sweden)

    Winan J. van Houdt

    2010-01-01

    Full Text Available Background: Colon carcinomas frequently contain activating mutations in the K-ras proto-oncogene. K-ras itself is a poor drug target and drug development efforts have mostly focused on components of the classical Ras-activated MEK/ERK pathway. Here we have studied whether endogenous oncogenic K-ras affects the dependency of colorectal tumor cells on MEK/ERK signaling.

  13. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo.

    Science.gov (United States)

    Zou, Ying; Ge, Minggai; Wang, Xuemin

    2017-08-19

    Abnormal activation of PI3K-AKT-mTOR signaling is detected in human skin squamous cell carcinoma (SCC). LY3023414 is a novel, potent, and orally bio-available PI3K-AKT-mTOR inhibitor. Its activity against human skin SCC cells was tested. We demonstrated that LY3023414 was cytotoxic when added to established (A431 line) and primary (patient-derived) human skin SCC cells. LY3023414 induced G0/1-S arrest and inhibited proliferation of skin SCC cells. Moreover, LY3023414 induced activation of caspase-3/-9 and apoptosis in skin SCC cells. Intriguingly, LY3023414 was yet non-cytotoxic nor pro-apoptotic to normal human skin cells (melanocytes, keratinocytes and fibroblasts). At the molecular level, LY3023414 blocked PI3K-AKT-mTOR activation in skin SCC cells, as it dephosphorylated PI3K-AKT-mTOR substrates: P85, AKT and S6K1. In vivo studies showed that oral administration of LY3023414 at well-tolerated doses inhibited A431 xenograft tumor growth in severe combined immunodeficiency (SCID) mice. AKT-mTOR activation in LY3023414-treated tumors was also largely inhibited. Together, these results suggest that targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin SCC cell growth in vitro and in vivo, establishing the rationale for further clinical testing. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  15. Difference in 201TlCl accumulation mechanism in brain tumors. A comparison of their Na+-K+ ATPase activities

    International Nuclear Information System (INIS)

    Sugo, Nobuo; Kuroki, Takao; Nemoto, Masaaki; Mito, Toshiaki; Seiki, Yoshikatsu; Shibata, Iekado

    2000-01-01

    The accumulation levels of 201 TlCl and Na + -K + ATPase activity in tumor tissue were compared among glioblastoma, benign glioma and meningioma to study the difference in the mechanism of 201 TlCl accumulation. The subjects were 19 cases comprised of 6 glioblastoma, 2 oligodendroglioma, 1 fibrillary astrocytoma, 1 pilocytic astrocytoma and 9 meningioma. Preoperative 201 TlCl SPECT was performed in all the cases, and Thallium Index (TL index) was calculated by a ratio of 201 TlCl in the tumor area and the contralateral area. In addition, cell membrane was extracted from the tumor tissue collected intraoperatively to determine Na + -K + ATPase activity. No statistically significant difference in TL index was noted between the glioblastoma group (6.97±2.67) and the meningioma group (5.87±1.99). This fact showed that there was no difference in the accumulation level of 201 TlCl between the two groups. On the other hand, the glioblastoma group indicated a higher value of Na + -K + ATPase activity (49.13±43.76 μmole/hour/mg protein) than the meningioma group (7.73±13.84 μmol/hour/mg protein) (p + -K + ATPase activity in 201 TlCl accumulation in glioblastoma and the influences of other accumulation mechanism than Na + -K + ATPase activity such as the volume of intratumoral vascular bed in meningioma. (author)

  16. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-Leydig cell tumor (SLCT) is a rare cancer of the ovaries. The cancer cells produce and release a male sex hormone ... lead to cancer. SLCT starts in the female ovaries. The cancer cells release a male sex hormone. As a ...

  17. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    International Nuclear Information System (INIS)

    Streeter, P.R.; Fortner, G.W.

    1986-01-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes

  18. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ohba, Hideki; Ewis, Ashraf; Ishikawa, Mitsuru; Shinohara, Yasuo; Baba, Yoshinobu

    2004-07-16

    Short 21-mer double-stranded/small-interfering RNAs (ds/siRNAs) were designed to target bcr-abl mRNA in chronic myelogenous leukemia. The ds/siRNAs were transfected into bcr-abl-positive K-562 (derived from blast crisis chronic myelogenous leukemia), using lipofectamine. Penetrating of ds/siRNAs into the cells was detected by fluorescent confocal microscopy, using fluorescein-labeled ds/siRNAs. The cells were treated with mix of three siRNA sequences (3 x 60 nM) during 6 days with three repetitive transfections. The siRNA-treatment was accompanied with significant reduction of bcr-abl mRNA, p210, protein tyrosine kinase activity and cell proliferation index. Treatment of cells with Glivec (during 8 days with four repetitive doses, 180 nM single dose) resulted in analogous reduction of cell proliferation activity, stronger suppression of protein tyrosine kinase activity, and very low reduction of p210. siRNA-mix and Glivec did not affect significantly the viability of normal lymphocytes. Microarray analysis of siRNA- and Glivec-treated K-562 cells demonstrated that both pathways of bcr-abl suppression were accompanied with overexpression and suppression of many different oncogenes, apoptotic/antiapoptotic and cell proliferation factors. The following genes of interest were found to decrease in relatively equal degree in both siRNA- and Glivec-treated cells: Bcd orf1 and orf2 proto-oncogene, chromatin-specific transcription elongation factor FACT 140-kDa subunit mRNA, gene encoding splicing factor SF1, and mRNA for Tec protein tyrosine kinase. siRNA-mix and Glivec provoked overexpression of the following common genes: c-jun proto-oncogene, protein kinase C-alpha, pvt-1 oncogene homologue (myc activator), interleukin-6, 1-8D gene from interferon-inducible gene family, tumor necrosis factor receptor superfamily (10b), and STAT-induced STAT inhibitor.

  19. Combined Inhibition of CDK4/6 and PI3K/AKT/mTOR Pathways Induces a Synergistic Anti-Tumor Effect in Malignant Pleural Mesothelioma Cells

    Directory of Open Access Journals (Sweden)

    Mara A. Bonelli

    2017-08-01

    Full Text Available Malignant pleural mesothelioma (MPM is a progressive malignancy associated to the exposure of asbestos fibers. The most frequently inactivated tumor suppressor gene in MPM is CDKN2A/ARF, encoding for the cell cycle inhibitors p16INK4a and p14ARF, deleted in about 70% of MPM cases. Considering the high frequency of alterations of this gene, we tested in MPM cells the efficacy of palbociclib (PD-0332991, a highly selective inhibitor of cyclin-dependent kinase (CDK 4/6. The analyses were performed on a panel of MPM cell lines and on two primary culture cells from pleural effusion of patients with MPM. All the MPM cell lines, as well as the primary cultures, were sensitive to palbociclib with a significant blockade in G0/G1 phase of the cell cycle and with the acquisition of a senescent phenotype. Palbociclib reduced the phosphorylation levels of CDK6 and Rb, the expression of myc with a concomitant increased phosphorylation of AKT. Based on these results, we tested the efficacy of the combination of palbociclib with the PI3K inhibitors NVP-BEZ235 or NVP-BYL719. After palbociclib treatment, the sequential association with PI3K inhibitors synergistically hampered cell proliferation and strongly increased the percentage of senescent cells. In addition, AKT activation was repressed while p53 and p21 were up-regulated. Interestingly, two cycles of sequential drug administration produced irreversible growth arrest and senescent phenotype that were maintained even after drug withdrawal. These findings suggest that the sequential association of palbociclib with PI3K inhibitors may represent a valuable therapeutic option for the treatment of MPM.

  20. Precision cancer immunotherapy: optimizing dendritic cell-based strategies to induce tumor antigen-specific T-cell responses against individual patient tumors.

    Science.gov (United States)

    Osada, Takuya; Nagaoka, Koji; Takahara, Masashi; Yang, Xiao Yi; Liu, Cong-Xiao; Guo, Hongtao; Roy Choudhury, Kingshuk; Hobeika, Amy; Hartman, Zachary; Morse, Michael A; Lyerly, H Kim

    2015-05-01

    Most dendritic cell (DC)-based vaccines have loaded the DC with defined antigens, but loading with autologos tumor-derived antigens would generate DCs that activate personalized tumor-specific T-cell responses. We hypothesized that DC matured with an optimized combination of reagents and loaded with tumor-derived antigens using a clinically feasible electroporation strategy would induce potent antitumor immunity. We first studied the effects on DC maturation and antigen presentation of the addition of picibanil (OK432) to a combination of zoledronic acid, tumor necrosis factor-α, and prostaglandin E2. Using DC matured with the optimized combination, we tested 2 clinically feasible sources of autologous antigen for electroloading, total tumor mRNA or total tumor lysate, to determine which stimulated more potent antigen-specific T cells in vitro and activated more potent antitumor immunity in vivo. The combination of tumor necrosis factor-α/prostaglandin E2/zoledronic acid/OK432 generated DC with high expression of maturation markers and antigen-specific T-cell stimulatory function in vitro. Mature DC electroloaded with tumor-derived mRNA [mRNA electroporated dendritic cell (EPDC)] induced greater expansion of antigen-specific T cells in vitro than DC electroloaded with tumor lysate (lysate EPDC). In a therapeutic model of MC38-carcinoembryonic antigen colon cancer-bearing mice, vaccination with mRNA EPDC induced the most efficient anti-carcinoembryonic antigen cellular immune response, which significantly suppressed tumor growth. In conclusion, mature DC electroloaded with tumor-derived mRNA are a potent cancer vaccine, especially useful when specific tumor antigens for vaccination have not been identified, allowing autologous tumor, and if unavailable, allogeneic cell lines to be used as an unbiased source of antigen. Our data support clinical testing of this strategy.

  1. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo.

    Science.gov (United States)

    Hitomi, Misuzu; Yokoyama, Fumi; Kita, Yuko; Nonomura, Takako; Masaki, Tsutomu; Yoshiji, Hitoshi; Inoue, Hideyuki; Kinekawa, Fumihiko; Kurokohchi, Kazutaka; Uchida, Naohito; Watanabe, Seishiro; Kuriyama, Shigeki

    2005-03-01

    A number of studies have shown that various K vitamins, specifically vitamins K2 and K3, possess antitumor activity on various types of rodent- and human-derived neoplastic cell lines. In the present study, we examined the antitumor effects of vitamins K1, K2 and K3 on PLC/PRF/5 human hepatocellular carcinoma (HCC) cells in vitro and in vivo. Furthermore, we examined the mechanisms of antitumor actions of these vitamins in vitro and in vivo. Although vitamin K1 did not inhibit proliferation of PLC/PRF/5 cells at a 90-microM concentration (the highest tested), vitamins K2 and K3 suppressed proliferation of the cells at concentrations of 90 and 9 microM, respectively. By flow cytometric analysis, it was shown that not only vitamin K1, but also vitamin K2 did not induce apoptosis or cell cycle arrest on PLC/PRF/5 cells. In contrast, vitamin K3 induced G1 arrest, but not apoptosis on PLC/PRF/5 cells. Subsequent in vivo study using subcutaneous HCC-bearing athymic nude mice demonstrated that both vitamins K2 and K3 markedly suppressed the growth of HCC tumors to similar extent. Protein expression of cyclin D1 and cyclin-dependent kinase 4 (Cdk4), but not p16INK4a Cdk inhibitor in the tumor was significantly reduced by vitamin K2 or K3 treatment, indicating that vitamins K2 and K3 may induce G1 arrest of cell cycle on PLC/PRF/5 cells in vivo. Taken collectively, vitamins K2 and K3 were able to induce potent antitumor effects on HCC in vitro and in vivo, at least in part, by inducing G1 arrest of the cell cycle. The results indicate that vitamins K2 and K3 may be useful agents for the treatment of patients with HCC.

  2. Granular cell tumor: An uncommon benign neoplasm

    Directory of Open Access Journals (Sweden)

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  3. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    Science.gov (United States)

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  4. Quantitative imaging of magnesium distribution at single-cell resolution in brain tumors and infiltrating tumor cells with secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, Subhash; Parker, Dylan J.; Barth, Rolf F.; Pannullo, Susan C.

    2016-01-01

    Glioblastoma multiforme (GBM) is one of the deadliest forms of human brain tumors. The infiltrative pattern of growth of these tumors includes the spread of individual and/or clusters of tumor cells at some distance from the main tumor mass in parts of the brain protected by an intact blood-brain-barrier. Pathophysiological studies of GBM could be greatly enhanced by analytical techniques capable of in situ single-cell resolution measurements of infiltrating tumor cells. Magnesium homeostasis is an area of active investigation in high grade gliomas. In the present study, we have used the F98 rat glioma as a model of human GBM and an elemental/isotopic imaging technique of secondary ion mass spectrometry (SIMS), a CAMECA IMS-3f ion microscope, for studying Mg distributions with single-cell resolution in freeze-dried brain tissue cryosections. Quantitative observations were made on tumor cells in the main tumor mass, contiguous brain tissue, and infiltrating tumor cells in adjacent normal brain. The brain tissue contained a significantly lower total Mg concentration of 4.70 ± 0.93 mmol/Kg wet weight (mean ± SD) in comparison to 11.64 ± 1.96 mmol/Kg wet weight in tumor cells of the main tumor mass and 10.72 ± 1.76 mmol/Kg wet weight in infiltrating tumor cells (p<0.05). The nucleus of individual tumor cells contained elevated levels of bound Mg. These observations demonstrate enhanced Mg-influx and increased binding of Mg in tumor cells and provide strong support for further investigation of GBMs for altered Mg homeostasis and activation of Mg-transporting channels as possible therapeutic targets. PMID:26703785

  5. Tumors of germinal cells

    International Nuclear Information System (INIS)

    Plazas, Ricardo; Avila, Andres

    2002-01-01

    The tumors of germinal cells (TGC) are derived neoplasia of the primordial germinal cells that in the life embryonic migrant from the primitive central nervous system until being located in the gonads. Their cause is even unknown and they represent 95% of the testicular tumors. In them, the intention of the treatment is always healing and the diagnostic has improved thanks to the results of the handling multidisciplinary. The paper includes topics like their incidence and prevalence, epidemiology and pathology, clinic and diagnoses among other topics

  6. Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development

    Science.gov (United States)

    Aspord, Caroline; Pedroza-Gonzalez, Alexander; Gallegos, Mike; Tindle, Sasha; Burton, Elizabeth C.; Su, Dan; Marches, Florentina; Banchereau, Jacques; Palucka, A. Karolina

    2007-01-01

    We previously reported (Bell, D., P. Chomarat, D. Broyles, G. Netto, G.M. Harb, S. Lebecque, J. Valladeau, J. Davoust, K.A. Palucka, and J. Banchereau. 1999. J. Exp. Med. 190: 1417–1426) that breast cancer tumors are infiltrated with mature dendritic cells (DCs), which cluster with CD4+ T cells. We now show that CD4+ T cells infiltrating breast cancer tumors secrete type 1 (interferon γ) as well as high levels of type 2 (interleukin [IL] 4 and IL-13) cytokines. Immunofluorescence staining of tissue sections revealed intense IL-13 staining on breast cancer cells. The expression of phosphorylated signal transducer and activator of transcription 6 in breast cancer cells suggests that IL-13 actually delivers signals to cancer cells. To determine the link between breast cancer, DCs, and CD4+ T cells, we implanted human breast cancer cell lines in nonobese diabetic/LtSz-scid/scid β2 microglobulin–deficient mice engrafted with human CD34+ hematopoietic progenitor cells and autologous T cells. There, CD4+ T cells promote early tumor development. This is dependent on DCs and can be partially prevented by administration of IL-13 antagonists. Thus, breast cancer targets DCs to facilitate its development. PMID:17438063

  7. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  8. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2',7'-dichlorofluorescein diacetate assay

    Energy Technology Data Exchange (ETDEWEB)

    Loetchutinat, Chatchanok [Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 (Thailand); Kothan, Suchart [Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 (Thailand); Dechsupa, Samarn [Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 (Thailand); Meesungnoen, Jintana [Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 (Thailand); Departement de medecine nucleaire et de radiobiologie, Faculte de medecine, Groupe en sciences des radiations, Universite de Sherbrooke, Sherbrooke, Quebec, J1H 5N4 (Canada); Jay-Gerin, Jean-Paul [Departement de medecine nucleaire et de radiobiologie, Faculte de medecine, Groupe en sciences des radiations, Universite de Sherbrooke, Sherbrooke, Quebec, J1H 5N4 (Canada); Mankhetkorn, Samlee [Laboratory of Physical Chemistry, Molecular and Cellular Biology, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 (Thailand)]. E-mail: samlee@bucc4.buu.ac.th

    2005-02-01

    This article examines a non-invasive spectrofluorometric method using the 2',7'-dichlorofluorescein diacetate (DCHF-DA) assay for quantifying the intracellular reactive oxygen species (ROS{sub i}) produced in four cultured cancer cell lines: drug-sensitive (K562) and drug-resistant (K562/adr) human erythromyelogenous leukemia cell lines, and drug-sensitive (GLC4) and drug-resistant (GLC4/adr) human small cell lung carcinoma cell lines. The oxidation of the probe to the fluorescent dichlorofluorescein (DCF) was continuously monitored by following the DCF fluorescence intensity as a function of time using a standard spectrofluorometer in the presence of an extracellular DCF fluorescence quencher (Co{sup 2+}). By fitting the spectrofluorometric data to a kinetic model based on the following two reactions: (i) deacetylation of DCHF-DA to the oxidant-sensitive compound 2',7'-dichlorofluorescein (DCHF) by cellular esterase enzymes (pseudo-first-order rate constant: k{sub e}) and (ii) oxidation of DCHF by ROS{sub i} (second-order rate constant: k{sub 2}), the parameters intervening in DCF formation, k{sub e} and the product of k{sub 2} by the ROS{sub i} concentration, were quantitatively determined for the different cell lines studied. The results revealed that the intracellular esterase content or activity is similar in K562, K562/adr, and GLC4 cells, but 5-fold higher in GLC4/adr cells. The product k{sub 2}[ROS{sub i}] was found to be similar in the four cell lines considered, with a mean value of (5.3+/-0.9)x10{sup -7}cell{sup -1}s{sup -1}. Assuming that H{sub 2}O{sub 2} (in combination with peroxidases) is the primary responsible species for DCHF oxidation in intact cells, and using the rate constant value k2=790+/-62M-1s-1 established in our laboratory for the reaction of DCHF with H{sub 2}O{sub 2} in the presence of horseradish peroxidase, the mean value of the intracellular levels of ROS{sub i} in those cells was estimated to be 0.67+/-0.16n

  9. Magnetic Resonance Tracking of Endothelial Progenitor Cells Labeled with Alkyl-Polyethylenimine 2 kDa/Superparamagnetic Iron Oxide in a Mouse Lung Carcinoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Cong Chen

    2014-11-01

    Full Text Available The potential of using endothelial progenitor cells (EPCs in novel anticancer therapy and the repair of vascular injury has been increasingly recognized. In the present study, EPCs were labeled with N-alkyl-polyethylenimine 2 kDa (PEI2k-stabilized superparamagnetic iron oxide (SPIO to facilitate magnetic resonance imaging (MRI of EPCs in a mouse lung carcinoma xenograft model. EPCs derived from human peripheral blood were labeled with alkyl-PEI2k/SPIO. The viability and activity of labeled cells were evaluated using proliferation, migration, and tubulogenesis assays. Alkyl-PEI2k/SPIO-labeled EPCs were injected intravenously (group 1 or mixed and injected together with A549 cells subcutaneously (group 2 into groups of six mice with severe combined immunodeficiency. The labeling efficiency with alkyl-PEI2k/SPIO at 7 mg Fe/mL concentration was approximately 100%. Quantitative analysis of cellular iron was 6.062 ± 0.050 pg/cell. No significant effects on EPC proliferation, migration, or tubulogenesis were seen after labeling. Seventesla micro-MRI showed the presence of schistic or linear hypointense regions at the tumor margins starting from days 7 to 8 after EPC administration. This gradually extended into the inner tumor layers in group 1. In group 2, tumor growth was accompanied by dispersion of low-signal intensity regions inside the tumor. Iron-positive cells identified by Prussian blue dye were seen at the sites identified using MRI. Human CD31-positive cells and mouse CD31-positive cells were present in both groups. Labeling EPCs with alkyl-PEI2k/SPIO allows noninvasive magnetic resonance investigation of EPC involvement in tumor neovasculature and is associated with excellent biocompatibility and MRI sensitivity.

  10. Malignant Solitary Fibrous Tumor Metastatic to Widely Invasive Hurthle Cell Thyroid Carcinoma: A Distinct Tumor-to-Tumor Metastasis.

    Science.gov (United States)

    Kolson Kokohaare, Eva; Riva, Francesco M G; Bernstein, Jonathan M; Miah, Aisha B; Thway, Khin

    2018-04-01

    We illustrate a case of synchronous malignant solitary fibrous tumor of the thoracic cavity, and widely invasive thyroid Hurthle cell carcinoma. The Hurthle cell carcinoma was found to harbor distinct areas of malignant solitary fibrous tumor. This is a unique case of tumor-to-tumor metastasis that, to the best of our knowledge, has not been previously reported.

  11. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  12. CT and MRI of germ-cell tumors with metastasis or multi-located tumors

    International Nuclear Information System (INIS)

    Miyagami, Mitsusuke; Tazoe, Makoto; Tsubokawa, Takashi

    1989-01-01

    Twenty-seven cases of germ-cell tumors were examined with a CT scan in our clinic. In the 11 cases of metastasis or multi-localized tumors, the CT findings were studied in connection with the MRI findings. There were 6 cases of germ-cell tumors which had broad infiltrating tumors with multiple lesions on first admission. Their tumor sites were different from that in cases of malignant glioma, being frequently localized in the pineal and/or the suprasellar region, on the wall of the third and/or lateral ventricle, and in the region of the basal ganglia. Five of the cases of germ-cell tumors had metastasis with various patterns connected to a remote area - that is, to spinal cords, to the ventricular wall and basal cistern of the brain stem by CSF dissemination, to a lung by hematogeneous metastasis, and to the peritoneal wall or organs by a V-P shunt. The CT findings of germ-cell tumors were correlated mainly with the results of the histological diagnosis; they were found not to differ with the tumor site. The germinoma in the suprasellar region had less calcification than in the pineal region. Cysts, calcification, and an enlargement of the lateral ventricle on the tumor side were frequently seen in the germinoma of the basal ganglia. On the MRI of 5 cases of germinoma, the T 1 -weighted image revealed a slightly low or iso signal intensity, while the T 2 -weighted image showed a high signal intensity. In the case of multiple tumor lesions, some cases demonstrated different CT findings and radiosensitivities for each tumor. The possibility of a multicentric origin for the tumors is thus suggested in some cases of germ-cell tumors. (author)

  13. 12 CFR 562.2 - Regulatory reports.

    Science.gov (United States)

    2010-01-01

    ... § 562.2 Regulatory reports. (a) Definition and scope. This section applies to all regulatory reports, as... (TFR) are examples of regulatory reports. Regulatory reports are regulatory documents, not accounting... limited to, the accounting instructions provided in the TFR, guidance contained in OTS regulations...

  14. NDRG2 is a candidate tumor-suppressor for oral squamous-cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Hiroshi; Kondo, Yuudai [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Nakahata, Shingo; Hamasaki, Makoto [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Sakoda, Sumio [Division of Oral and Maxillofacial Surgery, Medicine of Sensory and Motor Organs, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan); Morishita, Kazuhiro, E-mail: kmorishi@med.miyazaki-u.ac.jp [Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki-gun, Miyazaki 889-1692 (Japan)

    2010-01-22

    Oral cancer is one of the most common cancers worldwide, and squamous-cell carcinoma (OSCC) is the most common phenotype of oral cancer. Although patients with OSCC have poor survival rates and a high incidence of metastasis, the molecular mechanisms of OSCC development have not yet been elucidated. This study investigated whether N-myc downstream-regulated gene 2 (NDRG2) contributes to the carcinogenesis of OSCC, as NDRG2 is reported to be a candidate tumor-suppressor gene in a wide variety of cancers. The down-regulation of NDRG2 mRNA, which was dependent on promoter methylation, was seen in the majority of OSCC cases and in several cases of precancerous leukoplakia with dysplasia. Induction of NDRG2 expression in an HSC-3/OSCC cell line significantly inhibited cell proliferation and decreased colony formation ability on soft agar. The majority of OSCC cell lines showed an activation of PI3K/Akt signaling, and enforced expression of NDRG2 in HSC-3 cells decreased the level of phosphorylated Akt at Serine 473 (p-Akt). Immunohistochemical p-Akt staining was detected in 56.5% of the OSCC tumors, and 80.4% of the tumors were negative for NDRG2 staining. Moreover, positive p-Akt staining was inversely correlated with decreased NDRG2 expression in OSCC tumors with moderate to poor differentiation (p < 0.005). Therefore, NDRG2 is a candidate tumor-suppressor gene for OSCC development and probably contributes to the tumorigenesis of OSCC partly via the modulation of Akt signaling.

  15. Expression and significance of TRAIL and NF-kB in osteosarcoma

    International Nuclear Information System (INIS)

    Du Xiumin; You Murong; Qi Falian; Hu Chengjin

    2005-01-01

    To investigate the relationship between expressions of TRAIL, NF-kB and cell proliferation in human osteosarcomas, the expressions of TRAIL and NF-kB in 16 cases of osteosarcoma, 5 cases of giant cell tumor of bone and 6 cases of chondrosarcoma were studied by flow cytometry. The expressions of TRAIL and NF-kB in osteosarcomas of different differentiation states were higher than those in other two kinds of tumors significantly in our study(P 0.05). The expressions of TRAIL and NF-kB in chondrosarcoma and giant cell tumor of bone were not different significantly(P>0.05). The higher expression of TRAIL in osteosarcoma with different differentiation states could not induce apoptosis because of the higher expression of NF-kB. NF-kB may restrain the apoptosis of tumor cells by regulating the NF-kB- induced apoptosis path way in osteosarcoma. (authors)

  16. Selective cytotoxicity of transformed cells but not normal cells by a sialoglycopeptide growth regulator in the presence of tumor necrosis factor

    Science.gov (United States)

    Woods, K. M.; Fattaey, H.; Johnson, T. C.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The tumor necrosis factor-alpha (TNF)-resistant, SV40-transformed, murine fibroblast cell lines, F5b and F5m, became sensitive to TNF-mediated cytolysis after treatment with a biologically active 18 kDa peptide fragment (SGP) derived from a 66-kDa parental cell surface sialoglycoprotein. Neither TNF nor the SGP alone exhibited cytotoxicity to the two SV40-transformed cell lines. However, Balb/c 3T3 cells, incubated with SGP alone or with SGP and TNF, were not killed. Therefore, SGP can selectively sensitize cells for TNF alpha-mediated cytotoxicity. This selective sensitization may be due to the previously documented ability of the SGP to selectively mediate cell cycle arrest.

  17. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  18. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells.

    Science.gov (United States)

    Melo, Michelle Nonato de Oliveira; Oliveira, Adriana Passos; Wiecikowski, Adalgisa Felippe; Carvalho, Renato Sampaio; Castro, Juliana de Lima; de Oliveira, Felipe Alves Gomes; Pereira, Henrique Marcelo Gualberto; da Veiga, Venicio Feo; Capella, Marcia Marques Alves; Rocha, Leandro; Holandino, Carla

    2018-03-01

    Cancer is one of the biggest problems in public health worldwide. Plants have been shown important role in anticancer research. Viscum album L. (Santalaceae), commonly known as mistletoe, is a semi-parasitic plant that grows on different host trees. In complementary medicine, extracts from European mistletoe ( Viscum album L.) have been used in the treatment of cancer. The study was conducted to identify chemical composition and antitumor potential of Viscum album tinctures. Chemical analysis performed by high resolution chromatography equipped with high resolution mass spectrometer identified caffeic acid, chlorogenic acid, sakuranetin, isosakuranetin, syringenin 4-O-glucoside, syringenin 4-O-apiosyl-glucoside, alangilignoside C and ligalbumoside A compounds. Some of these compounds are probably responsible for the reduction of tumoral cellular growth in a dose-dependent manner. It was observed that melanoma murine cells (B16F10) were more sensitive to V. album tinctures than human leukaemic cells (K562), besides non-tumoral cells (MA-104) had a much lower cytotoxicity to them. Apoptotic-like cells were observed under light microscopy and were confirmed by a typical DNA fragmentation pattern. Additionally, flow cytometry results using Annexin-V/FITC permitted to quantify increased expression of early and late apoptotic markers on tumoral cells, confirming augmented Sub G0 population, which was probably associated with a consistent decrease in G1, and an increase in S or G2/M populations. Results indicate the chemical composition of V. album tinctures influences the mechanisms of in vitro tumoral cell death, suggesting a potential use in cancer pharmacotherapy research.

  19. 40 CFR 80.562-80.569 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Other Hardship Provisions §§ 80.562-80.569 [Reserved] Labeling...

  20. Anti-tumor therapy with macroencapsulated endostatin producer cells

    Directory of Open Access Journals (Sweden)

    Balduino Keli N

    2010-03-01

    Full Text Available Abstract Background Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Results Mice were inoculated subcutaneously with melanoma (B16F10 cells or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. Conclusions This study indicates that

  1. Anti-tumor therapy with macroencapsulated endostatin producer cells.

    Science.gov (United States)

    Rodrigues, Danielle B; Chammas, Roger; Malavasi, Natália V; da Costa, Patrícia L N; Chura-Chambi, Rosa M; Balduino, Keli N; Morganti, Ligia

    2010-03-02

    Theracyte is a polytetrafluoroethylene membrane macroencapsulation system designed to induce neovascularization at the tissue interface, protecting the cells from host's immune rejection, thereby circumventing the problem of limited half-life and variation in circulating levels. Endostatin is a potent inhibitor of angiogenesis and tumor growth. Continuous delivery of endostatin improves the efficacy and potency of the antitumoral therapy. The purpose of this study was to determine whether recombinant fibroblasts expressing endostatin encapsulated in Theracyte immunoisolation devices can be used for delivery of this therapeutic protein for treatment of mice bearing B16F10 melanoma and Ehrlich tumors. Mice were inoculated subcutaneously with melanoma (B16F10 cells) or Ehrlich tumor cells at the foot pads. Treatment began when tumor thickness had reached 0.5 mm, by subcutaneous implantation of 107 recombinant encapsulated or non-encapsulated endostatin producer cells. Similar melanoma growth inhibition was obtained for mice treated with encapsulated or non-encapsulated endostatin-expressing cells. The treatment of mice bearing melanoma tumor with encapsulated endostatin-expressing cells was decreased by 50.0%, whereas a decrease of 56.7% in tumor thickness was obtained for mice treated with non-encapsulated cells. Treatment of Ehrlich tumor-bearing mice with non-encapsulated endostatin-expressing cells reduced tumor thickness by 52.4%, whereas lower tumor growth inhibition was obtained for mice treated with encapsulated endostatin-expressing cells: 24.2%. Encapsulated endostatin-secreting fibroblasts failed to survive until the end of the treatment. However, endostatin release from the devices to the surrounding tissues was confirmed by immunostaining. Decrease in vascular structures, functional vessels and extension of the vascular area were observed in melanoma microenvironments. This study indicates that immunoisolation devices containing endostatin

  2. Treatment Resistance Mechanisms of Malignant Glioma Tumor Stem Cells

    International Nuclear Information System (INIS)

    Schmalz, Philip G.R.; Shen, Michael J.; Park, John K.

    2011-01-01

    Malignant gliomas are highly lethal because of their resistance to conventional treatments. Recent evidence suggests that a minor subpopulation of cells with stem cell properties reside within these tumors. These tumor stem cells are more resistant to radiation and chemotherapies than their counterpart differentiated tumor cells and may underlie the persistence and recurrence of tumors following treatment. The various mechanisms by which tumor stem cells avoid or repair the damaging effects of cancer therapies are discussed

  3. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Jatin Roper

    Full Text Available To examine the in vitro and in vivo efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type colorectal cancer (CRC.PIK3CA mutant and wild-type human CRC cell lines were treated in vitro with NVP-BEZ235, and the resulting effects on proliferation, apoptosis, and signaling were assessed. Colonic tumors from a genetically engineered mouse (GEM model for sporadic wild-type PIK3CA CRC were treated in vivo with NVP-BEZ235. The resulting effects on macroscopic tumor growth/regression, proliferation, apoptosis, angiogenesis, and signaling were examined.In vitro treatment of CRC cell lines with NVP-BEZ235 resulted in transient PI3K blockade, sustained decreases in mTORC1/mTORC2 signaling, and a corresponding decrease in cell viability (median IC(50 = 9.0-14.3 nM. Similar effects were seen in paired isogenic CRC cell lines that differed only in the presence or absence of an activating PIK3CA mutant allele. In vivo treatment of colonic tumor-bearing mice with NVP-BEZ235 resulted in transient PI3K inhibition and sustained blockade of mTORC1/mTORC2 signaling. Longitudinal tumor surveillance by optical colonoscopy demonstrated a 97% increase in tumor size in control mice (p = 0.01 vs. a 43% decrease (p = 0.008 in treated mice. Ex vivo analysis of the NVP-BEZ235-treated tumors demonstrated a 56% decrease in proliferation (p = 0.003, no effects on apoptosis, and a 75% reduction in angiogenesis (p = 0.013.These studies provide the preclinical rationale for studies examining the efficacy of the dual PI3K/mTOR inhibitor NVP-BEZ235 in treatment of PIK3CA wild-type CRC.

  4. Analysis of the K-ras and p53 pathways in x-ray-induced lung tumors in the rat

    Energy Technology Data Exchange (ETDEWEB)

    Belinsky, S.A.; Middleton, S.K.; Hahn, F.F.; Nikula, K.J. [Inhalation Toxicology Research Inst., Albuquerque, NM (United States); Picksley, S.M. [Medical Sciences Inst., Dundee (United Kingdom)

    1996-04-01

    The risk from exposure to low-dose radiation in conjunction with cigarette smoking has not been estimated due in part to lmited knowledge surrounding the molecular mechanisms underlying radiation-induced cancers. The purpose of this investigation was to determine the frequency for alterations in genes within the K-ras and p53 signal and cell cycle regulatory pathways, respectively, in X-ray-induced lung tumors in the F344/N rat. These tumors were examined for genetic alterations in the K-ras, c-raf-1, p53, mdm2 and cip1 genes. No K-ras mutations were detected by sequencing in 18 squamous cell carcinomas (SCCs) or 17 adenocarcinomas. However, using a K-ras codon 12 mutation selection assay, a codon 12 GGT {r_arrow} GAT mutation was detected in one SCC, suggesting that activation of the K-ras proto-oncogene is both a rare and late event. Single-strand conformation polymorphism (SSCP) analysis of the kinase-binding domain of the c-raf-1 gene did not detect any polymorphisms. Three of 18 SCCs but none of the adenocarcinomas showed p53 nuclear immunoreactivity. Single-strand conformation polymorphism analysis of exons 4-9 of the p53 gene detected only an exon 9 mutation in one SCC. Mutations were not detected in the three SCCs with immunoreactive p53 protein. No amplification of the mdm2 gene was detected; however, nuclear mdm2 immunoreactivity was present in one of the three SCCs that stained positive for the p53 protein. The complete cDNA of the rat cip1 gene comprising 810 bases was cloned and sequenced. The frequency of somatic mutations in exon 2 of the cip1 gene was determined by SSCP analysis. No alterations in electrophoretic mobility were detected. The results of this investigation indicate that alterations in the K-ras and p53 pathways do not play a major role in the genesis of X-ray-induced lung tumors in the rat. 49 refs., 5 figs.

  5. Unusual thyroid tumor in a child

    International Nuclear Information System (INIS)

    Levey, M.

    1976-01-01

    Malignant neoplasms of the thyroid gland are quite rare in children. Winship, in his classic article, could find only 562 cases in the literature. The histopathological patterns resemble those of the adult tumors. Despite early cervical metastasis, the prognosis in general is favorable, with many long-term survivals. Prior exposure to radiation of the head and neck is a definite pre-disposing factor. Teratomas of the neck are a medical curiosity--less than 100 cases are described in the literature. The vast majority of these are found during the neonatal period, and are benign histologically. These are usually large, cystic, bulky masses which produce mechanical obstruction of the upper airway and digestive tract. Only one of these tumors, described by Pupovac in 1896, has been considered malignant. A six-year-old child was examined with a right thyroid mass of three months' duration. The thyroid scan showed a ''cold nodule''. At surgery, a well-encapsulated mass was found. The pathology showed a predominance of malignant spindle cells, with areas of papillary carcinoma; however, there were well-defined mucous glands present in the tumor. Clinically the child has remained well and asymptomatic. The slides have been extensively reviewed. To my knowledge no such tumor has been prepreviously described. The tumor is considered to be a malignant thyroid tumor growing out of teratomatous tissue

  6. Characterization of cell suspensions from solid tumors

    International Nuclear Information System (INIS)

    Pallavicini, M.

    1985-01-01

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs

  7. Periurethral granular cell tumor: a case report

    International Nuclear Information System (INIS)

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  8. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  9. Murine macrophage heparanase: inhibition and comparison with metastatic tumor cells

    International Nuclear Information System (INIS)

    Savion, N.; Disatnik, M.H.; Nevo, Z.

    1987-01-01

    Circulating macrophages and metastatic tumor cells can penetrate the vascular endothelium and migrate from the circulatory system to extravascular compartments. Both activated murine macrophages and different metastatic tumor cells attach, invade, and penetrate confluent vascular endothelial cell monolayer in vitro, by degrading heparan sulfate proteoglycans in the subendothelial extracellular matrix. The sensitivity of the enzymes from the various sources degrading the heparan sulfate proteoglycan was challenged and compared by a series of inhibitors. Activated macrophages demonstrate a heparanase with an endoglycosidase activity that cleaves from the [ 35 S]O 4 - -labeled heparan sulfate proteoglycans of the extracellular matrix 10 kDa glycosaminoglycan fragments. The degradation of [ 35 S]O 4 - -labeled extracellular matrix proteoglycans by the macrophages' heparanase is significantly inhibited in the presence of heparan sulfate (10μg/ml), arteparon (10μg/ml), and heparin at a concentration of 3 μg/ml. Degradation of this heparan sulfate proteoglycan is a two-step sequential process involving protease activity followed by heparanase activity. B16-BL6 metastatic melanoma cell heparanase, which is also a cell-associated enzyme, was inhibited by heparin to the same extent as the macrophage haparanase. On the other hand, heparanase of the highly metastatic variant (ESb) of a methylcholanthrene-induced T lymphoma, which is an extracellular enzyme released by the cells to the incubation medium, was more sensitive to heparin and arteparon than the macrophages' heparanase. These results may indicate the potential use of heparin or other glycosaminoglycans as specific and differential inhibitors for the formation in certain cases of blood-borne tumor metastasis

  10. Tumor Immunology meets…Immunology: Modified cancer cells as professional APC for priming naïve tumor-specific CD4+ T cells.

    Science.gov (United States)

    Bou Nasser Eddine, Farah; Ramia, Elise; Tosi, Giovanna; Forlani, Greta; Accolla, Roberto S

    2017-01-01

    Although recent therapeutic approaches have revitalized the enthusiasm of the immunological way to combat cancer, still the comprehension of immunity against tumors is largely incomplete. Due to their specific function, CD8+ T cells with cytolytic activity (CTL) have attracted the attention of most investigators because CTL are considered the main effectors against tumor cells. Nevertheless, CTL activity and persistence is largely dependent on the action of CD4+ T helper cells (TH). Thus establishment of tumor-specific TH cell response is key to the optimal response against cancer. Here we describe emerging new strategies to increase the TH cell recognition of tumor antigens. In particular, we review recent data indicating that tumor cells themselves can act as surrogate antigen presenting cells for triggering TH response and how these findings can help in constructing immunotherapeutic protocols for anti-cancer vaccine development.

  11. Optimization of dendritic cell loading with tumor cell lysates for cancer immunotherapy.

    Science.gov (United States)

    Hatfield, Paul; Merrick, Alison E; West, Emma; O'Donnell, Dearbhaile; Selby, Peter; Vile, Richard; Melcher, Alan A

    2008-09-01

    The immune response to cancer is critically determined by the way in which tumor cells die. As necrotic, stress-associated death can be associated with activation of antitumor immunity, whole tumor cell antigen loading strategies for dendritic cell (DC)-based vaccination have commonly used freeze-thaw "necrotic" lysates as an immunogenic source of tumor-associated antigens. In this study, the effect of such lysates on the ability of DCs to mature in response to well-established maturation stimuli was examined, and methods to enhance lysate-induced DC activation explored. Freeze-thaw lysates were prepared from murine tumor cell lines and their effects on bone marrow-derived DC maturation and function examined. Unmodified freeze-thaw tumor cell lysates inhibited the toll-like receptor-induced maturation and function of bone marrow-derived DCs, preventing up-regulation of CD40, CD86, and major histocompatibility complex class II, and reducing secretion of inflammatory cytokines [interleukin (IL)-12 p70, tumor necrosis factor-alpha, and IL-6]. Although IL-10 secretion was increased by lysate-pulsed DCs, this was not responsible for the observed suppression of IL-12. Although activation of the nuclear factor-kappaB pathway remained intact, the kinase activity of phosphorylated p38 mitogen-activated protein kinase was inhibited in lysate-pulsed DCs. Lysate-induced DC suppression was partially reversed in vitro by induction of tumor cell stress before lysis, and only DCs loaded with stressed lysates afforded protection against tumor challenge in vivo. These data suggest that ex vivo freeze-thaw of tumor cells does not effectively mimic in vivo immunogenic necrosis, and advocates careful characterization and optimization of tumor cell-derived vaccine sources for cancer immunotherapy.

  12. The characteristics and mechanism of apoptosis induced by internal irradiation

    International Nuclear Information System (INIS)

    Hong Chengjiao; Zhang Junning; Zhu Shoupeng

    2001-01-01

    Apoptosis in tumor cells induced by radionuclides is likely the most effective way to cure cancer. In order to explore the possibility in clinic application, the characteristics and mechanism of apoptosis induced by internal irradiation were investigated. The apoptosis and expressions of bcl-2mRNA, bcl-2 and bax of K 562 cells following internal exposure with different accumulated absorbed doses of strontium-89 were studied. 6 h after irradiation, the characteristics of apoptosis and necrosis appeared in K 562 cells. The apoptosis and necrosis enhanced with the prolongation of internally contaminated time at 6 h, 9 h, 12 h, 24 h and 48 h. The expressions of bcl-2mRNA decreased at 12 h, most remarkably at 24 h. The expressions of bcl-2 decreased after irradiation whereas bax had no obvious changes. The results suggest that the apoptosis induced by internal exposure may be regulated by lower expressions of bcl-2mRNA and bcl-2, lower bcl-2/bax value

  13. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  14. The Notch ligand delta-like 3 promotes tumor growth and inhibits Notch signaling in lung cancer cells in mice

    International Nuclear Information System (INIS)

    Deng, San-Ming; Yan, Xian-Chun; Liang, Liang; Wang, Li; Liu, Yuan; Duan, Juan-Li; Yang, Zi-Yan; Chang, Tian-Fang; Ruan, Bai; Zheng, Qi-Jun; Han, Hua

    2017-01-01

    Although it has been suggested that Dll3, one of the Notch ligands, promotes the proliferation and inhibits the apoptosis of cancer cells, the role of Dll3 in cancers remains unclear. In this study, we found that in the murine Lewis lung carcinoma (LLC) cells, the level of Dll3 mRNA changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with tumor necrosis factor (TNF)-α. Dll3 was also expressed at higher level in human lung carcinoma tissues than in the para-carcinoma tissues. Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro, and enhanced tumor growth when inoculated in vivo in mice. The Dll3-mediated proliferation could be due to increased Akt phosphorylation in LLC cells, because an Akt inhibitor counteracted Dll3-induced proliferation. Moreover, Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling. - Highlights: • The level of Dll3 in Lewis lung carcinoma changed upon tumor microenvironment (TME) stimulation, namely, decreased under hypoxia or stimulated with TNF-α. • The Dll3 was rarely detectable in the para-carcinoma tissues, but positive in 82.1% of NSCLC tissues from 84 patients. • Overexpression of Dll3 in LLC cells promoted tumor growth but did not remarkably alter TME after inoculated in mice. • Overexpression of Dll3 in LLC cells promoted cell proliferation and reduced apoptosis in vitro in an Akt-dependent way. • Dll3 overexpression promoted PI3K/Akt signaling through inhibiting Notch signaling.

  15. Cancer stem cells in solid tumors: elusive or illusive?

    Directory of Open Access Journals (Sweden)

    Lehrach Hans R

    2010-05-01

    Full Text Available Abstract During the past years in vivo transplantation experiments and in vitro colony-forming assays indicated that tumors arise only from rare cells. These cells were shown to bear self-renewal capacities and the ability to recapitulate all cell types within an individual tumor. Due to their phenotypic resemblance to normal stem cells, the term "cancer stem cells" is used. However, some pieces of the puzzle are missing: (a a stringent definition of cancer stem cells in solid tumors (b specific markers that only target cells that meet the criteria for a cancer stem cell in a certain type of tumor. These missing parts started an ongoing debate about which is the best method to identify and characterize cancer stem cells, or even if their mere existence is just an artifact caused by the experimental procedures. Recent findings query the cancer stem cell hypothesis for solid tumors itself since it was shown in xenograft transplantation experiments that under appropriate conditions tumor-initiating cells are not rare. In this review we critically discuss the challenges and prospects of the currently used major methods to identify cancer stem cells. Further on, we reflect the present discussion about the existence of cancer stem cells in solid tumors as well as the amount and characteristics of tumor-initiating cells and finally provide new perspectives like the correlation of cancer stem cells and induced pluripotent cells.

  16. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  17. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  18. Cyclin K and cyclin D1b are oncogenic in myeloma cells

    Directory of Open Access Journals (Sweden)

    Renoir Jack-Michel

    2010-05-01

    Full Text Available Abstract Background Aberrant expression of cyclin D1 is a common feature in multiple myeloma (MM and always associated with mantle cell lymphoma (MCL. CCND1 gene is alternatively spliced to produce two cyclin D1 mRNA isoforms which are translated in two proteins: cyclin D1a and cyclin D1b. Both isoforms are present in MM cell lines and primary cells but their relative role in the tumorigenic process is still elusive. Results To test the tumorigenic potential of cyclin D1b in vivo, we generated cell clones derived from the non-CCND1 expressing MM LP-1 cell line, synthesizing either cyclin D1b or cyclin K, a structural homolog and viral oncogenic form of cyclin D1a. Immunocompromised mice injected s.c. with LP-1K or LP-1D1b cells develop tumors at the site of injection. Genome-wide analysis of LP-1-derived cells indicated that several cellular processes were altered by cyclin D1b and/or cyclin K expression such as cell metabolism, signal transduction, regulation of transcription and translation. Importantly, cyclin K and cyclin D1b have no major action on cell cycle or apoptosis regulatory genes. Moreover, they impact differently cell functions. Cyclin K-expressing cells have lost their migration properties and display enhanced clonogenic capacities. Cyclin D1b promotes tumorigenesis through the stimulation of angiogenesis. Conclusions Our study indicates that cyclin D1b participates into MM pathogenesis via previously unrevealed actions.

  19. Glioma Cells in the Tumor Periphery Have a Stem Cell Phenotype

    DEFF Research Database (Denmark)

    Munthe, Sune; Petterson, Stine Asferg; Dahlrot, Rikke Hedegaard

    2016-01-01

    and a panel of markers was used. The panel comprised of six stem cell-related markers (CD133, Musashi-1, Bmi-1, Sox-2, Nestin and Glut-3), a proliferation marker (Ki-67) as well as a chemo-resistance marker (MGMT). Computer-based automated classifiers were designed to measure the mIDH1 positive nucleus area......-fraction of the chosen markers. Moreover, orthotopic glioblastoma xenografts from five different patient-derived spheroid cultures were obtained and the tumor cells identified by human specific immunohistochemical markers. The results showed that tumor cells in the periphery of patient gliomas expressed stem cell...... in the periphery of patient gliomas have a stem cell phenotype, although it is less pronounced than in the tumor core. Novel therapies aiming at preventing recurrence should therefore take tumor stemness into account. Migrating cells in orthotopic glioblastoma xenografts preserve expression and stem cell markers...

  20. Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin–p120-Catenin Complex

    Directory of Open Access Journals (Sweden)

    So-Yeon Park

    2017-12-01

    Full Text Available Glycoprotein 90K (also known as LGALS3BP or Mac-2BP is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin–p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with β-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin–p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.

  1. "The Lower Threshold" phenomenon in tumor cells toward endogenous digitalis-like compounds: Responsible for tumorigenesis?

    Directory of Open Access Journals (Sweden)

    Heidrun Weidemann

    2012-01-01

    Full Text Available Since their first discovery as potential anti-cancer drugs decades ago, there is increasing evidence that digitalis-like compounds (DLC have anti-tumor effects. Less is known about endogenous DLC (EDLC metabolism and regulation. As stress hormones synthesized in and secreted from the adrenal gland, they likely take part in the hypothalamo-pituitary-adrenal (HPA axis. In a previous study, we revealed reduced EDLC concentrations in plasma and organs from immune-compromised animals and proposed that a similar situation of a deregulated HPA axis with "adrenal EDLF exhaustion" may contribute to tumorigenesis in chronic stress situations. Here, we put forward the hypothesis that a lowered EDLC response threshold of tumor cells as compared with normal cells increases the risk of tumorigenesis, especially in those individuals with reduced EDLC plasma concentrations after chronic stress exposure. We will evaluate this hypothesis by (a summarizing the effects of different DLC concentrations on tumor as compared with normal cells and (b reviewing some essential differences in the Na/K-ATPase of tumor as compared with normal cells (isoform pattern, pump activity, mutations of other signalosome receptors. We will conclude that (1 tumor cells, indeed, seem to have their individual "physiologic" EDLC response range that already starts at pmolar levels and (2 that individuals with markedly reduced (pmolar EDLC plasma levels are predisposed to cancer because these EDLC concentrations will predominantly stimulate the proliferation of tumor cells. Finally, we will summarize preliminary results from our department supporting this hypothesis.

  2. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    2010-07-01

    Full Text Available We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells.Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL.We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages. Accordingly, vitamin D(3 sensitizes tumor cells to TRAIL

  3. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    OpenAIRE

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages pro...

  4. Monoclonal TCR-redirected tumor cell killing.

    Science.gov (United States)

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  5. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  6. Morphoproteomic profiling of the mammalian target of rapamycin (mTOR) signaling pathway in desmoplastic small round cell tumor (EWS/WT1), Ewing's sarcoma (EWS/FLI1) and Wilms' tumor(WT1).

    Science.gov (United States)

    Subbiah, Vivek; Brown, Robert E; Jiang, Yunyun; Buryanek, Jamie; Hayes-Jordan, Andrea; Kurzrock, Razelle; Anderson, Pete M

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is a rare sarcoma in adolescents and young adults. The hallmark of this disease is a EWS-WT1 translocation resulting from apposition of the Ewing's sarcoma (EWS) gene with the Wilms' tumor (WT1) gene. We performed morphoproteomic profiling of DSRCT (EWS-WT1), Ewing's sarcoma (EWS-FLI1) and Wilms' tumor (WT1) to better understand the signaling pathways for selecting future targeted therapies. This pilot study assessed patients with DSRCT, Wilms' tumor and Ewing's sarcoma. Morphoproteomics and immunohistochemical probes were applied to detect: p-mTOR (Ser2448); p-Akt (Ser473); p-ERK1/2 (Thr202/Tyr204); p-STAT3 (Tyr 705); and cell cycle-related analytes along with their negative controls. In DSRCT the PI3K/Akt/mTOR pathway is constitutively activated by p-Akt (Ser 473) expression in the nuclear compartment of the tumor cells and p-mTOR phosphorylated on Ser 2448, suggesting mTORC2 (rictor+mTOR) as the dominant form. Ewing's sarcoma had upregulated p-Akt and p-mTOR, predominantly mTORC2. In Wilm's tumor, the mTOR pathway is also activated with most tumor cells moderately expressing p-mTOR (Ser 2448) in plasmalemmal and cytoplasmic compartments. This coincides with the constitutive activation of one of the downstream effectors of the mTORC1 signaling pathway, namely p-p70S6K (Thr 389). There was constitutive activation of the Ras/Raf/ERK pathway p-ERK 1/2 (Thr202/Tyr204) expression in the Wilms tumor and metastatic Ewing's sarcoma, but not in the DSRCT. MORPHOPROTEOMIC TUMOR ANALYSES REVEALED CONSTITUTIVE ACTIVATION OF THE MTOR PATHWAY AS EVIDENCED BY: (a) expression of phosphorylated (p)-mTOR, p-p70S6K; (b) mTORC 2 in EWS and DSRCT; (c) ERK signaling was seen in the advanced setting indicating these as resistance pathways to IGF1R related therapies. This is the first morphoproteomic study of such pathways in these rare malignancies and may have potential therapeutic implications. Further study using morphoproteomic

  7. Profiling the HER3/PI3K Pathway in Breast Tumors Using Proximity-Directed Assays Identifies Correlations between Protein Complexes and Phosphoproteins

    Science.gov (United States)

    Mukherjee, Ali; Badal, Youssouf; Nguyen, Xuan-Thao; Miller, Johanna; Chenna, Ahmed; Tahir, Hasan; Newton, Alicia; Parry, Gordon; Williams, Stephen

    2011-01-01

    Background The identification of patients for targeted antineoplastic therapies requires accurate measurement of therapeutic targets and associated signaling complexes. HER3 signaling through heterodimerization is an important growth-promoting mechanism in several tumor types and may be a principal resistance mechanism by which EGFR and HER2 expressing tumors elude targeted therapies. Current methods that can study these interactions are inadequate for formalin-fixed, paraffin-embedded (FFPE) tumor samples. Methodology and Principal Findings Herein, we describe a panel of proximity-directed assays capable of measuring protein-interactions and phosphorylation in FFPE samples in the HER3/PI3K/Akt pathway and examine the capability of these assays to inform on the functional state of the pathway. We used FFPE breast cancer cell line and tumor models for this study. In breast cancer cell lines we observe both ligand-dependent and independent activation of the pathway and strong correlations between measured activation of key analytes. When selected cell lines are treated with HER2 inhibitors, we not only observe the expected molecular effects based on mechanism of action knowledge, but also novel effects of HER2 inhibition on key targets in the HER receptor pathway. Significantly, in a xenograft model of delayed tumor fixation, HER3 phosphorylation is unstable, while alternate measures of pathway activation, such as formation of the HER3PI3K complex is preserved. Measurements in breast tumor samples showed correlations between HER3 phosphorylation and receptor interactions, obviating the need to use phosphorylation as a surrogate for HER3 activation. Significance This assay system is capable of quantitatively measuring therapeutically relevant responses and enables molecular profiling of receptor networks in both preclinical and tumor models. PMID:21297994

  8. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    Science.gov (United States)

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  9. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  10. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  11. Nucleoli in human early erythroblasts (K2, K1, K1/2 cells).

    Science.gov (United States)

    Smetana, K; Jirásková, I; Klamová, H

    2005-01-01

    Human early erythroid precursors classified according to the nuclear size were studied to provide information on nucleoli in these cells using simple cytochemical procedures for demonstration of RNA and proteins of silver-stained nucleolar organizers. K2 cells with nuclear diameter larger than 13 microm and K1 cells with nuclear diameter larger than 9 microm corresponding to proerythroblasts and macroblasts (large basophilic erythroblasts) mostly possessed large irregularly shaped nucleoli with multiple fibrillar centres representing "active nucleoli". K1/2 cells with nuclear diameter smaller than 9 microm corresponding to small basophilic erythroblasts were usually characterized by the presence of micronucleoli representing "inactive nucleolar types". On the other hand, a few K1/2 cells contained large nucleoli with multiple fibrillar centres similar to those present in K2 cells and thus appeared as "microproerythroblasts". The nucleolar asynchrony expressed by the presence of large irregularly shaped nucleoli with multiple nucleoli (active nucleoli) and ring-shaped nucleoli (resting nucleoli) in one and the same nucleus of K2 or K1 cells was not exceptional and might reflect a larger resistance of these cells to negative factors influencing the erythropoiesis. The intranucleolar translocation of silver-stained nucleolus organized regions was noted in K2 cells and might indicate the premature aging of these cells without further differentiation. More studies, however, are required in this direction.

  12. An Effective Approach for Immunotherapy Using Irradiated Tumor Cells

    International Nuclear Information System (INIS)

    Mostafa, D.M.B.

    2011-01-01

    This study has been aimed to investigate the effect of injection of Irradiated Ehrlich tumor cells alone or concurrent with immunomodulator in mice before and after challenge with viable Ehrlich tumor cells for enhancement of immune system. This study includes the estimation of survival, tumor size, lymphocyte count, LDH, MTT, granzyme B, and DNA fragmentation. In order to fulfill the target of this study, a total of 120 female swiss albino mice were used. They were divided into two classes vaccinated (injection of vaccine before challenge) and therapeutic class (injection of vaccine after challenge). Each class was divided into four groups, group (1) mice injected with viable Ehrlich tumor cells (G1), group (2) mice injected with irradiated tumor cells (G2), group (3) mice injected with immunomodulator (G3), and group (4) mice injected with irradiated tumor cells + immunomodulator (G4). Results obtained from this study demonstrated that, the lymphocyte count and granzyme B activity were increased in both the vaccinated and therapeutic classes compared with control group. LDH activity was decreased in all groups of vaccinated class and also in G2 and G4 groups of therapeutic class compared with control group. There was a significant increase in percent apoptosis of tumor cells cultured with spleenocytes of the groups of vaccinated class as compared with control group. Cellular DNA from Ehrlich tumor cell line cultured with spleenocytes of immunized groups was fragmented into discrete bands of approximate multiples of 200 bp. Revealing significant apoptosis in tumor cells due to vaccination. It is concluded that, vaccination with irradiated tumor cells is an effective approach in stimulation of immune system against viable tumor cells.

  13. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors.

    Science.gov (United States)

    El Meskini, Rajaa; Iacovelli, Anthony J; Kulaga, Alan; Gumprecht, Michelle; Martin, Philip L; Baran, Maureen; Householder, Deborah B; Van Dyke, Terry; Weaver Ohler, Zoë

    2015-01-01

    Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment. © 2015. Published by The Company of Biologists Ltd.

  14. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors

    Directory of Open Access Journals (Sweden)

    Rajaa El Meskini

    2015-01-01

    Full Text Available Current therapies for glioblastoma multiforme (GBM, the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment.

  15. Childhood Central Nervous System Germ Cell Tumors Treatment

    Science.gov (United States)

    ... make hormones. Yolk sac tumors make the hormone alpha-fetoprotein (AFP). Mixed germ cell tumors are made of ... used to diagnose some CNS germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). Blood ...

  16. Transfer of allogeneic CD4+ T cells rescues CD8+ T cells in anti-PD-L1–resistant tumors leading to tumor eradication

    Science.gov (United States)

    Arina, Ainhoa; Karrison, Theodore; Galka, Eva; Schreiber, Karin; Weichselbaum, Ralph R.; Schreiber, Hans

    2017-01-01

    Adoptively transferred CD8+ T cells can stabilize the size of solid tumors over long periods of time by exclusively recognizing antigen cross-presented on tumor stroma. However, these tumors eventually escape T cell–mediated growth control. The aim of this study was to eradicate such persistent cancers. In our model, the SIYRYYGL antigen is expressed by cancer cells that lack the MHC-I molecule Kb needed for direct presentation, but the antigen is picked up and cross-presented by tumor stroma. A single injection of antigen-specific 2C CD8+ T cells caused long-term inhibition of tumor growth, but without further intervention, tumors started to progress after approximately 3 months. Escape was associated with reduced numbers of circulating 2C cells. Tumor-infiltrating 2C cells produced significantly less TNFα and expressed more of the “exhaustion” markers PD-1 and Tim-3 than T cells from lymphoid organs. High-dose local ionizing radiation, depletion of myeloid-derived suppressor cells, infusions of additional 2C cells, and antibodies blocking PD-L1 did not prevent tumor escape. In contrast, adoptive transfer of allogeneic CD4+ T cells restored the numbers of circulating Ag-specific CD8+ T cells and their intratumoral function, resulting in tumor eradication. These CD4+ T cells had no antitumor effects in the absence of CD8+ T cells and recognized the alloantigen cross-presented on tumor stroma. CD4+ T cells might also be effective in cancer patients when PD1/PD-L1 blockade does not rescue intratumoral CD8+ T-cell function and tumors persist. PMID:28077434

  17. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  18. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  19. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    Science.gov (United States)

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  1. Clinical relevance and biology of circulating tumor cells

    Science.gov (United States)

    2011-01-01

    Most breast cancer patients die due to metastases, and the early onset of this multistep process is usually missed by current tumor staging modalities. Therefore, ultrasensitive techniques have been developed to enable the enrichment, detection, isolation and characterization of disseminated tumor cells in bone marrow and circulating tumor cells in the peripheral blood of cancer patients. There is increasing evidence that the presence of these cells is associated with an unfavorable prognosis related to metastatic progression in the bone and other organs. This review focuses on investigations regarding the biology and clinical relevance of circulating tumor cells in breast cancer. PMID:22114869

  2. Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    International Nuclear Information System (INIS)

    Addison, Christina L; Belperio, John A; Burdick, Marie D; Strieter, Robert M

    2004-01-01

    The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROα (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

  3. Turnover rate of hypoxic cells in solid tumors

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.E.; Bussink, J.; Rijken, P.F.J.W.; Van Der Kogel, A.J.

    2003-01-01

    Most solid tumors contain hypoxic cells, and both the amount and duration of tumor hypoxia has been shown to influence the effect of radiation treatment negatively. It is important to understand the dynamic processes within the hypoxic cell population in non-treated tumors, and the effect of different treatment modalities on the kinetics of hypoxic cells to be able to design optimal combined modality treatments. The turnover rate of hypoxic cells was analyzed in three different solid tumor models with a double bio-reductive hypoxic marker assay with sequential injection of the two hypoxic markers. Previously it was shown that this assay could be used to detect both a decrease and an increase of tumor hypoxia in relation to the tumor vasculature with high spatial resolution. In this study the first hypoxic marker, pimonidazole, was administered at variable times relative to tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. The hypoxic cell turnover rate was calculated as the loss of pimonidazole positive cells relative to CCI-103F. The murine C38 line had the fastest hypoxic turnover rate of 60% /24h and the human xenograft line SCCNij3 had the slowest hypoxic turnover rate of 30% /24 h. The hypoxic turnover rate was most heterogeneous in the SCCNij3 line that even contained viable groups of cells that had been hypoxic for at least 5 days. The human xenograft line MEC82 fell in between with a hypoxic turnover rate of 50% /24 h. The hypoxic cell turnover was related to the potential tumor volume doubling time (Tpot) with a Tpot of 26h in C38 and 103h in SCCNij3. The dynamics of hypoxic cells, quantified with a double hypoxic marker method, showed large differences in hypoxic cell turnover rate and were related to Tpot

  4. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  5. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  6. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor; Kong, Say Li; Sengupta, Debarka; Tan, Iain B; Phyo, Wai Min; Lee, Daniel; Hu, Min; Iliescu, Ciprian; Alexander, Irina; Goh, Wei Lin; Rahmani, Mehran; Suhaimi, Nur-Afidah Mohamed; Vo, Jess H; Tai, Joyce A; Tan, Joanna H; Chua, Clarinda; Ten, Rachel; Lim, Wan Jun; Chew, Min Hoe; Hauser, Charlotte; van Dam, Rob M; Lim, Wei-Yen; Prabhakar, Shyam; Lim, Bing; Koh, Poh Koon; Robson, Paul; Ying, Jackie Y; Hillmer, Axel M; Tan, Min-Han

    2016-01-01

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  7. Tumor-derived circulating endothelial cell clusters in colorectal cancer.

    KAUST Repository

    Cima, Igor

    2016-06-29

    Clusters of tumor cells are often observed in the blood of cancer patients. These structures have been described as malignant entities for more than 50 years, although their comprehensive characterization is lacking. Contrary to current consensus, we demonstrate that a discrete population of circulating cell clusters isolated from the blood of colorectal cancer patients are not cancerous but consist of tumor-derived endothelial cells. These clusters express both epithelial and mesenchymal markers, consistent with previous reports on circulating tumor cell (CTC) phenotyping. However, unlike CTCs, they do not mirror the genetic variations of matched tumors. Transcriptomic analysis of single clusters revealed that these structures exhibit an endothelial phenotype and can be traced back to the tumor endothelium. Further results show that tumor-derived endothelial clusters do not form by coagulation or by outgrowth of single circulating endothelial cells, supporting a direct release of clusters from the tumor vasculature. The isolation and enumeration of these benign clusters distinguished healthy volunteers from treatment-naïve as well as pathological early-stage (≤IIA) colorectal cancer patients with high accuracy, suggesting that tumor-derived circulating endothelial cell clusters could be used as a means of noninvasive screening for colorectal cancer. In contrast to CTCs, tumor-derived endothelial cell clusters may also provide important information about the underlying tumor vasculature at the time of diagnosis, during treatment, and throughout the course of the disease.

  8. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  9. Migratory neighbors and distant invaders: tumor-associated niche cells

    Science.gov (United States)

    Wels, Jared; Kaplan, Rosandra N.; Rafii, Shahin; Lyden, David

    2008-01-01

    The cancer environment is comprised of tumor cells as well as a wide network of stromal and vascular cells participating in the cellular and molecular events necessary for invasion and metastasis. Tumor secretory factors can activate the migration of host cells, both near to and far from the primary tumor site, as well as promote the exodus of cells to distant tissues. Thus, the migration of stromal cells and tumor cells among specialized microenvironments takes place throughout tumor and metastatic progression, providing evidence for the systemic nature of a malignancy. Investigations of the tumor–stromal and stromal–stromal cross-talk involved in cellular migration in cancer may lead to the design of novel therapeutic strategies. PMID:18316475

  10. Impacts of autophagy-inducing ingredient of areca nut on tumor cells.

    Directory of Open Access Journals (Sweden)

    Ching-Yu Yen

    Full Text Available Areca nut (AN is a popular carcinogen used by about 0.6-1.2 billion people worldwide. Although AN contains apoptosis-inducing ingredients, we previously demonstrated that both AN extract (ANE and its 30-100 kDa fraction (ANE 30-100K predominantly induce autophagic cell death in both normal and malignant cells. In this study, we further explored the action mechanism of ANE 30-100K-induced autophagy (AIA in Jurkat T lymphocytes and carcinoma cell lines including OECM-1 (mouth, CE81T/VGH (esophagus, SCC25 (tongue, and SCC-15 (tongue. The results showed that chemical- and small hairpin RNA (shRNA-mediated inhibition of AMP-activated protein kinase (AMPK resulted in the attenuation of AIA in Jurkat T but not in OECM-1 cells. Knockdown of Atg5 and Beclin 1 expressions ameliorated AIA in OECM-1/CE81T/VGH/Jurkat T and OECM-1/SCC25/SCC-15, respectively. Furthermore, ANE 30-100K could activate caspase-3 after inhibition of Beclin 1 expression in OECM-1/SCC25/SCC15 cells. Meanwhile, AMPK was demonstrated to be the upstream activator of the extracellular-regulated kinase (ERK in Jurkat T cells, and inhibition of MEK attenuated AIA in Jurkat T/OECM-1/CE81T/VGH cells. Finally, we also found that multiple myeloma RPMI8226, lymphoma U937, and SCC15 cells survived from long-term non-cytotoxic ANE 30-100K treatment exhibited stronger resistance against serum deprivation through upregulated autophagy. Collectively, our studies indicate that Beclin-1 and Atg5 but not AMPK are commonly required for AIA, and MEK/ERK pathway is involved in AIA. Meanwhile, it is also suggested that long-term AN usage might increase the resistance of survived tumor cells against serum-limited conditions.

  11. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  12. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship.

    Science.gov (United States)

    Netea-Maier, Romana T; Smit, Johannes W A; Netea, Mihai G

    2018-01-28

    In order to adapt to the reduced availability of nutrients and oxygen in the tumor microenvironment and the increased requirements of energy and building blocks necessary for maintaining their high proliferation rate, malignant cells undergo metabolic changes that result in an increased production of lactate, nitric oxide, reactive oxygen species, prostaglandins and other byproducts of arachidonic acid metabolism that influence both the composition of the inflammatory microenvironment and the function of the tumor-associated macrophages (TAMs). In response to cues present in the TME, among which products of altered tumor cell metabolism, TAMs are also required to reprogram their metabolism, with activation of glycolysis, fatty acid synthesis and altered nitrogen cycle metabolism. These changes result in functional reprogramming of TAMs which includes changes in the production of cytokines and angiogenetic factors, and contribute to the tumor progression and metastasis. Understanding the metabolic changes governing the intricate relationship between the tumor cells and the TAMs represents an essential step towards developing novel therapeutic approaches targeting the metabolic reprogramming of the immune cells to potentiate their tumoricidal potential and to circumvent therapy resistance. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Activation of the PI3K/AKT pathway in Merkel cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Christian Hafner

    Full Text Available Merkel cell carcinoma (MCC is a highly aggressive skin cancer with an increasing incidence. The understanding of the molecular carcinogenesis of MCC is limited. Here, we scrutinized the PI3K/AKT pathway, one of the major pathways activated in human cancer, in MCC. Immunohistochemical analysis of 41 tumor tissues and 9 MCC cell lines revealed high levels of AKT phosphorylation at threonine 308 in 88% of samples. Notably, the AKT phosphorylation was not correlated with the presence or absence of the Merkel cell polyoma virus (MCV. Accordingly, knock-down of the large and small T antigen by shRNA in MCV positive MCC cells did not affect phosphorylation of AKT. We also analyzed 46 MCC samples for activating PIK3CA and AKT1 mutations. Oncogenic PIK3CA mutations were found in 2/46 (4% MCCs whereas mutations in exon 4 of AKT1 were absent. MCC cell lines demonstrated a high sensitivity towards the PI3K inhibitor LY-294002. This finding together with our observation that the PI3K/AKT pathway is activated in the majority of human MCCs identifies PI3K/AKT as a potential new therapeutic target for MCC patients.

  14. Inhibition of PI3K by ZSTK474 suppressed tumor growth not via apoptosis but G0/G1 arrest

    International Nuclear Information System (INIS)

    Dan, Shingo; Yoshimi, Hisashi; Okamura, Mutsumi; Mukai, Yumiko; Yamori, Takao

    2009-01-01

    Phosphoinositide 3-kinase (PI3K) is a potential target in cancer therapy. Inhibition of PI3K is believed to induce apoptosis. We recently developed a novel PI3K inhibitor ZSTK474 with antitumor efficacy. In this study, we have examined the underlying mode of action by which ZSTK474 exerts its antitumor efficacy. In vivo, ZSTK474 effectively inhibited the growth of human cancer xenografts. In parallel, ZSTK474 treatment suppressed the expression of phospho-Akt, suggesting effective PI3K inhibition, and also suppressed the expression of nuclear cyclin D1 and Ki67, both of which are hallmarks of proliferation. However, ZSTK474 treatment did not increase TUNEL-positive apoptotic cells. In vitro, ZSTK474 induced marked G 0 /G 1 arrest, but did not increase the subdiploid cells or activate caspase, both of which are hallmarks of apoptosis. These results clearly indicated that inhibition of PI3K by ZSTK474 did not induce apoptosis but rather induced strong G 0 /G 1 arrest, which might cause its efficacy in tumor cells.

  15. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    Science.gov (United States)

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing

  16. Radiosensitivity of four human tumor xenografts. Influence of hypoxia and cell-cell contact

    International Nuclear Information System (INIS)

    Guichard, M.; Dertinger, H.; Malaise, E.P.

    1983-01-01

    Contact effect (CE) and hypoxia have been studied in human tumor cell lines transplanted in athymic nude mice. Four cell lines - one melanoma (Bell) and three colorectal adenocarcinomas (HT29, HRT18, and HCT8) - were studied. Cell survival was determined with an in vivo in vitro colony-forming assay. Survival curves were obtained under three different conditions: (1) tumor cells irradiated in air-breathing mice, (2) tumor cells irradiated in animals asphyxiated for 10 min, and (3) tumor cells plated and irradiated either immediately or 5 hr later. For all cell lines, radiosensitivity appeared to be lower when cells were irradiated in vivo than when they were irradiated in vitro. Only in the case of the HCT8 tumor did the relative in vivo radioresistance seem to be linked to hypoxia; in the other cell lines, hypoxia alone could not account for the lower in vivo radiosensitivity. Our results suggest that a CE plays an important role in the response of human xenografts to irradiation

  17. In-vitro singlet oxygen threshold dose at PDT with Radachlorin photosensitizer

    Science.gov (United States)

    Klimenko, V. V.; Shmakov, S. V.; Kaydanov, N. E.; Knyazev, N. A.; Kazakov, N. V.; Rusanov, A. A.; Bogdanov, A. A.; Dubina, M. V.

    2017-07-01

    In this present study we investigate the Radachlorin photosensitizer accumulation in K562 cells and Hela cells and determined the cell viability after PDT. Using the macroscopic singlet oxygen modeling and cellular photosensitizer concentration the singlet oxygen threshold doses for K562 cells and Hela cells were calculated.

  18. Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Erica L Carpenter

    2014-07-01

    Full Text Available Our understanding of the diversity of cells that escape the primary tumor and seed micrometastases remains rudimentary, and approaches for studying circulating and disseminated tumor cells have been limited by low throughput and sensitivity, reliance on single parameter sorting, and a focus on enumeration rather than phenotypic and genetic characterization. Here we utilize a highly sensitive microfluidic and dielectrophoretic approach for the isolation and genetic analysis of individual tumor cells. We employed fluorescence labeling to isolate 208 single cells from spiking experiments conducted with 11 cell lines, including 8 neuroblastoma cell lines, and achieved a capture sensitivity of 1 tumor cell per 106 white blood cells. Sample fixation or freezing had no detectable effect on cell capture. Point mutations were accurately detected in the whole genome amplification product of captured single tumor cells but not in negative control white blood cells. We applied this approach to capture 144 single tumor cells from 10 bone marrow samples from patients suffering from neuroblastoma. In this pediatric malignancy, high-risk patients often exhibit wide-spread hematogenous metastasis, but access to primary tumor can be difficult or impossible. Here we used flow-based sorting to pre-enrich samples with tumor involvement below 0.02%. For all patients for whom a mutation in the Anaplastic Lymphoma Kinase gene had already been detected in their primary tumor, the same mutation was detected in single cells from their marrow. These findings demonstrate a novel, non-invasive, and adaptable method for the capture and genetic analysis of single tumor cells from cancer patients.

  19. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Naoki [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); College of Life and Health Sciences, Chubu University, Kasugai (Japan); Omori, Yukari [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Suzuki, Motoshi [Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kyogashima, Mamoru [Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama (Japan); Nakamura, Mitsuhiro [Department of Drug Information, Gifu Pharmaceutical University, Gifu (Japan); Tamiya-Koizumi, Keiko [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Nozawa, Yoshinori [Tokai Gakuin University, Kakamigahara (Japan); Murate, Takashi, E-mail: murate@isc.chubu.ac.jp [College of Life and Health Sciences, Chubu University, Kasugai (Japan)

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  20. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    International Nuclear Information System (INIS)

    Mizutani, Naoki; Omori, Yukari; Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi; Suzuki, Motoshi; Kyogashima, Mamoru; Nakamura, Mitsuhiro; Tamiya-Koizumi, Keiko; Nozawa, Yoshinori; Murate, Takashi

    2016-01-01

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  1. Contribution to Tumor Angiogenesis From Innate Immune Cells Within the Tumor Microenvironment: Implications for Immunotherapy

    Directory of Open Access Journals (Sweden)

    Adriana Albini

    2018-04-01

    Full Text Available The critical role of angiogenesis in promoting tumor growth and metastasis is strongly established. However, tumors show considerable variation in angiogenic characteristics and in their sensitivity to antiangiogenic therapy. Tumor angiogenesis involves not only cancer cells but also various tumor-associated leukocytes (TALs and stromal cells. TALs produce chemokines, cytokines, proteases, structural proteins, and microvescicles. Vascular endothelial growth factor (VEGF and inflammatory chemokines are not only major proangiogenic factors but are also immune modulators, which increase angiogenesis and lead to immune suppression. In our review, we discuss the regulation of angiogenesis by innate immune cells in the tumor microenvironment, specific features, and roles of major players: macrophages, neutrophils, myeloid-derived suppressor and dendritic cells, mast cells, γδT cells, innate lymphoid cells, and natural killer cells. Anti-VEGF or anti-inflammatory drugs could balance an immunosuppressive microenvironment to an immune permissive one. Anti-VEGF as well as anti-inflammatory drugs could therefore represent partners for combinations with immune checkpoint inhibitors, enhancing the effects of immune therapy.

  2. Osteoclastic giant cell tumor of the pancreas: an immunohistochemical study

    DEFF Research Database (Denmark)

    Dizon, M A; Multhaupt, H A; Paskin, D L

    1996-01-01

    A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor.......A case of an osteoclastic giant cell tumor of the pancreas is presented. Immunohistochemical studies were performed, which showed keratin (CAM, AE1) and epithelial membrane antigen positivity in the tumor cells. The findings support an epithelial origin for this tumor....

  3. Rapid internalization of the oncogenic K+ channel K(V10.1.

    Directory of Open Access Journals (Sweden)

    Tobias Kohl

    Full Text Available K(V10.1 is a mammalian brain voltage-gated potassium channel whose ectopic expression outside of the brain has been proven relevant for tumor biology. Promotion of cancer cell proliferation by K(V10.1 depends largely on ion flow, but some oncogenic properties remain in the absence of ion permeation. Additionally, K(V10.1 surface populations are small compared to large intracellular pools. Control of protein turnover within cells is key to both cellular plasticity and homeostasis, and therefore we set out to analyze how endocytic trafficking participates in controlling K(V10.1 intracellular distribution and life cycle. To follow plasma membrane K(V10.1 selectively, we generated a modified channel of displaying an extracellular affinity tag for surface labeling by α-bungarotoxin. This modification only minimally affected K(V10.1 electrophysiological properties. Using a combination of microscopy and biochemistry techniques, we show that K(V10.1 is constitutively internalized involving at least two distinct pathways of endocytosis and mainly sorted to lysosomes. This occurs at a relatively fast rate. Simultaneously, recycling seems to contribute to maintain basal K(V10.1 surface levels. Brief K(V10.1 surface half-life and rapid lysosomal targeting is a relevant factor to be taken into account for potential drug delivery and targeting strategies directed against K(V10.1 on tumor cells.

  4. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  5. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Science.gov (United States)

    Baay, Marc; Brouwer, Anja; Pauwels, Patrick; Peeters, Marc; Lardon, Filip

    2011-01-01

    Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs), which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative) phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention. PMID:22162712

  7. Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy

    Directory of Open Access Journals (Sweden)

    Marc Baay

    2011-01-01

    Full Text Available Inflammatory pathways, meant to defend the organism against infection and injury, as a byproduct, can promote an environment which favors tumor growth and metastasis. Tumor-associated macrophages (TAMs, which constitute a significant part of the tumor-infiltrating immune cells, have been linked to the growth, angiogenesis, and metastasis of a variety of cancers, most likely through polarization of TAMs to the M2 (alternative phenotype. The interaction between tumor cells and macrophages provides opportunities for therapy. This paper will discuss secreted proteins as targets for intervention.

  8. Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    International Nuclear Information System (INIS)

    Andrade, Sheila Siqueira; Gouvea, Iuri Estrada; Silva, Mariana Cristina C.; Castro, Eloísa Dognani; Paula, Cláudia A. A. de; Okamoto, Debora; Oliveira, Lilian; Peres, Giovani Bravin; Ottaiano, Tatiana; Facina, Gil; Nazário, Afonso Celso Pinto; Campos, Antonio Hugo J. F. M.; Paredes-Gamero, Edgar Julian; Juliano, Maria; Silva, Ismael D. C. G. da; Oliva, Maria Luiza V.; Girão, Manoel J. B. C.

    2016-01-01

    Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and −4 are highly expressed, but PAR-3 shows low expression and unclear functions. Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGFβ monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and −4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGFβ in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells. The online version of this article (doi:10.1186/s12885-016-2203-7) contains supplementary material, which is available to authorized users

  9.  An Uncommon Presentation of Giant Cell Tumor

    Directory of Open Access Journals (Sweden)

    Gopal Malhotra

    2011-09-01

    Full Text Available  Giant Cell Tumors commonly occur at the ends of long bones. However in rare cases, they can occur in the bones of the hands and feet. Tumors in these locations occur in younger patients; in addition, these tumors are more commonly multifocal and are associated with a higher risk for local recurrence than tumors at the ends of long bones. Since lesions in the small bones may be multifocal, a patient with a giant cell tumor of the small bones should undergo a skeletal survey to exclude similar lesions elsewhere. Primary surgical treatment ranges from curettage or excision with or without bone grafting to amputation. The success of surgical treatment depends on the completeness with which the tumor was removed. We are presenting a case report of a 34 year old female, who presented with a swelling in the right hand, following trauma. X-ray of the hand showed an osteolytic expansile lesion at the base of the 1st metacarpal bone. The lesion was initially curetted and then treated by local resection with bone grafting. Histological examination revealed a typical benign giant cell tumor composed of closely packed stromal cells with a variable admixture of giant cells. Follow up at the end of one year did not reveal any recurrence of the tumor.

  10. Luteoloside Inhibits Proliferation of Human Chronic Myeloid ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of luteoloside on the proliferation of human chronic myeloid leukemia K562 cells and whether luteoloside induces cell cycle arrest and apoptosis in K562 cells. Methods: Luteoloside's cytotoxicity was assessed using a cell counting kit. Cell cycle distribution was analysed by flow cytometry ...

  11. Synthesis, Biological Evaluation, and Autophagy Mechanism of 12N-Substituted Sophoridinamines as Novel Anticancer Agents.

    Science.gov (United States)

    Bi, Chongwen; Zhang, Na; Yang, Peng; Ye, Cheng; Wang, Yanxiang; Fan, Tianyun; Shao, Rongguang; Deng, Hongbin; Song, Danqing

    2017-02-09

    A series of 12 N -substituted sophoridinamine derivatives were synthesized and evaluated for their cytotoxic activities in human HepG2 hepatoma cells. Structure-activity relationship revealed that introduction of a suitable arylidene or arylethyl at the N '-end could greatly enhance antiproliferation potency. Among them, compound 6b possessing a N '-trimethoxyphenyl methylene exhibited potent antiproliferation effect against three human tumor cell lines including HepG2, leukemia (K562), and breast cancer (HMLE), with IC 50 between 0.55 and 1.7 μM. The underlying mechanism of 6b against tumor cells is to block autophagic flux, mainly through neutralizing lysosomal acidity. Our results indicated that compound 6b is a potent lysosomal deacidification agent and is accordingly able to block autophagic flux and inhibit tumor cell growth.

  12. Residual tumor cells that drive disease relapse after chemotherapy do not have enhanced tumor initiating capacity.

    Directory of Open Access Journals (Sweden)

    Ganapati V Hegde

    Full Text Available Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs. We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell's ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell's ability to drive disease recurrence.

  13. The use of bispecific antibodies in tumor cell and tumor vasculature directed immunotherapy

    NARCIS (Netherlands)

    Molema, G; Kroesen, BJ; Helfrich, W; Meijer, DKF; de Leij, LFMH

    2000-01-01

    To overcome dose limiting toxicities and to increase efficacy of immunotherapy of cancer, a number of strategies are under development for selectively redirecting effector cells/molecules towards tumor cells. Many of these strategies exploit the specificity of tumor associated antigen recognition by

  14. Interface between breast cancer cells and the tumor microenvironment using platelet-rich plasma to promote tumor angiogenesis - influence of platelets and fibrin bundles on the behavior of breast tumor cells.

    Science.gov (United States)

    Andrade, Sheila Siqueira; Sumikawa, Joana Tomomi; Castro, Eloísa Dognani; Batista, Fabricio Pereira; Paredes-Gamero, Edgar; Oliveira, Lilian Carolina; Guerra, Izabel Monastério; Peres, Giovani Bravin; Cavalheiro, Renan Pelluzzi; Juliano, Luiz; Nazário, Afonso Pinto; Facina, Gil; Tsai, Siu Mui; Oliva, Maria Luiza Vilela; Girão, Manoel João Batista Castello

    2017-03-07

    Cancer progression is associated with an evolving tissue interface of direct epithelial-tumor microenvironment interactions. In biopsies of human breast tumors, extensive alterations in molecular pathways are correlated with cancer staging on both sides of the tumor-stroma interface. These interactions provide a pivotal paracrine signaling to induce malignant phenotype transition, the epithelial-mesenchymal transition (EMT). We explored how the direct contact between platelets-fibrin bundles primes metastasis using platelet-rich plasma (PRP) as a source of growth factors and mimics the provisional fibrin matrix between actively growing breast cancer cells and the tumor stroma. We have demonstrated PRP functions, modulating cell proliferation that is tumor-subtype and cancer cell-type-specific. Epithelial and stromal primary cells were prepared from breast cancer biopsies from 21 women with different cancer subtypes. Cells supplemented with PRP were immunoblotted with anti-phospho and total Src-Tyr-416, FAK-Try-925, E-cadherin, N-cadherin, TGF-β, Smad2, and Snail monoclonal antibodies. Breast tumor cells from luminal B and HER2 subtypes showed the most malignant profiles and the expression of thrombin and other classes of proteases at levels that were detectable through FRET peptide libraries. The angiogenesis process was investigated in the interface obtained between platelet-fibrin-breast tumor cells co-cultured with HUVEC cells. Luminal B and HER2 cells showed robust endothelial cell capillary-like tubes ex vivo. The studied interface contributes to the attachment of endothelial cells, provides a source of growth factors, and is a solid substrate. Thus, replacement of FBS supplementation with PRP supplementation represents an efficient and simple approach for mimicking the real multifactorial tumor microenvironment.

  15. Malignant primary germ-cell tumor of the brain

    International Nuclear Information System (INIS)

    Yamamoto, Toyoshiro; Sato, Shinichi; Nakao, Satoshi; Ban, Sadahiko; Namba, Koh

    1983-01-01

    The unusual case of a 15 year old boy with three discrete paraventricular germ-cell tumors is reported.FThe first tumor was located just lateral to the left thalamus and included a massive cystic part around it, the second tumor in the paraventricular region above the head of the left caudate nucleus and the third tumor in the medial part of the left parietal lobe.FTotal removal of all tumors was successfully accomplished in stages at four separate operations, namely, the first tumor was removed through the left transsylvian approach, the second tumor via left superior frontal gyrus and the third tumor via left superior frontal gyrus and left superior parietal lobule.FHistological examination revealed that the first tumor was teratoma, the second was choriocarcinoma and the third was germinoma.FPrimary germ-cell tumors of the brain can be divided into 5 groups: 1) germinoma; 2) embryonal carcinoma; 3) choriocarcinoma; 4) yolk-sac tumor; or 5) teratoma.FIn this case, a combination of three different histological patterns was seen. If malignant germ-cell tumor is supected on CT, aggressive extirpation should be done, not only to determine the exact diagnosis, but also to provide the basis for subsequent adjunctive therapy. (author)

  16. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    Science.gov (United States)

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  17. Effects of low dose radiation combined with cyclophosphamide on tumor cell apoptosis, cell cycle and proliferation of bone marrow in tumor-bearing mice

    International Nuclear Information System (INIS)

    Yu Hongsheng; Fei Conghe; Shen Fangzhen; Liang Jun

    2004-01-01

    Objective: To study the effect of low dose radiation (LDR) combined with cyclophosphamide on tumor cell apoptosis, cell cycle, and proliferation of bone marrow in mice tumor-bearing mice. Methods: Kunming strain male mice were implanted with S180 sarcoma cells in the left hind leg subcutaneously as an experimental animal model. Five and 8 days after implantation, the mice were given 75 mGy whole-body γ-ray radiation and CTX(300 mg/kg) by intraperitoneal injection 36 hour after LDR. All mice were sacrificed to measure the tumor volume, tumor cell apoptosis, and cell cycle; the proliferation of bone marrow was analyzed by flow cytometry. Results: Tumor growth was significantly slowed down in the treated groups. The apoptosis of tumor cells increased significantly after LDR. The tumor cells were arrested in G 1 phase in CTX and CTX+LDR groups, more significantly in the latter group than in the former group. Concentration of bone marrow cells and proliferation index in CTX + LDR group were higher than those in CTX group, although concentration of bone marrow cells in CTX and CTX+LDR groups were much lower than that in normal mice. Conclusion: Low dose radiation combined with cyclophosphamide causes more significant G 1 -phase arrest than cyclophosphamide alone and enhances anti-tumor effect markedly. At the same time LDR significantly protects hematopoietic function of bone marrow, which is of practical significance as an adjuvant chemotherapy

  18. The Human Cell Surfaceome of Breast Tumors

    Science.gov (United States)

    da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José

    2013-01-01

    Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083

  19. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions

    Directory of Open Access Journals (Sweden)

    Sandy Azzi

    2015-06-01

    Full Text Available Intrarenal interleukin-15 (IL-15 participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15 isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC to peritumoral (ptumTEC, tumoral (RCC, and cancer stem cells (CSC/CD105+. RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15 isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα. This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression.

  20. Standardized orthotopic xenografts in zebrafish reveal glioma cell-line-specific characteristics and tumor cell heterogeneity

    Directory of Open Access Journals (Sweden)

    Alessandra M. Welker

    2016-02-01

    Full Text Available Glioblastoma (GBM is a deadly brain cancer, for which few effective drug treatments are available. Several studies have used zebrafish models to study GBM, but a standardized approach to modeling GBM in zebrafish was lacking to date, preventing comparison of data across studies. Here, we describe a new, standardized orthotopic xenotransplant model of GBM in zebrafish. Dose-response survival assays were used to define the optimal number of cells for tumor formation. Techniques to measure tumor burden and cell spread within the brain over real time were optimized using mouse neural stem cells as control transplants. Applying this standardized approach, we transplanted two patient-derived GBM cell lines, serum-grown adherent cells and neurospheres, into the midbrain region of embryonic zebrafish and analyzed transplanted larvae over time. Progressive brain tumor growth and premature larval death were observed using both cell lines; however, fewer transplanted neurosphere cells were needed for tumor growth and lethality. Tumors were heterogeneous, containing both cells expressing stem cell markers and cells expressing markers of differentiation. A small proportion of transplanted neurosphere cells expressed glial fibrillary acidic protein (GFAP or vimentin, markers of more differentiated cells, but this number increased significantly during tumor growth, indicating that these cells undergo differentiation in vivo. By contrast, most serum-grown adherent cells expressed GFAP and vimentin at the earliest times examined post-transplant. Both cell types produced brain tumors that contained Sox2+ cells, indicative of tumor stem cells. Transplanted larvae were treated with currently used GBM therapeutics, temozolomide or bortezomib, and this resulted in a reduction in tumor volume in vivo and an increase in survival. The standardized model reported here facilitates robust and reproducible analysis of glioblastoma tumor cells in real time and provides a

  1. Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia.

    Science.gov (United States)

    Carlson, David J; Keall, Paul J; Loo, Billy W; Chen, Zhe J; Brown, J Martin

    2011-03-15

    Tumor hypoxia has been observed in many human cancers and is associated with treatment failure in radiation therapy. The purpose of this study is to quantify the effect of different radiation fractionation schemes on tumor cell killing, assuming a realistic distribution of tumor oxygenation. A probability density function for the partial pressure of oxygen in a tumor cell population is quantified as a function of radial distance from the capillary wall. Corresponding hypoxia reduction factors for cell killing are determined. The surviving fraction of a tumor consisting of maximally resistant cells, cells at intermediate levels of hypoxia, and normoxic cells is calculated as a function of dose per fraction for an equivalent tumor biological effective dose under normoxic conditions. Increasing hypoxia as a function of distance from blood vessels results in a decrease in tumor cell killing for a typical radiotherapy fractionation scheme by a factor of 10(5) over a distance of 130 μm. For head-and-neck cancer and prostate cancer, the fraction of tumor clonogens killed over a full treatment course decreases by up to a factor of ∼10(3) as the dose per fraction is increased from 2 to 24 Gy and from 2 to 18 Gy, respectively. Hypofractionation of a radiotherapy regimen can result in a significant decrease in tumor cell killing compared to standard fractionation as a result of tumor hypoxia. There is a potential for large errors when calculating alternate fractionations using formalisms that do not account for tumor hypoxia. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. CD4 cells can be more efficient at tumor rejection than CD8 cells.

    Science.gov (United States)

    Perez-Diez, Ainhoa; Joncker, Nathalie T; Choi, Kyungho; Chan, William F N; Anderson, Colin C; Lantz, Olivier; Matzinger, Polly

    2007-06-15

    Researchers designing antitumor treatments have long focused on eliciting tumor-specific CD8 cytotoxic T lymphocytes (CTL) because of their potent killing activity and their ability to reject transplanted organs. The resulting treatments, however, have generally been surprisingly poor at inducing complete tumor rejection, both in experimental models and in the clinic. Although a few scattered studies suggested that CD4 T "helper" cells might also serve as antitumor effectors, they have generally been studied mostly for their ability to enhance the activity of CTL. In this mouse study, we compared monoclonal populations of tumor-specific CD4 and CD8 T cells as effectors against several different tumors, and found that CD4 T cells eliminated tumors that were resistant to CD8-mediated rejection, even in cases where the tumors expressed major histocompatibility complex (MHC) class I molecules but not MHC class II. MHC class II expression on host tissues was critical, suggesting that the CD4 T cells act indirectly. Indeed, the CD4 T cells partnered with NK cells to obtain the maximal antitumor effect. These findings suggest that CD4 T cells can be powerful antitumor effector cells that can, in some cases, outperform CD8 T cells, which are the current "gold standard" effector cell in tumor immunotherapy.

  3. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Science.gov (United States)

    Lu, Ting; Lin, Zongwei; Ren, Jianwei; Yao, Peng; Wang, Xiaowei; Wang, Zhe; Zhang, Qunye

    2016-01-01

    MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs. Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye) could firmly bind to the surface of adherent cells (Hela) and suspended cells (K562) even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein) to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it. These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  4. The Non-Specific Binding of Fluorescent-Labeled MiRNAs on Cell Surface by Hydrophobic Interaction.

    Directory of Open Access Journals (Sweden)

    Ting Lu

    Full Text Available MicroRNAs are small noncoding RNAs about 22 nt long that play key roles in almost all biological processes and diseases. The fluorescent labeling and lipofection are two common methods for changing the levels and locating the position of cellular miRNAs. Despite many studies about the mechanism of DNA/RNA lipofection, little is known about the characteristics, mechanisms and specificity of lipofection of fluorescent-labeled miRNAs.Therefore, miRNAs labeled with different fluorescent dyes were transfected into adherent and suspension cells using lipofection reagent. Then, the non-specific binding and its mechanism were investigated by flow cytometer and laser confocal microscopy. The results showed that miRNAs labeled with Cy5 (cyanine fluorescent dye could firmly bind to the surface of adherent cells (Hela and suspended cells (K562 even without lipofection reagent. The binding of miRNAs labeled with FAM (carboxyl fluorescein to K562 cells was obvious, but it was not significant in Hela cells. After lipofectamine reagent was added, most of the fluorescently labeled miRNAs binding to the surface of Hela cells were transfected into intra-cell because of the high transfection efficiency, however, most of them were still binding to the surface of K562 cells. Moreover, the high-salt buffer which could destroy the electrostatic interactions did not affect the above-mentioned non-specific binding, but the organic solvent which could destroy the hydrophobic interactions eliminated it.These results implied that the fluorescent-labeled miRNAs could non-specifically bind to the cell surface by hydrophobic interaction. It would lead to significant errors in the estimation of transfection efficiency only according to the cellular fluorescence intensity. Therefore, other methods to evaluate the transfection efficiency and more appropriate fluorescent dyes should be used according to the cell types for the accuracy of results.

  5. Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature

    Directory of Open Access Journals (Sweden)

    Soufiane El Hallani

    2014-01-01

    Full Text Available Background. Recently antiangiogenic therapy with bevacizumab has shown a high but transient efficacy in glioblastoma (GBM. Indeed, GBM is one of the most angiogenic human tumors and endothelial proliferation is a hallmark of the disease. We therefore hypothesized that tumor cells may participate in endothelial proliferation of GBM. Materials and Methods. We used EGFR FISH Probe to detect EGFR amplification and anti-CD31, CD105, VE-cadherin, and vWF to identify endothelial cells. Endothelial and GBM cells were grown separately, labeled with GFP and DsRed lentiviruses, and then cocultured with or without contact. Results. In a subset of GBM tissues, we found that several tumor endothelial cells carry EGFR amplification, characteristic of GBM tumor cells. This observation was reproduced in vitro: when tumor stem cells derived from GBM were grown in the presence of human endothelial cells, a fraction of them acquired endothelial markers (CD31, CD105, VE-cadherin, and vWF. By transduction with GFP and DsRed expressing lentiviral vectors, we demonstrate that this phenomenon is due to cell fusion and not transdifferentiation. Conclusion. A fraction of GBM stem cells thus has the capacity to fuse with endothelial cells and the resulting hybrids may participate in tumor microvascular proliferation and in treatment resistance.

  6. Frozen cord blood hematopoietic stem cells differentiate into higher numbers of functional natural killer cells in vitro than mobilized hematopoietic stem cells or freshly isolated cord blood hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Martha Luevano

    Full Text Available Adoptive natural killer (NK cell therapy relies on the acquisition of large numbers of NK cells that are cytotoxic but not exhausted. NK cell differentiation from hematopoietic stem cells (HSC has become an alluring option for NK cell therapy, with umbilical cord blood (UCB and mobilized peripheral blood (PBCD34(+ being the most accessible HSC sources as collection procedures are less invasive. In this study we compared the capacity of frozen or freshly isolated UCB hematopoietic stem cells (CBCD34(+ and frozen PBCD34(+ to generate NK cells in vitro. By modifying a previously published protocol, we showed that frozen CBCD34(+ cultures generated higher NK cell numbers without loss of function compared to fresh CBCD34(+ cultures. NK cells generated from CBCD34(+ and PBCD34(+ expressed low levels of killer-cell immunoglobulin-like receptors but high levels of activating receptors and of the myeloid marker CD33. However, blocking studies showed that CD33 expression did not impact on the functions of the generated cells. CBCD34(+-NK cells exhibited increased capacity to secrete IFN-γ and kill K562 in vitro and in vivo as compared to PBCD34(+-NK cells. Moreover, K562 killing by the generated NK cells could be further enhanced by IL-12 stimulation. Our data indicate that the use of frozen CBCD34(+ for the production of NK cells in vitro results in higher cell numbers than PBCD34(+, without jeopardizing their functionality, rendering them suitable for NK cell immunotherapy. The results presented here provide an optimal strategy to generate NK cells in vitro for immunotherapy that exhibit enhanced effector function when compared to alternate sources of HSC.

  7. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  8. Immunotherapy with neuraminidase-treated tumor cells after radiotherapy

    International Nuclear Information System (INIS)

    Song, C.W.; Levitt, S.H.

    1975-01-01

    The effect of active immunotherapy with Vibrio cholerae neuraminidase-treated syngeneic tumor cells (VCN-cells) following radiotherapy has been studied with 3-methylcholanthrene-induced fibrosarcoma, M-79, transplanted to the thigh of C3H/HeJ mice. When the tumors reached 4 to 8 mm in diameter, various treatments were started. X-irradiation with 2000 rad in a single dose induced a complete regression of 24 out of 103 tumors (23.3 percent). The inoculation of 1 x 10 6 of VCN-cells to the tumor-bearing animals, every other day for a total of three doses, caused a complete regression of 6 out of 57 tumors (10.5 percent). Treatments of animals with the immunotherapy starting 1 day after X-irradiation of tumors with 2000 rad resulted in a complete regression of 22 out of 58 tumors (37.9 percent). The median survival time of animals that received combined radiotherapy and immunotherapy was longer than that observed after either treatment alone

  9. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Localization Study of Co-Phthalocyanines in Cells by Raman Micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S.Y.; Arzhantsev, S.Y.; Chikishev, A.Y.; Chikishev, A.Y.; Koroteev, N.I.; Greve, Jan; Otto, Cornelis; Sijtsema, N.M.

    1999-01-01

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  11. Localization study of Co-phthalocyanines in cells by Raman micro(spectro)scopy

    NARCIS (Netherlands)

    Arzhantsev, S Y; Chikishev, A Y; Koroteev, N I; Greve, J; Otto, C; Sijtsema, N M

    An investigation of intracellular localization of Co-phthalocyanines is reported. The Raman images of K562 cells stained with phthalocyanine were acquired. To understand the peculiarities of the Raman images, measurements were performed at different z-axis positions. The intracellular concentration

  12. Colorectal cancer: genetic abnormalities, tumor progression, tumor heterogeneity, clonal evolution and tumor-initiating cells.

    Science.gov (United States)

    Testa, Ugo; Pelosi, Elvira; Castelli, Germana

    2018-04-13

    Colon cancer is the third most common cancer worldwide. Most colorectal cancer occurrences are sporadic, not related to genetic predisposition or family history; however, 20-30% of patients with colorectal cancer have a family history of colorectal cancer and 5% of these tumors arise in the setting of a Mendelian inheritance syndrome. In many patients, the development of a colorectal cancer is preceded by a benign neoplastic lesion: either an adenomatous polyp or a serrated polyp. Studies carried out in the last years have characterized the main molecular alterations occurring in colorectal cancers, showing that the tumor of each patient displays from two to eight driver mutations. The ensemble of molecular studies, including gene expression studies, has led to two proposed classifications of colorectal cancers, with the identification of four/five non-overlapping groups. The homeostasis of the rapidly renewing intestinal epithelium is ensured by few stem cells present at the level of the base of intestinal crypts. Various experimental evidence suggests that colorectal cancers may derive from the malignant transformation of intestinal stem cells or of intestinal cells that acquire stem cell properties following malignant transformation. Colon cancer stem cells seem to be involved in tumor chemoresistance, radioresistance and relapse.

  13. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors: Yolk sac tumors make a hormone called alpha-fetoprotein (AFP). They can form in the ovary, testicle, ... are used to detect extracranial germ cell tumors: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). For ...

  14. Gold nanoparticle-aided brachytherapy with vascular dose painting: estimation of dose enhancement to the tumor endothelial cell nucleus.

    Science.gov (United States)

    Ngwa, Wilfred; Makrigiorgos, G Mike; Berbeco, Ross I

    2012-01-01

    Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. A tumor vascular endothelial cell (EC) is modeled as a slab of 2 μm (thickness) × 10 μm (length) × 10 μm (width). The EC contains a nucleus of 5 μm diameter and thickness of 0.5-1 μm, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting extensive tumor cell death.

  15. Gold nanoparticle-aided brachytherapy with vascular dose painting: Estimation of dose enhancement to the tumor endothelial cell nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I. [Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2012-01-15

    Purpose: Theoretical microdosimetry at the subcellular level is employed in this study to estimate the dose enhancement to tumor endothelial cell nuclei, caused by radiation-induced photo/Auger electrons originating from gold nanoparticles (AuNPs) targeting the tumor endothelium, during brachytherapy. Methods: A tumor vascular endothelial cell (EC) is modeled as a slab of 2 {mu}m (thickness) x 10 {mu}m (length) x 10 {mu}m (width). The EC contains a nucleus of 5 {mu}m diameter and thickness of 0.5-1 {mu}m, corresponding to nucleus size 5%-10% of cellular volume, respectively. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the dose enhancement to the nucleus caused by photo/Auger electrons from AuNPs attached to the exterior surface of the EC. The nucleus dose enhancement factor (nDEF), representing the ratio of the dose to the nucleus with and without the presence of gold nanoparticles was calculated for different AuNP local concentrations. The investigated concentration range considers the potential for significantly higher local concentration near the EC due to preferential accumulation of AuNP in the tumor vasculature. Four brachytherapy sources: I-125, Pd-103, Yb-169, and 50 kVp x-rays were investigated. Results: For nucleus size of 10% of the cellular volume and AuNP concentrations ranging from 7 to 140 mg/g, brachytherapy sources Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 5.6-73, 4.8-58.3, 4.7-56.6, and 3.2-25.8, respectively. Meanwhile, for nucleus size 5% of the cellular volume in the same concentration range, Pd-103, I-125, 50 kVp, and Yb-169 yielded nDEF values of 6.9-79.2, 5.1-63.2, 5.0-61.5, and 3.3-28.3, respectively. Conclusions: The results predict that a substantial dose boost to the nucleus of endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs in combination with brachytherapy. Such vascular dose boosts could induce tumor vascular shutdown, prompting

  16. Training stem cells for treatment of malignant brain tumors

    Institute of Scientific and Technical Information of China (English)

    Shengwen; Calvin; Li; Mustafa; H; Kabeer; Long; T; Vu; Vic; Keschrumrus; Hong; Zhen; Yin; Brent; A; Dethlefs; Jiang; F; Zhong; John; H; Weiss; William; G; Loudon

    2014-01-01

    The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for pa-tients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution(i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system.

  17. Effect of misonidazole on radiosensitivity of Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Takeuchi, Hiroshi

    1986-01-01

    The effect of Misonidazole on radiosensitivity of Ehrlich ascites tumor cells was studied in vivo. Ehrlich ascites tumor cells growing intraperitoneally (ICR/SIC mice) for either 1, 4, 6 or 10 days were irradiated in vivo (whole body irradiation) with or without Misonidazole. Immediately after irradiation tumor cells were transplanted intraperitoneally into new animals. Four days later, the propagated surviving cells were removed and counted for analyses. Enhancement ratio of Misonidazole at the surviving fraction of 0.1 were 1.0 (for 1-day-old), 1.3 (for 4-day-old), 1.9 (for 6-day-old), 1.9 (for 10-day-old) and 2.8 (for anoxic cells) respectively. The gradual increase of the enhancement ratio of the ascites tumore cells during intraperitoneal growth from 1 through 10 days might be attributed to an increase of hypoxic tumor cells. Cytotoxicity was not observed at 0.1 mg per gram body weight of Misonidazole but was at 1 mg per gram body weight of Misonidazole in 6-day-old and 10-day-old Ehrlich ascites tumor cells which were supposed to contain hypoxic cells. These results suggest that Misonidazole may prove an effective radiosensitizer for hypoxic tumor cells. (author)

  18. The expression of VE-cadherin in breast cancer cells modulates cell dynamics as a function of tumor differentiation and promotes tumor-endothelial cell interactions.

    Science.gov (United States)

    Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim

    2018-01-01

    The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.

  19. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    International Nuclear Information System (INIS)

    Doronin, Igor I; Vishnyakova, Polina A; Kholodenko, Irina V; Ponomarev, Eugene D; Ryazantsev, Dmitry Y; Molotkovskaya, Irina M; Kholodenko, Roman V

    2014-01-01

    Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with

  20. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ying Pan

    Full Text Available Regulatory T cells (Tregs are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK cells, but dendritic cells co-cultured CIK (DC-CIK cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  1. Human tumor cell proliferation evaluated using manganese-enhanced MRI.

    Directory of Open Access Journals (Sweden)

    Rod D Braun

    Full Text Available Tumor cell proliferation can depend on calcium entry across the cell membrane. As a first step toward the development of a non-invasive test of the extent of tumor cell proliferation in vivo, we tested the hypothesis that tumor cell uptake of a calcium surrogate, Mn(2+ [measured with manganese-enhanced MRI (MEMRI], is linked to proliferation rate in vitro.Proliferation rates were determined in vitro in three different human tumor cell lines: C918 and OCM-1 human uveal melanomas and PC-3 prostate carcinoma. Cells growing at different average proliferation rates were exposed to 1 mM MnCl(2 for one hour and then thoroughly washed. MEMRI R(1 values (longitudinal relaxation rates, which have a positive linear relationship with Mn(2+ concentration, were then determined from cell pellets. Cell cycle distributions were determined using propidium iodide staining and flow cytometry. All three lines showed Mn(2+-induced increases in R(1 compared to cells not exposed to Mn(2+. C918 and PC-3 cells each showed a significant, positive correlation between MEMRI R(1 values and proliferation rate (p≤0.005, while OCM-1 cells showed no significant correlation. Preliminary, general modeling of these positive relationships suggested that pellet R(1 for the PC-3 cells, but not for the C918 cells, could be adequately described by simply accounting for changes in the distribution of the cell cycle-dependent subpopulations in the pellet.These data clearly demonstrate the tumor-cell dependent nature of the relationship between proliferation and calcium influx, and underscore the usefulness of MEMRI as a non-invasive method for investigating this link. MEMRI is applicable to study tumors in vivo, and the present results raise the possibility of evaluating proliferation parameters of some tumor types in vivo using MEMRI.

  2. Ovarian granulosa cell tumors : histopathology, immunopathology and prognosis

    NARCIS (Netherlands)

    S. Chadha-Ajwani (Savi)

    1987-01-01

    textabstractGranulosa cell tumors (GCT) of the ovary account for 2% of all ovarian tumors. As the name indicates, they are composed of granulosa cells but may also contain an admixture of theca cells. They are potentially malignant but, except for extraovarian spread, which is generally agreed

  3. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Hiroi, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2011-01-01

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163 + cells were significantly increased based on the pathological grade. CD163 + cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163 + cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4 + and CD8 + T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163 + TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC

  4. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  5. IL-7 splicing variant IL-7δ5 induces human breast cancer cell proliferation via activation of PI3K/Akt pathway

    International Nuclear Information System (INIS)

    Pan, Deshun; Liu, Bing; Jin, Xiaobao; Zhu, Jiayong

    2012-01-01

    Highlights: ► This study confirms the role of IL-7δ5 in breast cancer cell proliferation. ► IL-7δ5 promotes breast cancer cell proliferation and cell cycle progression. ► IL-7δ5 promotes cell proliferation via activation of PI3K/Akt pathway. -- Abstract: Various tumor cells express interleukin 7 (IL-7) and IL-7 variants. IL-7 has been confirmed to stimulate solid tumor cell proliferation. However, the effect of IL-7 variants on tumor cell proliferation remains unclear. In this study, we evaluated the role of IL-7δ5 (an IL-7 variant lacking exon 5) on proliferation and cell cycle progression of human MDA-MB-231 and MCF-7 breast cancer cells. The results showed that IL-7δ5 promoted cell proliferation and cell cycle progression from G1 phase to G2/M phase, associated with upregulation of cyclin D1 expression and the downregulation of p27 kip1 expression. Mechanistically, we found that IL-7δ5 induced the activation of Akt. Inhibition of PI3K/Akt pathway by LY294002 reversed the proliferation and cell cycle progression of MDA-MB-231 and MCF-7 cells induced by IL-7δ5. In conclusion, our findings demonstrate that IL-7δ5 variant induces human breast cancer cell proliferation and cell cycle progression via activation of PI3K/Akt pathway. Thus, IL-7δ5 may be a potential target for human breast cancer therapeutics intervention.

  6. Solid KHT tumor dispersal for flow cytometric cell kinetic analysis

    International Nuclear Information System (INIS)

    Pallavicini, M.G.; Folstad, L.J.; Dunbar, C.

    1981-01-01

    A bacterial neutral protease was used to disperse KHT solid tumors into single cell suspensions suitable for routine cell kinetic analysis by flow cytometry and for clonogenic cell survival. Neutral protease disaggregation under conditions which would be suitable for routine tumor dispersal was compared with a trypsin/DNase procedure. Cell yield, clonogenic cell survival, DNA distributions of untreated and drug-perturbed tumors, rates of radioactive precursor incorporation during the cell cycle, and preferential cell cycle phase-specific cell loss were investigated. Tumors dispersed with neutral protease yielded approximately four times more cells than those dispersed with trypsin/DNase and approximately a 1.5-fold higher plating efficiency in a semisolid agar system. Quantitative analysis of DNA distributions obtained from untreated and cytosine-arabinoside-perturbed tumors produced similar results with both dispersal procedures. The rates of incorporation of tritiated thymidine during the cell cycle were also similar with neutral protease and trypsin/DNase dispersal. Preferential phase-specific cell loss was not obseved with either technique. We find that neutral protease provides good single cell suspensions of the KHT tumor for cell survival measurements and for cell kinetic analysis of drug-induced perturbations by flow cytometry. In addition, the high cell yields facilitate electronic cell sorting where large numbers of cells are often required

  7. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  8. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Mallika, A. [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Badiger, Jayasree [HKE' s Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India); Alinakhi [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Talukdar, Pinaki [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India); Sachchidanand [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  9. Visualization of proteolytic activity associated with the apoptotic response in cancer cells

    Science.gov (United States)

    Tice, Brian George

    Caspases execute programmed cell death, where low levels of caspase activity are linked to cancer. Chemotherapies utilize induction of apoptosis as a key mechanism for cancer treatment, where caspase-3 is a major player involved in dismantling these aberrant cells. The ability to sensitively measure the initial caspase-3 cleavage events during apoptosis is important for understanding the initiation of this complex cellular process, however, current ensemble methods are not sensitive enough to measure single cleavage events in cells. By utilizing the optical properties of plasmon coupling, peptide-linked gold nanoparticles were developed to enable single molecule imaging of caspase-3 activity in two different cancer systems. Au crown nanoparticles were assembled in a multimeric fashion to overcome the high and heterogeneous background scattering of live cells. In a colon cancer (SW620) cell line challenged with tumor necrosis factor-alpha (TNF-alpha), single molecule trajectories show early stage caspase-3 activation within minutes, which was not detectable by ensemble assays until 23 hours. Variability in caspase-3 activation among the population of cells was identified and likely a result of each cell's specific resistance to death receptor-induced apoptosis. Following these studies, improvements by way of sensitivity and selectivity were tailored into an improved nanosensor construct. Au nanoshell dimers were prepared as a comparably bright construct with 1) reduced heterogeneity compared to the synthesis of the crown nanoparticles and 2) a peptide sequence highly selective for caspase-3. Chronic myeloid leukemia (CML) K562 cells were assessed for their early apoptotic response upon treatment with dasatinib, a clinically approved tyrosine kinase inhibitor that specifically targets BCR-ABL. It has been demonstrated that inhibition of BCR-ABL by dasatinib commits K562 cells to apoptosis. Single molecule experiments with Au nanoshell dimers show caspase-3 activation

  10. 33 CFR 183.562 - Metallic fuel lines.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.562 Metallic fuel lines. (a) Each metallic fuel line that is mounted to the boat structure must be connected to the engine by a flexible fuel line. (b) Each metallic fuel line must be attached to the boat's structure...

  11. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    Science.gov (United States)

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Na,K-ATPase isozymes in colorectal cancer and liver metastases

    Directory of Open Access Journals (Sweden)

    Marc eBaker Bechmann

    2016-01-01

    Full Text Available The goal of this study was to define Na,K-ATPase α and β subunit isoform expression and isozyme composition in colorectal cancer cells and liver metastases. The α1, α3 and β1 isoforms were the most highly expressed in tumor cells and metastases; in the plasma membrane of non-neoplastic cells and mainly in a cytoplasmic location in tumor cells. α1β1 and α3β1 isozymes found in tumor and metastatic cells exhibit the highest and lowest Na+ affinity respectively and the highest K+ affinity. Mesenchymal cell isozymes possess an intermediate Na+ affinity and a low K+ affinity. In cancer, these ions are likely to favor optimal conditions for the function of nuclear enzymes involved in mitosis, especially a high intra-nuclear K+ concentration. A major and striking finding of this study was that in liver, metastasized CRC cells express the α3β1 isozyme. Thus, the α3β1 isozyme could potentially serve as a novel exploratory biomarker of CRC metastatic cells in liver.

  13. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities

    Directory of Open Access Journals (Sweden)

    Sebastian Diegeler

    2017-06-01

    Full Text Available Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  14. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    Science.gov (United States)

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  15. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    Science.gov (United States)

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  16. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    Directory of Open Access Journals (Sweden)

    Sejal Desai

    Full Text Available Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2 and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper

  17. Innate immune cell-derived microparticles facilitate hepatocarcinoma metastasis by transferring integrin α(M)β₂ to tumor cells.

    Science.gov (United States)

    Ma, Jingwei; Cai, Wenqian; Zhang, Yi; Huang, Chunmei; Zhang, Huafeng; Liu, Jing; Tang, Ke; Xu, Pingwei; Katirai, Foad; Zhang, Jianmin; He, Wei; Ye, Duyun; Shen, Guan-Xin; Huang, Bo

    2013-09-15

    Mechanisms by which tumor cells metastasize to distant organs still remain enigmatic. Immune cells have been assumed to be the root of metastasis by their fusing with tumor cells. This fusion theory, although interpreting tumor metastasis analogically and intriguingly, is arguable to date. We show in this study an alternative explanation by immune cell-derived microparticles (MPs). Upon stimulation by PMA or tumor cell-derived supernatants, immune cells released membrane-based MPs, which were taken up by H22 tumor cells, leading to tumor cell migration in vitro and metastasis in vivo. The underlying molecular basis was involved in integrin α(M)β₂ (CD11b/CD18), which could be effectively relayed from stimulated innate immune cells to MPs, then to tumor cells. Blocking either CD11b or CD18 led to significant decreases in MP-mediated tumor cell metastasis. This MP-mediated transfer of immune phenotype to tumor cells might also occur in vivo. These findings suggest that tumor cells may usurp innate immune cell phenotypes via MP pathway for their metastasis, providing new insight into tumor metastatic mechanism.

  18. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Kanakubo, Emi; Chan, John K

    2005-01-01

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  19. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  20. Tumor-associated mesenchymal stem cells inhibit naïve T cell expansion by blocking cysteine export from dendritic cells.

    Science.gov (United States)

    Ghosh, Tithi; Barik, Subhasis; Bhuniya, Avishek; Dhar, Jesmita; Dasgupta, Shayani; Ghosh, Sarbari; Sarkar, Madhurima; Guha, Ipsita; Sarkar, Koustav; Chakrabarti, Pinak; Saha, Bhaskar; Storkus, Walter J; Baral, Rathindranath; Bose, Anamika

    2016-11-01

    Mesenchymal stem cells (MSCs) represent an important cellular constituent of the tumor microenvironment, which along with tumor cells themselves, serve to regulate protective immune responses in support of progressive disease. We report that tumor MSCs prevent the ability of dendritic cells (DC) to promote naïve CD4(+) and CD8(+) T cell expansion, interferon gamma secretion and cytotoxicity against tumor cells, which are critical to immune-mediated tumor eradication. Notably, tumor MSCs fail to prevent DC-mediated early T cell activation events or the ability of responder T cells to produce IL-2. The immunoregulatory activity of tumor MSCs is IL-10- and STAT3-dependent, with STAT3 repressing DC expression of cystathionase, a critical enzyme that converts methionine-to-cysteine. Under cysteine-deficient priming conditions, naïve T cells exhibit defective cellular metabolism and proliferation. Bioinformatics analyses as well as in vitro observations suggest that STAT3 may directly bind to a GAS-like motif within the cystathionase promoter (-269 to -261) leading to IL-10-STAT3 mediated repression of cystathionase gene transcription. Our collective results provide evidence for a novel mechanism of tumor MSC-mediated T cell inhibition within tumor microenvironment. © 2016 UICC.

  1. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation.

    Science.gov (United States)

    Heckler, Max; Osterberg, Nadja; Guenzle, Jessica; Thiede-Stan, Nina Kristin; Reichardt, Wilfried; Weidensteiner, Claudia; Saavedra, Joseph E; Weyerbrock, Astrid

    2017-06-01

    As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.

  2. Semiallogenic fusions of MSI+ tumor cells and activated B cells induce MSI-specific T cell responses

    International Nuclear Information System (INIS)

    Garbe, Yvette; Klier, Ulrike; Linnebacher, Michael

    2011-01-01

    Various strategies have been developed to transfer tumor-specific antigens into antigen presenting cells in order to induce cytotoxic T cell responses against tumor cells. One approach uses cellular vaccines based on fusions of autologous antigen presenting cells and allogeneic tumor cells. The fusion cells combine antigenicity of the tumor cell with optimal immunostimulatory capacity of the antigen presenting cells. Microsatellite instability caused by mutational inactivation of DNA mismatch repair genes results in translational frameshifts when affecting coding regions. It has been shown by us and others that these mutant proteins lead to the presentation of immunogenic frameshift peptides that are - in principle - recognized by a multiplicity of effector T cells. We chose microsatellite instability-induced frameshift antigens as ideal to test for induction of tumor specific T cell responses by semiallogenic fusions of microsatellite instable carcinoma cells with CD40-activated B cells. Two fusion clones of HCT116 with activated B cells were selected for stimulation of T cells autologous to the B cell fusion partner. Outgrowing T cells were phenotyped and tested in functional assays. The fusion clones expressed frameshift antigens as well as high amounts of MHC and costimulatory molecules. Autologous T cells stimulated with these fusions were predominantly CD4 + , activated, and reacted specifically against the fusion clones and also against the tumor cell fusion partner. Interestingly, a response toward 6 frameshift-derived peptides (of 14 tested) could be observed. Cellular fusions of MSI + carcinoma cells and activated B cells combine the antigen-presenting capacity of the B cell with the antigenic repertoire of the carcinoma cell. They present frameshift-derived peptides and can induce specific and fully functional T cells recognizing not only fusion cells but also the carcinoma cells. These hybrid cells may have great potential for cellular immunotherapy and

  3. Radiation Therapy of Suprasellar Germ Cell Tumors

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Choi, Doo Ho; Choi, Eun Kyung; Kim, Il Han; Ha, Sung Whan; Park, Charn Il

    1988-01-01

    A retrospective study was performed on 15 patients with suprasellar germ cell tumors treated by megavoltage external beam irradiation between Feb. 1979 and Dec. 1985. Follow-up period of survivors was 30 to 91 months. Histologic diagnosis was obtained before radiation therapy in 10 patients (9 germinomas and 1 mixed). Five patients were treated without histologic verification. In 9 patients with biopsy-proven germinomas radiation therapy was delivered to the craniospinal axis in 6, to the whole brain in 3. In 5 patients with mixed germ cell tumor or elevated tumor marker, irradiation was delivered to the craniospinal axis in 2, to the whole brain in 2, and to the primary site only in 1. Total doses ranged from 5,000 to 5,500 cGy to the primary site, 3,000 to 4,400 cGy to the whole brain, and 1,300 to 3,000 cGy to the spine. In these 14, local tumor was controlled and primary or spinal failure was not observed. One patient without elevated tumor marker was treated to the whole brain, The tumor was not controlled and he had spinal recurrence. It is proven that radiation therapy is an effective treatment for suprasellar germ cell tumors. The neuroendocrinologic presentation, tumor marker status, early response to radiation measured on CT seem to be useful means for selecting patients for radiation therapy when tissue diagnosis is not available

  4. Loss of TET1 facilitates DLD1 colon cancer cell migration via H3K27me3-mediated down-regulation of E-cadherin.

    Science.gov (United States)

    Zhou, Zhen; Zhang, Hong-Sheng; Liu, Yang; Zhang, Zhong-Guo; Du, Guang-Yuan; Li, Hu; Yu, Xiao-Ying; Huang, Ying-Hui

    2018-02-01

    Epigenetic modifications such as histone modifications and cytosine hydroxymethylation are linked to tumorigenesis. Loss of 5-hydroxymethylcytosine (5 hmC) by ten-eleven translocation 1 (TET1) down-regulation facilitates tumor initiation and development. However, the mechanisms by which loss of TET1 knockdown promotes malignancy development remains unclear. Here, we report that TET1 knockdown induced epithelial-mesenchymal transition (EMT) and increased cancer cell growth, migration, and invasion in DLD1 cells. Loss of TET1 increased EZH2 expression and reduced UTX-1 expression, thus increasing histone H3K27 tri-methylation causing repression of the target gene E-cadherin. Ectopic expression of the H3K27 demethylase UTX-1 or EZH2 depletion both impeded EZH2 binding caused a loss of H3K27 methylation at epithelial gene E-cadherin promoter, thereby suppressing EMT and tumor invasion in shTET1 cells. Conversely, UTX-1 depletion and ectopic expression of EZH2 enhanced EMT and tumor metastasis in DLD1 cells. These findings provide insight into the regulation of TET1 and E-cadherin and identify EZH2 as a critical mediator of E-cadherin repression and tumor progression. © 2017 Wiley Periodicals, Inc.

  5. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    Science.gov (United States)

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  6. Noninvasive Assessment of Tumor Cell Proliferation in Animal Models

    Directory of Open Access Journals (Sweden)

    Matthias Edinger

    1999-10-01

    Full Text Available Revealing the mechanisms of neoplastic disease and enhancing our ability to intervene in these processes requires an increased understanding of cellular and molecular changes as they occur in intact living animal models. We have begun to address these needs by developing a method of labeling tumor cells through constitutive expression of an optical reporter gene, noninvasively monitoring cellular proliferation in vivo using a sensitive photon detection system. A stable line of HeLa cells that expressed a modified firefly luciferase gene was generated, proliferation of these cells in irradiated severe combined immunodeficiency (SCID mice was monitored. Tumor cells were introduced into animals via subcutaneous, intraperitoneal and intravenous inoculation and whole body images, that revealed tumor location and growth kinetics, were obtained. The number of photons that were emitted from the labeled tumor cells and transmitted through murine tissues was sufficient to detect 1×103 cells in the peritoneal cavity, 1×104 cells at subcutaneous sites and 1×106 circulating cells immediately following injection. The kinetics of cell proliferation, as measured by photon emission, was exponential in the peritoneal cavity and at subcutaneous sites. Intravenous inoculation resulted in detectable colonies of tumor cells in animals receiving more than 1×103 cells. Our demonstrated ability to detect small numbers of tumor cells in living animals noninvasively suggests that therapies designed to treat minimal disease states, as occur early in the disease course and after elimination of the tumor mass, may be monitored using this approach. Moreover, it may be possible to monitor micrometastases and evaluate the molecular steps in the metastatic process. Spatiotemporal analyses of neoplasia will improve the predictability of animal models of human disease as study groups can be followed over time, this method will accelerate development of novel therapeutic

  7. Huaier Extract Induces Autophagic Cell Death by Inhibiting the mTOR/S6K Pathway in Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Huaier extract is attracting increased attention due to its biological activities, including antitumor, anti-parasite and immunomodulatory effects. Here, we investigated the role of autophagy in Huaier-induced cytotoxicity in MDA-MB-231, MDA-MB-468 and MCF7 breast cancer cells. Huaier treatment inhibited cell viability in all three cell lines and induced various large membranous vacuoles in the cytoplasm. In addition, electron microscopy, MDC staining, accumulated expression of autophagy markers and flow cytometry revealed that Huaier extract triggered autophagy. Inhibition of autophagy attenuated Huaier-induced cell death. Furthermore, Huaier extract inhibited the mammalian target of the rapamycin (mTOR/S6K pathway in breast cancer cells. After implanting MDA-MB-231 cells subcutaneously into the right flank of BALB/c nu/nu mice, Huaier extract induced autophagy and effectively inhibited xenograft tumor growth. This study is the first to show that Huaier-induced cytotoxicity is partially mediated through autophagic cell death in breast cancer cells through suppression of the mTOR/S6K pathway.

  8. Circulating tumor cells: utopia or reality?

    Science.gov (United States)

    Conteduca, Vincenza; Zamarchi, Rita; Rossi, Elisabetta; Condelli, Valentina; Troiani, Laura; Aieta, Michele

    2013-09-01

    Circulating tumor cells (CTCs) could be considered a sign of tumor aggressiveness, but highly sensitive and specific methods of CTC detection are necessary owing to the rarity and heterogeneity of CTCs in peripheral blood. This review summarizes recent studies on tumor biology, with particular attention to the metastatic cascade, and the molecular characterization and clinical significance of CTCs. Recent technological approaches to enrich and detect these cells and challenges of CTCs for individualized cancer treatment are also discussed. This review also provides an insight into the positive and negative features of the future potential applications of CTC detection, which sometimes remains still a 'utopia', but its actual utility remains among the fastest growing research fields in oncology.

  9. Tumor of granular cells of esophagus

    International Nuclear Information System (INIS)

    Gonzalez Fabian, Licet; Diaz Anaya, Amnia; Perez de la Torre, Georgina

    2010-01-01

    Granular cells tumors are rare and asymptomatic lesions and by general, it is an incidental finding en high or low endoscopy. They were described for the first time by Abrikossoff in 1926. The more frequent locations are the buccal mucosa, dermis and subcutaneous cellular tissue, most of these tumors has a benign origin. This is the case of a woman aged 44 with a pyrosis history from a year ago; by high endoscopy it is noted a 8 mm lesion distal to esophagus and confirmed by histological study of granular cells tumor. Elective treatment of this lesion is the endoscopic polypectomy. Despite that the malign potential is low; we suggested a close clinical and endoscopic follow-up.

  10. Circulating Tumor Cells in Prostate Cancer

    International Nuclear Information System (INIS)

    Hu, Brian; Rochefort, Holly; Goldkorn, Amir

    2013-01-01

    Circulating tumor cells (CTCs) can provide a non-invasive, repeatable snapshot of an individual patient’s tumor. In prostate cancer, CTC enumeration has been extensively studied and validated as a prognostic tool and has received FDA clearance for use in monitoring advanced disease. More recently, CTC analysis has been shifting from enumeration to more sophisticated molecular characterization of captured cells, which serve as a “liquid biopsy” of the tumor, reflecting molecular changes in an individual’s malignancy over time. Here we will review the main CTC studies in advanced and localized prostate cancer, highlighting the important gains as well as the challenges posed by various approaches, and their implications for advancing prostate cancer management

  11. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    Science.gov (United States)

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  12. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  13. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location.

    Science.gov (United States)

    Karremann, Michael; Gielen, Gerrit H; Hoffmann, Marion; Wiese, Maria; Colditz, Niclas; Warmuth-Metz, Monika; Bison, Brigitte; Claviez, Alexander; van Vuurden, Dannis G; von Bueren, André O; Gessi, Marco; Kühnle, Ingrid; Hans, Volkmar H; Benesch, Martin; Sturm, Dominik; Kortmann, Rolf-Dieter; Waha, Andreas; Pietsch, Torsten; Kramm, Christof M

    2018-01-10

    The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  14. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Jonathan, E-mail: jdpagan@uams.edu; Przybyla, Beata; Jamshidi-Parsian, Azemat [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States); Gupta, Kalpna [Vascular Biology Center and Division of Hematology-Oncology Transplantation, Department of Medicine, University of Minnesota Medical School, MN 72223 (United States); Griffin, Robert J. [Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205 (United States)

    2013-02-18

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm{sup 3}) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  15. Blood Outgrowth Endothelial Cells Increase Tumor Growth Rates and Modify Tumor Physiology: Relevance for Therapeutic Targeting

    International Nuclear Information System (INIS)

    Pagan, Jonathan; Przybyla, Beata; Jamshidi-Parsian, Azemat; Gupta, Kalpna; Griffin, Robert J.

    2013-01-01

    Endothelial cell precursors from human peripheral blood have been shown to home to areas of neovascularization and may assist tumor growth by increasing or fortifying blood vessel growth. In the present study, the influence of these cells on tumor growth and physiology was investigated and the role of these cells as a therapeutic target or in determining treatment sensitivity was tested. After isolation from human blood and expansion in vitro, actively growing cells with verified endothelial phenotype (Blood Outgrowth Endothelial Cell, BOEC) were injected i.v. into tumor bearing mice for three consecutive days. The growth rate was significantly enhanced in relatively small RERF human lung tumors (i.e., less than 150 mm 3 ) grown in immunocompromised mice by an average of 1.5-fold while it had no effect when injections were given to animals bearing larger tumors. There were no signs of toxicity or unwanted systemic effects. We also observed evidence of increased perfusion, vessel number, response to 15 Gy radiation and oxygenation in RERF tumors of animals injected with BOECs compared to control tumors. In addition, FSaII murine fibrosarcoma tumors were found to grow faster upon injection of BOECs. When FSaII tumors were subjected to a partial thermal ablation treatment using high intensity focused ultrasound (HIFU) there was consistently elevated detection of fluorescently labeled and i.v. injected endothelial precursors in the tumor when analyzed with optical imaging and/or histological preparations. Importantly, we also observed that BOECs treated with the novel anti-angiogenic peptide anginex in-vitro, show decreased proliferation and increased sensitivity to radiation. In vivo, the normal increase in FSaII tumor growth induced by injected BOECs was blunted by the addition of anginex treatment. It appears that endothelial precursors may significantly contribute to tumor vessel growth, tumor progression and/or repair of tumor damage and may improve the

  16. The anti-tumor effect of the quinoline-3-carboxamide tasquinimod: blockade of recruitment of CD11b+ Ly6Chi cells to tumor tissue reduces tumor growth

    International Nuclear Information System (INIS)

    Deronic, Adnan; Leanderson, Tomas; Ivars, Fredrik

    2016-01-01

    Previous work has demonstrated immunomodulatory, anti-tumor, anti-metastatic and anti-angiogenic effects of the small molecule quinoline-3-carboxamide tasquinimod in pre-clinical cancer models. To better understand the anti-tumor effects of tasquinimod in transplantable tumor models, we have evaluated the impact of the compound both on recruitment of myeloid cells to tumor tissue and on tumor-induced myeloid cell expansion as these cells are known to promote tumor development. Mice bearing subcutaneous 4 T1 mammary carcinoma tumors were treated with tasquinimod in the drinking water. A BrdU-based flow cytometry assay was utilized to assess the impact of short-term tasquinimod treatment on myeloid cell recruitment to tumors. Additionally, long-term treatment was performed to study the anti-tumor effect of tasquinimod as well as its effects on splenic myeloid cells and their progenitors. Myeloid cell populations were also immune-depleted by in vivo antibody treatment. Short-term tasquinimod treatment did not influence the proliferation of splenic Ly6C hi and Ly6G hi cells, but instead reduced the influx of Ly6C hi cells to the tumor. Treatment with tasquinimod for various periods of time after tumor inoculation revealed that the anti-tumor effect of this compound mainly operated during the first few days of tumor growth. Similar to tasquinimod treatment, antibody-mediated depletion of Ly6C hi cells within that same time frame, caused reduced tumor growth, thereby confirming a significant role for these cells in tumor development. Additionally, long-term tasquinimod treatment reduced the splenomegaly and expansion of splenic myeloid cells during a later phase of tumor development. In this phase, tasquinimod normalized the tumor-induced alterations in myeloerythroid progenitor cells in the spleen but had only limited impact on the same populations in the bone marrow. Our results indicate that tasquinimod treatment reduces tumor growth by operating early after tumor

  17. The Identification of Interferon-gamma as a Key Supportive Factor for Retinal Differentiation of Murine Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Heřmánková, Barbora; Kössl, Jan; Javorková, Eliška; Boháčová, Pavla; Hájková, Michaela; Zajícová, Alena; Krulová, Magdaléna; Holáň, Vladimír

    2017-01-01

    Roč. 26, č. 19 (2017), s. 1399-1408 ISSN 1547-3287 R&D Projects: GA ČR(CZ) GA17-04800S; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : mesenchymal stem cell * differentiation * retina Subject RIV: FF - HEENT, Dentistry OBOR OECD: Cell biology Impact factor: 3.562, year: 2016

  18. A Novel Tumor Antigen and Foxp3 Dual Targeting Tumor Cell Vaccine Enhances the Immunotherapy in a Murine Model of Renal Cell Carcinoma

    Science.gov (United States)

    2015-12-01

    MDSCs facilitate tumor progression by impairing T-cell and natural killer (NK)–cell activation (9) and by modulating angiogenesis. Preclinical data...tasquinimod. Left, tumor growth curves by serial calipermeasurements. Right, tumor weights at the endpoint. B, mice were inoculated s.c. with B16...25 mg/kg) was given as daily i.v. injections on days 3 to 6. Left, tumor growth curves by serial caliper measurements. Right, end-of-treatment tumor

  19. The combinatorial PP1-binding consensus Motif (R/Kx( (0,1V/IxFxx(R/Kx(R/K is a new apoptotic signature.

    Directory of Open Access Journals (Sweden)

    Angélique N Godet

    Full Text Available BACKGROUND: Previous studies established that PP1 is a target for Bcl-2 proteins and an important regulator of apoptosis. The two distinct functional PP1 consensus docking motifs, R/Kx((0,1V/IxF and FxxR/KxR/K, involved in PP1 binding and cell death were previously characterized in the BH1 and BH3 domains of some Bcl-2 proteins. PRINCIPAL FINDINGS: In this study, we demonstrate that DPT-AIF(1, a peptide containing the AIF(562-571 sequence located in a c-terminal domain of AIF, is a new PP1 interacting and cell penetrating molecule. We also showed that DPT-AIF(1 provoked apoptosis in several human cell lines. Furthermore, DPT-APAF(1 a bi-partite cell penetrating peptide containing APAF-1(122-131, a non penetrating sequence from APAF-1 protein, linked to our previously described DPT-sh1 peptide shuttle, is also a PP1-interacting death molecule. Both AIF(562-571 and APAF-1(122-131 sequences contain a common R/Kx((0,1V/IxFxxR/KxR/K motif, shared by several proteins involved in control of cell survival pathways. This motif combines the two distinct PP1c consensus docking motifs initially identified in some Bcl-2 proteins. Interestingly DPT-AIF(2 and DPT-APAF(2 that carry a F to A mutation within this combinatorial motif, no longer exhibited any PP1c binding or apoptotic effects. Moreover the F to A mutation in DPT-AIF(2 also suppressed cell penetration. CONCLUSION: These results indicate that the combinatorial PP1c docking motif R/Kx((0,1V/IxFxxR/KxR/K, deduced from AIF(562-571 and APAF-1(122-131 sequences, is a new PP1c-dependent Apoptotic Signature. This motif is also a new tool for drug design that could be used to characterize potential anti-tumour molecules.

  20. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.